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Characteristics of Respondents to Web-Based or Traditional
Interviews in Mixed-Mode Surveys. Evidence from the

Italian Permanent Population Census

Elena Grimaccia1, Alessia Naccarato2, Gerardo Gallo1, Novella Cecconi1, and

Alessandro Fratoni1

In order to provide useful tools for researchers in the design of actions to promote
participation in web surveys, it is key to study the characteristics that define the profile of a
“web respondent”, so that specific interventions can be planned. In this contribution, which
draws on data collected during the 2019 housing population census in Italy, we define the set
of familial and geographical characteristics that correspond to a greater probability that the
interviewed household will choose to respond online, by estimating a multilevel model. The
profile of a “computer-assisted web interview household” (CAWI-H) is then defined, on the
basis of the structural characteristics of this population. Moreover, the geographical
distribution of households is studied according to their distance from the CAWI-H profile. The
results show that households that are more distant from the CAWI-H profile have
characteristics that correspond to segments of the population generally affected by economic
and social fragility; they are mainly elderly, foreigners, residents in small towns, and people
with a low level of education. It is to these households in particular that survey designers can
address specific actions that can enhance their willingness to participate in web surveys.

Key words: Mixed-mode surveys; respondent profiling; multilevel models; computer assisted
web interview (CAWI).

1. Introduction

In recent decades, developments in information technology and the ever-increasing

availability of administrative data have led several European countries to develop

innovative methods for their population censuses (Eurostat 2020).

Mixed-mode surveys have been adopted by necessity in survey practice (Biemer 2010; De

Leeuw 2005) and are, nowadays, also essential for National Statistical Institutes (NSIs).

According to Tourangeau (2017) their usage is only expected to increase over time.

Online surveys have become part of mixed-mode data collection strategies, since web

data collection presents several advantages, like a reduction in cost, a general

improvement in timeliness (since the higher the share of web respondents, the shorter the

time devoted to data collection as in Dillman et al. 2014 and in De Leeuw 2005), and a

potential to use complex questionnaires (De Leeuw and Berzelak 2016), and to reduce

q Statistics Sweden

1 Istat, Italian National Institute for Statistics, via Cesare Balbo 16, 00184 Rome, Italy Emails: elgrimac@istat.it,
gegallo@istat.it, ncecconi@istat.it, and fratoni@istat.it
2 Department of Economics, Roma Tre University, via Silvio D’Amico 77, 00145 Rome, Italy. Email:
alessia.naccarato@uniroma3.it
Acknowledgments: We would like to thank the anonymous reviewers whose suggestions and comments helped
improve and clarify this manuscript.

Journal of Official Statistics, Vol. 39, No. 1, 2023, pp. 1–26, http://dx.doi.org/10.2478/JOS-2023-0001

http://dx.doi.org/10.2478/JOS-2023-0001


coverage and nonresponse error (Bianchi et al. 2017; Brick and Tourangeau 2017; Cobben

and Bethlem 2013; De Leeuw 2018; De Leeuw et al. 2019; Luiten et al. 2020).

In particular, sequential mixed-mode strategies (which offer one mode at a time, starting

with the cheapest and quickest) improve response rates when different modes acquire

different types of respondents: typically, younger respondents respond through the web,

and respondents who are older or first-generation immigrants respond in interviewer

administered modes (Benzeval et al. 2021; De Leeuw and Berzelak 2016; Kappelhof

2015). Indeed, including a mail survey for those who do not have internet access and as a

follow-up for web nonrespondents also improves representativity on demographic and

attitudinal variables (Bandilla et al. 2014; Messer and Dillman 2011).

However, there are some disadvantages because of the comparability of data collected via

different modes, which could lead to different measurement errors. For instance, past research

has shown that self-administered forms (e.g., both paper mail surveys and web surveys)

perform better when more sensitive questions are asked allowing less social desirable answers

than interview surveys (De Leeuw and Berzelak 2016; De Leeuw et al. 2008, 299).

In this framework, no one could have predicted that the coronavirus pandemic

emergency and the impossibility of carrying out field operations would have boosted the

need for web-based interviews with such strength and urgency.

However, even if the use of the internet is quite widespread in Europe (Eurostat 2020),

respondents’ attitudes toward web surveys cannot be taken for granted. Therefore,

planning interventions targeting specific groups of individuals or households can support

wider participation in web surveys.

The analysis of auxiliary variables in mixed-mode surveys has certainly become much

more important (De Leeuw 2018; De Leeuw et al. 2019), both because of the digital divide

in the population, with highly educated and younger people more often having an internet

connection (Biffignandi and Bethlehem 2012; Couper 2017; Mohorko et al. 2013), and

because the interaction between the characteristics of the respondents and the decisions of

the survey designer influences the response rate and the success of the survey (Antoun et al.

2017; Biffignandi and Pratesi 2002; Durrant and Steele 2009; Scherpenzeel and

Bethlehem 2011, 105).

In this article, we study the determinants that influence the cooperation of respondents

with a sequential mixed-mode survey, such as the Italian Permanent Population and

Housing Census (PPHC), in order to point out the specific characteristics of the

population. This could enhance the efficacy of the actions of survey designers to improve

participation in web surveys.

By estimating a multilevel logit model (Durrant and Steele 2009; Mohorko et al. 2013), we

distinguish between the features of online respondents to a Computer Assisted Web Interview

(CAWI) and the features of respondents in traditional modes (in the case of the PPHC, a

Computer Assisted Personal Interview, CAPI), given that respondents with different

characteristics tend to have different propensities for being interviewed in a given mode.

We consider the set of the socio-economic characteristics of a respondent as their

“profile”. The profiling of respondents, in the literature, has traditionally been achieved

through a logistic model. Among others, Maslovskaya et al. (2019) studied the effect of

different response tools in six social surveys in the UK. The results of their bivariate

analysis suggest that, across the surveys, age, gender, marital status, employment, religion,
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household size, children in household, household income, number of cars and frequency of

internet use are significantly associated with the device used. Bianchi et al. (2017) studied

the effects of mixed-mode design on participation rate, sample composition, and costs in a

longitudinal survey in the UK. To investigate whether the mixed-mode design had

different effects for different characteristics of the respondents (such as gender, age, race,

working status, household type, urbanicity, web-user), the authors estimated a logit model

employing individual characteristics and interactions, but this did not produce significant

results. Pratesi et al. (2004) focused on the timeliness and quality of web surveys in

Slovene households. Their findings suggest that nonresponse rates and quick reactions in

web surveys are sensitive to individuals’ characteristics, but that demographics are not

significant in this. Methodological issues and the research perspectives of web surveys

have been studied in depth and in a thorough and comprehensive way by Biffignandi and

Bethlehem in 2012 and, more recently, in 2021.

The analysis presented here, then, explores the significant differences, in terms of

individual and familial characteristics, between households who respond by completing a

CAWI and those who respond by the face-to-face method. In this way, it is possible to

define the profile of CAWI respondents (which we call the CAWI-H profile) to identify

which household characteristics contribute the most to increasing the probability of

responding via the web. As in previous research (Durrant and Steel 2009; Mohorko et al.

2013), this study employs multilevel modelling alongside logistic regression, and it

provides also some evidence that a multilevel model is better than a logit model at

explaining the probability of answering via the web.

Once the profiles of web respondents have been defined, it is possible to measure how

far the features of CAPI respondents deviate from the CAWI-H profile, establishing a

measure of distance that allows us to classify respondents according to their “resistance” to

web completion. Compared to other studies employing propensity scores, the computation

of distances from the profiles identified by the multilevel model has been preferred since it

could be successfully employed for other surveys and used as a tool for planning specific

survey interventions.

This study identifies the territorial features related to web responses providing specific

tools for promoting web surveys and, in particular, addressing the logistical issues.

Compared to previous studies concerned with Internet usage in general, this study

provides insight on web survey.

The article is organised as follows: Section 2 presents the data collection design for the

PPHC; Section 3 describes the variables employed to define the respondents’ profiles;

Section 4 presents the statistical methodology to obtain the respondents’ profiles and to

measure the distances between them; Section 5 presents the main outcomes of the study

and the territorial distribution of the different types of respondents; and, finally, Section 6

presents some concluding remarks with reference to particular population groups that

could be made the subject of actions aimed at improving the CAWI response.

2. Italian Population and Housing Census Data Collection Design

This article draws on data from the 2019 PPHC. In Italy, the PPHC, which was started in

2018 by the Italian National Institute of Statistics (Istat), currently provides a mixed-mode
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survey, since respondents may choose to fill in the questionnaire via the web or by the

traditional way, according to the data collection design described in Figure 1.

In Figure 1, the flowchart for the data collection process is presented. The current

progression of the actions for data collection are represented in white, while our proposal

to increase the share of web respondents is shown in grey.

The population census provides the official estimate of the resident population at the

municipality level (Righi et al. 2021). In Italy, as in most European countries, an

assessment of the coverage results of the last population census in 2011 and the high costs

of data collection led to a change in the strategy for the population census from the

traditional door-to-door enumeration (every ten years for the whole population) to a yearly

register-based sample survey, combining the use of administrative sources with annual

surveys (Chieppa et al. 2018; Citro 2014; Crescenzi 2015; Righi et al. 2021). A further

advantage of these data collection methodologies is the greater containment of the census

participation burden: as noted by UNECE (2018), the response burden on the population is

lower with a combined census, both because the number of questions is reduced (since

some information is available from the population register), and because the physical

presence of a stranger in people’s homes is avoided (which could be a reason for a refusal

to participate, especially in a pandemic situation).

The PPHC foresees two different yearly sample surveys: an Areal sample and a List

sample. The first is only used to update the population register and it is only conducted

face-to-face; it is not of interest for a comparison of different data collection modes.

Therefore, we analyse the List sample, which presents a most interesting survey design

and is carried out in order to collect information on socio-economic issues that is not

available in the population registers. The List sample is based on a yearly sample size of

about 950,000 households (Table 1). Around 2,400 municipalities (of the 7,904

municipalities in Italy) are involved in the survey every year.

The List survey design is “sequential”, and respondents may choose the most suitable

mode to respond to the questionnaire. The first survey mode proposed by the survey

researcher is the CAWI mode, since it is the cheapest and quickest. Helplines are provided

to the respondents in case they need more information or specific support in answering to

the survey. If the CAWI is not answered, respondents are contacted, in order to recall the

interview and to offer help in the filling of the questionnaire. However, as a second option,

respondents can go in person to the many offices that are present in each municipality and

that are devoted to help respondents, and to conduct a “face to face” interview. Finally, as

a last option, it is foreseen also the traditional interviewer administered survey at home, if

required by the respondent for any reason (Istat 2018). The share of CAWI responses is

therefore unknown “a priori”.

Data are collected at the household level, as a unique questionnaire is provided to

collect the data. Households included in the List sample receive an official letter from Istat,

giving information about the importance of the survey and the fact that answering is

mandatory by law, and providing the credentials for answering the census questionnaire

online. The letter is addressed to the oldest member of the household, who is assumed to be

the one who will answer the questionnaire, providing information on the whole household.

The questionnaire is written in Italian, but a complete guide is provided in 14 foreign

languages.
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It is only if the household cannot fill in the CAWI that they can answer in a face-to-face

interview that must take place in a public office responsible for data collection.

Under the auspices of NSIs, this share should be close to 100%. In Italy, the use of the

internet is quite widespread, with 76% of households having internet access and 75%

having a broadband connection in 2019. However, there is still a large digital divide

between households, mainly due to generational and cultural factors. Almost all

households with at least one member younger than 18 years old have a broadband

connection (95%), while among households composed exclusively of people over the age

of 65, this share falls to 34% (Istat 2019). Since the share of CAWI respondents is stuck at

50% of the population, the diffusion of the internet would suggest the possibility of a much

higher share of CAWI responses, provided that targeted actions such as those identified in

this study are conducted on the profiles of respondents.

Although the PPHC is not a panel, since households are included in the sample only

once, the profiling of web respondents could be of great support in the successive data

collection occasions, because the survey is repeated over time with the same design.

3. Data

The PPHC List sample, for each household, provides information on the survey mode, the

socio-demographic characteristics of the household, and the geographical features of the

municipality where the household resides.

The socio-demographic information available on households is household size,

household citizenship, age of youngest household member, and highest educational level

in the household. The household size indicates the number of people residing in the same

dwelling. The citizenship variable classifies the households based on the citizenship of the

members: all foreigners, all Italians, or a mixed citizenship household. The youngest

household-member age variable indicates the age of the youngest member of the

household; this variable was considered in the analysis on the basis of the hypothesis that

the presence of young individuals in a household facilitates the use of information

technology and therefore has an effect on the decision to fill in the questionnaire online.

Minors are not included in the definition of this variable since the census questionnaire can

only be filled in for members who are over 18 years of age. The highest educational

qualification held by at least one member of the household is classified according to the

Table 1. Sample size – municipalities and households by population size of municipalities – 2019.

Demographic size of Italian municipalities
(number of inhabitants)

Municipalities Households

Up to 5,000 1,028 190,458
From 5,001 to 20,000 815 288,360
From 20,001 to 50,000 376 184,593
From 50,001 to 100,000 98 120,149
From 100,001 to 250,000 34 94,226
More than 250,000 12 73,253
Total 2,363 951,039

Source: 2019 PPHC-Istat
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primary, secondary and tertiary levels that group together the grades (0, 1, 2), (3, 4), and

(5, 6, 7, 8) of the International Standard Classification of Education (ISCED).

All these features are coherent with the predictors accounted for in previous studies.

Besides the literature cited in the Introduction, it is worth mentioning the work of Hargittai

(2002), which is one of the first studies on the profiling of online skills, employing

personal and familial features, such age and education. Similar predictors were chosen by

Durrant and Steele (2009).

Furthermore, in order to take into account the strong territorial disparities, both in socio-

economic issues and in digitalization (Benassi and Naccarato 2017; Cellini and Torrisi 2014;

Cracolici et al. 2007; De Clercq et al. 2020; Santarelli and Cottone 2009), several

characteristics of municipalities are considered in the analysis: local capital or metropolitan

city, municipality population size, municipality degree of urbanisation, and altitudinal zone.

Local capitals or metropolitan cities are those municipalities which are the seats of their

boroughs. The variable ‘municipality population size’ classifies municipalities on the basis of

the number of their inhabitants, from very small municipalities (up to 5,000 inhabitants) to

very large ones (more than 250,000 inhabitants), while the degree of urbanisation is a

classification of municipalities introduced by Eurostat and based on a criterion of

geographical contiguity and on minimum population thresholds (European Union 2017). The

territory is classified as one of three types of area: (1) a densely populated area (city or large

urban area), defined as clusters of contiguous cells of 1 km2, with a density of not less than

1,500 inhabitants per km2 and a population of not less than 50,000 inhabitants; (2) an area with

an intermediate density level (or small urban area), defined as clusters of contiguous cells with

a density of not less than 300 inhabitants per km2 and a population of not less than 5,000

inhabitants; and (3) a sparsely populated area (or rural area), defined as single cells (rural) not

classified in the previous groups (Eurostat 2021). In order to attribute this classification to

single municipalities, the areas identified according to the degree of urbanisation are

compared with the municipal boundaries. The altitudinal zone defines homogeneous areas

constituted by aggregating contiguous municipalities on the basis of threshold values for the

altitude (elevation above sea level). According to this classification, mountain, hill, and plain

areas can be identified. The mountain and hill areas are divided into inland mountain and

inland hill areas and coastal mountain and coastal hill areas, respectively, in order to take

account of the moderating action of the sea on climate. The altitudinal zone is taken into

account in the analysis since it could affect the choice to answer online due to the different

internet access capacity of mountainous areas, which presents some specificities regardless of

the population density and the composition of population (Reynaud et al. 2020).

Municipalities can be grouped into regions, which are very important territorial units

that are responsible for various economic and social policies, or into macro-regions: the

North, the Centre, and the southern areas of Italy plus the two major islands, together

traditionally referred to as the “Mezzogiorno”.

Table 2 shows descriptive statistics on the frequency distribution of the households

according to the CAWI or not CAWI survey mode and the explanatory variables included

in the analysis (Section 5). The share of CAWI respondents varies according to the

household citizenship, size, age of the youngest member, and highest education level in

the household. The size and sign of the relationships are presented (when significant) in

Subsection 5.1. At this point of the study, however, it is worth mentioning that for instance

Grimaccia et al.: Characteristics of Respondents to Web Interviews 7



the share of CAWI respondents increases with higher level of education. The Chi-square

tests referring to these distributions preliminarily suggest that there are relationships

between the type of response and the variables used to define profiles.

4. Methods

The first step of the research is to identify the profile of the online respondent households

(CAWI-H) and, more specifically, to identify the variables that are associated with the

households with the highest probability of responding via the web.

To compute the probability that a family responds in CAWI mode, we estimate a

multilevel logit model that also takes into account territorial specifications (Goldstein

2010). The endogenous variable is the dichotomous variable that assumes the value 1 if the

family responded in CAWI mode, and 0 otherwise (Durrant and Steele 2009; Keusch et al.

2019; Mohorko et al. 2013), the binary response Yi defined as follows:

Yi ¼
0 Not CAWI response

1 CAWI response

(
ð1Þ

where i (i ¼ 1, : : : , n) denotes the household.

Table 2. Households by survey mode, and familial and social characteristics(a).

Survey mode

Household characteristics
Not CAWI

(%)
CAWI

(%)

Composition
of the CAWI
sample (%)

Number
of cases

Household size 1 54.01 45.99 27.4 245155
2 50.98 49.02 28.6 239632
3 45.67 54.33 21.6 163624
4 43.93 56.07 17.6 128977
5 or more 56.16 43.84 4.8 25294

Pearson Chi2(4)¼5.50Eþ03; Pr¼0.000

Household All foreigners 75.27 24.73 1.7 28296
citizenship All Italians 48.86 51.14 95.9 770700

Mixed citizenship 57.29 42.71 2.4 23431
Pearson Chi2(2)¼8.10Eþ03; Pr¼0.000

Youngest 18-34 46.98 53.02 31.4 243631
household-member 35-64 47.23 52.77 45.8 356701
age 65+ 57.78 42.22 22.8 222095

Pearson Chi2(2) ¼ 7.40 þ E03; Pr ¼ 0.000

Household Primary 65.03 34.97 24.9 293213
highest educational Secondary 46.59 53.41 44.1 339277
level Tertiary 32.90 67.10 31.0 189937

Pearson Chi2(2)¼5.00Eþ04; Pr¼0.000
Total 50.01 49.99 100.0 822427

Source: 2019 PPHC-Istat
(a)There are no missing cases in the data set for the variables used here.
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The auxiliary variables are the social and demographic characteristics of the households

illustrated in Section 3.

The multilevel model can be written as:

log
p
ðsÞ
ij

p
ð0Þ
ij

 !
¼ bðsÞxðsÞij þ uðsÞj ð2Þ

where j ( j ¼ 1, : : : k) indicates the territorial level, pðsÞij ¼ Pr ð yij ¼ sÞ; s ¼ f
Not CAWI
CAWI ; xðsÞij

is a vector of household level covariates, b (s) is a vector of coefficients, and uðsÞj is a

random effect representing unobserved regional characteristics.

By means of the uðsÞj component, the multilevel model (2) takes into account the

relationship between a CAWI response and the region where the household resides. In this

way, the model acknowledges the unobserved regional influences on the different types of

response, and the estimates of the coefficients referring to the explanatory variables are

more accurate. The use of random effects is justified by the fact that the respondent living

in a region is a feature that does not change over the period accounted for in the model.

As a further check on the robustness of the results and to illustrate their stability to

various model specifications, we test whether a model including region fixed effects fits

the data better than the multilevel model. The estimated logistic regression with binary

response Yi in Equation (1) (Wooldridge 2012) is:

logitðgiÞ ¼ log
gi

1 2 gi

� �
¼ b0 þ b1x1i þ b2x2i þ b3x3i þ : : : ð3Þ

in which the probabilities gi ¼ Pr(Yi ¼ 1jxi) are related to a linear predictor b0 þ b1x1i þ

b2x2i þ b3x3i þ : : : through the logit function.

In Appendix (Section 7), we present the results of the logit model with different

specifications, including joint effects of the explanatory variables.

In this first phase of the research, the profile of the households with the highest

probability of answering via the web is identified. All in all, the number of possible

combinations of categories (i.e., profiles) is 135, since there are four exogenous variables

used in the model (2): household size, with five categories; household citizenship, with

three categories; youngest household-member age, with three categories; and household

highest educational level, with three categories (Table 2). Among the 135 profiles, we give

the name ‘CAWI-H’ to the profile that presents the highest probability of answering via

CAWI, that is to say, the combination of the categories that presents the highest values of

the multilevel model coefficients. Each household, then, presents a certain profile because

it differs from the CAWI-H profile for one or more categories. Therefore, it is possible to

establish a measure of the distance between the profile of a household and the CAWI-H

profile, and to compute this distance for each household.

The maximum possible value for this distance is 4 (if all the explanatory variables lie in

a category that is different from the CAWI-H profile), while the minimum value is equal to

0 if the household presents the CAWI-H profile. The higher the value of the distance, the

lower the probability that the specific family type will respond to on the web.

Grimaccia et al.: Characteristics of Respondents to Web Interviews 9



Since the variables that define the profiles are all categorical, the measure employed is

the Jaccard distance (Jaccard 1908; McCormick et al. 1992), defined as follows:

Di ¼
Mc;i

M1 þM2 þM3 þM4

ð4Þ

where i corresponds to a single household, Mk; k ¼ 1; : : : ; 4 is the number of categories

for each categorical variable, and Mc,i is the number of categories for which the CAWI-H

profile and the profile of household i are different. For instance, if household i has the same

size and age of the youngest member as CAWI-H, but different citizenship and level of

education, then Mc,i is equal to 2.

To obtain a measure that varies between 0 and 1, the relative distance DRi is calculated

by dividing the value Di in equation [4] by the maximum value.

Households with the same value of the distance DRi have similar characteristics and,

thus, the same probability of answering by a CAWI.

One of the most common methods for controlling for differential nonresponse in mixed-

mode surveys is to use the estimated propensity of a respondent to participate in each

mode. These propensity scores are typically estimated from a generalised linear model

(e.g., probit, logit), where a given mode is treated as a possible outcome, conditioned on

available covariates information, often limited to participant demographics, as is done by

Hox et al. (2015), and more recently by Maslovskaya et al. (2019) and Rivero et al. (2019).

However, in this article, we propose a procedure that would allow survey design

researchers to control the distance from the CAWI-H profile in the actual data collection

and also before proceeding to a new phase of data collection, while propensity scores can

only be estimated after collecting the data.

In order to plan interventions for the promotion of web surveys in different territories, it

is useful to study where households present the strongest ‘resistance’ to CAWI and the

characteristics of the areas of the country in which it is more important to intervene. The

third and final step of the article is then to create and analyse a measure of ‘Municipality

Resistance’ to CAWI data collection. The Municipality Resistance (MR) is computed as

the average of the distances (DRi) for all the households residing in a given municipality. In

this way, this average can be considered as the score assigned to the particular

municipality. Using the MR as an endogenous variable in a regression model in which the

covariates are the geographical variables (Section 3), it is possible to identify the

characteristics of municipalities that are predictors of the MR. The characteristics of the

territories employed in the analysis are all variables associated with the penetration of the

internet (Ciapanna and Roma 2020; Rados 2021).

5. Results

The results provided by the multilevel model are presented in Subsection 5.1. In

Subsection 5.2, the distribution of households, based on their distance from the CAWI-H

profile, is illustrated. Finally, in Subsection 5.3, the estimation of a model that identifies

the geographical predictors of municipalities’ ability to collect responses via the web is

presented.
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5.1. Determinants of a CAWI Response

As illustrated in Section 4, a multilevel binomial model is estimated to explore the effects

of household characteristics on the probability of CAWI or not CAWI responses. More

specifically, the CAWI-H profile is a household whose members are all Italian, with at

least one member with a tertiary level of education, in which the youngest member is

between 35 and 64 years old, and, to a lesser extent, having four members (Table 3).

The highest coefficient for a CAWI response refers to households in which the level of

education is highest. For people with a secondary or tertiary education, the coefficients

referring to the probability of answering via a CAWI method are significantly higher than

for those who have a primary level (respectively 0.734 and 1.350).

Moreover, households exclusively composed of foreigners present a lower probability

of using the CAWI option than those with at least one Italian member. In particular,

households whose members are all Italian present a coefficient equal to 1.379.

The empirical evidence also suggests that the CAWI response rate of households where

the age of the youngest member is between 35 and 64 years old is significantly higher than

the rate of households where the age of the youngest member is between 18 and 24 years

old. Households composed only of elderly people present the lowest probability of a

CAWI response.

Table 3. Estimate of parameters of multilevel logit model.

CAWI Coefficient Std. Err. P . |z|

Household size (Base ¼ 1)
2 0.012 0.006 0.05
3 0.018* 0.008 0.02
4 0.112*** 0.008 0.00
5 or more -0.233*** 0.012 0.00

Household citizenship (Base ¼ All foreigners)
All Italians 1.379*** 0.015 0.00
Mixed 0.711*** 0.020 0.00

Youngest household-member age (Base ¼ 18–34 years old)
35–64 0.050*** 0.006 0.00
65þ -0.045*** 0.008 0.00

Household highest educational level (Base ¼ Primary)
Secondary 0.734*** 0.006 0.00
Tertiary 1.350*** 0.007 0.00

Constant -2.090*** 0.016 0.00

Region
var(_cons) 3.50E þ 08 3548290

LR test vs logistic model: Chibar2(01) ¼ 40684.27, Prob . ¼ Chibar2 ¼ 0.0000

Legend: * p , .05; ** p , .01; *** p , .001

Source: 2019 PPHC-Istat.
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The analysis of the size of the household offers more equivocal results: the coefficient

referring to a CAWI response is the same in households with up to three members, it

increases for households with four members, while it significantly decreases in households

with five or more members.

All in all, the survey designer should pay particular attention to households with

foreigners, those without any members with at least a secondary-level education, and

households whose members are all elderly.

Finally, the estimate indicates that the effect of education in choosing a CAWI prevails

over the other determinants. The results are coherent with those of Keusch et al. (2019),

Maslovskaya et al. (2019), and Mohorko et al. (2013). In fact, education in general been

found to be among the determinants of response in surveys, with a higher level linked to a

higher propensity to answer through the CAWI option (Hox et al. 2015).

It is worth noting that the results are coherent with those obtained by estimation of the

logit model in Appendix.

We found that the likelihood-ratio test (LR), which evaluates the goodness of fit of two

comparable models, justifies the use of a multilevel model (Table 3). Indeed, the result

confirms the validity of the multilevel model, compared to the logistic regression,

providing a significant coefficient (Maddala and Lahiri 2010).

5.2. Households’ Distance from the CAWI-H Profile

Tables 4 and 5 show the distribution of households by survey mode and their relative

distance DRi.

The large majority (69%) of households that present the CAWI-H profile (DRi ¼ 0) do

indeed answer through a web interview. By contrast, the households that are most distant

from the identified CAWI-H profile (DRi ¼ 1) typically answer via a traditional mode.

The dependence between the distance from the CAWI-H profile and the survey mode is

significant, according to the Chi-square test results (Table 4). Altogether, the probability of

answering through a CAWI questionnaire decreases as the distance from the CAWI-H

profile increases. Therefore, the results suggest that our models select useful categories

that identify the characteristics of respondents with the highest probability of a CAWI

response. In this way, we also recognise those profiles for which contact with the

Table 4. Household distribution by type of response and relative distance from CAWI-H profile.

Relative distance from CAWI-H Survey mode

CAWI NOT CAWI Total

0 69.11 30.89 100
0.25 54.70 45.30 100
0.5 47.42 52.58 100
0.75 45.89 54.11 100
1 27.35 72.65 100
Total 49.99 50.01 100

Pearson Chi2(4)¼1.30Eþ04; Pr¼0.000

Source: 2019 PPHC-Istat.

Journal of Official Statistics12



respondents (often under the control of the survey designer) like an e-mail solicitation

plan, survey awareness, and so on, is most necessary and useful.

The study of the different profiles and their distance from the CAWI-H profile allows us to

highlight two situations: those families for which a CAWI response is almost certain (0) or

very unlikely (1), and those households that are on the border between being CAWI and being

not CAWI. Considering only the households presenting the lowest relative distance from the

CAWI-H profile (e.g., the first two groups in Table 4), the gain in the share of web respondents

that it would be obtained if all these HHs would respond in a CAWI mode is 7.4 percentage

points. Therefore, the share of CAWI responses would increase from 49.99 to 57.37%, if all

the HHs with a distance from CAWI-H lower than 0.5 would actually respond via web.

The geographical effects that appear in the models to be significant for the probability of

responding through a CAWI method (Table 3) become apparent in the analysis of CAWI-H

distances (Table 5).

In the North and Centre of the country, the households that have a distance of 0.5 from the

CAWI-H profile also have a 50% probability of answering through a web questionnaire. By

contrast, in the Mezzogiorno the probability is much lower (35%). This means that even

households with a CAWI-H profile have more difficulty in answering via the web. Moreover, in

the Mezzogiorno area 43% of households with a CAWI-H profile do not choose to answer via

the web. Therefore, the survey designer should pay more attention to the less developed areas.

Table 5. Household distribution by survey mode, relative distance from CAWI-H, and macro-region.

Survey mode

Macro-region Relative distance from CAWI-H CAWI NOT CAWI Total

North 0 77.27 22.73 100
0.25 63.25 36.75 100
0.5 55.83 44.17 100
0.75 58.61 41.39 100
1 29.56 70.44 100
Total 58.91 41.09 100
Pearson Chi2(4) ¼ 7.30Eþ03 Pr¼0.000

Centre 0 70.84 29.16 100
0.25 58.46 41.54 100
0.5 50.65 49.35 100
0.75 51.40 48.60 100
1 29.83 70.17 100
Total 53.77 46.23 100
Pearson Chi2(4) ¼ 2.70Eþ03; Pr¼0.000

Mezzogiorno 0 56.83 43.17 100
0.25 39.88 60.12 100
0.5 35.06 64.94 100
0.75 31.81 68.19 100
1 16.86 83.14 100
Total 36.55 63.45 100
Pearson Chi2(4) ¼ 3.90Eþ03; Pr¼0.000

Source: 2019 PPHC-Istat.
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This methodology can be applied to any country, since it is widely known that territorial

differences, such as the urbanisation or geo-morphology of the territory, can be important

predictors of digitalisation and other socio-economic features.

5.3. The Geographical Distribution of Municipalities with Web Respondents

The MR to CAWI mode increases when moving from the municipalities of the northern

regions of Italy to the central areas and increases again when moving to the municipalities

of the southern regions, as shown in Figure 2.

To verify the effects of the geographical characteristics of the municipalities on the MR

variable, a generalised linear model (GLM) is estimated. Table 6 shows the results of the

estimated model, where the endogenous variable is the MR, and the exogenous variables

are the geographical variables (Section 4).

The demographic dimension of the municipality is important in explaining the MR to a

CAWI response, and it is negatively related to the distance from the CAWI-H profile.

Therefore, small centres with fewer than 20,000 inhabitants should be the focus of the

survey designer’s attention. In particular, local capitals or metropolitan cities present the

highest probability of the CAWI-H profile. Indeed, internet users generally experience

faster download and upload speeds in urban areas, although there is high variability in the

internet coverage in particular territories (Rizzato 2020).

The results shown in Table 6 indicate that the geographical differences among the

macro-regions are significant; thus, the model is also estimated separately for the North,

the Centre, and the Mezzogiorno, in order to find out the specific details for each macro-

region. In the Mezzogiorno, the MR is significantly higher (0. 0186).

The degree of urbanisation has no effect on the MR in the North and Centre of Italy,

while in the Mezzogiorno small towns and rural areas are instead related to a smaller

0.514 – 0.521
0.508 – 0.514
0.503 – 0.508
0.496 – 0.503

Fig. 2. Distribution of “Municipality Resistance” (MR – Regional Averages), Italy 2019.
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Table 6. Estimate of parameters for generalised linear model and standard errors (in parentheses).

Municipality
Resistance

Items Italy North Centre Mezzogiorno

Population size (Base ¼ Less than 5,000 inhabitants)
From 5,001 to
20,000 inhabitants

0.0023 0.0013 -0.0017 .0073*

(0.0015) (0.0019) (0.0038) (0.0031)
From 20,001 to
50,000 inhabitants

-.00437* -.0104*** -0.0067 0.0048

(0.0020) (0.0028) (0.0052) (0.0038)
From 50,001 to
100,000 inhabitants

-.00754* -.0140* -0.0128 -0.0020

(0.0037) (0.0064) (0.0078) (0.0058)
From 100,001 to
250,000 inhabitants

-0.0115 -0.0166 0.0050 -0.0156

(0.0064) (0.0094) (0.0160) (0.0108)
Over 250,000 inhabitants -.01958* -.0268* -0.0400 0.0047

(0.0088) (0.0126) (0.0211) (0.0154)
Altimetric area (Base ¼ Inland mountain)

Coastal mountain -0.0038 -0.0186 0.0141 0.0029
(0.0045) (0.0128) (0.0147) (0.0055)

Inland hill .00374* 0.0029 0.0044 .0077**
(0.0016) (0.0022) (0.0038) (0.0029)

Coastal hill -.00422* -.0218*** -0.0032 0.0004
(0.0020) (0.0043) (0.0044) (0.0031)

Plain .0114*** .0115*** 0.0007 .0133***
(0.0016) (0.0019) (0.0060) (0.0033)

Municipality urbanisation degree (Base ¼ Densely populated city or area)
Small town and suburb
or intermediate
population density zone

-.01047*** 0.0015 0.0054 -.0274***

(0.0025) (0.0034) (0.0125) (0.0039)
Rural area or sparsely
populated area

-.00832** 0.0047 0.0029 -.0231***

(0.0029) (0.0037) (0.0132) (0.0050)
Local capital/Metropolitan city (Base ¼ No)

Yes -.0355*** -.0212*** -.0246** -.0497***
(0.0038) (0.0061) (0.0082) (0.0061)

Macro-region (Base ¼ North)
Centre .0051**

(0.0017)
Mezzogiorno .0186***

(0.0013)
Constant .4601*** .4504*** .4537*** .4869***

(0.000) (0.039) (0.0138) (0.054)

R2 0.1114 0.168 0.1437 0.1983
Chi2 542.99 236.65 56.539 201.31
AIC -10554 -5372.6 -1612.5 -3646

Legend: * p , .05; ** p , .01; *** p , .001

Source: 2019 PPHC-Istat.
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distance from the CAWI-H profile. In the Mezzogiorno, the effect of being a local capital

is maximal: living in one of the principal towns makes a real difference with respect to the

probability of a CAWI response.

6. Final Remarks

For any statistical survey, web interviews imply considerable advantages: first of all, a

reduction of costs, and then the containment of the interviewer effect (Bethlehem et al.

2011; Scherpenzeel 2011), and the timeliness of data collection. These advantages become

even more significant when reference is made to official statistical surveys because of the

large size of the samples and the number of variables surveyed, as well as the high

standards that must be guaranteed.

The interest in identifying the profile of CAWI respondents is that web surveys still face

some resistance from the population. In order to foster a positive attitude towards web

interviewing, an awareness campaign is necessary, and this would be more effective if it is

targeted at a specific population.

It is also necessary to adapt the data collection strategy to geographical imbalances. For

instance, small centres, rural areas, and some remote and mountainous zones show the

highest resistance to filling in census questionnaires online and should be made target of

specific actions by the survey designer.

All over the world, NSIs employ population lists to design surveys, and to define samples.

In these population or firms’ registers, some characteristics are included, and the amount of

information available in advance is further increasing because the huge development

of registers and archives. The variables employed in this study are those available in the lists

of population that are used before the survey. Therefore, these variables are known in

advance and they can be employed by the survey researchers to design specific actions to

enhance web responses before the actual data collection. This study thus proposes a

procedure to better exploit this information that is available before the survey.

This contribution has shown how some structural characteristics of households allow us

to classify them on the basis of an attitude: a preference for filling in the population census

questionnaire online, and that this attitude refers to household that generally are classified

as living in less fragile conditions (Benassi and Naccarato 2017; D’Ambrosio 2003).

In conclusion, families with a higher level of education, composed of Italian citizens,

with at least one member younger than 65 years old, and who live in urban areas are those

for whom the probability of answering via the web is highest; they are also those who

historically live in better economic and social conditions. We can therefore conclude that,

regardless of the advantages of a statistical survey, the probability of answering online can

be considered as a further sign of the conditions of greater or lesser social disadvantage in

which Italian families live.

Other than providing some new insights on the profiling of web respondents in mixed-

mode surveys, this research offers a procedure for calculating distances between profiles

that could be successfully employed for any other survey and used as a tool for planning

specific survey interventions to enhance web survey participation.

The classification of households in profiles identifies more homogeneous population

groups, and it could be useful in the design of successive survey occasions, with the aim of

Journal of Official Statistics16



reducing the variability of the estimates and, eventually, the sample size. Also, the

correction of partial or total nonresponse data would benefit from the profiling of

households, through the analysis of more homogeneous groups.

Nevertheless, further research could be devoted to an analysis of the stability over time

of the profiles and their geographical distribution. Having identified territorial differences

in the profiles, also identifying regional profiles could be an insight to further develop.

7. Appendix

Tables 7 and 8 show the results of a base model (M0) that takes into account only the

socio-economic characteristics of the households as described in Section 4; a model (M1)

that also considers the geographical macro-region variable; and models from model (M2)

to (M6) that include the variable indicating the region of residence and the joint effects of

the explanatory variables.

Grimaccia et al.: Characteristics of Respondents to Web Interviews 17
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A Multivariate Regression Estimator of Levels and Change
for Surveys Over Time

Anne Konrad1 and Yves Berger2

Rotations are often used for panel surveys, where the observations remain in the sample for a
predefined number of periods and then rotate out. The information of previous waves can be
exploited to improve current estimates. We propose a multivariate regression estimator which
captures all information available from both waves. By adding additional auxiliary variables
describing the information of the rotational design, the proposed estimator captures the
sample correlation between waves. It can be used for the estimation of levels and changes.

Key words: Generalized regression estimation; composite estimator; rotating samples.

1. Introduction

Repeated socioeconomic surveys are often the basis for evaluating changes and levels over

time (e.g., Smith et al. 2003). Estimates are usually based on repeated or rotational

surveys, which involve rotations, that is, units remain in a survey for a predefined number

of waves and then are replaced by new sampled units (e.g., Gambino and Silva 2009;

Kalton 2009; Eurostat 2012). There are different rotation schemes. In an in-for-x rotational

design the units remain in the sample for x consecutive waves and then are replaced by

new sampled units. In an x-(y)-z rotational design, the units remain in the sample for x

consecutive waves, leave the sample for y waves and then return for z consecutive waves.

Then they are dropped from the sample completely and replaced by new sampled units

(e.g., Bonnéry et al. 2020, 170). We shall consider two waves, but the proposed approach

can be extended to more than two waves (see Subsection 3.1).

Rotational designs give partially overlapping samples between waves. Thus, between

two consecutive waves, we have units sampled at both waves (the overlapping units), units

sampled only at the first wave (units that rotate out) and units sampled only at the second

wave (units that rotate in). The sample information from the previous wave can be used to

improve the current wave estimates. We expect to have more efficient estimates when the

variables are correlated over time (Steel and McLaren 2008).

We propose a “multivariate generalised regression” (GREG) estimator that exploits the

sample overlap between two waves, as well as the non-overlapping samples containing the

units observed in only one of the waves. The proposed estimator includes “extended design

variables” as additional auxiliary variables, which capture the sample correlation between

the variables and the sample rotation. Thereby, it borrows strength from all available sample

information on the variables of interest and the auxiliary variables from both waves. This

may provide efficient change and levels estimates. Furthermore, the extended design
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variables capture the sample design information, such as stratification and unequal

probabilities. The proposed estimator can be applied for rotational samples of any rotation

scheme or for the simultaneous estimation of two or more consecutive waves; for example,

impact evaluation surveys with a baseline and a post-intervention data collection.

The idea of including the sample information on variables of interest from previous

waves is not new. Hansen et al. (1953) and Gurney and Daly (1965) introduced a class of

composite estimators that exploit the sample overlap between two consecutive waves. The

“modified regression estimator” of Singh et al. (1997) includes additional auxiliary

variables based on the variables of interest from previous waves. However, for the new units

that rotate in, the values of these additional variables are unknown and usually imputed. The

control totals of the additional variables are also unknown and have to be estimated, which

leads to a variance inflation of the current wave estimate. In contrast, the proposed estimator

neither relies on imputation nor the estimation of unknown control totals.

The article is organised as follows. Section 2 introduces the basic framework on

rotational surveys and GREG estimators. In Section 3, we derive the proposed multivariate

GREG estimator and its properties. Asymptotic optimality and variance estimation is

investigated in Section 4. Alternative estimators considered in the literature such as the

modified regression estimator are discussed in Section 5. In Section 6, a Monte Carlo

simulation study compares the proposed multivariate GREG estimator with the modified

regression estimator. Section 7 summarises our results.

2. Rotation Design and Generalised Regression Estimator

Let U ¼ {1, : : :, i, : : :, N} be a population of N units. Without loss of generality, we

consider two waves (t ¼ 1 and t ¼ 2). The proposed estimator introduced in Section 3, will

be extended to more than two waves in Subsection 3.1. We assume that the population

units are the same in both waves. In practice, a change in a population can be handled by

adjusting the weights and the sampling frame in the cases of birth, death and emigration.

Let s1 be the first wave sample of size n1 selected without-replacement from U. The

first-order inclusion probability of unit i for wave 1 and 2 are denoted respectively by

pi1 ¼ Pr(i [ s1) and pi2 ¼ Pr(i [ s2), where Pr(·) denotes the probability with respect to

the design. We assume that both sample sizes n1 and n2 are fixed. The common sample is

s12 ¼ s1 > s2, with a sample size n12 ¼ #s12, where 0 # n12 # n1. We assume that n12 is

fixed, because this is a common feature of rotational designs. It is common practice to

assume that the units that rotate out cannot rotate in; that is, Pr{i [ (s2 \ s1)ji [ s1} ¼ 0.

Stratification is often used in practice. We suppose that the population U is stratified into

H strata Uh, such that <H
h¼1Uh ¼ U. We assume that stratification is the same at both

waves. Let st,h be the t-th wave sample of size nt,h selected without-replacement from the

population Uh, where t ¼ 1 or 2. At wave t, the overall sample is st ¼ <H
h¼1st;h with a total

sample size nt ¼
PH

h¼1nt;h. We assume that we have a rotation within strata, that is, the

common sample within Uh is denoted by s12;h ¼ s1;h > s2;h, with a sample size

n12;h ¼ #s12;h, fixed by design. The ratio uh ¼ n12;h=n1;h is the fraction of the overlap

within Uh. The quantities uh are allowed to vary between strata.

The objective is to estimate unknown population totals of a variable of interest y, for

different waves. The total of wave t is
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tyt
:¼

i[U

X
yit;

where yit is the value of y for a unit i [ U at wave t. The Horvitz and Thompson (1952)

estimator

t̂yt
:¼

i[st

X yit

pit

is a design-unbiased estimator of tyt
. For estimation of a domain of interest, we impose

yit ¼ 0 for the units i outside the domain.

The efficiency can be improved by incorporating auxiliary information in the estimation

process. A widely used model-assisted estimator based on auxiliary information, is the

generalised regression (GREG) estimator (Hansen et al 1953; Cassel et al. 1977; Särndal,

1980; Isaki and Fuller 1982; Wright 1983). Let xit be the Qt-vector of auxiliary variables

for a unit i at wave t. Suppose that the vector of population totals txt ¼
P

i[U xit at wave t,

is known from census, registers, or other reliable sources. The customary GREG estimator

is defined by

t̂ g
yt
:¼ t̂yt

þ B̂
`

t ðtxt
2 t̂xt

Þ ð1Þ

where

t̂xt
:¼

i[st

X xit

pit

; ð2Þ

B̂t :¼
i[st

X xitx
`
it

pit

0

@

1

A

21

i[st

X xityit

pit

: ð3Þ

The estimator (1) is motivated by the linear regression model

yit ¼ x`
it bt þ 1it; ð4Þ

specifying the relationship between yit and xit, where E(1it) ¼ 0, V (1it) ¼ s 2 and E(1it1jt) ¼ 0

for all i – j. If V(1it) ¼ y its
2, a weighted least-squares estimator can be used instead of

Equation (3) to reflect heteroscedasticity. In order to simplify the notation, we shall assume

y it ¼ 1. Nevertheless, when y it – 1, they can be easily added to the regression coefficient (13)

of the proposed estimator. The use of y it is more relevant for business surveys.

Homoscedasticity (y it ¼ 1) is often assumed in household surveys (Steel and Clark 2007, 52).

The asymptotic design-unbiased estimator (1) does not depend on whether the model (4)

holds or not. Its efficiency is driven by the predictive power of the model (cf. Särndal et al.

1992, 227, 239). Hereafter, we shall use a design-based approach, that is, the model (4)

shall not be used for inference.

3. Proposed Multivariate Regression Estimator

Let us consider the “combined sample” defined by the set sb ¼ s1 < s2 comprising all units

from both waves. The corresponding sample size of sb is denoted by nb ¼ #sb ¼ n1 þ n22

n12: Let the “extended weighted variable of interest” be defined by
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�yit :¼
yit

pit

d{i [ st} for all i [ sb and t ¼ 1; 2; ð5Þ

where d{i [ st} ¼ 1 if i [ st, and d{i [ st} ¼ 0 otherwise. Note that �yi2 ¼ 0 for all units

i [ sb \ s2 that rotates out. We also have �yi1 ¼ 0 for all units i [ sb \ s1 that rotates in.

Figure 1 is a visual representation of two waves, with units on the horizontal axis and the

two waves on the vertical axis.

The “extended weighted auxiliary variables” are defined by

�xit :¼
xit

pit

d{i [ st} for all i [ sb and t ¼ 1; 2: ð6Þ

The set of auxiliary variables used at t ¼ 1 can be different from the one used at t ¼ 2. The

set of auxiliary variables can also be the same. This is usually the case for panel surveys.

Note that Equation (2) can also be re-written as t̂xt
¼
P

i[sb
�xit. We also consider

“extended design variables” given by

zit :¼ ðzit;1; : : : ; zit;h; : : : ; zit;HÞ
`d{i [ st} for all i [ sb and t ¼ 1; 2

with zit,h ¼ 1 if the unit i belongs to stratum h in wave t, and zit,h ¼ 0 otherwise. The vector

zit represents the sampling design information given by the stratification. The Hadamard

product zi1+ zi2 will play a key role. It reveals the information induced by the rotation,

because it identifies the units within the common sample. Indeed, the h-th component of

zi1+ zi2 is equal to one if and only if the unit i belongs to the common sample of strata h.

This component equals zero if and only if the unit i rotates in or out. Thus, zit can be used to

describe the sample information given by the rotation and the stratification.

It can be verified that

i[st

X
zit ¼ nt and

i[sb

X
zi1+ zi2 ¼ n12; ð7Þ

where

nt :¼ ðnt;1; : : : ; nt;h; : : : ; nt;HÞ
`;

n12 :¼ ðn12;1; : : : ; n12;h; : : : ; n12;HÞ
`:

Wave t = 1

Wave t = 2

Rotate out Rotate in

Combined sample sb = s1 ∪ s2

Overlap s12 = s1 ∩ s2

Sample s1

Sample s2

yi2 = 0
xi2 = 0
zi2 = 0

yi1 = 0
xi1 = 0
zi1 = 0

Fig. 1. Visual representation of two waves. The vertical axis represents the two waves: t ¼ 1 and t ¼ 2: The

horizontal axis represents the units of the combined sample sb ¼ s1 < s2: The sample s1 and s2 are given in two

different gray scales: for the sample s1 and for the sample s2.
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Equations (7) hold, because we have stratified design and we have a rotation within strata.

Let �yi ¼ ð�yi1; �yi2Þ
` be the “combined extended variable of interest” of wave 1 and wave

2. We also pool together the extended weighted auxiliary variables and the extended

design variables into a single vector gi of dimension (Q1 þQ2 þ3H), given by

gi :¼ {�x`
i1 ; �x

`
i2 ; z

`
i1 ; z

`
i2 ; ðzi1+ zi2Þ

`}`: ð8Þ

This new auxiliary variable gi contains the original auxiliary variables xit, the stratification

variables zit and the variables zi1+ zi2 which specify the rotation within strata.

Berger et al. (2003) proposed using the stratification variables as auxiliaries within a

GREG estimator, when we have a single-stage stratified sampling designs. This has the

merit of achieving asymptotic optimality. The resulting estimator is easy to implement and

does not rely on joint-inclusion probabilities. The proposed multivariate GREG estimator

(9) is based on a similar idea, except that we use the additional variables zi1+ zi2 to capture

the rotation.

The proposed multivariate GREG estimator for the unknown vector ty ¼ ðty1
; ty2
Þ` of

totals, is defined by

t̂greg
y :¼ t̂y þ B̂

`

g ðtg 2 t̂gÞ; ð9Þ

where

t̂y :¼ ðt̂y1
; t̂y2
Þ`; ð10Þ

tg :¼ ðt`
x1
; t`

x2
; n`Þ`; ð11Þ

t̂g :¼ ðt̂`
x1
; t̂`

x2
; n`Þ`; ð12Þ

B̂g :¼
i[sb

X
cigig

`
i

0

@

1

A

21

i[sb

X
cigi �y

`
i ; ð13Þ

n :¼ ðn`
1 ; n

`
2 ; n

`
12Þ

`; ð14Þ

ci :¼ 1 2 Prði [ sbÞ: ð15Þ

The matrix (13) is a regression coefficient matrix of dimension (Q1 þQ2 þ3H) £ 2.

We introduce the ci to achieve asymptotic optimality (see Section 4). Since sb ¼ s1 < s2,

we have Pr(i [ sb) ¼ pi1 þpi22Pr(i [ s12). Now, since s12 ¼ s12 > s1; Prði [ s12Þ ¼

Prði [ s1ÞPrði [ s12ji [ s1Þ: Thus,

Prði [ sbÞ ¼ pi1 þ pi2 2 pi1Prði [ s12ji [ s1Þ: ð16Þ

The conditional probability Pr(i [ s12 j i [ s1) depends on the design and can be

approximated by uh ¼ n12;h=n1;h where Uh ] i. Therefore, hereafter we shall use

ci ¼ 1 2 pi1 2 pi2 þ pi1uh; where h : Uh ] i: ð17Þ

Exact computation of Pr(i [ s12 j i [ s1) is of little use. With large sampling fractions,

the ci are less than 1 and can be interpreted as finite population corrections within Equation

(13). They should not affect the consistency of Equation (9), because they are weights used

Konrad and Berger: Regression Estimator for Survey Over Time 31



only within Equation (13). Note that with negligible sampling fractions ci < 1: The ci will

be also used for variance estimation (see Equation (27)).

Because of nonresponse, we could have units within the overlapping sample, which are

not available at both occasions. Re-weighting should be used to compensate for the

missing observations. In this case, within Equations (5) and (6), the basic weights p21
it

should be replaced by weights that takes the missingness into account.

Theorem 1 gives an alternative expression for the proposed estimator which will be used to

show its asymptotic optimality in Section 4.

Theorem 1. An alternative expression for t̂greg
y is

t̂greg
y ¼ t̂y þ B̂

`

x ðtx 2 t̂xÞ; ð18Þ

where

B̂x :¼ ð �X`CMz
�XÞ21 �X`CMz �y; ð19Þ

Mz :¼ I 2 ZðZ`CZÞ21Z`C; ð20Þ

�X :¼ ð�x`
1 ; : : : ; �x

`
nb
Þ`;

�y :¼ ð�y`
1 ; : : :; �y

`
nb
Þ`;

Z :¼ ðz`
1 ; : : :; z

`
nb
Þ`;

C :¼ diag{c1; : : : ; cnb
}; ð21Þ

�yi :¼ ð�yi1; �yi2Þ
`;

�xi :¼ ð�x`
i1 ; �x

`
i2Þ

`;

zi :¼ {z`
i1 ; z

`
i2 ; ðzi1+ zi2Þ

`}`; ð22Þ

tx :¼ ðt`
x1
; t`

x2
Þ`;

t̂x :¼ ðt̂`
x1
; t̂`

x2
Þ` ð23Þ

and I is the nb £ nb identity matrix.

The proof can be found in the Appendix (Section 8) and is based on the fact that the

Horvitz-Thompson estimators of the totals of the design variables are equal to their

population totals, that is, tg 2 t̂g ¼ {ðtx 2 t̂xÞ
`; 0`}`.

The underlying multivariate model that leads to Equation (18) is

yi ¼ x`
i bx þ 1i;

where yi :¼ ðpi1 �yi1; pi2 �yi2Þ
` and xi :¼ ðpi1 �x

`
i1 ;pi2 �x

`
i2Þ

`. This model takes the

correlation between waves into account, because variables of both waves are included

within yi and xi: Furthermore, t̂x contains the totals of both waves.

The proposed estimator borrows strength from both waves, by using both waves

auxiliary variables. Furthermore, it takes the stratification into account, because of the

extended design variables zi1 and zi2: In addition, the variable zi1+ zi2 exploits the rotation

between s1 and s2 induced by the sample overlap. In contrast, the regression coefficient of

the wave specific GREG estimator, given by Equation (3), does not involve design variables

or information about the rotation. It does not take into account the correlation between the

waves for the auxiliary variables and the variable of interest.
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3.1. Extension to More than Two Waves

The proposed estimator can be easily extended for more than two waves. Suppose we have

three consecutive waves. At wave 2, the multivariate GREG estimator produces two estimates:

t̂greg
y1

for wave 1 and t̂greg
y2

for wave 2, where t̂greg
y2

borrows strength from the information of

wave 1. At wave 3, we obtain a new estimate t̂gregð2Þ
y2

for wave 2 and an estimate t̂greg
y3

for wave

3. Therefore, we have two estimates for wave 2: t̂greg
y2

and t̂gregð2Þ
y2

. In official statistics, due to

the need for up-to-date information, the estimate t̂greg
y2

is immediately published at wave 2. The

second estimate t̂gregð2Þ
y2

is not published and should not be viewed as a revised estimate for the

second wave total. It is only used to produce t̂greg
y3

. Furthermore, there is no reason for t̂gregð2Þ
y2

to

be more precise than t̂greg
y2

, since both are based on the same controls and correlations. The

estimates t̂greg
y2

and t̂gregð2Þ
y2

are not used as controls to produce t̂greg
y3

, as with the modified

regression estimator (see Section 5).

The proposed estimator is flexible, because it can be also use to borrow strength over

more than two waves. In this case, the dimension of the vectors t̂greg
y and �yi is the number

of waves. The vectors �yi and �xi contain the variables of the waves considered. In this case,

the vector (22) may need to include additional components depending on the design. For

simplicity, we recommend to use ci ¼ 1 in this case.

For example, suppose we have three waves, the sample sizes of the overlapping sets

between the three samples from the same stratum can be fixed by design; i.e n12,h, n23,h, n13,h

and n123,h may be fixed, where ntl,h denotes the sample size of st,h > sl,h within stratum Uh.

Here, n123,h is the sample size of s1,h > s2,h > s3,h. This situation occurs when we use the

customary rotation group method. In this case, we need to include within zi: (i) zi1+ zi2 for the

fixed sample size of s1,h > s2,h, (ii) zi2+ zi3 for the fixed sample size of s2,h > s3,h, (iii) zi1+ zi3

for the fixed sample size of s1,h > s3,h, (iv) zi1+ zi2+ zi3 for the fixed sample size of

s1,h > s2,h > s3,h; that is, the vectors (8) and (14) should be replaced respectively by

gi ¼ {�x`
i1 ; �x

`
i2 ; �z

`
i1 ; �z

`
i2 ; ðzi1+ zi2Þ

`; ðzi2+ zi3Þ
`; ðzi1+ zi3Þ

`; ðzi1+ zi2+ zi3Þ
`}`;

n ¼ ðn`
1 ; n

`
2 ; n

`
12; n

`
23; n

`
13; n

`
123Þ

`;

with n23 :¼ ðn23;1; : : : ; n23;HÞ
`; n13 :¼ ðn13;1; : : :; n13;HÞ

` and n123 :¼ ðn123;1; : : :;

n123;HÞ
`:

4. Asymptotic Optimality and Variance Estimation

In this section, we show the asymptotic optimality when we have two waves; The

asymptotic optimal GREG estimator (Montanari 1987) of the vector of totals ty ¼

ðty1
; ty2
Þ` is

t̂opt
y :¼ t̂y þ B̂

`

optðtx 2 t̂xÞ; ð24Þ

where

B̂
`

opt :¼ V̂ðt̂xÞ
21dCovCov ðt̂x; t̂yÞ: ð25Þ

See Guandalini and Tillé (2017, 3) for more details. By using the Horvitz and Thompson

(1952) variance and covariance estimators, the expression (25) reduces to
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B̂opt ¼ ð �X
`D �XÞ21 �X`D�y; ð26Þ

where

D :¼ {ðpij 2 pipjÞp
21
ij ; i; j [ sb}:

Here, pij ¼ Pr(i, j [ sb) denotes the joint-inclusion probability of units i and j for the

sample sb. These are different from the joint probabilities of s1 and s2, because pij takes

the rotation into account. Since the probabilities pij are unknown, we propose to use the

asymptotic approximation of Hájek (1964), based on the assumption that the rotation

design is asymptotically rejective according to the design constraints (7). This

approximation is given by D<CMz, where C and Mz are defined respectively by

Equations (20) and (21) (Hájek 1981 chap. 14; Berger et al. 2003; and Deville and Tillé

2005). Now, by replacing this approximation of D within Equation (26), we obtain

Equation (19). Thus, the proposed estimator t̂greg
y is indeed optimal asymptotically.

A variance of the estimator (9) can be derived, based on principle that the variance

under Poisson sampling of the regression estimator (9) based on the auxiliary and design

variables, is asymptotically the same as the variance of the regression estimator (18) under

a rejective design (Hájek 1964; Berger 2004) with the design constraints (7). Thus, the

variance estimator of (9), assuming that sb is a Poisson sample with inclusion probabilities

(16), is given by the variance-covariance matrix

V̂ðt̂greg
y Þ :¼ ðMG �yÞ

`C MG �y; ð27Þ

where

MG :¼ I 2 GðG`CGÞ21G`C;

G :¼ ðg1; : : : ;gnÞ
`:

Note that (27) is a residual variance as in Särndal et al. (1992, 235), because MG �y

are residuals. Note that the variance estimator takes the stratification into account, because

the information about the strata is included within MG: However, if within Equations (5)

and (6), the basic weights p21
it are substituted by weights which take the missingness

into account, the variance estimator (27) may be biased, because nonresponse is not

accounted for.

5. Alternative Approaches

Composite estimators also use the information from previous waves. Hansen et al. (1953)

introduced the K-composite estimator for levels and change between two waves. The AK-

composite estimator (Gurney and Daly 1965) takes the difference between the common

sample s12 and the unmatched sample s2 into account. The optimal choice of the weighting

factors A and K, within the AK-composite estimator, depends on the variables of interest

(Kumar et al. 1983). This dependency may result in an inconsistency, in the sense that the

sub-group total estimates may not add up to the overall total (Gambino et al. 2001, 66).

Singh (1996) and Singh et al. (1997) introduced the modified regression estimator,

abbreviated MR hereafter. The idea is to extend the auxiliary variables in the current wave

by an additional artificial auxiliary variable, which contains the information on the
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variable of interest from the previous wave. The definition of this variable depends on

whether the primary interest lies on levels or change. If the main focus lies on levels, the

artificial variable refers to the variable of interest yi1 from the previous wave. However,

due to the rotation, yi1 is only known for i [ s12. Singh (1996) suggested to use mean

imputation for the unknown values for the units i [ s2 \ s12. Thus, in this case, the artificial

variable is

~xMR1
i2 :¼

yi1 for i [ s12

m̂y1 for i [ s2ns12;

(

ð28Þ

where m̂y1
is an estimator for the mean of y1. The control total of the variable (28) is

unknown and can be estimated by Nm̂y1
(Fuller and Rao 2001, 47). Hence, the modified

regression estimator for ty2
¼
P

i[U2
yi2 is given by

t̂MR1
y2

:¼ t̂y2 þ B̂
`

x~xð ~tx~x 2 t̂x~xÞ; ð29Þ

with

B̂x~x :¼ ðB`
x2
; B̂~x2
Þ`;

~tx~x :¼ ðt`
x2
;Nm̂y1

Þ`;

t̂x~x :¼ ðt̂ `
x2
; t̂~x2
Þ`:

If the primary interest is to estimate a change, the artificial variable refers to the variable of

interest yi2 from the current wave. The variable recommended by Singh (1996) and Singh

et al. (1997) is

~xMR2
i2 :¼

yi2 þ
n2

n12

ð yi1 2 yi2Þ for i [ s12;

yi2 for i [ s2ns12:

8
><

>:
ð30Þ

The MR2 estimator may suffer from a drift in levels estimates over a long period

(Gambino et al. 2001, 65; Fuller and Rao 2001, 50). In order to overcome this problem,

Fuller and Rao (2001) introduced the regression composite estimator (RC) given by

~xRC
i2 :¼ ð1 2 aÞ~xMR1

i2 þ a~xMR2
i2 ; ð31Þ

where a [ [0, 1] is a tune-in parameter which reflects the importance given to levels or

change estimates. The advantage of the regression composite estimator compared with

MR1 and MR2 is the fact that it is a compromise between levels and change estimation. An

alternative estimator could be based on Definitions (28) and (30). However, the increased

number of auxiliaries and control totals may lead to a distortion in the final weights

(Gambino et al. 2001, 65).

Singh et al. (2001) suggested a jackknife variance estimator that takes the estimation of

the control totals into account. Indeed, ignoring the additional source of randomness

would lead to an underestimation of the true variance. Berger et al. (2009) proposed a

linearised variance estimator that takes the estimation of the controls into account.

The optimal BLUE estimator is based on a time series of the variable of interest

(Yansaneh and Fuller 1998; Bell 2001; Australian Bureau of Statistics 2007). This estimator
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requires that the variances and covariances of the rotation group estimates are known (Bell

2001, 56). If they were substituted by their estimates, it is no longer guaranteed that the

BLUE estimator is optimal. Bonnéry et al. (2020) showed that the BLUE with an estimated

variance-covariance matrix is less efficient than the composite estimators. Some

disadvantages are discussed in Fuller (1990) and Steel and McLaren (2009). Since the

BLUE estimator is based on a time series, it is less comparable with the proposed estimator

and the modified estimators, which are both based on regression estimation.

6. Simulation Study

We consider three waves (t ¼ 0, 1, 2), because the estimators (9) and (29) at wave t ¼ 1,

require the sample information from wave t ¼ 0. The results are reported for levels at

waves t ¼ 1 and t ¼ 2, and changes between waves t ¼ 1 and t ¼ 2.

Consider N population values of yit and xit (t ¼ 1, 2, 3) generated from a multivariate

normal distribution; that is,

ð yi0; yi1; yi2; xi0; xi1; xi2Þ
` , Nðm;SÞ:

Here,S denotes a covariance matrix with an heterogeneous exchangeable structure, that is,

S :¼ diagðsÞ{rJ6 þ ð1 2 rÞI6}diagðsÞ:

where diag(s) is the diagonal matrix with s ¼ ðsy0; sy1, sy2, sx0, sx1, sx2Þ
` as its diagonal.

The matrices J6 is 6 £ 6 matrix of ones and I6 is the 6 £ 6 identity matrix. Thus, the

correlations corðyit; yit 0 Þ ¼ corðxit; xit 0 Þ ¼ corðyit; xit 0 Þ ¼ r; with t – t 0: Let sy0
¼ 10,

sy1
¼ 15, sy2

¼ 20, sx0
¼ 30, sx1

¼ 40 and sx2
¼ 50. The correlations considered are

r ¼ 0:1; 0.5 and 0.9. Two values for the vectorm ¼ ðmy0;my1;my2;mx0;mx1;mx2Þ
` are used:

mI :¼ ð59; 60; 61; 99; 100; 101Þ`;

mII :¼ ð40; 60; 80; 100; 150; 200Þ`;

that is, we have a small change with mI and a large change with mII.

For each wave t, we have stratified samples of size nt ¼ 1,000. We consider four strata

formed by the quantile classes of the population distribution of yi1þyi2. The same fraction

of common samples between waves is used within strata, that is, uh ¼ u ¼ n12=n1 ¼

n01=n0; where u ¼ 0.25, u ¼ 0.5 or u ¼ 0.75. Rotation groups sampling is implemented.

Within each strata Uh, q units are randomly allocated into P rotation groups of same size

p ¼ bq/Pc. The sample s0,h contains the units of the first bnh p 21c groups. At wave t ¼ 1, we

obtain the sample s1,h by rotating out the first group and replacing it by the (bnh p 21c þ 1)-

th group. At wave t ¼ 2, the second group rotates out and (bnh p 21c þ 2)-th group rotates

in. For u ¼ 0.25, we use q ¼ 625 and P ¼ 10. With u ¼ 0.5, we use q ¼ 400 and P ¼ 4

and with u ¼ 0.75, we set q ¼ 300 and P ¼ 6. We consider 1,000 iterations.

In the first simulation setup, we consider equal allocation for all strata with nt,h ¼ 250

and N ¼ 100,000. Thus, the inclusion probabilities are the same across the strata and the

sampling fractions are small. In the second simulation setup, unequal probabilities with

large sampling fractions are used. Consider n1,h ¼ 50, n2,h ¼ 200, n3,h ¼ 350, n4,h ¼ 400

and N ¼ 4,000. The resulting within strata inclusion probabilities are 0.05, 0.2, 0.35 and
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0.4. In the second simulation setup, the population size is N ¼ 4,000, to allow for large

sampling fractions.

The estimators considered are the proposed multivariate regression estimator (9)

(PROP), the customary regression estimator (1) (GREG) and the modified estimator (29)

with (28) as auxiliaries (MR1) and with (30) as auxiliaries (MR2). For MR1 and MR2, we use

t̂greg
y0

as the estimated control total of the previous wave t ¼ 1.

In order to explore the efficiency of point estimates, we compare the empirical ‘relative

root mean squared errors’ (RRMSE). Let t̂r be an estimate for the r-th iteration with

r ¼ 1; : : : ; 1; 000: The RRMSE is defined as

RRMSEðt̂Þ :¼
1

jt j

1

1;000

X1;000

r¼1

ðt̂r 2 tÞ2

( )1=2

;

where t denotes the population total.

The RRMSE £ 100% for different values of r, g and u, are reported in Tables 1 and 2. For

Table 1, we have equal strata sizes with the same inclusion probabilities across strata and

small sampling fractions. For Table 2, the inclusion probabilities differs between strata

and some sampling fractions are large. The proposed PROP estimator outperforms GREG

and MR1 under all scenarios. For all estimators under consideration, the RRMSE decreases

with the correlation r between the variables.

We observe slightly smaller RRMSE for MR1 with u ¼ 0.75, when r ¼ 0.1, because the

higher the overlap, the less values have to be imputed. The amount of overlap u has little

Table 1. Equal strata sizes. equal probabilities and small sampling fractions. RRMSE X 100% of levels

estimates under different scenarios for 1,000 iterations.

r m u GREG PROP MR1

t ¼ 1 t ¼ 2 t ¼ 1 t ¼ 2 t ¼ 1 t ¼ 2

0.1 mI 0.25 1.21 1.49 0.62 0.69 1.00 1.14
0.50 1.26 1.44 0.63 0.68 0.99 1.12
0.75 1.24 1.40 0.62 0.67 0.92 1.06

mII 0.25 1.21 1.12 0.62 0.53 1.37 1.27
0.50 1.26 1.08 0.63 0.52 1.29 1.15
0.75 1.24 1.06 0.62 0.51 1.16 1.04

0.5 mI 0.50 1.03 1.26 0.48 0.54 0.78 0.84
0.50 0.99 1.27 0.49 0.58 0.80 0.90
0.75 0.99 1.25 0.50 0.56 0.80 0.90

mII 0.50 1.03 0.92 0.48 0.41 1.06 0.83
0.50 0.99 0.93 0.49 0.44 1.09 0.89
0.75 0.99 0.91 0.50 0.43 1.09 0.91

0.9 mI 0.25 0.49 0.60 0.28 0.35 0.39 0.46
0.50 0.49 0.61 0.27 0.35 0.40 0.45
0.75 0.48 0.60 0.28 0.33 0.37 0.43

mII 0.25 0.49 0.43 0.28 0.27 0.51 0.37
0.50 0.49 0.43 0.27 0.27 0.53 0.38
0.75 0.48 0.42 0.28 0.25 0.53 0.41
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impact on the precision of the proposed estimator. However, for MR1, we observe some

slight differences in the RRMSE between different values for u. For small correlation

(r ¼ 0.1), we indeed have a larger RRMSE for MR1 with u ¼ 0.25. For larger correlation,

the differences are negligible for MR1. With MR1, we notice differences between the

RRMSE of t̂y1
for small (mI) and large changes (mII). There are hardly any differences for the

proposed estimator. These observations are the same for Tables 1 and 2, except that the

RRMSE are higher for all estimators in case of unequal strata sizes.

The RRMSE of the proposed estimator does not seem to be affected by the amount of

overlap u, because we can see from the expression (18) that the precision is driven by the

correlations between the variables of interest and the auxiliary information for both waves,

which is not affected by u. This can also be seen from the variance (27), where the

residuals MG �y do not depend on u. The information about the rotation is implicitly

included within the vector zi given by Equation (22), and used for the weights within the

regression coefficient (19) (see Equation (20)). These weights ensure efficiency (see

Section 4). On the other hand, the precision of MR1 is related to u, because u has an impact

on the precision of the control totals with MR1. With the proposed method, we use different

control totals unaffected by u.

Let e ¼ ty2
2 ty1

be the change between waves t ¼ 1 and t ¼ 2. We propose

estimating e by ê ¼ t̂y2
2 t̂y1

, where t̂y1
and t̂y2

are the corresponding cross-sectional

estimators. Tables 3 and 4 give the RRMSE £ 100% of the estimators of changes, for equal

and unequal strata sizes. As expected, the RRMSE decreases with r. The proposed estimator

PROP significantly outperforms GREG and MR2. The efficiency gain compared with MR2

Table 2. Unequal strata sizes. unequal probabilities and some large sampling fractions. RRMSE X 100% of

levels estimates under different scenarios for 1,000 iterations.

r m u GREG PROP MR1

t ¼ 1 t ¼ 2 t ¼ 1 t ¼ 2 t ¼ 1 t ¼ 2

0.1 mI 0.25 1.51 1.61 0.84 0.89 1.26 1.21
0.50 1.51 1.58 0.87 0.88 1.24 1.26
0.75 1.53 1.58 0.87 0.90 1.23 1.20

mII 0.25 1.51 1.26 0.84 0.68 1.67 1.29
0.50 1.51 1.24 0.87 0.67 1.60 1.27
0.75 1.53 1.24 0.87 0.68 1.53 1.14

0.5 mI 0.25 1.29 1.51 0.70 0.77 0.98 0.98
0.50 1.32 1.42 0.71 0.74 1.03 0.99
0.75 1.26 1.48 0.69 0.74 1.04 1.04

mII 0.25 1.29 1.14 0.70 0.59 1.30 0.93
0.50 1.32 1.07 0.71 0.56 1.38 0.98
0.75 1.26 1.11 0.69 0.56 1.42 1.07

0.9 mI 0.25 0.72 0.83 0.38 0.50 0.53 0.61
0.50 0.70 0.85 0.40 0.49 0.53 0.60
0.75 0.71 0.84 0.40 0.48 0.53 0.59

mII 0.25 0.72 0.59 0.38 0.38 0.69 0.50
0.50 0.70 0.60 0.40 0.37 0.73 0.51
0.75 0.71 0.59 0.39 0.37 0.78 0.58

Journal of Official Statistics38



Table 3. Equal strata sizes. equal probabilities and

small sampling fractions. RRMSE £ 100% of change

estimates under different scenarios for 1,000 iterations.

r m u GREG PROP MR2

0.1 mI 0.25 120.28 60.60 100.83
0.50 125.23 67.39 90.90
0.75 118.08 69.03 82.45

mII 0.25 5.86 2.98 5.40
0.50 6.10 3.31 5.05
0.75 5.76 3.39 4.37

0.5 mI 0.25 98.04 46.96 79.61
0.50 99.73 51.67 71.26
0.75 94.29 52.56 64.99

mII 0.25 4.76 2.34 4.42
0.50 4.85 2.57 4.12
0.75 4.59 2.61 3.60

0.9 mI 0.25 46.14 27.00 37.37
0.50 45.38 26.22 32.06
0.75 43.62 26.43 28.95

mII 0.25 2.23 1.36 2.15
0.50 2.19 1.32 2.01
0.75 2.11 1.32 1.74

Table 4. Unequal strata sizes. unequal probabilities and

some large sampling fractions. RRMSE £ 100% of change

estimates under different scenarios for 1,000 iterations.

r m u GREG PROP MR2

0.1 mI 0.25 140.96 79.27 123.09
0.50 138.27 86.79 109.39
0.75 144.61 93.57 110.40

mII 0.25 6.90 3.83 6.43
0.50 6.76 4.19 5.79
0.75 7.06 4.51 5.75

0.5 mI 0.25 114.65 61.44 95.13
0.50 113.51 61.60 81.51
0.75 109.77 62.43 74.85

mII 0.25 5.95 3.20 5.48
0.50 5.89 3.21 4.92
0.75 5.69 3.25 4.37

0.9 mI 0.25 64.40 37.30 48.98
0.50 61.67 36.67 41.70
0.75 60.04 35.11 36.51

mII 0.25 3.16 1.91 2.96
0.50 3.03 1.88 2.61
0.75 2.95 1.80 2.20
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ranges from 5% to 53%. Since the relative RMSE is considered, it is not surprising to

observe larger RRMSE for a small change (mI). The RRMSE of MR2 decreases with u. In

contrast, the RRMSE of PROP increases slightly with u except for large vales of r.

Table 5 shows the relative bias (RB) of the variance estimator (27) for PROP. The RB is

defined by

RB{V̂ðt̂Þ} :¼ Vðt̂Þ21 1

1;000

X1;000

r¼1

V̂ðt̂rÞ2 Vðt̂Þ

( )

;

where

Vðt̂Þ :¼
1

1;000

X1;000

r¼1

ðt̂r 2 tÞ2:

Here, t̂r and V̂ðt̂rÞ are respectively the point and variance estimate for the r-th iteration.

The RB are within an acceptable range. We observe larger RB for t̂greg
y2

when r ¼ 0.9 and

u ¼ 0.75, because the variance is small in this case.

The biases of the variance estimates in the case of unequal strata sizes is larger than the

biases of equal strata sizes. The reason is the small sample size for two strata in the unequal

strata size scenario. The residuals of the smallest strata vary much more and thus have a

larger contribution towards the variance than the residuals of the large strata. The negative

bias can also be caused by small sample sizes, because the Taylor linearization method has

a tendency to underestimate the true variance in this case (Särndal et al. 1992, 176).

Table 5. RB%100 of variance estimates for the proposed estimator under different scenarios for

1,000 iterations.

r m u Equal strata sizes Unequal strata sizes

t ¼ 1 t ¼ 2 t ¼ 1 t ¼ 2

0.1 mI 0.25 1.5 27.4 216.3 215.3
0.50 23.4 25.1 218.1 212.1
0.75 1.5 0.0 215.4 211.9

mII 0.25 1.5 27.4 216.4 215.3
0.50 23.4 25.1 218.1 212.1
0.75 1.5 0.0 215.2 211.9

0.5 mI 0.25 5.7 4.9 221.0 219.3
0.50 1.8 28.8 218.3 212.9
0.75 20.0 21.4 212.2 27.6

mII 0.25 5.6 4.9 220.8 219.3
0.50 1.8 28.8 218.3 212.9
0.75 20.0 21.4 211.5 27.6

0.9 mI 0.25 22.7 0.3 216.1 222.0
0.50 4.0 21.4 218.5 218.7
0.75 22.0 10.1 215.1 213.7

mII 0.25 22.7 0.3 215.7 222.0
0.50 4.0 21.4 218.5 218.7
0.75 21.9 10.1 214.3 213.7
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7. Conclusion

We propose a multivariate GREG estimator for estimation of levels and changes. It has the

advantage of involving the information from both waves, and takes into account the

correlations between the variables of interest and the auxiliaries within and between the

waves. Additionally, it also takes the sampling design into account, in terms of

stratification, rotation and sampling fractions.

The simulation study shows that the proposed estimator may outperform its

competitors, in particular with respect to change estimates. Nevertheless, the advantages

of the proposed estimator over the modified estimator are manifold. It does not require any

imputation and does not suffer from a drift, unlike the composite estimator. It can be easily

implemented using existing statistical software. The variance estimator is simpler than the

variance estimator of composite estimators, because neither estimated totals nor

imputation is required. It also takes the auxiliary variables and the variables of interest

from both waves into account.

Nonresponse and panel attrition are important issues with repeated surveys. It is beyond

the scope to tackle these problems fully. Previous wave imputation can be used for the

auxiliary variables �xit which suffer from attrition. Re-weighting could be used to

compensate for nonresponse and panel attrition for the variable of interest. In this case the

new weight should replace the basic weights 1/pit within Equations (5) and (6). In this

case, st would be the sample of respondents at wave t. The proposed estimator (9) can be

directly used in this case. It is approximately unbiased, as long as a proper re-weighting

technique has been used. However, in this case, the vectors nt and n12 are random.

Consequently, we may lose the asymptotic optimality, because the asymptotic

approximation of Hájek (1964) for the joint-inclusion probabilities are based on fixed nt

and n12. The variance estimator (27) should be used cautiously, because it does not

incorporate nonresponse adjustments. A possible solution would be to incorporate the re-

weighting variables within �xit and use �xit within Equations (9) and (27). It would be useful

to investigate this idea further.

8. Appendix

Proof of Theorem 1:

Since gi ¼ ð�x
`
i ; z

`
i Þ

`, we have

i[sb

X
cigig

`
i

0

@

1

A

21

¼

�X

Z

 !`

C
�X

Z

 !8
<

:

9
=

;

21

¼
Gxx Gxz

G`
xz Gzz

0

@

1

A;

i[sb

X
cigi �y

`
i ¼

�X

Z

 !`

C �y;

where

Gxx ¼ ð �X
`CMz

�XÞ21;

Gzz ¼ ðZ
`CMxZÞ21;

Gxz ¼ 2Gxx
�X`CZðZ`CZÞ21
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and Mx is defined by

Mx ¼ I 2 �Xð �X`C �XÞ21 �X`C: ð32Þ

Now, we have

B̂g ¼
B̂x

G`
xz
�X`C�yþ GzzZ

`C�y

0

@

1

A; ð33Þ

because

Gxx
�X`C�yþ GxzZ

`C�y ¼ Gxx
�X`C{I 2 ZðZ`CZÞ21Z`C}�y

¼ Gxx
�X`CMz �y

¼ ð �X`CMz
�XÞ21 �X`CMz �y

¼ B̂x:

Finally, Equations (11) and (12) imply that tg 2 t̂g ¼ {ðtx 2 t̂xÞ
`; 0}` Thus, by using

Equation (33), we obtain Equation (18).
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Investigating an Alternative for Estimation from a
Nonprobability Sample: Matching plus Calibration

Zhan Liu1 and Richard Valliant2

Matching a nonprobability sample to a probability sample is one strategy both for selecting
the nonprobability units and for weighting them. This approach has been employed in the past
to select subsamples of persons from a large panel of volunteers. One method of weighting,
introduced here, is to assign a unit in the nonprobability sample the weight from its matched
case in the probability sample. The properties of resulting estimators depend on whether the
probability sample weights are inverses of selection probabilities or are calibrated. In
addition, imperfect matching can cause estimates from the matched sample to be biased so
that its weights need to be adjusted, especially when the size of the volunteer panel is small.
Calibration weighting combined with matching is one approach to correct bias and reduce
variances. We explore the theoretical properties of the matched and matched, calibrated
estimators with respect to a quasirandomization distribution that is assumed to describe how
units in the nonprobability sample are observed, a superpopulation model for analysis
variables collected in the nonprobability sample, and the randomization distribution for the
probability sample. Numerical studies using simulated and real data from the 2015 US
Behavioral Risk Factor Surveillance Survey are conducted to examine the performance of the
alternative estimators.

Key words: Calibration adjustment; doubly robust estimation; nearest neighbour matching;
sample matching; target sample; volunteer panels.

1. Introduction

Probability samples have been the standard for finite population estimation for many

decades. However, probability samples can have many nonsampling problems like low

contact and response rates or missing data for units that do respond. Response rates in US

surveys, in particular, have been declining for at least two decades (Brick and Williams

2013). Since nonprobability samples can be faster and cheaper to administer and collect,

some organizations are gravitating toward their use (Terhanian and Bremer 2012). Baker

et al. (2013) review the reasons that nonprobability samples, like volunteer internet panels,

may be used rather than a probability sample. Among them are lower costs and

compressed data collection periods. Quick turnaround can be especially important to

gauge public well-being in health crises like the COVID-19 pandemic of 2020.

There are a variety of problems with nonprobability samples, especially among persons

in a panel that have been recruited to participate in future surveys (e.g., see Baker et al.

2013; Valliant and Dever 2011; Valliant et al. 2018). These include selection bias,

coverage error, panel nonresponse, attrition, and measurement error. We concentrate on

the use of matching and calibration to adjust for the first two of these–selection bias and
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coverage error. Selection bias occurs if the sample differs from the nonsample in such a

way that the sample cannot be projected to the full population without some type of

statistical adjustment. Coverage error can occur if, for example, a volunteer panel consists

of only persons with access to the Internet, assuming that the entire population of a country

is the target of the survey. Other, more subtle forms of coverage error can occur if certain

demographic groups would rarely or never participate in the particular type of

nonprobability survey being conducted.

Because the selection of a nonprobability sample is not controlled by a survey designer,

estimation methods other than standard design-based approaches are needed. At least six

alternatives can be considered for weighting and estimation with nonprobability samples:

(1) Naı̈ve method where all units are assigned the same weight,

(2) Quasi-randomization where a pseudo-inclusion probability is estimated for each

nonprobability unit,

(3) Superpopulation modeling of analysis variables (Y ’s),

(4) Doubly robust estimation where quasi-randomization and superpopulation modeling

are combined,

(5) Mass imputation of Y ’s into a probability sample using values from a nonprobability

sample to form an imputation model,

(6) Matching of a nonprobability sample to a probability sample whose units are used as

donors of weights to the nonprobability sample.

The naı̈ve method of equal weighting is rarely, if ever, appropriate because

nonprobability samples are not generally distributed proportionally across demographic or

other important groups in the population. Alternatives (2)–(4) were reviewed by Elliott

and Valliant (2017) and Valliant (2020) and further studied by Chen et al. (2020). Wang

et al. (2020) refined alternative (2) by kernel-smoothing the propensity weights.

Alternative (5) was proposed by Kim et al. (2021) and involves fitting an imputation model

using data from the nonprobability sample and imputing Y values to the units in the

probability sample using that model. The probability sample with imputed values is

provided to analysts but not the nonprobability sample. Mass imputation solves the

weighting problem by using the weights associated with the probability sample. The

dissertation of Wang (2020) studied a version of (6) in which a kernel-smoothing method

was used to proportionally distribute the probability sample weights to units in the

nonprobability sample. We study another, somewhat simpler version of alternative (6),

and particularly address some problems with the method.

1.1. Notation and Models Used for Analysis

Both a probability sample, denoted by Sp and a nonprobability sample, denoted by Snp will

be used in subsequent sections. The target population for which estimates are made is U

and has N units. To examine properties of estimators, three distributions will be used.

Expectations taken with respect to the sample design used to select the probability sample

Sp will be denoted by a p subscript. The probability of selection of unit i in Sp is pi. To

analyze the nonprobability sample Snp, we assume that its units are selected by an

unknown quasi-randomization distribution; expectations taken with respect to that
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distribution will be specified by a subscript R. The probability that unit j is included in Snp

is R(xj) where xj is a C-vector of covariates or auxiliaries associated with unit j. To

simplify notation in later sections, we set RðxjÞ ; Rj: The analysis variable Y will also be

assumed to be generated by a superpopulation model, j. Consider the linear model for Yi

defined by

Yi ¼ xibþ 1iði [ UÞ; ð1Þ

where b is a C £ 1 parameter vector, and the 1i are independent, random errors with mean

zero and variance s2
i : Theory for nonlinear models can also be worked out, as in Chen et al.

(2020), but a linear model is convenient for purposes here. Under model (1), the expected

value of the population total, YU ¼
P

i[U Yi, is EjðYUÞ ¼ XUb where XU ¼
P

i[U xi:

The remainder of the article is organized as follows. Section 2 describes how matching

can be applied to obtain basic weights for units in the nonprobability sample and reviews

the methods of matching. Section 3 presents the theory for bias and variance in different

situations. Section 4 investigates properties of matched estimators when the

nonprobability sample is calibrated to population totals of covariates. In Section 5, the

sample matching and the calibration adjustment are applied in a simulation study using

artificial data. In Section 6, an application to a real population is conducted to evaluate the

performance of the proposed estimates. The last section summarizes our findings.

2. Applications of Matching

Sample matching has been an option for estimating treatment effects in causal inference

for some time (e.g., see Cochran 1953; Rubin 1973; Rosenbaum and Rubin 1983).

Moreover, it has been widely applied in evaluation research, observational studies and

epidemiological studies (Rothman et al. 2008). More recently, it also has been applied as a

way of identifying a sample in market research, public opinion surveys (e.g., Vavreck and

Rivers 2008; Terhanian and Bremer 2012), and other nonprobability sampling surveys,

especially using volunteer panel surveys. Baker et al. (2013) review some of the

applications of matching in survey sampling. Its purpose in non-probability sampling

surveys is to reduce selection bias and to estimate population characteristics. Another

application of statistical matching is to overcome the problem of missing data created

when some persons do not consent to having their survey responses linked to

administrative databases (Gessendorfer et al. 2018).

The basic idea of sample matching in survey sampling is that first a random, probability

sample, Sp, is selected from the sampling frame of the target population. This probability

sample is matched to a pool of nonprobability cases, for example, a volunteer panel of

persons. The resulting matched sample from the nonprobability pool is denoted by Snp.

The probability sample should have none of the coverage problems of the nonprobability

sample. This probability sample is also called a reference sample (Lee 2006) and can be an

existing survey (or subsample of one) rather than one specially conducted to serve as the

reference. For example, in the US the ACS, American Community Survey (U.S. Census

Bureau 2023) is one possibility for a large, well-conducted household, reference survey.

The probability sample should be representative of the target population in the sense that

it can be used to make unbiased and/or consistent estimates of population quantities.
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We assume that Sp does not include the Y variables for which estimates are to be made;

these are collected from the nonprobability sample.

The application of matching described by Rivers (2007) is one in which Sp is a simple

random sample (srs). The nonprobability sample Snp is obtained by a one-to-one match of

Sp to a much larger pool of nonprobability cases, yielding a set Snp of the same size as Sp.

Since Sp was treated as an srs, every unit in Snp was given the same weight. When Sp is an

srs, the distribution across various characteristics of Snp is expected to be the same as that

of the population. However, in an evaluation of the nonprobability samples offered by nine

commercial vendors, Kennedy et al. (2016) found that a nonprobability sample may still

produce biased estimators even though it had the same demographic distribution as the

population. In other words, matching to an srs Sp to obtain Snp can be inadequate without

further weighting. Rivers and Bailey (2009) describe an election polling application where

the sample was obtained by matching, as described above, but inverses of estimated

propensities of being in the nonprobability sample were used as weights.

Sample matching in alternative (6), as applied in this article, fits into the quasi-

randomization approach. Each unit in a probability sample is matched to a unit in the

nonprobability sample based on a set of covariates. The logical extension of Rivers (2007)

is for the probability sample unit to “donate” its weight to the matched, nonprobability

sample unit. The intuitive argument to justify this is that if the nonprobability units match

the probability units on an extensive list of covariates, then the Snp units are exchangeable

for the Sp units, Snp constitutes the same sort of sample as Sp, and the units in Snp can be

weighted in the same way. This approach has the advantage of straightforward retention of

all analytic data collected in the nonprobability sample unlike alternative (5) which could

require a separate imputation model for every Y variable.

The probability sample used for matching can be larger, smaller, or equal in size to the

non-probability sample, although the method in which Snp is selected to have the same size

as Sp has advantages. If a pool of nonprobability units is used that is much larger than the

probability sample, finding a close match for each unit in the probability sample may be

more feasible. This would be the case when a large panel of volunteers has been

accumulated. For example, the method used by many panel vendors now is to stockpile a

large set of persons who have agreed to participate in online surveys when requested. For

example, (see https://www.ipsos.com/en-au/ipsos-online-access-panels). Toluna, the

parent company of Harris Interactive, does something similar. Their promotional material

says that it has a panel of over 40 million consumers in 70 markets (see Toluna 2023).

If the nonprobability sample is smaller than Sp, a unit in Snp may be matched to more

than one unit in Sp, making it unclear how to weight the Snp cases. In this article, we

assume that the resulting sample size of the matched, nonprobability sample, Snp, equals

the sample size of the probability sample, Sp, that it is matched against. Denote this sample

size by n.

2.1. Methods of Matching

Which matching algorithm to use is a question. There are various algorithms, including

nearest neighbour matching, caliper and radius matching, stratification and interval

matching, as well as kernel and local linear matching (Caliendo and Kopeinig 2008).
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Among these matching algorithms, nearest neighbour matching based on Euclidean

distance is most straightforward. It contains, as special cases, single nearest neighbour

matching without replacement, single nearest neighbour matching with replacement and

multiple nearest neighbour matching. In single nearest neighbour matching, for a unit in Sp

only one unit from the nonprobability pool can be chosen as its matching unit based on the

covariates present in both data sets. If single nearest neighbour matching is done without

replacement, a unit in the nonprobability pool can be chosen only once as a match. Single

nearest neighbour matching without replacement may, however, have poor performance

when the target sample and the volunteer panel have very different covariate distributions

(Dehejia and Wahba 2002). To overcome this problem, single nearest neighbour matching

with replacement and multiple nearest neighbour matching were proposed to increase the

average quality of matching and reduce the bias (Smith and Todd 2005). Other matching

methods have been suggested that use more than one unit in the nonprobability pool as the

matching unit for an individual in the probability sample. Caliper and radius matching use

this approach.

Another issue in sample matching is that the matching process will become relatively

more difficult as the number of relevant covariates increases. This is the curse of

dimensionality noted by Rosenbaum and Rubin (1983). In order to solve this problem,

they propose the propensity score, which is the conditional probability of receiving a

treatment given the covariates X, denoted by pðXÞ ¼ PðD ¼ 1jXÞ; where D is the binary

indicator taking either the value 1 (receiving treatment, e.g., participation in a volunteer

panel) or 0 (not receiving treatment). Rosenbaum and Rubin (1983) have proved that

matching on the propensity score p(X) is also valid when it is valid to match on the

covariates X. Compared with direct matching based on all covariates, propensity score

matching can reduce multiple dimensions (many covariates) to a single dimension, greatly

simplifying the matching process. Consequently, it has been widely used in medical and

epidemiological studies, economics, market research and a host of other fields (Schonlau

et al. 2009; Baker et al. 2013).

3. Estimation from Matched Sample

In this section, we introduce estimators of means and totals based on the matched sample

Snp and derive their properties. An estimator of a population total is

ŶM ¼
j[Snp

X
~wjyj; ð2Þ

where ~wj is the weight from the probability sample unit that is matched to unit j in Snp and

yj is the Y value observed for that unit. We assume that these weights are appropriately

scaled for estimating population totals. In particular, N̂M ¼
P

j[Snp
~wj is an estimator of N,

the size of the target population. The mean of Y is estimated by �ŶM ¼ ŶM=N̂M . We will

consider two cases of weighting of the probability sample Sp:

(1) The weight used for each unit in Sp is the inverse of the selection probability of that

unit, that is, ~wj ¼ p21
j ; the estimator of the total with this weight is denoted by ŶM1

subsequently;
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(2) The Sp weights are those for a general regression (GREG) estimator; the estimator

with this weight is denoted by ŶM2.

Case (1), in which the Snp weight is the inverse of the selection probability of its matched

unit in Sp is the simplest baseline case for Snp weighting. If ŶM1 is biased in this case, then

calibration of Snp must correct that flaw. Note that the GREG in case (2) includes the

commonly used poststratification estimator and requires that the population total XU of the

covariate vector be known. Whether the weights above are related to the pseudo-inclusion

probabilities of the units in Snp largely determines whether ŶM1 and ŶM2 are biased or not

as shown below. The arguments given are largely heuristic, although they can be

formalized using technical conditions like those in Chen et al. (2020).

Properties of estimators can be calculated in several ways: with respect to the j-model

only, with respect to the R-distribution only, with respect to the p-distribution, or with

respect to a combination of the distributions. In subsequent sections, we compute biases

and variances with respect to the combined Rp-distribution. The Rp calculation is

analogous to the design-based calculations used in much of sampling theory. In addition,

bias and variance calculations are made with respect to the j-model and combined Rpj-

distributions. The calculations made with respect to the j-distribution are conditional on

the Snp and Sp samples. In principle, j calculations are more reflective of the statistical

properties for the particular sets of units in Snp and Sp.

3.1. Bias of the Matched Estimator for Case (1)

Taking the expectation of ŶM12YU under case (1) with respect to the pseudo-

randomization distribution only gives

ER ŶM1 2 YU

� �
¼ ER

j[Snp

X
p21

j yj

0

@

1

A2 YU

¼
j[U

X Rj

pj

yj 2 YU :

If Rj ¼ pj; then ŶM will be R-unbiased. However, this does not have to be true generally.

For example, if Rj ¼ Prðj [ SnpjxjÞ is a complicated logistic function of a set of covariates

that were not used in determining ~wj, the estimator is R-biased. In this case, some

approaches can be employed to reduce bias. For example, some important covariates can

first be selected by establishing the relationship models between the Sp weights and

covariates, then sample matching can be conducted based on these important covariates.

Another situation leading to R-bias would be when the pseudo-inclusion mechanism is

nonignorable, that is, Prðj [ Snpjxj; yjÞ – Prðj [ SnpjxjÞ: Since in a probability sample,

the selection mechanism is always ignorable ( ~wj – 1=Prðj [ Snpjxj; yjÞ) when inclusion in

the nonprobability sample depends on Y.

If the expectation is taken over the Y-model, the result is

Ej ŶM1 2 YU jSnp; Sp

� �
¼ X̂npðpÞ2 XU

� �
b;

where X̂npðpÞ ¼
P

Snp
xj=pj. The j-bias is non-zero unless X̂npðpÞ ¼ XU . If X̂np pð Þ is an

unbiased estimator of XU under the quasi-randomization R-distribution, ŶM1 will be
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unbiased when averaged over both the R– and j-distributions (and, equivalently, over the

R, p, and j distributions). But, as for ŶM1, X̂np pð Þ will be biased if the correct R-model is

not linked to the Sp weights, that is, if ~wj ¼ p21
j – 1=Rj.

3.2. Bias of the Matched Estimator for Case (2)

If the weights from the probability sample have been calibrated to population totals of

some covariates x, the bias calculation changes some what. Take the case of the general

regression (GREG) estimator being used for Sp. That is, ~wj ¼ gj=pj where

gj ¼ 1þ XU 2 X̂p

� �T ~A
21

p xj= ~s2
j ð3Þ

with X̂p ¼
P

Sp
xj=pj and ~Ap ¼

P
Sp

xjx
T
j = pj ~s

2
j

� �
. The values of ~s2

j are often set to a

constant in practice, but for completeness, we include ~s2
j in subsequent formulas. If ~s2

j ’s

are used in estimators of totals, they will be generally assumed values of the model

variances in Equation (1); but, we do not require that ~s2
j ¼ s2

j . Note also that the pj’s must

be available separately for each unit in the probability sample in order to recover Ap

separately from the ~wj. In some public-use files, users may only be presented with the

~wj ¼ gj/pj and not pj.

The estimator of the total is then

ŶM2 ¼ Ŷnp pð Þ þ XU 2 X̂p

� �T ~A
21

p

X

j[Snp

xjyj= pj ~s
2
j

� �
; ð4Þ

where Ŷnp pð Þ ¼
P

j[Snp
yj=pj. This j-bias is

Ej ŶM2 2 YUjSnp; Sp

� �
¼ X̂npðpÞbþ XU 2 X̂p

� �T ~A
21

p
~AnpðpÞb 2 XUb ð5Þ

where ~Anp pð Þ ¼
P

Snp
xjx

T
j = pj ~s

2
j

� �
. Thus ŶM2 is j-model biased even though the weights

in Sp are calibrated on the x’s. The R-expectation (which is also the Rp-expectation) is

ER ŶM2

� �
¼

U

X Rj

pj

yj þ XU 2 X̂p

� �T ~A
21

p

X

U

Rj

pj

xjyj

~s2
j

which is also generally not equal to YU.

If Rj ¼ pj and sampling for Snp and Sp is ignorable, reasonable assumptions are that

N ~A
21

p and N 21 ~Anp pð Þ converge in probability to N 21 ~AU ¼ N 21
P

U xjx
T
j = ~s2

j . (See

assumption (v) in the Appendix). In that case, ~A
21

p
~AnpðpÞ

p
�! Ic with IC being the C £ C

identity matrix, and Ej ŶM2 2 YU jSnp; Sp

� �
! X̂npðpÞ2 X̂p

� �
b.

Taking the expectation of Equation (5) with respect to the R- and p-distributions shows

that ŶM2 is approximately Rpj-unbiased, but this depends on Rj ¼ pj for all units in Snp.

Under the same conditions (i.e., Rj ¼ pj and N ~A
21

p and N 21 ~AnpðpÞ converging),

ER ŶM2

� � :
¼YU þ XU 2 X̂p

� �
~BU

where ~BU ¼ ~A
21

U

P
U xjyj= ~s2

j . Consequently, EREp ŶM2

� � :
¼YU , assuming that X̂p is

p-unbiased. Similarly, EREpEj ŶM2 2 YU

� �
¼ 0.

The results in Subsections 3.1 and 3.2 can be summarized as follows:
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† Case (1), ~wj is the inverse of the selection probability for its matched unit in the

probability sample, Sp, that is, ~wj ¼ p21
j

– ŶM1 is j-biased when the linear model (1) holds;

– ŶM1 is Rp-unbiased if Rj ¼ pj, that is, the probability of a unit’s being in the

nonprobability sample, Snp, equals its probability of being in the probability

sample, Sp;

– ŶM1 is Rpj-unbiased when the linear model (1) holds and Rj ¼ pj;

† Case (2), ~wj is the GREG weight for its matched unit in Sp

– ŶM2 is j-biased under Equation (1) even though Sp is calibrated on the x’s in the

model;

– ŶM2 is R-biased in general;

– ŶM2 is approximately Rp-unbiased and Rpj-unbiased if Rj ¼ pj;

The key requirement (in addition to ignorability) for unbiasedness of any type is that the

observation probability of a unit in the nonprobability sample should be equal to the

selection probability of its matched unit from the probability sample. This seems unlikely

to be exactly true in most applications.

3.3. Variance of the Matched Estimator in Case (1)

Since a variance estimator is mainly useful in a situation where a point estimator is

unbiased or consistent, we concentrate on the case where Rj ¼ pj and ŶM1 is R-unbiased.

Calculation of the variance of ŶM1 with respect to the pseudo-inclusion probability

distribution depends on the joint distribution of the indicators, {dj}j[U where dj ¼ 1 if

j [ Snp and 0 if not. If the dj have the same joint distribution as that of the indicators for

being in the probability sample, then Snp can be treated as having the same sample design

as Sp. If so, VR ŶM1

� �
¼ Vp ŶM1

� �
, and the variance estimator for ŶM1 would be determined

by the sample design for Sp. For example, if the probability sample was a stratified, cluster

sample, then the variance estimator appropriate to that design would be used.

When ~wj ¼ p21
j , a more realistic assumption, given the way that nonprobability

samples are often acquired, is to treat the {dj}j[U as being independent. With that

assumption, the R-variance can be estimated with a formula appropriate for a Poisson

sample. Another option is the formula for a sample selected with replacement and with

probabilities equal to Rj ¼ pj:

yRp ŶM1

� �
¼

n

n 2 1 j[Snp

X
~wjyj 2

1

n
j 0[Snp

X
~wj 0yj 0

0

@

1

A

2

: ð6Þ

Because ŶM1 does not depend on Sp;VRpðŶM1Þ ¼ VRðŶM1Þ and Equation (6) can be

interpreted as an estimator of either. Estimator (6) is convenient because it is the default in

survey software packages like R survey, Stata, and SAS. However, as shown in Appendix

(Subsection 8.1), yRp is a biased estimator of the model variance given below.

The j-variance under Equation (1) in case (1) is Vj ŶM1

� �
¼

P
Snp

s2
j =p

2
j

� �
which can

be estimated by

yj ŶM1

� �
¼

Snp

X e2
j

p2
j

; ð7Þ
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where e2
j ¼ ðyj 2 xT

j
~B̂npðpÞÞ

2 is an approximately j-unbiased estimator of s2
j with

~B̂np ðpÞ ¼
Snp

X
xjx

T
j = pj ~s

2
j

� �
0

@

1

A

21

Snp

X
xjyj= pj ~s

2
j

� �

(MacKinnon and White 1985). Note that, because the Y’s are not available in the

probability sample, we must estimate b from the nonprobability sample.

The Rpj-variance, in general, is equal to

VRpj ŶM1jSp; Snp

� �
¼ ER Vpj ŶM1jSp; Snp

� �� �
þ VR Epj ŶM1jSp; Snp

� �� �

¼ ER EpVj ŶM1jSp; Snp

� �
þ VpEj ŶM1jSp; Snp

� �� �
þ

VR EpEj ŶM1jSp; Snp

� �� �
:

ð8Þ

For case (1) ŶM1 does not depend on Sp and Equation (8) reduces to VRpj ŶM1jSp; Snp

� �
¼

VRj ŶM1jSp; Snp

� �
¼ ER

�
Vj ŶM1jSp; Snp

� ��
þ VR

�
Ej ŶM1jSp; Snp

� ��
:

As shown in Appendix (Subsection 8.1) for case (1) with Rj ¼ pj, this is

VRpj ŶM1

� �
¼

U

Xs2
j

pj

þ bT VR X̂np

� �
b: ð9Þ

Notice that, even though ŶM1 does not directly depend on x, the Rpj-variance does after

accounting for the j-model structure. Expression (9) can be estimated by

yRpj ŶM1

� �
¼

Snp

X e2
j

p2
j

þ ~B̂np pð ÞTyR X̂np

� �
~B̂np pð Þ; ð10Þ

where yR X̂np

� �
is, for example, a version of Equation (6) adapted to estimate a covariance

matrix.

3.4. Variance of the Matched Estimator in Case (2)

The j-model variance is Vj ŶM2

� �
¼
P

Snp
gj=pj

� �2
s2

j , which can be estimated by

y j ŶM2

� �
¼

Snp

X
gj=pj

� �2
e2

j : ð11Þ

As noted in Appendix (Subsection 8.2), the estimator of total can be approximated by

ŶM2 8 �Ynp pð Þ þ XU 2 X̂p

� �
~BU ð12Þ

and the approximate Rp variance is

VRp ŶM2

� �
8 VR Ŷnp pð Þ

� �
þ ~B

T

UVp X̂p

� �
~BU ; ð13Þ

which can be estimated as

yRp ŶM2

� �
¼ yR Ŷnp pð Þ

� �
þ ~B̂np pð ÞTyp X̂p

� �
~B̂np pð Þ: ð14Þ

Note that, in the situation studied here, both terms of the variance in Equation (13) have the

same order of magnitude, O(N 2/n), since they are based on samples of the same size. Thus,
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the Rp-variance is the variance in the nonprobability sample of the estimator with inverse

pseudo-inclusion probability weights plus a term reflecting the variance of the estimator of

the x-totals in the probability sample.

Since Ŷnp pð Þ ¼ ŶM1, Equation (13) also implies that the Rp-variance of ŶM2 with

calibrated Sp weights is larger than that of the uncalibrated ŶM1. This disagrees with the

usual expectation that calibration on an effective predictor of Y reduces variances. To better

understand this, note that if the matched x’s in Sp and Snp were identical, then X̂p ¼ X̂np and

the variable part in Equation (12) could be written as a weighted sum over Snp of residuals,

which can then be used to show that ŶM2 can have a smaller variance than ŶM1. However,

with imperfect matching the relationship in Equation (12) becomes more realistic.

As shown in Appendix (Subsection 8.2) the approximate Rpj-variance when Rj ¼ pj is

VRpj ŶM2

� �
8

U

Xs2
j

pj

þ bT VR X̂np

� �
bþ bTVp X̂p

� �
b: ð15Þ

A natural estimator of Equation (15) is then

yRpj ŶM2

� �
¼

Snp

X
ej=pj

� �2
þ ~B̂np ðpÞ

TyR X̂np

� �
~B̂np ðpÞ þ ~B̂np ðpÞ

Typ X̂p

� �
~B̂np ðpÞ: ð16Þ

Consequently, there are several options for variance estimation for ŶM2 for cases (1) and

(2). They can be summarized as:

† Case (1), ~wj ¼ p21
j

– Estimate the j-variance in Equation (7)

– Estimate the quasi-randomization (Rp) variance with the with-replacement

estimator in Equation (6);

– Estimate the Rpj-model variance with vRpj in Equation (10);

† Case (2), ~wj ¼ GREG weight from Sp

– Estimate the j-variance with Equation (11)

– Estimate the Rp-variance with Equation (14);

– Estimate the Rpj-variance with Equation (16);

4. Calibration Adjustment After Matching

The R2; Rp2; or Rpj-bias of the matched estimators, ŶM1 and ŶM2, in Section 3 depend

critically on whether Pr ( j [ Snpjxj) ¼ Pr (i [ Sp) for matched units i and j. Matching on

covariates attempts to ensure this; however, there is no guarantee that the condition is

satisfied regardless of how extensive the set of covariates is.

Consequently, one might hope that calibrating the weights for the nonprobability

sample will provide some bias protection. Suppose that the {w̃j}j[Snp
weights are calibrated

to the XU population totals using the chi-square distance function associated with a GREG.

Using the standard formula from Särndal et al. (1992, eq. 6.5.10), the resulting weight for

unit j is
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w*
j ¼ ~wj 1þ XU 2 X̂np ~wð Þ

� �T
A*

np ~wð Þ
h i21

xj=s*2
j

� 	

; ~wjg
*
j ; ð17Þ

where X̂np ~wð Þ ¼
P

Snp
~wjxj and A*

np ~wð Þ ¼
P

Snp
~wjxjx

T
j =s

*2
j . (Note that s*2

j does not have

to be the same as ~s2
j used in constructing the GREG weight in Sp.) As in Section 3, s*2

j is

often set to a constant in which case it drops out of the formula for w*
j . The matched,

calibrated estimator is then

ŶMC ¼
Snp

X
w*

j yj

¼
Snp

X
~wjyj þ XU 2 X̂M

� �T
A*

npð ~wÞ
h i21

Snp

X
~wjxjyj=s*2

j

¼ ŶM þ XU 2 X̂M

� �T
B̂

*

npð ~wÞ; ð18Þ

where B̂
*

npð ~wÞ¼ A*
npð ~wÞ

h i21P
Snp

~wjxjyj=s
*2
j . As in Section 3, calculations depend on cases

(1) and (2) of the ~wj weights. When case (1) weights are used from Sp, the calibrated

estimator will be denoted by ŶMC1; when case (2) weights are used, ŶMC2 denotes the

calibrated estimator in subsequent sections.

4.1. Biases in Case (1)

When ~wj ¼ p21
j , X̂M ¼ X̂npðpÞ and, after calibration, the estimator of the total can be

written as

ŶMC1 ¼ ŶnpðpÞ þ XU 2 X̂npðpÞ
� �T

B̂
*

np pð Þ;

where B̂
*

np pð Þ is the special case of B̂
*

np ~wð Þ with ~wj ¼ p21
j . Since Ej ŶnpðpÞ

� �
¼ X̂np pð Þb

under model (1) and Ej B̂
*

np pð Þ
� �

¼ b, Ej ŶMC1 2 YU

� �
¼ 0, that is, ŶMC1 is j-unbiased.

Thus, calibrating on the x’s in the j-model yields an j-unbiased estimator even if Rj – pj:

To calculate the Rp-expectation, define B*
U ¼ A*

U
21 P

U
Rj

pj
xjyj=s

*2
j

� �
with

A*
U ¼

P
U

Rj

pj
xjx

T
j =s

*2
j . By the same type of Taylor series argument as in Särndal et al.

(1992, sec. 6.5),

ŶMC1 8 Ŷnp pð Þ þ XU 2 X̂np pð Þ
� �T

B*
U : ð19Þ

It follows that EREp ŶMC1

� �
¼ ER ŶMC1

� �
8
P

U Rjyj=pj þ XU 2
P

U Rjxj=pj

� �T
B*

U . If

Rj ¼ pj, then ŶMC1 is approximately Rp-unbiased. Another consequence is that, when Snp is

calibrated with the x’s in model if (1) and Sp has case (1) weights, ŶMC1 is Rpj-unbiased if

Rj ¼ pj.

4.2. Biases in Case (2)

In case (2) with ~wj ¼ gj=pj and gj defined in Equation (3), the matched estimator after

calibration equals
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ŶMC2 ¼
Snp

X
g*

j gjyj=pj;

where

g*
j ¼ 1þ XU 2 X̂npð ~wÞ

� �T ~A*
npð ~wÞ

h i21

xj=s*2
j :

As show in Appendix (Subsection 8.3), the calibrated estimator of the total is

approximately

ŶMC2 8 Ŷnp pð Þ þ XU 2 X̂p

� �T ~BU þ XU 2 X̂np ~wð Þ
� �T

B*
U : ð20Þ

Using Equation (19), the j-expectation is

Ej ŶMC2

� �
8 X̂np pð Þbþ XU 2 X̂p

� �T
bþ XU 2 X̂np ~wð Þ

� �T
b;

which is not Ej YUð Þ ¼ XT
Ub. That is, ŶMC2 is j-biased. This bias occurs even though the

nonprobability sample is calibrated on the x’s in the model for Y.

If Rj ¼ pj, then EREp ŶMC2

� �
8 YU and EREpEj ŶMC2 2 YU

� �
is approximately zero.

The bias results for the matched, calibrated estimators ŶMC1 and ŶMC2 can be

summarized as follows:

† Case (1) ~wj ¼ p21
j and the ~wj are then calibrated to population x-totals

– When the linear model (1) holds, ŶMC1 is j-unbiased regardless of whether Rj ¼ pj ;

– ŶMC1 is approximately R-, Rp-, and Rpj-unbiased in large samples if Rj ¼ pj;

† Case (2), ~wj is the GREG weight for its matched unit in Sp and the ~wj are then

calibrated to population x-totals

– ŶMC2 is j-biased even if Equation (1) holds and the nonprobability sample Snp is

calibrated on the x’s in the model;

– ŶMC2 is approximately Rp-unbiased in large samples if Rj ¼ pj;

– ŶMC2 is approximately Rpj-unbiased in large samples if Rj ¼ pj;

If case (1) holds where the weights assigned to matched units are inverses of selection

probabilities from Sp, the situation is more straightforward than case (2). R-unbiasedness in

case (1) requires that the pseudo-inclusion probabilities can be taken from the probability

sample, that is, Rj ¼ pj. Nonetheless, in case (1) calibrating the nonprobability sample does

produce an j-unbiased estimator even if Rj – pj, as one would hope. However, in case (2)

when the weights from the probability sample are calibrated and the nonprobability sample

is further calibrated on the same x’s, the resulting estimator is not j-unbiased.

4.3. Variance of the Matched, Calibrated Estimator in Case (1)

To compute the j-model variance, note that the estimator of total can also be written as

ŶMC1 ¼
P

Snp
g*

j yj=pj with g*
j defined in Equation (17) with ~wj ¼ 1=pj. The j-variance is

then

Vj ŶMC1

� �
¼

Snp

X g*
j

pj

 !2

s2
j :
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It follows that the Rpj-variance is VRpj ŶMC1

� �
¼
P

U g*2
j =pj

� �
s2

j . The j-variance can

be estimated with

y j ŶMC1

� �
¼

Snp

X g*
j

pj

 !2

ê*2
j ; ð21Þ

where ê*2
j ¼ yj 2 xT

j B̂
*

npðpÞ with B̂
*

npðpÞ ¼
P

Snp
xjx

T
j = pjs

*2
j

� �� �21 P
Snp

xjyj= pjs
*2
j

� �
.

To compute the R– and Rp-variance, we use the approximation in Equation (19).

Assume that Rj ¼ pj so that ŶMC1 is R-unbiased. Based on results in Subsection 4.1, the

estimator can be approximated as

ŶMC1 ¼ ŶnpðpÞ þ XU 2 X̂npðpÞ
� �T

B̂
*

npðpÞ

8ŶnpðpÞ þ XU 2 X̂npðpÞ
� �T

B*
U

¼
Snp

X
p21

j e*
j þ XT

UB*
U ; ð22Þ

where e*
j ¼ yj 2 xT

j B*
U . The R- (and Rp-) variance is, thus, equal to the variance of the first

term in the last line of Equation (22). If the sample Snp is treated as being selected with

replacement, then a variance estimator is

yRp ŶMC1

� �
¼

n

n 2 1 j[Snp

X
~wjê

*
j 2

1

n
j 0[Snp

X
~wj 0 êj 0*

0

@

1

A

2

: ð23Þ

4.4. Variance of the Matched, Calibrated Estimator in Case (2)

As shown in Appendix (Subsection 8.4) approximation (20) can be rewritten as

ŶMC2 8
Snp

X
yj

1

pj

þ Fj


 �

þ
U2Snp

X
yjFj;

where Fj is a term that is Op n21=2
� �

: As a result, Vj ŶMC2

� �
8
P

Snp
sj=pj

� �2
, which can be

estimated with

yj ŶMC2

� �
¼

Snp

X ê*
j

pj

 !2

: ð24Þ

Rewriting Equation (20), the calibrated estimator of the total is also

ŶMC2 8
Snp

X e*
j

pj

þ XU 2 X̂p

� �T ~BU þ XT
UB*

U ; ð25Þ

where e*
j was defined above. Using the total variance formula, the Rp-variance can be

derived as

VRp ŶMC2

� �
¼ VREp ŶMC2j Snp

� �
þ ERVp ŶMC2jSnp

� �
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¼ VR

Snp

X e*
j

pj

0

@

1

Aþ ERVp XU 2 X̂p

� �T ~BU

h i

¼ VR

Snp

X e*
j

pj

0

@

1

Aþ ~B
T

UVp X̂p

� �
~BU :

An estimator of this variance is

yRp ŶMC2

� �
¼ yR

Snp

X e*
j

pj

0

@

1

Aþ ~B̂np pð ÞTyp X̂p

� �
~B̂np ðpÞ ð26Þ

with yR

P
Snp

e*
j

pj

� �
being a variance estimator of an estimated total appropriate to how the

nonprobability sample is handled. We use ~B̂np ðpÞ in Equation (26) rather than an estimator

with ~w weights since the former is expected to be somewhat more stable. If Snp is treated as

being with-replacement, the first component in Equation (26) can be computed with

Equation (23).

Details of calculating VRpj ŶMC2

� �
are in Appendix (Subsection 8.4). This variance can

be estimated with

yRpj ŶMC2

� �
¼

Snp

X ê*
j

pj

 !2

þ ~B̂np pð ÞTyp X̂p

� �
~B̂np ðpÞ: ð27Þ

For each of the variance estimators above for the matched, calibrated estimator in cases

(1) and (2), it is important to remember that unless Rj ¼ pj the estimator of total itself will

be biased. If so, the mean square error will have a bias-squared component that none of the

variance estimators will reflect.

In the combination above, both the weights in Sp and those in Snp are calibrated to a

given set of x’s. This is similar to the situation studied by Rao et al. (2002, 368), who noted

that in a regression with calibration weights, GREG residuals are based on the regression

of model residuals on X. If the model fits well, there will be very little association between

those residuals and X leading to no gain compared to an estimator not using calibration

weights. In our situation, when the estimators of totals are unbiased, we can expect ŶM2

with calibration in Sp, ŶMC1 with no calibration in Sp and calibration in Snp, and ŶMC2 with

calibration in both Sp and Snp to be about equally precise––a point borne out by the

simulation in Section 5.

5. Simulation Studies

To study the performance of the proposed estimators described above, we performed two

simulation studies with an artificial population. In the first, conditions are created where

close matches can be found between units in the probability sample and the nonprobability

sample. In the second simulation, close matches are much less likely.
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5.1. Simulation Study I

In the simulation, a finite population of size N ¼ 100,000 was based on the following

model:

EjðYÞ ¼ aþ bX;VjðYÞ ¼ s2X 3=2;

where a ¼ 0.4, b ¼ 0.25, s 2 ¼ 0.0625, and X follows a gamma distribution with density

function f (x) ¼ 0.04x exp(2x/5). This is the same model as used by Hansen et al. (1983);

the function HMT in the R PracTools package (Valliant et al. 2020) was used to generate

the population. Conditional on X, Y follows a gamma distribution with density function

g( y; x) ¼ (1/b cG(c))y c21 exp(2y/b), where b ¼ 1.25x 3/2(8 þ 5x)21, c ¼ 0.04x 23/2

(8 þ 5x)2 and G(·) is the gamma function. The finite population is stratified into five strata

by ranges of the variable X, such that each stratum has approximately the same total of X.

A stratified, probability sample Sp of size n ¼ 250 is then selected from the population

using stratified, simple random sampling (stsrs) without replacement, in which the sample

stratum sizes are given by (50, 50, 50, 50, 50). Further, a stratified, volunteer panel of size

M ¼ 1,250 is selected from the population with stratum sample sizes (250, 250, 250, 250,

250) using stratified, simple random sampling. Although the volunteer panel is a

probability sample, their weights are treated as unknown for the simulation. Note that the

sampling fractions of both Sp and Snp are small and, thus, will not affect the empirical

variances of estimates.

For each unit of the probability sample of n ¼ 250, we find the closest matching unit of

the volunteer panel to obtain the matched, non-probability sample Snp of size n ¼ 250,

using single nearest neighbor matching without replacement based on the single auxiliary

variable X. That is, it matches each unit i in the probability sample with a unit j in the

volunteer panel with the closest distance d(i, j ) ¼ kXi2Xjk and the unit j in the volunteer

panel can be used only once, where k · k is a norm, such as 1-norm, 2-norm and 1-norm.

The units in the volunteer panel are then assigned the weight of their nearest neighbor

match from the probability sample using the R package Matching (Sekhon 2011). In this

example, finding close matches is fairly easy, and we should have Rj ¼ pj, j [ Snp, in

almost all cases because both Sp and Snp are stsrs. The parameter of interest is the

population total of Y. Finally, the matched estimator and the matched, calibrated estimator

under cases (1) and (2) in Section 3 are computed, denoted by

† ŶM1, estimator (2) with 1/p weights from the matched units in Sp,

† ŶM2, estimator (4) with GREG weights from the matched units in Sp,

† ŶMC1, estimator (18) with 1/p weights from the matched units in Sp followed by

calibration in Snp, and

† ŶMC2, estimator (18) with GREG weights from the matched units in Sp followed by

calibration in Snp.

The above process is repeated 5,000 times. The percentage relative biases (relbiases),

the variances and the mean squared errors of the matched estimator and the matched,

calibrated estimator under cases (1) and (2), are presented in Table 1. The empirical

percent relative bias is defined as 100 £ bias(Ŷ)/Y.
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For comparison we included a doubly robust estimator, denoted by ŶDR, that was

computed without matching. This estimator was computed in two steps as described in

Elliott and Valliant (2017). First, an equal probability subsample of n ¼ 250 was selected

from the volunteer panel of m ¼ 1,250. Then, Sp and Snp are combined. Units in Snp are

given a weight of 1 while units in Sp were assigned their sampling weight of 1/pi. A

logistic regression with X as the covariate was run to predict the probability of being in Snp.

The weight for unit j in Snp was then calculated as wj ¼ 1 2 R̂j

� �
=R̂j where R̂j is the

predicted probability of being in Snp (see Wang et al. 2021). Without the odds

transformation, the estimator would be somewhat biased (Chen et al. 2020), but in this

case the bias was negligible since Snp is a small fraction of the population (Wang et al.

2021). Finally, the estimator was calibrated with a model having an intercept and X. The

general formulas for ŶDR and its variance estimator are

ŶDR ¼
Snp

X
gDRjwjyj; vDR ¼

Snp

X
ðgDRjwjÞ

2e2
DRj ð28Þ

where wj is the estimated weight defined above, eDRj ¼ yj 2xT
j B̂DR with B̂DR being the

weighted least squares estimator of slope with weights equal to wj, and gDRj is the g-weight

defined using the wj weights. The estimator ŶDR will be approximately unbiased if either

the model for the propensities of being in Snp or the model for Y is correct. Two other

things to note are that (a) ŶDR is not the same as the DR estimator considered by Chen et al.

(2020) and (b) vDR is theoretically incorrect because it treats the weights wj as constants

rather than estimates. Although Chen et al. (2020) present a variance estimator for their

DR estimator, it is not appropriate here since our ŶDR differs from theirs.

Simulation results in Table 1 show that the absolute relative biases of the matched

estimators under the two cases of weights from Sp are small and close to those of the

corresponding matched, calibrated estimators under the two cases. The t-statistics,

computed across the 5,000 samples, for testing whether the biases of the estimated totals

are zero are 0.68 in absolute value or less with the exception of ŶDR which is -2.26. Since

the relbias of the DR estimator is only -0.1062%, a t-statistic of this size is of no practical

importance. Thus, both the matched estimators and the matched, calibrated estimators are

unbiased when Rj ø pj, j [ Snp in both cases (1) and (2) as predicted by the theory in

Subsections 3.1 and 3.2. The variances and MSEs of ŶM2, ŶMC1, and ŶMC2 are all equal as

anticipated in the comment at the end of Subsection 4.4 and are about 17% smaller than

those of ŶM1. Consequently, while all estimates are approximately unbiased, the

calibration adjustment after matching produces more efficient estimators compared to only

Table 1. Simulation Study I: Monte Carlo percent relative biases, variances and

mean squared errors of the point estimators

Estimators Relative
bias (%)

Variance
(4107)

MSE
(4107)

Ratio to
min MSE

ŶM1 -0.0318 9.02 9.02 1.17
ŶM2 -0.0078 7.68 7.68 1.00
ŶMC1 -0.0274 7.68 7.68 1.00
ŶMC2 -0.0274 7.68 7.68 1.00
ŶDR -0.1062 9.23 9.24 1.20
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matching under case (1). Also noteworthy is the fact that the doubly robust estimator, ŶDR,

has a 20% larger MSE than the best of the matching estimates. This is a consequence of the

logistic model used to estimate Pr ( j [ Snp) being a misspecification.

In addition to the point estimators, the variance estimators of the matched estimator, the

matched, calibrated estimator under cases (1) and (2), and the doubly robust estimator are

also computed according to Equations (6), (7), (10), (11), (14), (16), (21), (23), (24), (26),

(27), and (28). In all cases Snp is treated as an unstratified, with replacement sample. Percent

relative biases (RB) are computed for the variance estimators with respect to the empirical

variances (Empvar) and MSEs of the point estimators across the 5,000 simulations:

RB:Empyar ¼
100 £

XB

b¼1
y ðbÞðŶÞ=B 2 VðŶÞ

� �

VðŶÞ
;

RB:MSE ¼
100 £

XB

b¼1
y ðbÞðŶÞ=B 2 MSEðŶÞ

� �

MSEðŶÞ
;

where VðŶÞ is the empirical or monte carlo variance of a point estimator Ŷ;MSEðŶÞ is MSE

of the point estimator Ŷ, v (b)(Ŷ) is a variance estimator of Ŷ computed from the bth simulated

sample, and B ¼ 5,000 is the total number of simulation runs. The percent relative biases

(RB) and 95% confidence interval (CI) coverages using the normal approximation and the

different variance estimates, are presented in Table 2.

With three exceptions, the relbiases in Table 2 are small, ranging from -1.1% to 3.1%.

An exception is y jðŶM1Þ which is a 15.7% underestimate due to the fact that it does not

account for the variability of X̂np as shown in Subsection 3.3. The Rp and Rpj estimators

for ŶM2 are about 24% overestimates. As explained in Appendix (Subsection 8.2), these

estimators will not fully account for precision gains due to calibration of weights in Sp

when the x-matches are extremely close. Confidence interval coverage ranges from 94.8%

to 97.0% except for vj(ŶM1) which covers in 92.7% of samples due to its underestimation.

Table 2. Simulation Study I: Percent relative biases and 95% confidence interval

coverages of the variance estimators

Estimators RB.Empvar (%) RB.MSE (%) CI coverage (%)

yjðŶM1Þ -15.7 -15.7 92.7

yRðŶM1Þ 3.1 3.1 95.0

yRpjðŶM1Þ 2.8 2.8 96.8

yjðŶM2Þ -0.9 -0.9 94.8

yRpðŶM2Þ 23.9 23.9 96.8

yRpjðŶM2Þ 23.6 23.6 97.0

yjðŶMC1Þ -1.0 -1.0 94.9

yRðŶMC1Þ -0.7 -0.7 94.8

yjðŶMC2Þ -1.1 -1.1 94.8

yRpðŶMC2Þ 2.2 2.2 95.2

yRpjðŶMC2Þ 1.8 1.9 95.2

y ðŶDRÞ 0.4 0.4 94.9
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5.2. Simulation Study II

In this simulation, we consider a case in which Rj – pj; j [ Snp: The same finite population

of size N ¼ 100,000 is used as in simulation study I along with a stratified, probability

sample Sp of size n ¼ 250. A volunteer panel of expected size m ¼ 1,250 is selected from

the population using Poisson sampling with selection probabilities pi
0 defined as follows:

pi ¼ 0:085 expð20:085XÞ;

pi
0 ¼

mpi
XN

i¼1
pi

:

With this definition of pi, the probability of being in Snp decreases with increasing X. This

kind of selection for the volunteer panel will generally result in Rj – pi; for a unit j [ Snp

matched to a unit i [ Sp:

As in simulation I, single nearest neighbor matching without replacement based on the

variable X is adopted to conduct matching for the probability sample. The matched

estimator, the matched, calibrated estimator, the doubly robust estimator and their

variance estimators under cases (1) and (2) are computed. The above procedure is repeated

5,000 times. The relative biases, the variances and the mean squared errors are listed in

Table 3. Also, the same relative biases and 95% CI coverages of variance estimators as

those in simulation study I are displayed in Table 4.

In Table 3 the matched estimators, ŶM1 and ŶM2, have biases of about -5%. These biases

are largely corrected by calibrating with ŶMC1 and ŶMC2. The t-statistics for testing whether

the biases are zero are over 100 in absolute value for ŶM1 and ŶM2 but are only about -3 for

the calibrated estimators. Despite the somewhat large t-statistics for the calibrated

estimators, calibration is very effective in reducing bias due to using incorrect Snp

inclusion probabilities. The calibrated estimates, consequently, have substantially smaller

MSEs than ŶM1 and ŶM2 because of their reduced bias. The doubly robust estimator, ŶDR, is

also approximately unbiased; however, its variance and MSE are 50% higher than those of

ŶMC1 and ŶMC2.

In Table 4 the variance estimates for ŶM1 and ŶM2 are biased estimates of the empirical

variance and severe underestimates of the MSEs. This leads to CIs that cover only about

56% to 66% of the time for the first four variance estimates in Table 4. Since yRpðŶM2Þ and

yRpjðŶM2Þ overestimate the empirical variances by about 22%, their CIs do cover the

population totals in 96.8% and 96.9% of samples. The fact that calibrating removes the

bias of the matching estimators plus the low biases of the variance estimators for ŶMC1 and

Table 3. Simulation Study II: Percent relative biases, variances and mean

squared errors of the point estimators

Estimators Relative
bias (%)

Variance
(4107)

MSE
(4107)

Ratio to
min MSE

ŶM1 -5.2 8.83 31.04 3.9
ŶM2 -5.1 7.99 29.86 3.8
ŶMC1 -1.3 7.66 7.67 1.0
ŶMC2 -1.3 7.66 7.67 1.0
ŶDR -0.2 11.31 11.35 1.5
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ŶMC2 leads to CI coverage of 94.2% to 95.1%. The variance estimator for ŶDR has CI

coverage of 94.3% and performs well. These coverage probabilities are estimated

reasonably precisely in the simulation of 5,000 samples. The half-widths of normal

approximation 95% CIs on the empirical coverage rates themselves range from 0.62

percentage points when coverage is 95% to 1.39 percentage points when coverage is 60%.

(These half-width lengths also apply to the results for Simulation I and for the real data

simulation presented in Section 6.)

6. Illustration with Real Population

To further assess the performance of the matching estimators, they are applied to data obtained

from the 2015 US Behavioral Risk Factor Surveillance Survey (BRFSS) (Center for Disease

Control and Prevention 2023), which is a sample from the US population 18 years and older.

The file contains information about whether persons used the internet in the past 30 days

(INTERNET). The BRFSS is part of a national state-by-state system of surveys used to

monitor health conditions in the United States. Data are collected through telephone

household interviews. The analytic variables Y in this study are whether respondents were ever

diagnosed with a heart attack (CVDINFR4), were ever told by a medical professional that they

have diabetes (DIABETE3), and were ever told they had a stroke (CVDSTRK3). Although

each of these analysis variables is binary, use of linear estimators, as studied in previous

sections, is standard survey practice, largely because of their convenience for data analysts.

Covariates associated with Y are sex, age, race, marital status, physical weight,

employment status, education level, income level, whether respondents smoked at least

100 cigarettes in their entire life, and whether respondents participated in any physical

activities or exercises in the past 30 days in 2015. All of the variables are shown in Table 5.

After deleting cases with either a missing, a don’t know or a refused response to any of

these variables, 315,669 persons are available for this study. Two weights are provided

with the data set: X_WT2RAKE, which is a design weight and X_LLCPWT, which is a

raked, final weight. According to the documentation Center for Disease Control and

Table 4. Simulation Study II: Percent relative biases and 95% confidence interval

coverages of the variance estimators

Estimators RB.Empvar (%) RB.MSE (%) CI coverage (%)

yjðŶM1Þ -18.2 -76.7 56.2

yRðŶM1Þ 8.7 -69.1 64.9

yRpjðŶM1Þ 8.4 -69.2 66.1

yjðŶM2Þ -9.5 -75.8 57.0

yRpðŶM2Þ 22.9 -67.1 96.8

yRpjðŶM2Þ 22.5 -67.2 96.9

yjðŶMC1Þ 1.6 1.4 95.1

yRðŶMC1Þ -5.3 -5.4 94.2

yjðŶMC2Þ -5.6 -5.8 94.5

yRpðŶMC2Þ -2.4 -2.5 94.5

yRpjðŶMC2Þ -2.7 -2.9 94.5

y ðŶDRÞ -3.1 -3.4 94.3
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Prevention (2017). BRFSS rakes the design weight to eight margins (gender by age group,

race/ethnicity, education, marital status, tenure, gender by race/ethnicity, age group by

race/ethnicity, and phone ownership). The raking also serves as a noncoverage/

nonresponse adjustment. Because of the asymptotic equivalence of the GREG and raked

estimators shown by Deville and Särndal (1992), the earlier theory in Sections 3 and 4

should apply to estimators based on X_LLCPWT.

In this data set of 315,669 persons, 256,949 people who had used the internet in the past

30 days are considered as the web (nonprobability) subset. Using the X_LLCPWT weights,

the web population is only 84% (81% unweighted) of the target population, indicating that

the effect of coverage error could be substantial. Moreover, the weighted distributions of the

Table 5. Covariates used in the BRFSS simulation study

Variables Type Description

SEX 2 categories Respondents sex: 1¼Male; 2¼Female
X_AGE 6 categories Imputed age in six groups: 1¼Age 18 to 24; 2¼Age 25

to 34; 3¼Age 35 to 44; 4¼Age 45 to 54; 5¼Age 55 to
64; 6¼Age 65 or older

X_RACE 8 categories Computed race-ethnicity grouping: 1¼White only, non-
Hispanic; 2¼Black only, non-Hispanic; 3¼American
Indian or Alaskan Native only, Non-Hispanic; 4¼Asian
only, non-Hispanic; 5¼Native Hawaiian or other Pacific
Islander only, Non-Hispanic; 6¼Other race only, non-
Hispanic; 7¼Multiracial, non-Hispanic; 8¼Hispanic

MARITAL 6 categories Marital status: 1¼Married; 2¼Divorced; 3¼Widowed;
4¼Separated; 5¼Never married; 6¼A member of an
unmarried couple

WEIGHT2 Continuous Reported weight in pounds: 50–999
EMPLOY1 8 categories Employment status: 1¼Employed for wages; 2¼Self-

employed; 3¼Out of work for 1 year or more; 4¼Out of
work for less than 1 year; 5¼A homemaker; 6¼A
student; 7¼Retired; 8¼Unable to work

EDUCA 6 categories Education level: 1¼Never attended school or only
kindergarten; 2¼Grades 1 through 8 (Elementary);
3¼Grades 9 through 11 (Some high school); 4¼Grade
12 or GED (High school graduate); 5¼College 1 year to
3 years (Some college or technical school); 6¼College 4
years or more (College graduate)

INCOME2 8 categories Income level: 1¼Less than USD 10,000; 2¼USD 10,000
to less than USD 15,000; 3¼USD 15,000 to less than
USD 20,000; 4¼USD 20,000 to less than USD 25,000;
5¼USD 25,000 to less than USD 35,000; 6¼USD
35,000 to less than USD 50,000; 7¼USD 50,000 to less
than USD 75,000; 8¼USD 75,000 or more

SMOKE100 2 categories Smoked at least 100 cigarettes?: 1¼Yes; 2¼No
EXERANY2 2 categories Exercise in past 30 days?: 1¼Yes; 2¼No
INTERNET 2 categories Internet use in the past 30 days?: 1¼Yes; 2¼No
CVDINFR4 2 categories Ever diagnosed with heart attack?: 1¼Yes; 2¼No
DIABETE3 2 categories Ever told you have diabetes?: 1¼Yes; 2¼No
CVDSTRK3 2 categories Ever told you had a stroke?: 1¼Yes; 2¼No
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categorical covariates among all respondents in the web, non-web, and full populations are

given in Table 6. Categories of some variables are combined in Table 6 and in the simulation

compared to the categories in Table 5 because they are small. Table 7 gives the proportions

that reported a heart attack, diabetes, or a stroke in the web, non-web, and full populations.

As shown in Tables 6 and 7, there are differences between the target population and the

web and non-web populations in the estimated distributions of some of the covariates.

For example, 0.19 of the full population are age 65 or older, 0.14 of the web population

Table 6. Distributions of the categorical variables and means of the continuous variable, body weight, in the

web, non-web, and full populations

Variables Web
Population

Non-web
Population

Target
Population

SEX Male 0.50 0.49 0.50
Female 0.50 0.51 0.50

X_AGE Age 18 to 24 0.13 0.02 0.11
Age 25 to 34 0.20 0.05 0.18
Age 35 to 44 0.19 0.09 0.17
Age 45 to 54 0.19 0.16 0.18
Age 55 to 64 0.16 0.22 0.17
Age 65 or older 0.14 0.45 0.19

X_RACE Non-black, non-Hispanic 0.90 0.84 0.89
Black only, non-Hispanic 0.10 0.16 0.11

MARITAL Married or member of an
unmarried couple

0.59 0.47 0.58

Divorced 0.11 0.15 0.11
Widowed, separated, never
married

0.30 0.38 0.31

EMPLOY1 Employed for wages,
self-employed

0.65 0.30 0.59

Out of work 0.05 0.06 0.05
Other (homemaker, student,
retired, unable to work)

0.30 0.63 0.35

EDUCA Grade 11 or less 0.08 0.39 0.13
Grade 12 or equivalent 0.25 0.37 0.27
College 1 year to 3 years 0.35 0.18 0.32
College 4 years or more 0.33 0.06 0.29

INCOME2 Less than USD 25,000 0.21 0.60 0.27
USD 25,000 to less than USD
50,000

0.24 0.27 0.24

USD 50,000 to less than USD
75,000

0.17 0.07 0.16

USD 75,000 or more 0.38 0.06 0.33
SMOKE100 Smoked at least 100

cigarettes
0.59 0.51 0.58

Not smoked at least 100
cigarettes

0.41 0.49 0.42

EXERANY2 Exercise in past 30 days 0.22 0.40 0.25
No exercise in past 30 days 0.78 0.60 0.75

WEIGHT2 Body weight in pounds 180.50 176.90 180.00
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are, and 0.45 of the non-web are 65þ . In the target population, 0.59 are employed for

wages, 0.65 are in the web population, but only 0.30 of the non-web are. About 8% of the

web population have a grade 11 education or less while 13% of the full population does;

33% of the web population attended four or more years of college while 29% of the full

population did. For the analysis variables in Table 7, 4.3% of the target population have

ever been diagnosed with a heart attack while 3.1% of the web population and 10.7% of

the non-web population have. Similar differences occur for diabetes and stroke. Although

the percentage point differences are small between the web and full populations, the

relative differences are substantial. For example, heart attacks in the web population are

72% (0.031/0.043) of those in the full population; diabetes in the web population is 80% of

the full population rate; strokes in the web population are 72% of those in the full

population. Consequently, calibrating the matched sample may reduce bias and variance

as long as the covariates in Table 6 are predictive of the Y ’s. However, it is clear that

weighting a sample from the web population will have to achieve a considerable amount of

bias correction in order to produce good estimates for the full, target population.

Also noteworthy are the substantial differences between the web and non-web

subpopulations. The non-web people are older, more likely to be Black and non-Hispanic,

more likely to not be in the labor force, less educated, lower income, and more likely to

have smoked than the web persons. The non-web people are also much more likely to have

had heart attacks, diabetes, and strokes. Our focus is on using a sample from the web

population to make estimates for the full population, but any attempt to use a sample from

the web population to represent the non-web population seems doomed to failure. In

general, a nonprobability sample that has serious coverage problems cannot be expected to

produce good estimates for poorly covered domains.

To apply the proposed matching method, simple random samples are selected from the

BRFSS web subsample and from the BRFSS full sample. Using equal probability

sampling preserves any differences between the web and full samples and, in particular,

any coverage defects in the web sample. The size of the Sp probability sample was n ¼ 500

while the size of the initial Snp web sample was M ¼ 3,000. The BRFSS raked weights for

persons in Sp were adjusted to equal ~wj ¼ (N/n) * X_LLCPWT where N ¼ 315,669. Since

the BRFSS design weights did not include a nonresponse adjustment and, consequently,

did not sum to an estimate of the size of the target population, we computed a

nonresponse-adjusted design weight for each person in Sp as ~wpj ¼ (N/n) * X_WT2RAKE

* fNR where fNR is the sum of X_LLCPWT over the sum of X_WT2RAKE.

The samples, Sp and Snp, are combined and the propensity of being in Sp is estimated via

logistic regression. The n closest matches in Snp, found using the R package Matching with

the same matching criterion as described in Subsection 5.1, are retained for estimation. The

Table 7. Proportions of the web, non-web, and total populations that have been

told by a medical professional that they have three health conditions

Condition Web Non-web Total pop

Heart attack (CVDINFR4) 0.031 0.107 0.043
Diabetes (DIABETE3) 0.093 0.233 0.116
Stroke (CVDSTRK3) 0.020 0.076 0.029
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matching reduces the size of Snp to be the same (n ¼ 500) as that of Sp. The weights ~wj and

~wpj from the matching person in Sp are assigned to person j in Snp. These weights were used

to calculate estimated proportions, �ŶM1, �ŶM2, �ŶMC1, �ŶMC2, and their associated variance

estimators. Estimators of the proportions of persons who reported heart attacks, diabetes, or

strokes were computed based on the estimators of totals divided by N̂ ¼
P

Snp
~wj. Because of

the way full-sample BRFSS weights are constructed, the variation N̂ from sample to sample

is minimal so that N̂ is treated as a constant for variance estimation.

For �ŶMC1 and �ŶMC2 the calibration model used main effects for SEX, X_AGE,

MARITAL, EMPLOY1, EDUCA, INCOME2, EXERANY2, and SMOKE100 plus the

continuous variable WEIGHT2. After some testing, the race variable was not included

since it did not improve predictions once the other covariates were in the model.

Calibration was done with the R survey package (Lumley 2020).

We also computed two versions of the doubly robust estimator for comparison. The two

alternatives differed in the covariates used in the propensity and calibration models. The

first, �ŶDR1, used propensity and calibration models with the same covariates as the

calibration model for �ŶMC1 and �ŶMC2. The second, �ŶDR2, used propensity and calibration

models that have a much smaller set of covariates: an intercept, SEX, X_AGE, EMPLOY1,

andEDUCA. Although not reported here, we also ran simulations for a DR estimator that had

a propensity model with an intercept, the interactions of INCOME2 with X_AGE, EDUCA

with X_AGE, and INCOME2 with EDUCA. These interactions were determined from a

regression tree analysis, and the covariates were recoded for the interactions to be binary.

INCOME2 was recoded to less than or greater than or equal to USD 25,000; X_AGE to less

than 55 years or greater than or equal to 55 years; EDUCA to less than high school or high

school or more. The logistic propensity model for being in Snp based on the merged data set

of Sp and Snp was estimated using the method described in Wang et al. (2021). For this DR

alternative, the same calibration model was used as for �ŶMC1 and �ŶMC2. Because the

summary results for this DR estimator were similar to those for �ŶDR1, we have omitted them.

This process was repeated 5,000 times for each of the three analysis variables. The

relative biases, the variances and the mean squared errors (MSEs) of the three point

estimators across the 5,000 samples are summarized in Table 8. For all three analysis

variables the biases of �ŶM1 and �ŶM2 are positive, ranging from 4.8% for diabetes with M1 to

15.7% for heart attack for M2. Recall that M1 is a type of p-estimator with the p-weight

taken from the matched case in the probability sample. In this example, M2 is a raked

estimator with the weight being the raked weight from the matched case in Sp. In contrast,

the MC1, MC2, and DR1 estimators have serious negative biases, ranging from -21.6% to

-17.5%. The DR estimator with fewer covariates, �ŶDR2, has the smallest absolute relbias

for two of the three variables: -6.5% for heart attack and -9.1% for stroke. Its -9.8% relbias

for diabetes is an improvement over that of �ŶDR1 but is still undesirably large. Although

modeling suggested that the extensive list of covariates used in MC1, MC2, and DR1 was

needed to correct for coverage bias, the simulations illustrate the well-known phenomenon

that overloading a regression model with predictors leads to instability. DR2 has the

smallest MSE for all three variables and might be preferred on that basis, but its bias

results in poor confidence interval coverage as shown next in Table 9. All of the relbiases

in Table 8 are highly significantly different from zero based on t-tests.
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Table 8. Simulation study with BRFSS population: Monte Carlo percent relative biases,

variances and mean squared errors of the point estimators

Estimator Relative bias
(%)

Variance
(£104)

MSE
(£104)

Ratio to
min MSE

Heart attack

�ŶM1 12.4 2.57 2.85 1.51

�ŶM2 15.7 3.76 4.22 2.23

�ŶMC1 -20.5 1.73 2.51 1.32

�ŶMC2 -20.3 2.03 2.78 1.47

�ŶDR1 -21.6 1.61 2.47 1.30

�ŶDR2 -6.5 1.81 1.89 1.00
Diabetes

�ŶM1 4.8 5.71 6.02 1.09

�ŶM2 6.4 8.07 8.62 1.56

�ŶMC1 -20.1 4.47 9.88 1.79

�ŶMC2 -19.8 5.26 10.53 1.91

�ŶDR1 -20.6 3.78 9.48 1.72

�ŶDR2 -9.8 4.22 5.52 1.00
Stroke

�ŶM1 11.2 1.73 1.83 1.38

�ŶM2 15.5 2.59 2.80 2.10

�ŶMC1 -18.4 1.33 1.62 1.21

�ŶMC2 -17.5 1.59 1.85 1.39

�ŶDR1 -20.3 1.17 1.52 1.14

�ŶDR2 -9.1 1.26 1.33 1.00

Table 9. Simulation study with BRFSS population: Percent relative biases and 95%

confidence interval coverages of the variance estimators

Estimator RB.Empvar (%) RB.MSE (%) CI coverage (%)

Heart attack

yjð �Y
^
M1Þ -28.4 -35.5 89.6

yRpð �Y
^
M1Þ -4.0 -13.4 92.8

yRpjð �Y
^
M1Þ -10.1 -18.9 92.6

yjð �Y
^
M2Þ -26 -33.9 89.6

yRpð �Y
^
M2Þ -22.7 -31.1 89.5

yRpjð �Y
^
M2Þ -26.9 -34.8 89.4

yjð �Y
^
MC1Þ 7.5 -25.8 81.6

yRð �Y
^
MC1Þ -14.4 -40.9 73.1

yjð �Y
^
MC2Þ -8.1 -33.1 80.4

yRpð �Y
^
MC2Þ -5.0 -30.9 77.2
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Table 9 shows the percent relative biases of the variance estimators with respect to the

empirical variance of each estimator of the proportion and with respect to the empirical

MSE. These are labeled RB.Empvar (%) and RB.MSE (%). For the most part, the relative

biases are negative. With respect to the MSE, all are negative owing to the biases of the

point estimators of the proportions which inflate the MSEs. The coverage rates for 95%

normal approximation confidence intervals is generally poor because the intervals are

centered at the wrong place due to the biases of the estimators of proportions. Only the

combinations of �ŶM1 with yRp and yRpj have coverage rates above 90%.

Table 9. Continued.

Estimator RB.Empvar (%) RB.MSE (%) CI coverage (%)

yRpjð �Y
^
MC2Þ 13.8 -17.2 84.4

y ð �Y^DR1Þ -22.4 -49.3 68.4

y ð �Y
^
DR2Þ -19.6 -22.9 82.2

Diabetes

yjð �Y
^
M1Þ -26.3 -30.1 89.8

yRpð �Y
^
M1Þ 3.1 -2.2 94.8

yRpjð �Y
^
M1Þ 2.1 -3.1 94.9

yjð �Y
^
M2Þ -25.0 -29.8 89.9

yRpð �Y
^
M2Þ -8.9 -14.8 92.9

yRpjð �Y
^
M2Þ -9.7 -15.5 92.9

yjð �Y
^
MC1Þ -5.3 -57.2 72.9

yRð �Y
^
MC1Þ -13.4 -60.9 68.4

yjð �Y
^
MC2Þ -19.6 -59.8 71.7

yRpð �Y
^
MC2Þ 1.5 -49.3 75.6

yRpjð �Y
^
MC2Þ 8.3 -45.9 79.4

y ð �Y
^
DR1Þ -19.2 -67.8 61.6

y ð �Y
^
DR2Þ -18.8 -37.9 80.0

Stroke

yjð �Y
^
M1Þ -25.6 -29.9 87.9

yRpð �Y
^
M1Þ -1.8 -7.5 90.1

yRpjð �Y
^
M1Þ -9.7 -14.9 90.5

yjð �Y
^
M2Þ -24.7 -30.2 87.8

yRpð �Y
^
M2Þ -24.6 -30.1 87.4

yRpjð �Y
^
M2Þ -29.8 -35.0 87.4

yjð �Y
^
MC1Þ -2.3 -19.8 79.7

yRð �Y
^
MC1Þ -16.1 -31.1 73.2

yjð �Y
^
MC2Þ -18.3 -29.8 78.8

yRpð �Y
^
MC2Þ -13.3 -25.6 76.9

yRpjð �Y
^
MC2Þ -1.7 -15.6 82.2

y ð �Y
^
DR1Þ -19.7 -38.3 70.1

y ð �Y
^
DR2Þ -17.7 -22.1 80.1
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Finally, as an experiment we also increased the sample sizes to n ¼ 1,000 for the

nonprobability sample and M ¼ 5,000 for the initial probability sample. The increased

sample sizes had no effect on the biases of the point estimates of means. (Results are

omitted here.)

In summary, substantial differences between the web and non-web subpopulations

result in serious coverage problems for the nonprobability sample Snp, causing all

estimators to be biased. Furthermore, calibration adjustment after matching does not

reduce the biases of the matched estimators. The better of the doubly robust estimators

does produce the smallest MSEs in the simulations, but, by no means does it reduce the

biases of estimated means to a negligible level.

7. Conclusion

In this article we present several alternative estimators when a nonprobability sample, Snp,

is matched to a probability sample, Sp. The general setting is that the nonprobability

sample is weighted by assigning the weight from an Sp unit to its matched unit in the

nonprobability sample. Particular cases are (A) the weight from Sp is its p-weight, (B) the

weight from Sp is a GREG weight, (C) case (A) with the nonprobability sample being

calibrated with a linear model, and (D) case (B) with Snp calibrated with a linear model.

Under some restrictive conditions that may be difficult to satisfy in practice, these

estimators can be approximately unbiased. The key requirement is that the actual

propensity of a unit’s being observed in the nonprobability sample should be equal or close

to the inclusion probability of the unit to which it is matched in the probability sample.

Three simulation studies illustrated several points about the matched estimator and the

doubly robust estimator, which is included for comparison. Study I used artificial data

where the variable to be analyzed follows a linear model with a single covariate X, which

was also used to create strata. The sample designs for both Sp and Snp were stratified simple

random sampling with the design for Snp treated as unknown. In this case, matching on X

was reliable and all estimators were unbiased. In fact, three of four of the matching

estimators had a smaller MSE than the doubly robust estimator.

The second simulation used the same artificial population and Sp sample design as Study

I, but Snp was selected with probabilities (treated as unknown) that decreased with X. In

this example, the inclusion probabilities for the nonprobability sample are far from those

in the probability sample used for matching. Consequently, the matched estimators

without calibration are biased. However, calibration corrects the biases and the matched,

calibrated estimator has a smaller MSE than the doubly robust estimator.

The third simulation used a real population (BRFSS) in which persons who had

accessed the internet in the previous 30 days were treated as a nonprobability sample from

the full US adult population. Since there was no control over how the nonprobability units

were selected, this mirrored a situation that would be faced in practice. The prevalence of

three health conditions was estimated. The prevalences differed considerably between the

part of the population that was covered by Snp and the part that was not. The persons who

did not use the internet were older, less educated, lower income, and less healthy than the

internet users. These differences led to all estimators in the study being biased. Calibrating

the matching estimators on a list of covariates did not correct their biases. In addition,
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doubly robust (DR) estimation, which has been touted as one of the better options, needs to

be carefully implemented to be effective. Including too many covariates in a DR estimator

can destabilize the estimator (as in any regression) even though an extensive list of

predictors may, in principle, be related to undercoverage of the population by the

nonprobability sample.

The failure in the real data study has several, potential contributing factors, including

poor matches between the nonprobability and probability units, inadequate models for the

propensity of being observed in the nonprobability sample, and poor calibration models

for predicting the health characteristics analyzed. However, the facts that the

nonprobability sample does not cover the target population, and the noncovered units

differ both on the distributions of the analytic variables and covariates is the critical

problem. Some diagnostics have been devised for detecting nonignorability of selection of

a nonprobability sample (e.g., see Andridge et al. 2019; Little et al. 2019). These

diagnostics will signal non-ignorability if the means of covariates in Snp and the target

population are sufficiently different. Thus, they might be a way forward in the BRFSS

application.

However, if the variables to be analyzed differ between Snp and the target population but

covariate distributions do not, the diagnostics will not alert an analyst to trouble, and poor

inferences will still be made from the nonprobability sample. The type of coverage error in

the BRFSS study is an example of what can happen in nonprobability samples, generally,

and may be a problem that no amount of sophisticated mathematics is likely to correct.

8. Appendix

This appendix shows the details of variance calculations given in earlier sections. Several

assumptions are used in the results below. These apply as N and n ! 1:

(1) pj ¼ O(N/n), Rj ¼ O(N/n) and n/N ! 0.

(2) ~AU and ~A
*
U are O(N).

(3) Vp (Xp) ¼ O(N 2/n).

(4) VR (Xnp) ¼ O(N 2/n).

(5) When Rj ¼ pj, N 21 ~Ap and N 21 ~Anp(p) both converge in probability to N 21 ~Au

¼ N 21
P

U xjx
T
j = ~s2

j :

(6) N 21A*
np ~wð Þ converges in probability to N 21 ~A*

u ¼ N 21
P

U xjx
T
j = ~s*

j :

(7) When Rj ¼ pj, ~A
21

p

P
Snp

xjyj

pj ~s
2
j

p
! ~BU and ~A

*
npð ~wÞ

h i21P
Snp

x jyj

pjs
*2
j

p
!B*

U .

(8) When Rj ¼ pj,
ffiffiffi
n
p

(X̂p2XU) /N,
ffiffiffi
n
p

(X̂np(p)2XU) /N, and
ffiffiffi
n
p

(X̂np(w̃)2XU) /N are

asymptotically multivariate normal with mean 0.

8.1. j-expectation of the With-Replacement Variance Estimator under Case (1)

To compute the j-expectation of yR ŶM1

� �
in Subsection 3.3 under case (1), define

rj ¼ ~wjyj 2 1
n

P
j 0[Snp

~wj
0; yj

0. Since ~wj ¼ p21
j , this can be rewritten as

rj ¼
n 2 1

n

yj

pj

2
1

n
j 0–j[Snp

X yj
0

pj
0
:
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The j-expectation of r2
j is then

Ej r2
j

� �
¼ Vj rj

� �
þ EjðrjÞ
 �2

¼
n 2 1

n


 �2s2
j

p2
j

þ
1

n2
j 0–j[Snp

X s2
j 0

p2
j 0

0

@

1

Aþ
xj

pj

2
1

n
j 0[Snp

X xj 0

pj 0

0

@

1

A

T

b

8
<

:

9
=

;

2

:

Adding and subtracting s2
j =p

2
j in the second term, summing over Snp, and doing some

algebra leads to

Ej yRpð Þ ¼
Snp

X s2
j

p2
j

þ
n

n 2 1 j[Snp

X xj

pj

2
1

n
j 0[Snp

X xj 0

pj 0

0

@

1

A

T

b

8
<

:

9
=

;

2

as noted in Subsection 3.3. That is, yRp is an overestimate of the model variance under

Equation (1). However, because ŶM1 is model-biased, yRp will not appropriately estimate

the j mean square error despite its overestimating the j-variance.

To derive the Rpj-variance, note that

VRpj ŶM1jSp; Snp

� �
¼ VRj ŶM1jSp; Snp

� �

¼ ER Vj ŶM1jSp; Snp

� �� �
þ VR Ej ŶM1jSp; Snp

� �� �
:

Using the independence of the Y ’s under Equation (1), the first term is
P

U s2
j =pj. The

second term is VR Ej ŶM1jSp; Snp

� �� �
¼VR X̂npðpÞ

Tb
� �

¼bT VR X̂npðpÞ
� �

b. Combining

gives the expression shown in Equation (9).

8.2. Variance of Matched Estimator ŶM2 Under Case (2)

Following similar steps to those in Särndal et al. (1992, sec. 6.6) and using condition (7),

ŶM2 can be approximated as

ŶM2 8 Ŷnp pð Þ þ XU 2 X̂p

� �
~BU ; ð29Þ

where ~BU ¼
P

U

x jx
T
j

pj ~s
2
j


 �21 P
U

x jyj

pj ~s
2
j


 �

:

Using the formula for total variance across the R and p distributions (denoted by VRp)

gives

VRp ðŶM2Þ ¼ ERVp ðŶM2jSnpÞ þ VREp ðŶM2jSnpÞ: ð30Þ

Working term by term in Equation (30) and using the approximation to ŶM2 in Equation

(29), we have

ERVpðŶM2jSnpÞ8 ERVp ŶnpðpÞ þ ðXU 2 X̂pÞ
T ~BUjSnp

� �
¼ ~B

T

UVpðX̂pÞ ~BU ;

because Ŷnp pð Þ has zero R-variance given that Snp is fixed. To get the second term in

Equation (30), note that VREp ŶM2jSnp

� �
8 VR ŶnpðpÞ

� �
assuming that X̂p is p-unbiased.
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Combining these results, the variance across the R- and p-distributions is

VRp ŶM2

� �
8 VR ŶnpðpÞ

� �
þ ~B

T

UVp X̂P

� �
~BU :

as shown in Equation (13).

Turning to the Rpj-variance, the total variance formula is given by Equation (8). The

EpVj term is
P

Snp
~s2
j Ep g2

j

� �
=p2

j . Using a Taylor series approximation as in Särndal et al.

(1992, sec. 6.6), we have

gj 8 p21
j 1þ XU 2 X̂p

� �T ~A
21

U xj= ~s2
j

h i
: ð31Þ

It follows that

EpVj ŶM2

� �
8

Snp

X s2
j

p2
j

1þ
xT

j

~s2
j

~A
21

U Ep XU 2 X̂p

� �
XU 2 X̂p

� �T
h i

~A
21

U

xj

~s2
j

( )

¼
Snp

X s2
j

p2
j

1þ
xT

j

~s2
j

~A
21

U Vp X̂p

� �
~A

21

U

xj

~s2
j

( )

: ð32Þ

Thus,

EREpVj ŶM2

� �
¼

U

X
Rj

s2
j

p2
j

þ
U

X
Rj

s2
j

p2
j

xT
j

~s2
j

~A
21

U Vp X̂p

� �
~A

21

U

xj

~s2
j

:

Under the order assumptions at the beginning of this appendix, the first term above is

OðN2=nÞ while the second is OðN2=n2Þ: Thus, we use the approximation EREpVj ŶM2

� �

8
P

U Rjs
2
j =p

2
j :

The second term in Equation (8) is ERVpEj ŶM2

� �
. Expanding and collecting terms

gives

VpEj ŶM2

� �
¼ Vp

Snp

X gj

pj

xjb

0

@

1

A

¼ Vp

Snp

X xj

pj

bþ XU 2 Xp

� �T ~A
21

p
~Anpb

0

@

1

A:

Under condition (v) above, ~A
21

p
~Anp converges to the C £ C identity matrix and ERVpEj

ŶM2

� �
¼ bT Vp X̂p

� �
b.

The third term in Equation (8) gives VREpEj ŶM2

� �
. Frist, compute EpEj ŶM2

� �
¼ Ep

�P
Snp

gj

pj
xjb
�
. Using the approximation to gj in Equation (31), Ep gj

� �
8 1 and EpEj

�
ŶM2

�

8X̂np pð Þb: Consequently, the third term is VREpEj ŶM2

� �
8 bT VR X̂np pð Þ

� �
b:

Liu and Valliant: Matching for Nonprobability Samples 73



Combining results for the three terms in Equation (8) gives

VRpj ŶM2

� �
8

U

X
Rj

s2
j

p2
j

þ bT Vp X̂p

� �
bþ bT VR X̂np pð Þ

� �
b

as shown in Equation (15).

8.3. Approximation to ŶMC2

� �
in Case (2)

When Sp has case (2) weights, ~wj ¼ gj=pj with gj defined in Equation (3). The matched

estimator after calibration then equals

ŶMC2 ¼
Snp

X
g*

j gjyj=pj;

where

g*
j ¼ 1þ XU 2 X̂np ~wð Þ

� �T ~A
*
np ~wð Þ

h i21

xj=s*2
j :

Multiplying g*
j by gj defined in Equation (3) and substituting in the formula for ŶMC2 gives

ŶMC2 ¼ ŶnpðpÞ þ XU 2 X̂p

� �T ~A
21

p
Snp

X xjyj

pj ~s
2
j

þ XU 2 X̂np ~wð Þ
� �T ~A

*
npð ~wÞ

h i21

Snp

X xjyj

pjs
*2
j

þ XU 2 X̂p

� �T ~A
21

p
Snp

X xjx
T
j yj

pj ~s
2
j s

*2
j

~A
*
np ~wð Þ

h i21

XU 2 X̂np ~wð Þ
� �

: ð33Þ

Using conditions (5), (6), and (7), the orders of the second, third, and fourth terms in

Equation (33) are Op(N/
ffiffiffi
n
p

), Op(N/
ffiffiffi
n
p

), and Op(N
ffiffiffi
n
p

). The calibrated estimator can then be

approximated by

ŶMC2 8 Ŷnp pð Þ þ XU 2 X̂p

� �T
BU þ XU 2 X̂npð ~wÞ

� �T
B*

U : ð34Þ

8.4. Variance of Matched Estimator ŶMC2 in Case (2)

To compute the j model variance under case (2), we break
P

U xjyj= ~s2
j and

P
U xjyj=s

*2
j

into sums over Snp and U2Snp. Equation (34) can then be expressed as

ŶMC2 8
Snp

X
yj

1

pj

þ Fj


 �

þ
U2Snp

X
yjFj;

where

Fj ¼ XU 2 X̂p

� �T ~A
21

U

xj

~s2
j

þ XU 2 X̂npð ~wÞ
� �T ~A

*21

U

xj

~s2
j

:

Applying conditions (2) and (8), Fj ¼ Op(n 21/2). Since units in Snp and U 2Snp are

independent under model (1), the j-variance is

Vj ŶMC2

� �
8

Snp

X
s2

j

1

pj

þ Fj


 �2

þ
U2Snp

X
s2

j F2
j ð35Þ
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¼
Snp

X s2
j

pj

 !2

1þ Op N=n3=2
� �h i

: ð36Þ

The Rpj-variance can be calculated using the total variance formula in Equation (8).

First, when Rj ¼ pj, EREpVj ŶMC2jSp; Snp

� �
¼
P

U s2
j =pj

� �
. The second term in Equation

(8) is

ERVpEj ŶMC2

� �
8 ERVp X̂np pð ÞTbþ XU 2 X̂p

� �T
bþ XU 2 X̂npð ~wÞ

� �T
b

h i

¼ bT Vp X̂p

� �
b:

The third term in Equation (8) is

VR EpEj ŶMC2

� � �
¼ VREp X̂np pð ÞTbþ XU 2 X̂p

� �T
bþ XU 2 X̂npð ~wÞ

� �T
b

h i

¼ VR

n
Ep X̂npðpÞ2 X̂npð ~wÞ
 �T

b
o
:

Rewriting the term in brackets above leads to

X̂npðpÞ2 X̂npð ~wÞ ¼
Snp

X ð1 2 gjÞxj

pj

¼ X̂p 2 XU

� �T ~A
21

p
Snp

X xjx
T
j

pj ~s2
j

¼ X̂p 2 XU

� �T ~A
21

p
~AnpðpÞ:

Applying condition (5) implies that VR EpEj ŶMC2

� � �
8 0. Combining results for the three

terms in Equation (8) yields

VRpj ŶMC2

� �
8

U

Xs2
j

pj

þ bT Vp X̂p

� �
b:

An estimator of this variance is

yRpj ŶMC2

� �
8

Snp

X ê*
j

pj

 !2

þ ~B̂np pð ÞTyp X̂p

� �
~B̂npðpÞ

as shown in Equation (27).
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Using Eye-Tracking Methodology to Study Grid Question
Designs in Web Surveys

Cornelia E. Neuert1, Joss Roßmann1, and Henning Silber1

Grid questions are frequently employed in web surveys due to their assumed response
efficiency. In line with this, many previous studies have found shorter response times for grid
questions compared to item-by-item formats. Our contribution to this literature is to
investigate how altering the question format affects response behavior and the depth of
cognitive processing when answering both grid question and item-by-item formats. To answer
these questions, we implemented an experiment with three questions in an eye-tracking study.
Each question consisted of a set of ten items which respondents answered either on a single
page (large grid), on two pages with five items each (small grid), or on ten separate pages
(item-by-item). We did not find substantial differences in cognitive processing overall, while
the processing of the question stem and the response scale labels was significantly higher for
the item-by-item design than for the large grid in all three questions. We, however, found that
when answering an item in a grid question, respondents often refer to surrounding items when
making a judgement. We discuss the findings and limitations of our study and provide
suggestions for practical design decisions.

Key words: Web surveys; response behavior; cognitive processing; question design; eye-
tracking methodology.

1. Introduction and Background

The use of grid questions is popular in self-administered surveys, such as web surveys. In a

grid question format, respondents receive a series of substantially related items that share the

same response scale. The items are usually presented in rows, and the response entry fields

are presented in columns (Liu and Cernat 2018). An alternative approach of presenting items

sharing the same response scale is the item-by-item design, where items are presented as

stand-alone questions (Couper et al. 2013). Between those two extreme points of presenting

a series of items are design choices that break the series of target items in smaller groups; for

instance, by presenting a set of ten target items in two grids with five items (e.g., Couper et al.

2001; Grady et al. 2019). Each of these formats has benefits and drawbacks.

From a survey designers’ perspective, the grid question format is an efficient way to ask

multiple questions with the same response scale in a time- and space-saving manner

(Couper et al. 2001; Couper et al. 2013; Tourangeau et al. 2004). From a respondent’s

perspective, the survey length and, thus, completion time is perceived to be shorter, and so

is the perceived burden of answering the survey (Heerwegh 2009). Also, grouping items

into a grid allows respondents to compare their answers as the content is perceived as

belonging conceptually together (Heerwegh 2009; Tourangeau et al. 2004). The latter,
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which goes back to the principle of proximity of Gestalt psychology (Jenkins and Dillman

1995), facilitates comparative judgments and increases consistency of answers compared

to when each item is considered in isolation (Couper 2008). However, this may also have

disadvantages, such as artificially high inter-item correlations (Silber et al. 2018) due to

respondents consistently giving the same answer to each item (a form of satisficing called

straightlining or nondifferentiation; Krosnick and Alwin 1988).

Compared to an item-by-item design, in which each item is usually presented on a new

page, grid questions present a large amount of information on one page. The amount of

information and the effort required to answer the items increases with the size of a grid. An

increasing number of items in rows and more response entry fields in columns imply a

larger matrix, making navigation more difficult (Couper et al. 2013; Grady et al. 2019).

With a cognitively more demanding task, respondents may get more easily confused and

distracted, thereby increasing their actual or perceived response burden (Couper et al.

2013; Liu and Cernat 2018).

According to the theory of survey satisficing, the complexity of grid formats might

encourage respondents to minimize time and effort for answering them thoroughly (Couper

et al. 2013; Krosnick 1991). Congruent with that assumption, a large body of experimental

research has shown that grid questions can have negative effects on data quality, which has

been shown by higher rates of missing or non-substantive answers (i.e., “don’t know”;

Mavletova and Couper 2015; Roßmann et al. 2018; Toepoel et al. 2009), higher levels of

non-differentiated answers (i.e., straightlining; DeBell et al. 2021; Roßmann et al. 2018;

Tourangeau et al. 2004), and higher breakoff rates compared to item-by-item formats

(Couper et al. 2013; Liu and Cernat 2018; Tourangau et al. 2004). Although

nondifferentiation, item nonresponse, and similar response behaviors are generally viewed

as undesirable response effects, there is the possibility that the less differentiated responses,

and greater expressions of uncertainty (e.g., selecting “don’t know”) are closer to “truth”–

that is, that grids actually help respondents to understand that their responses to individual

items are (legitimately) close to each other, or recognize legitimate uncertainty; and that

separating questions into an item-by-item format artificially magnifies differences between

responses. While we acknowledge that this alternative interpretation is also plausible, we

follow the general view that classifies the response behaviors as undesirable.

The faster completion times of grids compared to item-by-item question formats may

also represent a form of superficial cognitive response processing and might increase

measurement error (Couper et al. 2001; Peytchev 2005, cited in Couper et al. 2013;

Roßmann et al. 2018; Tourangeau et al. 2004). Comparing response times between an

item-by-item and a grid design, Roßmann et al. (2018) have shown that the response time

for the first item did not differ between the two formats. This finding leads to the question

of whether the longer response times within the item-by-item designs result from deeper

cognitive processing of the item itself or from the response task of reading the question

stem and the response scales each time in the item-by-item format.

In this study, we used eye-tracking methodology to gain more insights into the cognitive

information process and response behavior when answering grid versus item-by-item

question formats. Therefore, we employed an experiment with three questions. The

respondents were randomly assigned to one of three question formats (item-by-item, two

small grids, one large grid) while their eye movements were monitored.

Journal of Official Statistics80



2. Research Questions and Hypotheses

We investigated the following two research questions:

1. Does altering the question format affect the depth of cognitive processing when

answering grid questions?

2. Does the differential depth of cognitive processing explain differences in response

quality between the three different question designs?

Answering survey questions requires respondents to pass through four stages of cognitive

processing (Tourangeau and Rasinski 1988; Tourangeau et al. 2000): (1) question

comprehension, (2) retrieval of relevant information, (3) use of the information to arrive at a

judgment, and (4) reporting of an answer within the response options provided. Each of

these four stages of cognitive processing can be challenging for respondents, and thus, may

contribute to the emergence of response effects. The theory of survey satisficing

complements this framework by incorporating motivational components of the respondents

(Krosnick 1991; Roßmann and Silber 2020). It states that respondents might alter their

response behavior from complete and thorough execution of the four cognitive steps (i.e.,

optimizing) to less diligent or incomplete execution (i.e., satisficing) contingent on three

factors: task difficulty, ability, and motivation. The higher the difficulty of answering a

survey question and the lower a respondent’s ability and motivation to perform the task, the

higher is the chance of respondents showing satisficing response behavior (Krosnick 1991).

Referring to this theoretical framework, we propose specific hypotheses about how the

design of grid questions can affect cognitive processing, and in consequence the survey

response. While the design of grid questions could affect all four stages of cognitive

processing, it seems likely that it mainly affects the processes of question comprehension

and reporting of an answer. By using eye-tracking data, we can differentiate between

different steps in the response process by observing response times and eye fixations for

each part of the question (see Figure 1).

2.1. Hypotheses for the Stage of Question Comprehension

Comprehension includes such processes as attending to the question and instructions and

identifying the information sought (Tourangeau et al. 2000). For grid questions, the

comprehension stage requires respondents to attend to the question stem and the item

texts. Particularly, the grid format promises efficient processing of the “question stem”

compared to an item-by-item presentation. While in the former question design,

respondents must attend to the question stem only once, they need to check whether the

question is the same for each item in the item-by-item format. Thus, the more items are

grouped on a single page of a questionnaire; the less the relative effort respondents need to

invest in processing the question stem.

Hypothesis 1

“The fewer the number of items presented on a survey page; the more time is spent on

processing the question stem on average across all target items.”

Accordingly, the time spent processing the question stem should be highest for an item-

by-item format, where the question stem is repeatedly displayed with each item, and
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lowest for the presentation in one large grid, where the question stem is displayed only

once.

In contrast, grouping more items on a page should not lead to more efficient processing of

item texts under the condition of optimizing response behavior, that is, if respondents are

able and motivated to thoroughly read and answer the items. However, grouping many items

on a survey page can increase the actual or perceived complexity and burden of a grid

question (Couper et al. 2013; Liu and Cernat 2018). The higher complexity of grid questions

may discourage respondents, and thus increase the chances that they alter their response

strategy to satisficing. In this regard, it seems plausible that the likelihood of superficial or

incomplete processing of item texts increases with each additional item that is grouped on a

survey page. This can be further reinforced because respondents can use the previously

answered items as sources of information and orientation which allows them to answer the

following items in a similar way without thinking thoroughly about each single one.

Hypothesis 2

“The fewer the number of items presented on a survey page; the more time is spent on

processing the item texts on average, across all target items.”

Question stem

Response
scale labels

Response
scale labels

Response
entry field

Response
entry field

Complete
question

Complete
question

Item texts

Item texts

Question stem

Fig. 1. Illustration of the different parts of the question and Areas of Interest (AOI) for the analysis of eye-

tracking data. Above is an example of the question parts/AOIs for the grid question design of Question 2, below

for the item-by-item design.
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Accordingly, the time spent processing the item texts should be highest for an item-by-

item format, and lowest in one large grid.

2.2. Hypotheses for the Stage of Reporting an Answer

The stage of reporting an answer includes two groups of processes: mapping the answer

onto the response options and editing the response (Tourangeau et al. 2000). Regarding

grid questions, the reporting and response selection stage particularly concerns the

processing of the (numeric or verbal) response scale labels and the response entry fields

(i.e., the response options). As for the processing of the question stem in the

comprehension stage, the grid format promises efficient processing of the “response scale

labels” compared to an item-by-item presentation. In the former, respondents must attend

to response scale labels only once, whereas they need to repeatedly check whether they

have changed or not in the item-by-item format. Thus, the more items are grouped on a

single survey page using a common set of response scale labels; the relatively less effort

respondents need to invest in processing them per item; thereby increasing item-

efficiency.

Hypothesis 3

“The fewer the number of items presented on a survey page; the more time is spent on

processing the response scale labels on average, across all target items.”

Accordingly, the time spent processing the response scale labels should be highest for

an item-by-item format, and lowest for the presentation in one large grid.

For the “response entry fields”, the higher complexity that results from the larger size of

the grid most likely increases the chance that respondents experience navigational

difficulties in reporting responses. In other words, the fewer items are presented on a

survey page, the easier it should be for respondents to select the answer that applies to

them from the available response entry fields.

Hypothesis 4

“The fewer the number of items presented on a survey page; the less time is spent on

processing the response entry fields on average, across all target items.”

Also, the grouping of items in grids may encourage respondents to edit their responses

for inter-item consistency or other criteria. This would additionally increase the processing

time of the response entry fields in a grid.

However, some respondents may be discouraged by the daunting size of the grid and

alter their response behavior to satisficing. As a consequence, the likelihood of incomplete

or careless processing of the response entry fields might increase with each additional item

that is grouped on a survey page. Thus, satisficing in grids may to some extent offset the

higher processing time that results from “response editing”.

Besides fixation durations, it is also relevant to investigate survey responding that is

related to satisficing, such as nondifferentiation (Couper et al. 2013; Roßmann et al. 2018;

Zhang and Conrad 2014). In line with the assumption that presenting items together

increases the likelihood that they are perceived and answered in the same context,

previous research has found that respondents differentiated their answers more when
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answering item-by-item and less when the items were presented in grids (e.g., Roßmann

et al. 2018).

Hypothesis 5

“Answering items in grids, compared to item-by-item formats, leads to less differentiation

(e.g., more straightlining) in the responses, across all target items.”

To better understand the response process when grid questions are answered, we also

analyzed additional indicators of respondent behavior. First, we examined whether

respondents answered the items in grids sequentially. We defined responding as sequential,

when a respondent read and answered the first item, then read and answered the second item,

then the following item, and so on until the last item on the page. Conversely, non-sequential

responding involves skipping items or going back to previous items while reading through

the list (see Figure 3 for examples). We also observed if respondents read all or several items

on a survey page before starting to answer and whether respondents changed their response

to an item after having read other items. For these different response behaviors, we

proceeded exploratively and did not postulate hypotheses.

3. Methods

3.1. Experimental Design

In this study, we implemented a question format experiment with three questions. Each of

these questions was presented either as a single large grid question with ten items on one page,

as two small grids with five items on each of the two pages, or in an item-by-item design, in

which each of the ten items was presented on a separate page. The respondents were randomly

assigned to one of the three formats for each of the three questions (see Table A.1 in Online

Appendix A for details on respondents’ sociodemographic characteristics per question).

Further, the questions were either presented with a five-point response scale or a 11-point

response scale with labels at the end points and numbers in between. As the length of the scale

was not the focus of the present research, and as the randomization regarding the response

scale length was independent of the randomization regarding question format, we combined

the two response scales for the comparison across formats presented here (Question 1 “Trust

in Institutions”: x 2 ¼ .46; df ¼ 2, p ¼ .978; Question 2 “People’s rights: x 2 ¼ .062; df ¼ 2,

p ¼ .970; Question 3 “BFI-10”: x 2 ¼ .110; df ¼ 2, p ¼ .947; see Tables A.2 and A.3 in

Online Appendix A for an overview of the main results by response scale length).

3.2. Survey Questions

To ensure comparability between questions, we implemented three questions with ten items

each. In surveys, grid questions with up to ten items are often used, and this number of items

can still be presented on one page of a personal computer without scrolling (see Toepoel et al.

2009). Also, ten items could easily be split up into two almost equally sized grids with five

items on each page. We selected published scales that differed in item text length. The first set

of items asked about “trust in institutions” (Question 1; GLES 2019). The items are very short

and state different institutions such as the European Commission or the Federal Constitutional

Court (see Online Appendix B for question wordings of the three sets of questions). The
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second set of items asked about “people’s rights in a democracy” (Question 2; ISSP Research

Group 2016). The items consist of rather long sentences. The third set of items is the “BFI-10”

(Question 3), a ten-item scale measuring the Big Five personality traits extraversion,

agreeableness, conscientiousness, emotional stability, and openness (Rammstedt and John

2007). The items include complete sentences, but the statements are relatively short.

3.3. Participants

The study was conducted at GESIS – Leibniz Institute for the Social Sciences in Mannheim,

Germany, between April and May of 2017. We recruited 132 respondents from the respondent

pool maintained by the institute or by word of mouth. An equal share of women and men was

recruited, but no quotas for other demographics such as age and education were set. However,

the intention was to obtain a sample as diverse as possible. Technical difficulties prevented

recording of eye movements for one respondent, and in each of the questions the eye-tracking

data of 13 to 18 respondents were of no satisfactory quality as we observed shifts between the

text on the screen and the eye gaze data. These respondents were excluded from the analyses,

leaving 103 respondents with good quality of recordings in all three experimental questions

and 125 respondents with good recordings in at least one question. Of those 125 respondents,

51% were female; 38% were between 18 and 24 years, 27% between 25 and 34 years, 11%

between 35 and 44 years, 10% between 45 and 54 years, 8% between 55 and 64 years, and 5%

were 65 years or older; 6% had a school-leaving certificate from lower secondary education

after 9 years of education (“Volks-/ Hauptschulabschluss” – ISCED Level 244), 22% from

lower secondary education after ten years of education (“Mittlere Reife/Realschulab-

schluss”– ISCED Level 244), and 71% from upper secondary education providing access to

tertiary education (“Fachhochschulreife/Allgemeine Hochschulreife” – ISCED Level 344)

or tertiary/university education (“Universitätsabschluss” – ISCED Level 64 or 74). More

than one third of the participants (38%) had participated in at least one web survey during the

last three months. To evaluate the effectiveness of random assignment and the sample

composition across conditions, we conducted several x2-tests for the reported

sociodemographic characteristics mentioned previously. Except for sex in Question 3, no

significant differences between sociodemographic characteristics were observed (see

online Table A.1). To ensure that this does not affect our conclusions; we included sex as

covariate in the analyses of response times, fixation durations, and response differentiation

for Question 3.

3.4. Eye-Tracking Equipment and Procedures

We used the Senso Motoric Instruments (SMI) RED250 mobile Eye Tracker to record

participants’ eye movements and “BeGaze” version 3.6.57 for data analysis. The RED250

mobile Eye Tracker was mounted on the bottom frame of a 2200 TFT desktop monitor

(resolution 1280x1024). The documentation of the RED250 mobile describes its accuracy

to be within 0.48 and its tracking range of 32x21 at 60 centimeters distance. Eye

movements were recorded at a sampling rate of 250 Hz. The online questionnaire was

programmed with a font size of 16 pixels and double-spaced text with a line height of 40

and 32 pixels for the question text and response categories, respectively. The online

questionnaire did not feature a “back” button.
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Before the web survey started, respondents completed a calibration exercise (in which

they followed black circles displayed at nine different points of the screen with their eyes).

The questionnaire, which contained several experiments, took on average 30 minutes to

complete. During this time, an experimenter stayed in the room next door to observe

respondents’ eye movements on a second computer screen for reasons of quality

assurance. Participants were paid an incentive of EUR 20 for taking part in the study.

3.5. Measures and Analytical Strategies

We tested our hypotheses on the effects of question design on cognitive processing by

analyzing indicators of cognitive effort measured by response times and eye-tracking data.

For collecting response times, we used UCSP, Universal Client Side Paradata (Kaczmirek

2005). Response times were measured in milliseconds from the time a question appeared

on the screen to the time respondents clicked on the next button to move on to the next

question. For the small grid (two pages) and the item-by-item condition (ten pages),

response times from the individual survey pages were summed up. Eye-tracking data

provide information on the question answer process by recording where respondents look,

for how long, and in what order while reading question stems, item texts, and response

options (Galesic and Yan 2011; Romano Bergstrom and Schall 2014). Eye-tracking can be

used as a proxy for depth of cognitive processing (Rayner 1998). The analysis of eye

movements is based on two common assumptions (Just and Carpenter 1980; Rayner

1998). The first one, called the “immediacy assumption”, states that objects fixated by the

eyes are processed immediately (i.e., the mind follows the eye). The second one, called the

“eye-mind assumption”, states that the eye remains fixated on an object, as long as it is

being processed (i.e., the eye follows the mind). Taken together, these two assumptions

state that there is a close relationship between fixation duration and processing duration. A

longer fixation duration indicates a longer response process. A long response process can

be due to thorough consideration and recalling, but it can also indicate difficulties during

the answer process. Those difficulties might arise from unknown or difficult terms,

difficulties in arriving at an answer or selecting one of the response options (Galesic and

Yan 2011; Kamoen et al. 2017; Neuert and Lenzner 2017). To measure “cognitive effort”,

we compare fixation durations on predefined areas of interest (AOI) to be able to compare

these measures across the different question formats. Each question was conceptionally

divided in five AOIs: (1) the complete question, (2) the question stem, (3) response scale

labels, (4) item texts, and (5) response entry fields (see Figure 1). The AOIs on each

individual page in the small grid and item-by-item format were summed up to compare

fixation durations across formats. For response times and fixation durations, we excluded

those respondents from the analyses who had response times below or above the mean

plus/minus two standard deviations (see, e.g., Mayerl 2013).

To determine whether cognitive effort measured by response latencies and fixation

durations were associated with the question format, we employed OLS regression models.

To study respondents’ response behavior, we investigated how much respondents varied

their answers to the items within the experimental questions. Nondifferentiation is found

when respondents do not differentiate in their answers but give similar (or identical)

responses to all items. The level of differentiation can be investigated by the probability of
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differentiation Pd (Krosnick and Alwin 1998), which indicates the variability of the

responses. Pd is calculated as Pd ¼ 1 2
Pn

i¼1 P2
i ; where Pi is the proportion of the values

rated on a given point of a response scale and n is the number of rating points. If Pd ¼ 0,

respondents answered all items by selecting the same response, while a higher Pd means

that different response options were given. We also measured the coefficient of variation

(CV) as an indicator of the extremity of the responses (McCarty and Shrum 2000). CV is

computed as CV ¼ s
�x

, where s is the standard deviation and �x is the mean of the responses

over items. The CV indicates the distance between the responses given. A CV of zero

indicates straightlining response behavior, while larger values indicate that respondents

differentiated their answers to a greater extent. As a measure of perceived difficulty,

respondents were asked after each experimental question to rate how difficult answering

the question was on a fully labeled five-point scale ranging from “extremely difficult” to

“not difficult at all.” Analyses were conducted using Stata version 16.1.

To further analyze respondents’ behavior, two student assistants coded the eye gaze videos

with regard to the following response patterns: (1) sequential responding, that is, did

respondents answer grid questions in a sequential order; answering one item following the

next?; (2) how many items did respondents read before answering the first item?; (3) answer

change, that is, did respondents change their response after having read other items?

Agreement between the two raters was 95% and Cohen’s Kappa (1960) was found to be .87,

which is “almost perfect”, according to Landis and Koch’s (1977, 165) criteria. To make those

response patterns comparable between the small and large grid format, we summed the results

for the two small grids so that both numbers are based on ten items for each question. For

sequential responding, we included two measures for the small grid: answering both pages of

the small grid sequentially and answering at least one of the two pages sequentially. As the

response behavior is only comparable across grid questions, which present several items on

the same survey page, these analyses were restricted to the two grid formats.

4. Results

4.1. Overall Cognitive Effort – Response Times and Question Fixation Durations

Before considering fixation durations on specific parts of the questions, we compared

response times and fixation durations for the complete question as indicators of overall

cognitive effort by question format. Response times were measured from the time a

question appeared on the screen to the time respondents clicked on the next button to move

on to the next question. Hence, anything that respondents did in between is included in this

indicator. In contrast, fixation duration corresponds to the time a respondent spent fixating

the question which might therefore be a more accurate measure of cognitive question

processing (Just and Carpenter 1980; Staub and Rayner 2007). With regard to response

times (in seconds) for Questions 1 (“Trust in Institutions”) and 2 (“People’s rights”), there

was the general trend observable that respondents needed the least amount of time when

the items were presented in a large grid (ten items per page) followed by small grids (five-

items per page), and the most amount of time when the questions were presented item-by-

item. However, the differences were not statistically significant (see Table 1). For

Question 3 (“BFI-10”), our analysis showed that response times were significantly shorter
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for the two grid designs (Mlarge ¼ 58.7; Msmall ¼ 54.9) than for the item-by-item design

(Msingle ¼ 71.1; F ¼ 5.79; p ¼ .001).

Comparing fixation durations on the complete question across designs showed a similar

relationship. Fixation durations were slightly higher for the item-by-item presentation than

for the grid formats, however, the differences were not statistically significant for

Questions 1 and 2. For Question 3, we found statistically significant differences for both

the small (Msmall ¼ 41.5) and the large grid (Mlarge ¼ 46.6; t ¼ 2.06, p ¼ .041) compared

to the item-by-item format (Msingle ¼ 54.4; t ¼ 3.31, p ¼ .001).

4.2. Question Fixation Durations for the Stage of Question Comprehension

Regarding the stage of question comprehension, our results showed that cognitive

processing of the “question stem” was lowest for the large grid in all three experimental

questions, followed by the presentation in two small grids with five items each, and the

presentation in the item-by-item-design in Questions 2 (“People’s rights”) and 3 (“BFI-

10”), as expected in Hypothesis 1 (see Table 1). For Question 1 (“Trust in institutions”),

Table 1. Means and standard errors of cognitive effort indicators.

Cognitive effort indicators Large grid with

ten items

(1 page)

Small grid with

5 items each

(2 pages)

Item-by-item

(10 pages)

Test

M (SE) M (SE) M (SE) F value p

Response times

Question 1 49.8 30.6 55.2 32.2 57.5 31.8 1.16 .204

Question 2 94.2 49.5 101.9 51.2 107.9 57.3 1.69 .189

Question 3 58.7c 28.7 54.9c 28.7 71.1ab 29.6 5.79 .001

Fixation durations – Complete question

Question 1 38.3 25.8 37.8 27.6 44.9 27.6 2.06 .132

Question 2 73.2 42.1 78.7 43.7 79.7 49.8 0.62 .539

Question 3 46.6c 26.0 41.5c 26.7 54.4ab 26.9 3.76 .013

Fixation durations – Question stem

Question 1 3.9bc .62 7.5a .62 6.7a .65 9.45 .001

Question 2 8.2bc .87 12.2a .88 12.5a 1.03 7.02 .001

Question 3 1.4c .27 1.9 .32 2.8a .28 5.86 .001

Fixation durations – Item texts

Question 1 11.2 1.2 10.7 1.4 8.9 1.5 1.46 .238

Question 2 35.1 2.4 34.5 2.5 37.4 2.6 .35 .703

Question 3 18.4 1.1 15.4 1.2 18.1 1.2 1.30 .279

Fixation durations – Response scale labels

Question 1 3.8c .47 4.5c .49 7.7ab .54 15.6 .001

Question 2 4.7bc .55 6.4ac .56 10.0ab .66 19.1 .001

Question 3 5.9c .92 6.9c 1.1 12.0ab .97 8.03 .001

Fixation durations – Response entry fields

Question 1 15.6 1.0 14.5 1.0 12.9 1.1 1.72 .184

Question 2 17.4c .89 18.4c .89 13.7ab .96 7.02 .001

Question 3 19.2 bc 1.0 15.1a 1.1 13.3a 1.0 5.56 .001

Note: Question 1 ¼ Trust in institutions, Question 2 ¼ People’s Rights, Question 3 ¼ BFI-10. Reported are

estimated marginal means from linear regression models. For Question 3, we report estimated marginal means

controlling for sex. Superscripts present a significant difference (p , .05) compared to (a) large ten-item grid, (b)

small five-item grids, or (c) item-by-item presentation. To compare the response times and fixation durations

across formats, response times and fixation durations from the individual survey pages in the small grid and in the

item-by-item design were summed up.

Journal of Official Statistics88



fixation durations on the question stem were higher in the small grids than in the item-by-

item format (although not significantly different).

Contrary to Hypothesis 2, which stated that the depth of processing of “item texts” is

expected to decrease with the number of items presented on a survey page, we did not find

any significant differences across designs.

4.3. Question Fixation Durations for the Stage of Reporting An Answer

Regarding the depth of processing of the “response scale labels”, we found that fixation

durations were significantly higher for the item-by-item format than for the presentation in

both the large and the small grid in all three questions. This is in line with Hypothesis 3.

However, the expected relation that depth of processing increases, the fewer items of the

question are presented on a survey page, only holds true for Question 2 (“People’s rights”:

Mlarge ¼ 4.7; Msmall ¼ 6.4; Msingle ¼ 10.0; F ¼ 19.1; p ¼ .001). For Questions 1 (“Trust

in institutions”) and 3 (“BFI-10”), there were no statistically significant differences

between the two grid designs.

Regarding the stage of reporting and response selection, we did not find that the fewer items

presented on a survey page, the less time is spent processing the “response entry fields” as

expected in Hypothesis 4. Respondents processed the response entry fields more extensively

in the large grid design than in the item-by-item-design in Questions 2 (“People’s rights”) and

3 (“BFI-10”). For the small grids, findings were mixed. In Question 1 (“Trust in institutions”),

we did not find statistically significant differences in fixation durations.

4.4. Observations of Response Behavior

We also investigated two indicators of satisficing, the probability of differentiation (Pd)

and the coefficient of variation (CV). The results are shown in Table 2. Regarding the

indicator of differentiation Pd, we did not find any significant differences across the three

presentation formats.

Table 2. Indicators of satisficing (means)

Indicators of satisficing Large grid

with 10 items

(1 page)

Small grid

with 5 items

each

(2 pages)

Item-by-item

(10 pages)

Test

M (SE) M (SE) M (SE) F value p

Pd

Question 1 .55 .030 .51 .031 .56 .031 0.94 0.39

Question 2 .63 .023 .61 .023 .66 .025 1.05 0.35

Question 3 .74 .016 .74 .016 .74 .016 0.32 0.81

CV

Question 1 .22 .022 .22 .022 .21 .022 0.04 0.95

Question 2 .32 .016 .33 .017 .34 .019 0.19 0.83

Question 3 .46c .019 .42 .019 .40a .018 1.62 0.19

Note: Question 1 ¼ Trust in institutions, Question 2 ¼ People’s rights, Question 3 ¼ BFI-10. Reported are

estimated marginal means from linear regression models. For Question 3, we report estimated marginal means

controlling for sex. Superscripts present a significant difference (p , .05) compared to (a) large 10-item grid, (b)

small 5-item grids, or (c) item-by-item presentation.
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For the indicator CV, we also did not find significant differences across the three

experimental conditions for Questions 1 (“Trust in institutions”) and 2 (“People’s rights”).

For Question 3 (“BFI-10”), however, we observed that the variation of answers across the

items was lower in the item-by-item design (Msingle ¼ .40) than in the large grid design

(Mlarge ¼ .46, t ¼ -2.07, p ¼ .040). Hence, Hypothesis 5, that answering items in grids,

compared to item-by-item formats, leads to less differentiation in the responses cannot be

confirmed in the current study. Figure 2 illustrates two different response styles, with the

respondent on the left-hand side showing no differentiation in the responses selected

(straightlining) while the respondent on the right-hand side differentiated the responses to

a greater extent. Observing the gaze videos provided the interesting finding that

respondents may actually spend more cognitive effort than one might initially expect when

showing a straightlining response behavior.

Finally, we analyzed how respondents answered the items presented in the two grid formats

to gain more knowledge about response patterns when answering grid question formats. For

the small grid, we report the number of respondents who answered the ten items displayed on

two pages sequentially, and the number of respondents who answered at least one page with

five items in a sequential order (see Table 3). Comparing sequential responding for all ten

items, we did not observe differences between the large and the small grid for Questions 1

(“Trust in institutions”: 37% large vs. 29% small) and Question 2 (“People’s rights”: 42%

large vs. 40% small). However, for Question 3 (“BFI-10”), we found that half of the

respondents in the large grid (51%) answered the items sequentially, while only 12% in the

small grid condition did show this response behavior. When considering those respondents in

the small grid condition who answered at least one page with five items in a sequential order,

we observed that this amount is quite large, between 57% and 68%, but no statistically

significant differences compared to the large grids were found.

Figure 3 illustrates both a sequential as well as a non-sequential response style. As

shown by the eye movement patterns, the respondents on the left-hand side read and

answered the items sequentially one by one; the respondents on the right-hand side first

read all item texts and then moved to the response options and answered all items one after

another or jumped back and forth on the question parts.

We also investigated whether respondents perceived the items in a grid as belonging

conceptually together. The response behavior that respondents read all items before beginning

to answer them only occurred in Question 1 (“Trust in institutions”: 16% large vs. 41% small).

In Questions 2 and 3, respondents did not read through all items before selecting a response for

the first item. Comparing how many items respondents read on average before they started

answering, revealed that respondents read on average between one and three items in the large

grid and between two and four items in the small grid condition (Question 1 “Trust in

institutions”: 3.2 large vs. 4.4 small; Question 2 “People’s rights”: 1.2 large vs. 2.4 small;

Question 3 “BFI-10”: 1.1 large vs. small 2.5 small). It must be noted that the average number

of items read on the two separate pages of the small grids were summed up, resulting in a

systematic overestimation compared to the large grid conditions.

Interestingly, the overall number of items read before beginning to answer is higher in

the question asking for “trust in institutions” (Question 1) than in the other two questions.

Notably, the question asking for “trust in institutions” had the shortest item text regarding

the number of characters but was perceived as most difficult by respondents (M ¼ 2.11)
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compared to Question 2 (M ¼ 1.54, p , .001), and Question 3 (M ¼ 0.81, p , .001). This

finding can be interpreted as an indication that respondents used the information from the

item texts of several other items to answer each item of the grid question.

Finally, we observed whether respondents tended to change their answers given to one

item after having read other items in the grid. Across all three experimental questions

between 16% and 25% of respondents changed at least one answer after having read the

following items in the related grid (Question 1 “Trust in institutions”: small 21% vs. 28%

large; Question 2 “People’s rights”: small 19% vs. 29% large; Question 3 “BFI-10”: small

12% vs. 19% large). Together with the findings on sequential reading and reading the item

text of several other items before starting to answer, this might indicate that respondents

used the additional information provided by the remaining items in a grid to give a

response by applying the “near means related” heuristic (Tourangeau et al. 2004).

5. Discussion

5.1. Summary and Discussion of Findings

This study investigated the depth of cognitive processing when answering different grid

question or item-by-item formats. We implemented three questions with ten items each in an

experiment and tracked respondents’ eye movements while they answered a web survey in

Table 3. Response behavior for grid formats, by question and grid size.

Question 1 – Trust in Institutions 2 – People’s rights 3 – BFI-10

Large grid

with

10 items

(1 page)

Small grid

with 5 items

each

(2 pages)

Large grid

with

10 items

(1 page)

Small grid

with 5 items

each

(2 pages)

Large grid

with

10 items

(1 page)

Small grid

with 5 items

each

(2 pages)

% Sequential responding

– Yes, all 37.2 (16) 28.6 (12) 42.2 (19) 39.5 (17) 51.2 (22) 12.2 (5)

10 items x2¼ .718; df¼1 x2¼ .066; df¼1 x2¼14.61; df¼1**

– Yes, at 37.2 (16) 57.1 (24) 42.2 (19) 60.5 (26) 51.2 (22) 68.3 (28)

least on

1 page with

5 items

x2¼3.39; df¼1 x2¼2.93; df¼1 x2¼2.56; df¼1

Mean number of items read before beginning to answer

3.2 (43) 4.4 (42) 1.2 (45) 2.4 (43) 1.1 (43) 2.5 (41)

F(1,83)¼ .412 F(1,86)¼6.011** F(1,82)¼27.083**

% All items read before beginning to answer

– No 83.7 (36) 59.5 (25) 100 (45) 97.7 (42) 100. (43) 97.6 (40)

– Yes 16.3 (7) 40.5 (17) 0 (0) 2.3 (1) 0 (0) 2.4 (1)

x2¼6.139*; df¼1 x2¼1.059; df¼1 x2¼1.061; df¼1

% Answer change

– No 72.1 (31) 78.6 (33) 71.1 (32) 81.4 (35) 81.4 (35) 87.8 (36)

– Yes 27.9 (12) 21.4 (9) 28.9 (13) 18.6 (8) 18.6 (8) 12.2 (5)

x2¼ .479; df¼1 x2¼1.280; df¼1 x2¼ .659; df¼1

n 43 42 45 43 43 41

Note: * p , .05; ** p , .01; Parenthetical entries are cell sizes. For sequential responding, we report both the

comparison of the large grid with (1) reading all ten items of the small grids (summed up) and with (2) answering

at least one page of two sequentially.
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which the presentation was varied. For each question, we randomly assigned respondents to

three question formats (item-by-item, small grid, or large grid). The eye-tracking data

studied showed that the previous finding of longer response times (e.g., Callegaro et al.

2009; Couper et al. 2001; Roßmann et al. 2018; Toepoel et al. 2009) in the item-by-item

format could be attributed to more extensive processing of the question stem and the

response scale labels compared to the grid formats (Hypothesis 1 and 3). In contrast, we did

not find differences with respect to processing of the item texts (Hypothesis 2). This

indicates that respondents do not spend more time on the item texts in either format but need

time to adjust to the new question context when the items are presented in an item-by-item

format. Specifically, they have to read the same question stem and response scale labels

multiple times, since they are presented to them with each item. Those findings suggest that

the item-by-item format increases response burden compared to the grid formats.

With regard to the response process stages of reporting and response selection

(Tourangeau et al. 2000), we observed that fixation durations on the area of the response

entry fields were significantly longer in the large grid than in the item-by-item presentation

in two out of three questions (Hypothesis 4). Since those two questions had longer item

texts, one possible explanation might be that navigating within a grid is more difficult for

long items than when the items are presented item-by-item on separate pages. Hence,

selecting and reporting a response seems less burdensome for respondents in the item-by-

item design.

By using eye-tracking methodology, we were able to observe the behavior of

respondents more directly while they were answering the grid questions. These analyses

suggest that respondents apply the “near means related” heuristic (Tourangeau et al. 2004;

Silber et al. 2018), which is grounded in the proximity principle from Gestalt psychology

(Koffka 1935; Wertheimer 1923). According to the principle of proximity, placing objects

close to each other will let them be perceived as a group, and hence as not only physically

but also conceptually related (Dillman et al. 2014). Consequently, items presented in the

grid format were likely perceived, processed, and answered in the same context.

Presenting multiple items together on a page can facilitate respondents’ cognitive

processing. If the respondent is not familiar with the topic or when the meaning of the

question is not clear, respondents might try to capture the content using the surrounding

items to improve their understanding of the question (Krosnick and Presser 2010).

Consistent with the “near means related” heuristic, many respondents in our survey did

not respond to the grid questions sequentially but instead read multiple items before

answering the first item. They also changed their answers later after reading other

questions, suggesting that they reconsidered their answers after answering other items.

Such response behavior was more pronounced for items presented in one large grid than

for items presented in two small grids but was also visible there. For related items,

grouping them may improve measurement (Krosnick and Presser 2010), for example, by

increasing the consistency of responses among items and inter-item correlations (Couper

2008; Heerwegh 2009; Toepoel et al. 2009). In contrast, the grouping may also have

negative effects on measurement. Although we did not observe differences regarding non-

differentiation in our study (Hypothesis 5), previous research has consistently shown that a

separate presentation like in an item-by-item design reduced undesired response effects,

such as non-differentiation or item nonresponse (e.g., Roßmann et al. 2018; Toepoel et al.
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2009). Also, higher inter-item correlations may be due to measurement error (Peytchev

2005, cited in Couper et al. 2013).

Across the three questions, we also observed some differences regarding response

behavior, which might be related to the content of those questions. While the item texts of

Question 1 only featured the names of institutions, the item texts of Questions 2 and 3

consisted of full sentences. The shorter item texts of Question 1 may have led more

respondents to read multiple or even all item texts before answering the first item. Since

our study did not experimentally vary the item length, further research is needed to

understand the relationship between response behavior and item length in grid formats.

With respect to response burden, we found that both the item-by-item format and the grid

format entail different burdensome elements. The item-by-item format requires respondents to

adjust to a new context for each item. Specifically, presenting the question stem and response

scale labels on each page makes respondents undergo repetitive reading tasks, which lowers

response efficiency. In contrast, the grid format increases the complexity because respondents

are confronted with multiple items on a single survey page. This may increase response burden

due to navigational difficulties in the process of reporting the responses. With respect to

response behavior, this study showed that respondents do not answer the items necessarily

from top to bottom and in the presented order. Instead, some respondents read several items

before beginning to answer the first item. Some respondents also changed their responses after

they had read the following items. The extent of this behavior depended on the item texts of the

questions. Finally, we observed that some respondents selected the identical responses for all

items in a grid (i.e., straightlining) but still read the item texts attentively. With respect to strong

satisficing, we expect that respondents skip the question comprehension stage altogether and

provide responses haphazardly. Yet, the observation in the current study also fosters the notion

of weaker forms of satisficing, in which respondents attend to the question stem and item text,

but then decide to simplify the perceivably difficult task of reporting accurate and meaningful

answers, for instance, by resorting to the “near means related” heuristic (Tourangeau et al.

2004; Silber et al. 2018). Hence, it might be worthwhile to investigate this and similar response

behaviors in more depth with respect to how respondents arrive at selecting the same answer to

all questions of an item sequence. Due to the low number of straightlining respondents in the

lab setting, this study did not allow us to investigate this pattern further.

5.2. Limitations and Avenues for Future Research

Our study has several limitations. The most important is external validity since we

designed our investigation as a lab study. Filling-out a questionnaire in a lab situation, in

which the eye movements of respondents are recorded, may not perfectly reflect the

behavior of respondents in a common survey interview environment. Also, the participants

might have been rather engaged as they were willing to participate in a lab experiment and

received an incentive of EUR 20 for their participation. Hence, the differences in cognitive

processing might be less pronounced than in studies conducted in common survey settings.

For instance, we did not find differences with respect to nondifferentiation, even though

many previous studies have shown such differences (e.g., Mavletova et al. 2018; Roßmann

et al. 2018; Tourangeau et al. 2004). Likewise, fixation durations may have been

overestimated, and the number of respondents engaging in response behaviors such as
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non-sequential responding or answer changes underestimated. Yet, those or similar

response behaviors can be expected to occur outside the lab as well, since previous

research found answer patterns that were likely due to answering items in the same context

when they were presented in a grid (e.g., Couper et al. 2001; Toepoel et al. 2009;

Tourangeau et al. 2004). Second, also attributable to being a lab study, is the

comparatively smaller sample size than, for instance, in many online experiments.

However, recruiting and testing more participants in an eye-tracking study would be

laborious and expensive. A third limitation that should be addressed by additional research

is that the scales we used were all endpoint-labeled with numbers in between. How the

processing of the scales differs across grid formats when using fully labeled scales would

be worthwhile examining in a follow-up study. Also, investigating the generalizability of

our findings with a different number of items, such as eight or six items for the large grid

and four or three for the small grid, is an avenue for future research. Fourth, we decided to

place the two grids and every single item on separate pages in a so-called paging design.

Future studies could explore whether similar results are obtained if they are presented on

the same page in a scrolling design (see, e.g., Liu and Cernat 2018). A possible outcome of

using the scrolling design could be that the items in the single item or the smaller grid

formats might be more often answered in the same context due to the visual presentation

on the same page. Finally, as the questions in our study were answered on a desktop PC

screen only due to the eye-tracking system used, this study does not address the issue of

responding on mobile devices, which seems to be another worthy avenue for future

research.

5.3. Increasing Relevance of Mobile Devices in Web Surveys

Given the increasing number of respondents using smartphones or other mobile devices in

answering web surveys (Gummer et al. 2019), design decisions on using grid versus item-

by-item presentation have become increasingly important. This is especially true in the

context of decisions regarding whether to use layouts that adapt to the device used by

respondents (adaptive or responsive layouts) or to optimize layouts for use on a specific

device (e.g., mobile first layouts). When grids are presented at full size on the small(er)

screens of smartphones, this may require horizontal scrolling and zooming. Previous

research has found that answering grids on smartphones compared to grids on personal

computers increases breakoff rates and stimulates undesired response behaviors like

straightlining (see Antoun et al. 2018 for a systematic review). In mobile-first unified

designs and responsive designs, survey software often automatically adapts grids to screen

size by converting them into a series of single items. Thus, some respondents will see the

set of items as grids if they use a personal desktop or laptop computer, while other

respondents will see them in an item-by-item format. This might result in systematic mode

differences and measurement error. The same might apply to mixed-mode surveys, for

example, paper versus web questionnaires (De Leeuw et al. 2018; Dillman et al. 2014).

Respondents in our study answered grids solely on a desktop PC. Thus, we suggest that

future studies could use eye-tracking methodology to investigate how adaptive (or

responsive) layouts impact cognitive processing and response behavior in web surveys

with multiple devices, and in particular, the suitability of grids on mobile devices.
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5.4. Recommendations

Our findings have practical implications for researchers deciding between grids or item-

by-item designs. In our study, both designs appear to come with format-specific

limitations, which directly affect response burden. To ensure that the difference in

question presentation format between respondents does not lead to potential measurement

error, especially if smartphone participation in web surveys continues to rise, we

recommend using the smallest screen as the basis of the format decision, which is in favor

of the item-by-item design (see also Antoun et al. 2018; Liu and Cernat 2018; Mavletova

et al. 2018). Another argument for the item-by-item design is that items in grid questions

do not meet web content accessibility guidelines (WCAG; W3C 2018), which suggests

that each question should be entirely understandable on its own. Yet, if a consistent use of

item-by-item presentation is not possible, for instance due to restrictions in the available

questionnaire length, we would recommend to break up larger grids into (as in our case

two) smaller grids (see also Dillman et al. 2014) as they did not show substantial

disadvantages compared to a large grid question, and they seem to be easier to navigate

(this is in line with Grady et al. (2019) who recommend a small to medium grid size).

Though, for some surveys, grid formats might be the best alternative (e.g., brand image

research; Brosnan et al. 2021). This decision may depend on factors such as the question

type, the complexity of the information, and the question content. For example, grid

questions may help respondents quickly understand their response task for multiple items

at once and thereby increase response efficiency.

6. Conclusion

This study showed that it takes respondents longer to answer a question in the item-by-

item format than in the grid format because the former shows the question stem and the

response scale repetitively, and respondents need to process both multiple times. The

differences in the visual presentation and the shorter response times of grid questions

did not result in more satisficing response behavior than in the item-by-item format,

which might have been due to the lab setting in which participants are likely to be quite

engaged. Finally, by using eye tracking, we were able to observe specific response

styles (i.e., reading a few items before answering a grid and answer changes) when a

question was presented in the grid format. An area for future research would be to

investigate whether items presented in a grid format are more likely to be processed and

answered in one context than when presented in an item-by-item format within a

scrolling design, and whether these differences in cognitive processing and responding

have a substantial impact on substantive analyses with the items is an area for future

research.
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A Statistical Comparison of Call Volume Uniformity
Due to Mailing Strategy

Andrew M. Raim1, Elizabeth Nichols1, and Thomas Mathew1

For operations such as a decennial census, the U.S. Census Bureau sends mail to potential
respondents inviting a self-response. It is suspected that the mailing strategy affects the
distribution of call volumes to the U.S. Census Bureau’s telephone helplines. For staffing
purposes, more uniform call volumes throughout the week are desirable. In this work, we
formulate tests and confidence intervals to compare uniformity of call volumes resulting from
competing mailing strategies. Regarding the data as multinomial observations, we compare
pairs of call volume observations to determine whether one mailing strategy has multinomial
cell probabilities closer to the uniform probability vector compared to another strategy. A
motivating illustration is provided by call volume data recorded in three studies which were
carried out in advance of the 2020 Decennial Census.

Key words: Entropy; multinomial distribution; self-response; uniform probability vector.

1. Introduction

1.1. Background

Beginning with the 1990 Census, a telephone questionnaire assistance operation has

accompanied each decennial census. These operations included helpline agents

representing the U.S. Census Bureau who fielded support questions and assisted the

public in completing paper forms. An automated interactive voice response system was

added after the 1990 Census to augment live agents. Since the 2000 Census, agents were

additionally able to conduct interviews and collect census data by phone, although this has

not been marketed as a response option. For the 2020 Census, the U.S. Census Bureau

mailed letters and postcards to residential addresses in the country to request participation

in the census, and encouraged responses on a large scale through the internet (U.S. Census

Bureau 2017). Telephone helplines were highlighted in mailings, both as a means to assist

with questions about the census and to serve as a mode of response in itself. From the

perspective of the U.S. Census Bureau, an ideal distribution of helpline calls would be

where a uniform volume of calls is received throughout the week for the duration of the
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operation. More uniform call volumes would provide a more constant workload for

helpline staff over the course of the operation. Furthermore, a reduction of large peaks in

volume may reduce the need for increased staff.

The schedule of mailings influences when calls tend to occur and is an aspect of census

design which U.S. Census Bureau can control. Chesnut (2003) and Zajac (2012) discuss

call volumes received during the 2000 and 2010 Decennial Census, respectively, and note

how they were affected by the mailing schedule. Helplines received 7.9 million calls in the

1990 Census, six million calls in the 2000 Census, and 4.5 million calls in the 2010

Census. Over 13 million calls were received by the system used in 2020. The interactive

voice response system deflected most of them, but nearly five million incoming calls were

handled by customer service representatives. Although volumes of calls have changed

over the decades, patterns of calls to the helpline have not changed drastically (Nichols

et al. 2019). Higher call volumes occur on the expected delivery date of mailed census

notification letters and postcards. The first peaks occur after the initial mailout and second

mailout, and another peak occurs the week of Census Day. There is also a trend in which

Mondays and Tuesdays are the highest call volume days, with a gradual decline in call

volume throughout the week and a large dropoff over the weekend. This pattern is more

exaggerated when mail arrives on a Monday, as was the case in the 2000 Census (Chesnut

2003). The volume of calls diminishes after both Census Day and the arrival of all mailed

notifications have occurred. Expecting similar patterns with increased volume for the 2020

Census, the U.S. Census Bureau adopted staggered mailings of census notifications to

spread delivery to multiple days of the week and multiple weeks of the month, anticipating

that daily calls to the helpline would be more uniform and thus easier to staff efficiently

(Nichols et al. 2019). Note that other aspects of a mailing schedule–such as potential

impact to response rates – are important to the U.S. Census Bureau as well; however, the

remainder of this article focuses on call uniformity.

The U.S. Census Bureau conducts operations throughout the decade to prepare for the

decennial census. Several studies leading up to the 2020 Census featured mailings with an

invitation to respond via internet where data on subsequent calls to helplines were

recorded. These data provide an opportunity to compare variations between mailing

strategies and the uniformity of the resulting call volumes. Assuming that the data are

realizations from a multinomial distribution, in this article we compare pairs of call

volume observations and develop a methodology to assess whether one mailing strategy

provides multinomial cell probabilities closer to the uniform probability vector compared

to another mailing strategy.

1.2. On the Kullback-Leibler Divergence

To our knowledge, inference comparing the closeness of two discrete distributions to a

discrete uniform distribution is not standard. Many conventional tests are primarily

designed to detect departure from equality of two distributions. However, the equality of

two distributions is not the primary interest in our application; our problem is that of

comparing two sets of multinomial cell probabilities in terms of their relative closeness to

the uniform probability vector, and it seems appropriate to consider statistics used for

assessing goodness of fit. While several empirical distribution based statistics are available
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for this (for example, the Kolmogorov-Smirnov statistic; see Li et al. 2005), a statistic

based on the Kullback-Leiber divergence is an option that has been investigated in the

literature. As is well known, the K-L divergence measure is a directed divergence measure

that is not symmetric with respect to the two distributions (see Li et al. 2005; Cover and

Thomas 2006). This is appropriate for our purpose since our focus is on a measure of

closeness directed towards the uniformity of multinomial cell probabilities.

In a book on information theory, Cover and Thomas (2006) discuss the K-L distance,

entropy, and related concepts, and discuss fundamental applications in information theory.

Dorfinger et al. (2011) use entropy as a measure of uniformity to classify in real time

whether traffic in computer networks is encrypted or not. Their approach makes a decision

based on the difference between the estimated entropy of an observed payload and that of a

uniformly distributed random payload of the same length. Liu and Wang (2004) and

Cohen et al. (2006) consider an increasing convex ordering among discrete distributions;

when this ordering holds, one particular consequence is that one of the distributions has a

larger entropy than the other and is therefore closer to uniform. K-L divergence and

entropy have found use in many areas of the statistics literature, including: to justify

information criteria in assessing model fits (Konishi and Kitagawa 2008), to obtain

variational approximations to complicated distributions such as the posterior in Bayesian

analysis (Ormerod and Wand 2010; Blei et al. 2017), and as a basis for statistical inference

(Pardo 2006; Girardin and Lequesne 2019). Paninski (2008) proposed a method to test

whether a single multinomial distribution departs from discrete uniform; this work is

based on a sparse setting with many categories and relatively few observations.

From the perspective of testing goodness-of-fit, Several authors have investigated the

K-L divergence measure and its properties. The article by Girardin and Lequesne (2019)

gives a review of the literature on entropy-based goodness-of-fit tests. A test that is

asymptotically distribution-free is investigated in Song (2002). Regarding the K-L

divergence measure based test, Song (2002) notes that “With its good power properties,

the method provides an extremely simple and potentially much better alternative to the

classical empirical distribution function (EDF)-based test procedures”. A Monte Carlo

simulation study comparing several goodness of fit tests is reported in Li et al. (2005).

Along with a test based on K-L divergence, the tests considered by these authors include

those based on the Kolmogorov-Smirnov, Cramer-von Mises and Anderson-Darling

statistics. The authors note that “... the tests based on the directed divergence measure give

a good approximation to the given significance levels and are more powerful than other

tests against the given alternative distributions”. In an earlier article comparing models

that are relevant in economics, Vuong (1989) used the K-L divergence criterion to

measure the closeness of a model to the true model. The author has developed likelihood-

ratio based statistics for testing the null hypothesis that two competing models are equally

close to the true model; the alternative hypothesis being that one model is closer. Our

problem is similar to what Vuong (1989) has investigated. We believe that these articles

provide a strong motivation for using the K-L divergence measure to address the problem

we have investigated.

The rest of the article proceeds as follows. Section 2 introduces the call volume data and

provides some exploratory analysis. Section 3 discusses test and confidence interval procedures

based on the K-L divergence criterion in order to compare the closeness of two discrete
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distributions to uniformity. Section 4 gives results of the data analysis. Finally, Section 5

concludes the article. Additional technical details of the statistical procedures are given in the

appendices. Simulation studies to validate the procedures are provided as a online supplement.

2. Call Volume Data

A standard mailing strategy would be to send mail to all intended recipients on a common

schedule. Alternatively, consider a staggered strategy where respondents are randomly

partitioned into several groups which are sent mailings on different schedules. It is thought

that compared to an unstaggered strategy, a staggered strategy leads to a more uniform

distribution of calls, in the sense that the probability of a mail recipient calling the helpline

on any day of the week is closer to being uniform (i.e., equal to 1/7). To explore this

theory, we make use of data sets from three studies in which up to four mailings were sent

to a target population and subsequent calls to census helplines were recorded. Each of

these operations is referred to as a National Census Bureau Survey (NCBS) in mailing

materials. The materials in these studies mimicked typical U.S. Census Bureau mailings

for production surveys at that time. The first and fourth mailings included a one page letter

with the help phone line and the survey URL. These mailings also included a thicker stock

card with an authentication code for the web survey and the mailing address which showed

through the envelope window. The second and third mailings were postcards which also

included the phone line, URL, and authentication codes. The 2016 September NCBS

(Eggleston and Coombs 2017) and 2016 June NCBS (Coombs 2017) are two studies where

an unstaggered mailing strategy was utilized. A staggered mailing schedule was used in

the 2017 March NCBS (Nichols et al. 2019); mail recipients were randomly assigned into

either a Monday Mailout group, to whom three out of four mailings were initiated on

Mondays, or a Thursday Mailout, where three out of four mailings were initiated on

Thursdays.Table 1 displays the schedules for each mailing in the three studies. In all three

operations, no live agents were present to answer the helpline and callers instead received

a prerecorded message. Callers’ identities were not recorded so that the data do not

distinguish whether multiple calls were made by the same caller.

For each study, we designate day 1 as the day of the first mailing. For the 2017 March

NCBS, where there are two mailing schedules, day 1 is the day of the very first mailing,

Monday May 6. We then designate week 1 as days 1–7, week 2 as days 8–14, and so forth.

We consider weeks 1–5 in each study, and disregard calls which occurred in week 6 or

later because call activity becomes sparse. For each pair of studies, we compare the

uniformity for week j of the first study to week j of the second study, for j ¼ 1; : : :; 5. It is

possible to consider other methods of designating weeks, such as counting each Sunday as

the start of a new week; however, our main interest is in call behavior relative to the

mailing schedule. We also considered dropping weekends or consolidating Saturday and

Sunday into a single “weekend” category, but decided to keep weekends intact. Changing

designations of weeks could substantially change results, and such a choice should ideally

not be based on the observed data. Table 2 reports the weekly call counts for each study. It

is also possible to compare different weeks from pairs of studies, but this yields a large

number of possible comparisons. According to our definition of weeks, there is very little

opportunity to receive calls in week 1 of the 2017 March NCBS for the Thursday Mailout
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group (seven calls). Therefore, if increased uniformity is observed in week 1 for the 2017

March NCBS, it is likely due to some factor other than the staggered mailing schedule.

To compare uniformity of call volumes in the three studies, we first examine plots of call

frequencies. Figure 1 presents daily call volumes for the three studies. Mailing dates are marked

in each plot. Receipt times of the mailings were not known precisely; however, spikes in call

volumes can be observed about three days after each mailing, or on the following workday if the

Table 1. The schedule of mailings for each study. The 2017 March NCBS (a) was targeted to 8,000 recipients.

Of these, half were assigned to the Monday mailout group, and half were assigned to the Thursday mailout group.

The 2016 September NCBS (b) was targeted to 9,000 recipients. The 2016 June NCBS (c) was targeted to 8,000

recipients.

(a) 2017 March NCBS.

Monday Mailout Group Thursday Mailout Group

Mailing Date Day of Week Date Day of Week

1 March 6, 2017 Monday March 9, 2017 Thursday
2 March 9, 2017 Thursday March 13, 2017 Monday
3 March 20, 2017 Monday March 23, 2017 Thursday
4 March 27, 2017 Monday March 30, 2017 Thursday

(b) 2016 September NCBS.

Mailing Date Day of Week

1 August 25, 2016 Thursday
2 September 1, 2016 Thursday
3 September 8, 2016 Thursday
4 September 15, 2016 Thursday

(c) 2016 June NCBS.

Mailing Date Day of Week

1 June 13, 2016 Monday
2 June 15, 2016 Wednesday
3 June 24, 2016 Friday
4 July 5, 2016 Tuesday

Table 2. Call counts by designated week of study.

2017 March

Week 2016 June 2016 Sept Mon Thu Total p̂j

1 353 490 127 7 134 0.9478
2 747 689 226 256 482 0.4414
3 757 970 151 83 234 0.6453
4 383 528 177 147 324 0.5463
5 273 129 48 145 193 0.2487

Total 2513 2806 729 638 1367

Note: The quantity p̂j in the last column, defined in the next section, is the ratio of the

entries under the Mon column to those in the Total column.
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third day happened to fall on a weekend. Even with a staggered mailout, Figure 1a exhibits

spikes on Mondays for both mailing schedules, as well as on the expected delivery date of

Thursday for the Monday Mailout group. Because the expected delivery day is Monday for the

Thursday Mailout group, call volumes primarily spike on Mondays and decrease throughout the

rest of the week. For the 2016 June NCBS, spikes can again be seen either on Mondays or three

days after a mailing if that day fell on a weekday. A similar pattern can be seen in the 2016

September NCBS; note that September 5, 2016 was a Labor Day holiday so that the expected

spike in call volume shifted from Monday to the next day (September 6). Figure 2 presents call

frequencies summed by day of week for each study. It appears that the distribution for the 2017

March NCBS (Monday and Thursday mailing groups combined) is flatter than either the

distributions for the 2016 September NCBS or 2016 June NCBS. Figure 2d exhibits a large

spike on Monday, and therefore appears to be the furthest from being uniform.

Section 3 describes a framework to carry out more formal statistical analyses. We then

return to analysis of the data in Section 4 and report the results. It should be emphasized

that the three data sets were collected in three separate NCBS studies, and not as the result

of a controlled experiment. Therefore, significant differences in uniformity might be

suspected to be caused by factors other than staggering which were not controlled. Such

factors include timing of the mailings and timing of the study within the years 2016–2017.

Although conclusions which can be drawn from the data are limited, the data provide a

concrete example that illustrates the methodology.

3. Methodology

Suppose p ¼ ( p1,: : :, pK) and q ¼ (q1,: : :, qK) are probability distributions on categories

labeled 1,: : :, K. In our application, categories 1,: : :, K represent the K ¼ seven days of

the week: Sun, Mon,: : :, Sat, and p and q are probabilities of a mail recipient calling the

helpline on those days, given that the call will occur during that week. In general, we can

consider p and q to be probability vectors on any K categories. Let Dðp; qÞ ¼
PK

k¼1pk log pk=qk

� �
denote the K-L divergence between distributions with probabilities p

and q. Let 1ð pÞ ¼ 2
PK

k¼1pk log pk denote the entropy of a distribution with probabilities

p. Write �e ¼ (1/K: : :, 1/K) and let ek be a point mass on the kth category; that is, a vector

with a 1 in the kth position and zeros in the remaining K21 positions.

As noted in the introduction, the methodology developed in this section is based on the

K-L divergence measure. We will say that q is “more uniform” than p if q is closer to �e

than p in terms of K-L divergence; in other words, if

Dðp; �eÞ . Dðq; �eÞ

,
XK

k¼1

pk log pk 2
XK

k¼1

pk log ð1=KÞ

" #

.
XK

k¼1

qk log qk 2
XK

k¼1

qk log ð1=KÞ

" #

,
XK

k¼1

pk log pk .
XK

k¼1

qk log qk

, 1ð pÞ , 1ðqÞ: ð1Þ
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It is well known that entropy is maximum at �e,

1ð pÞ # 1ð�eÞ ¼ log K;

over any p ¼ ( p1,: : :, pK), and minimized by the point masses,

1ð pÞ $ 1ðekÞ ¼ 0; for any k ¼ 1; : : :;K:

Suppose p and q are parameterized by unknown u to be discussed later in this section. Let

gðuÞ ¼ 1ðqÞ2 1ðpÞ represent the difference in entropy. Motivated Equation (1), we will

consider testing hypotheses of the form

H0 : gðuÞ ¼ 0 vs: H1 : gðuÞ – 0; ð2Þ

H0 : gðuÞ # 0 vs: H1 : gðuÞ . 0; ð3Þ

H0 : gðuÞ $ 0 vs: H1 : gðuÞ , 0: ð4Þ

If H0 is rejected in Equation (3), for example, we conclude that q has a higher entropy, or

equivalently that q is closer to the uniform probability vector. Note that these hypotheses

are invariant to the order of elements in both p and q; this is desirable for call volume

analysis because we are primarily interested in comparing flatness of distributions, and not

whether volumes have simply shifted to different days of the week. In addition to

hypothesis testing, we consider point estimates and confidence intervals for the quantity

g(u). We provide additional information on the statistical properties in Appendix

(Section 6).

We make note of several points before proceeding:

(A) As a guide to interpret the size of the effect g(u), recall that 0 # 1(p) # log K for

any p, so that2 log K # g(u) # log K.

(B) Let 1a(·) denote the entropy function where logarithms are taken under base a.

Here, 1a(q)21a(p) ¼ [log a ]21g(u), so that the change of base serves only to scale

our quantity of interest by a constant. Therefore, we will consider natural

logarithms for the remainder of the article.

(C) It is possible to compare the entropies of p and q with different numbers of support

points. If p ¼ ðp1; : : :; pK1
Þ; q ¼ ðq1; : : :; qK2

Þ; and �e ðKÞ ¼ ð1=K; : : :; 1=KÞ; we

obtain the analog to Equation (1) that Dðp; �e ðK1ÞÞ . Dðq; �e ðK2ÞÞ , 1ðpÞ2 logK1 ,

1ðqÞ2 log K2: For example, multinomial outcomes from a month with K1 ¼ 31

days may be compared to a month with K2 ¼ 28 days.

(D) As noted in the introduction, and as is well known, the K-L divergence measure is a

directed divergence measure that is not symmetric with respect to the two

distributions. This is appropriate for our purpose since our focus is on a measure of

closeness directed towards uniformity of the probability vectors.

Let X , MultK(m, p) denote that random variable X has a multinomial distribution

PðX ¼ xÞ ¼
m!

x1!· · ·xK!
px1

1 · · ·pxK

K ; x e f0; 1; : : :;mg
K
;
XK

k¼1

xk ¼ m:

Consider the comparison of two studies where a total of I mailing schedules were

attempted among the two. For the ith mailing schedule, let Ji denote the total number of
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weeks of the study. In our data, all Ji are equal and represented by a common J. Define

Xij ¼ ðXij1; : : :;XijKÞ as the call counts observed on (Sun, Mon,: : :, Sat) on the jth week

for the ith mailing schedule, for i ¼ 1; : : :; I and j ¼ 1; : : :; J: We will assume that

Xij ,ind
MultK mij; pij

� �
; ð5Þ

where pij ¼ ( pij1,: : :, pijK) is the day-of-week distribution and mij ¼
PK

k¼1Xijk is the total

call count on the jth week for the ith mailing schedule. With no further assumptions about

probabilities pij, the unknown parameter is u ¼ p�11; : : : ; p
�
1J ; : : : ; p

�
I1; : : : ; p

�
IJ

� �
where

p�ij ¼ pij2; : : : ; pijK

� �
: It is possible to extend the model to support regression; see

Appendix (Subsection 6.2). Note that model (5) regards the totals mij as fixed, but regards

the day of week of each call as an independent multinomial (random) trial. We will

specifically consider two scenarios:

1. Two studies with I ¼ 2 and one mailing schedule used in each study.

2. Two studies with I ¼ 3; one mailing schedule was used in the first study and two

were used in the second. Here we assume that i ¼ 1 corresponds to the first and

i [ {2; 3} corresponds to the second.

All studies under consideration consist of J ¼ five weeks of data, and we will compare

them on a week-by-week basis. Under Scenario 1, we are interested in

gjðuÞ ¼ 1ðp2jÞ2 1ðp1jÞ; j ¼ 1; : : :; J:

We will write g(u) when referring to the entropy difference in a general sense, and gj(u)

when a particular week is emphasized. For Scenario 2, let qj ¼ ðqj1; : : :; qjKÞ be the overall

day-of-week distribution for calls from the jth week of the second study. To combine data

from the two mailing schedules, define random variables A and B as follows. For a given

call, let A [ {1; : : :;K} indicate the day-of-week in which the call occurs and let B [

{2; 3} indicate the mailing schedule to which the caller was assigned. Suppose PðB ¼

2Þ ¼ pj and PðB ¼ 3Þ ¼ 1 2 pj: The overall probability of receiving a call on day of week

k [ {1; : : :;K} during week j is

qjk ¼ PðA ¼ kÞ

¼ PðA ¼ k jB ¼ 2ÞPðB ¼ 2Þ þ PðA ¼ k jB ¼ 3ÞPðB ¼ 3Þ

¼ pjp2jk þ ð1 2 pjÞp3jk:

We may then write qj ¼ pjp2j þ ð1 2 pjÞp3j; and our quantities of interest are

gjðuÞ ¼ 1ðqjÞ2 1ðp1jÞ; j ¼ 1; : : :; J:

The pj are unknown and therefore will be replaced by estimates p̂j ¼ m2j=ðm2j þ m3jÞ:

Our analysis will be carried out conditionally on the mij for the sake of tractability;

however, modeling the mij as observed quantities would likely express additional

variability in the results and may be considered in future work.

Appendix (Subsection 6.1) describes a statistic Z- based on an estimate gðû) of gðuÞ:

Denoting a as the desired significance level for a test and za as the 12a quantile of the
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standard normal distribution, we obtain familiar tests for g(u): reject H0 in hypothesis (2) if

j Z- j . za=2; reject H0 in hypothesis (3) if Z- . za; or reject H0 in hypothesis (4) if Z- , za:

We also obtain familiar confidence limits for g(u) with level 1 2 a : the two-sided

confidence interval g û
� �

^ za=2�cSESE, the lower confidence limit g û
� �

2 za�cSESE, and the

upper confidence limit g û
� �
þ za�cSESE. Properties of the test and confidence bounds based

on Z- are investigated by simulation in the supplementary material. The tables in the

supplementary material give the estimated type I error probabilities and powers of the one-

sided test for g(u) based on Z- , empirical coverage probabilities of the lower confidence

limit for g(u), and the empirical widths associated with the lower confidence limits. The

numerical results correspond to a 5% nominal level for the test, and a 95% nominal level

for the confidence limit. The numerical results show that the estimated type I error

probabilities and the estimated coverage probabilities approach their respective nominal

levels as the sample size becomes large. Furthermore, the power of the test increases as

g(u) approaches its maximum value. These results are to be anticipated.

It should be noted that in addition to the K-L divergence criterion, one can think of

numerous other criteria that are appropriate for assessing the relative closeness of two sets

of multinomial cell probabilities to the uniform probability vector; for example, the power

divergence family of criteria investigated in Cressie and Read (1984). An extensive

numerical investigation will be necessary before recommendations can be made on

specific criteria for practical use. We have not undertaken such a simulation study since

there is already some precedence in using the K-L divergence measure, as noted in

Subsection 1.2. Furthermore, the focus of our work is on an application relevant to the U.S.

Census Bureau, rather than the comparison of various criteria. Thus we are not making a

definite recommendation in favor of tests based on the K-L divergence criterion, compared

to other tests; for example, Anderson-Darling and other empirical distribution function

based tests.

4. Data Analysis

Subsections 4.1, 4.2, and 4.3 compare the three possible pairs among the three NCBS

studies. In each section, the given pair is compared using tests and confidence intervals

based on the Z- statistic from Section 3. Code for all procedures has been implemented in

the R programming language (R Core Team 2022).

Although each dataset has been used twice among the three analyses, we have not

adjusted results for multiple comparisons (e.g.,Westfall et al. 2011). It should however be

noted that a number of p-values in our analysis are quite small and such an adjustment will

not matter.

4.1. 2016 September NCBS versus 2017 March NCBS

Our first comparison is between the 2016 September NCBS and 2017 March NCBS call

volumes, which falls into Scenario 2. Take X1j to be the call frequencies observed (Sunday,

Monday,: : :, Saturday) on the jth week of the 2016 September NCBS. Accordingly, X2j and

X3j are call frequencies on the jth week of the 2017 March NCBS for the Monday Mailout

and Thursday Mailout groups, respectively. Estimates for pj are given in Table 2. We test

hypothesis (3) for each week j ¼ 1,: : :, 5, which can be written as follows.
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[Test 1] H0: “The day-of-week distribution in week j resulting from the 2016 September

NCBS mailing schedule has larger or equal entropy for the call probabilities than the

day-of-week distribution resulting from the 2017 March NCBS mailing schedule”

versus H1: “Not”.

Therefore, rejection of H0 for week j suggests that the 2017 March NCBS mailing strategy

leads to call probabilities closer to the uniform probability vector during that week.

Table 3a gives results of testing this hypothesis for weeks 1–5. Recall that quantity g(u)

is bounded, so that 21:946 # gðuÞ # 1:946 for any u. The U.S. Census Bureau uses

a ¼ 0:10 as its standard significance level for hypothesis testing. H0 can be rejected for

weeks 1–4, but there is insufficient evidence to reject during week 5. The Z- -statistic is a

rather large negative value in week 5, suggesting that there is evidence that the 2016

September NCBS call distribution had higher entropy during that time. Table 4a displays

the estimated probabilities p̂1j and q̂j for weeks j ¼ 1; : : :; 5: We notice in week 1 that the

2017 March NCBS had a higher estimated entropy despite very low call probabilities on

Monday and Tuesday; recall that it is very unlikely for Monday Mailout group respondents

to receive the first mailing by this Monday or Tuesday, and impossible for the Thursday

Mailout group. In week 5, large peaks are observed for the 2017 March NCBS on Monday

Table 3. Results for inference on the quantity g(u). Estimates, standard errors (SEs), and

Z2-statistics are displayed in the first three columns. (a) and (b) give a p-value for

hypothesis (4) and a level 0.90 lower confidence limit for g(u). (c) gives a p-value for

hypothesis (2) and a level 0.90 (two-sided) confidence interval for g(u).

(a) 2016 September NCBS to 2017 March NCBS.

Week Estimate SE Z- -statistic p-value CI Lo

1 0.0823 0.0602 1.3681 0.0856 0.0052
2 0.2605 0.0402 6.4731 ,0.0001 0.2090
3 0.1480 0.0411 3.6026 0.0002 0.0953
4 0.2273 0.0453 5.0166 ,0.0001 0.1693
5 -0.3376 0.0775 -4.3563 1.0000 -0.4369

(b) 2016 June NCBS to 2017 March NCBS.

Week Estimate SE Z- -statistic p-value CI Lo

1 -0.0153 0.0631 -0.2426 0.5958 -0.0962
2 0.3463 0.0379 9.1467 ,0.0001 0.2977
3 0.3905 0.0442 8.8356 ,0.0001 0.3338
4 0.3523 0.0565 6.2409 ,0.0001 0.2800
5 0.0253 0.0640 0.3956 0.3462 -0.0567

(c) 2016 June NCBS to 2016 September NCBS.

Week Estimate SE Z- -statistic p-value CI Lo CI Hi

1 -0.0976 0.0451 -2.1630 0.0305 -0.1719 -0.0230
2 0.0857 0.0433 1.9782 0.0479 0.0144 0.1570
3 0.2425 0.0365 6.6499 ,0.0001 0.1825 0.3025
4 0.1250 0.0607 2.0602 0.0394 0.0252 0.2247
5 0.3629 0.0535 6.7823 ,0.0001 0.2749 0.4509
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and Tuesday. Many calls occurring on these peak days are from the Thursday Mailout

group, as seen in Figure 1a, whose final mailing was initiated the previous Thursday

(March 30). However, calls are also contributed from the Monday Mailout group, whose

final mailing was the previous Monday (March 27).

4.2. 2016 June NCBS versus 2017 March NCBS

Our second comparison is between the 2016 June NCBS versus 2017 March NCBS call

volumes, which falls into Scenario 2. Take X1j to be the frequencies of the 2016 June

Table 4. Estimated probabilities for data analyses. Estimates are ordered from largest to smallest within each

week. The corresponding day of week is shown to the right of each probability. The column labeled 1̂ displays the

entropy of the estimated probabilities.

(a) 2016 September NCBS vs. 2017 March NCBS.

Week p̂ (Week) 1̂

1 0.3857 Tue 0.3327 Mon 0.2388 Wed 0.0245 Sat 0.0122 Sun 0.0061 Thu 0.0000 Fri 1.2515

2 0.4224 Tue 0.3077 Wed 0.1190 Thu 0.0581 Sat 0.0421 Fri 0.0276 Sun 0.0232 Mon 1.4650

3 0.3835 Mon 0.2361 Tue 0.1247 Thu 0.1093 Wed 0.0670 Fri 0.0546 Sat 0.0247 Sun 1.6414

4 0.4545 Mon 0.2045 Tue 0.1212 Wed 0.1193 Thu 0.0473 Fri 0.0341 Sat 0.0189 Sun 1.5272

5 0.3256 Thu 0.1628 Mon 0.1550 Fri 0.1395 Tue 0.1085 Wed 0.0543 Sun 0.0543 Sat 1.7819

Week q̂ (Week) 1̂

1 0.3955 Fri 0.3284 Thu 0.1791 Sat 0.0522 Wed 0.0448 Sun 0.0000 Mon 0.0000 Tue 1.3338

2 0.2925 Mon 0.2054 Tue 0.1826 Wed 0.1535 Thu 0.1100 Fri 0.0311 Sat 0.0249 Sun 1.7255

3 0.3419 Thu 0.1581 Mon 0.1496 Fri 0.1026 Sat 0.0940 Tue 0.0940 Wed 0.0598 Sun 1.7894

4 0.2654 Thu 0.2099 Mon 0.1852 Fri 0.1636 Tue 0.1111 Wed 0.0340 Sat 0.0309 Sun 1.7545

5 0.4508 Mon 0.2798 Tue 0.1088 Wed 0.0622 Thu 0.0622 Fri 0.0259 Sat 0.0104 Sun 1.4443

(b) 2016 June NCBS vs. 2017 March NCBS.

Week p̂(Week) 1̂

1 0.4023 Thu 0.3456 Fri 0.1133 Sat 0.0793 Wed 0.0595 Sun 0.0000 Mon 0.0000 Tue 1.3492

2 0.4565 Mon 0.2798 Tue 0.1285 Wed 0.0763 Thu 0.0469 Fri 0.0067 Sat 0.0054 Sun 1.3793

3 0.4676 Mon 0.2444 Tue 0.1321 Wed 0.0819 Thu 0.0647 Fri 0.0053 Sun 0.0040 Sat 1.3989

4 0.5431 Fri 0.1802 Sat 0.0992 Thu 0.0653 Wed 0.0522 Sun 0.0470 Tue 0.0131 Mon 1.4022

5 0.4505 Mon 0.2344 Tue 0.1465 Wed 0.1136 Thu 0.0403 Fri 0.0147 Sat 0.0000 Sun 1.4190

Week p̂(Week) 1̂

1 0.3955 Fri 0.3284 Thu 0.1791 Sat 0.0522 Wed 0.0448 Sun 0.0000 Mon 0.0000 Tue 1.3338

2 0.2925 Mon 0.2054 Tue 0.1826 Wed 0.1535 Thu 0.1100 Fri 0.0311 Sat 0.0249 Sun 1.7255

3 0.3419 Thu 0.1581 Mon 0.1496 Fri 0.1026 Sat 0.0940 Tue 0.0940 Wed 0.0598 Sun 1.7894

4 0.2654 Thu 0.2099 Mon 0.1852 Fri 0.1636 Tue 0.1111 Wed 0.0340 Sat 0.0309 Sun 1.7545

5 0.4508 Mon 0.2798 Tue 0.1088 Wed 0.0622 Thu 0.0622 Fri 0.0259 Sat 0.0104 Sun 1.4443

(c) 2016 June NCBS vs. 2016 September NCBS.

Week p̂(Week) 1̂

1 0.4023 Thu 0.3456 Fri 0.1133 Sat 0.0793 Wed 0.0595 Sun 0.0000 Mon 0.0000 Tue 1.3492

2 0.4565 Mon 0.2798 Tue 0.1285 Wed 0.0763 Thu 0.0469 Fri 0.0067 Sat 0.0054 Sun 1.3793

3 0.4676 Mon 0.2444 Tue 0.1321 Wed 0.0819 Thu 0.0647 Fri 0.0053 Sun 0.0040 Sat 1.3989

4 0.5431 Fri 0.1802 Sat 0.0992 Thu 0.0653 Wed 0.0522 Sun 0.0470 Tue 0.0131 Mon 1.4022

5 0.4505 Mon 0.2344 Tue 0.1465 Wed 0.1136 Thu 0.0403 Fri 0.0147 Sat 0.0000 Sun 1.4190

Week q̂ (Week) 1̂

1 0.3857 Tue 0.3327 Mon 0.2388 Wed 0.0245 Sat 0.0122 Sun 0.0061 Thu 0.0000 Fri 1.2515

2 0.4224 Tue 0.3077 Wed 0.1190 Thu 0.0581 Sat 0.0421 Fri 0.0276 Sun 0.0232 Mon 1.4650

3 0.3835 Mon 0.2361 Tue 0.1247 Thu 0.1093 Wed 0.0670 Fri 0.0546 Sat 0.0247 Sun 1.6414

4 0.4545 Mon 0.2045 Tue 0.1212 Wed 0.1193 Thu 0.0473 Fri 0.0341 Sat 0.0189 Sun 1.5272

5 0.3256 Thu 0.1628 Mon 0.1550 Fri 0.1395 Tue 0.1085 Wed 0.0543 Sun 0.0543 Sat 1.7819
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NCBS calls observed on (Sunday, Monday,: : :, Saturday). Take X2j, X3j, and pj to be

defined as in Subsection 4.1. We test hypothesis (3) for each week j ¼ 1; : : :; 5;which can

be written as follows.

[Test 2] H0: “The day-of-week distribution in week j resulting from the 2016 June

NCBS mailing schedule has larger or equal entropy for the call probabilities than the

day-of-week distribution resulting from the 2017 March NCBS mailing schedule”

versus H1: “Not”.

Here, rejection of H0 for week j suggests that the 2017 March NCBS mailing strategy

leads to call probabilities closer to the uniform probability vector during that week.

Table 3b gives results of testing this hypothesis for weeks 1–5. Table 4b displays the

estimated probabilities p̂1j and q̂j for weeks j ¼ 1; : : :; 5: There is strong evidence to reject

H0 for weeks 2, 3, and 4, but insufficient evidence to reject during weeks 1 and 5 at

significance level a ¼ 0:10: Recall that the Thursday Mailout group had little opportunity

to call during week 1, so the results for this week are primarily based on the Monday

Mailout group.

4.3. 2016 June NCBS versus 2016 September NCBS

Our third comparison is between the 2016 September NCBS and 2016 June NCBS call

volumes, which matches Scenario 1. Take X1j to be the frequencies of 2016 June NCBS as

in Subsection 4.2 and X2j to be the frequencies of 2016 September NCBS calls as in

Subsection 4.2. Because both studies used a single mailing strategy for all respondents, we

assume a null hypothesis that neither strategy leads to a significantly more uniform call

distribution. Therefore, we test hypothesis (2) for each week j ¼ 1; : : :; 5; which can be

written as follows.

[Test 3] H0: “The day-of-week distribution in week j resulting from the 2016 June

NCBS mailing schedule and that resulting from the 2016 September NCBS mailing

schedule have equal entropies for the call probabilities” versus H1: “Not”.

Here, rejection of H0 for week j suggests that the two mailing strategies do not lead to

call probabilities that are equally close to the uniform probability vector during that week.

Table 3c gives results of testing this hypothesis for weeks 1–5, and Table 4c displays

the estimated probabilities p̂1j and p̂2j for weeks j ¼ 1; : : :; 5: The test can be rejected at

significance level a ¼ 0:10 for all five weeks, although the evidence is much stronger in

weeks 3 and 5. The Z--statistics are positive for weeks 2–5, indicating a larger entropy for

the 2016 September NCBS except during week 1.

5. Discussion and Conclusions

In this work, we analyzed call volumes observed in several census studies to determine

whether one mailing strategy produced more uniform call probabilities than another. To do

this, we made use of statistical tests and confidence intervals determined from basic large

sample theory. Our analysis found that a staggered strategy–as used in the 2017 March

NCBS–yielded a significantly higher entropy than the two unstaggered strategies toward

the middle of the study period, after both the Monday and Thursday Mailout groups
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received the first mailing. However, the two unstaggered strategies–the 2016 September

NCBS and 2016 June NCBS–also yielded significantly different entropies when

compared to each other; this demonstrates that other aspects of mailing schedule design,

aside from staggering, affect uniformity of calls from week to week. After the final mailing

is sent, the choice of mailing schedule is expected to have a diminishing effect on call

uniformity as the overall volume of calls diminishes. One way to attenuate starting and

ending differences among the operations would be, say, to combine weeks 1 and 2 into a

“beginning period”, label week 3 as a “middle period”, and combine weeks 4þ into an

“ending period”; the methodology could be applied to the three periods instead of the

individual weeks without any changes.

Although some evidence was found in the data that staggering increases call uniformity,

the three featured studies were carried out separately and may have been subject to subtle

variations other than mailing strategy. A controlled experiment would help to isolate this

effect from other factors. Procedures such as the ones presented in this article could help to

guide design and sample size determination for such an experiment.

The report by Nichols et al. (2019) represents the analysis-of-record based on the

methodology in the present article. Marasteanu (2019) describes a staggered mailing

strategy for the 2020 decennial census which makes use of findings by Nichols et al.

(2019) and others, while also taking into account a number of important practical

concerns. An unspecified model is used to express volumes to call centers and to illustrate

the effects of staggered mailings on them over time.

While our model was based on independent multinomial observations, we could

consider a regression model with appropriate covariates as described in Appendix

(Subsection 6.2). Here, it becomes necessary to check model adequacy–e.g., via

goodness-of-fit testing–before proceeding with inference on g(u). However, were a

sufficiently good predictive model available, it could be used to optimize over a class of

mailing strategies and identify which one(s) achieved an optimal uniformity. This could be

an objective in future analyses of U.S. Census Bureau operations, as a step beyond

statistical inference.

6. Appendix

6.1. Inference on Entropy Difference

In order to discuss statistical procedures, let us generally write

gjðuÞ ¼ 1ðc1p1j þ · · ·þ cIpIjÞ2 1ðd1p1j þ · · ·þ dIpIjÞ; j ¼ 1; : : :; J; ð6Þ

for given coefficients c ¼ ðc1; : : :; cIÞ and d ¼ ðd1; : : :; dIÞ which are distributions on

{1; : : :; I}: We do not encounter a situation where two studies use data from a common

mailing schedule; therefore, we will have cidi ¼ 0 for i ¼ 1; : : :; I: In a multinomial

analysis, one of our day-of-week categories is redundant because
PK

k¼1Xijk ¼ mij and
PK

k¼1pijk ¼ 1. Without loss of generality, we will consider the first category as the

redundant one, and write X�ij ¼ ðXij2; : : :;XijKÞ and p�ij ¼ ðpij2; : : :; pijKÞ: Denote

p2 ¼ p�11; : : : ; p
�
1J ; : : : ; p

�
I1; : : : ; p

�
IJ

� �
, and its maximum likelihood estimator as p̂2,

which replaces each p�ij with p̂�ij ¼ X�ij=mij. Under model (5), the unknown u is taken
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assumed to be p�: Write T , Nðm;SÞ to denote that random variable T [ Rn follows a

normal distribution with mean m [ Rn and variance S [ Rn £ n: As discussed in Lehmann

(2004, 314), we have a large sample normal distribution p̂2 , Nðp�;SÞ; where

S ¼ Blockdiag m21
11 Diag p�11

� �
2 p�11p2

11
`

� �
; : : : ;m21

IJ Diag p�IJ
� �

2 p�IJp2
1J

`
� �� �

ð7Þ

is an IJðK 2 1Þ £ IJðK 2 1Þ covariance matrix. Furthermore, the delta method (Lehmann

2004, 315) gives the large sample distribution

gj p̂2
� �

, N gj p�
� �

;s2
gjð p2Þ

� �
; s2

gjð p2Þ ¼
›gjð p

2Þ

›p2

� 	

S
›gjð p

2Þ

›p2

� 	`

;

for j ¼ 1; : : :; J: After some algebra, we obtain the 1 £ IJðK 2 1Þ gradient

›gjð p
2Þ

›p2
¼

ej^ c171 S
I
i¼1cip

�
ij

� �
2 d171 S

I
i¼1dip

�
ij

� �h i

ej^ cI71 S
I
i¼1cip

�
ij

� �
2 d171 S

I
i¼1dip

�
ij

� �h i

0

B
B
@

1

C
C
A

`

; ð8Þ

where 71ðxÞ ¼ ð2logðx2=x1Þ; : : :;2logðxK=x1ÞÞ
`; ej is the jth column of a J £ J identity

matrix, and ^ denotes the matrix Kronecker product.

Let p̂2 be a maximum likelihood estimator of p� and define the statistic Z-¼

gjðp̂
2Þ=sgjðp̂ �Þ with the expression for s2

gjðp �Þ
. Now, Z- , Nð0; 1Þ approximately under the

restriction gjðp
�Þ ¼ 0; which occurs at the boundary of the null hypotheses (2), (3), and

(4). Therefore, we obtain the test and confidence interval procedures discussed at the end

of Section 3 with cSESE ¼ sgðp̂ 2Þ:

Some insight into the behavior of gðp�Þ can be seen from its gradient. Consider Scenario

S1 with J ¼ 1 and suppress the j index; we have

›g p�
� �

›p�
¼ 271 p�1

� �`
71 p�2
� �`

� �

¼ logðp12=p11Þ · · · logðp1K=p11Þ 2 logðp22=p21Þ · · · 2 logðp2K=p21Þ:

Because the gradient separates into a component involving only p1 and similar one

involving only p2, it suffices to comment only on the former. When p1 < ð1=K; : : :; 1=KÞ;

it is seen that 271ðp2
1 Þ < 0; therefore, gðp�Þ increases very slowly to its maximum of log

K as p1 approaches a discrete uniform distribution. On the other hand, when p1 ! e2; then

271ðp�1 Þ! ð0;1; : : :;1Þ; therefore, when p1 is close to a point mass, small changes in

p1 result in very large changes in some of the components of gðp�Þ:

This remark notes that changes in the quantity gðp�Þ are smaller when the component

distributions are closer to uniform. Differences in this setting may therefore be difficult to

detect with the Z- -statistic, which may warrant consideration of alternative distance

measures in future work. Alternative distance measures might also be considered if one is

thought to better express the cost of departure from uniformity than K-L divergence.
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6.2. Regression Model

The framework can be extended to a more general multinomial regression model for

additional flexibility. Suppose we wish to compare two mailing strategies based on I

mailing schedules where calls are recorded in J weeks. Let Yij ¼ ðYi11; : : :; YijKÞ be a

vector of call counts received on the kth day in the jth week from the ith mailing schedule,

for i ¼ 1; : : :; I; j ¼ 1; : : :; J; and k ¼ 1; : : :;K; with mij ¼
PK

k¼1Yijk total calls received.

Let wijk [ RD be a corresponding fixed covariate. The discrete choice model described by

Agresti (2013, Sec. 8.5),

Yij ,ind
MultK mij; pij

� �
; pijk ¼

exp w`
ijkb

n o

S
k
l¼1 exp w`

ijlb
n o ; ð9Þ

is a form of multinomial regression which permits the covariate to vary by category. The

independent variable wijk may contain indicators such as day of the week, week of the

mailing schedule, holidays and other features of interest which vary by day. In this model,

log pijk=pijl

� �
¼ wijk 2 wijl

� �`
b for any k;l[ {1; : : :;K}: Regression model (9) allows a

number of alternative formations; for example, rather than partitioning the data into J weeks

(or other non-overlapping time periods) as desired in our application, one may also consider

taking J ¼ 1; the K multinomial categories to correspond to all days relevant to the analysis,

and covariates wijk to include adjustments for day-of-week and/or day-of-study effects.

Under model (9), the unknown parameter u is taken to be the coefficient vector b. To

perform inference on (9) in the regression case, the delta method applied to the maximum

likelihood estimator b̂ yields large sample distribution

g p�ðb̂Þ
� �

, N g p2ðbÞ
� �

;s2
g p 2ðbÞð Þ

� �
; s2

g p 2ðbÞð Þ ¼
›g p2ðbÞ
� �

›b

� 	

I21ðbÞ
›g p2ðbÞ
� �

›b

� 	`

where I ðbÞ is the Fisher information matrix with respect to b under the outcomes Yij. An

estimate of I21ðbÞ based on b̂ may be produced by statistical software such as the

mlogit package (Croissant 2020) in R, or may be computed directly via I ðbÞ ¼ ›p �ðbÞ
›b

h i`

P21 ›p �ðbÞ
›b

h i
using S given in Equation (7). To compute the remaining terms of s2

gð p 2ðbÞÞ,

we have
›g p2ðbÞ
� �

›b
¼

›g p2
� �

›p2

›p2 b
� �

›b

with
›g p 2ð Þ

›p 2 given by Equation (8) and

›pijk b
� �

›bd

¼
XK

l¼1

exp wijl 2 wijk

� �`
b

n o
( )22

XK

l¼1

exp wijl 2 wijk

� �`
b

n o
wijld 2 wijkd

� �
:
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A Two-Stage Bennet Decomposition of the Change in the
Weighted Arithmetic Mean

Thomas von Brasch1, Håkon Grini1, Magnus Berglund Johnsen1, and

Trond Christian Vigtel1

The weighted arithmetic mean is used in a wide variety of applications. An infinite number of
possible decompositions of the change in the weighted mean are available, and it is therefore
an open question which of the possible decompositions should be applied. In this article, we
derive a decomposition of the change in the weighted mean based on a two-stage Bennet
decomposition. Our proposed decomposition is easy to employ and interpret, and we show
that it satisfies the difference counterpart to the index number time reversal test. We illustrate
the framework by decomposing aggregate earnings growth from 2020Q4 to 2021Q4 in
Norway and compare it with some of the main decompositions proposed in the literature. We
find that the wedge between the identified compositional effects from the proposed two-stage
Bennet decomposition and the one-stage Bennet decomposition is substantial, and for some
industries, the compositional effects have opposite signs.

Key words: Index theory; weighted arithmetic mean; decomposition.

1. Introduction

What are the driving forces underlying aggregate productivity growth? Why has the labour

force participation rate changed during the last two decades? What has driven the change

in annual earnings over the last year and why have import prices changed? All these

questions have a common feature in that statistics on productivity, the labour force

participation rate, earnings and import prices are often constructed using a weighted

arithmetic mean formula.

A natural starting point for answering these questions is to decompose the change in the

weighted mean. A frequently used decomposition is the Bennet (1920) decomposition,

often also referred to as shift-share analysis. This decomposition enables within-group

growth effects to be distinguished from between-group compositional effects. For

example, when examining productivity dynamics in U.S. manufacturing plants between

1972 and 1987, Baily et al. (1992) find a positive contribution to growth due to increasing

output shares among high-productivity plants and decreasing output shares among low-

productivity plants. Daly and Hobijn (2017) show that compositional effects due to labour

market status flows are important in explaining aggregate real wage growth in the U.S.
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Analysing the fall in the U.S. labour force participation rate, Krueger (2017) finds that the

population composition has shifted toward groups with lower participation rates, and that

this accounts for well over half of the decline in the labour force participation rate between

1997 and 2017. Moreover, a large body of literature has identified the deflationary effects

of international trade resulting from increased import shares from low-price countries,

such as China; see, for example, Kamin et al. (2006), Thomas and Marquez (2009) and

Benedictow and Boug (2017, 2021).

Although the Bennet decomposition is useful for identifying the overall contribution

from compositional effects, it does not identify how much of the overall compositional

effect that can be attributed to a particular group or subset. To overcome this shortcoming,

the Bennet decomposition is often rewritten by subtracting a scalar A from each group in

the between effect, where the scalar A typically represents some measure of the weighted

mean, see Huerga (2010) and Balk (2021, 137). Foster et al. (2001) analyzed productivity

developments and measured the between effect as the product of changes in the plant-level

output share and the deviation of average plant-level productivity from the overall industry

average. If the composition of firms changes such that the output share of a low-

productivity plant increases, this will lower the aggregate weighted mean productivity

level and thus contribute negatively to the compositional effect. Note that in these

decompositions a plant may contribute negatively to the compositional effect even if there

is no change in the output of that plant. The reason is that it is the output share, and not the

output of the plant, that enters the decomposition, and the output share of a given plant

may change because the output of all the other plants changes. Moreover, as pointed out by

Balk (2021), the choice of the scalar A is arbitrary. Since any scalar may be subtracted

from the Bennet decomposition, an infinite number of possible decompositions are

available, and it is therefore an open question which of the possible decompositions should

be applied.

In this article, we derive a decomposition that identifies the contribution to the overall

change in the weighted mean from changes in prices and quantities. In contrast to the

previously discussed one-stage Bennet decomposition, which relates to changes in

weights, our proposed two-stage Bennet decomposition relates to the change in the

underlying quantity variables. This difference is important because the weights can never

change without a change in at least one of the underlying quantity variables. Moreover, a

change in a single quantity variable will affect all the share variables. Therefore,

examining the shares provides only limited information about the underlying driving

forces. In the two-stage Bennet decomposition, all the terms related to the within effects

are identical to those in the one-stage Bennet decomposition. Also, the overall between

effect, or compositional effect, is identical to the overall between effect in the one-stage

Bennet decomposition. The group-specific between effects, however, differ from those in

the one-stage Bennet decomposition. The decomposition captures the intuitive property

that the weighted mean increases if a group whose quantity variable is growing has a level

that is above the weighted mean level. There are two ways in which compositional effects

for a group will be zero: either the group-specific indicator equals the weighted mean

level, and/or there is no change in the quantity variable of that group. The proposed

decomposition is easy to employ and interpret and furthermore gives a better platform for

comparing groups. Moreover, we show that the decomposition is invariant with respect to

Journal of Official Statistics124



treatment of time, and that it therefore satisfies the difference counterpart to the index

number time reversal test; see ILO et al. (2004, 411).

To provide further support for the two-stage Bennet decomposition, we also compare it

with a decomposition based on a quadratic approximation of the weighted mean, while

considering the weighted mean as a non-linear function of underlying prices and quantities.

It is shown that this alternative decomposition has some similar features to the two-stage

Bennet decomposition. In particular, it also identifies how the weighted mean price level

increases if products that are growing in quantity have price levels that are higher than the

mean price level. However, this alternative decomposition is not exact, and the size of the

approximation error depends on how much prices, quantities, and weights change.

To illustrate the two-stage Bennet decomposition, we use data on aggregate earnings

growth in Norway between 2020Q4 and 2021Q4. In this empirical example, it is shown

that the wedge between the identified compositional effects from the two-stage and one-

stage Bennet decompositions is substantial, and for some industries, the compositional

effects are of opposite signs. We also compare the two-stage Bennet decomposition with

the decomposition based on a quadratic approximation. These two decompositions yield

similar group-specific contributions to the overall compositional effects.

The article is structured as follows: Section 2 outlines the weighted mean formula, some

of the most standard decompositions applied in the literature, our proposed decomposition

and the decomposition based on a quadratic approximation. Section 3 contrasts and

compares empirically our proposed decomposition with those used in the literature and the

decomposition based on a quadratic approximation, using the case of earnings growth in

Norway. Section 4 provides a conclusion.

2. Decomposing the Change in the Weighted Mean

Our point of departure is the weighted mean of indicators Pit across units i at time t of the

form:

Pt ¼
XN

i¼1

SitPit; ð1Þ

with weights Sit ¼
Xit

S
N
j¼1Xjt

, where the quantity variable Xit $ 0 and
PN

j¼1Xjt . 0. Note that

the weights sum to unity. The weighted mean in Equation (1) has numerous applications

within the fields of economics and measurement theory. In some applications, the

weighted mean is also referred to as a unit value. To our knowledge, unit values were first

introduced by Segnitz (1870). Although the weighted mean has been applied in a variety of

fields, and the indicator and quantity variables may refer to “inter alia” wages, hours

worked, productivity, output prices and so on, we will henceforth refer to Pit and Xit as

representing prices and quantities, respectively, and unit i as product i. Note that for the

weights to have a meaningful interpretation, the quantities involved must be comparable.

In the following we are concerned with identifying the contribution to the change in the

weighted mean of changes in both prices and quantities. Before we present our proposed

decomposition, we start by recapitulating the most widely utilized decompositions in the

literature.
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2.1. The One-Stage Bennet Decomposition

Bennet (1920) provided a decomposition of the nominal value change into the sum of a

price change and a quantity change. This decomposition stands in contrast to traditional

index theory, which focuses on decomposing a value ratio into the product of a price index

and a quantity index. Diewert (2005) analyzed the axiomatic and economic properties of

the Bennet decomposition. When applied to Equation (1), the decomposition yields the

identity:

DP ¼
XN

i¼1

�SiDPi þ
XN

i¼1

�PiDSi; ð2Þ

where D is the difference operator and a bar over a variable represents the moving average

operator between time t and v, that is, Dx ¼ xt 2 xv and �x ¼ 1=2 xt þ xvð Þ, and the time

subscript is dropped when it is superfluous, for notational convenience. This one-stage

Bennet decomposition is standard in productivity and shift-share analysis, see for

example, Baily et al. (1992) and OECD (2018). The terms �SiDPi and �PiDSi represent the

contributions to the change in the weighted mean of a change in the price of product i, and

in the quantity share of product i, respectively.

2.2. The One-Stage Bennet Decomposition with Extended Weight

The one-stage Bennet decomposition may be rewritten to create terms that explicitly

capture the fact that the weighted mean price level increases if the quantity shares of high-

priced products increase. Since the weights sum to unity, we can subtract the termPN
i¼1ðADSiÞ, for any given scalar A, such that:

DP ¼
XN

i¼1

�SiDPi þ
XN

i¼1

ð �Pi 2 AÞDSi: ð3Þ

In this case, the contribution to the change in the weighted mean of a change in the weight

of product i is given by the term ð �Pi 2 AÞDSi. For example, this term captures the increase

in the weighted mean price if products whose quantity shares are growing have an average

price level between time v and t that is larger than the scalar A. In the literature, the scalar A

has often been chosen to represent some measure of the mean price level. For example, the

choice A ¼ �P, where �P ¼ 1=2 Pt þ Pvð Þ, is often used, see Huerga (2010) and Balk (2021,

137). Note that when A ¼ �P is chosen, the framework above is invariant with respect to

treatment of time, that is, it satisfies the difference counterpart to the index number time

reversal test; see Diewert and Fox (2010). The contribution to the change in the weighted

mean of a change in the share of product i is then given by ð �Pi 2 �PÞDSi. This term captures

the fact that the weighted mean price level increases if products whose quantity shares are

growing have a price level that is higher than the weighted mean price level. Conversely,

the term also captures the fact that the weighted mean price level will decrease if products

whose quantity shares are growing have a price level that is lower than the weighted mean

price level.

There are shortcomings related to the two decompositions above if the purpose is to

identify how much of the overall compositional effect that can be attributed to a particular
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group or subset. First, and as argued by Balk (2021), the choice of the scalar A is

completely arbitrary. Second, the weight of product i (Sit) may change even if there is no

change in the quantity of product i (Xit), that is, if there is a change in the sum of all the

other products. Since the change in the weight of product i may reflect more than just

changes in the quantity of product i, neither the one-stage Bennet decomposition nor the

one-stage Bennet decomposition with extended weight identifies the contributions to the

change in the weighted mean that are due to changes in quantities.

2.3. The Two-Stage Bennet Decomposition

To create a decomposition that identifies the contributions to the change in the weighted

mean from changes in quantities, we apply the Bennet decomposition also in a second

stage. Using the weights Sit ¼
Xit

S
N
j¼1Xjt

and defining Qt ¼
PN

j¼1Xjt, the expression for the

quantity variable Xit can be written as:

Xit ¼ SitQt; ð4Þ

with the change defined as DXi ¼ Xit 2 Xiv. Although Sit and Qt cannot vary

independently, we apply the Bennet decomposition to the change in the quantity variable

in Equation (4), which yields the identity:

DXi ¼ �SiDQþ �QDSi; ð5Þ

where DQ ¼ Qt 2 Qv and �Q ¼ Qt þ Qvð Þ=2. Solving Equation (5) for DSi gives:

DSi ¼
1
�Q

DXi 2 �SiDQ
� �

ð6Þ

Inserting Equation (6) into Equation (2) and collecting terms yields the following exact

decomposition of the change in the weighted mean:

Proposition 1 (Two-Stage Bennet Decomposition of the Change in the Weighted

Mean) Consider the weighted mean across units i at time t of the form: Pt ¼
PN

i¼1SitPit,

with weights Sit ¼
Xit

S
N
j¼1Xjt

, where Xit $ 0 and Qt ¼
PN

j¼1Xjt . 0. The change in the

weighted mean between times t and v can be exactly decomposed as

DP ¼
XN

i¼1

�SiDPi þ
XN

i¼1

1
�Q

� �
�Pi 2

¼
P

� �
DXi ð7Þ

where
¼
P ¼

PN
i¼1

�Si
�Pi, D is the difference operator and a bar over a variable represents the

moving average operator between times t and v, that is, Dx ¼ xt 2 xv and �x ¼ 1=2

xt þ xvð Þ.

Two features of the two-stage Bennet decomposition in Proposition 1 merit attention.

First, the term that shows the contribution to the change in the weighted mean from the

change in the quantity of product i is given by

1
�Q

� �
�Pi 2

¼
P

� �
DXi: ð8Þ
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This term differs from that in the one-stage Bennet decomposition. It has a natural

interpretation and captures the intuitive property that the weighted mean price level

increases if products that are growing in quantity have price levels that are higher than

the mean price level. �Pi 2
¼
P compares the price level of product i with a measure of the

weighted mean price level
¼
P ¼

PN
i¼1

�Si
�Pi. There are thus two ways in which

the compositional effects of product i can equal zero: the price of product i equals the

weighted average price level, and/or there is no change in the quantity of product i.

Second, the two-stage Bennet decomposition does not hold a time subscript. In other

words, the framework is invariant with respect to treatment of time and it therefore

satisfies the difference counterpart to the index number time reversal test. The time

reversal test for indices states that if the data for the two time periods are interchanged,

then the resulting formula should equal the reciprocal of the original index; see, for

example, ILO et al. (2004, 295). This test can be rephrased in the case where the formula is

in the form of differences, such as the decomposition in Proposition 1: if the data for the

two time periods are interchanged, then the resulting formula should equal the negative of

the original formula. To illustrate this analytically, let the function H Pt; Pv;Xt; Xv

� �

represent the formula for decomposing the change in the weighted mean, where Pt ¼

P1t; P2t; : : : ; PNt

� �
and Xt ¼ x1t; x2t; : : : ; xNt

� �
. The function H passes the time

reversal test if and only if H Pt; Pv;Xt; Xv

� �
¼ 2H Pv; Pt;Xv; Xt

� �
. The proposed

decomposition in Proposition 1 satisfies this counterpart to the time reversal test.

We commented above on the practice in the literature of choosing a scalar A when

decomposing the change in the weighted mean, see Equation (3). Although the choice of A is

arbitrary, it is nevertheless interesting to see whether it is possible to derive a value for A that

is consistent with the two-stage Bennet decomposition. From Equation (3), the contribution

to the change in the weighted mean due to a change in the quantity share of product i is given

by the term ð �Pit 2 AÞDSit. In the two-stage Bennet decomposition, the contribution to the

change in the weighted mean due to a change in the quantity of product i is given by the term
1
�Q

� �
�Pit 2

¼
Pt

� �
DXi. For these terms be equal, the scalar A must be given by:

A ¼
¼
P 2

DQ= �Q

DSi=�Si

� �
�Pit 2

¼
P

� �
ð9Þ

However, the right-hand side of the equality sign is usually not a constant. This feature

stands in contrast to Equation (3), where the property that A is a scalar and independent of i

is central to deriving Equation (3) from Equation (2). In the case where the aggregate

quantity is unchanged, that is, DQ ¼ 0, Equation (9) reduces to A ¼
¼
P, which is

independent of i. Moreover, in this case the value of A is close to the choices commonly

used in the literature. Several values for the scalar A have been applied, most frequently Pt,

Pv and the average of the two, all of which are close to the average measure
¼
Pt. However,

when the aggregate quantity changes, DQ – 0, the factor
DQ= �Q

DSi=�Si

� �
may differ from zero,

possibly leaving a sizable discrepancy between the two-stage Bennet decomposition and

most common decompositions used in the literature. In particular, and as can be seen from

Equation (5), DXi may have the opposite sign to DSi, depending on how much the

aggregate quantity (Q) changes. As a result, the measured contributions from

compositional effects in Equation (3) and the two-stage Bennet decomposition may
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have opposite signs. In the empirical section, we examine in depth how large the

discrepancy between the two decompositions may be in practice when aggregate earnings

growth in Norway is decomposed. Before we embark on the empirical application, we first

examine an alternative way to decompose the change in the weighted mean that has many

similarities with the two-stage Bennet decomposition.

2.4. An Approximate Decomposition of the Change in the Weighted Mean

An alternative way to decompose the change in the weighted mean is to apply the

quadratic approximation lemma (QAL) which, loosely defined, states that the average of

two first order approximations is equivalent to a second order approximation. According

to Theil (1975, 38), the quadratic approximation lemma provides an “approximation

which is as simple as the linear approximation and as accurate as the quadratic

approximation”, where the term “quadratic approximation” refers to a second-order

Taylor approximation, see also Diewert (2002) and references therein for applications of

QAL.

Consider the weighted mean as a non-linear function of underlying prices and

quantities, that is, Pt ¼ f Pt;Xt

� �
, see also Von Brasch et al. (2017). The first-order Taylor

series approximation around the initial period (period v) values for the price and quantity

variables can be expressed as:

Dv <
XN

i¼1

SivDPi þ
XN

i¼1

1

Qv

� �
Piv 2 Pvð ÞDXi ð10Þ

The first-order Taylor series approximation around the end period (period t) values for

the price and quantity variables can be expressed as:

Dt <
XN

i¼1

SitDPi þ
XN

i¼1

1

Qt

� �
Pit 2 Ptð ÞDXi ð11Þ

Applying QAL to the weighted mean, that is, taking the arithmetic average of the two

approximations in Equation (10) and Equation (11), yields:

DP <
XN

i¼1

�SiDPi þ
XN

i¼1

1

2

1

Qt

Pit 2 Ptð Þ þ
1

Qv

Piv 2 Pvð Þ

� 	
DXi ð12Þ

Like the two-stage Bennet decomposition, the decomposition based on QAL also holds

the intuitive property that the weighted mean price level increases if products that are

growing in quantity have price levels that are higher than the mean price level. However,

in contrast to the two-stage Bennet decomposition, the prices are demeaned separately for

each period and separately divided by their respective Qt.

The decomposition based on QAL in Equation (12) is not exact. The size of the

approximation error, measured by the difference between the change in the weighted mean

and the right-hand side of Equation (12), is given by:

XN

i¼1

1

2

1

Qt

Pit 2
1

Qv

Piv

� 	
DSiDQ ð13Þ
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The smaller the change in Q, the smaller the approximation error. If either all weights or

all prices are unchanged, the approximation error is zero. In the empirical application we

consider the size of this approximation error and compare the decomposition based on

QAL with the two-stage Bennet decomposition.

3. Empirical Application

The data used in the empirical application are obtained through the “a-ordning”, which is a

collaborative digital system shared by Statistics Norway, The Norwegian Tax

Administration and the Norwegian Labour and Welfare Administration (NAV). It

provides information about employment, remuneration in cash and in kind and taxes (The

Norwegian Tax Administration 2022). Data for all industries and individuals are compiled

monthly, and this is the main source Statistics Norway utilizes for producing statistics on

earnings and the labour market.

We focus on the change in monthly earnings per full-time equivalent as the price

variable from 2020Q4 to 2021Q4 and allow for compositional effects across industries

using the number of full-time equivalents in each industry as the quantity variable. Table 1

shows the mean monthly earnings and the number of full-time equivalents in each industry

and in the aggregate for 2020Q4 and 2021Q4.

Table 2 shows the results from using the one-stage Bennet decomposition in Equation

(2), the one-stage Bennet decomposition with extended weight in Equation (3), the

approximation in Equation (12) and our proposed two-stage Bennet decomposition in

Proposition 1. As expected, the contribution to the change in the weighted mean from the

change in earnings of each industry (and the aggregate) is identical across the four

decompositions, as is the total compositional effect. We find that the wedge between the

identified compositional effects from (1) the two-stage Bennet decomposition and (2) the

one-stage Bennet decomposition and one-stage Bennet decomposition with extended

weight is considerable, and for some industries, such as mining and quarrying and

wholesale and retail trade, the compositional effects are of opposite signs. Such

divergence in the signs of the compositional effects between the methods can be attributed

to the changes in the share and quantity variables being of opposite signs (see Figure 2).

Furthermore, the identified compositional effects in the one-stage Bennet decomposition

generally have a greater absolute value than the compositional effects identified using the

one-stage Bennet decomposition with extended weight and the two-stage Bennet

decomposition. This is attributable to the use of �Pi in the one-stage Bennet

decomposition, compared to the use of the relative earnings level in the other two

decompositions �Pi 2 A
� �

and �Pi 2
¼
P

� �� �
: The intuition for why the one-stage Bennet

decomposition with extended weight and the two-stage Bennet decomposition yield

somewhat similar results can be seen by rewriting the two decompositions in a manner

that is easier to compare. The one-stage Bennet decomposition with extended weight may

be written as

DP ¼
XN

i¼1

�SiDPi þ
XN

i¼1

�Pi 2
¼
P

� � Xit

S
N
j¼1Xjt

2
Xiv

S
N
j¼1Xjv

" #
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In comparison, the two-stage Bennet decomposition may be written as

DP ¼
XN

i¼1

�SiDPi þ
XN

i¼1

�Pi 2
¼
P

� � Xit

S
N
j¼1Xjt þ S

N
j¼1Xjv

� �
=2

2
Xiv

S
N
j¼1Xjt þ S

N
j¼1Xjv

� �
=2

2
4

3
5

The difference between the contributions to the overall compositional effects in these

two decompositions is thus caused by changes in quantities (full-time equivalents), not

changes in prices. The compositional effects from each industry, identified using each of

the four different decompositions, are illustrated in Figure 1. An add-in for carrying out

Table 1. Monthly earnings per full-time equivalent and number of full-time equivalents, 2020Q4 and 2021Q4.

2020Q4 2021Q4

Monthly
earnings
(NOK)

Number of
full-time

equivalents

Monthly
earnings
(NOK)

Number of
full-time

equivalents

All industries 48,750 2,242,706 50,790 2,320,214
Agriculture, forestry and

fishing
41,880 24,838 43,830 25,664

Mining and quarrying 74,290 59,890 76,310 61,292
Manufacturing 49,090 197,800 50,940 201,393
Electricity, water supply,

sewerage, waste
management

54,450 32,012 57,430 32,846

Construction 46,110 221,718 47,730 228,745
Wholesale and retail trade;

repair of motor vehicles
and motorcycles

44,220 262,080 46,320 267,773

Transportation and storage 47,860 110,862 49,350 114,705
Accommodation and food

service activities
33,340 60,593 34,380 72,623

Information and
communication

63,270 93,626 65,980 100,882

Financial and insurance
activities

70,360 45,928 73,670 46,890

Real estate, professional,
scientific and technical
activities

60,060 146,836 63,460 155,418

Administrative and support
service activities

41,000 115,691 42,760 122,725

Public administration and
defence; compulsory
social security

52,210 157,396 54,240 159,831

Education 46,750 195,500 48,710 197,832
Human health and social

work activities
44,860 446,720 47,010 455,729

Other service activities 43,830 70,212 45,360 74,466
Unspecified 63,440 1,003 68,490 1,403

Source: Statbank Table 11419, Statistics Norway.
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this decomposition in EViews, and a Stata replication code to generate the results in

Table 2 and Figure 1, are available from the authors upon request.

Focusing on our proposed decomposition, the above results illustrate that there were

both positive and negative compositional effects present in aggregate earnings growth in

-150 -100 -50 0 50 100 150 200

Agriculture, forestry and fishing

Mining and quarrying

Manufacturing

Electricity, water supply, sewerage, waste management

Construction

Wholesale and retail trade; repair of motor vehicles and motorcycles

Transportation and storage

Accommodation and food service activities

Information and communication

Financial and insurance activities

Real estate, professional, scientific and technical activities

Administrative and support service activities

Public administration and defence; compulsory social security

Education

Human health and social work activities

Other service activities

Compositional effect (NOK)

One-stage Bennet

One-stage Bennet with
extended weight

Approximation

Two-stage Bennet

Fig. 1. Compositional effects across decompositions.

Note: See Table 2 for precise magnitudes of compositional effects for each industry and decomposition method.

Note that “Unspecified” from Table 2 is not shown in this figure. Source: Authors’ own calculations using data

from Statistics Norway.
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Fig. 2. Change in share and quantity variable, from 2020Q4 to 2021Q4.

Note: Change in share and quantity variable for each industry from 2020Q4 to 2021Q4, measured in percent. Note

that “Unspecified” from Table 2 is not shown in this figure. Source: Authors’ own calculations using data from

Statistics Norway.
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Norway from 2020Q4 to 2021Q4. In the aggregate, these effects were negative, which is

largely attributable to developments in the industry accommodation and food service

activities. This industry was to a considerable extent impacted by the Norwegian

government’s actions to curb the spread of the coronavirus, as these measures particularly

affected industries where social interaction is a necessity. However, the gradual softening

of these measures throughout 2021 was accompanied by an increase in activity in these

industries. As the industry accommodation and food service activities has a level of

earnings lower than the weighted mean earnings level (see Table 1), the compositional

effect becomes negative when the quantity variable of the industry increases. Conversely,

the industries information and communication and real estate, professional, scientific and

technical activities, in which the earnings level is higher than the aggregate earnings level,

contributed to aggregate earnings growth with a noteworthy positive compositional effect,

as these industries had an increase in the quantity variable. At the same time, several

industries had a compositional effect that was close to zero.

Comparing the results of our proposed decomposition with the results produced by the

other two exact methods, a few comments are warranted. First, the proposed

decomposition provides an exact and intuitive description of the contribution to the

overall compositional effect from each industry, in terms of both the size and the

direction of the contribution. For example, Table 2 shows a large difference between the

one-stage Bennet decomposition on the one hand and the one-stage Bennet

decomposition with extended weight and two-stage Bennet decomposition on the

other in the contribution from accommodation and food service activities. The

compositional effect is far greater with the one-stage Bennet decomposition, and it has

an opposite sign from the other two. Furthermore, in the industries mining and quarrying

and wholesale and retail trade, amongst others, the two-stage Bennet decomposition and

the one-stage Bennet decomposition with extended weight produce compositional effects

with opposite signs, and in these cases, we argue that the two-stage Bennet

decomposition provides a more intuitive result. For mining and quarrying, where the

average earnings are higher than the average earnings for all industries, as shown in

Table 1, and the quantity of full-time equivalents increases from 2020Q4 to 2021Q4, it is

natural that the contribution from compositional effects should be positive, as the two-

stage Bennet decomposition shows. The comparison yields the same conclusion for

wholesale and retail trade, but with opposite signs. With a lower level of earnings than

the aggregate earnings level and an increase in the number of full-time equivalents, it is

apparent that this industry, all else being equal, should contribute with a negative

compositional effect, just as provided by the two-stage Bennet decomposition. Figure 1

also shows the approximation from the decomposition based on QAL in Equation (12),

which is very similar to the two-stage Bennet decomposition. The approximation error is

small, at 0.03 percent relative to the size of the compositional effect from the two-stage

Bennet decomposition, due to modest changes in the aggregate quantity, as well as the

prices and weights (cf. Equation (13)). It should be noted that the choice of dimension

along which the change in the weighted mean is decomposed is by no means arbitrary.

When choosing this dimension, it is critical that it inherently captures the nature of the

changes in the quantity variable.
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4. Conclusion

In this article, we have derived an exact additive decomposition of the change in the

weighted mean. Our proposed two-stage Bennet decomposition is easy to employ and

interpret. We also show that it satisfies the difference counterpart to the index number time

reversal test. The fundamental difference between our proposed decomposition and many

of the decompositions used in the literature is that our measure of the contribution to

compositional changes of a given product is based on the change in the quantity of that

product. If there is no change in the quantity of a product, then that product does not

contribute to a compositional change in the weighted mean. In contrast, in other

decompositions, such as the one-stage Bennet decomposition, the measure of the

contribution to compositional changes of a given product is based on the change in the

quantity share of that product. Since the quantity share of a product may change because

the quantities of other products change, this may lead to compositional changes stemming

from a product whose quantity level is unchanged. We have also outlined an alternative

decomposition based on a quadratic approximation of the weighted mean, when the

weighted mean is regarded as a non-linear function of underlying prices and quantities.

Although this alternative decomposition is not exact, it has some similar features to the

two-stage Bennet decomposition.

When comparing our proposed decomposition to the standard decomposition used in

the literature in the case of aggregate earnings growth in Norway from 2020Q4 to 2021Q4,

we find that the wedge between the identified compositional effects is substantial, and for

some industries the compositional effects are of opposite signs. We also compared the

two-stage Bennet decomposition with the decomposition based on a quadratic

approximation and found that these two decompositions generated similar group-specific

contributions to the overall compositional effects.
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