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In order to provide useful tools for researchers in the design of actions to promote
participation in web surveys, it is key to study the characteristics that define the profile of a
“web respondent”, so that specific interventions can be planned. In this contribution, which
draws on data collected during the 2019 housing population census in Italy, we define the set
of familial and geographical characteristics that correspond to a greater probability that the
interviewed household will choose to respond online, by estimating a multilevel model. The
profile of a “computer-assisted web interview household” (CAWI-H) is then defined, on the
basis of the structural characteristics of this population. Moreover, the geographical
distribution of households is studied according to their distance from the CAWI-H profile. The
results show that households that are more distant from the CAWI-H profile have
characteristics that correspond to segments of the population generally affected by economic
and social fragility; they are mainly elderly, foreigners, residents in small towns, and people
with a low level of education. It is to these households in particular that survey designers can
address specific actions that can enhance their willingness to participate in web surveys.

Key words: Mixed-mode surveys; respondent profiling; multilevel models; computer assisted
web interview (CAWI).

1. Introduction

In recent decades, developments in information technology and the ever-increasing
availability of administrative data have led several European countries to develop
innovative methods for their population censuses (Eurostat 2020).

Mixed-mode surveys have been adopted by necessity in survey practice (Biemer 2010; De
Leeuw 2005) and are, nowadays, also essential for National Statistical Institutes (NSIs).
According to Tourangeau (2017) their usage is only expected to increase over time.

Online surveys have become part of mixed-mode data collection strategies, since web
data collection presents several advantages, like a reduction in cost, a general
improvement in timeliness (since the higher the share of web respondents, the shorter the
time devoted to data collection as in Dillman et al. 2014 and in De Leeuw 2005), and a
potential to use complex questionnaires (De Leeuw and Berzelak 2016), and to reduce
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coverage and nonresponse error (Bianchi et al. 2017; Brick and Tourangeau 2017; Cobben
and Bethlem 2013; De Leeuw 2018; De Leeuw et al. 2019; Luiten et al. 2020).

In particular, sequential mixed-mode strategies (which offer one mode at a time, starting
with the cheapest and quickest) improve response rates when different modes acquire
different types of respondents: typically, younger respondents respond through the web,
and respondents who are older or first-generation immigrants respond in interviewer
administered modes (Benzeval et al. 2021; De Leeuw and Berzelak 2016; Kappelhof
2015). Indeed, including a mail survey for those who do not have internet access and as a
follow-up for web nonrespondents also improves representativity on demographic and
attitudinal variables (Bandilla et al. 2014; Messer and Dillman 2011).

However, there are some disadvantages because of the comparability of data collected via
different modes, which could lead to different measurement errors. For instance, past research
has shown that self-administered forms (e.g., both paper mail surveys and web surveys)
perform better when more sensitive questions are asked allowing less social desirable answers
than interview surveys (De Leeuw and Berzelak 2016; De Leeuw et al. 2008, 299).

In this framework, no one could have predicted that the coronavirus pandemic
emergency and the impossibility of carrying out field operations would have boosted the
need for web-based interviews with such strength and urgency.

However, even if the use of the internet is quite widespread in Europe (Eurostat 2020),
respondents’ attitudes toward web surveys cannot be taken for granted. Therefore,
planning interventions targeting specific groups of individuals or households can support
wider participation in web surveys.

The analysis of auxiliary variables in mixed-mode surveys has certainly become much
more important (De Leeuw 2018; De Leeuw et al. 2019), both because of the digital divide
in the population, with highly educated and younger people more often having an internet
connection (Biffignandi and Bethlehem 2012; Couper 2017; Mohorko et al. 2013), and
because the interaction between the characteristics of the respondents and the decisions of
the survey designer influences the response rate and the success of the survey (Antoun et al.
2017; Biffignandi and Pratesi 2002; Durrant and Steele 2009; Scherpenzeel and
Bethlehem 2011, 105).

In this article, we study the determinants that influence the cooperation of respondents
with a sequential mixed-mode survey, such as the Italian Permanent Population and
Housing Census (PPHC), in order to point out the specific characteristics of the
population. This could enhance the efficacy of the actions of survey designers to improve
participation in web surveys.

By estimating a multilevel logit model (Durrant and Steele 2009; Mohorko et al. 2013), we
distinguish between the features of online respondents to a Computer Assisted Web Interview
(CAWI) and the features of respondents in traditional modes (in the case of the PPHC, a
Computer Assisted Personal Interview, CAPI), given that respondents with different
characteristics tend to have different propensities for being interviewed in a given mode.

We consider the set of the socio-economic characteristics of a respondent as their
“profile”. The profiling of respondents, in the literature, has traditionally been achieved
through a logistic model. Among others, Maslovskaya et al. (2019) studied the effect of
different response tools in six social surveys in the UK. The results of their bivariate
analysis suggest that, across the surveys, age, gender, marital status, employment, religion,
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household size, children in household, household income, number of cars and frequency of
internet use are significantly associated with the device used. Bianchi et al. (2017) studied
the effects of mixed-mode design on participation rate, sample composition, and costs in a
longitudinal survey in the UK. To investigate whether the mixed-mode design had
different effects for different characteristics of the respondents (such as gender, age, race,
working status, household type, urbanicity, web-user), the authors estimated a logit model
employing individual characteristics and interactions, but this did not produce significant
results. Pratesi et al. (2004) focused on the timeliness and quality of web surveys in
Slovene households. Their findings suggest that nonresponse rates and quick reactions in
web surveys are sensitive to individuals’ characteristics, but that demographics are not
significant in this. Methodological issues and the research perspectives of web surveys
have been studied in depth and in a thorough and comprehensive way by Biffignandi and
Bethlehem in 2012 and, more recently, in 2021.

The analysis presented here, then, explores the significant differences, in terms of
individual and familial characteristics, between households who respond by completing a
CAWTI and those who respond by the face-to-face method. In this way, it is possible to
define the profile of CAWI respondents (which we call the CAWI-H profile) to identify
which household characteristics contribute the most to increasing the probability of
responding via the web. As in previous research (Durrant and Steel 2009; Mohorko et al.
2013), this study employs multilevel modelling alongside logistic regression, and it
provides also some evidence that a multilevel model is better than a logit model at
explaining the probability of answering via the web.

Once the profiles of web respondents have been defined, it is possible to measure how
far the features of CAPI respondents deviate from the CAWI-H profile, establishing a
measure of distance that allows us to classify respondents according to their “resistance” to
web completion. Compared to other studies employing propensity scores, the computation
of distances from the profiles identified by the multilevel model has been preferred since it
could be successfully employed for other surveys and used as a tool for planning specific
survey interventions.

This study identifies the territorial features related to web responses providing specific
tools for promoting web surveys and, in particular, addressing the logistical issues.
Compared to previous studies concerned with Internet usage in general, this study
provides insight on web survey.

The article is organised as follows: Section 2 presents the data collection design for the
PPHC; Section 3 describes the variables employed to define the respondents’ profiles;
Section 4 presents the statistical methodology to obtain the respondents’ profiles and to
measure the distances between them; Section 5 presents the main outcomes of the study
and the territorial distribution of the different types of respondents; and, finally, Section 6
presents some concluding remarks with reference to particular population groups that
could be made the subject of actions aimed at improving the CAWI response.

2. [Italian Population and Housing Census Data Collection Design

This article draws on data from the 2019 PPHC. In Italy, the PPHC, which was started in
2018 by the Italian National Institute of Statistics (Istat), currently provides a mixed-mode
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survey, since respondents may choose to fill in the questionnaire via the web or by the
traditional way, according to the data collection design described in Figure 1.

In Figure 1, the flowchart for the data collection process is presented. The current
progression of the actions for data collection are represented in white, while our proposal
to increase the share of web respondents is shown in grey.

The population census provides the official estimate of the resident population at the
municipality level (Righi et al. 2021). In Italy, as in most European countries, an
assessment of the coverage results of the last population census in 2011 and the high costs
of data collection led to a change in the strategy for the population census from the
traditional door-to-door enumeration (every ten years for the whole population) to a yearly
register-based sample survey, combining the use of administrative sources with annual
surveys (Chieppa et al. 2018; Citro 2014; Crescenzi 2015; Righi et al. 2021). A further
advantage of these data collection methodologies is the greater containment of the census
participation burden: as noted by UNECE (2018), the response burden on the population is
lower with a combined census, both because the number of questions is reduced (since
some information is available from the population register), and because the physical
presence of a stranger in people’s homes is avoided (which could be a reason for a refusal
to participate, especially in a pandemic situation).

The PPHC foresees two different yearly sample surveys: an Areal sample and a List
sample. The first is only used to update the population register and it is only conducted
face-to-face; it is not of interest for a comparison of different data collection modes.
Therefore, we analyse the List sample, which presents a most interesting survey design
and is carried out in order to collect information on socio-economic issues that is not
available in the population registers. The List sample is based on a yearly sample size of
about 950,000 households (Table 1). Around 2,400 municipalities (of the 7,904
municipalities in Italy) are involved in the survey every year.

The List survey design is “sequential”, and respondents may choose the most suitable
mode to respond to the questionnaire. The first survey mode proposed by the survey
researcher is the CAWI mode, since it is the cheapest and quickest. Helplines are provided
to the respondents in case they need more information or specific support in answering to
the survey. If the CAWI is not answered, respondents are contacted, in order to recall the
interview and to offer help in the filling of the questionnaire. However, as a second option,
respondents can go in person to the many offices that are present in each municipality and
that are devoted to help respondents, and to conduct a “face to face” interview. Finally, as
a last option, it is foreseen also the traditional interviewer administered survey at home, if
required by the respondent for any reason (Istat 2018). The share of CAWI responses is
therefore unknown ““a priori”.

Data are collected at the household level, as a unique questionnaire is provided to
collect the data. Households included in the List sample receive an official letter from Istat,
giving information about the importance of the survey and the fact that answering is
mandatory by law, and providing the credentials for answering the census questionnaire
online. The letter is addressed to the oldest member of the household, who is assumed to be
the one who will answer the questionnaire, providing information on the whole household.
The questionnaire is written in Italian, but a complete guide is provided in 14 foreign
languages.
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Table 1. Sample size — municipalities and households by population size of municipalities — 2019.

Demographic size of Italian municipalities Municipalities Households
(number of inhabitants)

Up to 5,000 1,028 190,458
From 5,001 to 20,000 815 288,360
From 20,001 to 50,000 376 184,593
From 50,001 to 100,000 98 120,149
From 100,001 to 250,000 34 94,226
More than 250,000 12 73,253
Total 2,363 951,039

Source: 2019 PPHC-Istat

It is only if the household cannot fill in the CAWTI that they can answer in a face-to-face
interview that must take place in a public office responsible for data collection.

Under the auspices of NSIs, this share should be close to 100%. In Italy, the use of the
internet is quite widespread, with 76% of households having internet access and 75%
having a broadband connection in 2019. However, there is still a large digital divide
between households, mainly due to generational and cultural factors. Almost all
households with at least one member younger than 18 years old have a broadband
connection (95%), while among households composed exclusively of people over the age
of 65, this share falls to 34% (Istat 2019). Since the share of CAWI respondents is stuck at
50% of the population, the diffusion of the internet would suggest the possibility of a much
higher share of CAWI responses, provided that targeted actions such as those identified in
this study are conducted on the profiles of respondents.

Although the PPHC is not a panel, since households are included in the sample only
once, the profiling of web respondents could be of great support in the successive data
collection occasions, because the survey is repeated over time with the same design.

3. Data

The PPHC List sample, for each household, provides information on the survey mode, the
socio-demographic characteristics of the household, and the geographical features of the
municipality where the household resides.

The socio-demographic information available on households is household size,
household citizenship, age of youngest household member, and highest educational level
in the household. The household size indicates the number of people residing in the same
dwelling. The citizenship variable classifies the households based on the citizenship of the
members: all foreigners, all Italians, or a mixed citizenship household. The youngest
household-member age variable indicates the age of the youngest member of the
household; this variable was considered in the analysis on the basis of the hypothesis that
the presence of young individuals in a household facilitates the use of information
technology and therefore has an effect on the decision to fill in the questionnaire online.
Minors are not included in the definition of this variable since the census questionnaire can
only be filled in for members who are over 18 years of age. The highest educational
qualification held by at least one member of the household is classified according to the
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primary, secondary and tertiary levels that group together the grades (0, 1, 2), (3, 4), and
(5, 6,7, 8) of the International Standard Classification of Education (ISCED).

All these features are coherent with the predictors accounted for in previous studies.
Besides the literature cited in the Introduction, it is worth mentioning the work of Hargittai
(2002), which is one of the first studies on the profiling of online skills, employing
personal and familial features, such age and education. Similar predictors were chosen by
Durrant and Steele (2009).

Furthermore, in order to take into account the strong territorial disparities, both in socio-
economic issues and in digitalization (Benassi and Naccarato 2017; Cellini and Torrisi 2014;
Cracolici et al. 2007; De Clercq et al. 2020; Santarelli and Cottone 2009), several
characteristics of municipalities are considered in the analysis: local capital or metropolitan
city, municipality population size, municipality degree of urbanisation, and altitudinal zone.
Local capitals or metropolitan cities are those municipalities which are the seats of their
boroughs. The variable ‘municipality population size’ classifies municipalities on the basis of
the number of their inhabitants, from very small municipalities (up to 5,000 inhabitants) to
very large ones (more than 250,000 inhabitants), while the degree of urbanisation is a
classification of municipalities introduced by Eurostat and based on a criterion of
geographical contiguity and on minimum population thresholds (European Union 2017). The
territory is classified as one of three types of area: (1) a densely populated area (city or large
urban area), defined as clusters of contiguous cells of 1 km?, with a density of not less than
1,500 inhabitants per km? and a population of not less than 50,000 inhabitants; (2) an area with
an intermediate density level (or small urban area), defined as clusters of contiguous cells with
a density of not less than 300 inhabitants per km? and a population of not less than 5,000
inhabitants; and (3) a sparsely populated area (or rural area), defined as single cells (rural) not
classified in the previous groups (Eurostat 2021). In order to attribute this classification to
single municipalities, the areas identified according to the degree of urbanisation are
compared with the municipal boundaries. The altitudinal zone defines homogeneous areas
constituted by aggregating contiguous municipalities on the basis of threshold values for the
altitude (elevation above sea level). According to this classification, mountain, hill, and plain
areas can be identified. The mountain and hill areas are divided into inland mountain and
inland hill areas and coastal mountain and coastal hill areas, respectively, in order to take
account of the moderating action of the sea on climate. The altitudinal zone is taken into
account in the analysis since it could affect the choice to answer online due to the different
internet access capacity of mountainous areas, which presents some specificities regardless of
the population density and the composition of population (Reynaud et al. 2020).

Municipalities can be grouped into regions, which are very important territorial units
that are responsible for various economic and social policies, or into macro-regions: the
North, the Centre, and the southern areas of Italy plus the two major islands, together
traditionally referred to as the “Mezzogiorno”.

Table 2 shows descriptive statistics on the frequency distribution of the households
according to the CAWI or not CAWI survey mode and the explanatory variables included
in the analysis (Section 5). The share of CAWI respondents varies according to the
household citizenship, size, age of the youngest member, and highest education level in
the household. The size and sign of the relationships are presented (when significant) in
Subsection 5.1. At this point of the study, however, it is worth mentioning that for instance
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Table 2.  Households by survey mode, and familial and social characteristics'.

Survey mode

Composition
Not CAWI CAWI of the CAWI  Number
Household characteristics (%) (%) sample (%) of cases
Household size 1 54.01 45.99 274 245155
2 50.98 49.02 28.6 239632
3 45.67 54.33 21.6 163624
4 43.93 56.07 17.6 128977
5 or more 56.16 43.84 4.8 25294
Pearson Chi2(4)=5.50E+ 03; Pr=0.000
Household All foreigners 75.27 24.73 1.7 28296
citizenship All Ttalians 48.86 51.14 95.9 770700
Mixed citizenship 57.29 42.71 2.4 23431
Pearson Chi2(2)=8.10E+ 03; Pr=0.000
Youngest 18-34 46.98 53.02 314 243631
household-member 35-64 47.23 52.77 45.8 356701
age 65+ 57.78 42.22 22.8 222095
Pearson Chi2(2) = 7.40 4+ E03; Pr = 0.000
Household Primary 65.03 34.97 24.9 293213
highest educational Secondary 46.59 53.41 441 339277
level Tertiary 32.90 67.10 31.0 189937
Pearson Chi2(2)=5.00E+04; Pr=0.000
Total 50.01 49.99 100.0 822427

Source: 2019 PPHC-Istat
@There are no missing cases in the data set for the variables used here.

the share of CAWI respondents increases with higher level of education. The Chi-square
tests referring to these distributions preliminarily suggest that there are relationships
between the type of response and the variables used to define profiles.

4. Methods

The first step of the research is to identify the profile of the online respondent households
(CAWI-H) and, more specifically, to identify the variables that are associated with the
households with the highest probability of responding via the web.

To compute the probability that a family responds in CAWI mode, we estimate a
multilevel logit model that also takes into account territorial specifications (Goldstein
2010). The endogenous variable is the dichotomous variable that assumes the value 1 if the
family responded in CAWI mode, and 0 otherwise (Durrant and Steele 2009; Keusch et al.
2019; Mohorko et al. 2013), the binary response Y; defined as follows:

(D

0 Not CAWI response
Yi= 1 CAWI response

where i (i =1, . . ., n) denotes the household.
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The auxiliary variables are the social and demographic characteristics of the households
illustrated in Section 3.
The multilevel model can be written as:

(775}'?)> O 4

log —0 =BVx; +u 2)
Tij

wherej (j =1, . . . k) indicates the territorial level, ng) = Pr(y;=9),s= @g’WC,AWC xg)
is a vector of household level covariates, Bm is a vector of coefficients, and u](fv) is a
random effect representing unobserved regional characteristics.

By means of the u](»s) component, the multilevel model (2) takes into account the
relationship between a CAWI response and the region where the household resides. In this
way, the model acknowledges the unobserved regional influences on the different types of
response, and the estimates of the coefficients referring to the explanatory variables are
more accurate. The use of random effects is justified by the fact that the respondent living
in a region is a feature that does not change over the period accounted for in the model.

As a further check on the robustness of the results and to illustrate their stability to
various model specifications, we test whether a model including region fixed effects fits
the data better than the multilevel model. The estimated logistic regression with binary
response Y; in Equation (1) (Wooldridge 2012) is:

logit(gi) = log <] fig') = Bo+ Bix1i + Poxai + Baxzi + . . . 3

in which the probabilities g; = Pr(¥; = 1|x;) are related to a linear predictor By + B1x1; +
Baxzi + Bsxsi + . . . through the logit function.

In Appendix (Section 7), we present the results of the logit model with different
specifications, including joint effects of the explanatory variables.

In this first phase of the research, the profile of the households with the highest
probability of answering via the web is identified. All in all, the number of possible
combinations of categories (i.e., profiles) is 135, since there are four exogenous variables
used in the model (2): household size, with five categories; household citizenship, with
three categories; youngest household-member age, with three categories; and household
highest educational level, with three categories (Table 2). Among the 135 profiles, we give
the name ‘CAWI-H’ to the profile that presents the highest probability of answering via
CAWI, that is to say, the combination of the categories that presents the highest values of
the multilevel model coefficients. Each household, then, presents a certain profile because
it differs from the CAWI-H profile for one or more categories. Therefore, it is possible to
establish a measure of the distance between the profile of a household and the CAWI-H
profile, and to compute this distance for each household.

The maximum possible value for this distance is 4 (if all the explanatory variables lie in
a category that is different from the CAWI-H profile), while the minimum value is equal to
0 if the household presents the CAWI-H profile. The higher the value of the distance, the
lower the probability that the specific family type will respond to on the web.
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Since the variables that define the profiles are all categorical, the measure employed is
the Jaccard distance (Jaccard 1908; McCormick et al. 1992), defined as follows:

_ Mc,i
M+ My +Ms+ My

D; “)
where i corresponds to a single household, M,k =1, . . ., 4 is the number of categories
for each categorical variable, and M. ; is the number of categories for which the CAWI-H
profile and the profile of household i are different. For instance, if household i has the same
size and age of the youngest member as CAWI-H, but different citizenship and level of
education, then M_; is equal to 2.

To obtain a measure that varies between 0 and 1, the relative distance Dg; is calculated
by dividing the value D; in equation [4] by the maximum value.

Households with the same value of the distance Dg; have similar characteristics and,
thus, the same probability of answering by a CAWIL.

One of the most common methods for controlling for differential nonresponse in mixed-
mode surveys is to use the estimated propensity of a respondent to participate in each
mode. These propensity scores are typically estimated from a generalised linear model
(e.g., probit, logit), where a given mode is treated as a possible outcome, conditioned on
available covariates information, often limited to participant demographics, as is done by
Hox et al. (2015), and more recently by Maslovskaya et al. (2019) and Rivero et al. (2019).
However, in this article, we propose a procedure that would allow survey design
researchers to control the distance from the CAWI-H profile in the actual data collection
and also before proceeding to a new phase of data collection, while propensity scores can
only be estimated after collecting the data.

In order to plan interventions for the promotion of web surveys in different territories, it
is useful to study where households present the strongest ‘resistance’ to CAWI and the
characteristics of the areas of the country in which it is more important to intervene. The
third and final step of the article is then to create and analyse a measure of ‘Municipality
Resistance’ to CAWI data collection. The Municipality Resistance (MR) is computed as
the average of the distances (Dg;) for all the households residing in a given municipality. In
this way, this average can be considered as the score assigned to the particular
municipality. Using the MR as an endogenous variable in a regression model in which the
covariates are the geographical variables (Section 3), it is possible to identify the
characteristics of municipalities that are predictors of the MR. The characteristics of the
territories employed in the analysis are all variables associated with the penetration of the
internet (Ciapanna and Roma 2020; Rados 2021).

5. Results

The results provided by the multilevel model are presented in Subsection 5.1. In
Subsection 5.2, the distribution of households, based on their distance from the CAWI-H
profile, is illustrated. Finally, in Subsection 5.3, the estimation of a model that identifies
the geographical predictors of municipalities’ ability to collect responses via the web is
presented.
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5.1.  Determinants of a CAWI Response

As illustrated in Section 4, a multilevel binomial model is estimated to explore the effects
of household characteristics on the probability of CAWI or not CAWI responses. More
specifically, the CAWI-H profile is a household whose members are all Italian, with at
least one member with a tertiary level of education, in which the youngest member is
between 35 and 64 years old, and, to a lesser extent, having four members (Table 3).

The highest coefficient for a CAWI response refers to households in which the level of
education is highest. For people with a secondary or tertiary education, the coefficients
referring to the probability of answering via a CAWI method are significantly higher than
for those who have a primary level (respectively 0.734 and 1.350).

Moreover, households exclusively composed of foreigners present a lower probability
of using the CAWI option than those with at least one Italian member. In particular,
households whose members are all Italian present a coefficient equal to 1.379.

The empirical evidence also suggests that the CAWI response rate of households where
the age of the youngest member is between 35 and 64 years old is significantly higher than
the rate of households where the age of the youngest member is between 18 and 24 years
old. Households composed only of elderly people present the lowest probability of a
CAWTI response.

Table 3. Estimate of parameters of multilevel logit model.

CAWI Coefficient Std. Err. P> Izl
Household size (Base = 1)

2 0.012 0.006 0.05
3 0.018* 0.008 0.02
4 0.112%%* 0.008 0.00
5 or more -0.233#%%* 0.012 0.00
Household citizenship (Base = All foreigners)

All Italians 1.379%*%* 0.015 0.00
Mixed 0.711%%** 0.020 0.00
Youngest household-member age (Base = 18—34 years old)

35-64 0.050%** 0.006 0.00
65+ -0.045%%%* 0.008 0.00
Household highest educational level (Base = Primary)

Secondary 0.734%%% 0.006 0.00
Tertiary 1.350%** 0.007 0.00
Constant -2.090%** 0.016 0.00
Region

var(_cons) 3.50E + 08 3548290

LR test vs logistic model: Chibar2(01) = 40684.27, Prob > = Chibar2 = 0.0000

Legend: * p < .05; ** p < .01; *** p < .001
Source: 2019 PPHC-Istat.
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The analysis of the size of the household offers more equivocal results: the coefficient
referring to a CAWI response is the same in households with up to three members, it
increases for households with four members, while it significantly decreases in households
with five or more members.

All in all, the survey designer should pay particular attention to households with
foreigners, those without any members with at least a secondary-level education, and
households whose members are all elderly.

Finally, the estimate indicates that the effect of education in choosing a CAWI prevails
over the other determinants. The results are coherent with those of Keusch et al. (2019),
Maslovskaya et al. (2019), and Mohorko et al. (2013). In fact, education in general been
found to be among the determinants of response in surveys, with a higher level linked to a
higher propensity to answer through the CAWI option (Hox et al. 2015).

It is worth noting that the results are coherent with those obtained by estimation of the
logit model in Appendix.

We found that the likelihood-ratio test (LR), which evaluates the goodness of fit of two
comparable models, justifies the use of a multilevel model (Table 3). Indeed, the result
confirms the validity of the multilevel model, compared to the logistic regression,
providing a significant coefficient (Maddala and Lahiri 2010).

5.2.  Households’ Distance from the CAWI-H Profile

Tables 4 and 5 show the distribution of households by survey mode and their relative
distance Dpg;.

The large majority (69%) of households that present the CAWI-H profile (Dg; = 0) do
indeed answer through a web interview. By contrast, the households that are most distant
from the identified CAWI-H profile (Dg; = 1) typically answer via a traditional mode.
The dependence between the distance from the CAWI-H profile and the survey mode is
significant, according to the Chi-square test results (Table 4). Altogether, the probability of
answering through a CAWI questionnaire decreases as the distance from the CAWI-H
profile increases. Therefore, the results suggest that our models select useful categories
that identify the characteristics of respondents with the highest probability of a CAWI
response. In this way, we also recognise those profiles for which contact with the

Table 4. Household distribution by type of response and relative distance from CAWI-H profile.

Relative distance from CAWI-H Survey mode
CAWI  NOT CAWI  Total

0 69.11 30.89 100
0.25 54.70 45.30 100
0.5 47.42 52.58 100
0.75 45.89 54.11 100
1 27.35 72.65 100
Total 49.99 50.01 100

Pearson Chi2(4)=1.30E+ 04; Pr=0.000
Source: 2019 PPHC-Istat.
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Table 5. Household distribution by survey mode, relative distance from CAWI-H, and macro-region.

Survey mode

Macro-region Relative distance from CAWI-H CAWI NOT CAWI Total

North 0 77.27 22.73 100
0.25 63.25 36.75 100
0.5 55.83 44.17 100
0.75 58.61 41.39 100
1 29.56 70.44 100
Total 58.91 41.09 100
Pearson Chi2(4) = 7.30E+4 03 Pr=0.000

Centre 0 70.84 29.16 100
0.25 58.46 41.54 100
0.5 50.65 49.35 100
0.75 51.40 48.60 100
1 29.83 70.17 100
Total 53.77 46.23 100
Pearson Chi2(4) = 2.70E+403; Pr=0.000

Mezzogiorno 0 56.83 43.17 100
0.25 39.88 60.12 100
0.5 35.06 64.94 100
0.75 31.81 68.19 100
1 16.86 83.14 100
Total 36.55 63.45 100

Pearson Chi2(4) = 3.90E+03; Pr=0.000
Source: 2019 PPHC-Istat.

respondents (often under the control of the survey designer) like an e-mail solicitation
plan, survey awareness, and so on, is most necessary and useful.

The study of the different profiles and their distance from the CAWI-H profile allows us to
highlight two situations: those families for which a CAWI response is almost certain (0) or
very unlikely (1), and those households that are on the border between being CAWI and being
not CAWL. Considering only the households presenting the lowest relative distance from the
CAWI-H profile (e.g., the first two groups in Table 4), the gain in the share of web respondents
that it would be obtained if all these HHs would respond in a CAWI mode is 7.4 percentage
points. Therefore, the share of CAWI responses would increase from 49.99 to 57.37%, if all
the HHs with a distance from CAWI-H lower than 0.5 would actually respond via web.

The geographical effects that appear in the models to be significant for the probability of
responding through a CAWI method (Table 3) become apparent in the analysis of CAWI-H
distances (Table 5).

In the North and Centre of the country, the households that have a distance of 0.5 from the
CAWI-H profile also have a 50% probability of answering through a web questionnaire. By
contrast, in the Mezzogiorno the probability is much lower (35%). This means that even
households with a CAWI-H profile have more difficulty in answering via the web. Moreover, in
the Mezzogiorno area 43% of households with a CAWI-H profile do not choose to answer via
the web. Therefore, the survey designer should pay more attention to the less developed areas.
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This methodology can be applied to any country, since it is widely known that territorial
differences, such as the urbanisation or geo-morphology of the territory, can be important
predictors of digitalisation and other socio-economic features.

5.3.  The Geographical Distribution of Municipalities with Web Respondents

The MR to CAWI mode increases when moving from the municipalities of the northern
regions of Italy to the central areas and increases again when moving to the municipalities
of the southern regions, as shown in Figure 2.

To verify the effects of the geographical characteristics of the municipalities on the MR
variable, a generalised linear model (GLM) is estimated. Table 6 shows the results of the
estimated model, where the endogenous variable is the MR, and the exogenous variables
are the geographical variables (Section 4).

The demographic dimension of the municipality is important in explaining the MR to a
CAWI response, and it is negatively related to the distance from the CAWI-H profile.
Therefore, small centres with fewer than 20,000 inhabitants should be the focus of the
survey designer’s attention. In particular, local capitals or metropolitan cities present the
highest probability of the CAWI-H profile. Indeed, internet users generally experience
faster download and upload speeds in urban areas, although there is high variability in the
internet coverage in particular territories (Rizzato 2020).

The results shown in Table 6 indicate that the geographical differences among the
macro-regions are significant; thus, the model is also estimated separately for the North,
the Centre, and the Mezzogiorno, in order to find out the specific details for each macro-
region. In the Mezzogiorno, the MR is significantly higher (0. 0186).

The degree of urbanisation has no effect on the MR in the North and Centre of Italy,
while in the Mezzogiorno small towns and rural areas are instead related to a smaller

| 0.496 —0.503
0.503 — 0.508
0.508 —0.514
0.514 - 0.521

Fig. 2. Distribution of “Municipality Resistance” (MR — Regional Averages), Italy 2019.
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Table 6. Estimate of parameters for generalised linear model and standard errors (in parentheses).

Municipality — Items Italy North Centre Mezzogiorno
Resistance

Population size (Base = Less than 5,000 inhabitants)
From 5,001 to 0.0023 0.0013 -0.0017 .0073*
20,000 inhabitants

(0.0015) (0.0019) (0.0038) (0.0031)
From 20,001 to -.00437* -.0104%**%  -0.0067 0.0048
50,000 inhabitants

(0.0020) (0.0028) (0.0052) (0.0038)
From 50,001 to -.00754* -.0140%* -0.0128 -0.0020
100,000 inhabitants

(0.0037) (0.0064) (0.0078) (0.0058)
From 100,001 to -0.0115 -0.0166 0.0050 -0.0156
250,000 inhabitants

(0.0064) (0.0094) (0.0160) (0.0108)
Over 250,000 inhabitants  -.01958* -.0268* -0.0400 0.0047

(0.0088) (0.0126) (0.0211) (0.0154)

Altimetric area (Base = Inland mountain)

Coastal mountain -0.0038 -0.0186 0.0141 0.0029
(0.0045) (0.0128) (0.0147) (0.0055)
Inland hill .00374* 0.0029 0.0044 .0077%**
(0.0016) (0.0022) (0.0038) (0.0029)
Coastal hill -.00422* -.0218***  -0.0032 0.0004
(0.0020) (0.0043) (0.0044) (0.0031)
Plain .01 14%3%* (011 5%3%* 0.0007 .0133%%:%

(0.0016) (0.0019) (0.0060)  (0.0033)
Municipality urbanisation degree (Base = Densely populated city or area)
Small town and suburb -.01047%*%*  0.0015 0.0054 -.0274%%%
or intermediate
population density zone
(0.0025) (0.0034) (0.0125)  (0.0039)
Rural area or sparsely -.00832%%* 0.0047 0.0029 -.0231%%%*
populated area
(0.0029) (0.0037) (0.0132)  (0.0050)
Local capital/Metropolitan city (Base = No)
Yes -.0355%%%* -.0212%%% - 0246%*  -0497***
(0.0038) (0.0061) (0.0082)  (0.0061)
Macro-region (Base = North)

Centre .0051**
(0.0017)
Mezzogiorno .0186%#*%*
(0.0013)
Constant 4601 +** A504%x% ASBTHEE ABEGHHk
(0.000) (0.039) (0.0138)  (0.054)
R? 0.1114 0.168 0.1437 0.1983
Chi2 542.99 236.65 56.539 201.31
AIC -10554 -5372.6 -1612.5 -3646

Legend: * p < .05; #* p < .01; *#*x p < .001
Source: 2019 PPHC-Istat.
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distance from the CAWI-H profile. In the Mezzogiorno, the effect of being a local capital
is maximal: living in one of the principal towns makes a real difference with respect to the
probability of a CAWI response.

6. Final Remarks

For any statistical survey, web interviews imply considerable advantages: first of all, a
reduction of costs, and then the containment of the interviewer effect (Bethlehem et al.
2011; Scherpenzeel 2011), and the timeliness of data collection. These advantages become
even more significant when reference is made to official statistical surveys because of the
large size of the samples and the number of variables surveyed, as well as the high
standards that must be guaranteed.

The interest in identifying the profile of CAWI respondents is that web surveys still face
some resistance from the population. In order to foster a positive attitude towards web
interviewing, an awareness campaign is necessary, and this would be more effective if it is
targeted at a specific population.

It is also necessary to adapt the data collection strategy to geographical imbalances. For
instance, small centres, rural areas, and some remote and mountainous zones show the
highest resistance to filling in census questionnaires online and should be made target of
specific actions by the survey designer.

All over the world, NSIs employ population lists to design surveys, and to define samples.
In these population or firms’ registers, some characteristics are included, and the amount of
information available in advance is further increasing because the huge development
of registers and archives. The variables employed in this study are those available in the lists
of population that are used before the survey. Therefore, these variables are known in
advance and they can be employed by the survey researchers to design specific actions to
enhance web responses before the actual data collection. This study thus proposes a
procedure to better exploit this information that is available before the survey.

This contribution has shown how some structural characteristics of households allow us
to classify them on the basis of an attitude: a preference for filling in the population census
questionnaire online, and that this attitude refers to household that generally are classified
as living in less fragile conditions (Benassi and Naccarato 2017; D’ Ambrosio 2003).

In conclusion, families with a higher level of education, composed of Italian citizens,
with at least one member younger than 65 years old, and who live in urban areas are those
for whom the probability of answering via the web is highest; they are also those who
historically live in better economic and social conditions. We can therefore conclude that,
regardless of the advantages of a statistical survey, the probability of answering online can
be considered as a further sign of the conditions of greater or lesser social disadvantage in
which Italian families live.

Other than providing some new insights on the profiling of web respondents in mixed-
mode surveys, this research offers a procedure for calculating distances between profiles
that could be successfully employed for any other survey and used as a tool for planning
specific survey interventions to enhance web survey participation.

The classification of households in profiles identifies more homogeneous population
groups, and it could be useful in the design of successive survey occasions, with the aim of
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reducing the variability of the estimates and, eventually, the sample size. Also, the
correction of partial or total nonresponse data would benefit from the profiling of
households, through the analysis of more homogeneous groups.

Nevertheless, further research could be devoted to an analysis of the stability over time
of the profiles and their geographical distribution. Having identified territorial differences
in the profiles, also identifying regional profiles could be an insight to further develop.

7. Appendix

Tables 7 and 8 show the results of a base model (MO) that takes into account only the
socio-economic characteristics of the households as described in Section 4; a model (M1)
that also considers the geographical macro-region variable; and models from model (M2)
to (M6) that include the variable indicating the region of residence and the joint effects of
the explanatory variables.
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A Multivariate Regression Estimator of Levels and Change
for Surveys Over Time

Anne Konrad' and Yves Berger*

Rotations are often used for panel surveys, where the observations remain in the sample for a
predefined number of periods and then rotate out. The information of previous waves can be
exploited to improve current estimates. We propose a multivariate regression estimator which
captures all information available from both waves. By adding additional auxiliary variables
describing the information of the rotational design, the proposed estimator captures the
sample correlation between waves. It can be used for the estimation of levels and changes.

Key words: Generalized regression estimation; composite estimator; rotating samples.

1. Introduction

Repeated socioeconomic surveys are often the basis for evaluating changes and levels over
time (e.g., Smith et al. 2003). Estimates are usually based on repeated or rotational
surveys, which involve rotations, that is, units remain in a survey for a predefined number
of waves and then are replaced by new sampled units (e.g., Gambino and Silva 2009;
Kalton 2009; Eurostat 2012). There are different rotation schemes. In an in-for-x rotational
design the units remain in the sample for x consecutive waves and then are replaced by
new sampled units. In an x-(y)-z rotational design, the units remain in the sample for x
consecutive waves, leave the sample for y waves and then return for z consecutive waves.
Then they are dropped from the sample completely and replaced by new sampled units
(e.g., Bonnéry et al. 2020, 170). We shall consider two waves, but the proposed approach
can be extended to more than two waves (see Subsection 3.1).

Rotational designs give partially overlapping samples between waves. Thus, between
two consecutive waves, we have units sampled at both waves (the overlapping units), units
sampled only at the first wave (units that rotate out) and units sampled only at the second
wave (units that rotate in). The sample information from the previous wave can be used to
improve the current wave estimates. We expect to have more efficient estimates when the
variables are correlated over time (Steel and McLaren 2008).

We propose a “multivariate generalised regression” (GREG) estimator that exploits the
sample overlap between two waves, as well as the non-overlapping samples containing the
units observed in only one of the waves. The proposed estimator includes “extended design
variables” as additional auxiliary variables, which capture the sample correlation between
the variables and the sample rotation. Thereby, it borrows strength from all available sample
information on the variables of interest and the auxiliary variables from both waves. This
may provide efficient change and levels estimates. Furthermore, the extended design
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variables capture the sample design information, such as stratification and unequal
probabilities. The proposed estimator can be applied for rotational samples of any rotation
scheme or for the simultaneous estimation of two or more consecutive waves; for example,
impact evaluation surveys with a baseline and a post-intervention data collection.

The idea of including the sample information on variables of interest from previous
waves is not new. Hansen et al. (1953) and Gurney and Daly (1965) introduced a class of
composite estimators that exploit the sample overlap between two consecutive waves. The
“modified regression estimator” of Singh et al. (1997) includes additional auxiliary
variables based on the variables of interest from previous waves. However, for the new units
that rotate in, the values of these additional variables are unknown and usually imputed. The
control totals of the additional variables are also unknown and have to be estimated, which
leads to a variance inflation of the current wave estimate. In contrast, the proposed estimator
neither relies on imputation nor the estimation of unknown control totals.

The article is organised as follows. Section 2 introduces the basic framework on
rotational surveys and GREG estimators. In Section 3, we derive the proposed multivariate
GREG estimator and its properties. Asymptotic optimality and variance estimation is
investigated in Section 4. Alternative estimators considered in the literature such as the
modified regression estimator are discussed in Section 5. In Section 6, a Monte Carlo
simulation study compares the proposed multivariate GREG estimator with the modified
regression estimator. Section 7 summarises our results.

2. Rotation Design and Generalised Regression Estimator

Let U={1,... i ... N} be apopulation of N units. Without loss of generality, we
consider two waves (f = 1 and t = 2). The proposed estimator introduced in Section 3, will
be extended to more than two waves in Subsection 3.1. We assume that the population
units are the same in both waves. In practice, a change in a population can be handled by
adjusting the weights and the sampling frame in the cases of birth, death and emigration.

Let s, be the first wave sample of size n; selected without-replacement from U. The
first-order inclusion probability of unit i for wave 1 and 2 are denoted respectively by
; = Pr(i € sy) and 7, = Pr(i € s,), where Pr(-) denotes the probability with respect to
the design. We assume that both sample sizes n; and n, are fixed. The common sample is
S12 = s1 N 55, with a sample size ny, = #s1,, where 0 = nj, = n;. We assume that n, is
fixed, because this is a common feature of rotational designs. It is common practice to
assume that the units that rotate out cannot rotate in; that is, Pr{i € (s> \ s;)|i € s} = 0.

Stratification is often used in practice. We suppose that the population U is stratified into
H strata U, such that Uf:] U, = U. We assume that stratification is the same at both
waves. Let 5., be the ¢-th wave sample of size n,, selected without-replacement from the
population Uy, where t = 1 or 2. At wave 1, the overall sample is s, = U s, , with a total
sample size n, = Zfﬂ”t,h- We assume that we have a rotation within strata, that is, the
common sample within U, is denoted by si2; =51, M sy, with a sample size
niap = #s12,, fixed by design. The ratio 6, = nj2;/n1, is the fraction of the overlap
within U,,. The quantities 6, are allowed to vary between strata.

The objective is to estimate unknown population totals of a variable of interest y, for
different waves. The total of wave ¢ is
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Ty, = Zyih
i€U
where y;, is the value of y for a unit i € U at wave t. The Horvitz and Thompson (1952)
estimator

AL Yit

is a design-unbiased estimator of 7,. For estimation of a domain of interest, we impose
v;; = 0 for the units i outside the domain.

The efficiency can be improved by incorporating auxiliary information in the estimation
process. A widely used model-assisted estimator based on auxiliary information, is the
generalised regression (GREG) estimator (Hansen et al 1953; Cassel et al. 1977; Sirndal,
1980; Isaki and Fuller 1982; Wright 1983). Let x;, be the Q,-vector of auxiliary variables
for a unit i at wave r. Suppose that the vector of population totals 7., = > .-, X; at wave ¢,
is known from census, registers, or other reliable sources. The customary GREG estimator
is defined by

~ ~ 51 ~
T8i=17,+B, (1, — ) (1)
where
~ Xt
Ty =) —, 2
i€s, it
-1
.
A X X. XV
Bt = i itYit ) (3)
i€s, it i€s, it

The estimator (1) is motivated by the linear regression model
Yit = X;Bt + &ir, 4

specifying the relationship between y;; and x;;, where E(e;;) = 0, V (g;;) = o?and E(e;e;) =0
for all i #j. If V(g;) = v,0% a weighted least-squares estimator can be used instead of
Equation (3) to reflect heteroscedasticity. In order to simplify the notation, we shall assume
v;; = 1. Nevertheless, when v;; 7 1, they can be easily added to the regression coefficient (13)
of the proposed estimator. The use of v, is more relevant for business surveys.
Homoscedasticity (v;, = 1) is often assumed in household surveys (Steel and Clark 2007, 52).

The asymptotic design-unbiased estimator (1) does not depend on whether the model (4)
holds or not. Its efficiency is driven by the predictive power of the model (cf. Sdrndal et al.
1992, 227, 239). Hereafter, we shall use a design-based approach, that is, the model (4)
shall not be used for inference.

3. Proposed Multivariate Regression Estimator

Let us consider the “combined sample” defined by the set s, = s; U s, comprising all units
from both waves. The corresponding sample size of s, is denoted by n, = #s, = n; +n,—
nyy. Let the “extended weighted variable of interest” be defined by
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Ju =205 €s,) foralli €s, andr=1,2, (5)

it
where 6{i € 5,} = 11if i € 5, and 8{i € s,} = 0 otherwise. Note that y;, = 0 for all units
i € 5, \ 5, that rotates out. We also have y;; = 0 for all units i € s, \ 51 that rotates in.
Figure 1 is a visual representation of two waves, with units on the horizontal axis and the
two waves on the vertical axis.
The “extended weighted auxiliary variables” are defined by

%, = 2tsli€s) foralli€s, andi=1,2. 6)
it

The set of auxiliary variables used at t = 1 can be different from the one used at t = 2. The

set of auxiliary variables can also be the same. This is usually the case for panel surveys.

Note that Equation (2) can also be re-written as f,, = > . X;;. We also consider

“extended design variables” given by

€5y

Zio = ity -+ > Zithy - - > Zin) O Es,) forall i€ s, and t=1,2

with z;,, = 1 if the unit i belongs to stratum 4 in wave ¢, and z;, , = 0 otherwise. The vector
z;, represents the sampling design information given by the stratification. The Hadamard
product z;1°z;,» will play a key role. It reveals the information induced by the rotation,
because it identifies the units within the common sample. Indeed, the A-th component of
Z;1°Zj is equal to one if and only if the unit i belongs to the common sample of strata A.
This component equals zero if and only if the unit i rotates in or out. Thus, z; can be used to
describe the sample information given by the rotation and the stratification.
It can be verified that

E z; =n; and E Z1°Zp = Ny, )

i€s, i€sp
where
n, = (nt,l, BN Y T -,nz.H)Tv
np =0, .. 20, - - -,n12.H)T-

Combined sample s, =5, U's,

Rotate out Overlap s, =s, N, Rotate in
I I
I | Y =
| | Ya T 0
Wave 7= 1 \ Sample s, : X, =0
i ] z =0
i 1 il
I I
I 1
I I
v o= 0 | |
ws } I
Wave 1 =2 X,=0 I Samples, 1
z,=0 1 1
I I
L 1

Fig. 1. Visual representation of two waves. The vertical axis represents the two waves: t = 1 and t = 2. The
horizontal axis represents the units of the combined sample s, = s; U s;. The sample s; and s, are given in two
different gray scales: for the sample s, and for the sample s,.
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Equations (7) hold, because we have stratified design and we have a rotation within strata.

Lety; = (i, iiz)T be the “combined extended variable of interest” of wave 1 and wave
2. We also pool together the extended weighted auxiliary variables and the extended
design variables into a single vector +y; of dimension (Q; +Q, +3H), given by

Y= (X, %, 2, 2, @inez) ') ®)
This new auxiliary variable +y; contains the original auxiliary variables x;;, the stratification
variables z; and the variables z;,°z;; which specify the rotation within strata.

Berger et al. (2003) proposed using the stratification variables as auxiliaries within a
GREG estimator, when we have a single-stage stratified sampling designs. This has the
merit of achieving asymptotic optimality. The resulting estimator is easy to implement and
does not rely on joint-inclusion probabilities. The proposed multivariate GREG estimator
(9) is based on a similar idea, except that we use the additional variables z;,°z;, to capture
the rotation.

The proposed multivariate GREG estimator for the unknown vector T, = (7y,,7y,) " of
totals, is defined by

=4 + B (r, — %)), )
where
&= By, 5,7, (10)
=0, 7,0, (11)
= GLE, DT (12)

-1

By =Y cwy | D ard/, (13)

i€sy i€sp
n:=(n/,n,,n,)", (14)
ci:=1—Pr@i € sp). (15)

The matrix (13) is a regression coefficient matrix of dimension (Q; +Q, +3H) X 2.
We introduce the c; to achieve asymptotic optimality (see Section 4). Since s, = 51 U 55,
we have Pr(i € s,) = ;1 + mp— Pr(i € s15). Now, since s = 512 N sy, Pr(i € spp) =
Pr(i € s))Pr(i € si»li € s1). Thus,

Pr(i € sp) = 7y + mp — w1 Pr(i € S12|i € s1). (16)

The conditional probability Pr(i € s, | i € s;) depends on the design and can be
approximated by 6, = ny2;/n1;, where Uy, D i. Therefore, hereafter we shall use

ci=1—my —mp+ 710, whereh: U, Di. 17

Exact computation of Pr(i € s, | i € sy) is of little use. With large sampling fractions,
the c; are less than 1 and can be interpreted as finite population corrections within Equation
(13). They should not affect the consistency of Equation (9), because they are weights used
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only within Equation (13). Note that with negligible sampling fractions ¢; = 1. The ¢; will
be also used for variance estimation (see Equation (27)).

Because of nonresponse, we could have units within the overlapping sample, which are
not available at both occasions. Re-weighting should be used to compensate for the
missing observations. In this case, within Equations (5) and (6), the basic weights ;; !
should be replaced by weights that takes the missingness into account.

Theorem 1 gives an alternative expression for the proposed estimator which will be used to
show its asymptotic optimality in Section 4.

Theorem 1. An alternative expression for 35" is

40 =4, + B (v, — %)), (18)
where
B, = X"CM.X)"'X"CM. ¥, (19)
M, =1-ZZ"'CZ)'Z"C, (20)
Xi=&,... %),

e S TN\T
Y-—(.Y1a--~7ynh )

— T TNT
7 = (zl,...,znb) ,
C

= diag{cy, . . ., 0}, (21)

yii= G, ),

o . eT oTAT
X; = (leaxi2) s

—— T T T T
2;:=1{2,,25,(z1°2p) } (22)

—— T TNT
Tt = (T, Ty,) s

A=A (23)

xX1? "Xy
and I is the ny X ny, identity matrix.

The proof can be found in the Appendix (Section 8) and is based on the fact that the
Horvitz-Thompson estimators of the totals of the design variables are equal to their
population totals, that is, T, — %, = {(7, —%,)",07}".

The underlying multivariate model that leads to Equation (18) is

Yi =X,~T[3x+8i7

where y; := (m1 Vi1, my,-z)T and x; := (my iiTl, T il.Tz)T. This model takes the
correlation between waves into account, because variables of both waves are included
within y; and x;. Furthermore, %, contains the totals of both waves.

The proposed estimator borrows strength from both waves, by using both waves
auxiliary variables. Furthermore, it takes the stratification into account, because of the
extended design variables z;; and z;,. In addition, the variable z;;°z;, exploits the rotation
between s; and s, induced by the sample overlap. In contrast, the regression coefficient of
the wave specific GREG estimator, given by Equation (3), does not involve design variables
or information about the rotation. It does not take into account the correlation between the
waves for the auxiliary variables and the variable of interest.
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3.1. Extension to More than Two Waves

The proposed estimator can be easily extended for more than two waves. Suppose we have
three consecutive waves. At wave 2, the multivariate GREG estimator produces two estimates:
7% for wave 1 and 7% for wave 2, where 7 borrows strength from the information of
wave 1. At wave 3, we obtam anew estimate #‘eg(z) for wave 2 and an estimate 75* for wave
3. Therefore, we have two estimates for wave 2 7% and *fgreg(z) In official statistics, due to
the need for up-to-date information, the estimate *fﬁzeg is 1mmed1ately published at wave 2. The
second estimate fg‘eg(z) is not published and should not be viewed as a revised estimate for the
second wave total It is only used to produce 7°%. Furthermore, there is no reason for T”greg(z) to
be more precise than *fgreg since both are based on the same controls and correlatlons The
estimates 7% and *fgreg(z) are not used as controls to produce 7%, as with the modified
regression estimator (see Section 5).

The proposed estimator is flexible, because it can be also use to borrow strength over
more than two waves. In this case, the dimension of the vectors %ﬁreg and y; is the number
of waves. The vectors ¥; and X; contain the variables of the waves considered. In this case,
the vector (22) may need to include additional components depending on the design. For
simplicity, we recommend to use ¢; = 1 in this case.

For example, suppose we have three waves, the sample sizes of the overlapping sets
between the three samples from the same stratum can be fixed by design; i.e ny5 p, 123 5, 113,
and n;,3 , may be fixed, where n,; ;, denotes the sample size of s;;, N s, , within stratum Uj,.
Here, 1,53, is the sample size of sy, M s, M 53 5. This situation occurs when we use the
customary rotation group method. In this case, we need to include within z;: (i) z;;° z;, for the
fixed sample size of sy, M 2.5, (i1) Z2° Z;3 for the fixed sample size of 55, N $3.5, (1i1) Z;1°Z3
for the fixed sample size of sy, N s3,, (iv) Z;°Zpoz;3 for the fixed sample size of
s1n N s, N 83,5 that is, the vectors (8) and (14) should be replaced respectively by

v T VT T V T T T T\ T
= (X1, X, 1, 2y @in°Z0) |, (20°23) ", 2n°ozi) |, (znezpozn) '},

_— T T T T
n=m/,n,,nj n;n5nh)",

. o T o T o

with ma3 := (231, . . ., No3g) , N3 :=(n3,. .., #3y) and M3 = (31, . .
-

n123,H)

4. Asymptotic Optimality and Variance Estimation

In this section, we show the asymptotic optimality when we have two waves; The
asymptotic optimal GREG estimator (Montanari 1987) of the vector of totals 7, =

.
(1y,,7y,) 18

A ~ "y ~
'r;pt =7y + B (1, — %), (24)
where
U &A=l T A A
B, := V(&) 'Cov (3., %,). (25)

See Guandalini and Tillé (2017, 3) for more details. By using the Horvitz and Thompson
(1952) variance and covariance estimators, the expression (25) reduces to
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Bop = XTAX) !XT Ay, (26)
where

A= {(m; — 7Ti77'j)77',;1;ivj € s}

Here, m;; = Pr(i, j € ;) denotes the joint-inclusion probability of units i and j for the
sample s,,. These are different from the joint probabilities of s, and s,, because ; takes
the rotation into account. Since the probabilities 7; are unknown, we propose to use the
asymptotic approximation of Hajek (1964), based on the assumption that the rotation
design is asymptotically rejective according to the design constraints (7). This
approximation is given by A=CM,, where C and M, are defined respectively by
Equations (20) and (21) (Hajek 1981 chap. 14; Berger et al. 2003; and Deville and Tillé
2005). Now, by replacing this approximation of A within Equation (26), we obtain
Equation (19). Thus, the proposed estimator 75“® is indeed optimal asymptotically.

A variance of the estimator (9) can be derived, based on principle that the variance
under Poisson sampling of the regression estimator (9) based on the auxiliary and design
variables, is asymptotically the same as the variance of the regression estimator (18) under
a rejective design (Hajek 1964; Berger 2004) with the design constraints (7). Thus, the
variance estimator of (9), assuming that s, is a Poisson sample with inclusion probabilities
(16), is given by the variance-covariance matrix

V(EE) .= Mry)  CMyy, 27)
where

Mr:=I-T@T'CI)'I''C,
L=y, .. 7).

Note that (27) is a residual variance as in Sdrndal et al. (1992, 235), because Mry
are residuals. Note that the variance estimator takes the stratification into account, because
the information about the strata is included within M. However, if within Equations (5)
and (6), the basic weights 7, ! are substituted by weights which take the missingness
into account, the variance estimator (27) may be biased, because nonresponse is not
accounted for.

5. Alternative Approaches

Composite estimators also use the information from previous waves. Hansen et al. (1953)
introduced the K-composite estimator for levels and change between two waves. The AK-
composite estimator (Gurney and Daly 1965) takes the difference between the common
sample s, and the unmatched sample s, into account. The optimal choice of the weighting
factors A and K, within the AK-composite estimator, depends on the variables of interest
(Kumar et al. 1983). This dependency may result in an inconsistency, in the sense that the
sub-group total estimates may not add up to the overall total (Gambino et al. 2001, 66).

Singh (1996) and Singh et al. (1997) introduced the modified regression estimator,
abbreviated MR hereafter. The idea is to extend the auxiliary variables in the current wave
by an additional artificial auxiliary variable, which contains the information on the
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variable of interest from the previous wave. The definition of this variable depends on
whether the primary interest lies on levels or change. If the main focus lies on levels, the
artificial variable refers to the variable of interest y;; from the previous wave. However,
due to the rotation, y;; is only known for i € s1,. Singh (1996) suggested to use mean
imputation for the unknown values for the units i € s, \ s1,. Thus, in this case, the artificial
variable is

i =

yii for i € s
iRl = (28)

Ay for i € s5\s12,

where (i, is an estimator for the mean of y;. The control total of the variable (28) is
unknown and can be estimated by Ni,, (Fuller and Rao 2001, 47). Hence, the modified
regression estimator for 7y, = >, yip is given by
A 5T~ A
7,:1;/2““ =Ty + ijc(Txfc - Txic)7 (29)
with
Bi:=®B, B,
fxfc = (T;;aleyl)Tv

A AT AT
Tai= (3, ) -

If the primary interest is to estimate a change, the artificial variable refers to the variable of
interest y,» from the current wave. The variable recommended by Singh (1996) and Singh
et al. (1997) is

ny .
MRD yi2 + n—(yil —yp) fori € sy,
)~ci2 = 12 (30)
Yi2 fori € s,\s12.

The MR2 estimator may suffer from a drift in levels estimates over a long period
(Gambino et al. 2001, 65; Fuller and Rao 2001, 50). In order to overcome this problem,
Fuller and Rao (2001) introduced the regression composite estimator (RC) given by

Ty o= (1= iy + ey, 31

where a € [0, 1] is a tune-in parameter which reflects the importance given to levels or
change estimates. The advantage of the regression composite estimator compared with
MR1 and MR2 is the fact that it is a compromise between levels and change estimation. An
alternative estimator could be based on Definitions (28) and (30). However, the increased
number of auxiliaries and control totals may lead to a distortion in the final weights
(Gambino et al. 2001, 65).

Singh et al. (2001) suggested a jackknife variance estimator that takes the estimation of
the control totals into account. Indeed, ignoring the additional source of randomness
would lead to an underestimation of the true variance. Berger et al. (2009) proposed a
linearised variance estimator that takes the estimation of the controls into account.

The optimal BLUE estimator is based on a time series of the variable of interest
(Yansaneh and Fuller 1998; Bell 2001; Australian Bureau of Statistics 2007). This estimator
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requires that the variances and covariances of the rotation group estimates are known (Bell
2001, 56). If they were substituted by their estimates, it is no longer guaranteed that the
BLUE estimator is optimal. Bonnéry et al. (2020) showed that the BLUE with an estimated
variance-covariance matrix is less efficient than the composite estimators. Some
disadvantages are discussed in Fuller (1990) and Steel and McLaren (2009). Since the
BLUE estimator is based on a time series, it is less comparable with the proposed estimator
and the modified estimators, which are both based on regression estimation.

6. Simulation Study

We consider three waves (t = 0, 1, 2), because the estimators (9) and (29) at wave t = 1,
require the sample information from wave ¢ = 0. The results are reported for levels at
waves t = | and ¢ = 2, and changes between waves t = 1 and r = 2.

Consider N population values of y;; and x;, (t = 1, 2, 3) generated from a multivariate
normal distribution; that is,

(Vio, Yit» Yz, Xio, Xit, Xi2) | ~ N(p, 2).
Here, 3 denotes a covariance matrix with an heterogeneous exchangeable structure, that s,
3 = diag(a){pJs + (1 — p)ls}diag(o).

where diag(o) is the diagonal matrix with o = (0,0, 0y1, G2, 040, T, 0v)" as its diagonal.
The matrices Js is 6 X 6 matrix of ones and Iy is the 6 X 6 identity matrix. Thus, the
correlations cor(yy, Yir) = cor(xis, Xir) = cor(yy, Xip) = p, with t # t'. Let oy, = 10,
oy, =15, oy, = 20, oy, = 30, o, =40 and o,, = 50. The correlations considered are
p=10.1,0.5 and 0.9. Two values for the vector . = (thy0, Myl Ly25 Mx0; Ml 5 y2) | are used:

pi = (59,60,61,99,100,101)7,
pr = (40,60, 80, 100, 150, 200) ",

that is, we have a small change with py and a large change with py;.

For each wave ¢, we have stratified samples of size n, = 1,000. We consider four strata
formed by the quantile classes of the population distribution of y;; +y;,. The same fraction
of common samples between waves is used within strata, that is, 6, = 6 = n;/n; =
no1 /ng, where 6 = 0.25, 6 = 0.5 or 6 = 0.75. Rotation groups sampling is implemented.
Within each strata U, g units are randomly allocated into P rotation groups of same size
p = lg/P|. The sample s, , contains the units of the first |, p '] groups. At wave r = 1, we
obtain the sample s, , by rotating out the first group and replacing it by the (n, p ~ "+ 1-
th group. At wave t = 2, the second group rotates out and ([, p ~'] + 2)-th group rotates
in. For 6 = 0.25, we use ¢ = 625 and P = 10. With 6 = 0.5, we use ¢ = 400 and P = 4
and with 6 = 0.75, we set ¢ = 300 and P = 6. We consider 1,000 iterations.

In the first simulation setup, we consider equal allocation for all strata with n,, = 250
and N = 100,000. Thus, the inclusion probabilities are the same across the strata and the
sampling fractions are small. In the second simulation setup, unequal probabilities with
large sampling fractions are used. Consider n; ;, = 50, n,; = 200, n3;, = 350, ny;, = 400
and N = 4,000. The resulting within strata inclusion probabilities are 0.05, 0.2, 0.35 and
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0.4. In the second simulation setup, the population size is N = 4,000, to allow for large
sampling fractions.

The estimators considered are the proposed multivariate regression estimator (9)
(PrOP), the customary regression estimator (1) (GREG) and the modified estimator (29)
with (28) as auxiliaries (MR 1) and with (30) as auxiliaries (MR2). For MR1 and MR2, we use
7% as the estimated control total of the previous wave ¢ = 1.

In order to explore the efficiency of point estimates, we compare the empirical ‘relative
root mean squared errors’ (RRMSE). Let 7, be an estimate for the r-th iteration with
r=1,...,1,000. The RRMSE is defined as

| | Looo 172
RRMSE(H = 9 7505 PG S
) r=1

where 7 denotes the population total.

The RRMSE X 100% for different values of p, g and 6, are reported in Tables 1 and 2. For
Table 1, we have equal strata sizes with the same inclusion probabilities across strata and
small sampling fractions. For Table 2, the inclusion probabilities differs between strata
and some sampling fractions are large. The proposed PROP estimator outperforms GREG
and MR 1 under all scenarios. For all estimators under consideration, the RRMSE decreases
with the correlation p between the variables.

We observe slightly smaller RRMSE for MR1 with § = 0.75, when p = 0.1, because the
higher the overlap, the less values have to be imputed. The amount of overlap 6 has little

Table 1. Equal strata sizes. equal probabilities and small sampling fractions. RRMSE X 100% of levels
estimates under different scenarios for 1,000 iterations.

p 18 0 GREG PROP MR1

t=1 t=2 t=1 t=2 t=1 t=2

0.1 W 0.25 1.21 1.49 0.62 0.69 1.00 1.14
0.50 1.26 1.44 0.63 0.68 0.99 1.12

0.75 1.24 1.40 0.62 0.67 0.92 1.06

Mar 0.25 1.21 1.12 0.62 0.53 1.37 1.27

0.50 1.26 1.08 0.63 0.52 1.29 L.15

0.75 1.24 1.06 0.62 0.51 1.16 1.04

0.5 1 0.50 1.03 1.26 0.48 0.54 0.78 0.84
0.50 0.99 1.27 0.49 0.58 0.80 0.90

0.75 0.99 1.25 0.50 0.56 0.80 0.90

My 0.50 1.03 0.92 0.48 0.41 1.06 0.83

0.50 0.99 0.93 0.49 0.44 1.09 0.89

0.75 0.99 0.91 0.50 0.43 1.09 0.91

0.9 W 0.25 0.49 0.60 0.28 0.35 0.39 0.46
0.50 0.49 0.61 0.27 0.35 0.40 0.45

0.75 0.48 0.60 0.28 0.33 0.37 0.43

Mz 0.25 0.49 0.43 0.28 0.27 0.51 0.37

0.50 0.49 0.43 0.27 0.27 0.53 0.38

0.75 0.48 0.42 0.28 0.25 0.53 0.41
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Table 2. Unequal strata sizes. unequal probabilities and some large sampling fractions. RRMSE X 100% of
levels estimates under different scenarios for 1,000 iterations.

p 18 0 GREG PROP MR1

t=1 t=2 t=1 t=2 tr=1 t=2

0.1 W 0.25 1.51 1.61 0.84 0.89 1.26 1.21
0.50 1.51 1.58 0.87 0.88 1.24 1.26

0.75 1.53 1.58 0.87 0.90 1.23 1.20

s 0.25 1.51 1.26 0.84 0.68 1.67 1.29

0.50 1.51 1.24 0.87 0.67 1.60 1.27

0.75 1.53 1.24 0.87 0.68 1.53 1.14

0.5 [Th 0.25 1.29 1.51 0.70 0.77 0.98 0.98
0.50 1.32 1.42 0.71 0.74 1.03 0.99

0.75 1.26 1.48 0.69 0.74 1.04 1.04

Wz 0.25 1.29 1.14 0.70 0.59 1.30 0.93

0.50 1.32 1.07 0.71 0.56 1.38 0.98

0.75 1.26 1.11 0.69 0.56 1.42 1.07

0.9 W 0.25 0.72 0.83 0.38 0.50 0.53 0.61
0.50 0.70 0.85 0.40 0.49 0.53 0.60

0.75 0.71 0.84 0.40 0.48 0.53 0.59

/] 0.25 0.72 0.59 0.38 0.38 0.69 0.50

0.50 0.70 0.60 0.40 0.37 0.73 0.51

0.75 0.71 0.59 0.39 0.37 0.78 0.58

impact on the precision of the proposed estimator. However, for MR1, we observe some
slight differences in the RRMSE between different values for 6. For small correlation
(p = 0.1), we indeed have a larger RRMSE for MR1 with 68 = 0.25. For larger correlation,
the differences are negligible for MrR1. With MR1, we notice differences between the
RRMSE of 7, for small (p;) and large changes (). There are hardly any differences for the
proposed estimator. These observations are the same for Tables 1 and 2, except that the
RRMSE are higher for all estimators in case of unequal strata sizes.

The RRMSE of the proposed estimator does not seem to be affected by the amount of
overlap 6, because we can see from the expression (18) that the precision is driven by the
correlations between the variables of interest and the auxiliary information for both waves,
which is not affected by 6. This can also be seen from the variance (27), where the
residuals Mry do not depend on 6. The information about the rotation is implicitly
included within the vector z; given by Equation (22), and used for the weights within the
regression coefficient (19) (see Equation (20)). These weights ensure efficiency (see
Section 4). On the other hand, the precision of MR1 is related to 6, because 6 has an impact
on the precision of the control totals with MR 1. With the proposed method, we use different
control totals unaffected by 6.

Let A =1, — 7, be the change between waves =1 and r=2. We propose
estimating A by A = 7, — 7, where 7, and 7, are the corresponding cross-sectional
estimators. Tables 3 and 4 give the RRMSE X 100% of the estimators of changes, for equal
and unequal strata sizes. As expected, the RRMSE decreases with p. The proposed estimator
PROP significantly outperforms GREG and MR2. The efficiency gain compared with MR2
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Table 3. Equal strata sizes. equal probabilities and
small sampling fractions. RRMSE X 100% of change
estimates under different scenarios for 1,000 iterations.

p n 0 GREG  PROP MR2
0.1 p 025 12028 60.60 100.83
0.50 12523 67.39 90.90

0.75 118.08 69.03 82.45

by 025 5.86 2.98 5.40
0.50 6.10 3.31 5.05

0.75 5.76 3.39 4.37

05 w025 98.04 4696  79.61
0.50  99.73 51.67 71.26

0.75 9429 5256  64.99
w025 4.76 2.34 4.42
0.50 4.85 2.57 4.12

0.75 4.59 2.61 3.60

09 w025 46.14  27.00 37.37
0.50 4538 26.22 32.06

0.75 43.62 2643 28.95

Py 025 2.23 1.36 2.15
0.50 2.19 1.32 2.01

0.75 2.11 1.32 1.74

Table 4.  Unequal strata sizes. unequal probabilities and
some large sampling fractions. RRMSE X 100% of change
estimates under different scenarios for 1,000 iterations.

p n 0 GREG PROP MR2
0.1 pwm 025 14096 79.27 123.09
0.50 13827 86.79 109.39

0.75 14461 9357 11040
w025 6.90 3.83 6.43
0.50 6.76 4.19 5.79

0.75 7.06 4.51 5.75

05 w025 11465 61.44 95.13
0.50 113.51 61.60 81.51

0.75 109.77 6243 74.85
;025 5.95 3.20 5.48
0.50 5.89 3.21 4.92

0.75 5.69 3.25 4.37

09 w025 64.40 37.30 48.98
0.50 61.67 36.67 41.70

0.75 60.04  35.11 36.51

py o 025 3.16 1.91 2.96
0.50 3.03 1.88 2.61

0.75 2.95 1.80 2.20

39
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ranges from 5% to 53%. Since the relative RMSE is considered, it is not surprising to
observe larger RRMSE for a small change (p;). The RRMSE of MR2 decreases with 6. In
contrast, the RRMSE of PROP increases slightly with 6 except for large vales of p.

Table 5 shows the relative bias (RB) of the variance estimator (27) for pPROP. The RB is
defined by

R 1 1,000 R }
RB{V(D)} := V()" V(7)) — V(D) ¢
{1,000 ;

where
1,000

A A2
UGE —1,0002(7’ 7.

Here, 7, and V(#,) are respectively the point and variance estimate for the r-th iteration.
The rB are within an acceptable range. We observe larger RB for 7°® when p = 0.9 and
0 = 0.75, because the variance is small in this case.

The biases of the variance estimates in the case of unequal strata sizes is larger than the
biases of equal strata sizes. The reason is the small sample size for two strata in the unequal
strata size scenario. The residuals of the smallest strata vary much more and thus have a
larger contribution towards the variance than the residuals of the large strata. The negative
bias can also be caused by small sample sizes, because the Taylor linearization method has
a tendency to underestimate the true variance in this case (Sédrndal et al. 1992, 176).

Table 5. RB%100 of variance estimates for the proposed estimator under different scenarios for
1,000 iterations.

p 1} 0 Equal strata sizes Unequal strata sizes
t=1 r=2 r=1 t=2

0.1 W 0.25 1.5 —-74 —16.3 —153
0.50 —-34 —5.1 —18.1 —12.1

0.75 1.5 0.0 —154 —-11.9

W 0.25 1.5 —-74 —164 —153

0.50 —-34 =51 —18.1 —12.1

0.75 1.5 0.0 —15.2 —-11.9

0.5 W 0.25 5.7 4.9 —-21.0 —19.3
0.50 1.8 —8.8 —18.3 —-129

0.75 -0.0 —-14 —122 —-7.6

(10 0.25 5.6 4.9 —20.8 —19.3

0.50 1.8 —8.8 —18.3 —-129

0.75 -0.0 —-14 —11.5 -7.6

0.9 W 0.25 =27 0.3 —16.1 —220
0.50 4.0 —-14 —18.5 —18.7

0.75 -2.0 10.1 —15.1 —13.7

W 0.25 =27 0.3 —157 —220

0.50 4.0 —-14 —18.5 —18.7

0.75 —-1.9 10.1 —14.3 —13.7
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7. Conclusion

We propose a multivariate GREG estimator for estimation of levels and changes. It has the
advantage of involving the information from both waves, and takes into account the
correlations between the variables of interest and the auxiliaries within and between the
waves. Additionally, it also takes the sampling design into account, in terms of
stratification, rotation and sampling fractions.

The simulation study shows that the proposed estimator may outperform its
competitors, in particular with respect to change estimates. Nevertheless, the advantages
of the proposed estimator over the modified estimator are manifold. It does not require any
imputation and does not suffer from a drift, unlike the composite estimator. It can be easily
implemented using existing statistical software. The variance estimator is simpler than the
variance estimator of composite estimators, because neither estimated totals nor
imputation is required. It also takes the auxiliary variables and the variables of interest
from both waves into account.

Nonresponse and panel attrition are important issues with repeated surveys. It is beyond
the scope to tackle these problems fully. Previous wave imputation can be used for the
auxiliary variables X; which suffer from attrition. Re-weighting could be used to
compensate for nonresponse and panel attrition for the variable of interest. In this case the
new weight should replace the basic weights 1/7r;, within Equations (5) and (6). In this
case, s; would be the sample of respondents at wave ¢. The proposed estimator (9) can be
directly used in this case. It is approximately unbiased, as long as a proper re-weighting
technique has been used. However, in this case, the vectors n, and ny, are random.
Consequently, we may lose the asymptotic optimality, because the asymptotic
approximation of Héjek (1964) for the joint-inclusion probabilities are based on fixed ny
and ny,. The variance estimator (27) should be used cautiously, because it does not
incorporate nonresponse adjustments. A possible solution would be to incorporate the re-
weighting variables within X;; and use X;; within Equations (9) and (27). It would be useful
to investigate this idea further.

8. Appendix

Proof of Theorem 1:

Since y; = (%,',2]) ", we have

Sennr) < (X) (X)) 2 (Fe

CiYiv; = = )

i€y YY Z Z F)—Cl; FZZ
C

Zci‘Yi)u’iT = (

IE€sp

where
I.=X'CMX)™,
Fzz = (ZT CMxZ)71 y

I.,=-T.X"CZZ'CZ)"!
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and M, is defined by

M, =I1-XX'CX)"'X"C. (32)
Now, we have
) B,
B,= IIXTCy+T.Z'Cy |’ (33)

because
r.XCcy+I.Z2'Cy =T X"C{I-ZZ"CZ) 'Z'C}y
=I',X"CM.y
= X"CM.X) 'X"CM.y
= B,.

Finally, Equations (11) and (12) imply that 7, — %, = {(7, — 27,0} " Thus, by using
Equation (33), we obtain Equation (18).
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Investigating an Alternative for Estimation from a
Nonprobability Sample: Matching plus Calibration

Zhan Liu' and Richard Valliant®

Matching a nonprobability sample to a probability sample is one strategy both for selecting
the nonprobability units and for weighting them. This approach has been employed in the past
to select subsamples of persons from a large panel of volunteers. One method of weighting,
introduced here, is to assign a unit in the nonprobability sample the weight from its matched
case in the probability sample. The properties of resulting estimators depend on whether the
probability sample weights are inverses of selection probabilities or are calibrated. In
addition, imperfect matching can cause estimates from the matched sample to be biased so
that its weights need to be adjusted, especially when the size of the volunteer panel is small.
Calibration weighting combined with matching is one approach to correct bias and reduce
variances. We explore the theoretical properties of the matched and matched, calibrated
estimators with respect to a quasirandomization distribution that is assumed to describe how
units in the nonprobability sample are observed, a superpopulation model for analysis
variables collected in the nonprobability sample, and the randomization distribution for the
probability sample. Numerical studies using simulated and real data from the 2015 US
Behavioral Risk Factor Surveillance Survey are conducted to examine the performance of the
alternative estimators.

Key words: Calibration adjustment; doubly robust estimation; nearest neighbour matching;
sample matching; target sample; volunteer panels.

1. Introduction

Probability samples have been the standard for finite population estimation for many
decades. However, probability samples can have many nonsampling problems like low
contact and response rates or missing data for units that do respond. Response rates in US
surveys, in particular, have been declining for at least two decades (Brick and Williams
2013). Since nonprobability samples can be faster and cheaper to administer and collect,
some organizations are gravitating toward their use (Terhanian and Bremer 2012). Baker
et al. (2013) review the reasons that nonprobability samples, like volunteer internet panels,
may be used rather than a probability sample. Among them are lower costs and
compressed data collection periods. Quick turnaround can be especially important to
gauge public well-being in health crises like the COVID-19 pandemic of 2020.

There are a variety of problems with nonprobability samples, especially among persons
in a panel that have been recruited to participate in future surveys (e.g., see Baker et al.
2013; Valliant and Dever 2011; Valliant et al. 2018). These include selection bias,
coverage error, panel nonresponse, attrition, and measurement error. We concentrate on
the use of matching and calibration to adjust for the first two of these—selection bias and
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coverage error. Selection bias occurs if the sample differs from the nonsample in such a
way that the sample cannot be projected to the full population without some type of
statistical adjustment. Coverage error can occur if, for example, a volunteer panel consists
of only persons with access to the Internet, assuming that the entire population of a country
is the target of the survey. Other, more subtle forms of coverage error can occur if certain
demographic groups would rarely or never participate in the particular type of
nonprobability survey being conducted.

Because the selection of a nonprobability sample is not controlled by a survey designer,
estimation methods other than standard design-based approaches are needed. At least six
alternatives can be considered for weighting and estimation with nonprobability samples:

(1) Naive method where all units are assigned the same weight,

(2) Quasi-randomization where a pseudo-inclusion probability is estimated for each
nonprobability unit,

(3) Superpopulation modeling of analysis variables (Y ’s),

(4) Doubly robust estimation where quasi-randomization and superpopulation modeling
are combined,

(5) Mass imputation of Y ’s into a probability sample using values from a nonprobability
sample to form an imputation model,

(6) Matching of a nonprobability sample to a probability sample whose units are used as
donors of weights to the nonprobability sample.

The naive method of equal weighting is rarely, if ever, appropriate because
nonprobability samples are not generally distributed proportionally across demographic or
other important groups in the population. Alternatives (2)—(4) were reviewed by Elliott
and Valliant (2017) and Valliant (2020) and further studied by Chen et al. (2020). Wang
et al. (2020) refined alternative (2) by kernel-smoothing the propensity weights.
Alternative (5) was proposed by Kim et al. (2021) and involves fitting an imputation model
using data from the nonprobability sample and imputing Y values to the units in the
probability sample using that model. The probability sample with imputed values is
provided to analysts but not the nonprobability sample. Mass imputation solves the
weighting problem by using the weights associated with the probability sample. The
dissertation of Wang (2020) studied a version of (6) in which a kernel-smoothing method
was used to proportionally distribute the probability sample weights to units in the
nonprobability sample. We study another, somewhat simpler version of alternative (6),
and particularly address some problems with the method.

1.1. Notation and Models Used for Analysis

Both a probability sample, denoted by S, and a nonprobability sample, denoted by S,,,, will
be used in subsequent sections. The target population for which estimates are made is U
and has N units. To examine properties of estimators, three distributions will be used.
Expectations taken with respect to the sample design used to select the probability sample
S, will be denoted by a 7 subscript. The probability of selection of unit i in S, is ;. To
analyze the nonprobability sample S,,, we assume that its units are selected by an
unknown quasi-randomization distribution; expectations taken with respect to that
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distribution will be specified by a subscript R. The probability that unit j is included in S,,,,
is R(x;) where x; is a C-vector of covariates or auxiliaries associated with unit j. To
simplify notation in later sections, we set R(x;) = R;. The analysis variable Y will also be
assumed to be generated by a superpopulation model, & Consider the linear model for Y;
defined by

Yi=x;B+ & € U), ey

where B is a C X 1 parameter vector, and the g; are independent, random errors with mean
zero and variance af Theory for nonlinear models can also be worked out, as in Chen et al.
(2020), but a linear model is convenient for purposes here. Under model (1), the expected
value of the population total, Y, = 3 ey ¥;, is E(Yy) = XyB where Xy = 3, X
The remainder of the article is organized as follows. Section 2 describes how matching
can be applied to obtain basic weights for units in the nonprobability sample and reviews
the methods of matching. Section 3 presents the theory for bias and variance in different
situations. Section 4 investigates properties of matched estimators when the
nonprobability sample is calibrated to population totals of covariates. In Section 5, the
sample matching and the calibration adjustment are applied in a simulation study using
artificial data. In Section 6, an application to a real population is conducted to evaluate the
performance of the proposed estimates. The last section summarizes our findings.

2. Applications of Matching

Sample matching has been an option for estimating treatment effects in causal inference
for some time (e.g., see Cochran 1953; Rubin 1973; Rosenbaum and Rubin 1983).
Moreover, it has been widely applied in evaluation research, observational studies and
epidemiological studies (Rothman et al. 2008). More recently, it also has been applied as a
way of identifying a sample in market research, public opinion surveys (e.g., Vavreck and
Rivers 2008; Terhanian and Bremer 2012), and other nonprobability sampling surveys,
especially using volunteer panel surveys. Baker et al. (2013) review some of the
applications of matching in survey sampling. Its purpose in non-probability sampling
surveys is to reduce selection bias and to estimate population characteristics. Another
application of statistical matching is to overcome the problem of missing data created
when some persons do not consent to having their survey responses linked to
administrative databases (Gessendorfer et al. 2018).

The basic idea of sample matching in survey sampling is that first a random, probability
sample, S, is selected from the sampling frame of the target population. This probability
sample is matched to a pool of nonprobability cases, for example, a volunteer panel of
persons. The resulting matched sample from the nonprobability pool is denoted by S,,,.
The probability sample should have none of the coverage problems of the nonprobability
sample. This probability sample is also called a reference sample (Lee 2006) and can be an
existing survey (or subsample of one) rather than one specially conducted to serve as the
reference. For example, in the US the ACS, American Community Survey (U.S. Census
Bureau 2023) is one possibility for a large, well-conducted household, reference survey.
The probability sample should be representative of the target population in the sense that
it can be used to make unbiased and/or consistent estimates of population quantities.
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We assume that S, does not include the Y variables for which estimates are to be made;
these are collected from the nonprobability sample.

The application of matching described by Rivers (2007) is one in which S, is a simple
random sample (srs). The nonprobability sample S,,, is obtained by a one-to-one match of
S, to a much larger pool of nonprobability cases, yielding a set S,,, of the same size as S),.
Since S, was treated as an s7s, every unit in S,,, was given the same weight. When S, is an
srs, the distribution across various characteristics of S,,, is expected to be the same as that
of the population. However, in an evaluation of the nonprobability samples offered by nine
commercial vendors, Kennedy et al. (2016) found that a nonprobability sample may still
produce biased estimators even though it had the same demographic distribution as the
population. In other words, matching to an s7s S, to obtain S,,, can be inadequate without
further weighting. Rivers and Bailey (2009) describe an election polling application where
the sample was obtained by matching, as described above, but inverses of estimated
propensities of being in the nonprobability sample were used as weights.

Sample matching in alternative (6), as applied in this article, fits into the quasi-
randomization approach. Each unit in a probability sample is matched to a unit in the
nonprobability sample based on a set of covariates. The logical extension of Rivers (2007)
is for the probability sample unit to “donate” its weight to the matched, nonprobability
sample unit. The intuitive argument to justify this is that if the nonprobability units match
the probability units on an extensive list of covariates, then the §,,, units are exchangeable
for the S, units, §,,, constitutes the same sort of sample as S, and the units in §,,, can be
weighted in the same way. This approach has the advantage of straightforward retention of
all analytic data collected in the nonprobability sample unlike alternative (5) which could
require a separate imputation model for every Y variable.

The probability sample used for matching can be larger, smaller, or equal in size to the
non-probability sample, although the method in which §,,, is selected to have the same size
as S, has advantages. If a pool of nonprobability units is used that is much larger than the
probability sample, finding a close match for each unit in the probability sample may be
more feasible. This would be the case when a large panel of volunteers has been
accumulated. For example, the method used by many panel vendors now is to stockpile a
large set of persons who have agreed to participate in online surveys when requested. For
example, (see https://www.ipsos.com/en-au/ipsos-online-access-panels). Toluna, the
parent company of Harris Interactive, does something similar. Their promotional material
says that it has a panel of over 40 million consumers in 70 markets (see Toluna 2023).

If the nonprobability sample is smaller than S, a unit in S,,, may be matched to more
than one unit in §,, making it unclear how to weight the S, cases. In this article, we
assume that the resulting sample size of the matched, nonprobability sample, S,,,, equals
the sample size of the probability sample, S,,, that it is matched against. Denote this sample
size by n.

2.1. Methods of Matching

Which matching algorithm to use is a question. There are various algorithms, including
nearest neighbour matching, caliper and radius matching, stratification and interval
matching, as well as kernel and local linear matching (Caliendo and Kopeinig 2008).
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Among these matching algorithms, nearest neighbour matching based on Euclidean
distance is most straightforward. It contains, as special cases, single nearest neighbour
matching without replacement, single nearest neighbour matching with replacement and
multiple nearest neighbour matching. In single nearest neighbour matching, for a unitin S,
only one unit from the nonprobability pool can be chosen as its matching unit based on the
covariates present in both data sets. If single nearest neighbour matching is done without
replacement, a unit in the nonprobability pool can be chosen only once as a match. Single
nearest neighbour matching without replacement may, however, have poor performance
when the target sample and the volunteer panel have very different covariate distributions
(Dehejia and Wahba 2002). To overcome this problem, single nearest neighbour matching
with replacement and multiple nearest neighbour matching were proposed to increase the
average quality of matching and reduce the bias (Smith and Todd 2005). Other matching
methods have been suggested that use more than one unit in the nonprobability pool as the
matching unit for an individual in the probability sample. Caliper and radius matching use
this approach.

Another issue in sample matching is that the matching process will become relatively
more difficult as the number of relevant covariates increases. This is the curse of
dimensionality noted by Rosenbaum and Rubin (1983). In order to solve this problem,
they propose the propensity score, which is the conditional probability of receiving a
treatment given the covariates X, denoted by p(X) = P(D = 1|X), where D is the binary
indicator taking either the value 1 (receiving treatment, e.g., participation in a volunteer
panel) or O (not receiving treatment). Rosenbaum and Rubin (1983) have proved that
matching on the propensity score p(X) is also valid when it is valid to match on the
covariates X. Compared with direct matching based on all covariates, propensity score
matching can reduce multiple dimensions (many covariates) to a single dimension, greatly
simplifying the matching process. Consequently, it has been widely used in medical and
epidemiological studies, economics, market research and a host of other fields (Schonlau
et al. 2009; Baker et al. 2013).

3. Estimation from Matched Sample

In this section, we introduce estimators of means and totals based on the matched sample
S,,» and derive their properties. An estimator of a population total is

Y = . )

where W; is the weight from the probability sample unit that is matched to unit j in S,,, and
y; is the Y value observed for that unit. We assume that these weights are appropriately
scaled for estimating population totals. In particular, Ny = > i€Su f"j is an estAimator of N,
the size of the target population. The mean of Y is estimated by Yy, = Y /Ny. We will

consider two cases of weighting of the probability sample S,,:

(1) The weight used for each unit in S, is the inverse of the selection probability of that
unit, that is, w; = 7'ro1; the estimator of the total with this weight is denoted by ¥, M1
subsequently;
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(2) The S, weights are those for a general regression (GREG) estimator; the estimator
with this weight is denoted by ¥j.

Case (1), in which the §,,, weight is the inverse of the selection probability of its matched
unit in S, is the simplest baseline case for §,,, weighting. If Y1 is biased in this case, then
calibration of S,,, must correct that flaw. Note that the GREG in case (2) includes the
commonly used poststratification estimator and requires that the population total X, of the
covariate vector be known. Whether the weights above are related to the pseudo-inclusion
probabilities of the units in S,,, largely determines whether f’Ml and f’Mz are biased or not
as shown below. The arguments given are largely heuristic, although they can be
formalized using technical conditions like those in Chen et al. (2020).

Properties of estimators can be calculated in several ways: with respect to the é&-model
only, with respect to the R-distribution only, with respect to the m-distribution, or with
respect to a combination of the distributions. In subsequent sections, we compute biases
and variances with respect to the combined Rr-distribution. The Rm calculation is
analogous to the design-based calculations used in much of sampling theory. In addition,
bias and variance calculations are made with respect to the &model and combined Ré-
distributions. The calculations made with respect to the &-distribution are conditional on
the §,,, and S, samples. In principle, & calculations are more reflective of the statistical
properties for the particular sets of units in §,,, and S,,.

3.1. Bias of the Matched Estimator for Case (1)

Taking the expectation of ¥j;;— Y, under case (1) with respect to the pseudo-
randomization distribution only gives

Er(Yan — Yu) = Eg Z7Tj_lyj - Yy

JESup

R;
=> y—Yu
Eu T

If R; = 7, then ¥)y will be R-unbiased. However, this does not have to be true generally.
For example, if R; = Pr(j € S,,|x;) is a complicated logistic function of a set of covariates
that were not used in determining W;, the estimator is R-biased. In this case, some
approaches can be employed to reduce bias. For example, some important covariates can
first be selected by establishing the relationship models between the S, weights and
covariates, then sample matching can be conducted based on these important covariates.
Another situation leading to R-bias would be when the pseudo-inclusion mechanism is
nonignorable, that is, Pr(j € S,,|x;,y,) # Pr(j € Sy,|x;). Since in a probability sample,
the selection mechanism is always ignorable (W; # 1/Pr(j € S,,|X;, y;)) when inclusion in
the nonprobability sample depends on Y.

If the expectation is taken over the Y-model, the result is

Eg(?Ml - YU|Snp7Sp) = (X,,,,(W) - XU).B7

where )A(n,,(rr) = ZS’W x;/m;. The é&-bias is non-zero unless an,(w) =Xy. If X,,,,(ﬂ') is an
unbiased estimator of X, under the quasi-randomization R-distribution, IA/Ml will be
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unbiased when averaged over both the R— and &-distributions (and, equivalently, over the
R, 7, and £ distributions). But, as for IA/Ml, Xn,,(ﬂ') will be biased if the correct R-model is
not linked to the S, weights, that is, if W; = 77']71 # 1/R;.

3.2.  Bias of the Matched Estimator for Case (2)

If the weights from the probability sample have been calibrated to population totals of
some covariates X, the bias calculation changes some what. Take the case of the general
regression (GREG) estimator being used for S,,. That is, w; = g;/m; where

g=1+Xo—X,)'A 'x;/6 3)

with X, = = >_s, Xj/m and A, =25, XiX) /(77'1 12 The values of &7 are often set to a
constant in practice, but for completeness we include a'2 in subsequent formulas. If 0'2 S
are used in estimators of totals, they will be generally assumed values of the model
variances in Equation (1); but, we do not require that df = af Note also that the 77;’s must
be available separately for each unit in the probability sample in order to recover A,
separately from the W;. In some public-use files, users may only be presented with the
Ww; = gy/m; and not 1.
The estimator of the total is then

Vi = ¥, (m) + Xy — X T o Z X;Y; ( ) 4

JESup

where f/n,,(w) = ZjES,,p y;/ ;. This &-bias is

Ee(Tua = YIS, Sp) = Xop(mB+ (Xu = X,) A 'R, (mB—XuB (5

where Anp(ﬂ-) = Zsm, xjij / (77]6-]2) Thus ¥y, is £&-model biased even though the weights
in S, are calibrated on the x’s. The R-expectation (which is also the Rm-expectation) is

N R; o \Tx—1 RiX;y;
En(Ti) = 3 2+ (Ko~ X,)7&, S
[ [V

which is also generally not equal to Yy,.

If R = m@; and sampling for S, and S, is ignorable, reasonable assumptlons are that
NA and N~'A,,(m) converge in probability to N~ 1AU N7 X;X] /0'2 (See
assumptlon (v) in the Appendix). In that case, A Anp(’ﬂ) L1, with Ic being the C X C
identity matrix, and Eg(YMg YulSu,Sp) — ( np(’ﬂ) p) B.

Taklng the expectation of Equation (5) with respect to the R- and 7-distributions shows
that ¥y, is approximately Rmé-unbiased, but this depends on R; = ar; for all units in §,,,,
Under the same conditions (i.e., R; = r; and NA "and N~ Anp(7T) converging),

Er(Yan)=Yu + (Xv — X,)By

where By = A, ZU xjyj/o'2 Consequently, ERE (?Mz)tYU, assuming that X,, is
7r-unbiased. Slmllarly, ERE . Eg(YMZ ) =0.
The results in Subsections 3.1 and 3.2 can be summarized as follows:



52 Journal of Official Statistics

e Case (1), Wj; is the inverse of the selection probability for its matched unit in the
probability sample, S, that is, W; = !

— Y1 is &-biased when the linear model (1) holds;

— Yuy is Rer-unbiased if R; = m;, that is, the probability of a unit’s being in the
nonprobability sample, S,,, equals its probability of being in the probability
sample, S,;

— Va1 is Rmé-unbiased when the linear model (1) holds and R; = m;

e Case (2), w; is the GREG weight for its matched unit in S,

— Y is &biased under Equation (1) even though S,, is calibrated on the x’s in the
model;

— Yy is R-biased in general;

— Yy is approximately R7r-unbiased and Rré-unbiased if R; = m;

The key requirement (in addition to ignorability) for unbiasedness of any type is that the
observation probability of a unit in the nonprobability sample should be equal to the
selection probability of its matched unit from the probability sample. This seems unlikely
to be exactly true in most applications.

3.3. Variance of the Matched Estimator in Case (1)

Since a variance estimator is mainly useful in a situation where a point estimator is
unbiased or consistent, we concentrate on the case where R; = m; and ¥y is R-unbiased.
Calculation of the variance of ¥, with respect to the pseudo-inclusion probability
distribution depends on the joint distribution of the indicators, {8;};,ey where §; =1 if
J € S, and 0 if not. If the §; have the same joint distribution as that of the indicators for
being in the probability sample, then S,,, can be treated as having the same sample design
as S,. If so, Vg (Yir1) = V. (¥Yar1), and the variance estimator for ¥j;; would be determined
by the sample design for S,,. For example, if the probability sample was a stratified, cluster
sample, then the variance estimator appropriate to that design would be used.

When w; = 77;1, a more realistic assumption, given the way that nonprobability
samples are often acquired, is to treat the {§;};cy as being independent. With that
assumption, the R-variance can be estimated with a formula appropriate for a Poisson
sample. Another option is the formula for a sample selected with replacement and with
probabilities equal to R; = m;:

2

N 1
vpr (Vo) = f 1 > - > i |- (6)

n jesnp j’ES,,,,

Because IA/Ml does not depend on S, VRw(f/m) = VR(IA/MI) and Equation (6) can be
interpreted as an estimator of either. Estimator (6) is convenient because it is the default in
survey software packages like R survey, Stata, and SAS. However, as shown in Appendix
(Subsection 8.1), vg,; is a biased estimator of the model variance given below.
The &-variance under Equation (1) in case (1) is Vg(f/Ml) = (Zs,,p 012 / 77]2) which can
be estimated by
e?

vg(f/Ml) = Zﬁ, @)

N
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where ef = — ijB,w(Tr))2 is an approximately &-unbiased estimator of 0]2 with

-1
B, (m) = ;xjxf/ (Trjdf) ;ijj/(mdﬂ

np

(MacKinnon and White 1985). Note that, because the Y’s are not available in the
probability sample, we must estimate 8 from the nonprobability sample.
The Rmé-variance, in general, is equal to

VRWf(f]Ml |Sp7 Snp) = ER{V'n'f (?Ml |Sp7 Snp) } + VR{E'n'f(f/Ml |Sp7 Snp)}
= ER{Eﬂ'Vf(?Ml |Sp7 Snp) + VTrEg(?Ml |Spa Snp) }+ (8)

Ve ExE¢(Va1Sp, Swp) }-
For case (1) I?Ml does not depend on S, and Equation (8) reduces to Vng(f/M] ISI,7 S,,,,) =

Vae(Yar11Sy, Sup) = E-{Ve(Yan1S,. Sp) } + Vel Ee(TailSy, Sup) }-
As shown in Appendix (Subsection 8.1) for case (1) with R; = r;, this is

A o .
Vime(Yin) =Y L+ B Ve(Xp) B ©)

T 7
Notice that, even though ¥, does not directly depend on x, the R7ré-variance does after
accounting for the é&-model structure. Expression (9) can be estimated by

2

A e: Py A Py
Vrme(Yaa1) = SZ ﬁ + B,y (M vg (Xop) By (1), (10)
np J

where vg (an) is, for example, a version of Equation (6) adapted to estimate a covariance
matrix.
3.4. Variance of the Matched Estimator in Case (2)

The é&-model variance is Vg(f’Mg) = ZSW (gj / 717)20]2, which can be estimated by
ve(Pu) = (g5/m) el (11)

Sup
As noted in Appendix (Subsection 8.2), the estimator of total can be approximated by
Yirr = Top(m) + (Xu — X,) By (12)

and the approximate R7r variance is

Vi (Vi) = Ve(Vp(m) + BLVA(X,)Bo, (13)
which can be estimated as
vrr(Va2) = vr (Tp(m) + Bup (7 07(X,,) By (). (14)

Note that, in the situation studied here, both terms of the variance in Equation (13) have the
same order of magnitude, O(N 2/n), since they are based on samples of the same size. Thus,
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the Rar-variance is the variance in the nonprobability sample of the estimator with inverse
pseudo-inclusion probability weights plus a term reflecting the variance of the estimator of
the x-totals in the probability sample.

Since f’,l,,(w) = I?Ml, Equation (13) also implies that the R7-variance of IA/Mz with
calibrated S, weights is larger than that of the uncalibrated Yy1. This disagrees with the
usual expectation that calibration on an effective predictor of Y reduces variances. To better
understand this, note that if the matched x’s in S, and S,,, were identical, then X, = X,,, and
the variable part in Equation (12) could be written as a weighted sum over S,,, of residuals,
which can then be used to show that ?Mz can have a smaller variance than f’Ml. However,
with imperfect matching the relationship in Equation (12) becomes more realistic.

As shown in Appendix (Subsection 8.2) the approximate Rmé-variance when R; = ; is

) e . .
Vime(¥i2) = D2+ B Ve(Xop) B+ B"Va(X,) B. (15)
U J

A natural estimator of Equation (15) is then

A 2

vrne(Tr) = > (e3/ )"+ Bup (m) vr(Xop) By () + By (0" 05(X,) B,y (). (16)
Sup

Consequently, there are several options for variance estimation for ¥y, for cases (1) and
(2). They can be summarized as:

e Case (1), w; = 77[1
— Estimate the &-variance in Equation (7)
— Estimate the quasi-randomization (R7r) variance with the with-replacement
estimator in Equation (6);
— Estimate the R7é-model variance with vg. in Equation (10);
e Case (2), wj = GREG weight from S,
— Estimate the &-variance with Equation (11)
— Estimate the Rr-variance with Equation (14);

— Estimate the Rmé-variance with Equation (16);

4. Calibration Adjustment After Matching

The R—, R7—, or Rmé-bias of the matched estimators, I?Ml and ?Mz, in Section 3 depend
critically on whether Pr (j € Snplyg) = Pr (i € §,) for matched units i and j. Matching on
covariates attempts to ensure this; however, there is no guarantee that the condition is
satisfied regardless of how extensive the set of covariates is.

Consequently, one might hope that calibrating the weights for the nonprobability
sample will provide some bias protection. Suppose that the {1;} 5, weights are calibrated
to the Xy population totals using the chi-square distance function associated with a GREG.
Using the standard formula from Sérndal et al. (1992, eq. 6.5.10), the resulting weight for
unit j is
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N -1 +
W; =w;|1+ (XU - an(VNV))T [AZP(W)] Xf/a-;z}
= ng;, (17)

where X,,,(W) = >s,, WiXj and A, (W) = s, WiXX] Tlo: (r . (Note that 0'* does not have
to be the same as 02 used in constructlng the GREG welght in §,.) Asin Sectlon 3, 0
often set to a constant in which case it drops out of the formula for w . The matched
calibrated estimator is then

Yye = ZW Vi
_Zw]y] [A (w)} SZ:VV X,/ 0

=Yu+ Xu — XM) fsn‘p(m (18)

A K -1 .
where Bnp(ﬂ/)z [A:p(fv)} > Sup WiX;y;/ 0'; 2. As in Section 3, calculations depend on cases
(1) and (2) of the W; weights. When case (1) weights are used from S, the calibrated
estimator will be denoted by I?MCI; when case (2) weights are used, IA/MCZ denotes the
calibrated estimator in subsequent sections.

4.1. Biases in Case (1)

When Ww; = ur UXy = ,,,,(Tr) and, after calibration, the estimator of the total can be
written as

A A A TA*
Yucr = np('ﬂ) + (XU - an('”)) Bnp(ﬂ),

where B (77) is the special case of B (w) with Ww; = - . Since Eg( ,,,,(77)) A,,p('n')B
under model (1) and E§<B (77)) = B Eg(YMCI YU) = 0, that is, YMCI is &-unbiased.
Thus, calibrating on the x’s in the é-model yields an &- unblased estlmator evenif R; # m;.

To calculate the Rm-expectation, define Bj, = (ZU = LX;y/ 0} ) with
A, = Uf; X;X T/ 0;°. By the same type of Taylor series argument as in Sidrndal et al.
(1992, sec. 6. 5),

. . . T
Yuer = Vip(m + (Xy — Xip(m) By, (19)

o S . y

It follows tnat EREﬂ-(YMCl) = ER(YMCI):ZU Rjyj/ﬂ'j + (XU - ZU Rij/ﬂ'j) BU' If
R; = m;, then Yyc; is approximately R7r-unbiased. Another consequence is that, when §,,,, is
calibrated with the x’s in model if (1) and S, has case (1) weights, Yyic1 is Rmé&-unbiased if

4.2. Biases in Case (2)

In case (2) with Ww; = g;/m; and g; defined in Equation (3), the matched estimator after
calibration equals
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Yier = nggj)’j/ma
S

where
* < BRVYAEE I -1 %D
g =1+ (Xy = X,p()) [An,,(w)] x;/ 02,

As show in Appendix (Subsection 8.3), the calibrated estimator of the total is
approximately

o L6 o \T = o o \Tow
Yycr = Yop(m) + (XU - Xp) By + (XU - an(W)) By. (20)
Using Equation (19), the &expectation is

Ec(Vyer) = Xp(mB+ (Xu — X)) B+ (Xu — Xop() B,

which is not E((Yy) = XZB. That is, Yyco is &biased. This bias occurs even though the
nonprobability sample is calibrated on the x’s in the model for Y.
If R; = m;, then EREw(IA/Mcz) =Yy and ERE,TE,g(f/Mcz - YU) is approximately zero.
The bias results for the matched, calibrated estimators Yy c; and Yy, can be
summarized as follows:

e Case (1) w; = 71'].’1 and the W; are t13en calibrated to population x-totals
— When the linear model (1) holds, Yy is -unbiased regardless of whether R; = m; ;
— Yy is approximately R-, Rar-, and R7ré-unbiased in large samples if R; = m;

e Case (2), w; is the GREG weight for its matched unit in S, and the W; are then
calibrated to population x-totals
— Yycs is &biased even if Equation (1) holds and the nonprobability sample S,p 18

calibrated on the x’s in the model;

— Yy, is approximately R7r-unbiased in large samples if R; = m;
— Yyeo is approximately R7ré-unbiased in large samples if R; = m;;

If case (1) holds where the weights assigned to matched units are inverses of selection
probabilities from S,,, the situation is more straightforward than case (2). R-unbiasedness in
case (1) requires that the pseudo-inclusion probabilities can be taken from the probability
sample, that is, R; = ;. Nonetheless, in case (1) calibrating the nonprobability sample does
produce an é-unbiased estimator even if R; # 75, as one would hope. However, in case (2)
when the weights from the probability sample are calibrated and the nonprobability sample
is further calibrated on the same x’s, the resulting estimator is not &-unbiased.

4.3. Variance of the Matched, Calibrated Estimator in Case (1)

To compute the &-model variance, note that the estimator of total can also be written as
Yier = 25 g;y;/m with g; defined in Equation (17) with #; = 1/7;. The &variance is
then

2
vitue) =3 (£) 2

Sup
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It follows that the R7ré-variance is VR,Tg(lA/Ma) = ZU (g72 / 777) 0'12 The &-variance can
be estimated with

N
Ug(?MCI) = Z(%) é;z, 21)
J

N np

np

To compute the R— and Rw—varlance we use the approximation in Equation (1
Assume that R; = m7; so that YMCI is R-unbiased. Based on results in Subsection 4.1, the
estimator can be approximated as

where & e =Y~ X; B (7T w1thB () = (an,, X;X; /(771 j2)> 1 s xjyj/<7'rj jzg.
)

ucr = Top(m) + (Xy = Xop(m) B, ()
=¥,p(m) + (Xu — Xpp(m)' B
_Zw e + XI/B]), 22)

np

where e; =y — XJ-TBZ. The R- (and R7r-) variance is, thus, equal to the variance of the first
term in the last line of Equation (22). If the sample S, is treated as being selected with
replacement, then a variance estimator is

2

UR#(?MCI) = n f Z Wjéf - = Wj/éjr* . (23)

4.4. Variance of the Matched, Calibrated Estimator in Case (2)
As shown in Appendix (Subsection 8.4) approximation (20) can be rewritten as

YMCZ Z)’j< +F)+Zyj js

S Sup

where F; is a term thatis O, (n~'/?). As aresult, Ve(Yuea) = 3o, (0;/7;)*, which can be
estimated with

A\ 2

N e

ve(fuea) =D | 2] - 24)
S \ T

Rewriting Equation (20), the calibrated estimator of the total is also

*

5 . €; & T *
Yuer = Z;J + Xy —X,) By +XIB;, (25)
N

where e; was defined above. Using the total variance formula, the R#-variance can be
derived as

VR7T<?MC2) = VRE'n'(f/MCZI Snp) + ERV';T(?MC2|Snp)
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o
@; ~ T A ~
= VR - + BUVﬂ<Xp)BU
S T
An estimator of this variance is
A eik £ N 2
vR‘IT<YMC2) = UR Z ;J + Bnp (W)TUTr(Xp>Bnp (77) (26)
S

with vg (Z S 7T) being a variance estimator of an estimated total appropriate to how the
nonprobability sample is handled. We use Bn,, (7r) in Equation (26) rather than an estimator
with W weights since the former is expected to be somewhat more stable. If S,,, is treated as
being with-replacement, the first component in Equation (26) can be computed with
Equation (23).

Details of calculating Vi ¢ (f/ MCZ) are in Appendix (Subsection 8.4). This variance can
be estimated with

AK 2
URW%(?MCZ) = Z(;) +Bnp(7T) vq-r( )é ( ) (27)

Sup J

For each of the variance estimators above for the matched, calibrated estimator in cases
(1) and (2), it is important to remember that unless R; = ; the estimator of total itself will
be biased. If so, the mean square error will have a bias-squared component that none of the
variance estimators will reflect.

In the combination above, both the weights in S, and those in §,,, are calibrated to a
given set of x’s. This is similar to the situation studied by Rao et al. (2002, 368), who noted
that in a regression with calibration weights, GREG residuals are based on the regression
of model residuals on X. If the model fits well, there will be very little association between
those residuals and X leading to no gain compared to an estimator not using calibration
weights. In our situation, when the estimators of totals are unbiased, we can expect ?Mz
with calibration in S,,, ¥yc1 with no calibration in S, and calibration in S,,,, and ¥yc> with
calibration in both S, and S,,, to be about equally precise—a point borne out by the
simulation in Section 5.

5. Simulation Studies

To study the performance of the proposed estimators described above, we performed two
simulation studies with an artificial population. In the first, conditions are created where
close matches can be found between units in the probability sample and the nonprobability
sample. In the second simulation, close matches are much less likely.
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5.1.  Simulation Study 1

In the simulation, a finite population of size N = 100,000 was based on the following
model:

E{Y) = a+ BX,Vi(Y) = a?X>/2,

where a = 0.4, B = 0.25, o> = 0.0625, and X follows a gamma distribution with density
function f'(x) = 0.04x exp(— x/5). This is the same model as used by Hansen et al. (1983);
the function HMT in the R PracTools package (Valliant et al. 2020) was used to generate
the population. Conditional on X, Y follows a gamma distribution with density function
g(y; x) = 1/bT)y " exp(—y/hb), where b= 125x"*8 + 5x) !, ¢ = 0.0dx 7
@8 + 5)c)2 and I'(-) is the gamma function. The finite population is stratified into five strata
by ranges of the variable X, such that each stratum has approximately the same total of X.
A stratified, probability sample S, of size n = 250 is then selected from the population
using stratified, simple random sampling (stsrs) without replacement, in which the sample
stratum sizes are given by (50, 50, 50, 50, 50). Further, a stratified, volunteer panel of size
M = 1,250 is selected from the population with stratum sample sizes (250, 250, 250, 250,
250) using stratified, simple random sampling. Although the volunteer panel is a
probability sample, their weights are treated as unknown for the simulation. Note that the
sampling fractions of both S, and S,,, are small and, thus, will not affect the empirical
variances of estimates.

For each unit of the probability sample of n = 250, we find the closest matching unit of
the volunteer panel to obtain the matched, non-probability sample S,,, of size n = 250,
using single nearest neighbor matching without replacement based on the single auxiliary
variable X. That is, it matches each unit i in the probability sample with a unit j in the
volunteer panel with the closest distance d(i, j) = ||X;— X;|| and the unit j in the volunteer
panel can be used only once, where || - || is a norm, such as 1-norm, 2-norm and co-norm.
The units in the volunteer panel are then assigned the weight of their nearest neighbor
match from the probability sample using the R package Matching (Sekhon 2011). In this
example, finding close matches is fairly easy, and we should have R; = m;, j € S,,,, in
almost all cases because both S, and S, are stsrs. The parameter of interest is the
population total of Y. Finally, the matched estimator and the matched, calibrated estimator
under cases (1) and (2) in Section 3 are computed, denoted by

° IA/MI, estimator (2) with 1/7r weights from the matched units in S,

o ¥ w2, estimator (4) with GREG weights from the matched units in S,

. ?MCI, estimator (18) with 1/7r weights from the matched units in S, followed by
calibration in S,,,, and

Y, Mmc2, estimator (18) with GREG weights from the matched units in S, followed by
calibration in S,,,,.

The above process is repeated 5,000 times. The percentage relative biases (relbiases),
the variances and the mean squared errors of the matched estimator and the matched,
calibrated estimator under cases (1) and (2), are presented in Table 1. The empirical
percent relative bias is defined as 100 X bias(Y)/Y.
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Table 1. Simulation Study I: Monte Carlo percent relative biases, variances and
mean squared errors of the point estimators

Estimators Relative Variance MSE Ratio to
bias (%) (=107 (=107  min MSE

Y -0.0318 9.02 9.02 1.17
Vi -0.0078 7.68 7.68 1.00
Yuc -0.0274 7.68 7.68 1.00
Yuca -0.0274 7.68 7.68 1.00
Yor -0.1062 9.23 9.24 1.20

For comparison we included a doubly robust estimator, denoted by ¥pg, that was
computed without matching. This estimator was computed in two steps as described in
Elliott and Valliant (2017). First, an equal probability subsample of n = 250 was selected
from the volunteer panel of m = 1,250. Then, §, and §,,, are combined. Units in §,,, are
given a weight of 1 while units in S, were assigned their sampling weight of 1/7;. A
logistic regression with X as the covariate was run to predict the probability of being in S,,,,.
The weight for unit j in S,, was then calculated as w; = (1 — R;)/R; where R; is the
predicted probability of being in §,, (see Wang et al. 2021). Without the odds
transformation, the estimator would be somewhat biased (Chen et al. 2020), but in this
case the bias was negligible since §,,, is a small fraction of the population (Wang et al.
2021). Finally, the estimator was calibrated with a model having an intercept and X. The
general formulas for IA/DR and its variance estimator are

Yor = SZgDRjo}{j; VDR = Sz:(gDRjo)ZEIZ)Rj (28)
" ”

where w; is the estimated weight defined above, epg; = y; —xfﬁDR with ﬁDR being the
weighted least squares estimator of slope with weights equal to w;, and gpg; is the g-weight
defined using the w; weights. The estimator Ypr will be approximately unbiased if either
the model for the propensities of being in S,,, or the model for Y is correct. Two other
things to note are that (a) IA/DR is not the same as the DR estimator considered by Chen et al.
(2020) and (b) vpg is theoretically incorrect because it treats the weights w; as constants
rather than estimates. Although Chen et al. (2020) present a variance estimator for their
DR estimator, it is not appropriate here since our ¥ differs from theirs.

Simulation results in Table 1 show that the absolute relative biases of the matched
estimators under the two cases of weights from S, are small and close to those of the
corresponding matched, calibrated estimators under the two cases. The t-statistics,
computed across the 5,000 samples, for testing whether the biases of the estimated totals
are zero are (.68 in absolute value or less with the exception of Y, pr Which is -2.26. Since
the relbias of the DR estimator is only -0.1062%, a t-statistic of this size is of no practical
importance. Thus, both the matched estimators and the matched, calibrated estimators are
unbiased when R; = ;, j € §,,, in both cases (1) and (2) as predicted by the theory in
Subsections 3.1 and 3.2. The variances and MSEs of IA/MZ, IA/MCI, and ?MCZ are all equal as
anticipated in the comment at the end of Subsection 4.4 and are about 17% smaller than
those of Y. Consequently, while all estimates are approximately unbiased, the
calibration adjustment after matching produces more efficient estimators compared to only
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matching under case (1). Also noteworthy is the fact that the doubly robust estimator, ¥z,
has a 20% larger MSE than the best of the matching estimates. This is a consequence of the
logistic model used to estimate Pr (j € S,,,) being a misspecification.

In addition to the point estimators, the variance estimators of the matched estimator, the
matched, calibrated estimator under cases (1) and (2), and the doubly robust estimator are
also computed according to Equations (6), (7), (10), (11), (14), (16), (21), (23), (24), (26),
(27), and (28). In all cases S,,, is treated as an unstratified, with replacement sample. Percent
relative biases (RB) are computed for the variance estimators with respect to the empirical
variances (Empvar) and MSEs of the point estimators across the 5,000 simulations:

100 x (Zlev(b)(f’)/B - V(f'))

RB.Empvar =
V()

)

100 x (Zlev(b)(f/)/B - MSE(?))
MSE(Y)

where V(¥) is the empirical or monte carlo variance of a point estimator ¥, MSE(Y) is MSE

of the point estimator ¥, v *’(¥) is a variance estimator of ¥ computed from the 5" simulated

sample, and B = 5,000 is the total number of simulation runs. The percent relative biases

(RB) and 95% confidence interval (CI) coverages using the normal approximation and the

different variance estimates, are presented in Table 2.

With three exceptions, the relbiases in Table 2 are small, ranging from -1.1% to 3.1%.
An exception is v,_g(f/Ml) which is a 15.7% underestimate due to the fact that it does not
account for the variability of )A(np as shown in Subsection 3.3. The R7r and R7¢ estimators
for Yy are about 24% overestimates. As explained in Appendix (Subsection 8.2), these
estimators will not fully account for precision gains due to calibration of weights in S,
when the x-matches are extremely close. Confidence interval coverage ranges from 94.8%
to 97.0% except for vs«(f/M]) which covers in 92.7% of samples due to its underestimation.

RB.MSE =

)

Table 2.  Simulation Study I: Percent relative biases and 95% confidence interval
coverages of the variance estimators

Estimators RB.Empvar (%) RB.MSE (%) CI coverage (%)

ve(Yan) -15.7 -15.7 92.7
vr(Yu1) 3.1 3.1 95.0
Vrme(Yar1) 2.8 2.8 96.8
ve(Yan) -0.9 -0.9 94.8
vra(Yar2) 23.9 23.9 96.8
VRae(Yan) 23.6 23.6 97.0
ve(Yuer) -1.0 -1.0 94.9
vr(Yuct) 0.7 0.7 94.8
ve(Yue2) -1.1 -1.1 94.8
Vra(Yic2) 2.2 22 95.2
Vrme(Yarc2) 1.8 1.9 95.2

v(Ypr) 0.4 0.4 94.9
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5.2.  Simulation Study II

In this simulation, we consider a case in which R; # m1;,j € S,,,. The same finite population
of size N = 100,000 is used as in simulation study I along with a stratified, probability
sample S, of size n = 250. A volunteer panel of expected size m = 1,250 is selected from
the population using Poisson sampling with selection probabilities ;" defined as follows:

a; = 0.085 exp(—0.085X),

/ mair;
m = p— —
E T
i=1""

With this definition of 7r;, the probability of being in S,,, decreases with increasing X. This
kind of selection for the volunteer panel will generally result in R; # 7;, for a unitj € §,,,,
matched to a uniti € S,.

As in simulation I, single nearest neighbor matching without replacement based on the
variable X is adopted to conduct matching for the probability sample. The matched
estimator, the matched, calibrated estimator, the doubly robust estimator and their
variance estimators under cases (1) and (2) are computed. The above procedure is repeated
5,000 times. The relative biases, the variances and the mean squared errors are listed in
Table 3. Also, the same relative biases and 95% CI coverages of variance estimators as
those in simulation study I are displayed in Table 4.

In Table 3 the matched estimators, ¥, w1 and ¥, w2, have biases of about -5%. These biases
are largely corrected by calibrating with ¥;¢; and ¥yc». The t-statistics for testing whether
the biases are zero are over 100 in absolute value for ¥, w1 and ¥, w2 but are only about -3 for
the calibrated estimators. Despite the somewhat large t-statistics for the calibrated
estimators, calibration is very effective in reducing bias due to using incorrect S,
inclusion probabilities. The calibrated estimates, consequently, have substantially smaller
MSEs than IA/MI and f/m because of their reduced bias. The doubly robust estimator, ?DR, is
also approximately unbiased; however, its variance and MSE are 50% higher than those of
Yucr and Yyeo. R R

In Table 4 the variance estimates for Yj;; and Yy, are biased estimates of the empirical
variance and severe underestimates of the MSEs. This leads to CIs that cover only about
56% to 66% of the time for the first four variance estimates in Table 4. Since vg(¥y2) and
UR-,,-g(f’Mg) overestimate the empirical variances by about 22%, their CIs do cover the
population totals in 96.8% and 96.9% of samples. The fact that calibrating removes the
bias of the matching estimators plus the low biases of the variance estimators for Yucr and

Table 3.  Simulation Study II: Percent relative biases, variances and mean
squared errors of the point estimators

Estimators Relative Variance MSE Ratio to
bias (%) (+107) (+10")  min MSE

Yin -5.2 8.83 31.04 39
Vi 5.1 7.99 29.86 3.8
Yci 13 7.66 7.67 1.0
Yica -1.3 7.66 7.67 1.0

Ypr -0.2 11.31 11.35 1.5
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Table 4.  Simulation Study II: Percent relative biases and 95% confidence interval
coverages of the variance estimators

Estimators RB.Empvar (%) RB.MSE (%) CI coverage (%)

ve(Yyn) -18.2 -76.7 56.2
vr(Yan) 8.7 -69.1 64.9
Vrme(Yar1) 8.4 -69.2 66.1
ve(Yan) 9.5 75.8 57.0
vra(Yar2) 229 -67.1 96.8
VRat(Yan2) 225 -67.2 96.9
ve(Yyer) 1.6 1.4 95.1
vr(Yucr) 5.3 5.4 94.2
ve(Yyca) 5.6 5.8 94.5
Vre(Yuic2) 24 25 94.5
VRat(Yuca) 2.7 2.9 94.5
v(¥pr) -3.1 3.4 94.3

)?Mcg leads to CI coverage of 94.2% to 95.1%. The variance estimator for )?DR has CI
coverage of 94.3% and performs well. These coverage probabilities are estimated
reasonably precisely in the simulation of 5,000 samples. The half-widths of normal
approximation 95% CIs on the empirical coverage rates themselves range from 0.62
percentage points when coverage is 95% to 1.39 percentage points when coverage is 60%.
(These half-width lengths also apply to the results for Simulation I and for the real data
simulation presented in Section 6.)

6. Illustration with Real Population

To further assess the performance of the matching estimators, they are applied to data obtained
from the 2015 US Behavioral Risk Factor Surveillance Survey (BRESS) (Center for Disease
Control and Prevention 2023), which is a sample from the US population 18 years and older.
The file contains information about whether persons used the internet in the past 30 days
(INTERNET). The BRFSS is part of a national state-by-state system of surveys used to
monitor health conditions in the United States. Data are collected through telephone
household interviews. The analytic variables Yin this study are whether respondents were ever
diagnosed with a heart attack (CVDINFR4), were ever told by a medical professional that they
have diabetes (DIABETE3), and were ever told they had a stroke (CVDSTRK3). Although
each of these analysis variables is binary, use of linear estimators, as studied in previous
sections, is standard survey practice, largely because of their convenience for data analysts.

Covariates associated with Y are sex, age, race, marital status, physical weight,
employment status, education level, income level, whether respondents smoked at least
100 cigarettes in their entire life, and whether respondents participated in any physical
activities or exercises in the past 30 days in 2015. All of the variables are shown in Table 5.

After deleting cases with either a missing, a don’t know or a refused response to any of
these variables, 315,669 persons are available for this study. Two weights are provided
with the data set: X_WT2RAKE, which is a design weight and X_LLCPWT, which is a
raked, final weight. According to the documentation Center for Disease Control and
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Table 5. Covariates used in the BRFSS simulation study

Variables

Type

Description

SEX
X_AGE

X_RACE

MARITAL

WEIGHT?2
EMPLOY1

EDUCA

INCOME2

SMOKE100
EXERANY2
INTERNET
CVDINFR4
DIABETE3
CVDSTRK3

2 categories
6 categories

8 categories

6 categories

Continuous
8 categories

6 categories

8 categories

2 categories
2 categories
2 categories
2 categories
2 categories
2 categories

Respondents sex: 1=Male; 2=Female

Imputed age in six groups: 1=Age 18 to 24; 2= Age 25
to 34; 3=Age 35 to 44; 4=Age 45 to 54; 5=Age 55 to
64; 6=Age 65 or older

Computed race-ethnicity grouping: 1=White only, non-
Hispanic; 2=Black only, non-Hispanic; 3= American
Indian or Alaskan Native only, Non-Hispanic; 4= Asian
only, non-Hispanic; 5= Native Hawaiian or other Pacific
Islander only, Non-Hispanic; 6=Other race only, non-
Hispanic; 7=Multiracial, non-Hispanic; 8= Hispanic
Marital status: 1=Married; 2= Divorced; 3=Widowed,;
4=Separated; 5=Never married; 6= A member of an
unmarried couple

Reported weight in pounds: 50—999

Employment status: 1=Employed for wages; 2= Self-
employed; 3=0ut of work for 1 year or more; 4= Out of
work for less than 1 year; 5= A homemaker; 6=A
student; 7=Retired; 8=Unable to work

Education level: 1=Never attended school or only
kindergarten; 2= Grades 1 through 8 (Elementary);
3=Grades 9 through 11 (Some high school); 4= Grade
12 or GED (High school graduate); 5=College 1 year to
3 years (Some college or technical school); 6=College 4
years or more (College graduate)

Income level: 1=Less than USD 10,000; 2=USD 10,000
to less than USD 15,000; 3=USD 15,000 to less than
USD 20,000; 4=USD 20,000 to less than USD 25,000;
5=USD 25,000 to less than USD 35,000; 6=USD
35,000 to less than USD 50,000; 7=USD 50,000 to less
than USD 75,000; 8=USD 75,000 or more

Smoked at least 100 cigarettes?: 1=Yes; 2=No
Exercise in past 30 days?: 1=Yes; 2=No

Internet use in the past 30 days?: 1=Yes; 2=No

Ever diagnosed with heart attack?: 1=Yes; 2=No

Ever told you have diabetes?: 1=Yes; 2=No

Ever told you had a stroke?: 1=Yes; 2=No

Prevention (2017). BRFSS rakes the design weight to eight margins (gender by age group,
race/ethnicity, education, marital status, tenure, gender by race/ethnicity, age group by
race/ethnicity, and phone ownership). The raking also serves as a noncoverage/
nonresponse adjustment. Because of the asymptotic equivalence of the GREG and raked
estimators shown by Deville and Sidrndal (1992), the earlier theory in Sections 3 and 4
should apply to estimators based on X_LLCPWT.

In this data set of 315,669 persons, 256,949 people who had used the internet in the past
30 days are considered as the web (nonprobability) subset. Using the X_LLCPWT weights,
the web population is only 84% (81% unweighted) of the target population, indicating that
the effect of coverage error could be substantial. Moreover, the weighted distributions of the
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categorical covariates among all respondents in the web, non-web, and full populations are
given in Table 6. Categories of some variables are combined in Table 6 and in the simulation
compared to the categories in Table 5 because they are small. Table 7 gives the proportions
that reported a heart attack, diabetes, or a stroke in the web, non-web, and full populations.

As shown in Tables 6 and 7, there are differences between the target population and the
web and non-web populations in the estimated distributions of some of the covariates.
For example, 0.19 of the full population are age 65 or older, 0.14 of the web population

Table 6. Distributions of the categorical variables and means of the continuous variable, body weight, in the
web, non-web, and full populations

Variables Web Non-web Target
Population  Population = Population

SEX Male 0.50 0.49 0.50
Female 0.50 0.51 0.50

X_AGE Age 18 to 24 0.13 0.02 0.11
Age 25 to 34 0.20 0.05 0.18
Age 35to 44 0.19 0.09 0.17
Age 45 to 54 0.19 0.16 0.18
Age 55 to 64 0.16 0.22 0.17
Age 65 or older 0.14 0.45 0.19

X RACE Non-black, non-Hispanic 0.90 0.84 0.89
Black only, non-Hispanic 0.10 0.16 0.11

MARITAL Married or member of an 0.59 0.47 0.58
unmarried couple
Divorced 0.11 0.15 0.11
Widowed, separated, never 0.30 0.38 0.31
married

EMPLOY1 Employed for wages, 0.65 0.30 0.59
self-employed
Out of work 0.05 0.06 0.05
Other (homemaker, student, 0.30 0.63 0.35
retired, unable to work)

EDUCA Grade 11 or less 0.08 0.39 0.13
Grade 12 or equivalent 0.25 0.37 0.27
College 1 year to 3 years 0.35 0.18 0.32
College 4 years or more 0.33 0.06 0.29

INCOME2 Less than USD 25,000 0.21 0.60 0.27
USD 25,000 to less than USD 0.24 0.27 0.24
50,000
USD 50,000 to less than USD 0.17 0.07 0.16
75,000
USD 75,000 or more 0.38 0.06 0.33

SMOKEI100  Smoked at least 100 0.59 0.51 0.58
cigarettes
Not smoked at least 100 0.41 0.49 0.42
cigarettes

EXERANY2 Exercise in past 30 days 0.22 0.40 0.25
No exercise in past 30 days 0.78 0.60 0.75

WEIGHT2 Body weight in pounds 180.50 176.90 180.00
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Table 7. Proportions of the web, non-web, and total populations that have been
told by a medical professional that they have three health conditions

Condition Web Non-web Total pop
Heart attack (CVDINFR4) 0.031 0.107 0.043
Diabetes (DIABETE3) 0.093 0.233 0.116
Stroke (CVDSTRK3) 0.020 0.076 0.029

are, and 0.45 of the non-web are 654-. In the target population, 0.59 are employed for
wages, 0.65 are in the web population, but only 0.30 of the non-web are. About 8% of the
web population have a grade 11 education or less while 13% of the full population does;
33% of the web population attended four or more years of college while 29% of the full
population did. For the analysis variables in Table 7, 4.3% of the target population have
ever been diagnosed with a heart attack while 3.1% of the web population and 10.7% of
the non-web population have. Similar differences occur for diabetes and stroke. Although
the percentage point differences are small between the web and full populations, the
relative differences are substantial. For example, heart attacks in the web population are
72% (0.031/0.043) of those in the full population; diabetes in the web population is 80% of
the full population rate; strokes in the web population are 72% of those in the full
population. Consequently, calibrating the matched sample may reduce bias and variance
as long as the covariates in Table 6 are predictive of the Y ’s. However, it is clear that
weighting a sample from the web population will have to achieve a considerable amount of
bias correction in order to produce good estimates for the full, target population.

Also noteworthy are the substantial differences between the web and non-web
subpopulations. The non-web people are older, more likely to be Black and non-Hispanic,
more likely to not be in the labor force, less educated, lower income, and more likely to
have smoked than the web persons. The non-web people are also much more likely to have
had heart attacks, diabetes, and strokes. Our focus is on using a sample from the web
population to make estimates for the full population, but any attempt to use a sample from
the web population to represent the non-web population seems doomed to failure. In
general, a nonprobability sample that has serious coverage problems cannot be expected to
produce good estimates for poorly covered domains.

To apply the proposed matching method, simple random samples are selected from the
BRFSS web subsample and from the BRFSS full sample. Using equal probability
sampling preserves any differences between the web and full samples and, in particular,
any coverage defects in the web sample. The size of the S, probability sample was n = 500
while the size of the initial S,,, web sample was M = 3,000. The BRFSS raked weights for
persons in S, were adjusted to equal W; = (N/n) 4 X_LLCPWT where N = 315,669. Since
the BRFSS design weights did not include a nonresponse adjustment and, consequently,
did not sum to an estimate of the size of the target population, we computed a
nonresponse-adjusted design weight for each person in S, as W, = (N/n) ¥ X_WT2RAKE
+ fvr Where fyg is the sum of X_LLCPWT over the sum of X_WT2RAKE.

The samples, S, and S,,,, are combined and the propensity of being in S, is estimated via
logistic regression. The n closest matches in S,,,, found using the R package Matching with
the same matching criterion as described in Subsection 5.1, are retained for estimation. The
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matching reduces the size of S,,, to be the same (n = 500) as that of S,,. The weights Ww; and
W from the matching person in S, are assigned to person j in S,,,. These weights were used
to calculate estimated proportions, Yu1, Ya2, Yuc1, Yauco, and their associated variance
estimators. Estimators of the proportions of persons who reported heart attacks, diabetes, or
strokes were computed based on the estimators of totals divided by N = 3~ 5,, Wj- Because of
the way full- sample BRFSS weights are constructed, the variation Nfrom sample to sample
is minimal so that N is treated as a constant for variance estimation.

For YMCl and YMC2 the calibration model used main effects for SEX, X_AGE,
MARITAL, EMPLOY1, EDUCA, INCOME2, EXERANY2, and SMOKE100 plus the
continuous variable WEIGHT2. After some testing, the race variable was not included
since it did not improve predictions once the other covariates were in the model.
Calibration was done with the R survey package (Lumley 2020).

We also computed two versions of the doubly robust estimator for comparison. The two
alternatives differed in the covariates used in the propensity and calibration models. The
first, Ypr1, used propensity and calibration models with the same covariates as the
calibration model for ¥y;c; and Yyco. The second, Ypgo, used propensity and calibration
models that have a much smaller set of covariates: an intercept, SEX, X_AGE, EMPLOY1,
and EDUCA. Although not reported here, we also ran simulations for a DR estimator that had
a propensity model with an intercept, the interactions of INCOME2 with X_AGE, EDUCA
with X_AGE, and INCOME2 with EDUCA. These interactions were determined from a
regression tree analysis, and the covariates were recoded for the interactions to be binary.
INCOME2 was recoded to less than or greater than or equal to USD 25,000; X_AGE to less
than 55 years or greater than or equal to 55 years; EDUCA to less than high school or high
school or more. The logistic propensity model for being in S,,, based on the merged data set
of S, and §,,, was estimated using the method described in WAang et al. (2021)' For this DR
alternative, the same calibration model was used as for YMACI and Yyc». Because the
summary results for this DR estimator were similar to those for Ypg, we have omitted them.

This process was repeated 5,000 times for each of the three analysis variables. The
relative biases, the variances and the mean squared errors (MSEs) of the three point
estimators across the 5,000 samples are summarized in Table 8. For all three analysis
variables the biases of Yjs; and ¥y, are positive, ranging from 4.8% for diabetes with M1 to
15.7% for heart attack for M2. Recall that M1 is a type of m-estimator with the 7-weight
taken from the matched case in the probability sample. In this example, M2 is a raked
estimator with the weight being the raked weight from the matched case in S,,. In contrast,
the MC1, MC2, and DR1 estimators have serious negative biases, ranging from -21.6% to
-17.5%. The DR estimator with fewer covariates, Ypgs, has the smallest absolute relbias
for two of the three variables: -6.5% for heart attack and -9.1% for stroke. Its -9.8% relbias
for diabetes is an improvement over that of Ypg; but is still undesirably large. Although
modeling suggested that the extensive list of covariates used in MC1, MC2, and DR1 was
needed to correct for coverage bias, the simulations illustrate the well-known phenomenon
that overloading a regression model with predictors leads to instability. DR2 has the
smallest MSE for all three variables and might be preferred on that basis, but its bias
results in poor confidence interval coverage as shown next in Table 9. All of the relbiases
in Table 8 are highly significantly different from zero based on t-tests.
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Table 8.  Simulation study with BRFSS population: Monte Carlo percent relative biases,
variances and mean squared errors of the point estimators

Estimator Relative bias Variance MSE Ratio to
(%) (x10% (x10% min MSE
Heart attack
Vi 12.4 2.57 2.85 1.51
Yoo 15.7 3.76 422 2.23
Yuer 205 1.73 251 1.32
Yues 203 2.03 278 1.47
Yori 21.6 1.61 2.47 1.30
Yore 6.5 1.81 1.89 1.00
Diabetes
Y 4.8 571 6.02 1.09
Vi 6.4 8.07 8.62 1.56
Yy 20.1 4.47 9.88 1.79
Vv -19.8 5.26 10.53 1.91
Yori 20.6 3.78 9.48 1.72
Yore 938 4.22 5.52 1.00
Stroke
Yan 112 1.73 1.83 1.38
Yo 15.5 2.59 2.80 2.10
Yyt -18.4 1.33 1.62 1.21
Yy 17.5 1.59 1.85 1.39
Yori 203 1.17 1.52 1.14
Yore 9.1 1.26 1.33 1.00

Table 9. Simulation study with BRFSS population: Percent relative biases and 95%
confidence interval coverages of the variance estimators

Estimator RB.Empvar (%) RB.MSE (%) CI coverage (%)

Heart Aattack
ve(Tn) 28.4 355 89.6
vrn (1) 4.0 -13.4 92.8
vrme(Tor1) 10.1 18.9 92.6
ve(Tirn) 26 -33.9 89.6
V(Yo 227 311 89.5
Vme(Fig2) -26.9 34.8 89.4
ve(Tcr) 7.5 25.8 81.6
vr(Ter) 144 -40.9 73.1
ve(Tue) -8.1 331 80.4

Vrr(Yuc2) -5.0 -30.9 77.2
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Table 9. Continued.

Estimator RB.Empvar (%) RB.MSE (%) CI coverage (%)
rme(Yhic) 13.8 172 84.4
v(Tor1) 224 493 68.4
v(Yor2) -19.6 229 82.2

DiabeEes
veh) 263 30.1 89.8
vr(T) 3.1 22 94.8
Vkne(Yorr) 2.1 3.1 94.9
ve(Ti) 25.0 29.8 89.9
vrn(Tor2) -8.9 -14.8 92.9
vrme(Thr2) 97 -15.5 92.9
ve(Ter) 53 572 729
vr(Yucr) 134 -60.9 68.4
ve(Tuca) -19.6 -59.8 717
vrn (Vi) 15 493 75.6
PG 8.3 459 79.4
oY1) -19.2 67.8 61.6
v(¥ora) -18.8 379 80.0

Strokg
ve(T) 256 299 87.9
e (Vi) -1.8 75 90.1
(Y1) 97 -14.9 90.5
ve(hn) 247 302 87.8
vin(Ti) 246 30.1 87.4
vrme(Thr2) 29.8 35.0 87.4
veTuer) 23 -19.8 79.7
vr(Yer) -16.1 311 73.2
ve(Tuca) -18.3 298 78.8
vrn(Tpca) 133 256 76.9
vag(f/Mcz) -1.7 -15.6 82.2
v(Yor) -19.7 383 70.1
v(Vpra) 177 221 80.1

Table 9 shows the percent relative biases of the variance estimators with respect to the
empirical variance of each estimator of the proportion and with respect to the empirical
MSE. These are labeled RB.Empvar (%) and RB.MSE (%). For the most part, the relative
biases are negative. With respect to the MSE, all are negative owing to the biases of the
point estimators of the proportions which inflate the MSEs. The coverage rates for 95%
normal approximation confidence intervals is generally poor because the intervals are
centered at the wrong place due to the biases of the estimators of proportions. Only the
combinations of IA_/M, with vg, and vg,¢ have coverage rates above 90%.
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Finally, as an experiment we also increased the sample sizes to n = 1,000 for the
nonprobability sample and M = 5,000 for the initial probability sample. The increased
sample sizes had no effect on the biases of the point estimates of means. (Results are
omitted here.)

In summary, substantial differences between the web and non-web subpopulations
result in serious coverage problems for the nonprobability sample S,,, causing all
estimators to be biased. Furthermore, calibration adjustment after matching does not
reduce the biases of the matched estimators. The better of the doubly robust estimators
does produce the smallest MSEs in the simulations, but, by no means does it reduce the
biases of estimated means to a negligible level.

7. Conclusion

In this article we present several alternative estimators when a nonprobability sample, S,,,,
is matched to a probability sample, S,. The general setting is that the nonprobability
sample is weighted by assigning the weight from an S, unit to its matched unit in the
nonprobability sample. Particular cases are (A) the weight from S, is its 7-weight, (B) the
weight from S, is a GREG weight, (C) case (A) with the nonprobability sample being
calibrated with a linear model, and (D) case (B) with S,,, calibrated with a linear model.
Under some restrictive conditions that may be difficult to satisfy in practice, these
estimators can be approximately unbiased. The key requirement is that the actual
propensity of a unit’s being observed in the nonprobability sample should be equal or close
to the inclusion probability of the unit to which it is matched in the probability sample.

Three simulation studies illustrated several points about the matched estimator and the
doubly robust estimator, which is included for comparison. Study I used artificial data
where the variable to be analyzed follows a linear model with a single covariate X, which
was also used to create strata. The sample designs for both S, and S,,, were stratified simple
random sampling with the design for S,,, treated as unknown. In this case, matching on X
was reliable and all estimators were unbiased. In fact, three of four of the matching
estimators had a smaller MSE than the doubly robust estimator.

The second simulation used the same artificial population and S, sample design as Study
L, but S, was selected with probabilities (treated as unknown) that decreased with X. In
this example, the inclusion probabilities for the nonprobability sample are far from those
in the probability sample used for matching. Consequently, the matched estimators
without calibration are biased. However, calibration corrects the biases and the matched,
calibrated estimator has a smaller MSE than the doubly robust estimator.

The third simulation used a real population (BRFSS) in which persons who had
accessed the internet in the previous 30 days were treated as a nonprobability sample from
the full US adult population. Since there was no control over how the nonprobability units
were selected, this mirrored a situation that would be faced in practice. The prevalence of
three health conditions was estimated. The prevalences differed considerably between the
part of the population that was covered by S,,, and the part that was not. The persons who
did not use the internet were older, less educated, lower income, and less healthy than the
internet users. These differences led to all estimators in the study being biased. Calibrating
the matching estimators on a list of covariates did not correct their biases. In addition,
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doubly robust (DR) estimation, which has been touted as one of the better options, needs to
be carefully implemented to be effective. Including too many covariates in a DR estimator
can destabilize the estimator (as in any regression) even though an extensive list of
predictors may, in principle, be related to undercoverage of the population by the
nonprobability sample.

The failure in the real data study has several, potential contributing factors, including
poor matches between the nonprobability and probability units, inadequate models for the
propensity of being observed in the nonprobability sample, and poor calibration models
for predicting the health characteristics analyzed. However, the facts that the
nonprobability sample does not cover the target population, and the noncovered units
differ both on the distributions of the analytic variables and covariates is the critical
problem. Some diagnostics have been devised for detecting nonignorability of selection of
a nonprobability sample (e.g., see Andridge et al. 2019; Little et al. 2019). These
diagnostics will signal non-ignorability if the means of covariates in S,,, and the target
population are sufficiently different. Thus, they might be a way forward in the BRFSS
application.

However, if the variables to be analyzed differ between S,,, and the target population but
covariate distributions do not, the diagnostics will not alert an analyst to trouble, and poor
inferences will still be made from the nonprobability sample. The type of coverage error in
the BRESS study is an example of what can happen in nonprobability samples, generally,
and may be a problem that no amount of sophisticated mathematics is likely to correct.

8. Appendix

This appendix shows the details of variance calculations given in earlier sections. Several
assumptions are used in the results below. These apply as N and n — oo.

(1) = OWN/n), R; = O(N/n) and /N — 0.

(2) Ay and A, are O(N).

(3) V. (X,) = ON /).

@) Vi (Xy) = OWN */n).

(5) When R;=m, N ' A, and N ~'A,,,(m) both converge in probability to N 'A,

= N 13y X/X; 7/ 52
6) N np(w) converges in probability to N~ 'A = N ZU xj x! / o-
D Wk = A, % b 0] ', 2

(8) When R, = m, _,-,\/’ X, “X,) N, I K, (m—Xy) /N, and\/— 1 (X,,,(0%)— Xp) /N are

asymptotically multivariate normal with mean 0.

8.1.  &-expectation of the With-Replacement Variance Estimator under Case (1)

To compute the fexpectation of vR(f’Ml) in Subsection 3.3 under case (1), define
r=wy = A €Sy Wi ',yj'. Since W; = ;"1 this can be rewritten as

— . !
a1y 1 %
J X e
n.mj n J#i€ESup 7T
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The é-expectation of rf is then

Eg(rf) = Ve(r) + [Ecrp]”

T 2

n—1\’0 1 o x; 1 X;1
() Er | Z E) R 2 ) s

n =\ j#es, j j'es,, '

S,

Adding and subtracting 012 / 77']2 in the second term, summing over S,,,, and doing some
algebra leads to

o o )
B =Y B Y (2 S Y

S €55

as noted in Subsection 3.3. That is, vk, is an overestimate of the model variance under
Equation (1). However, because IA/M 1 is model-biased, v, will not appropriately estimate
the £ mean square error despite its overestimating the &-variance.

To derive the Rmré-variance, note that

VRng(f/Ml S, Snp) = VRg(f/Ml S, Snp)
= ER{Vf(?Ml |Sp7 Snp)} + VR{E§(?M1 |Sp7 Snp) } .

Using the independence of the Y ’s under Equation (1), the first term is ), 0]2 /. The
second term is Vi{E¢(Yu1lS,,Su)} =Vr(Xup(m'B) =BT Vi (Xup(m)B. Combining
gives the expression shown in Equation (9).

8.2. Variance of Matched Estimator Yu2 Under Case (2)

Following similar steps to those in Sédrndal et al. (1992, sec. 6.6) and using condition (7),
Yy can be approximated as

?MZ = ?np(ﬂ-) + (XU - Xp)EU7 (29)

-1
5 x;x! X;y;
where By = (ZU méﬁ) QZU 77;(%)
Using the formula for total variance across the R and 7 distributions (denoted by Vg.,)
gives

Ve (Vi2) = ExVie Tu2|Sup) + VRE (FaraS,).- (30)

Working term by term in Equation (30) and using the approximation to ¥y, in Equation
(29), we have

N . A A ~ T A~
ERVﬂ'(YM2|Snp) = ERV‘IT(Y}'IP(W) + (XU - Xp)TBUlsnp) = BUVW(Xp)BU7

because f/n,,(ﬂ') has zero R-variance given that S, is fixed. To get the second term in
Equation (30), note that VRE,T(IA/leS,,p) = VR(IA/,W(W)) assuming that Xp is 7-unbiased.
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Combining these results, the variance across the R- and w-distributions is

Vi (Yu2) = Ve (Vp(m) + By VA (Xp) By

as shown in Equation (13).

Turning to the Rwé-variance, the total variance formula is given by Equation (8). The
E.Vetermis ) S a“fE - (gf) / 77']2 Using a Taylor series approximation as in Sirndal et al.
(1992, sec. 6.6), we have

g=m 1+ (Xo — X,) A, %/, 31)

It follows that
ExVe(Tin) = Zﬁ{l +X—J'TA;1E,,[(XU - %,) (X - X,)"]|A," ﬁ}
S, 77}2 lor 5—}2

:Zi LSy (X,)A,' X (32)
S 77'}2 O~_;2 U ™ 4 U O~_;2 °

Thus,

Under the order assumptions at the beginning of this appendix, the first term above is
O(N? /n) while the second is O(N? /nz). Thus, we use the approximation EREwV§(IA/M2)
= ZU Rja}z / 77,2

The second term in Equation (8) is EgV E; ()A/Mz). Expanding and collecting terms
gives

g
VoEe(Yirn) Z—’xj/s
S T

1P - Lo (Xu = X,) A A8

rx/)

Under condition (v) above, A A,,,, converges to the C X C identity matrix and EgV E,

(Y2) = B"VA(X,)B. X X
The third term in Equation (8) gives VxE .E¢ (Y312 ). Frist, compute EE¢ (Yyn) = Ex( > S

& X]B> Using the approximation to g; in Equation (31), E,(g;) =1 and E,E¢ (Yi2)
—an(W)B Consequently, the third term is VgE Eg(YMz) BTVg (an(w))ﬁ.
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Combining results for the three terms in Equation (8) gives
Vgae( YM2 Z +.3 Va ( »)B+B" VR( () B

as shown in Equation (15).

8.3.  Approximation to (IA/MCZ) in Case (2)

When S, has case (2) weights, Ww; = g;/m; with g; defined in Equation (3). The matched
estimator after calibration then equals

Yvea = Zg, &yl m,
Sup

where
. o NT[xx 171 %2
g =1+ (X — K@) [K,0)] x)/0

Multiplying g; by g; defined in Equation (3) and substituting in the formula for Yvica gives

5 5 o \Tx— Vi N s -1 .
Yucr = Yop(m) + (Xu — Xp)TAp IZ :(yjjz + Xy — an(VV))T {Anp(ﬁ’)} Z X]yiz

S M9j S 0,
o T XXV [ 1 o
+(Xo - X,)'A'S e [A W )} (Xy = X,p(9)). (33)
S Tj0;0;

Using conditions (5), (6), and (7), the orders of the second, third, and fourth terms in
Equation (33) are O,(N/y/n), O,(N/A/n), and O,(N+/n). The calibrated estimator can then be
approximated by

Pucr = Fop(m + (Xy — X,) By + (Xy — X,p(0) B} (34)

8.4. Variance of Matched Estimator IA/MCQ in Case (2)

To compute the £ model variance under case (2), we break >~ X;y;/d7 and Y-, X;y;/ 0] 2
into sums over S,,, and U—S,,,. Equation (34) can then be expressed as

Yier = Z)’;( +F> +Zy/ J»
where
A T~—-1 X; ~ B T~%—1 X;
Fy= (%o = %,)'&) 2ot (Xu ~ Rop0) 'R, ' 2L
; 2
Applying conditions (2) and (8), F; = O,(n ~ /). Since units in S,, and U —S,,, are
independent under model (1), the &variance is

e(Yue2) Z&( ) Zole (35)

np
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(@) ol

Sup

The Rmé-variance can be calculated using the total variance formula in Equation (8).
First, when R; = m;, ERE ;V¢ (IA/MCZIS,,, S,,,,)z > (0']2/75) The second term in Equation
(8) is

EVaEe(Yuca) = ExVa [Rup(m B+ (Xo = X,)" B+ (Xu = X)) ]

=B"v.(X,)B

The third term in Equation (8) is

VR [E'n'Ef(f]MCZ)] = VRE‘IT [an(W)TB + (XU - Xp)TB + (XU - an(w))TB}

= Ve{ Ex[Kop(m) = Xp()] B,

Rewriting the term in brackets above leads to

. . (1 — g)x;
Xop(m) = Xy = 3 80
Sop T
T

= (%, ~X0)'A,">"

S,

<

A~ T~—1~

= (X, —Xy) A, A, (m.
Applying condition (5) implies that Vg [EE¢(¥Yac2)]| = 0. Combining results for the three
terms in Equation (8) yields

. =T e
Vng(YMcz) = Z —+B Vv(Xp) B-
T T
An estimator of this variance is
2 2
URmé¢ YMC2 Z ( ) +Bnp(77)Tv7-r(Xp)Bnp(7T)
S \ T

as shown in Equation (27).
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Using Eye-Tracking Methodology to Study Grid Question
Designs in Web Surveys

Cornelia E. Neuert', Joss Rofmann', and Henning Silber'

Grid questions are frequently employed in web surveys due to their assumed response
efficiency. In line with this, many previous studies have found shorter response times for grid
questions compared to item-by-item formats. Our contribution to this literature is to
investigate how altering the question format affects response behavior and the depth of
cognitive processing when answering both grid question and item-by-item formats. To answer
these questions, we implemented an experiment with three questions in an eye-tracking study.
Each question consisted of a set of ten items which respondents answered either on a single
page (large grid), on two pages with five items each (small grid), or on ten separate pages
(item-by-item). We did not find substantial differences in cognitive processing overall, while
the processing of the question stem and the response scale labels was significantly higher for
the item-by-item design than for the large grid in all three questions. We, however, found that
when answering an item in a grid question, respondents often refer to surrounding items when
making a judgement. We discuss the findings and limitations of our study and provide
suggestions for practical design decisions.

Key words: Web surveys; response behavior; cognitive processing; question design; eye-
tracking methodology.

1. Introduction and Background

The use of grid questions is popular in self-administered surveys, such as web surveys. In a
grid question format, respondents receive a series of substantially related items that share the
same response scale. The items are usually presented in rows, and the response entry fields
are presented in columns (Liu and Cernat 2018). An alternative approach of presenting items
sharing the same response scale is the item-by-item design, where items are presented as
stand-alone questions (Couper et al. 2013). Between those two extreme points of presenting
a series of items are design choices that break the series of target items in smaller groups; for
instance, by presenting a set of ten target items in two grids with five items (e.g., Couper et al.
2001; Grady et al. 2019). Each of these formats has benefits and drawbacks.

From a survey designers’ perspective, the grid question format is an efficient way to ask
multiple questions with the same response scale in a time- and space-saving manner
(Couper et al. 2001; Couper et al. 2013; Tourangeau et al. 2004). From a respondent’s
perspective, the survey length and, thus, completion time is perceived to be shorter, and so
is the perceived burden of answering the survey (Heerwegh 2009). Also, grouping items
into a grid allows respondents to compare their answers as the content is perceived as
belonging conceptually together (Heerwegh 2009; Tourangeau et al. 2004). The latter,
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which goes back to the principle of proximity of Gestalt psychology (Jenkins and Dillman
1995), facilitates comparative judgments and increases consistency of answers compared
to when each item is considered in isolation (Couper 2008). However, this may also have
disadvantages, such as artificially high inter-item correlations (Silber et al. 2018) due to
respondents consistently giving the same answer to each item (a form of satisficing called
straightlining or nondifferentiation; Krosnick and Alwin 1988).

Compared to an item-by-item design, in which each item is usually presented on a new
page, grid questions present a large amount of information on one page. The amount of
information and the effort required to answer the items increases with the size of a grid. An
increasing number of items in rows and more response entry fields in columns imply a
larger matrix, making navigation more difficult (Couper et al. 2013; Grady et al. 2019).
With a cognitively more demanding task, respondents may get more easily confused and
distracted, thereby increasing their actual or perceived response burden (Couper et al.
2013; Liu and Cernat 2018).

According to the theory of survey satisficing, the complexity of grid formats might
encourage respondents to minimize time and effort for answering them thoroughly (Couper
et al. 2013; Krosnick 1991). Congruent with that assumption, a large body of experimental
research has shown that grid questions can have negative effects on data quality, which has
been shown by higher rates of missing or non-substantive answers (i.e., “don’t know”;
Mavletova and Couper 2015; Romann et al. 2018; Toepoel et al. 2009), higher levels of
non-differentiated answers (i.e., straightlining; DeBell et al. 2021; RoBmann et al. 2018;
Tourangeau et al. 2004), and higher breakoff rates compared to item-by-item formats
(Couper et al. 2013; Liu and Cernat 2018; Tourangau et al. 2004). Although
nondifferentiation, item nonresponse, and similar response behaviors are generally viewed
as undesirable response effects, there is the possibility that the less differentiated responses,
and greater expressions of uncertainty (e.g., selecting “don’t know”) are closer to “truth”—
that is, that grids actually help respondents to understand that their responses to individual
items are (legitimately) close to each other, or recognize legitimate uncertainty; and that
separating questions into an item-by-item format artificially magnifies differences between
responses. While we acknowledge that this alternative interpretation is also plausible, we
follow the general view that classifies the response behaviors as undesirable.

The faster completion times of grids compared to item-by-item question formats may
also represent a form of superficial cognitive response processing and might increase
measurement error (Couper et al. 2001; Peytchev 2005, cited in Couper et al. 2013;
RoBmann et al. 2018; Tourangeau et al. 2004). Comparing response times between an
item-by-item and a grid design, Roimann et al. (2018) have shown that the response time
for the first item did not differ between the two formats. This finding leads to the question
of whether the longer response times within the item-by-item designs result from deeper
cognitive processing of the item itself or from the response task of reading the question
stem and the response scales each time in the item-by-item format.

In this study, we used eye-tracking methodology to gain more insights into the cognitive
information process and response behavior when answering grid versus item-by-item
question formats. Therefore, we employed an experiment with three questions. The
respondents were randomly assigned to one of three question formats (item-by-item, two
small grids, one large grid) while their eye movements were monitored.
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2. Research Questions and Hypotheses
We investigated the following two research questions:

1. Does altering the question format affect the depth of cognitive processing when
answering grid questions?

2. Does the differential depth of cognitive processing explain differences in response
quality between the three different question designs?

Answering survey questions requires respondents to pass through four stages of cognitive
processing (Tourangeau and Rasinski 1988; Tourangeau et al. 2000): (1) question
comprehension, (2) retrieval of relevant information, (3) use of the information to arrive at a
judgment, and (4) reporting of an answer within the response options provided. Each of
these four stages of cognitive processing can be challenging for respondents, and thus, may
contribute to the emergence of response effects. The theory of survey satisficing
complements this framework by incorporating motivational components of the respondents
(Krosnick 1991; Rofmann and Silber 2020). It states that respondents might alter their
response behavior from complete and thorough execution of the four cognitive steps (i.e.,
optimizing) to less diligent or incomplete execution (i.e., satisficing) contingent on three
factors: task difficulty, ability, and motivation. The higher the difficulty of answering a
survey question and the lower a respondent’s ability and motivation to perform the task, the
higher is the chance of respondents showing satisficing response behavior (Krosnick 1991).

Referring to this theoretical framework, we propose specific hypotheses about how the
design of grid questions can affect cognitive processing, and in consequence the survey
response. While the design of grid questions could affect all four stages of cognitive
processing, it seems likely that it mainly affects the processes of question comprehension
and reporting of an answer. By using eye-tracking data, we can differentiate between
different steps in the response process by observing response times and eye fixations for
each part of the question (see Figure 1).

2.1. Hypotheses for the Stage of Question Comprehension

Comprehension includes such processes as attending to the question and instructions and
identifying the information sought (Tourangeau et al. 2000). For grid questions, the
comprehension stage requires respondents to attend to the question stem and the item
texts. Particularly, the grid format promises efficient processing of the “question stem”
compared to an item-by-item presentation. While in the former question design,
respondents must attend to the question stem only once, they need to check whether the
question is the same for each item in the item-by-item format. Thus, the more items are
grouped on a single page of a questionnaire; the less the relative effort respondents need to
invest in processing the question stem.

Hypothesis 1

“The fewer the number of items presented on a survey page; the more time is spent on
processing the question stem on average across all target items.”

Accordingly, the time spent processing the question stem should be highest for an item-
by-item format, where the question stem is repeatedly displayed with each item, and
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Fig. 1. Illustration of the different parts of the question and Areas of Interest (AOI) for the analysis of eye-
tracking data. Above is an example of the question parts/AOIs for the grid question design of Question 2, below
for the item-by-item design.

lowest for the presentation in one large grid, where the question stem is displayed only
once.

In contrast, grouping more items on a page should not lead to more efficient processing of
item texts under the condition of optimizing response behavior, that is, if respondents are
able and motivated to thoroughly read and answer the items. However, grouping many items
on a survey page can increase the actual or perceived complexity and burden of a grid
question (Couper et al. 2013; Liu and Cernat 2018). The higher complexity of grid questions
may discourage respondents, and thus increase the chances that they alter their response
strategy to satisficing. In this regard, it seems plausible that the likelihood of superficial or
incomplete processing of item texts increases with each additional item that is grouped on a
survey page. This can be further reinforced because respondents can use the previously
answered items as sources of information and orientation which allows them to answer the
following items in a similar way without thinking thoroughly about each single one.

Hypothesis 2

“The fewer the number of items presented on a survey page; the more time is spent on
processing the item texts on average, across all target items.”
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Accordingly, the time spent processing the item texts should be highest for an item-by-
item format, and lowest in one large grid.

2.2.  Hypotheses for the Stage of Reporting an Answer

The stage of reporting an answer includes two groups of processes: mapping the answer
onto the response options and editing the response (Tourangeau et al. 2000). Regarding
grid questions, the reporting and response selection stage particularly concerns the
processing of the (numeric or verbal) response scale labels and the response entry fields
(i.e., the response options). As for the processing of the question stem in the
comprehension stage, the grid format promises efficient processing of the “response scale
labels” compared to an item-by-item presentation. In the former, respondents must attend
to response scale labels only once, whereas they need to repeatedly check whether they
have changed or not in the item-by-item format. Thus, the more items are grouped on a
single survey page using a common set of response scale labels; the relatively less effort
respondents need to invest in processing them per item; thereby increasing item-
efficiency.

Hypothesis 3

“The fewer the number of items presented on a survey page; the more time is spent on
processing the response scale labels on average, across all target items.”

Accordingly, the time spent processing the response scale labels should be highest for
an item-by-item format, and lowest for the presentation in one large grid.

For the “response entry fields”, the higher complexity that results from the larger size of
the grid most likely increases the chance that respondents experience navigational
difficulties in reporting responses. In other words, the fewer items are presented on a
survey page, the easier it should be for respondents to select the answer that applies to
them from the available response entry fields.

Hypothesis 4

“The fewer the number of items presented on a survey page; the less time is spent on
processing the response entry fields on average, across all target items.”

Also, the grouping of items in grids may encourage respondents to edit their responses
for inter-item consistency or other criteria. This would additionally increase the processing
time of the response entry fields in a grid.

However, some respondents may be discouraged by the daunting size of the grid and
alter their response behavior to satisficing. As a consequence, the likelihood of incomplete
or careless processing of the response entry fields might increase with each additional item
that is grouped on a survey page. Thus, satisficing in grids may to some extent offset the
higher processing time that results from “response editing”.

Besides fixation durations, it is also relevant to investigate survey responding that is
related to satisficing, such as nondifferentiation (Couper et al. 2013; Romann et al. 2018;
Zhang and Conrad 2014). In line with the assumption that presenting items together
increases the likelihood that they are perceived and answered in the same context,
previous research has found that respondents differentiated their answers more when
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answering item-by-item and less when the items were presented in grids (e.g., RoBmann
et al. 2018).

Hypothesis 5

“Answering items in grids, compared to item-by-item formats, leads to less differentiation
(e.g., more straightlining) in the responses, across all target items.”

To better understand the response process when grid questions are answered, we also
analyzed additional indicators of respondent behavior. First, we examined whether
respondents answered the items in grids sequentially. We defined responding as sequential,
when a respondent read and answered the first item, then read and answered the second item,
then the following item, and so on until the last item on the page. Conversely, non-sequential
responding involves skipping items or going back to previous items while reading through
the list (see Figure 3 for examples). We also observed if respondents read all or several items
on a survey page before starting to answer and whether respondents changed their response
to an item after having read other items. For these different response behaviors, we
proceeded exploratively and did not postulate hypotheses.

3. Methods

3.1. Experimental Design

In this study, we implemented a question format experiment with three questions. Each of
these questions was presented either as a single large grid question with ten items on one page,
as two small grids with five items on each of the two pages, or in an item-by-item design, in
which each of the ten items was presented on a separate page. The respondents were randomly
assigned to one of the three formats for each of the three questions (see Table A.1 in Online
Appendix A for details on respondents’ sociodemographic characteristics per question).
Further, the questions were either presented with a five-point response scale or a 11-point
response scale with labels at the end points and numbers in between. As the length of the scale
was not the focus of the present research, and as the randomization regarding the response
scale length was independent of the randomization regarding question format, we combined
the two response scales for the comparison across formats presented here (Question 1 “Trust
in Institutions”: X2 = .46;df = 2, p = .978; Question 2 “People’s rights: )(2 =.062;df =2,
p = .970; Question 3 “BFI-10": Xz =.110; df =2, p = .947; see Tables A.2 and A.3 in
Online Appendix A for an overview of the main results by response scale length).

3.2.  Survey Questions

To ensure comparability between questions, we implemented three questions with ten items
each. In surveys, grid questions with up to ten items are often used, and this number of items
can still be presented on one page of a personal computer without scrolling (see Toepoel et al.
2009). Also, ten items could easily be split up into two almost equally sized grids with five
items on each page. We selected published scales that differed in item text length. The first set
of items asked about “trust in institutions” (Question 1; GLES 2019). The items are very short
and state different institutions such as the European Commission or the Federal Constitutional
Court (see Online Appendix B for question wordings of the three sets of questions). The
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second set of items asked about “people’s rights in a democracy” (Question 2; ISSP Research
Group 2016). The items consist of rather long sentences. The third set of items is the “BFI-10”
(Question 3), a ten-item scale measuring the Big Five personality traits extraversion,
agreeableness, conscientiousness, emotional stability, and openness (Rammstedt and John
2007). The items include complete sentences, but the statements are relatively short.

3.3.  Participants

The study was conducted at GESIS — Leibniz Institute for the Social Sciences in Mannheim,
Germany, between April and May of 2017. We recruited 132 respondents from the respondent
pool maintained by the institute or by word of mouth. An equal share of women and men was
recruited, but no quotas for other demographics such as age and education were set. However,
the intention was to obtain a sample as diverse as possible. Technical difficulties prevented
recording of eye movements for one respondent, and in each of the questions the eye-tracking
data of 13 to 18 respondents were of no satisfactory quality as we observed shifts between the
text on the screen and the eye gaze data. These respondents were excluded from the analyses,
leaving 103 respondents with good quality of recordings in all three experimental questions
and 125 respondents with good recordings in at least one question. Of those 125 respondents,
51% were female; 38% were between 18 and 24 years, 27% between 25 and 34 years, 11%
between 35 and 44 years, 10% between 45 and 54 years, 8% between 55 and 64 years, and 5%
were 65 years or older; 6% had a school-leaving certificate from lower secondary education
after 9 years of education (‘“Volks-/ Hauptschulabschluss” — ISCED Level 244), 22% from
lower secondary education after ten years of education (“Mittlere Reife/Realschulab-
schluss”— ISCED Level 244), and 71 % from upper secondary education providing access to
tertiary education (“Fachhochschulreife/Allgemeine Hochschulreife” — ISCED Level 344)
or tertiary/university education (‘“Universitatsabschluss” — ISCED Level 64 or 74). More
than one third of the participants (38%) had participated in at least one web survey during the
last three months. To evaluate the effectiveness of random assignment and the sample
composition across conditions, we conducted several x’-tests for the reported
sociodemographic characteristics mentioned previously. Except for sex in Question 3, no
significant differences between sociodemographic characteristics were observed (see
online Table A.1). To ensure that this does not affect our conclusions; we included sex as
covariate in the analyses of response times, fixation durations, and response differentiation
for Question 3.

3.4. Eye-Tracking Equipment and Procedures

We used the Senso Motoric Instruments (SMI) RED250 mobile Eye Tracker to record
participants’ eye movements and “BeGaze” version 3.6.57 for data analysis. The RED250
mobile Eye Tracker was mounted on the bottom frame of a 22" TFT desktop monitor
(resolution 1280x1024). The documentation of the RED250 mobile describes its accuracy
to be within 0.4° and its tracking range of 32x21 at 60 centimeters distance. Eye
movements were recorded at a sampling rate of 250 Hz. The online questionnaire was
programmed with a font size of 16 pixels and double-spaced text with a line height of 40
and 32 pixels for the question text and response categories, respectively. The online
questionnaire did not feature a “back” button.
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Before the web survey started, respondents completed a calibration exercise (in which
they followed black circles displayed at nine different points of the screen with their eyes).
The questionnaire, which contained several experiments, took on average 30 minutes to
complete. During this time, an experimenter stayed in the room next door to observe
respondents’ eye movements on a second computer screen for reasons of quality
assurance. Participants were paid an incentive of EUR 20 for taking part in the study.

3.5. Measures and Analytical Strategies

We tested our hypotheses on the effects of question design on cognitive processing by
analyzing indicators of cognitive effort measured by response times and eye-tracking data.
For collecting response times, we used UCSP, Universal Client Side Paradata (Kaczmirek
2005). Response times were measured in milliseconds from the time a question appeared
on the screen to the time respondents clicked on the next button to move on to the next
question. For the small grid (two pages) and the item-by-item condition (ten pages),
response times from the individual survey pages were summed up. Eye-tracking data
provide information on the question answer process by recording where respondents look,
for how long, and in what order while reading question stems, item texts, and response
options (Galesic and Yan 2011; Romano Bergstrom and Schall 2014). Eye-tracking can be
used as a proxy for depth of cognitive processing (Rayner 1998). The analysis of eye
movements is based on two common assumptions (Just and Carpenter 1980; Rayner
1998). The first one, called the “immediacy assumption”, states that objects fixated by the
eyes are processed immediately (i.e., the mind follows the eye). The second one, called the
“eye-mind assumption”, states that the eye remains fixated on an object, as long as it is
being processed (i.e., the eye follows the mind). Taken together, these two assumptions
state that there is a close relationship between fixation duration and processing duration. A
longer fixation duration indicates a longer response process. A long response process can
be due to thorough consideration and recalling, but it can also indicate difficulties during
the answer process. Those difficulties might arise from unknown or difficult terms,
difficulties in arriving at an answer or selecting one of the response options (Galesic and
Yan 2011; Kamoen et al. 2017; Neuert and Lenzner 2017). To measure “cognitive effort”,
we compare fixation durations on predefined areas of interest (AOI) to be able to compare
these measures across the different question formats. Each question was conceptionally
divided in five AOIs: (1) the complete question, (2) the question stem, (3) response scale
labels, (4) item texts, and (5) response entry fields (see Figure 1). The AOIs on each
individual page in the small grid and item-by-item format were summed up to compare
fixation durations across formats. For response times and fixation durations, we excluded
those respondents from the analyses who had response times below or above the mean
plus/minus two standard deviations (see, e.g., Mayerl 2013).

To determine whether cognitive effort measured by response latencies and fixation
durations were associated with the question format, we employed OLS regression models.

To study respondents’ response behavior, we investigated how much respondents varied
their answers to the items within the experimental questions. Nondifferentiation is found
when respondents do not differentiate in their answers but give similar (or identical)
responses to all items. The level of differentiation can be investigated by the probability of
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differentiation P; (Krosnick and Alwin 1998), which indicates the variability of the
responses. Py is calculated as Py =1 — Y ", P2, where P; is the proportion of the values
rated on a given point of a response scale and » is the number of rating points. If P; = 0,
respondents answered all items by selecting the same response, while a higher P, means
that different response options were given. We also measured the coefficient of variation
(CV) as an indicator of the extremity of the responses (McCarty and Shrum 2000). CV is
computed as CV = { , where s is the standard deviation and X is the mean of the responses
over items. The CV indicates the distance between the responses given. A CV of zero
indicates straightlining response behavior, while larger values indicate that respondents
differentiated their answers to a greater extent. As a measure of perceived difficulty,
respondents were asked after each experimental question to rate how difficult answering
the question was on a fully labeled five-point scale ranging from “extremely difficult” to
“not difficult at all.” Analyses were conducted using Stata version 16.1.

To further analyze respondents’ behavior, two student assistants coded the eye gaze videos
with regard to the following response patterns: (1) sequential responding, that is, did
respondents answer grid questions in a sequential order; answering one item following the
next?; (2) how many items did respondents read before answering the first item?; (3) answer
change, that is, did respondents change their response after having read other items?
Agreement between the two raters was 95% and Cohen’s Kappa (1960) was found to be .87,
which is “almost perfect”, according to Landis and Koch’s (1977, 165) criteria. To make those
response patterns comparable between the small and large grid format, we summed the results
for the two small grids so that both numbers are based on ten items for each question. For
sequential responding, we included two measures for the small grid: answering both pages of
the small grid sequentially and answering at least one of the two pages sequentially. As the
response behavior is only comparable across grid questions, which present several items on
the same survey page, these analyses were restricted to the two grid formats.

4. Results

4.1. Overall Cognitive Effort — Response Times and Question Fixation Durations

Before considering fixation durations on specific parts of the questions, we compared
response times and fixation durations for the complete question as indicators of overall
cognitive effort by question format. Response times were measured from the time a
question appeared on the screen to the time respondents clicked on the next button to move
on to the next question. Hence, anything that respondents did in between is included in this
indicator. In contrast, fixation duration corresponds to the time a respondent spent fixating
the question which might therefore be a more accurate measure of cognitive question
processing (Just and Carpenter 1980; Staub and Rayner 2007). With regard to response
times (in seconds) for Questions 1 (“Trust in Institutions™) and 2 (“People’s rights”), there
was the general trend observable that respondents needed the least amount of time when
the items were presented in a large grid (ten items per page) followed by small grids (five-
items per page), and the most amount of time when the questions were presented item-by-
item. However, the differences were not statistically significant (see Table 1). For
Question 3 (“BFI-10”), our analysis showed that response times were significantly shorter
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Table 1. Means and standard errors of cognitive effort indicators.

Cognitive effort indicators ~ Large grid with ~ Small grid with Item-by-item Test

ten items 5 items each (10 pages)

(1 page) (2 pages)

M (SE) M (SE) M (SE)  F value p

Response times
Question 1 49.8 30.6 55.2 322 57.5 31.8 1.16 204
Question 2 94.2 49.5 101.9 51.2 107.9 57.3 1.69 .189
Question 3 58.7¢ 28.7 54.9° 28.7 711 29.6 5.79 .001
Fixation durations — Complete question
Question 1 38.3 25.8 37.8 27.6 449 27.6 2.06 132
Question 2 73.2 42.1 78.7 43.7 79.7 49.8 0.62 .539
Question 3 46.6° 26.0 41.5¢ 26.7 54.4%® 269 3.76 .013
Fixation durations — Question stem
Question 1 3.9 .62 7.5° .62 6.7" .65 9.45 .001
Question 2 8.2" .87 12.2* .88 12.5* 1.03 7.02 .001
Question 3 1.4¢ 27 1.9 32 2.8¢ 28 5.86 .001
Fixation durations — Item texts
Question 1 11.2 1.2 10.7 14 8.9 1.5 1.46 238
Question 2 35.1 24 345 2.5 374 2.6 .35 703
Question 3 18.4 1.1 15.4 1.2 18.1 1.2 1.30 279
Fixation durations — Response scale labels
Question 1 3.8° 47 4.5¢ 49 7.7%® 54 15.6 .001
Question 2 4.7 55 6.4 56 100%™ 66 19.1 .001
Question 3 5.9¢ 92 6.9¢ 1.1 12.0° 97 8.03 .001
Fixation durations — Response entry fields
Question 1 15.6 1.0 14.5 1.0 12.9 1.1 1.72 184
Question 2 17.4° .89 18.4¢ .89 13.7%° .96 7.02 .001
Question 3 19.2%¢ 1.0 15.1% 1.1 13.3% 1.0 5.56 .001

Note: Question 1 = Trust in institutions, Question 2 = People’s Rights, Question 3 = BFI-10. Reported are
estimated marginal means from linear regression models. For Question 3, we report estimated marginal means
controlling for sex. Superscripts present a significant difference (p < .05) compared to (a) large ten-item grid, (b)
small five-item grids, or (c) item-by-item presentation. To compare the response times and fixation durations
across formats, response times and fixation durations from the individual survey pages in the small grid and in the
item-by-item design were summed up.

for the two grid designs (Myuree = 38.7; Myman = 54.9) than for the item-by-item design
(Mgingie = 71.1; F = 5.79; p = .001).

Comparing fixation durations on the complete question across designs showed a similar
relationship. Fixation durations were slightly higher for the item-by-item presentation than
for the grid formats, however, the differences were not statistically significant for
Questions 1 and 2. For Question 3, we found statistically significant differences for both
the small (Mgay = 41.5) and the large grid (Mjyroe = 46.6; t = 2.06, p = .041) compared
to the item-by-item format (Mjngie = 54.4; t = 3.31, p = .001).

4.2.  Question Fixation Durations for the Stage of Question Comprehension

Regarding the stage of question comprehension, our results showed that cognitive
processing of the “question stem” was lowest for the large grid in all three experimental
questions, followed by the presentation in two small grids with five items each, and the
presentation in the item-by-item-design in Questions 2 (“People’s rights”) and 3 (“BFI-
10”), as expected in Hypothesis 1 (see Table 1). For Question 1 (“Trust in institutions”),
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fixation durations on the question stem were higher in the small grids than in the item-by-
item format (although not significantly different).

Contrary to Hypothesis 2, which stated that the depth of processing of “item texts” is
expected to decrease with the number of items presented on a survey page, we did not find
any significant differences across designs.

4.3.  Question Fixation Durations for the Stage of Reporting An Answer

Regarding the depth of processing of the “response scale labels”, we found that fixation
durations were significantly higher for the item-by-item format than for the presentation in
both the large and the small grid in all three questions. This is in line with Hypothesis 3.
However, the expected relation that depth of processing increases, the fewer items of the
question are presented on a survey page, only holds true for Question 2 (“People’s rights”:
Miarge = 4.7, Mgman = 6.4; Mginge = 10.0; F = 19.1; p = .001). For Questions 1 (“Trust
in institutions”) and 3 (“BFI-10”), there were no statistically significant differences
between the two grid designs.

Regarding the stage of reporting and response selection, we did not find that the fewer items
presented on a survey page, the less time is spent processing the “response entry fields” as
expected in Hypothesis 4. Respondents processed the response entry fields more extensively
in the large grid design than in the item-by-item-design in Questions 2 (“People’s rights”) and
3 (“BFI-10"). For the small grids, findings were mixed. In Question 1 (“Trust in institutions”),
we did not find statistically significant differences in fixation durations.

4.4. Observations of Response Behavior

We also investigated two indicators of satisficing, the probability of differentiation (P,)
and the coefficient of variation (CV). The results are shown in Table 2. Regarding the
indicator of differentiation P4, we did not find any significant differences across the three
presentation formats.

Table 2. Indicators of satisficing (means)

Indicators of satisficing Large grid Small grid Item-by-item Test

with 10 items with 5 items (10 pages)

(1 page) each
(2 pages)

M (SE) M (SE) M (SE) F value p
Py
Question 1 .55 .030 51 .031 .56 .031 0.94 0.39
Question 2 .63 .023 .61 .023 .66 .025 1.05 0.35
Question 3 74 .016 74 .016 74 .016 0.32 0.81
cv
Question 1 22 .022 22 .022 21 .022 0.04 0.95
Question 2 32 016 33 .017 34 .019 0.19 0.83
Question 3 46° .019 42 .019 40° .018 1.62 0.19

Note: Question 1 = Trust in institutions, Question 2 = People’s rights, Question 3 = BFI-10. Reported are
estimated marginal means from linear regression models. For Question 3, we report estimated marginal means
controlling for sex. Superscripts present a significant difference (p < .05) compared to (a) large 10-item grid, (b)
small 5-item grids, or (c) item-by-item presentation.
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For the indicator CV, we also did not find significant differences across the three
experimental conditions for Questions 1 (“Trust in institutions”) and 2 (“People’s rights”).
For Question 3 (“BFI-10”), however, we observed that the variation of answers across the
items was lower in the item-by-item design (Mjnge = .40) than in the large grid design
(Mjarge = .46, t = -2.07, p = .040). Hence, Hypothesis 5, that answering items in grids,
compared to item-by-item formats, leads to less differentiation in the responses cannot be
confirmed in the current study. Figure 2 illustrates two different response styles, with the
respondent on the left-hand side showing no differentiation in the responses selected
(straightlining) while the respondent on the right-hand side differentiated the responses to
a greater extent. Observing the gaze videos provided the interesting finding that
respondents may actually spend more cognitive effort than one might initially expect when
showing a straightlining response behavior.

Finally, we analyzed how respondents answered the items presented in the two grid formats
to gain more knowledge about response patterns when answering grid question formats. For
the small grid, we report the number of respondents who answered the ten items displayed on
two pages sequentially, and the number of respondents who answered at least one page with
five items in a sequential order (see Table 3). Comparing sequential responding for all ten
items, we did not observe differences between the large and the small grid for Questions 1
(“Trust in institutions”: 37% large vs. 29% small) and Question 2 (“People’s rights”: 42%
large vs. 40% small). However, for Question 3 (“BFI-10”), we found that half of the
respondents in the large grid (51%) answered the items sequentially, while only 12% in the
small grid condition did show this response behavior. When considering those respondents in
the small grid condition who answered at least one page with five items in a sequential order,
we observed that this amount is quite large, between 57% and 68%, but no statistically
significant differences compared to the large grids were found.

Figure 3 illustrates both a sequential as well as a non-sequential response style. As
shown by the eye movement patterns, the respondents on the left-hand side read and
answered the items sequentially one by one; the respondents on the right-hand side first
read all item texts and then moved to the response options and answered all items one after
another or jumped back and forth on the question parts.

We also investigated whether respondents perceived the items in a grid as belonging
conceptually together. The response behavior that respondents read all items before beginning
to answer them only occurred in Question 1 (“Trust in institutions”: 16% large vs. 41% small).
In Questions 2 and 3, respondents did not read through all items before selecting a response for
the first item. Comparing how many items respondents read on average before they started
answering, revealed that respondents read on average between one and three items in the large
grid and between two and four items in the small grid condition (Question 1 “Trust in
institutions”: 3.2 large vs. 4.4 small; Question 2 “People’s rights”: 1.2 large vs. 2.4 small;
Question 3 “BFI-10: 1.1 large vs. small 2.5 small). It must be noted that the average number
of items read on the two separate pages of the small grids were summed up, resulting in a
systematic overestimation compared to the large grid conditions.

Interestingly, the overall number of items read before beginning to answer is higher in
the question asking for “trust in institutions” (Question 1) than in the other two questions.
Notably, the question asking for “trust in institutions” had the shortest item text regarding
the number of characters but was perceived as most difficult by respondents (M = 2.11)
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Table 3. Response behavior for grid formats, by question and grid size.

Question 1 — Trust in Institutions 2 — People’s rights 3 — BFI-10
Large grid Small grid Large grid Small grid Large grid Small grid
with with 5 items with with 5 items with with 5 items
10 items each 10 items each 10 items each

(1 page) (2 pages) (1 page) (2 pages) (1 page) (2 pages)

% Sequential responding
— Yes, all 37.2 (16) 28.6 (12) 42.2 (19) 39.5 (17) 51.2 (22) 12.2 (5)

10 items x>=.718; df=1 x?=.066; df=1 X*=14.61; df=1**
~ Yes, at 37.2 (16) 57.1 (24) 42.2 (19) 60.5 (26) 51.2 (22) 68.3 (28)
least on x*=3.39; df=1 X>=2.93; df=1 X>=2.56; df=1
1 page with
5 items
Mean number of items read before beginning to answer
3.2 (43) 4.4 (42) 1.2 (45) 2.4 (43) 1.1 (43) 2.5 (41)
F(1,83)=.412 F(1,86)=6.011%* F(1,82)=27.083%*
% All items read before beginning to answer
~ No 83.7 (36) 59.5 (25) 100 (45) 97.7 (42) 100. (43) 97.6 (40)
- Yes 16.3 (7) 40.5 (17) 0 (0) 2.3 (1) 0 (0) 24 (1)
X*=6.139%; df=1 x*=1.059; df=1 X*=1.061; df=1
% Answer change
~ No 72.1 31) 78.6 (33) 71.1 (32) 81.4 (35) 81.4 (35) 87.8 (36)
— Yes 27.9 (12) 214 (9) 28.9 (13) 18.6 (8) 18.6 (8) 12.2 (5)
x’=.479; df=1 x*=1.280; df=1 x*=.659; df=1
n 43 42 45 43 43 41

Note: * p < .05; ** p < .01; Parenthetical entries are cell sizes. For sequential responding, we report both the
comparison of the large grid with (1) reading all ten items of the small grids (summed up) and with (2) answering
at least one page of two sequentially.

compared to Question 2 (M = 1.54, p < .001), and Question 3 (M = 0.81, p < .001). This
finding can be interpreted as an indication that respondents used the information from the
item texts of several other items to answer each item of the grid question.

Finally, we observed whether respondents tended to change their answers given to one
item after having read other items in the grid. Across all three experimental questions
between 16% and 25% of respondents changed at least one answer after having read the
following items in the related grid (Question 1 “Trust in institutions”: small 21% vs. 28%
large; Question 2 “People’s rights”: small 19% vs. 29% large; Question 3 “BFI-10”: small
12% vs. 19% large). Together with the findings on sequential reading and reading the item
text of several other items before starting to answer, this might indicate that respondents
used the additional information provided by the remaining items in a grid to give a
response by applying the “near means related” heuristic (Tourangeau et al. 2004).

5. Discussion

5.1.  Summary and Discussion of Findings

This study investigated the depth of cognitive processing when answering different grid
question or item-by-item formats. We implemented three questions with ten items each in an
experiment and tracked respondents’ eye movements while they answered a web survey in
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which the presentation was varied. For each question, we randomly assigned respondents to
three question formats (item-by-item, small grid, or large grid). The eye-tracking data
studied showed that the previous finding of longer response times (e.g., Callegaro et al.
2009; Couper et al. 2001; Romann et al. 2018; Toepoel et al. 2009) in the item-by-item
format could be attributed to more extensive processing of the question stem and the
response scale labels compared to the grid formats (Hypothesis 1 and 3). In contrast, we did
not find differences with respect to processing of the item texts (Hypothesis 2). This
indicates that respondents do not spend more time on the item texts in either format but need
time to adjust to the new question context when the items are presented in an item-by-item
format. Specifically, they have to read the same question stem and response scale labels
multiple times, since they are presented to them with each item. Those findings suggest that
the item-by-item format increases response burden compared to the grid formats.

With regard to the response process stages of reporting and response selection
(Tourangeau et al. 2000), we observed that fixation durations on the area of the response
entry fields were significantly longer in the large grid than in the item-by-item presentation
in two out of three questions (Hypothesis 4). Since those two questions had longer item
texts, one possible explanation might be that navigating within a grid is more difficult for
long items than when the items are presented item-by-item on separate pages. Hence,
selecting and reporting a response seems less burdensome for respondents in the item-by-
item design.

By using eye-tracking methodology, we were able to observe the behavior of
respondents more directly while they were answering the grid questions. These analyses
suggest that respondents apply the “near means related” heuristic (Tourangeau et al. 2004;
Silber et al. 2018), which is grounded in the proximity principle from Gestalt psychology
(Koffka 1935; Wertheimer 1923). According to the principle of proximity, placing objects
close to each other will let them be perceived as a group, and hence as not only physically
but also conceptually related (Dillman et al. 2014). Consequently, items presented in the
grid format were likely perceived, processed, and answered in the same context.
Presenting multiple items together on a page can facilitate respondents’ cognitive
processing. If the respondent is not familiar with the topic or when the meaning of the
question is not clear, respondents might try to capture the content using the surrounding
items to improve their understanding of the question (Krosnick and Presser 2010).

Consistent with the “near means related” heuristic, many respondents in our survey did
not respond to the grid questions sequentially but instead read multiple items before
answering the first item. They also changed their answers later after reading other
questions, suggesting that they reconsidered their answers after answering other items.
Such response behavior was more pronounced for items presented in one large grid than
for items presented in two small grids but was also visible there. For related items,
grouping them may improve measurement (Krosnick and Presser 2010), for example, by
increasing the consistency of responses among items and inter-item correlations (Couper
2008; Heerwegh 2009; Toepoel et al. 2009). In contrast, the grouping may also have
negative effects on measurement. Although we did not observe differences regarding non-
differentiation in our study (Hypothesis 5), previous research has consistently shown that a
separate presentation like in an item-by-item design reduced undesired response effects,
such as non-differentiation or item nonresponse (e.g., RoBmann et al. 2018; Toepoel et al.
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2009). Also, higher inter-item correlations may be due to measurement error (Peytchev
2005, cited in Couper et al. 2013).

Across the three questions, we also observed some differences regarding response
behavior, which might be related to the content of those questions. While the item texts of
Question 1 only featured the names of institutions, the item texts of Questions 2 and 3
consisted of full sentences. The shorter item texts of Question 1 may have led more
respondents to read multiple or even all item texts before answering the first item. Since
our study did not experimentally vary the item length, further research is needed to
understand the relationship between response behavior and item length in grid formats.

With respect to response burden, we found that both the item-by-item format and the grid
format entail different burdensome elements. The item-by-item format requires respondents to
adjust to a new context for each item. Specifically, presenting the question stem and response
scale labels on each page makes respondents undergo repetitive reading tasks, which lowers
response efficiency. In contrast, the grid format increases the complexity because respondents
are confronted with multiple items on a single survey page. This may increase response burden
due to navigational difficulties in the process of reporting the responses. With respect to
response behavior, this study showed that respondents do not answer the items necessarily
from top to bottom and in the presented order. Instead, some respondents read several items
before beginning to answer the first item. Some respondents also changed their responses after
they had read the following items. The extent of this behavior depended on the item texts of the
questions. Finally, we observed that some respondents selected the identical responses for all
items in a grid (i.e., straightlining) but still read the item texts attentively. With respect to strong
satisficing, we expect that respondents skip the question comprehension stage altogether and
provide responses haphazardly. Yet, the observation in the current study also fosters the notion
of weaker forms of satisficing, in which respondents attend to the question stem and item text,
but then decide to simplify the perceivably difficult task of reporting accurate and meaningful
answers, for instance, by resorting to the “near means related” heuristic (Tourangeau et al.
2004; Silber et al. 2018). Hence, it might be worthwhile to investigate this and similar response
behaviors in more depth with respect to how respondents arrive at selecting the same answer to
all questions of an item sequence. Due to the low number of straightlining respondents in the
lab setting, this study did not allow us to investigate this pattern further.

5.2.  Limitations and Avenues for Future Research

Our study has several limitations. The most important is external validity since we
designed our investigation as a lab study. Filling-out a questionnaire in a lab situation, in
which the eye movements of respondents are recorded, may not perfectly reflect the
behavior of respondents in a common survey interview environment. Also, the participants
might have been rather engaged as they were willing to participate in a lab experiment and
received an incentive of EUR 20 for their participation. Hence, the differences in cognitive
processing might be less pronounced than in studies conducted in common survey settings.
For instance, we did not find differences with respect to nondifferentiation, even though
many previous studies have shown such differences (e.g., Mavletova et al. 2018; Romann
et al. 2018; Tourangeau et al. 2004). Likewise, fixation durations may have been
overestimated, and the number of respondents engaging in response behaviors such as
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non-sequential responding or answer changes underestimated. Yet, those or similar
response behaviors can be expected to occur outside the lab as well, since previous
research found answer patterns that were likely due to answering items in the same context
when they were presented in a grid (e.g., Couper et al. 2001; Toepoel et al. 2009;
Tourangeau et al. 2004). Second, also attributable to being a lab study, is the
comparatively smaller sample size than, for instance, in many online experiments.
However, recruiting and testing more participants in an eye-tracking study would be
laborious and expensive. A third limitation that should be addressed by additional research
is that the scales we used were all endpoint-labeled with numbers in between. How the
processing of the scales differs across grid formats when using fully labeled scales would
be worthwhile examining in a follow-up study. Also, investigating the generalizability of
our findings with a different number of items, such as eight or six items for the large grid
and four or three for the small grid, is an avenue for future research. Fourth, we decided to
place the two grids and every single item on separate pages in a so-called paging design.
Future studies could explore whether similar results are obtained if they are presented on
the same page in a scrolling design (see, e.g., Liu and Cernat 2018). A possible outcome of
using the scrolling design could be that the items in the single item or the smaller grid
formats might be more often answered in the same context due to the visual presentation
on the same page. Finally, as the questions in our study were answered on a desktop PC
screen only due to the eye-tracking system used, this study does not address the issue of
responding on mobile devices, which seems to be another worthy avenue for future
research.

5.3.  Increasing Relevance of Mobile Devices in Web Surveys

Given the increasing number of respondents using smartphones or other mobile devices in
answering web surveys (Gummer et al. 2019), design decisions on using grid versus item-
by-item presentation have become increasingly important. This is especially true in the
context of decisions regarding whether to use layouts that adapt to the device used by
respondents (adaptive or responsive layouts) or to optimize layouts for use on a specific
device (e.g., mobile first layouts). When grids are presented at full size on the small(er)
screens of smartphones, this may require horizontal scrolling and zooming. Previous
research has found that answering grids on smartphones compared to grids on personal
computers increases breakoff rates and stimulates undesired response behaviors like
straightlining (see Antoun et al. 2018 for a systematic review). In mobile-first unified
designs and responsive designs, survey software often automatically adapts grids to screen
size by converting them into a series of single items. Thus, some respondents will see the
set of items as grids if they use a personal desktop or laptop computer, while other
respondents will see them in an item-by-item format. This might result in systematic mode
differences and measurement error. The same might apply to mixed-mode surveys, for
example, paper versus web questionnaires (De Leeuw et al. 2018; Dillman et al. 2014).
Respondents in our study answered grids solely on a desktop PC. Thus, we suggest that
future studies could use eye-tracking methodology to investigate how adaptive (or
responsive) layouts impact cognitive processing and response behavior in web surveys
with multiple devices, and in particular, the suitability of grids on mobile devices.
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5.4. Recommendations

Our findings have practical implications for researchers deciding between grids or item-
by-item designs. In our study, both designs appear to come with format-specific
limitations, which directly affect response burden. To ensure that the difference in
question presentation format between respondents does not lead to potential measurement
error, especially if smartphone participation in web surveys continues to rise, we
recommend using the smallest screen as the basis of the format decision, which is in favor
of the item-by-item design (see also Antoun et al. 2018; Liu and Cernat 2018; Mavletova
et al. 2018). Another argument for the item-by-item design is that items in grid questions
do not meet web content accessibility guidelines (WCAG; W3C 2018), which suggests
that each question should be entirely understandable on its own. Yet, if a consistent use of
item-by-item presentation is not possible, for instance due to restrictions in the available
questionnaire length, we would recommend to break up larger grids into (as in our case
two) smaller grids (see also Dillman et al. 2014) as they did not show substantial
disadvantages compared to a large grid question, and they seem to be easier to navigate
(this is in line with Grady et al. (2019) who recommend a small to medium grid size).
Though, for some surveys, grid formats might be the best alternative (e.g., brand image
research; Brosnan et al. 2021). This decision may depend on factors such as the question
type, the complexity of the information, and the question content. For example, grid
questions may help respondents quickly understand their response task for multiple items
at once and thereby increase response efficiency.

6. Conclusion

This study showed that it takes respondents longer to answer a question in the item-by-
item format than in the grid format because the former shows the question stem and the
response scale repetitively, and respondents need to process both multiple times. The
differences in the visual presentation and the shorter response times of grid questions
did not result in more satisficing response behavior than in the item-by-item format,
which might have been due to the lab setting in which participants are likely to be quite
engaged. Finally, by using eye tracking, we were able to observe specific response
styles (i.e., reading a few items before answering a grid and answer changes) when a
question was presented in the grid format. An area for future research would be to
investigate whether items presented in a grid format are more likely to be processed and
answered in one context than when presented in an item-by-item format within a
scrolling design, and whether these differences in cognitive processing and responding
have a substantial impact on substantive analyses with the items is an area for future
research.
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A Statistical Comparison of Call Volume Uniformity
Due to Mailing Strategy

Andrew M. Raim', Elizabeth Nichols', and Thomas Mathew"

For operations such as a decennial census, the U.S. Census Bureau sends mail to potential
respondents inviting a self-response. It is suspected that the mailing strategy affects the
distribution of call volumes to the U.S. Census Bureau’s telephone helplines. For staffing
purposes, more uniform call volumes throughout the week are desirable. In this work, we
formulate tests and confidence intervals to compare uniformity of call volumes resulting from
competing mailing strategies. Regarding the data as multinomial observations, we compare
pairs of call volume observations to determine whether one mailing strategy has multinomial
cell probabilities closer to the uniform probability vector compared to another strategy. A
motivating illustration is provided by call volume data recorded in three studies which were
carried out in advance of the 2020 Decennial Census.

Key words: Entropy; multinomial distribution; self-response; uniform probability vector.

1. Introduction

1.1.  Background

Beginning with the 1990 Census, a telephone questionnaire assistance operation has
accompanied each decennial census. These operations included helpline agents
representing the U.S. Census Bureau who fielded support questions and assisted the
public in completing paper forms. An automated interactive voice response system was
added after the 1990 Census to augment live agents. Since the 2000 Census, agents were
additionally able to conduct interviews and collect census data by phone, although this has
not been marketed as a response option. For the 2020 Census, the U.S. Census Bureau
mailed letters and postcards to residential addresses in the country to request participation
in the census, and encouraged responses on a large scale through the internet (U.S. Census
Bureau 2017). Telephone helplines were highlighted in mailings, both as a means to assist
with questions about the census and to serve as a mode of response in itself. From the
perspective of the U.S. Census Bureau, an ideal distribution of helpline calls would be
where a uniform volume of calls is received throughout the week for the duration of the
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operation. More uniform call volumes would provide a more constant workload for
helpline staff over the course of the operation. Furthermore, a reduction of large peaks in
volume may reduce the need for increased staff.

The schedule of mailings influences when calls tend to occur and is an aspect of census
design which U.S. Census Bureau can control. Chesnut (2003) and Zajac (2012) discuss
call volumes received during the 2000 and 2010 Decennial Census, respectively, and note
how they were affected by the mailing schedule. Helplines received 7.9 million calls in the
1990 Census, six million calls in the 2000 Census, and 4.5 million calls in the 2010
Census. Over 13 million calls were received by the system used in 2020. The interactive
voice response system deflected most of them, but nearly five million incoming calls were
handled by customer service representatives. Although volumes of calls have changed
over the decades, patterns of calls to the helpline have not changed drastically (Nichols
et al. 2019). Higher call volumes occur on the expected delivery date of mailed census
notification letters and postcards. The first peaks occur after the initial mailout and second
mailout, and another peak occurs the week of Census Day. There is also a trend in which
Mondays and Tuesdays are the highest call volume days, with a gradual decline in call
volume throughout the week and a large dropoff over the weekend. This pattern is more
exaggerated when mail arrives on a Monday, as was the case in the 2000 Census (Chesnut
2003). The volume of calls diminishes after both Census Day and the arrival of all mailed
notifications have occurred. Expecting similar patterns with increased volume for the 2020
Census, the U.S. Census Bureau adopted staggered mailings of census notifications to
spread delivery to multiple days of the week and multiple weeks of the month, anticipating
that daily calls to the helpline would be more uniform and thus easier to staff efficiently
(Nichols et al. 2019). Note that other aspects of a mailing schedule—such as potential
impact to response rates — are important to the U.S. Census Bureau as well; however, the
remainder of this article focuses on call uniformity.

The U.S. Census Bureau conducts operations throughout the decade to prepare for the
decennial census. Several studies leading up to the 2020 Census featured mailings with an
invitation to respond via internet where data on subsequent calls to helplines were
recorded. These data provide an opportunity to compare variations between mailing
strategies and the uniformity of the resulting call volumes. Assuming that the data are
realizations from a multinomial distribution, in this article we compare pairs of call
volume observations and develop a methodology to assess whether one mailing strategy
provides multinomial cell probabilities closer to the uniform probability vector compared
to another mailing strategy.

1.2. On the Kullback-Leibler Divergence

To our knowledge, inference comparing the closeness of two discrete distributions to a
discrete uniform distribution is not standard. Many conventional tests are primarily
designed to detect departure from equality of two distributions. However, the equality of
two distributions is not the primary interest in our application; our problem is that of
comparing two sets of multinomial cell probabilities in terms of their relative closeness to
the uniform probability vector, and it seems appropriate to consider statistics used for
assessing goodness of fit. While several empirical distribution based statistics are available
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for this (for example, the Kolmogorov-Smirnov statistic; see Li et al. 2005), a statistic
based on the Kullback-Leiber divergence is an option that has been investigated in the
literature. As is well known, the K-L divergence measure is a directed divergence measure
that is not symmetric with respect to the two distributions (see Li et al. 2005; Cover and
Thomas 2006). This is appropriate for our purpose since our focus is on a measure of
closeness directed towards the uniformity of multinomial cell probabilities.

In a book on information theory, Cover and Thomas (2006) discuss the K-L distance,
entropy, and related concepts, and discuss fundamental applications in information theory.
Dorfinger et al. (2011) use entropy as a measure of uniformity to classify in real time
whether traffic in computer networks is encrypted or not. Their approach makes a decision
based on the difference between the estimated entropy of an observed payload and that of a
uniformly distributed random payload of the same length. Liu and Wang (2004) and
Cohen et al. (2006) consider an increasing convex ordering among discrete distributions;
when this ordering holds, one particular consequence is that one of the distributions has a
larger entropy than the other and is therefore closer to uniform. K-L divergence and
entropy have found use in many areas of the statistics literature, including: to justify
information criteria in assessing model fits (Konishi and Kitagawa 2008), to obtain
variational approximations to complicated distributions such as the posterior in Bayesian
analysis (Ormerod and Wand 2010; Blei et al. 2017), and as a basis for statistical inference
(Pardo 2006; Girardin and Lequesne 2019). Paninski (2008) proposed a method to test
whether a single multinomial distribution departs from discrete uniform; this work is
based on a sparse setting with many categories and relatively few observations.

From the perspective of testing goodness-of-fit, Several authors have investigated the
K-L divergence measure and its properties. The article by Girardin and Lequesne (2019)
gives a review of the literature on entropy-based goodness-of-fit tests. A test that is
asymptotically distribution-free is investigated in Song (2002). Regarding the K-L
divergence measure based test, Song (2002) notes that “With its good power properties,
the method provides an extremely simple and potentially much better alternative to the
classical empirical distribution function (EDF)-based test procedures”. A Monte Carlo
simulation study comparing several goodness of fit tests is reported in Li et al. (2005).
Along with a test based on K-L divergence, the tests considered by these authors include
those based on the Kolmogorov-Smirnov, Cramer-von Mises and Anderson-Darling
statistics. The authors note that ... the tests based on the directed divergence measure give
a good approximation to the given significance levels and are more powerful than other
tests against the given alternative distributions”. In an earlier article comparing models
that are relevant in economics, Vuong (1989) used the K-L divergence criterion to
measure the closeness of a model to the true model. The author has developed likelihood-
ratio based statistics for testing the null hypothesis that two competing models are equally
close to the true model; the alternative hypothesis being that one model is closer. Our
problem is similar to what Vuong (1989) has investigated. We believe that these articles
provide a strong motivation for using the K-L divergence measure to address the problem
we have investigated.

The rest of the article proceeds as follows. Section 2 introduces the call volume data and
provides some exploratory analysis. Section 3 discusses test and confidence interval procedures
based on the K-L divergence criterion in order to compare the closeness of two discrete
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distributions to uniformity. Section 4 gives results of the data analysis. Finally, Section 5
concludes the article. Additional technical details of the statistical procedures are given in the
appendices. Simulation studies to validate the procedures are provided as a online supplement.

2. Call Volume Data

A standard mailing strategy would be to send mail to all intended recipients on a common
schedule. Alternatively, consider a staggered strategy where respondents are randomly
partitioned into several groups which are sent mailings on different schedules. It is thought
that compared to an unstaggered strategy, a staggered strategy leads to a more uniform
distribution of calls, in the sense that the probability of a mail recipient calling the helpline
on any day of the week is closer to being uniform (i.e., equal to 1/7). To explore this
theory, we make use of data sets from three studies in which up to four mailings were sent
to a target population and subsequent calls to census helplines were recorded. Each of
these operations is referred to as a National Census Bureau Survey (NCBS) in mailing
materials. The materials in these studies mimicked typical U.S. Census Bureau mailings
for production surveys at that time. The first and fourth mailings included a one page letter
with the help phone line and the survey URL. These mailings also included a thicker stock
card with an authentication code for the web survey and the mailing address which showed
through the envelope window. The second and third mailings were postcards which also
included the phone line, URL, and authentication codes. The 2016 September NCBS
(Eggleston and Coombs 2017) and 2016 June NCBS (Coombs 2017) are two studies where
an unstaggered mailing strategy was utilized. A staggered mailing schedule was used in
the 2017 March NCBS (Nichols et al. 2019); mail recipients were randomly assigned into
either a Monday Mailout group, to whom three out of four mailings were initiated on
Mondays, or a Thursday Mailout, where three out of four mailings were initiated on
Thursdays.Table 1 displays the schedules for each mailing in the three studies. In all three
operations, no live agents were present to answer the helpline and callers instead received
a prerecorded message. Callers’ identities were not recorded so that the data do not
distinguish whether multiple calls were made by the same caller.

For each study, we designate day 1 as the day of the first mailing. For the 2017 March
NCBS, where there are two mailing schedules, day 1 is the day of the very first mailing,
Monday May 6. We then designate week 1 as days 1—7, week 2 as days 8—14, and so forth.
We consider weeks 1-5 in each study, and disregard calls which occurred in week 6 or
later because call activity becomes sparse. For each pair of studies, we compare the
uniformity for week j of the first study to week j of the second study, forj =1,. . .,5.Itis
possible to consider other methods of designating weeks, such as counting each Sunday as
the start of a new week; however, our main interest is in call behavior relative to the
mailing schedule. We also considered dropping weekends or consolidating Saturday and
Sunday into a single “weekend” category, but decided to keep weekends intact. Changing
designations of weeks could substantially change results, and such a choice should ideally
not be based on the observed data. Table 2 reports the weekly call counts for each study. It
is also possible to compare different weeks from pairs of studies, but this yields a large
number of possible comparisons. According to our definition of weeks, there is very little
opportunity to receive calls in week 1 of the 2017 March NCBS for the Thursday Mailout



Raim et al.: Call Volume Uniformity Due to Mailing Strategy 107

Table 1. The schedule of mailings for each study. The 2017 March NCBS (a) was targeted to 8,000 recipients.
Of these, half were assigned to the Monday mailout group, and half were assigned to the Thursday mailout group.
The 2016 September NCBS (b) was targeted to 9,000 recipients. The 2016 June NCBS (c) was targeted to 8,000
recipients.

(a) 2017 March NCBS.

Monday Mailout Group

Thursday Mailout Group

Mailing Date Day of Week Date Day of Week
1 March 6, 2017 Monday March 9, 2017 Thursday
2 March 9, 2017 Thursday March 13, 2017 Monday
3 March 20, 2017 Monday March 23, 2017 Thursday
4 March 27, 2017 Monday March 30, 2017 Thursday
(b) 2016 September NCBS.
Mailing Date Day of Week
1 August 25, 2016 Thursday
2 September 1, 2016 Thursday
3 September 8, 2016 ~ Thursday
4 September 15, 2016  Thursday
(c) 2016 June NCBS.
Mailing Date Day of Week
1 June 13, 2016 Monday
2 June 15, 2016 Wednesday
3 June 24, 2016  Friday
4 July 5, 2016 Tuesday
Table 2. Call counts by designated week of study.
2017 March
Week 2016 June 2016 Sept Mon  Thu  Total 7
1 353 490 127 7 134 0.9478
2 747 689 226 256 482 0.4414
3 757 970 151 83 234 0.6453
4 383 528 177 147 324 0.5463
5 273 129 48 145 193 0.2487
Total 2513 2806 729 638 1367

Note: The quantity 7 in the last column, defined in the next section, is the ratio of the
entries under the Mon column to those in the Total column.

group (seven calls). Therefore, if increased uniformity is observed in week 1 for the 2017
March NCBS, it is likely due to some factor other than the staggered mailing schedule.
To compare uniformity of call volumes in the three studies, we first examine plots of call
frequencies. Figure 1 presents daily call volumes for the three studies. Mailing dates are marked
in each plot. Receipt times of the mailings were not known precisely; however, spikes in call
volumes can be observed about three days after each mailing, or on the following workday if the
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third day happened to fall on a weekend. Even with a staggered mailout, Figure 1a exhibits
spikes on Mondays for both mailing schedules, as well as on the expected delivery date of
Thursday for the Monday Mailout group. Because the expected delivery day is Monday for the
Thursday Mailout group, call volumes primarily spike on Mondays and decrease throughout the
rest of the week. For the 2016 June NCBS, spikes can again be seen either on Mondays or three
days after a mailing if that day fell on a weekday. A similar pattern can be seen in the 2016
September NCBS; note that September 5, 2016 was a Labor Day holiday so that the expected
spike in call volume shifted from Monday to the next day (September 6). Figure 2 presents call
frequencies summed by day of week for each study. It appears that the distribution for the 2017
March NCBS (Monday and Thursday mailing groups combined) is flatter than either the
distributions for the 2016 September NCBS or 2016 June NCBS. Figure 2d exhibits a large
spike on Monday, and therefore appears to be the furthest from being uniform.

Section 3 describes a framework to carry out more formal statistical analyses. We then
return to analysis of the data in Section 4 and report the results. It should be emphasized
that the three data sets were collected in three separate NCBS studies, and not as the result
of a controlled experiment. Therefore, significant differences in uniformity might be
suspected to be caused by factors other than staggering which were not controlled. Such
factors include timing of the mailings and timing of the study within the years 2016-2017.
Although conclusions which can be drawn from the data are limited, the data provide a
concrete example that illustrates the methodology.

3. Methodology

Suppose p = (py,. . ., px) and ¢ = (qy,. . ., gx) are probability distributions on categories
labeled 1,. . ., K. In our application, categories 1,. . ., K represent the K = seven days of
the week: Sun, Mon,. . ., Sat, and p and ¢ are probabilities of a mail recipient calling the

helpline on those days, given that the call will occur during that week. In general, we can
consider p and g to be probability vectors on any K categories. Let D(p,q) =
Zszl prlog (pk / qk) denote the K-L divergence between distributions with probabilities p
and ¢q. Let e(p) = —Z,’;l Pi log pi denote the entropy of a distribution with probabilities
p. Write e = (I/K. . ., 1/K) and let e, be a point mass on the kth category; that is, a vector
with a 1 in the kth position and zeros in the remaining K— 1 positions.

As noted in the introduction, the methodology developed in this section is based on the
K-L divergence measure. We will say that ¢ is “more uniform” than p if ¢ is closer to e
than p in terms of K-L divergence; in other words, if

D(p,e) > D(q,e)

K K K K
& | pilogp =Y pilog(1/K)| > [quloqu —> aqilog(1/K)
k=1 k=1 k=1 k=1

K K
&> pelogp > qilogg
k=1 k=1

< e(p) < e(g). (1)
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It is well known that entropy is maximum at e,
e(p) = e(e) = logKk,
over any p = (py,. . ., Pg), and minimized by the point masses,
e(p) = e(e;) =0, forany k=1,.. . K.

Suppose p and g are parameterized by unknown 0 to be discussed later in this section. Let
g(0) = e(q) — e(p) represent the difference in entropy. Motivated Equation (1), we will
consider testing hypotheses of the form

Hy:g(0)=0vs. H : g(0) # 0, 2)
Hy:g(0)=0vs. H :g(0) >0, 3)
Hy:g(0)=0vs. H :g(6) <O0. 4)

If H, is rejected in Equation (3), for example, we conclude that ¢ has a higher entropy, or
equivalently that ¢ is closer to the uniform probability vector. Note that these hypotheses
are invariant to the order of elements in both p and ¢; this is desirable for call volume
analysis because we are primarily interested in comparing flatness of distributions, and not
whether volumes have simply shifted to different days of the week. In addition to
hypothesis testing, we consider point estimates and confidence intervals for the quantity
g(0). We provide additional information on the statistical properties in Appendix
(Section 6).
We make note of several points before proceeding:

(A) As a guide to interpret the size of the effect g(), recall that 0 = &(p) = log K for
any p, so that—log K = g(0) = log K.

(B) Let &,(-) denote the entropy function where logarithms are taken under base a.
Here, e,(q)— e.(p) = [log a ]71g(0), so that the change of base serves only to scale
our quantity of interest by a constant. Therefore, we will consider natural
logarithms for the remainder of the article.

(C) Itis possible to compare the entropies of p and g with different numbers of support
points. If p = (p1,. . .,pk,), ¢ = (q1,. - -, qk,), and e® = (1/K,. . ., 1/K), we
obtain the analog to Equation (1) that D(p, %) > D(q,2%?) < &(p) — logk; <
e(g) — log K;. For example, multinomial outcomes from a month with K| = 31
days may be compared to a month with K, = 28 days.

(D) Asnoted in the introduction, and as is well known, the K-L divergence measure is a
directed divergence measure that is not symmetric with respect to the two
distributions. This is appropriate for our purpose since our focus is on a measure of
closeness directed towards uniformity of the probability vectors.

Let X ~ Multg(m, p) denote that random variable X has a multinomial distribution
— _ m! X1 Xg K K _
P(X—)c)—)mp1 pE, xed{0,1,. . mb, ;xk—m.
Consider the comparison of two studies where a total of / mailing schedules were
attempted among the two. For the ith mailing schedule, let J; denote the total number of
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weeks of the study. In our data, all J; are equal and represented by a common J. Define

X;j = (Xjj1,. - ., Xjjg) as the call counts observed on (Sun, Mon,. . ., Sat) on the jth week
for the ith mailing schedule, fori=1,.. .,/7andj=1,. . .,J. We will assume that
ind

X; = Multk (my, py), (5)
where p;; = (pjj1,. . . Pijx) is the day-of-week distribution and m;; = Z,’f:lXijk is the total
call count on the jth week for the ith mailing schedule. With no further assumptions about
probabilities p;, the unknown parameter is = (py,, . . .,piys - - -, Pps - - -,Pjy) Where
Py = (pijz, e p,j,(). It is possible to extend the model to support regression; see

Appendix (Subsection 6.2). Note that model (5) regards the totals m;; as fixed, but regards
the day of week of each call as an independent multinomial (random) trial. We will
specifically consider two scenarios:

1. Two studies with / = 2 and one mailing schedule used in each study.

2. Two studies with I = 3; one mailing schedule was used in the first study and two
were used in the second. Here we assume that i = 1 corresponds to the first and
i € {2,3} corresponds to the second.

All studies under consideration consist of J = five weeks of data, and we will compare
them on a week-by-week basis. Under Scenario 1, we are interested in

gj(o) =&(py) — ey, j=1,...J.

We will write g(0) when referring to the entropy difference in a general sense, and g;(6)
when a particular week is emphasized. For Scenario 2, letg; = (gj1, . . ., gjx) be the overall
day-of-week distribution for calls from the jth week of the second study. To combine data
from the two mailing schedules, define random variables A and B as follows. For a given
call, let A € {1,. . .,K} indicate the day-of-week in which the call occurs and let B €
{2,3} indicate the mailing schedule to which the caller was assigned. Suppose P(B =
2) = mjand P(B = 3) = 1 — 71;. The overall probability of receiving a call on day of week
ke {1,... K} during week j is

gix =PA=k)
=PA=k|B=2)P(B=2)+ P(A=k|B=3)PB=23)
= mipoix + (1 — 7)p3jr.
We may then write g¢; = mp,; + (1 — 7j)p3;, and our quantities of interest are
(0) = &(gj) — e@yj), j=1,....J.

The ; are unknown and therefore will be replaced by estimates @; = ny; / (myj + m3;).
Our analysis will be carried out conditionally on the m; for the sake of tractability;
however, modeling the m; as observed quantities would likely express additional
variability in the results and may be considered in future work.

Appendix (Subsection 6.1) describes a statistic Z based on an estimate g(é) of g(0).
Denoting «a as the desired significance level for a test and z,, as the 1 — « quantile of the
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standard normal distribution, we obtain familiar tests for g(0): reject Hy in hypothesis (2) if
| Z| > Za/2, TjECt Hy in hypothesis (3) if Z> z,, or reject Hy in hypothesis (4) if Z < z,.
We also obtain familiar confidence limits for g(#) with level 1 — « : the two-sided
confidence interval g(é) * Zape S/;I\E, the lower confidence limit g(é) — Za- §1\E, and the
upper confidence limit g(é) + Za - SE. Properties of the test and confidence bounds based
on Z are investigated by simulation in the supplementary material. The tables in the
supplementary material give the estimated type I error probabilities and powers of the one-
sided test for g(@) based on Z, empirical coverage probabilities of the lower confidence
limit for g(@), and the empirical widths associated with the lower confidence limits. The
numerical results correspond to a 5% nominal level for the test, and a 95% nominal level
for the confidence limit. The numerical results show that the estimated type I error
probabilities and the estimated coverage probabilities approach their respective nominal
levels as the sample size becomes large. Furthermore, the power of the test increases as
g(0) approaches its maximum value. These results are to be anticipated.

It should be noted that in addition to the K-L divergence criterion, one can think of
numerous other criteria that are appropriate for assessing the relative closeness of two sets
of multinomial cell probabilities to the uniform probability vector; for example, the power
divergence family of criteria investigated in Cressie and Read (1984). An extensive
numerical investigation will be necessary before recommendations can be made on
specific criteria for practical use. We have not undertaken such a simulation study since
there is already some precedence in using the K-L divergence measure, as noted in
Subsection 1.2. Furthermore, the focus of our work is on an application relevant to the U.S.
Census Bureau, rather than the comparison of various criteria. Thus we are not making a
definite recommendation in favor of tests based on the K-L divergence criterion, compared
to other tests; for example, Anderson-Darling and other empirical distribution function
based tests.

4. Data Analysis

Subsections 4.1, 4.2, and 4.3 compare the three possible pairs among the three NCBS
studies. In each section, the given pair is compared using tests and confidence intervals
based on the Z statistic from Section 3. Code for all procedures has been implemented in
the R programming language (R Core Team 2022).

Although each dataset has been used twice among the three analyses, we have not
adjusted results for multiple comparisons (e.g.,Westfall et al. 2011). It should however be
noted that a number of p-values in our analysis are quite small and such an adjustment will
not matter.

4.1. 2016 September NCBS versus 2017 March NCBS

Our first comparison is between the 2016 September NCBS and 2017 March NCBS call
volumes, which falls into Scenario 2. Take X ; to be the call frequencies observed (Sunday,
Monday,. . ., Saturday) on the jth week of the 2016 September NCBS. Accordingly, X,; and
Xj; are call frequencies on the jth week of the 2017 March NCBS for the Monday Mailout
and Thursday Mailout groups, respectively. Estimates for 7; are given in Table 2. We test
hypothesis (3) for each week j = 1,. . ., 5, which can be written as follows.
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[Test 1] Hy: “The day-of-week distribution in week j resulting from the 2016 September
NCBS mailing schedule has larger or equal entropy for the call probabilities than the
day-of-week distribution resulting from the 2017 March NCBS mailing schedule”
versus H;: “Not”.

Therefore, rejection of H, for week j suggests that the 2017 March NCBS mailing strategy
leads to call probabilities closer to the uniform probability vector during that week.

Table 3a gives results of testing this hypothesis for weeks 1—5. Recall that quantity g(0)
is bounded, so that —1.946 = g(0) = 1.946 for any 6. The U.S. Census Bureau uses
a = 0.10 as its standard significance level for hypothesis testing. Hy can be rejected for
weeks 1—4, but there is insufficient evidence to reject during week 5. The Z-statistic is a
rather large negative value in week 5, suggesting that there is evidence that the 2016
September NCBS call distribution had higher entropy during that time. Table 4a displays
the estimated probabilities p;; and g; for weeks j = 1,. . .,5. We notice in week 1 that the
2017 March NCBS had a higher estimated entropy despite very low call probabilities on
Monday and Tuesday; recall that it is very unlikely for Monday Mailout group respondents
to receive the first mailing by this Monday or Tuesday, and impossible for the Thursday
Mailout group. In week 5, large peaks are observed for the 2017 March NCBS on Monday

Table 3.  Results for inference on the quantity g(0). Estimates, standard errors (SEs), and
Z-statistics are displayed in the first three columns. (a) and (b) give a p-value for
hypothesis (4) and a level 0.90 lower confidence limit for g(0). (c) gives a p-value for
hypothesis (2) and a level 0.90 (two-sided) confidence interval for g(6).

(a) 2016 September NCBS to 2017 March NCBS.

Week Estimate SE Z-statistic p-value CI Lo

1 0.0823 0.0602 1.3681 0.0856 0.0052
2 0.2605 0.0402 6.4731 <0.0001 0.2090
3 0.1480 0.0411 3.6026 0.0002 0.0953
4 0.2273 0.0453 5.0166 <0.0001 0.1693
5 -0.3376 0.0775 -4.3563 1.0000 -0.4369

(b) 2016 June NCBS to 2017 March NCBS.

Week Estimate SE Z-statistic p-value CI Lo

1 -0.0153 0.0631 -0.2426 0.5958 -0.0962
2 0.3463 0.0379 9.1467 <0.0001 0.2977
3 0.3905 0.0442 8.8356 <0.0001 0.3338
4 0.3523 0.0565 6.2409 <0.0001 0.2800
5 0.0253 0.0640 0.3956 0.3462 -0.0567

(c) 2016 June NCBS to 2016 September NCBS.
Week  Estimate SE Z-statistic p-value CI Lo CI Hi

1 -0.0976  0.0451 -2.1630 0.0305 -0.1719  -0.0230
2 0.0857  0.0433 1.9782 0.0479 0.0144  0.1570
3 0.2425  0.0365 6.6499 <0.0001 0.1825 0.3025
4 0.1250  0.0607 2.0602 0.0394  0.0252  0.2247
5 0.3629  0.0535 6.7823 <0.0001 0.2749  0.4509
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Table 4. Estimated probabilities for data analyses. Estimates are ordered from largest to smallest within each
week. The corresponding day of week is shown to the right of each probability. The column labeled € displays the
entropy of the estimated probabilities.

(a) 2016 September NCBS vs. 2017 March NCBS.

Week P (Week) &

1 0.3857 Tue 0.3327 Mon 0.2388 Wed 0.0245 Sat 0.0122 Sun 0.0061 Thu 0.0000 Fri 1.2515
2 0.4224 Tue 0.3077 Wed 0.1190 Thu 0.0581 Sat 0.0421 Fri 0.0276 Sun 0.0232 Mon 1.4650
3 0.3835 Mon 0.2361 Tue 0.1247 Thu 0.1093 Wed 0.0670 Fri 0.0546 Sat 0.0247 Sun 1.6414
4 0.4545 Mon 0.2045 Tue 0.1212 Wed 0.1193 Thu 0.0473 Fri 0.0341 Sat 0.0189 Sun 1.5272
5 0.3256 Thu 0.1628 Mon 0.1550 Fri 0.1395 Tue 0.1085 Wed 0.0543 Sun 0.0543 Sat 1.7819

Week g (Week) £

1 0.3955 Fri 0.3284 Thu 0.1791 Sat 0.0522 Wed 0.0448 Sun 0.0000 Mon 0.0000 Tue 1.3338
2 0.2925 Mon 0.2054 Tue 0.1826 Wed 0.1535 Thu 0.1100 Fri 0.0311 Sat 0.0249 Sun 1.7255
3 0.3419 Thu 0.1581 Mon 0.1496 Fri 0.1026 Sat 0.0940 Tue 0.0940 Wed 0.0598 Sun 1.7894
4 0.2654 Thu 0.2099 Mon 0.1852 Fri 0.1636 Tue 0.1111 Wed 0.0340 Sat 0.0309 Sun 1.7545
5 0.4508 Mon 0.2798 Tue 0.1088 Wed 0.0622 Thu 0.0622 Fri 0.0259 Sat 0.0104 Sun 1.4443

(b) 2016 June NCBS vs. 2017 March NCBS.

Week p(Week) g

1 0.4023 Thu 0.3456 Fri 0.1133 Sat 0.0793 Wed  0.0595 Sun 0.0000 Mon 0.0000 Tue 1.3492
2 0.4565 Mon 0.2798 Tue 0.1285 Wed 0.0763 Thu 0.0469 Fri 0.0067 Sat 0.0054 Sun 1.3793
3 0.4676 Mon 0.2444 Tue 0.1321 Wed 0.0819 Thu 0.0647 Fri 0.0053 Sun 0.0040 Sat 1.3989
4 0.5431 Fri 0.1802 Sat 0.0992 Thu 0.0653 Wed  0.0522 Sun 0.0470 Tue 0.0131 Mon 1.4022
5 0.4505 Mon 0.2344 Tue 0.1465 Wed 0.1136 Thu 0.0403 Fri 0.0147 Sat 0.0000 Sun 1.4190
Week p(Week) g

1 0.3955 Fri 0.3284 Thu 0.1791 Sat 0.0522 Wed ~ 0.0448 Sun 0.0000 Mon 0.0000 Tue 1.3338
2 0.2925 Mon 0.2054 Tue 0.1826 Wed 0.1535 Thu 0.1100 Fri 0.0311 Sat 0.0249 Sun 1.7255
3 0.3419 Thu 0.1581 Mon 0.1496 Fri 0.1026 Sat 0.0940 Tue 0.0940 Wed 0.0598 Sun 1.7894
4 0.2654 Thu 0.2099 Mon  0.1852 Fri 0.1636 Tue 0.1111 Wed ~ 0.0340 Sat 0.0309 Sun 1.7545
5 0.4508 Mon 0.2798 Tue 0.1088 Wed 0.0622 Thu 0.0622 Fri 0.0259 Sat 0.0104 Sun 1.4443

(c) 2016 June NCBS vs. 2016 September NCBS.

Week p(Week) g

1 0.4023 Thu 0.3456 Fri 0.1133 Sat 0.0793 Wed  0.0595 Sun 0.0000 Mon 0.0000 Tue 1.3492
2 0.4565 Mon 0.2798 Tue 0.1285 Wed 0.0763 Thu 0.0469 Fri 0.0067 Sat 0.0054 Sun 1.3793
3 0.4676 Mon 0.2444 Tue 0.1321 Wed ~ 0.0819 Thu 0.0647 Fri 0.0053 Sun 0.0040 Sat 1.3989
4 0.5431 Fri 0.1802 Sat 0.0992 Thu 0.0653 Wed  0.0522 Sun 0.0470 Tue 0.0131 Mon 1.4022
5 0.4505 Mon 0.2344 Tue 0.1465 Wed 0.1136 Thu 0.0403 Fri 0.0147 Sat 0.0000 Sun 1.4190
Week g (Week) £

1 0.3857 Tue 0.3327 Mon  0.2388 Wed 0.0245 Sat 0.0122 Sun 0.0061 Thu 0.0000 Fri 1.2515
2 0.4224 Tue 0.3077 Wed ~ 0.1190 Thu 0.0581 Sat 0.0421 Fri 0.0276 Sun 0.0232 Mon 1.4650
3 0.3835 Mon 0.2361 Tue 0.1247 Thu 0.1093 Wed ~ 0.0670 Fri 0.0546 Sat 0.0247 Sun 1.6414
4 0.4545 Mon 0.2045 Tue 0.1212 Wed 0.1193 Thu 0.0473 Fri 0.0341 Sat 0.0189 Sun 1.5272
5 0.3256 Thu 0.1628 Mon  0.1550 Fri 0.1395 Tue 0.1085 Wed  0.0543 Sun 0.0543 Sat 1.7819

and Tuesday. Many calls occurring on these peak days are from the Thursday Mailout
group, as seen in Figure la, whose final mailing was initiated the previous Thursday
(March 30). However, calls are also contributed from the Monday Mailout group, whose
final mailing was the previous Monday (March 27).

4.2. 2016 June NCBS versus 2017 March NCBS

Our second comparison is between the 2016 June NCBS versus 2017 March NCBS call
volumes, which falls into Scenario 2. Take X;; to be the frequencies of the 2016 June
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NCBS calls observed on (Sunday, Monday,. . ., Saturday). Take X,;, X3;, and 77; to be
defined as in Subsection 4.1. We test hypothesis (3) for each week j = 1,. . ., 5, which can
be written as follows.

[Test 2] Hy: “The day-of-week distribution in week j resulting from the 2016 June
NCBS mailing schedule has larger or equal entropy for the call probabilities than the
day-of-week distribution resulting from the 2017 March NCBS mailing schedule”
versus Hy: “Not”.

Here, rejection of H, for week j suggests that the 2017 March NCBS mailing strategy
leads to call probabilities closer to the uniform probability vector during that week.

Table 3b gives results of testing this hypothesis for weeks 1—5. Table 4b displays the
estimated probabilities py; and g; for weeks j = 1,. . ., 5. There is strong evidence to reject
H, for weeks 2, 3, and 4, but insufficient evidence to reject during weeks 1 and 5 at
significance level & = 0.10. Recall that the Thursday Mailout group had little opportunity
to call during week 1, so the results for this week are primarily based on the Monday
Mailout group.

4.3. 2016 June NCBS versus 2016 September NCBS

Our third comparison is between the 2016 September NCBS and 2016 June NCBS call
volumes, which matches Scenario 1. Take X;; to be the frequencies of 2016 June NCBS as
in Subsection 4.2 and X,; to be the frequencies of 2016 September NCBS calls as in
Subsection 4.2. Because both studies used a single mailing strategy for all respondents, we
assume a null hypothesis that neither strategy leads to a significantly more uniform call
distribution. Therefore, we test hypothesis (2) for each week j = 1,. . ., 5, which can be
written as follows.

[Test 3] Hy: “The day-of-week distribution in week j resulting from the 2016 June
NCBS mailing schedule and that resulting from the 2016 September NCBS mailing
schedule have equal entropies for the call probabilities” versus H;: “Not”.

Here, rejection of Hy for week j suggests that the two mailing strategies do not lead to
call probabilities that are equally close to the uniform probability vector during that week.

Table 3c gives results of testing this hypothesis for weeks 1-5, and Table 4c displays
the estimated probabilities pi; and p,; for weeks j = 1,. . .,5. The test can be rejected at
significance level a = 0.10 for all five weeks, although the evidence is much stronger in
weeks 3 and 5. The Zstatistics are positive for weeks 2—5, indicating a larger entropy for
the 2016 September NCBS except during week 1.

5. Discussion and Conclusions

In this work, we analyzed call volumes observed in several census studies to determine
whether one mailing strategy produced more uniform call probabilities than another. To do
this, we made use of statistical tests and confidence intervals determined from basic large
sample theory. Our analysis found that a staggered strategy—as used in the 2017 March
NCBS -yielded a significantly higher entropy than the two unstaggered strategies toward
the middle of the study period, after both the Monday and Thursday Mailout groups
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received the first mailing. However, the two unstaggered strategies—the 2016 September
NCBS and 2016 June NCBS-also yielded significantly different entropies when
compared to each other; this demonstrates that other aspects of mailing schedule design,
aside from staggering, affect uniformity of calls from week to week. After the final mailing
is sent, the choice of mailing schedule is expected to have a diminishing effect on call
uniformity as the overall volume of calls diminishes. One way to attenuate starting and
ending differences among the operations would be, say, to combine weeks 1 and 2 into a
“beginning period”, label week 3 as a “middle period”, and combine weeks 4+ into an
“ending period”; the methodology could be applied to the three periods instead of the
individual weeks without any changes.

Although some evidence was found in the data that staggering increases call uniformity,
the three featured studies were carried out separately and may have been subject to subtle
variations other than mailing strategy. A controlled experiment would help to isolate this
effect from other factors. Procedures such as the ones presented in this article could help to
guide design and sample size determination for such an experiment.

The report by Nichols et al. (2019) represents the analysis-of-record based on the
methodology in the present article. Marasteanu (2019) describes a staggered mailing
strategy for the 2020 decennial census which makes use of findings by Nichols et al.
(2019) and others, while also taking into account a number of important practical
concerns. An unspecified model is used to express volumes to call centers and to illustrate
the effects of staggered mailings on them over time.

While our model was based on independent multinomial observations, we could
consider a regression model with appropriate covariates as described in Appendix
(Subsection 6.2). Here, it becomes necessary to check model adequacy-e.g., via
goodness-of-fit testing—before proceeding with inference on g(#). However, were a
sufficiently good predictive model available, it could be used to optimize over a class of
mailing strategies and identify which one(s) achieved an optimal uniformity. This could be
an objective in future analyses of U.S. Census Bureau operations, as a step beyond
statistical inference.

6. Appendix

6.1. Inference on Entropy Difference
In order to discuss statistical procedures, let us generally write
gi(0) = ¢e(cipij+ - +cpy) —eldpy+---+dipyy), j=1,...J, (6)

for given coefficients ¢ = (cy,. . .,¢;) and d = (dy, . . .,d;) which are distributions on
{1,...,1}. We do not encounter a situation where two studies use data from a common
mailing schedule; therefore, we will have ¢;d; =0 for i=1,. . .,1. In a multinomial
analysis, one of our day-of-week categories is redundant because Zszlxijk = my and
Zszlpijk = 1. Without loss of generality, we will consider the first category as the
redundant one, and write Xj; = (Xyp,. .., X;x) and p; = (pjp,. . .,pyx). Denote
p- = (pl_l, R W Y T .,p,_J), and its maximum likelihood estimator as p ~,
which replaces each p; with p; = Xj; /mjj. Under model (5), the unknown 6 is taken
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assumed to be p~. Write T ~ N(u, %) to denote that random variable T € R" follows a
normal distribution with mean u € R" and variance 3 € R"*". As discussed in Lehmann
(2004, 314), we have a large sample normal distribution p~ ~ N(p~, ), where

3, = Blockdiag (my; [Diag(py,) = pypy, ', - - - my' [Diag(py;) — Py, ']) (D)

isan IJ(K — 1) X IJ(K — 1) covariance matrix. Furthermore, the delta method (Lehmann
2004, 315) gives the large sample distribution

p- - agi(p )< [0gi(p "
5 )NN(gj(p )’oif“"))’ Oﬁ/w—):[ ép‘ }2[ E;p‘ } ;

forj=1,.. . J. After some algebra, we obtain the 1 X [J(K — 1) gradient

-
I -\ -
9gi(p~) _ 4% [Clvg (z"zlc’p"f) dive (2":‘(1”’”)} ®)
ap- e® [c,Va (El{:lcipi_j) —d;Ve (Eled,-pi_j)}
where Ve(x) = (—log(xz/x1),. . ., —log(xK/xl))T7ej is the jth column of a J X J identity

matrix, and ® denotes the matrix Kronecker product.

Let p~ be a maximum likelihood estimator of p~ and define the statistic Z=
gi(p ™)/ 0gp-) with the expression for a';_(p,). Now, Z~ N(0, 1) approximately under the
restriction g;(p~) = 0, which occurs at the boundary of the null hypotheses (2), (3), and
(4). Therefore, we obtain the test and confidence interval procedures discussed at the end
of Section 3 with SE = Ogp-)-

Some insight into the behavior of g(p ™) can be seen from its gradient. Consider Scenario
S1 with J = 1 and suppress the j index; we have

) (ve) velra))

= log(piz/pn1) -+ logpix/pn) —logwa/pa) -+ —log(pak/p21).

Because the gradient separates into a component involving only p; and similar one
involving only p,, it suffices to comment only on the former. When p; = (1/K,. . ., 1/K),
it is seen that —Ve(p ) = 0; therefore, g(p ~) increases very slowly to its maximum of log
K as p, approaches a discrete uniform distribution. On the other hand, when p; — e5, then
—Ve@7)— (0, 00,. . ., 00); therefore, when p, is close to a point mass, small changes in
pi result in very large changes in some of the components of g(p ™).

This remark notes that changes in the quantity g(p~) are smaller when the component
distributions are closer to uniform. Differences in this setting may therefore be difficult to
detect with the Z-statistic, which may warrant consideration of alternative distance
measures in future work. Alternative distance measures might also be considered if one is
thought to better express the cost of departure from uniformity than K-L divergence.
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6.2. Regression Model

The framework can be extended to a more general multinomial regression model for
additional flexibility. Suppose we wish to compare two mailing strategies based on /
mailing schedules where calls are recorded in J weeks. Let Y; = (Y;11,. . ., Yjjx) be a
vector of call counts received on the kth day in the jth week from the ith mailing schedule,
fori=1,...,I,j=1,...,J,andk=1,.. K, withm; = ZkK:lYijk total calls received.
Letwy, € R be a corresponding fixed covariate. The discrete choice model described by
Agresti (2013, Sec. 8.5),

exp {w;k ,8}

k )
2/-1exp {W;/.B}
is a form of multinomial regression which permits the covariate to vary by category. The
independent variable w;; may contain indicators such as day of the week, week of the
mailing schedule, holidays and other features of interest which vary by day. In this model,

log (pijk/pij/) = (wijk - wij/) TB forany k,/€ {1,. . ., K}. Regression model (9) allows a
number of alternative formations; for example, rather than partitioning the data into J weeks

ind
Yy = Multg (my, py),  pi = )

(or other non-overlapping time periods) as desired in our application, one may also consider
taking J = 1, the K multinomial categories to correspond to all days relevant to the analysis,
and covariates wy; to include adjustments for day-of-week and/or day-of-study effects.

Under model (9), the unknown parameter  is taken to be the coefficient vector 8. To
perform inference on (9) in the regression case, the delta method applied to the maximum
likelihood estimator 3 yields large sample distribution

p - 08(p B)] ;1,5 [28(P~B)]"
s(P"B) ~N(2(P™B): %, 3)) o) = [GB}I '®) {aﬁ}

where Z() is the Fisher information matrix with respect to 3 under the outcomes Y;;. An
estimate of Z~!(B) based on ﬁ may be produced by statistical software such as the

a1 T
mlogit package (Croissant 2020) in R, or may be computed directly via Z(8) = |:E)pa_[§ﬁ):|
271 [M] using ¥ given in Equation (7). To compute the remaining terms of olg( - (B)

we havgﬁ
ag(p~(B) _ag(p)ap (B)
. B op~ 9B
with aga(p#) given by Equation (8) and
p: K 2k
pg;(dﬁ) = {Z cXp {(WW - Wijk)TB}} Z €Xp {(w,-j/ - Wijk)TB} (Wijra = Wika) -
/=1 /=1
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A Two-Stage Bennet Decomposition of the Change in the
Weighted Arithmetic Mean

Thomas von Brasch', Hékon Grini', Magnus Berglund Johnsen', and
Trond Christian Vigtel'

The weighted arithmetic mean is used in a wide variety of applications. An infinite number of
possible decompositions of the change in the weighted mean are available, and it is therefore
an open question which of the possible decompositions should be applied. In this article, we
derive a decomposition of the change in the weighted mean based on a two-stage Bennet
decomposition. Our proposed decomposition is easy to employ and interpret, and we show
that it satisfies the difference counterpart to the index number time reversal test. We illustrate
the framework by decomposing aggregate earnings growth from 2020Q4 to 2021Q4 in
Norway and compare it with some of the main decompositions proposed in the literature. We
find that the wedge between the identified compositional effects from the proposed two-stage
Bennet decomposition and the one-stage Bennet decomposition is substantial, and for some
industries, the compositional effects have opposite signs.

Key words: Index theory; weighted arithmetic mean; decomposition.

1. Introduction

What are the driving forces underlying aggregate productivity growth? Why has the labour
force participation rate changed during the last two decades? What has driven the change
in annual earnings over the last year and why have import prices changed? All these
questions have a common feature in that statistics on productivity, the labour force
participation rate, earnings and import prices are often constructed using a weighted
arithmetic mean formula.

A natural starting point for answering these questions is to decompose the change in the
weighted mean. A frequently used decomposition is the Bennet (1920) decomposition,
often also referred to as shift-share analysis. This decomposition enables within-group
growth effects to be distinguished from between-group compositional effects. For
example, when examining productivity dynamics in U.S. manufacturing plants between
1972 and 1987, Baily et al. (1992) find a positive contribution to growth due to increasing
output shares among high-productivity plants and decreasing output shares among low-
productivity plants. Daly and Hobijn (2017) show that compositional effects due to labour
market status flows are important in explaining aggregate real wage growth in the U.S.
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Analysing the fall in the U.S. labour force participation rate, Krueger (2017) finds that the
population composition has shifted toward groups with lower participation rates, and that
this accounts for well over half of the decline in the labour force participation rate between
1997 and 2017. Moreover, a large body of literature has identified the deflationary effects
of international trade resulting from increased import shares from low-price countries,
such as China; see, for example, Kamin et al. (2006), Thomas and Marquez (2009) and
Benedictow and Boug (2017, 2021).

Although the Bennet decomposition is useful for identifying the overall contribution
from compositional effects, it does not identify how much of the overall compositional
effect that can be attributed to a particular group or subset. To overcome this shortcoming,
the Bennet decomposition is often rewritten by subtracting a scalar A from each group in
the between effect, where the scalar A typically represents some measure of the weighted
mean, see Huerga (2010) and Balk (2021, 137). Foster et al. (2001) analyzed productivity
developments and measured the between effect as the product of changes in the plant-level
output share and the deviation of average plant-level productivity from the overall industry
average. If the composition of firms changes such that the output share of a low-
productivity plant increases, this will lower the aggregate weighted mean productivity
level and thus contribute negatively to the compositional effect. Note that in these
decompositions a plant may contribute negatively to the compositional effect even if there
is no change in the output of that plant. The reason is that it is the output share, and not the
output of the plant, that enters the decomposition, and the output share of a given plant
may change because the output of all the other plants changes. Moreover, as pointed out by
Balk (2021), the choice of the scalar A is arbitrary. Since any scalar may be subtracted
from the Bennet decomposition, an infinite number of possible decompositions are
available, and it is therefore an open question which of the possible decompositions should
be applied.

In this article, we derive a decomposition that identifies the contribution to the overall
change in the weighted mean from changes in prices and quantities. In contrast to the
previously discussed one-stage Bennet decomposition, which relates to changes in
weights, our proposed two-stage Bennet decomposition relates to the change in the
underlying quantity variables. This difference is important because the weights can never
change without a change in at least one of the underlying quantity variables. Moreover, a
change in a single quantity variable will affect all the share variables. Therefore,
examining the shares provides only limited information about the underlying driving
forces. In the two-stage Bennet decomposition, all the terms related to the within effects
are identical to those in the one-stage Bennet decomposition. Also, the overall between
effect, or compositional effect, is identical to the overall between effect in the one-stage
Bennet decomposition. The group-specific between effects, however, differ from those in
the one-stage Bennet decomposition. The decomposition captures the intuitive property
that the weighted mean increases if a group whose quantity variable is growing has a level
that is above the weighted mean level. There are two ways in which compositional effects
for a group will be zero: either the group-specific indicator equals the weighted mean
level, and/or there is no change in the quantity variable of that group. The proposed
decomposition is easy to employ and interpret and furthermore gives a better platform for
comparing groups. Moreover, we show that the decomposition is invariant with respect to
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treatment of time, and that it therefore satisfies the difference counterpart to the index
number time reversal test; see ILO et al. (2004, 411).

To provide further support for the two-stage Bennet decomposition, we also compare it
with a decomposition based on a quadratic approximation of the weighted mean, while
considering the weighted mean as a non-linear function of underlying prices and quantities.
It is shown that this alternative decomposition has some similar features to the two-stage
Bennet decomposition. In particular, it also identifies how the weighted mean price level
increases if products that are growing in quantity have price levels that are higher than the
mean price level. However, this alternative decomposition is not exact, and the size of the
approximation error depends on how much prices, quantities, and weights change.

To illustrate the two-stage Bennet decomposition, we use data on aggregate earnings
growth in Norway between 2020Q4 and 2021Q4. In this empirical example, it is shown
that the wedge between the identified compositional effects from the two-stage and one-
stage Bennet decompositions is substantial, and for some industries, the compositional
effects are of opposite signs. We also compare the two-stage Bennet decomposition with
the decomposition based on a quadratic approximation. These two decompositions yield
similar group-specific contributions to the overall compositional effects.

The article is structured as follows: Section 2 outlines the weighted mean formula, some
of the most standard decompositions applied in the literature, our proposed decomposition
and the decomposition based on a quadratic approximation. Section 3 contrasts and
compares empirically our proposed decomposition with those used in the literature and the
decomposition based on a quadratic approximation, using the case of earnings growth in
Norway. Section 4 provides a conclusion.

2. Decomposing the Change in the Weighted Mean

Our point of departure is the weighted mean of indicators P;, across units i at time ¢ of the
form:

N
P, = SuPy, (1
i=1

with weights S;; = X where the quantity variable X;; = 0 and Z;LX i+ > 0. Note that

sV X,

the weights sum to 111nity. The weighted mean in Equation (1) has numerous applications
within the fields of economics and measurement theory. In some applications, the
weighted mean is also referred to as a unit value. To our knowledge, unit values were first
introduced by Segnitz (1870). Although the weighted mean has been applied in a variety of
fields, and the indicator and quantity variables may refer to “inter alia” wages, hours
worked, productivity, output prices and so on, we will henceforth refer to P;; and X;; as
representing prices and quantities, respectively, and unit i as product i. Note that for the
weights to have a meaningful interpretation, the quantities involved must be comparable.
In the following we are concerned with identifying the contribution to the change in the
weighted mean of changes in both prices and quantities. Before we present our proposed
decomposition, we start by recapitulating the most widely utilized decompositions in the
literature.
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2.1. The One-Stage Bennet Decomposition

Bennet (1920) provided a decomposition of the nominal value change into the sum of a
price change and a quantity change. This decomposition stands in contrast to traditional
index theory, which focuses on decomposing a value ratio into the product of a price index
and a quantity index. Diewert (2005) analyzed the axiomatic and economic properties of
the Bennet decomposition. When applied to Equation (1), the decomposition yields the
identity:

AP = iSZAP, + ipiASiv (2)
i=1 i=1

where A is the difference operator and a bar over a variable represents the moving average
operator between time ¢ and v, that is, Ax = x, — x, and X = 1/2(x; + x,), and the time
subscript is dropped when it is superfluous, for notational convenience. This one-stage
Bennet decomposition is standard in productivity and shift-share analysis, see for
example, Baily et al. (1992) and OECD (2018). The terms S;AP; and P;AS; represent the
contributions to the change in the weighted mean of a change in the price of product i, and
in the quantity share of product i, respectively.

2.2.  The One-Stage Bennet Decomposition with Extended Weight

The one-stage Bennet decomposition may be rewritten to create terms that explicitly
capture the fact that the weighted mean price level increases if the quantity shares of high-
priced products increase. Since the weights sum to unity, we can subtract the term
Z?]:l(AAS,-), for any given scalar A, such that:

N N
AP = SiAP;+ Y (Pi — A)AS;. 3)
i=1 i=1
In this case, the contribution to the change in the weighted mean of a change in the weight
of product i is given by the term (P; — A)AS;. For example, this term captures the increase
in the weighted mean price if products whose quantity shares are growing have an average
price level between time v and ¢ that is larger than the scalar A. In the literature, the scalar A
has often been chosen to represent some measure of the mean price level. For example, the
choice A = P, where P = 1 /2(P; + P,), is often used, see Huerga (2010) and Balk (2021,
137). Note that when A = P is chosen, the framework above is invariant with respect to
treatment of time, that is, it satisfies the difference counterpart to the index number time
reversal test; see Diewert and Fox (2010). The contribution to the change in the weighted
mean of a change in the share of product i is then given by (P; — P)AS;. This term captures
the fact that the weighted mean price level increases if products whose quantity shares are
growing have a price level that is higher than the weighted mean price level. Conversely,
the term also captures the fact that the weighted mean price level will decrease if products
whose quantity shares are growing have a price level that is lower than the weighted mean
price level.
There are shortcomings related to the two decompositions above if the purpose is to
identify how much of the overall compositional effect that can be attributed to a particular
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group or subset. First, and as argued by Balk (2021), the choice of the scalar A is
completely arbitrary. Second, the weight of product i (S;;) may change even if there is no
change in the quantity of product i (X;,), that is, if there is a change in the sum of all the
other products. Since the change in the weight of product i may reflect more than just
changes in the quantity of product i, neither the one-stage Bennet decomposition nor the
one-stage Bennet decomposition with extended weight identifies the contributions to the
change in the weighted mean that are due to changes in quantities.

2.3.  The Two-Stage Bennet Decomposition

To create a decomposition that identifies the contributions to the change in the weighted
mean from changes in quantities we apply the Bennet decompo%ition also in a second
stage. Using the weights S;; = and defining Q, = ZJ Xj;, the expression for the

EN[ X
quantity variable X;; can be written as:

lt thta (4)

with the change defined as AX; = X; — X;,. Although S; and Q, cannot vary
independently, we apply the Bennet decomposition to the change in the quantity variable
in Equation (4), which yields the identity:

AX; = §;AQ + QAS;, (5
where AQ = Q; — Q, and Q = (Q; + Q,)/2. Solving Equation (5) for AS; gives:

1 _
AS; = = (AX; — $;AQ) (6)
0
Inserting Equation (6) into Equation (2) and collecting terms yields the following exact
decomposition of the change in the weighted mean:

Proposition 1 (Two-Stage Bennet Decomposition of the Change in the Weighted
Mean) Consider the weighted mean across units i at time ¢ of the form: P, = Z, 1SitPis,
with weights S;; = S X » where X;;, =0 and Q, = ZJ Xjr > 0. The change in the
weighted mean between ‘times  and v can be exactly decomposed as

N N _
AP = ZSiAPi + Z (é) (P; — P)AX; (7
i=1 i=1

where P = Z?I:IS‘,-P,-, A is the difference operator and a bar over a variable represents the
moving average operator between times ¢ and v, that is, Ax=x, —x, and X = 1/2
(x: + x).

Two features of the two-stage Bennet decomposition in Proposition 1 merit attention.
First, the term that shows the contribution to the change in the weighted mean from the
change in the quantity of product i is given by

(é) (P; — P)AX;. ®)
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This term differs from that in the one-stage Bennet decomposition. It has a natural
interpretation and captures the intuitive property that the weighted mean price level
increases if products that are growing in quantity have price levels that are higher than
the mean price level. P; — P compares the price level of product i with a measure of the
weighted mean price level P = Z?/:]Sipi- There are thus two ways in which
the compositional effects of product i can equal zero: the price of product i equals the
weighted average price level, and/or there is no change in the quantity of product i.

Second, the two-stage Bennet decomposition does not hold a time subscript. In other
words, the framework is invariant with respect to treatment of time and it therefore
satisfies the difference counterpart to the index number time reversal test. The time
reversal test for indices states that if the data for the two time periods are interchanged,
then the resulting formula should equal the reciprocal of the original index; see, for
example, [LO et al. (2004, 295). This test can be rephrased in the case where the formula is
in the form of differences, such as the decomposition in Proposition 1: if the data for the
two time periods are interchanged, then the resulting formula should equal the negative of
the original formula. To illustrate this analytically, let the function H (P, P,,X,, X,)
represent the formula for decomposing the change in the weighted mean, where P, =
Py, Py, ..., Py) and X, = (xi1,%p, . .., x5). The function H passes the time
reversal test if and only if H(P,, P, X, XV) = —H(PV, P, X,, X,). The proposed
decomposition in Proposition 1 satisfies this counterpart to the time reversal test.

We commented above on the practice in the literature of choosing a scalar A when
decomposing the change in the weighted mean, see Equation (3). Although the choice of A is
arbitrary, it is nevertheless interesting to see whether it is possible to derive a value for A that
is consistent with the two-stage Bennet decomposition. From Equation (3), the contribution
to the change in the weighted mean due to a change in the quantity share of product i is given
by the term (P; — A)AS;;. In the two-stage Bennet decomposition, the contribution to the
change in the weighted mean due to a change in the quantity of product i is given by the term

(i) (I_’i, - 1§,)AX ;- For these terms be equal, the scalar A must be given by:

0
_ = (AQ/ON 5, 5
A=P (—AS,- /S,) (Py —P) ©)

However, the right-hand side of the equality sign is usually not a constant. This feature
stands in contrast to Equation (3), where the property that A is a scalar and independent of i
is central to deriving Equation (3) from Equation (2). In the case where the aggregate
quantity is unchanged, that is, AQ =0, Equation (9) reduces to A = P, which is
independent of i. Moreover, in this case the value of A is close to the choices commonly
used in the literature. Several values for the scalar A have been applied, most frequently P;,
P, and the average of the two, all of which are close to the average measure f’,. However,
when the aggregate quantity changes, AQ # 0, the factor (ﬁg—g) may differ from zero,
possibly leaving a sizable discrepancy between the two-stage Bennet decomposition and
most common decompositions used in the literature. In particular, and as can be seen from
Equation (5), AX; may have the opposite sign to AS;, depending on how much the
aggregate quantity (Q) changes. As a result, the measured contributions from

compositional effects in Equation (3) and the two-stage Bennet decomposition may
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have opposite signs. In the empirical section, we examine in depth how large the
discrepancy between the two decompositions may be in practice when aggregate earnings
growth in Norway is decomposed. Before we embark on the empirical application, we first
examine an alternative way to decompose the change in the weighted mean that has many
similarities with the two-stage Bennet decomposition.

2.4.  An Approximate Decomposition of the Change in the Weighted Mean

An alternative way to decompose the change in the weighted mean is to apply the
quadratic approximation lemma (QAL) which, loosely defined, states that the average of
two first order approximations is equivalent to a second order approximation. According
to Theil (1975, 38), the quadratic approximation lemma provides an “approximation
which is as simple as the linear approximation and as accurate as the quadratic
approximation”, where the term ‘“quadratic approximation” refers to a second-order
Taylor approximation, see also Diewert (2002) and references therein for applications of
QAL.

Consider the weighted mean as a non-linear function of underlying prices and
quantities, that is, P, = f (P,, X,), see also Von Brasch et al. (2017). The first-order Taylor
series approximation around the initial period (period v) values for the price and quantity
variables can be expressed as:

N N 1
A~ ;SivAP,- + Z; (@) (Piy — P,)AX; (10)

The first-order Taylor series approximation around the end period (period ¢) values for
the price and quantity variables can be expressed as:

N N
Al = ;SizAPi + ;(é) (Pir — P)AX; (1

Applying QAL to the weighted mean, that is, taking the arithmetic average of the two
approximations in Equation (10) and Equation (11), yields:

N N
_ 1(1 1
AP = ‘_EIS,‘APi-F ,_ElE[Q(Pit_Pl)—i_a(Piv_PV) AX; (12)

Like the two-stage Bennet decomposition, the decomposition based on QAL also holds
the intuitive property that the weighted mean price level increases if products that are
growing in quantity have price levels that are higher than the mean price level. However,
in contrast to the two-stage Bennet decomposition, the prices are demeaned separately for
each period and separately divided by their respective Q,.

The decomposition based on QAL in Equation (12) is not exact. The size of the
approximation error, measured by the difference between the change in the weighted mean
and the right-hand side of Equation (12), is given by:

y! {ip,, - LP,»V} AS.AQ (13)
2200 o
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The smaller the change in Q, the smaller the approximation error. If either all weights or
all prices are unchanged, the approximation error is zero. In the empirical application we
consider the size of this approximation error and compare the decomposition based on
QAL with the two-stage Bennet decomposition.

3. Empirical Application

The data used in the empirical application are obtained through the “a-ordning”, which is a
collaborative digital system shared by Statistics Norway, The Norwegian Tax
Administration and the Norwegian Labour and Welfare Administration (NAV). It
provides information about employment, remuneration in cash and in kind and taxes (The
Norwegian Tax Administration 2022). Data for all industries and individuals are compiled
monthly, and this is the main source Statistics Norway utilizes for producing statistics on
earnings and the labour market.

We focus on the change in monthly earnings per full-time equivalent as the price
variable from 2020Q4 to 2021Q4 and allow for compositional effects across industries
using the number of full-time equivalents in each industry as the quantity variable. Table 1
shows the mean monthly earnings and the number of full-time equivalents in each industry
and in the aggregate for 2020Q4 and 2021Q4.

Table 2 shows the results from using the one-stage Bennet decomposition in Equation
(2), the one-stage Bennet decomposition with extended weight in Equation (3), the
approximation in Equation (12) and our proposed two-stage Bennet decomposition in
Proposition 1. As expected, the contribution to the change in the weighted mean from the
change in earnings of each industry (and the aggregate) is identical across the four
decompositions, as is the total compositional effect. We find that the wedge between the
identified compositional effects from (1) the two-stage Bennet decomposition and (2) the
one-stage Bennet decomposition and one-stage Bennet decomposition with extended
weight is considerable, and for some industries, such as mining and quarrying and
wholesale and retail trade, the compositional effects are of opposite signs. Such
divergence in the signs of the compositional effects between the methods can be attributed
to the changes in the share and quantity variables being of opposite signs (see Figure 2).
Furthermore, the identified compositional effects in the one-stage Bennet decomposition
generally have a greater absolute value than the compositional effects identified using the
one-stage Bennet decomposition with extended weight and the two-stage Bennet
decomposition. This is attributable to the use of P; in the one-stage Bennet
decomposition, compared to the use of the relative earnings level in the other two
decompositions ((P; —A) and (P; — P)). The intuition for why the one-stage Bennet
decomposition with extended weight and the two-stage Bennet decomposition yield
somewhat similar results can be seen by rewriting the two decompositions in a manner
that is easier to compare. The one-stage Bennet decomposition with extended weight may
be written as

X Xy

N TN
j:IXj 2jzlxjv

AP = ZN:S‘iAPi + ZN:(Pi —P)
i=1 i=1
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Table 1. Monthly earnings per full-time equivalent and number of full-time equivalents, 202004 and 2021 Q4.

20200Q4 2021Q4
Monthly Number of Monthly Number of
earnings full-time earnings full-time

(NOK) equivalents (NOK) equivalents

All industries 48,750 2,242,706 50,790 2,320,214
Agriculture, forestry and 41,880 24,838 43,830 25,664
fishing
Mining and quarrying 74,290 59,890 76,310 61,292
Manufacturing 49,090 197,800 50,940 201,393
Electricity, water supply, 54,450 32,012 57,430 32,846
sewerage, waste
management
Construction 46,110 221,718 47,730 228,745
Wholesale and retail trade; 44,220 262,080 46,320 267,773

repair of motor vehicles
and motorcycles

Transportation and storage 47,860 110,862 49,350 114,705

Accommodation and food 33,340 60,593 34,380 72,623
service activities

Information and 63,270 93,626 65,980 100,882
communication

Financial and insurance 70,360 45,928 73,670 46,890
activities

Real estate, professional, 60,060 146,836 63,460 155,418
scientific and technical
activities

Administrative and support 41,000 115,691 42,760 122,725
service activities

Public administration and 52,210 157,396 54,240 159,831

defence; compulsory
social security

Education 46,750 195,500 48,710 197,832

Human health and social 44,860 446,720 47,010 455,729
work activities

Other service activities 43,830 70,212 45,360 74,466

Unspecified 63,440 1,003 68,490 1,403

Source: Statbank Table 11419, Statistics Norway.

In comparison, the two-stage Bennet decomposition may be written as

N N
AP =>"5AP;+Y (P - P) ( . Xi - X,
i=1 i=1 )

N N N
EJ:Ith + 2jleJV) /2 ( j:lth + Ej:IXjV> /2

The difference between the contributions to the overall compositional effects in these
two decompositions is thus caused by changes in quantities (full-time equivalents), not
changes in prices. The compositional effects from each industry, identified using each of
the four different decompositions, are illustrated in Figure 1. An add-in for carrying out
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Agriculture, forestry and fishing
® One-stage Bennet
Mining and quarrying

Manufacturing One-stage Bennet with
extended weight

Electricity, water supply, sewerage, waste management

m Approximation
Construction

Wholesale and retail trade; repair of motor vehicles and motorcycles m Two-stage Bennet
Transportation and storage

Accommodation and food service activities

Information and communication

Financial and insurance activities

Real estate, professional, scientific and technical activities
Administrative and support service activities

Public administration and defence; cc 'y social security

Education

Human health and social work activities

Other service activities
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=)

Fig. 1. Compositional effects across decompositions.

Note: See Table 2 for precise magnitudes of compositional effects for each industry and decomposition method.
Note that “Unspecified” from Table 2 is not shown in this figure. Source: Authors’ own calculations using data
from Statistics Norway.

Agriculture, forestry and fishing

Mining and quarrying ® Change in share

. ® Change in volume variable
Manufacturing &
Electricity, water supply, sewerage, waste management

Construction

‘Wholesale and retail trade; repair of motor vehicles and motorcycles
Transportation and storage

Accommodation and food service activities

Information and communication

Financial and insurance activities

Real estate, professional, scientific and technical activities
Administrative and support service activities

Public administration and defence; compulsory social security
Education _—

Human health and social work activities

r""rr'r|

Other service activities

n
S

5 10 15 20 25

Percent

Fig. 2. Change in share and quantity variable, from 202004 to 20210Q4.

Note: Change in share and quantity variable for each industry from 2020Q4 to 2021Q4, measured in percent. Note
that “Unspecified” from Table 2 is not shown in this figure. Source: Authors’ own calculations using data from
Statistics Norway.

this decomposition in EViews, and a Stata replication code to generate the results in
Table 2 and Figure 1, are available from the authors upon request.

Focusing on our proposed decomposition, the above results illustrate that there were
both positive and negative compositional effects present in aggregate earnings growth in
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Norway from 2020Q4 to 2021Q4. In the aggregate, these effects were negative, which is
largely attributable to developments in the industry accommodation and food service
activities. This industry was to a considerable extent impacted by the Norwegian
government’s actions to curb the spread of the coronavirus, as these measures particularly
affected industries where social interaction is a necessity. However, the gradual softening
of these measures throughout 2021 was accompanied by an increase in activity in these
industries. As the industry accommodation and food service activities has a level of
earnings lower than the weighted mean earnings level (see Table 1), the compositional
effect becomes negative when the quantity variable of the industry increases. Conversely,
the industries information and communication and real estate, professional, scientific and
technical activities, in which the earnings level is higher than the aggregate earnings level,
contributed to aggregate earnings growth with a noteworthy positive compositional effect,
as these industries had an increase in the quantity variable. At the same time, several
industries had a compositional effect that was close to zero.

Comparing the results of our proposed decomposition with the results produced by the
other two exact methods, a few comments are warranted. First, the proposed
decomposition provides an exact and intuitive description of the contribution to the
overall compositional effect from each industry, in terms of both the size and the
direction of the contribution. For example, Table 2 shows a large difference between the
one-stage Bennet decomposition on the one hand and the one-stage Bennet
decomposition with extended weight and two-stage Bennet decomposition on the
other in the contribution from accommodation and food service activities. The
compositional effect is far greater with the one-stage Bennet decomposition, and it has
an opposite sign from the other two. Furthermore, in the industries mining and quarrying
and wholesale and retail trade, amongst others, the two-stage Bennet decomposition and
the one-stage Bennet decomposition with extended weight produce compositional effects
with opposite signs, and in these cases, we argue that the two-stage Bennet
decomposition provides a more intuitive result. For mining and quarrying, where the
average earnings are higher than the average earnings for all industries, as shown in
Table 1, and the quantity of full-time equivalents increases from 2020Q4 to 2021Q4, it is
natural that the contribution from compositional effects should be positive, as the two-
stage Bennet decomposition shows. The comparison yields the same conclusion for
wholesale and retail trade, but with opposite signs. With a lower level of earnings than
the aggregate earnings level and an increase in the number of full-time equivalents, it is
apparent that this industry, all else being equal, should contribute with a negative
compositional effect, just as provided by the two-stage Bennet decomposition. Figure 1
also shows the approximation from the decomposition based on QAL in Equation (12),
which is very similar to the two-stage Bennet decomposition. The approximation error is
small, at 0.03 percent relative to the size of the compositional effect from the two-stage
Bennet decomposition, due to modest changes in the aggregate quantity, as well as the
prices and weights (cf. Equation (13)). It should be noted that the choice of dimension
along which the change in the weighted mean is decomposed is by no means arbitrary.
When choosing this dimension, it is critical that it inherently captures the nature of the
changes in the quantity variable.
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4. Conclusion

In this article, we have derived an exact additive decomposition of the change in the
weighted mean. Our proposed two-stage Bennet decomposition is easy to employ and
interpret. We also show that it satisfies the difference counterpart to the index number time
reversal test. The fundamental difference between our proposed decomposition and many
of the decompositions used in the literature is that our measure of the contribution to
compositional changes of a given product is based on the change in the quantity of that
product. If there is no change in the quantity of a product, then that product does not
contribute to a compositional change in the weighted mean. In contrast, in other
decompositions, such as the one-stage Bennet decomposition, the measure of the
contribution to compositional changes of a given product is based on the change in the
quantity share of that product. Since the quantity share of a product may change because
the quantities of other products change, this may lead to compositional changes stemming
from a product whose quantity level is unchanged. We have also outlined an alternative
decomposition based on a quadratic approximation of the weighted mean, when the
weighted mean is regarded as a non-linear function of underlying prices and quantities.
Although this alternative decomposition is not exact, it has some similar features to the
two-stage Bennet decomposition.

When comparing our proposed decomposition to the standard decomposition used in
the literature in the case of aggregate earnings growth in Norway from 2020Q4 to 2021Q4,
we find that the wedge between the identified compositional effects is substantial, and for
some industries the compositional effects are of opposite signs. We also compared the
two-stage Bennet decomposition with the decomposition based on a quadratic
approximation and found that these two decompositions generated similar group-specific
contributions to the overall compositional effects.
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