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Preface

1. Introduction to the Special Issue on the New Techniques and Technologies

The fast technological progress society has been observing for several years has led to

substantial changes in every aspect of work and daily life. Obviously, scientific research

has also been strongly affected. One of the main aspects of this process is the availability

of huge amounts of data suitable to be collected and analysed by both established and

frontier methods. Many disciplines have benefited from this recent availability of data,

sometimes leading to new fields of study, especially in the economic and social sciences.

Studies on time-use exploiting data from mobile devices, social network analyses,

consumer/user profiling, and new classification methodologies are just a few examples.

Thanks to these advances, production of official statistics has already gained and is likely

to gain more benefits in the future.

One of the immediate consequences of the development of these new technologies is the

possibility to reduce the update delay of archives and official registers and to enhance their

integration. National Statistical Offices (NSOs) – which have always used archives and

registers for their surveys – have seized the opportunity offered by new technologies to

make the best use of constantly updated information.

Techniques for data matching are developing rapidly, specifically in order to obtain

variables and indicators based on more than one source. Subsequently, NSOs have been

required to redesign their surveys to take into account new integration opportunities.

Some of the consequent advantages are obvious: the possibility to provide prompt

official information, as in the case of flash forecasts; a reduced need for revision; an

exploration of new data previously difficult to obtain; the introduction of new indicators;

greater accuracy in data collection; and lower costs. Such innovations as disclosure issues,

dissemination of new information, definition of new evaluation procedures and guidelines,

and measurement and communication of uncertainty in official statistics have also entailed

new prominent challenges.

The New Techniques and Technologies (NTTS) conferences, organised by Eurostat

every three years from 1992 to 2001, and then every two years since 2003, have witnessed

this evolution. The issues of Big Data in all related aspects, archive linking, and new

source integration have been addressed in an increasing number of contributions, available

in two NTTS special issues of Journal of Official Statistics (2015, 31:2; 2018, 34:4).

The program of the 2019 Conference, to which nearly 150 papers were submitted, fully

reflects the extent of the pervasive entry of new technologies into official statistics. Twelve

out of 32 parallel sessions refer to topics directly or indirectly related to big data and

machine learning, acquisition and processing of mobile data, statistical matching, data

integration, multisource statistics, administrative data, and registers.
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Following the conference call for papers, the present JOS special issue embodies the

positive outcome of NTTS 2019. The articles published in this volume well represent

the great variety of topics and operational and methodological proposals discussed during

the conference. These contributions are basically of two types: (1) articles that aim to

present methodological approaches and results from several (European) projects, and (2)

methodological proposals for official statistics production.

1.1. Dissemination

With regard to dissemination, the contribution by Máténé Bella and Ritzlné Kazimir, “A

Structural Equation Model for Measuring Relative Development of Hungarian Counties in

the Years 1994–2016”, presents an investigation on the economic development of the

Hungarian regions at NUTS3 level. The model assumes that the development depends on

observable economic variables, as well as on other non-economic, social, demographic,

cultural, and infrastructural measures, evaluated based on regional indicators published by the

Hungarian Central Statistical Office. Main findings constitute a starting point to investigate

how the regional development has changed in Hungary after the regime change, and how these

variables are influenced by the country’s integration into the global value chain.

The article by Mazzi, Mitchell and Carausu, “Measuring and Communicating the

Uncertainty in Official Economic Statistics”, illustrates the results achieved so far in the

context of the Eurostat Comunikos Project (COMmunicating UNcertainty In Key Official

Statistics). The article reviews different categorisations of data uncertainty, distinguishes

sampling from non-sampling errors, and introduces a novel typology. The importance of

measuring and communicating data uncertainty is emphasised as it is difficult to measure some

sources of uncertainty itself, especially those relevant for administrative and big data sets.

The study by Bacchini, Baldazzi, De Carli, Di Biagio, Savioli, Sorvillo and Tinto, “The

Evolution of the Italian Framework to Measure Well-Being”, points out some of the

outcomes of a joint project between the Italian Statistical Institute (Istat) and the National

Council for Economics and Labor (CNEL) that aims to establish a multi-dimensional

framework for measuring “equitable and sustainable well-being” (Bes). Since 2013, Istat

has published an annual report on well-being, disseminating constantly updated Bes

indicators, thereby allowing more effective communication. Bes indicators are taken into

account in Italian government budget documents, as established by law. The Italian Bes

experience may be considered to be one of the most relevant practices at the European

level, and displays the potential to become a benchmark for other countries.

The article “Improving Time Use Measurement with Personal Big Data Collection –

The Experience of the European Big Data Hackathon 2019”, by Zeni, Bison, Reis,

Gauckler and Giunchiglia, describes the main contents of the Big Data satellite event of

the NTTS Conference 2019. The article illustrates a pilot study on a system, called i-Log,

which allows to collect personal big data from smartphones’ internal sensors to be used for

time-use measurement. The i-Log system permits to gather heterogeneous types of data,

thereby creating new possibilities for urban studies. Responses are used to train machine-

learning algorithms, and allow the system to learn from the user’s habits and generate new

so called “time-diary answers”. This new information could be used to assess the quality of

existing answers, or to fill the gaps when the user does not provide any response.
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1.2. Methodological Proposals

In “A Diagnostic for Seasonality Based Upon Polynomial Roots of ARMA Models”,

McElroy presents a new methodological approach for seasonal adjustment. In particular, the

study suggests connecting the concept of seasonality to a mathematical definition regarding

the oscillatory character of the moving average (MA) representation coefficients, and

defines a new seasonality diagnostic based on autoregressive (AR) roots. This procedure

may help to assess dynamic versus stable forms of seasonality, and to deal with arbitrary

seasonal periods, for both raw and seasonally adjusted data. Uncovering over-adjustment

can be achieved using the proposed extension of the AR diagnostic to an MA diagnostic. The

method is illustrated through simulation studies and empirical evidence.

The two articles by Roberson and by Chessa are both examples of how the new

acquisition and data processing methods may be usefully applied in the context of official

statistics.

“Applying Machine Learning for Automatic Product Categorization” by Roberson

shows how machine-learning techniques have rapidly become one of the most used tools

for classification. The U.S. Bureau of Census has developed a procedure based on the

proposed methodology to address the challenges of high respondent burden and low

survey response rates. The presented strategy automatically classifies goods and services –

with an accuracy rate of over 90% – based on product information and text descriptions

associated for each sold item to the Universal Product Code. Similarly, the same

classification strategy may be applied to barcode (GTIN, Global Trade Item Number)

product identification. GTINs is affected by the relaunch problem, when disappearing and

re-introduced items have to be linked in order to capture possible price changes.

The study by Chessa, “A Product Match Adjusted R Squared Method for Defining

Products with Transaction Data”, is focused on a method that groups GTINs into strata

(‘products’). The method balances the need of “homogeneity” of GTINs within products

with the “degree” to which products can be “matched” each month with respect to a base

comparison period. The proposed technique combines explained variance in product

prices with product match over time, so that different stratification schemes may be ranked

according to the combined measure.

Two articles are concerned with the multiple imputation of missing data and new

methods of administering questionnaires in social surveys.

Scholtus and Dalmaans, in “Variance Estimation after Mass Imputation Based on

Combined Administrative and Survey Data”, present a simulation study on artificial data

and an application to the Dutch census of 2011, in order to evaluate the variance of

estimated frequency tables based on mass imputation, when data may be available from

both administrative sources and a sample survey. The motivating application for this

article is the Dutch virtual population census, for which it has been proposed to use mass

imputation to estimate tables involving educational attainment. The article also discusses a

more general bootstrap method for variance estimation.

In “Assessing and Adjusting Bias Due to Mixed-Mode in Aspect of Daily Life Survey”,

De Vitiis, Guandalini, Inglese and Terribili verify the usefulness of a mixed mode (MM)

approach, that is, the use of different collection techniques in the same survey, to both

contrast declining response and coverage rates and reduce surveys cost. The mode effect
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can be addressed at different levels: at the design phase the best collection instruments to

contain the measurement error must be defined, and at the estimation phase the mode

effect must be measured and corrected. The article presents the evaluation of the mode

effect in the ISTAT mixed-mode survey “Aspects of Daily Life – 2017”, in an

experimental context.

The article by Alleva, Falorsi, Petrarca and Righi “Measuring the Accuracy of

Aggregates Computed from a Statistical Register” proposes the global mean squared error

(GMSE) as a measure of accuracy in the production of official statistics, based on a

massive integration of administrative archives and survey data. In particular, by focusing

on the estimation of a population total from measurements calculated at the unit level, and

considering the main sources of uncertainty that may affect registers, the authors suggest a

feasible calculation strategy for the GMSE. The performance of the proposed strategy is

verified through a simulation study.

“A Hybrid Technique for the Multiple Imputation of Survey Data” by Razzak and

Heumann discusses imputation techniques in surveys in which categorical variables suffer

from a large number of missing values, and complex dependencies may exist. Since the

implementation of multiple imputation (MI) techniques or chained equations (MICE) may

be problematic in such situations, the authors propose a method to make dependent on

categorical variables, previously imputed using latent class models, chained MI equations

for continuous variables. A simulation study and a survey data example articulately

describe the good performance of the proposed method with respect to alternative

techniques.
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A structural Equation Model for Measuring Relative
Development of Hungarian Counties in the Years 1994–2016

Klaudia Máténé Bella1 and Ildikó Ritzlné Kazimir1

Relative development of Hungarian counties is described generally by the GDP per capita
indicator, but this figure does not cover the knowledge gap on the liveability of the regions.
The other frequently used method is the indicator systems, but it does not emphasize the
structure of causes and consequences of the regional development, and so, it does not provide
information on which factors are more likely to be the causes or, reversely, the consequences
of the different regional development. To overcome the shortcomings of the above-mentioned
methods, we created a structural equation model (SEM) at NUTS 3 level for years 1994-2016
based on the LISREL estimation procedure. The applied model can be classified into
experimental statistics, but it uses data only from official statistics, namely the regional
indicators published by the Hungarian Central Statistical Office. The model assumes that the
economic development depends on observable economic indicators, and it determines the
regional development as well. In addition, the regional development is also explained by non-
economic, social, demographic and cultural and infrastructural indicators. The variable
selection and the classification into causes and consequences was a three-step process, and the
factors were classified by analysis of correlations, cross-correlations and Granger-causality.
The results of estimation provided basis for a deeper analysis; how the regional development
has changed in Hungary after the regime change, and how these variables were influenced by
the country’s integration into the global value chain.

Key words: Regional development; latent variable; relative development; NUTS 3; well-
being.

1. Introduction

Relative development of Hungarian counties (at NUTS 3 level) is described generally by

the GDP per capita indicator. We argue that the regional development is a more complex

phenomenon because of its multidimensional nature. Comparing counties on the basis of

GDP per capita is a very simple approach, because this figure does not cover the

knowledge gap on the liveability of regions. In order to solve this problem, the indicator

system is widely used to describe regional development.

In Hungary, Government Regulation 105/2015 (IV. 23) of “Classification of the

beneficiary municipalities and the system of classification” defines, in its Annex 1, what

kind of indicator groups and what kind of indicators within it should be used to calculate a
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composite indicator, namely a development composite indicator for all municipalities. The

calculated composite indicator that takes into account four sets of indicators (socio-

demographic, housing and living conditions, local economy and labour market,

infrastructure and environment) serves as a basis to decide which municipalities are

entitled to development funds. Using this legal methodology or other economically

reasonable indicators helps determine regional development of Hungarian counties.

Our point is that it is a useful methodology for analysing municipalities or small areas,

but it requires a lot of detailed data, which are not available in the official statistics.

Most research projects focusing on regional development and well-being use micro data

that are based on surveys and/or census. Unfortunately, these micro data are not available

for every year.

Our goal is to find another methodology to define the regional development because

statistical offices only publish regional data (indicators of the social and economic

environment) at NUTS 2 or 3 level.

Furthermore, we argue that it is important to distinguish the factors that might

contribute to the development of a region as causes from the factors that might be observed

as consequences. Intuitively, a high activity ratio in the labour market and a high industry

production of a region can be identified as causes of regional development, while other

indicators such as the number of theatre performances or children enrolled in infant

nurseries can be considered as consequences.

Our concept was to create a model based estimation on regional data at NUTS 3 level

that is able to show the change of relative development of counties over time together with

the causes and consequences. We wanted to answer the following questions: Does the

ranking of counties according to the relative development differ from the ranking by GDP

per capita? How has Hungary’s integration into the global value chain influenced the

development of counties from 1994 until 2016? How have the rankings changed as a result

of subsidies from the European Union during the period reviewed? In which county

(county seats) would people choose to live, according to the relative development?

In order to answer these questions, a structural equation model was constructed.

Following Pietrzak’s (2017) concept, we argue that the development of counties is a latent

variable. A linear regression cannot be made because the dependent variable is unknown.

However, a special factor analytic method can provide a solution to this problem. The

unobserved dependent variable is influenced by determinants and in turn has an effect on

the indicators. Using the LISREL estimation procedure (structural equation model), it is

possible to quantify the relative development level of counties. This method is used often

to calculate the hidden economy, but it has been already proved that this is a useful method

to quantify other latent variables. We suggest that the complex analyses of causes and

consequences leads to a reliable picture of the relative development of Hungarian counties

between the years 1994–2016. Our model is based on official statistical data, but our

methodology can be classified as experimental statistics.

2. Literature Review

The modelling of latent variables with causes and indicators is a commonly used method in

psychometry (Bollen 1989a) or in the estimation of a hidden economy (Frey 1984; Frey and
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Pommerehne 1984; Leandro and Schneider 2018). The alternative methods for estimation

of a latent variable can be classified into three groups. The original method for modelling of

latent variables is improved by Kofler and Menges (1976) and called “soft modelling” where

the distributions of variables are unknown. From “soft-modelling”, the factor analytic

method emerged, the LISREL model (linear interdependent structural relationship)

presented by Jöreskog (1969) that is a combined model of two previous models and the

generalisations of the MIMIC (multiple indicators multiple causes) approach. The

measurement model links the latent variable to observed indicators. The structural equation

model specifies the causal relationships among the unobserved variables.

The idea that regional development as a latent variable can be analysed with structural

equation modelling is not new. Cziráky et al. (2006) proposed a multivariate statistical

approach to analyse regional development in Slovenia and Croatia. They suggested four

latent variables (economic, structural, social and demographic) to capture regional

development, and used several observed indicators at municipality level (see Table 1). The

Croatian data came from the 2001 national census, while the Slovenian data had more

sources. In their work, a structural equation model was constructed with the mentioned

latent and observed variables. For each municipality, the latent variables were calculated,

Table 1. The model structure of Cziráky et al.

Latent
development

Observed indicators

variables in Slovenia in Croatia

Economic Income per capita (in SIT) Income per capita (in HRK)
Social aid per capita

(in thousands SIT)
Density (inhabitants per km2)

Number of cars per 100
inhabitants

–
–

Population share making income (%)

Municipality income per capita
(in thousands HRK)

Employment/population ratio

Age index (65þ¼ (0 ¡ 20))
Education (share of high-school

graduates in total population)
Structural Employment/population ratio Employment/population ratio

Social aid per capita
(in thousands SIT)

Social aid per capita (in thousands
HRK)

Share of agricultural
population

Share of agricultural population

– Population share making income (%)
Social Share of agricultural

population
Density (inhabitants per km2)

Students share per 1,000
inhabitants

Share of agricultural population

Education (share of high-school
graduates in total population)

Age index (65þ¼ (0 ¡ 20))

Demographic Age index (65þ¼ (0 ¡ 14)) Population trend
Population trend Density (inhabitants per km2)
– Vitality index (live births over

number of deceased)
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and according to the results, the municipalities were clustered to show the regional

development at NUTS 2 level in both countries. They offered their model as a better

alternative to the GDP/PPS rule.

Pietrzak (2017) applied a structural equation model to estimate regional development in

Poland. He considered the regional development as a latent variable and used four

observed variables such as gross domestic product per capita (PLN per inhabitant),

investment outlays per capita (PLN per inhabitants), employment rate by age (%) and

expenditure on R&D activity in relations to GDP (%). However, his model contained only

one measurement part with a few variables and ignored the relationship between the

regional development and the causes or consequences. In a later work, Pietrzak et al.

(2017) showed a similar model to estimate the quality of the entrepreneurial environment

at regional level in Poland. Twelve observed variables were used in this structural equation

model and the quality of entrepreneurial environment at regional level was considered as a

latent variable. The factors affecting the latent variables were categorised along the

following dimensions: socio-economic development, social development and the

effectiveness of the juridical system (see Table 2).

Cziráky et al. (2006) proposed the SEM with four latent variables at municipality level,

but this is difficult to use because of the lack of such a detailed data set. Pietrzak (2017)

defined one latent variable (regional development) based on data at NUTS 2 level.

The aim of our work was to build a SEM that is able to capture not only the regional

development as a latent variable, but also the causes and consequences. Cziráky et al.

(2006) mentioned that there was a relationship among latent variables, but this relationship

Table 2. Pietrzak’s model structure.

Dimension Sub-area Observed indicators

Socio-economic
development

Fundamental
economic
conditions

Effectiveness of
labour market

Innovativeness

Gross domestic product per capita
Investment outlays per capita

Employment rate by age
Unemployment rate (according to Labour force

survey)
Expenditure on R&D activity in relation to GDP

Social
development

Demography

Poverty and
social
exclusion

Ratio of balance of permanent migration person
at working age

At-risk-of-poverty rate after social transfers
People in households benefiting from the social

assistance at domicile as percentage of the
total population

Average monthly available income per capita in
private households.

Education Adult persons participating in education and
training

Children covered by pre-school education as
percentage of the total number of children
at the age 3–5

Effectiveness of
juridical system

– Rate of detectability of delinquents of
ascertained crimes
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was not directly analysed. Because data at municipality level are available only every five

years based on census and micro-census, we had to choose a different approach to

calculate the relative regional development of counties every year. Regional data at NUTS 3

and NUTS 2 level are published by the Hungarian Central Statistical Office every year,

thus regional development as a latent variable could be calculated at the NUTS 3 level. In

this case, the cluster analysis is unnecessary for the regional units.

3. Data

In the early 1990s there was a major social and economic recession in Hungary because of the

regime change. It took a long time for the economy to adapt to the market economy

environment. This was true for the statistical system as well. A new statistical framework

developed continuously and it included – among others – the labour force survey and the ESA

95. The Hungarian Business Corporations Act was passed in 1990 and only after that yearcould

corporations be formally established, and public enterprises transformed into the new legal

forms. Statistical surveys on corporations were delayed for obvious reasons. The regional data

between 1990 and 1993 are incomplete, or calculated according to another methodology, or not

available at all. For these reasons, there is a consensus that the regional data between 1990 and

1993 are not suitable for the analysis, because of an inhomogeneity in the time series, especially

in the case of variables relating to the labour market. The statistical system was stabilised in

1994, regional data became more reliable and is consistent with current methodology.

As a first step, we collected 51 annual variables at territorial level (for 19 counties and

the capital, Budapest) for the period of 1994–2016. The source of data was the regional

statistics tables (STADAT) of the Hungarian Central Statistical Office between 2000 and

2016 and the Regional Yearbooks between 1994 and (Hungarian Central Statistical Office,

2019a, 2019b, 2019c, 2019d, 2019e, 2000, 1999, 1998, 1997, 1996, 1995, 1994). Regional

data covered such areas as demography, labour market, capital market, production and

corporations, retail and tourism, infrastructure, education, culture and social benefits.

In the next step, variable selection was used. As regional development is a latent variable,

it is impossible to use a Granger causality test (Granger 1969), a statistical hypotheses test

for specifying whether it is worth using one of the time series to predict the other, explained

in more detail below and to calculate correlations between regional development and other

variables. However, if it is supposed that GDP per capita has a high correlation with regional

development, the Granger causality test can be applied. Correlations can be calculated

between variables and GDP per capita, but only in order to select variables for the model.

Table 3 presents the highest correlation coefficients between variables and GDP per

capita for the period 1994–2016 for each dimension. The GDP per capita is called x5 in

our model. (Variables in bold are the selected variables for the final model.)

We analysed the cross-correlations among variables, and selected variables for each

dimension that have the highest correlations with most of the other variables. The Table 4

presents the cross-correlation of selected variables. The average cross-correlations among

the variables is 0.65; it is impossible to improve this value because of the lack of other

relevant variables.

Once selected, the variables should be listed on the causes or on the consequences side.

We considered that the long-run productivity is determined by the labour and capital
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inputs. Variables relating to the labour market (activity ratio, average monthly net

earnings) and to the capital market (production in industry) are observed and considered as

causal variables. Variables relating to the labour market (activity ratio, unemployment

rate) and to the capital market (FDI, production in industry) are observed – and according

to the Granger causality test can be considered – as causal variables.

The Granger causality test is a statistical hypothesis test for specifying whether one time

series is worth using to forecast another. This test was first proposed by Granger in 1969

(Granger 1969).

Generally, we say that z Granger-causes y if

E ytjIt21

� �
– E ytjJt21

� �
ð1Þ

where It21 contains past information on y and z, and Jt21 contains information on past y.

When (1) holds, past values of z are useful, in addition to past values of y, for predicting

yt (Wooldrige 2014). Once we assume a linear model and decide how many lags of y

should be included in E ytjyt21; yt22

� �
, we can test the null hypothesis that z does not

Granger-cause y. To be more specific, suppose that y and z are stationary time series. To

test the null hypothesis, two steps are necessary. First, the proper lagged values of variable

y should be found for univariate autoregression of y.

yt ¼ a0 þ a1yt21 þ a2yt22 þ : : :þ amyt2m þ errort ð2Þ

Then, the autoregression model of y is extended by including lagged values of z, when

yt ¼ a0 þ a1yt21 þ a2yt22 þ : : :þ amyt2m þ b1zt2q þ : : :þ bqzt2q þ errort ð3Þ

All lagged values of z that are individually significant according to their t-statistics are

retained in regression when they collectively add explanatory power to the regression

according to an F-test (whose null hypothesis is no explanatory power jointly added by the

z’s). We would remark that (according to the User’s Guide of Eviews 11 (2019), Eviews

runs bivariate regressions of the form:

yt ¼ a0 þ a1yt21 þ a2yt22 þ : : :þ aqyt2q þ b1zt21 þ : : :þ bqzt2q þ errort ð4Þ

zt ¼ a0 þ a1zt21 þ a2zt22 þ : : :þ aqzt2q þ b1yt21 þ : : :þ bqyt2q þ errort ð5Þ

for all possible pairs of z; y
� �

series in the group. The reported F-statistics are the Wald-

statistics for the joint hypothesis: b1 ¼ b2 ¼ : : : ¼ bq ¼ 0 for each equation. The null

hypothesis is that z does not Granger-cause y in the first regression and that y does not

Granger-cause z in the second regression.

A Granger causality test was performed on the dataset of years 2000–2016, because in the

1990s there was a regime change in the labour market. From 1994 until 1999, the FDI was

not measured in Hungary at regional level, thus these data could not be used. The registered

capital of foreign-owned corporations is considered as a consequence in this period. The

economic transformation was a lengthy process that allowed a gradual inflow of capital.

All of the selected variables are classified into the causes or the consequences side of the

model. One example of causes and consequences is shown in Figure 1. The public water

utility gap is a good proxy for the infrastructure needed by industry. (The public water

utility gap is a drinking water and wastewater infrastructure gap that is the difference
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between the proportion of the population connected to the public water supply and the

population connected to the sewerage network.) Therefore, the public water utility gap is a

significant significant indicator of industrial production in Hungary during the selected

period. Similarly, production in industry can be a cause of GDP per capita, which can be

explained by the relatively high share of industry in the production of goods and services.

The relation between GDP per capita and activity ratio is also interesting. In Hungary

there is a trade-off between the activity ratio and employment opportunities. If the job

prospects are not positive, job seekers can opt for inactivity in the labour market. Besides

this process, the activity ratio influences the average monthly net earnings through the

development of the labour market. In addition, the relationship is controversial, because the

change in average net earnings induces crossing between active and inactive population.

According to the results of Table 4 and Figure 1 we selected and grouped the variables

to causes and consequences side presented in the Table 5.

In the period 1994–1999, the unemployment rate was high in Hungary and privatisation

had been completed. The capital inflow from abroad became significant during and after

the privatisation period and the capital market was dominated by the foreign capital. This

caused a structural change in industrial production. In this context, registered capital of

foreign-owned corporations was classified as a variable on the consequences side, while

production in industry influenced by the FDI was considered as an observed variable on

the causes side.

Of course, the classification is not always clearly defined, as it can be changed from

period to period, but indicators such as the existence of big cities, the public water utility

gap, the number of retail shops, the number of tourist arrivals in accommodation

establishments, the number of students in universities and the number of theatre

performances were rather considered consequences of regional development. All variables

were standardised before modelling, using SPSS (SPSS Tutorials). Standardised data are

linearly transformed data with a mean of zero and a standard deviation of one.

GDP per captia
F–test: 6.58
Probability: 0.00

F–test: 24.90
Probability: 0.00

F–test: 40.38
Probability: 0.00

F–test: 11.16
Probability: 0.00

F–test: 16.38
Probability: 0.00

F–test: 3.89
Probability: 0.00

F–test: 3.98
Probability: 0.00

Activity ratio

Production in
industry

Public water utility
gap

Average monthly
net earnings

Direction of Granger causality

Fig. 1. An example of the structure of causes and consequences between the variables.
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4. Methods

We constructed a structural equation model to quantify the regional development as a

latent variable. We used Jöreskog’s concept, as mentioned in the Literature Review

(Section 2). For this model, LISREL or IBM AMOS software can be applied. We decided

to use IBM AMOS (Analysis of Moment Structure) because with this software a model

can be quickly specified, viewed and modified graphically using simple drawing tools.

After computations, the program displays the results by the path graph.

4.1. The General Structural Equation Model (SEM)

For the modelling of regional development, Structural Equation Model (SEM) was

chosen. The SEM includes two components: the structural model presents the causal

dependencies between the latent variables, and the measurement model specifies how the

observed variables depend on the unobserved, latent variables. The theoretical description

of the SEM model follows the concept of Jöreskog et al. (2016, 344–345).

Table 5. The variables on the causes and consequences sides.

Dimensions Sub-
dimensions

Observed indicators

Causes side Consequences side

Production Labour market Activity ratio x2 –
Average monthly

net earnings x4

Capital market FDI (2000–2016) –
Production in

industry
(1994–2016) x3

GDP per capita x5

Demographic
dimension

Population – Population of cities with more
than 100,000 people y1

Economic
dimension

Corporations – Number of registered
corporations y2

Registered capital of foreign
owned corporations
(1994–2016) y3

Retail and
tourism

– Number of retail shops y4

Tourist arrivals (international)
in accommodation
establishment y9

Structural
dimension

Infrastructure Public water
utility gap x1

Number of cable TV
subscriptions y5

Social
dimension

Education – Number of students in
universities y8

Culture – Number of theatre
performances y7

Social – Children enrolled in infant
nurseries (proxy of female
employment) y6
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The next figure shows an example of a general SEM model (see Figure 2).

In Figure 2, there are five non-observed variables, j ¼ ðj1; j2; j3Þ and h ¼ ðh1;h2Þ.

There are seven observed explanatory variables (x ¼ x1; x2; x3; x4; x5; x6; x7

� �
) for the j,

and four explanatory variables (y ¼ y1; y2; y3; y4

� �
) for the h. The relationship between the

above variables is drawn up with the arrows, and the parameters are on the arrows as well.

Some of the parameters are fixed by unit value. For the observed variables the model

assigns also error terms d ¼ d1; d2; d3; d4; d5; d6; d7

� �
and 1 ¼ 11; 12; 13; 14

� �
. The

f21;f31;f32 are the element of covariance matrix between the elements of j. The c21is the

covariance between h1 and h2. This structure is pretty difficult.

The general framework of SEM is described by the following formal model:

h ¼ aþ Bhþ Gjþ z ð6Þ

Equation (6) includes the linear structural relationship between the vectors of the latent

dependent (h ¼ h1;h2; : : : ;hm

� �
0) and the latent independent (j ¼ j1; j2; : : : ; jn

� �
0)

variables. The vector a is the intercept, the matrices B and G includes the coefficients and

z ¼ z1; z2; : : : ; zm

� �
0 is the vector of residuals. It is assumed that the z is uncorrelated

with j, and that the matrix (I 2 B) is non-singular.

The latent variables (h and j) are non-observed, but the variables x ¼ x1; x2; : : : ; xp

� �
0

and y ¼ y1; y2; : : : ; yq

� �
0 are observed, that such

y ¼ ty þLyhþ 1 ð7Þ

x ¼ tx þLxjþ d ð8Þ

Where 1 and d are the error term vectors, assumed to be uncorrelated with h and j

respectively. The vectors ty and tx are the intercepts in these multivariate regressions, the

Lyand Lx show the coefficient matrices.

The mean vector m and the covariance matrix S of z ¼ x0; y0
� �

0 can be expressed by the

next formulas:

δ1

δ2

δ3

δ4

δ5

δ6

δ7

x1

x2

x3

x4

ξ1

ξ2

φ31 φ32

φ21

ξ3

x5

y1 ε1

ε2

ψ21

ζ2

ζ1
η1

η2

γ11

γ12

γ21 γ21

γ23

γ12

ε3

ε4

y2

y3

y4

x6

x7

λ21
(x)

λ31
(x)

λ32
(x)

λ52
(x)

λ21
(y)

λ42
(y)

λ73
(x)

1

1

1

1

1

Fig. 2. Path diagram of a general LISREL model (Jöreskog et al. 2016, 344).
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m ¼
ty þLy I 2 Bð Þ1 aþ Gkð Þ

tx þLxk

 !

ð9Þ

S ¼
Ly I 2 Bð Þ1 GFG 0 þC

� �
I 2 Bð Þ1L

0

y þQ1 Ly I 2 Bð Þ1GFL
0

x þQ 0d1

LxFG 0 I 2 Bð Þ1L
0

y þQd1 LxFL
0

x þQd

0

B@

1

CA ð10Þ

Where the vector k is the mean vector of j, F and C are the covariance matrices of j and

z. The matrices Q1, Qd are the covariance matrices of error terms 1, d. The Qd1 mean is

the covariance matrix between 1, and d. The vector m and matrix S are the functions of

elements: k, a, ty, tx, Ly, Lx, B, G, F, C, Q1, Qd, Qd1.These elements can be divided

into three kinds:

1. Fixed parameters that have specific values

2. Constrained parameters that are linear or non-linear functions of one or more other

variables.

3. Free parameters

The latent variables do not have definite scale, because they are unobservable. The

LISREL method has two ways to scale them:

1. If it is a fixed non-zero coefficient between the latent variable and a reference

variable, then this reference variable defines the scale for that latent variable.

2. If there is no reference variable for the latent variable with a fixed non-zero

coefficient, then the LISREL method standardises the latent variable.

4.2. Specification of the Model

The current model for the period 1994–2016 has two distinct measurement sub-models:

The available labour force is observable in the activity ratio and in net monthly earnings.

We believed that industrial production is a good indicator of the success of a private

company capable of exporting and contributing to the overall production of the region (see

Figure 3).

The regional development can be measured with nine indicators (see Figure 4), which

include the existence of big cities (the population of cities with more than 100,000 people),

the number of registered corporations, the registered capital of foreign-owned

corporations (production), the number of cable TV subscriptions (infrastructure), the

number of children enrolled in infant nurseries (proxy of female employment and the

social care system), the number of retail shops and the number of tourist arrivals in

accommodation establishments (international) (tourist attractions, beautiful environment,

productions), the number of students in universities according to parents’ residence

(education), the number of theatre performances (culture).

In our model, the structural part consists of two latent variables: the production

influences the regional development (see Figure 5).

The whole model is shown in Figure 6.
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Our model is much simpler than the model in Figure 2. It has only two latent variables.

The measurement parts of the model include the fourteen above-tested variables. The

linear relationship between the latent variables as follows:

h1 ¼ g11j1 þ z1 ð11Þ

where h1 refers to the dependent latent variable, namely regional development, and the

latent independent variable is j1, the production. z1 is the residual.

The measurement model equations for y-variables are

y1 ¼ l
yð Þ

11 h1 þ 11 ð12Þ

Error 1
δ1

Error 2
δ2

Error 3
δ3

Error 4
δ4

Error 5
δ5

Public water
utility gap

x1

Activity ratio
x2

Production
ξ2

Public water
utility gap

x3

Average monthly
net earnings

x4

GDP per capita
x5

Fig. 3. The side of economic circumstances.

Population of cities
with more than one
hundred thousand

people      y1

Regional development 
 η1

Error 6
ε1

Error 7
ε2

Error 8
ε3

Error 11
ε9

Error 12
ε8

Error 13
ε7

Error 9
ε4

Error 10
ε5

Error 14
ε6

Number of registered
corporation

y2

Registered capital of
foreign–owned corporations

y3

Tourist arrivals in
accomodation
establishments

(international)     y9

Number of students in
universities

y8

Number of theatrical
performaces

y7

Number of retail shops
y4

Number of cabletv
subscription

y5

Children enrolled in
infant nurseries

y6

Fig. 4. The side of regional development.
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y2 ¼ l
yð Þ

21 h1 þ 12 ð13Þ

y3 ¼ l
yð Þ

31 h1 þ 13 ð14Þ

y4 ¼ l
yð Þ

41 h1 þ 14 ð15Þ

δ1

δ2

δ3

δ4

δ5

x1

x2

x3

x4

x5

λ11
(x)

λ31
(x)

λ41
(x)

1

1

ξ1
γ11 η1

ζ1

λ11
(y)

λ21
(y)

λ31
(y)

λ41
(y)

λ51
(y)

λ61
(y)

λ71
(y)

λ91
(y)

1

y1

y2

y3

y4

y5

y6

y7

y8

y9

ε1

ε2

ε3

ε4

ε5

ε6

ε7

ε8

ε9

Fig. 6. The structure of the model for the estimation of Hungarian development.

Production
ξ1

Regional development
η1

Error 15
ζ1

Fig. 5. The relationship between the latent variables.
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y5 ¼ l
yð Þ

51 h1 þ 15 ð16Þ

y6 ¼ l
yð Þ

61 h1 þ 16 ð17Þ

y7 ¼ l
yð Þ

71 h1 þ 17 ð18Þ

y8 ¼ h1 þ 18 ð19Þ

y9 ¼ l
yð Þ

91 h1 þ 19 ð20Þ

Where l
yð Þ

i1 and 1i are the coefficient and error in equation i, respectively. The

measurement model equations for x-variables are

x1 ¼ l
xð Þ

11 j1 þ d1 ð21Þ

x2 ¼ j1 þ d2 ð22Þ

x3 ¼ l
xð Þ

31 j1 þ d3 ð23Þ

x4 ¼ l
xð Þ

41 j1 þ d4 ð24Þ

x5 ¼ j1 þ d5 ð25Þ

For the estimation, the important parameters are the parameters f11 and c11 which are

the variances of j1 and z1, respectively. The covariance matrices of vectors 1 and d are the

diagonal matrices

Q1 ¼ diag u
1ð Þ

11 ; u
1ð Þ

22 ; : : : ; u
1ð Þ

99

� �

Qd ¼ diag u
dð Þ

11 ; u
dð Þ

22 ; : : : ; u
dð Þ

55

� �

With 17 unobserved variables (two latent variables and 15 errors) in this model, it is

certainly not identifiable. It is necessary to fix the unit of measurement of each unobserved

variable by suitable constraints on the parameters.

4.3. Estimation of the Model

Parameter estimation is done by comparing the actual covariance matrices representing

the relationships between variables and the estimated covariance matrices of the best

fitting model (Table 6).

The calculation of degrees of freedom is necessary for identifying the model, and for

computing Chi-square. The Chi-square is detailed in Subsubsection 4.4.2.

The estimated model for the period 1994–2016 is presented graphically as a path model

in Figure 7. The latent variables are illustrated in the ellipse and the circle, while the

observed variables are shown in the rectangle. On the causes side, production influences

regional development significantly through the observed variables such as activity ratio,

average net monthly earnings, public water utility gap, production in industry and GDP per

capita.
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The measurement model presents the relationship between the latent variable (regional

development) and its indicators.

4.4. Testing the Model

Testing the model is one of the most discussed issues in structural equation models. Three

situations can be distinguished according to Jöreskog et al. (2016, 495–502):

. Strictly confirmatory (SC) situation: The researcher has specified one single model

and has obtained empirical data to test it. The model should be accepted or rejected.

. Alternative models or competing models (AM) situation: The researcher has

formulated several alternative models, and based on the data, one of the models

should be accepted.

. Model generating (MG) situation: The researcher has specified an initiative model.

If this model does not fit the given data, the model should be modified and tested. The

re-specification of each model may be theory-driven and/or data-driven. The goal

may be to find a model which not only fits the data well from a statistical point of

view, but also has the property that every parameter of the model can be given a

meaningful interpretation (Jöreskog et al. 2016).

Our research relates to the Model-Generating situation, because we have formulated and

tested several models in order to find a model that fits the data well and has a meaningful

economic interpretation. The evaluation of a model and the assessment of model fit is an

important tool for deciding whether the specified model is accepted or rejected. The output

from the structural equation program provides information that is useful for model

evaluation and assessment of fit. This information can be classified into three groups:

1. Examination of the solution

2. Measures of overall fit

3. Detailed assessment of fit

4.4.1. Examination of the Parameters to Explore Unreasonable Values

The unstandardised regression weights (parameters l) are significant in all three equations

according to the p-value.

Table 6. The free parameters of the model.

Computation of degrees of freedom (Default model)

Number of distinct sample moments 105
Number of distinct parameters to be estimated 28
Degrees of freedom (105-28) 77

Result (Default model)

Minimum was achieved
Chi-square 4110.012
Degrees of freedom (105-28) 77
p-value 0.000
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4.4.2. Examination of the Measures to Demonstrate Overall Fit of the Model

Several measures are available to test whether the constructed model represents a good fit.

We can classify these measures in the following two groups:

1. Chi-square, relative chi-square

2. Fit indices

† Incremental or relative fit index

† Absolute fit index

† Comparative fit index

Error3

Error4

Error5

Error2

Error1

Error15

Error14

Error12

Error13

Error14

Error6

Error7

Error8

Error9

Error10

Activity ratio
Average monthly net

earnings

GDP per captiaaProduction

Production in industry

.75 .96

.97

.64

.93

.98

.89

.94 .96

.97

.95

.93

.95

.83

.84Public water utility
gap

Population of cities with
more than one hundred

thousand people

Tourist arrivals in
accommodation

establishment (international)

Number of students
in universities

Number of theatrical
performances

Regional development

Number of registered
corporations

Registered capital of 
foreign–owned companies

Number of
retail shops

Children enrolled in
infant nurseries

Number of cable tv
subscription

Fig. 7. The path diagram of the estimated model.
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1. Chi-square is considered a fundamental measure of overall fit of the model to the data.

It is a function of the sample size and the difference between the observed covariance

matrix and the model covariance matrix. Chi-square is a badness-of-fit measure in the

sense that a small chi-square corresponds to a good fit and a large chi-square corresponds

to a bad fit. Zero chi-square corresponds to a perfect fit. It is a reasonable measure when the

sample size is between 75 and 200, but in more than 400 cases the chi-square is always

quite statistically significant.

An old measure of fit is the relative chi-square, namely the chi-square to degree of

freedom ratio or x2/df proposed by Wheaton et al. (1977). A problem with this fit index is

that there is no universally agreed upon standard as to what is a good and a bad fitting

model.

2. Fit indices

An incremental or relative fit index is analogous to R2 and so a value of zero indicates

having the worst possible model and a value of one indicates having the best possible

model. In terms of a formula, it is

Worst possible model 2 Our model

Worst possible model 2 Fit of the Best Possible Model
ð26Þ

The worst possible model is called the null (or independence model in Amos) and the

usual convention is to allow all the variables in the model to have variation but no

correlation. (The usual null model is to allow the means to equal their actual value. The

degrees of freedom of the null model are k(k – 1)/2 where k is the number of variables in

the model.) An example of incremental measure of fit is the Bentler-Bonett Index or the

Normed Fit Index (NFI) which was proposed in the literature (Bentler and Bonett 1980).

The best model is defined as a model with a x2 of zero and the worst model is defined by

the x2 of the null model. Its formula is from Jöreskog et al. (2016, 501):

NFI ¼
x2 Null Modelð Þ2 x2 Proposed Model

� �

x2 Null Modelð Þ
ð27Þ

A value between .90 and .95 is considered marginal, above .95 is good, and below .90 is

considered to be a poor fitting model.

A problem with the Bentler-Bonett Index is that there is no penalty for adding

parameters. The TLI, Tucker-Lewis Index (Bollen (1989b, 2), also called the non-normed

fit index or NNFI), another incremental fit index, does have such a penalty. The TLI is

computed as follows:

TLI ¼
x2=df Null Modelð Þ2 x2=df Proposed Model

� �

x2=df Null Modelð Þ2 1
ð28Þ

Note that the TLI (and the CFI which follows) depends on the average size of the

correlations in the data. If the average correlation between variables is not high, then the

TLI will not be very high.

Another incremental measure is the Comparative Fit Index (CFI), which is directly

based on the non-centrality measure. Let d ¼ x2 2 df where df are the degrees of freedom
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of the model. According to Bentler (1990), the Comparative Fit Index or CFI equals

CFI ¼ 1 2
d Null Modelð Þ2 d Proposed Model

� �

d Null Modelð Þ
ð29Þ

Absolute fit index: An absolute measure of fit presumes that the best fitting model has a

fit of zero. The measure of absolute fit determines how far the model is from perfect fit.

These measures of fit are typically a “badness” measure of fit in that the bigger the index,

the worse the fit is.

Root Mean Square Error of Approximation (RMSEA) is an absolute measure of fit based

on the non-centrality parameter. Its computational formula is (Schwarz 1978; Raftery

1993):

RMSEA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 2 df

df N 2 1ð Þ

s

ð30Þ

where N is the sample size and df is the degrees of freedom of the model. If x2 is less than

df, then the RMSEA is set to zero. Like the TLI, its penalty for complexity is the chi-square

to df ratio. The measure is positively biased (i.e., it tends to be too large) and the amount of

the bias depends on the smallness of the sample size and df.

Comparative fit index: A comparative measure of fit is only interpretable when

comparing two different models. Two examples of this type of measure are the Akaike

Information Criterion (AIC) and the Bayesian Information Criterion (BIC). Lower values

of AIC indicate a better fit and so the model with the lowest AIC is the best fitting model.

AIC can be calculated in the following way (Akaike 1973, 1984):

AIC ¼ x2þ k k þ 1ð Þ2 2df ð31Þ

where k is the number of variables in the model and df is the degrees of freedom of the

model. The AIC makes the researcher pay a penalty of two for every parameter that is

estimated. The BIC increases the penalty as sample size increases, its formula is (Schwarz

1978; Raftery 1993):

BIC ¼ x2þ ln Nð Þ
k k þ 1ð Þ

2
2 df

� �
ð32Þ

where ln Nð Þ is the natural logarithm of the number of cases in the sample.

After the review of the different measures of overall fit of the model, we present the

calculated values of selected indices in Table 7.

Based on the Chi-square test, our model is statistically significant (see the p-value in

Table 6). This measure does not give us information whether the model is a “good fitting”

model, therefore more indices, namely TLI, CFI and RMSEA are necessary.

The TLI (and CFI) value heavily depends on the average size of the correlations in the

data. If the average correlation among variables is not high, then the TLI (and CFI) will not

be very high. A TLI (and CFI) value of .95 or higher is desirable (Hu and Bentler 1999).

TLI is 0.65 and CFI is 0.705 in our model. These values indicate a “moderately strong

model”. It is easy to see that if the fit is medium then the error is not low. The value of zero
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of RMSEA indicates the best fit. In our model, this value is 0.338. Hu and Bentler (1999)

suggested that 0.08 or a smaller value is a sign of a good fit.

Why do the fit measures suggest a moderate fit? According to Table 4, the average

correlation among variables is 0.65, thus using these variables it is impossible to construct

a model with better TLI (and CFI) value. We are convinced that all possible official

statistical variables available at NUTS 3 level with the highest cross-correlation have been

discovered and analysed in our model. We tried to include additional variables in the

model, but they had lower cross-correlations, so while the RMSEA improved, the CFI and

TLI tended to decline slightly. We came to the conclusion that we have found the model

that is statistically significant and has an acceptable fitting on empirical data.

5. Results

The run of the constructed SEM resulted in the factor score weights listed in Table 9.

Using these factor score weights, the standardised value of regional development was

calculated for each county and for all years. Then on the basis of these calculated values,

the ranking of Hungarian counties was constructed for every year.

In 1994, the regional development of counties reflected the effects of the industrial

centres before the regime change. As Figure 8 shows, after the capital, Budapest, the

second most developed county was Borsod-Abaúj-Zemplén with the county seat Miskolc.

This city was the centre of heavy industry before 1989.

The Hungarian economy integrated into the global value chain rapidly from 2000, due

to increasing foreign direct investment by multinational corporations. The manufacturing

industry has been completely transformed. The presence of multinational corporations had

a impact not only on GDP per capita, but through the local business tax they contributed to

the development and investment of local government as well. Later, the increasing

industrial concentration also became a self-generating process. The change of relative

development of counties resulted in changes in income and so also, in the final demand of

households. Nevertheless, the regional distribution of multinational corporations was

concentrated and the counties in which big corporations did not settle were lagging behind

in development. There was no significant rearrangement between 1994 and 2016 (see

Figure 9).

The southwest of the country is lagging behind in development in relative terms. Counties

that could restructure themselves after the regime change, could achieve a better position

Table 8. Measurement of model fit.

Type of fit index Name of fit index Calculated value
for our model

Optimal
target value

Chi-square Chi-square 4110
(p-value:0.000) –
Chi-square Chi-square/degree

of freedom
4110/77¼55.38 –

Incremental fit index TLI 0.652 1
Incremental fit index CFI 0.705 1
Absolute fit index RMSEA 0.338 0
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and could gain benefits from the new opportunities after joining the EU in 2004. We

highlight the county Győr-Moson-Sopron – this county realised the benefits of Austria’s

proximity and good infrastructure. Baranya county in the south part of Hungary, on the other

hand lost its position, despite the fact that its capital is one of the major university cities.

Fig. 8. Ranking of Hungarian counties in 1994 according to regional development based on SEM.

Table 9. The model factor scores.

Variables Production Regional development

Production in industry 0.098 0.001
Average monthly net earnings 0.117 0.001
Number of cable TV

subscriptions
0.007 0.163

Number of students in
universities

0.003 0.063

Number of retail shops 0.003 0.075
Number of theatre performances 0.004 0.09
Tourist arrivals in accommodation

establishments (international)
0.004 0.092

Children enrolled in infant
nurseries

0.005 0.117

Public water utility gap 0.104 0.001
Population of cites with

more than 100,000 people
0.003 0.065

Number of registered corporations 0.011 0.254
GDP per capita 0.601 0.006
Activity ratio 0.051 0.001
Registered capital of foreign-owned

corporations
0.002 0.037
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The ranking of the Hungarian counties according to the regional development as a latent

variable shows another picture than the ranking of counties according to GDP per capita.

The most obvious difference is in the judgement of the position of county Pest

(agglomeration of the capital Budapest). According to the latent variable, county Pest was

third in the ranking in 1994 and second in 2016, but it was fourteenth/sixth based on GDP

Fig. 9. Ranking of Hungarian counties in 2016 according to regional development based on SEM.

Fig. 10. Ranking of Hungarian counties in 1994 according to GDP per capita.
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per capita (see Figure 10 and Figure 11). The northeast/ southwest parts of Hungary lost

their relative position from 1994 to 2016, while the middle of the country and the

northwest counties gained in relative position of GDP per capita. The second difference is

related to the eastern counties, Borsod-Abaúj-Zemplén, Szabolcs-Szatmár-Bereg, Békés

and Hajdú-Bihar. All of them are ranked behind in GDP per capita ranking, while

according to the latent variable they belong to the more developed counties. The difference

is clearly due to the fact that GDP per capita only takes the production value and

population into account, while the SEM uses several other variables. We argue that the

ranking based on the latent variable gives a more realistic answer to the question of where

it is better to live. The liveability of a county or a county seat is influenced by many

factors. We think our model is capable of compressing these factors into one variable

while using only official statistics.

Since joining the European Union in 2004, Hungary has received support from EU

funds, which contributed to the development of the counties. It is an interesting question

whether this support had any impact on the development of counties and their relative

ranking. Due to the lack of regional data on EU subsidies, it is impossible to make a model,

but according to the latent variable for regional development, the ranking of counties

seems to be quite permanent. Several counties could not improve their position. Reasons

for this situation could be the lack of export-oriented domestic and multinational

corporations and also the lack of a well-educated labour force.

6. Conclusions

We argue that our model is appropriate for estimating the relative development of

Hungarian counties during the examined period of 1994–2016. We defined the causes and

Fig. 11. Ranking of Hungarian counties in 2016 according to GDP per capita.
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the consequences of regional development in Hungary during this period. The

measurement and structural models are specified in IBM AMOS software.

We conclude that the export-oriented, competitive multinational companies selected

regions where the input supply was more favourable. This process became a self-

generating process, and the gap between developed and less developed regions deepened.

In terms of GDP per capita, the order of counties is significantly different from the

ranking based on the latent variable. For this reason, it would be worth considering a more

complex set of criteria when designing a support system for the regions, not just focusing

on the gross value added.

If there is a big city with at least 100,000 people in the county, then it stands out in

cultural, educational, economical, and other opportunities. Therefore, big cities dominate

the county’s ranking. The liveability of the county depends on the urbanity of the county

centre, but it should not be forgotten that meanwhile some small areas within the county

may fall off. For this reason, the county cannot be considered homogeneous. Although a

district level analysis would be more appropriate, small area data at this level of detail is

not available for every year. Therefore, this analysis cannot handle the heterogeneity of

counties and reflects the county seat’s liveability.

In addition, it is shown that the modelling of the latent variable is appropriate for the

estimation of relative change of counties’ economic development. GDP per capita only

measures the economic performance, while regional development as a latent variable takes

into account several important variables from the point of view of well-being as well.

Theoretically, google trends data or Wikipedia data (non-official statistical data) can

improve our model, and will be the task of a new project.
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Measuring and Communicating the Uncertainty in Official
Economic Statistics

Gian Luigi Mazzi1, James Mitchell2, and Florabela Carausu3

Official economic statistics are uncertain even if not always interpreted or treated as such.
From a historical perspective, this article reviews different categorisations of data uncertainty,
specifically the traditional typology that distinguishes sampling from nonsampling errors and
a newer typology of Manski (2015). Throughout, the importance of measuring and
communicating these uncertainties is emphasised, as hard as it can prove to measure some
sources of data uncertainty, especially those relevant to administrative and big data sets.
Accordingly, this article both seeks to encourage further work into the measurement and
communication of data uncertainty in general and to introduce the Comunikos
(COMmunicating UNcertainty In Key Official Statistics) project at Eurostat. Comunikos is
designed to evaluate alternative ways of measuring and communicating data uncertainty
specifically in contexts relevant to official economic statistics.

Key words: Measurement error; data revisions; official economic statistics; data
communication.

1. Introduction

Official economic statistics are inevitably uncertain or, put another way, subject to

“errors”, even if not always interpreted or treated as such. Data uncertainty can affect the

economic historian’s view of the past and policymaker’s decisions in the present.

Statistical (or measurement) “error” is commonly defined as the difference between the

estimate produced by the statistical office and the “true” population value, which is

typically unobserved. As Eurostat (2015) states: “Accuracy refers to the closeness of

computations or estimates to the exact or true values that the statistics were intended to

measure”. But, as Groves and Lyberg (2010) discuss, the notion of a true value is itself

subject to debate. Accordingly, to define, yet alone measure, “uncertainty” remains

elusive. For a general discussion of uncertainty as a concept see Van der Bles et al. (2019).

Nevertheless, the idea that the “error” is the difference between the estimated and actual

value (even if this itself is unobserved) is at least widely agreed; for example see Dungan

et al. (2002) and Fuller (1987).
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Accordingly, statisticians and statistical offices have sought to categorise and

communicate data uncertainties in various ways. This reflects a long history, dating back

at least to Kuznets (1948) and Morgenstern (1950), that emphasises the uncertainty of

economic statistics. For example, Principle 12 of Eurostat’s European Code of Practice states

that “Sampling errors and non-sampling errors are measured and systematically documented

according to the European standards” (see Eurostat 2017); and also “Revisions are regularly

analysed in order to improve statistical processes”. Despite this, arguably, statistical errors

have received limited attention in the seventy years since Kuznet’s discussion of ‘margins of

errors’ and Morgenstern’s comprehensive catalogue of errors that affect economic data; for

example see Bagus (2011). Certainly, as Manski (2015), Manski (2018) and Van der Bles

et al. (2019) emphasise, headline statistical estimates tend to be presented as point estimates,

arguably conveying a misleading degree of reliability in these data.

This lack of communication of economic data uncertainty is common across national

statistical offices and, in turn, in the media when they disseminate statistical office data.

Over more recent years, following the encouragements of Manski and others, several

statistical authorities and organisations have started investing in identifying ways to

measure and communicate data uncertainty; these include: the use of fan charts at the Bank

of England and the Riksbank to communicate historical GDP data uncertainties; work by

CBS Netherlands on ‘Visualising uncertainty’ and on the inventarisation of uncertainty

sources; and UK Government Statistical Service guidance on ‘Communicating

Uncertainty and Change’ (see ONS 2018a).

Measuring uncertainty is a complex and challenging task that can involve the use of

sophisticated statistical and econometric techniques (classical or Bayesian) and subjective

judgement to quantify the data uncertainties. However, as challenging as the quantification

of data uncertainties per se, is how to communicate them – ideally in a way that is both

‘comprehensive’, in terms of capturing fully the uncertainties, but also ‘understandable’ so

that different users and readers of these data correctly infer and interpret the uncertainties

communicated to them.

Accordingly, in late 2018 Eurostat launched the Comunikos (COMmunicating

UNcertainty In Key Official Statistics) project. Comunikos explores and analyses tools for

measuring and communicating data uncertainties. The aim is to formulate proposals and

make recommendations for the most appropriate ways to measure and communicate

uncertainties for official statistics. As the risk of misleading or indeed confusing users is

arguably high, but providing clear and ‘accurate’ uncertainty measures may enhance the

relevance and credibility of official statistics, Comunikos investigates the pros and cons of

communicating uncertainties to users of official statistics. In particular, it shows the

potential for state-space models to measure uncertainty and produce confidence intervals

or densities for official statistics, mainly for intra-annual time-series data (Kapetanios et al.

2021); analyses methods to measure uncertainty in cross-sectional data focusing on

poverty measures (Laureti and Benedetti 2020) and considers verbal, quantitative and

visual tools to communicate uncertainty in official statistics reports (De Jonge 2020). The

aim of Comunikos is that by providing additional uncertainty information, users of official

statistics will be able to make better decisions, in particular at times of heightened data

uncertainty that we might expect to occur precisely (e.g. at business cycle ‘turning points’)

when users are most interested in the data.
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In this article, to help further the Comunikos project agenda and more generally encourage

work measuring and communicating data uncertainty, we provide a methodological review

and categorisation of uncertainty measures and their sources for economic statistics. We

focus on quantitative economic data. Despite this qualification, the discussion below also has

relevance for qualitative, ordinal data, although we refer to Piccolo and Simone (2019) for a

more specific discussion of uncertainties for ordinal data. We exploit the fact that statisticians

commonly categorise uncertainties to reflect non-sampling and sampling errors. Non-

sampling errors apply to administrative records and surveys, including censuses, whereas

sampling errors apply only to sample surveys. In principle, therefore, the total uncertainty

associated with statistical output comprises both sampling error and non-sampling error.

Though, in practice, the measurement of the total survey error is difficult, given the

complexity of estimating and quantifying both sampling and, in particular, non-sampling

errors. As Boumans (2012) discusses, while sympathetic to Morgenstern’s call for the use of

errors to accompany economic statistics, Kuznets (1950) emphasised the challenges implied

by Morgenstern (1950) for measurement. Kuznets (1950) argued that economic statistics are

better thought of as the products of evolving institutions, rather than making analogies, as

Morgenstern did, with scientific data from controlled experiments. Groves and Lyberg

(2010) discuss the conceptual history of total survey error over more than seventy years. The

total survey error of an estimate is considered as an indicator of data quality.

As there are various ways in which these errors can be classified, a recent distinction

and the proposed typology of Manski (2015) is also introduced and discussed. This is

helpful in explaining how the different types of uncertainty can be communicated

quantitatively – and ideally they then comprise part of the statistical output. Other

frameworks, and proposals to classify errors have also been proposed including

Morgenstern (1950) and Verma et al. (2010). Morgenstern (1950), as drawn on throughout

this review, distinguishes ten sources of uncertainty:

(1) lack of designed experiments;

(2) hiding of information, lies;

(3) the training of observers;

(4) errors from questionnaires;

(5) mass observations;

(6) lack of definition and classification;

(7) errors of instruments;

(8) the factor of time;

(9) observations of unique phenomena;

(10) interdependence and stability of errors.

These are nested in the classification below. It is also common, as discussed in Van der

Bles et al. (2019), to distinguish ‘aleatory uncertainty’, due to the fundamental

indeterminacy or randomness in the world, from ‘epistemic’ uncertainty. Epistemic

uncertainty is arguably what matters for statistical data that generally, but not always, seek

to measure past or present (via a nowcast) phenomena. That is, our focus is on numbers

that we currently do not know but could, at least in theory, know if only the information set

were more complete. In contrast, ‘aleatory uncertainty’ generally relates to future events

which we cannot know for certain.
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This article is structured as follows. In Subsections 2.1 and 2.2 we review the traditional

typology of data uncertainty that distinguishes sampling from nonsampling errors. In each

case, we further break down the sources of sampling and nonsampling uncertainties,

emphasising the importance of nonsampling uncertainties for administrative and big data

sources. Throughout the importance of measurement – of the elements comprising

uncertainty – is emphasised. As without measurement, it is hard if not impossible to gauge

the consequences and importance of these uncertainties. Section 3 then introduces the new

typology of uncertainties of Manski (2015). It is argued this confers some conceptual

advantages when it comes to measuring and quantifying the different elements of total

uncertainty. Section 4 then discusses the consequences, known and unknown, of data

uncertainties. Section 5 concludes. In so doing it discusses the future agenda by repeating

the call of Manski (2015) for more empirical research to study the effects of data

uncertainty on the public’s understanding, interpretation and use of official statistics.

2. The Traditional Typology of Data Uncertainties

2.1. Sampling Errors

Unlike the natural sciences, as Morgenstern (1950) emphasised, official economic statistics

are not produced via repeated experiments. Instead, surveys are often run by national

statistical institutes to measure the economic variables of interest. In Subsection 2.2.1, we

turn to consider the growing use of administrative and big data sources in official statistics.

Sampling error is the most commonly reported measure of statistical uncertainty. This is

because, unlike nonsampling errors discussed in Subsection 2.2 below, sampling error can

be quantitatively estimated for many – but not all – sample surveys. Sampling error is the

uncertainty or variability in an estimate that results from using a sample from a population

rather than conducting a census or complete enumeration of the population.

If a sample from the population is chosen randomly, for example, then each random

sample will involve sampling some different units and imply that each sample will

produce different sample estimates. When there is great variation among the samples

drawn from a given population (i.e. there is greater variability in the population), the

sampling error is high. Then there is a larger chance that the survey estimate is far from the

true population value. In a census when the entire population is surveyed there is no

sampling error, but nonsampling errors still exist.

As summarised by the Office for National Statistics (ONS) in the United Kingdom (see

ONS 2017b), standard errors are typically influenced by a number of factors that include:

. the survey sample size – a larger sample size will reduce standard errors;

. the variability in the population – when measuring a more variable characteristic,

standard errors will be larger;

. the survey sample design – for example, any stratification or clustering used; and

. the estimation method used.

2.1.1. Measures of Sampling Error

Measures of sampling error associated with an estimate are typically based on estimates of

the standard error and the mean squared error. The latter can be decomposed into the sum
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of the square of the sampling bias and the sampling variance. The standard error is often

used to compute the coefficient of variation or margin of error, both of which are related

measures of the amount of uncertainty in the estimate.

Standard errors to measure sampling error can be computed – given the actual or

assumed nature of the survey sample design. When sampling biases are zero or close to

zero the standard error can be taken to represent total sampling error. This assumes that

“population uncertainty” does not exist, which in practice is a strong often unrealistic

assumption. Population uncertainty (see Plumper and Neumayer 2012) arises from the

reality that ‘random samples’ from a given population may not be random, when there is

uncertainty about who forms part of the population. As discussed in Plumper and

Neumayer 2012), oversampling and sample selection corrections can be used to tackle

population uncertainty.

There exist many approaches (e.g. see Goedeme 2013) to estimate standard errors. For an

“easy-reading” discussion see Peters (2001). Direct estimators, which rely on analytic

variance formulae, can be distinguished from indirect or resampling methods, like the

bootstrap. Bootstrap methods involve taking a large number of draws from the original

sample to mimic the actual sampling process: the sampling distribution of the target

statistic across these bootstrap draws then measures the uncertainty. Whichever approach is

used, the sampling process and the estimation procedure should ideally be acknowledged;

for example see Goedeme (2013) who considers the complexities involved in estimating

standard errors specifically for index numbers from complex surveys, and the discussion in

Seljak (2006). For a detailed analysis of how uncertainty can be measured for mid-year

population estimates given knowledge of the sampling processes and an understanding of

the qualitative importance of different sources of uncertainty, see ONS (2017a).

As another example, ONS (2017a) consider how the bootstrap can be used to quantify

the main uncertainties associated with UK migration data. Their method acknowledges the

different data sources (including census, survey and administrative data) that are used to

measure migration. Also see Mevik (2004) for a detailed study of sampling errors, from

the Norwegian Business Tendency Survey, that contrasts “design-based” measures of the

standard error with “model-based” ones that again make use of the bootstrap. For a general

discussion of design-based versus model-based methods see Koch and Gillings (2006).

2.1.2. Challenges Measuring and Quantifying Sampling Errors

As discussed, standard errors can be computed – given the actual or assumed nature of the

survey sample design. For statistical estimates of variables like GDP, the complexities

involved in measuring the components, whether on the income or expenditure side, mean

that it is not obvious what the survey design is and how this can lead to analytical

expressions for the standard error.

To quote ONS (2019): “The estimate of GDP : : : is currently constructed from a wide

variety of data sources, some of which are not based on random samples or do not have

published sampling and non-sampling errors available. As such, it is very difficult to

measure both error aspects and their impact on GDP. While development work continues

in this area, like all other G7 national statistical institutes, we don’t publish a measure of

the sampling error or non-sampling error associated with GDP”. This quotation is, in fact,

remarkably reminiscent of the discussion in Kuznets (1948, p.176): “The treatment of
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margins of error is most difficult for the national income and product statistics. The totals

are a composite of a great variety of data, which differ in reliability from sector to sector of

the economy. The margin of error in the composite totals is thus a complex amalgam of

errors in the parts whose magnitude is not easily determined”.

But, as Kuznets (1948) emphasised, this complexity should not imply that attempts to

measure these margins of error should not be made. Kuznets (1948), in fact, sought to

quantify the uncertainties in GDP via expert judgement – famously concluding that there

was a 10% margin of error associated with GDP.

However, it is possible to provide data-based and quantitative indications of

“transitory” statistical uncertainties associated with GDP estimates by analysing historical

revisions. National statistical offices and central banks accordingly often now publish

realtime data vintages and analyse the implied revisions (e.g. see Croushore and Stark

2001). Other sources of uncertainty, for example due to limitations of the survey

methodology, are not represented; and methodological work on measuring non-sampling

errors continues (e.g. see Manski 2016).

There is also a long tradition (dating back at least to Stone et al. 1942) of exploiting the fact

that for some variables there are multiple measures – albeit perhaps ones based on different

sampling approaches. In particular, as a leading example, GDP can be estimated by the

production, expenditure and income approaches. In principle, all three of these measures

should be equal; but they are not in practice, given that they are calculated from different

samples. But comparison of these approaches, assuming they all seek to measure the latent

variable “true GDP”, can be used to produce so-called balanced or reconciled estimates of

“true GDP” that also quantify the “statistical” or “measurement” error, as it is commonly

referred to in this literature (e.g. see Smith et al. 1998; Aruoba et al. 2016). Another cross-

country example of how measurement errors can be quantified by comparing alternative

estimates is how a specific country’s trade balance statistics can be compared with estimates

from their trading partners: one country’s exports are another country’s imports.

2.2. Nonsampling Errors

It is more challenging to categorise, and certainly to measure and quantify, nonsampling

errors for official statistics. Nonsampling errors stem from the design, data collection and

processing methods used. As also seen in the typology of Morgenstern (1950), these errors

often stem from lack of knowledge of the “nature of the data” given that the data are

typically not measured by designed experiments. Nonsampling errors affect adminis-

trative (such as census) data as well as survey-based statistics. In general, sampling errors

decrease as the sample size increases, but non-sampling errors increase as the sample size

increases.

A common typology of nonsampling errors (e.g. see Biemer and Lyberg 2003; Eurostat

2019; US Census Bureau 2018; Statistics Canada 2017; Australian Bureau of Statistics

2013; National Science Foundation 2018) is to decompose the nonsampling errors into the

five elements listed in the typology below:

(1) Specification error: Survey questions often cannot and/or do not perfectly measure

the concept which they are intended to measure. For example, if asked to report

whether they have a disability, respondents may have different subjective views of
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what constitutes a disability and accordingly they provide different answers; as

another popular example, the number of patents does not perfectly measure the

quantity of invention in a macroeconomy. As emphasised in Manski’s typology

below, there can also be classification errors (perhaps reflecting conceptual

uncertainties), for example, reflecting whether to classify some expenditure

component of GDP as investment or consumption. Difficulties, and therefore errors,

can also arise when, for instance, classifying economic activity to different industries.

Economic activity is rarely confined to one specific industry.

(2) Coverage (or frame) error: Coverage error occurs when the sample (frame) is

inaccurate or incomplete, as a unit in the sample is erroneously excluded or included

(e.g. duplicated), leading to under or over coverage errors. These errors make the

survey less representative of the underlying population. The correction of coverage

errors can be expensive, involving survey redesign and undertaking new surveys. A

specific source of error that might be interpreted as stemming from a coverage error

(albeit one known to the statistical office), arises in a mixed frequency data

environmment when statistical offices use temporal disaggregation methods to

interpolate missing data at the higher frequency using observed data on higher

frequency indicator variables. In effect, the temporal disaggregation methods fill in

the gaps left by the incomplete survey evidence at the higher frequency. For example,

monthly estimates of GDP are not commonly published by national statistical offices.

So temporal disaggregation methods (from univariate models such as Chow and Lin

(1971) to multivariate dynamic extensions, such as Mitchell et al. (2005) and Frale

et al. 2011) have been used to estimate monthly GDP based on the monthly

movements of a range of observed indicator variables believed to relate to

(unobserved) monthly GDP. Importantly, these methods impose the constraint that

the interpolated monthly estimates for GDP add up to the quarterly totals published

by the statistical office.

(3) Nonresponse error: Nonresponse error occurs when not all units of the sample

respond to the survey. This leads to a difference between the statistics computed from

the collected or observed data and those that would be computed if there were no

missing values. Two types of nonresponse can be delineated: (1) unit nonresponse,

that is, when no data are collected about a population unit; and (2) item nonresponse,

that is, when data on some but not all the survey data items are collected for a given

population unit. Nonresponse can cause nonresponse bias (as well as nonresponse

variance) when the observed sample differs systematically from those who do not

respond (the unobserved sample). For example, complete or partial nonresponse is

often more likely among lower-income or less-educated respondents or firms facing

serious financial difficulties. The nonresponse rate can usually be accurately

measured – as the ratio of the number of completed surveys to the total number of

sample units. In turn, response rates therefore indicate the proportion of sample units

that respond to the survey. However, these nonresponse rates do not help the user of

the statistic directly infer, for example, the standard error of the estimate. They are

therefore of limited direct use, as ideally the user would be provided with an estimate

of the standard error. Subsection 2.2.1 below considers recent work in econometrics

that has sought to quantify nonresponse errors directly.
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(4) Unit-level measurement error: response error and interviewer error: Measurement

errors stem from what is observed or measured by the survey differing from the actual

values for the sample units. Measurement errors, as defined here, relate to the

accuracy of measurement at the unit level. In turn, measurement errors can be broken

down into response errors and interviewer errors. Response errors arise when

respondents knowingly or unknowingly provide inaccurate responses. These errors

might arise due to inherent cognitive biases (e.g. a tendency for a respondent to give

an answer that they believe is correct or will please the interviewer) and poorly

designed survey questionnaires that lead to misunderstandings about what is being

asked. Interviewer errors arise when the person undertaking the survey, whether on

purpose or not, records incorrect responses or consciously or unconsciously

influences the respondent with the effect that they provide inaccurate responses.

(5) Processing error: Processing errors include errors in recording, checking, coding

and preparing survey data. They can include interpolation and extrapolation errors for

missing or, what are believed to be, inconsistent data. In some contexts (some of)

these errors can be measured and quantified. Van der Loo et al. (2017) consider the

variance caused by data cleaning. They note that survey data sets, X ¼ {xi}
n
i¼1, often

suffer from missing values, outliers and incorrect values that preclude the

applicability of a simple estimator f(X) such as the sample mean. Although, as

touched on below, robust estimators may be more appropriate. So data editing

processes are used to transform the raw data set X into a new data set, Y, which is then

used for estimation. The population estimator is also given by f(Y). But as Y is a

transformation, the variance of the estimator after editing is no longer simply the

variance of the new data set but should also reflect the extra variance induced by the

data editing processes. This extra variance may comprise estimation uncertainties as

well as sampling variance. As Van der Loo et al. (2017) explain, in general – in real-

life practical examples of interest to official statistics – it is hard to obtain analytical

expressions for this composite uncertainty; and they therefore suggest a

computational approach to measuring the variance that uses the bootstrap. But in

other contexts isolating and removing processing errors (without a warning or help

from the statistics office) simply by inspecting a published time-series can be

challenging. It amounts to having to define and then isolate outliers. This raises

identification challenges, since an outlier could be due to variability in the sampling

processes rather than a processing (or measurement) error. Interestingly, given that

some statistical estimators are more robust to outliers (or more generally to

uncertainty whatever the source) than others, the use of robust estimators may offer

promise when communicating data in the presence of uncertainties. For example, the

median rather than the mean offers a robust measure of central tendency.

2.2.1. Measures of Nonsampling Error

As emphasised, nonsampling errors are typically hard to measure and quantify. But, as

Manski (2015) emphasises, this does not justify ignoring them.

Statistically, it can be helpful to consider that nonsampling errors can be classified into

two groups: random errors and systematic errors. Random errors are the unpredictable

(ideally, independently and identically distributed) errors. They generally cancel out if a
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large enough sample is used. They lead to increased variability in the statistic, but no bias.

In turn, systematic errors are errors that accumulate. For example, if there is an error in the

survey or questionnaire design, this causes errors in respondents’ answers, often leading to

biases. We first consider, in Subsubsection 2.2.2 how measures of nonsampling error may

be computed using partial identification methods. Then, in Sububsection 2.2.3, we

consider the scope to measure nonsampling errors for administrative and big data.

2.2.2. Partial Identification and Measures of Survey Nonresponse

Recent work on “partial identification” (Manski 2016) has shown how, with access to the

underlying micro data, more could be said about nonsampling uncertainties (for

aggregated data) – and in particular nonsampling errors due to survey nonresponse – than

at present is commonplace.

The basic idea is that in the presence of missing data, sample statistics can still be

computed. But to measure the nonsampling errors, due to missing data, these statistics

can be computed taking into account all the values that the missing data might take.

This delivers interval rather than point estimates. The approach of Van der Loo et al.

(2017), who as mentioned uses the bootstrap, can also be interpreted within this

framework.

In simple terms, Manski (2016) sets out how if one lets P( y|z ¼ 1) denote the

distribution of random variable Y for those units who report y (denoted, z ¼ 1; z ¼ 0

otherwise), then from the law of total probability

Pð yÞ ¼ Pð yjz ¼ 1ÞPðz ¼ 1Þ þ Pð yjz ¼ 0ÞPðz ¼ 0Þ ð1Þ

The sample evidence reveals P(z) and the observables P( y|z ¼ 1) when P(z ¼ 1).

But the sample evidence is uninformative on P( y|z ¼ 0). Therefore the sample

evidence reveals that P( y) lies in the identification region

H½Pð yÞ� ¼ ½Pð yjz ¼ 1ÞPðz ¼ 1Þ þ gPð yjz ¼ 0ÞPðz ¼ 0Þ; g [ GY � ð2Þ

where GY denotes the set of all probability distributions on the set Y . As discussed by

Manski (2016), the notion of the identification set can then be used for meaningful

inference. For example, suppose the statistics office is interested in quantifying the

probability that Y falls within some interval or set, B i.e. P( y [ B). Then, again by

the law of total probability,

Pð y [ BÞ ¼ Pð y [ Bjz ¼ 1ÞPðz ¼ 1Þ þ gPð y [ Bjz ¼ 0ÞPðz ¼ 0Þ ð3Þ

and the empirical evidence reveals P( y [ B|z ¼ 1), P(z ¼ 1) and P(z ¼ 0). But it does

not reveal P( y [ B|z ¼ 0). However P( y [ B|z ¼ 0) must lie between 0 and 1. This

yields the sharp bound on P( y [ B):

Pð y [ Bjz ¼ 1ÞPðz ¼ 1Þ # Pð y [ BÞ # Pð y [ Bjz ¼ 1ÞPðz ¼ 1Þ þ Pðz ¼ 0Þ ð4Þ

If the statistician is willing and/or able to make assumptions on the nature of the

nonresponse, that restrict P( y|z ¼ 0) within some probability space (e.g. to a specific set of

density functions), then these bounds can be made tighter.
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2.2.3. Nonsampling Error: Administrative and Big Data

The increasing availability and use of administrative and big data, including from new data

sources (such as the internet and social media), raises both new challenges and opportunities

for the measurement and quantification of uncertainties, especially those coming from

nonsampling errors. The hope is to exploit some data source that provides the “true” estimate;

comparison of other estimates, say from surveys, with this “true” estimate then provides a

clear way to measure the statistical or measurement “error” of the other survey-based estimate.

But many of these administrative and big data sources were designed for purposes other

than official data collection. Indeed, many of the data sources are from private companies,

raising challenges as to data ownership and privacy. This has prompted experimental

research into, for example, the use of apps (see Gromme et al. 2017) to measure directly

data from the population (the “citizens”) rather than rely on third party data. As

emphasised by Hand (2018), analysis of administrative data presents new statistical

challenges not least that these data are, by definition, typically not random samples but so-

called non-probability samples.

As stressed by Kapteyn and Ypma (2007) and Abowd and Stinson (2013), while

administrative data and indeed big data sets in general offer the prospect of fewer non-

response errors than traditional surveys, they still likely suffer from uncertainties in

particular due to “measurement error”. They may not measure exactly the concept a

researcher is interested in. And since administrative databases typically link data from

different sources there is the possibility of mismatching, due to imperfect linkage

information (e.g., errors in social security numbers). Abowd and Stinson (2013) therefore

emphasise the errors that are present in all data sources; and, in the tradition of Stone et al.

(1942), they specify a so-called prior weight vector used to define the “truth” as a weighted

average of both the administrative and the survey data.

Therefore new sources of uncertainties, but also opportunities to reduce these, arise

from this practice of matching administrative or big data with existing, more traditional,

sources of data collected by the statistics office. Matching involves combining information

available in distinct sample surveys about the same target population. For example, work

by Lui et al. (2011) sought to match firm-level qualitative survey data from the

Confederation of British Industry, a business organisation in the United Kingdom (that

provides information on a range of variables not posed in official surveys) with those same

firms’ responses to official surveys from the ONS. This sort of matched data set offers the

prospect of both better understanding the nature and statistical properties of the non-

official data and of cross-checking the accuracy of the new data.

Kapteyn and Ypma (2007) provide a framework to model the errors in administrative data

due to mismatching, based on a comparison of the administrative and survey data when

estimates from both are available. Conti et al. (2012) also consider the measurement of

uncertainty in statistical matching. Conti et al. (2012) set out a model that can be used to

estimate the joint distribution of variables observed in separate and independent surveys.

Consider two surveys that deliver random variables Y and Z, with observations y and z,

respectively. Both surveys also provide information on a set of additional random variables,

X, with observations x. Let the two (known) marginal conditional distributions then be

denoted, F( y|x) and F(z|x). In the spirit of “partial identification” as set out by Manski
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(2016), Conti et al. (2012) measure uncertainty as the set of probability distributions of the

random vector (Y, Z|X) compatible with F( y|x) and F(z|x). Again a bounds-based approach is

proposed as a way to quantify the uncertainty. Recent work by Oberski et al. (2017) extends

analysis to estimate the extent of measurement errors in administrative data that measures

the errors in administrative data, allowing both the administrative data and the survey data to

be simultaneously subject to measurement errors.

Coverage errors, as discussed in Subsection 2.2, remain a concern for administrative

and big data data. The administrative population is often a proxy for the target population.

For example, the employment register in the Netherlands also contains employees that

work but do not live in the Netherlands; but it misses Dutch inhabitants who have a job

abroad. And with big data, often the observations cannot be identified/linked to a member

of the target population; it is then not directly possible to find out how representative the

data, often based on non-probability samples, are.

“Hiding of information”, one of the elements in the typology of errors listed by

Morgenstern (1950), may afflict at least some administrative data. For example, when

replying to the tax authorities, individuals or businesses may in a sense, as Morgenstern

puts it, “deliberately lie” or at least obscure the truth. As Morgenstern (1950) writes, there

is a long history of apparently venerable institutions falsifying or at least obscuring “facts”

for strategic or political purposes. A more recent example of this typology of error is when

Greek public finance data were investigated by the European Commission in 2010. In the

final report of the European Commission’s investigation (see European Commission 2010)

it was recognised that there were political pressures to obstruct accurate data collection.

Nevertheless, growing use at statistical offices of individual and firm-level tax return data

in the national accounts is delivering improvements both in terms of timeliness and

accuracy; that is, the use since 2017 of Value Added Tax data in measuring GDP in the

Uinted Kingdom means that turnover data from 630,000 businesses now inform GDP

estimates (see ONS 2018b), providing wider coverage.

Some of Morgenstern’s other elements in his typology are also probable sources of

uncertainty for big data and administrative data. His “mass observations” may well involve

errors that likely accumulate and do not necessarily cancel out. And his “errors of instrument”

are also likely to become more important as economic statistics are increasingly collected by

machines (e.g. scanners) rather than human beings (via surveys and questionnaires).

Measurement of these uncertainties for administrative and big data is in its infancy.

Chambers (2014) considers how “model-based thinking” can help measure nonignorable

nonresponse in surveys; and how adaptive surveys can be used to select a sample of

nonrespondents to interview or survey at a second wave of the survey so as to minimise the

nonresponse bias. ONS (2018a) recommend that for administrative data measures of coverage

and completeness, editing rates and imputation rates should be measured and used as

quantitative estimates of data uncertainty. And the aforementioned approach of Morgenstern

(1950) is attractive in measuring uncertainties without having to assume that either the

administrative data or the survey data are accurate. Hand (2018) provides a recent discussion;

and calls for research to establish what the ‘generally accepted theory’ might be for the

analysis of administrative data. The first of his challenges is, in fact, to consider how to define

and communicate uncertainty for administrative data, given that the sources of uncertainty in

administrative data are many and diverse, and may not include sampling variation.
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3. Manski’s (2015) Typology of Data Uncertainties

Manski (2015) re-interprets sampling and nonsampling uncertainty as comprising three

elements:

(1) “transitory” statistical uncertainty;

(2) “permanent” statistical uncertainty;

(3) conceptual uncertainty.

Transitory statistical uncertainty stems from publication of early data releases that are

revised over time as new information arrives. For example, for many years the Office for

National Statistics (ONS) in the United Kingdom published its first – so-called

“preliminary” – quarterly GDP estimates around 27 days after the end of the quarter.

Because this timeliness was achieved by basing their estimate on 44% of the sample, it is

(and should be) no surprise to see the ONS revise these preliminary estimates as more

sampling information subsequently became available to them. Interestingly, in the

summer of 2018 ONS shifted back its production – so that the new so-called first estimate

is now available only at about 40 days. But this delay buys the ONS a higher sampling

fraction, and should therefore reduce transitory statistical uncertainty.

Permanent statistical uncertainty arises due to data incompleteness (e.g. nonresponse)

or the inadequacy of data collection (e.g. sampling uncertainty due to a finite sample)

which does not diminish over time. Therefore, permanent statistical uncertainty comprises

elements of both sampling and nonsampling errors, as delineated in the typology above.

Conceptual uncertainty arises from a lack of understanding about what the statistics

measure. It arises not from the statistics themselves, as with transitory and permanent

statistical uncertainty, but from how the statistics are interpreted. Conceptual uncertainty

is of course not a new element in many typologies of the sources of uncertainty, albeit it is

one that is often ignored – given the challenges in measuring it. In fact, discussion of

conceptual uncertainty again dates back to Morgenstern (1950), who discussed

uncertainties arising due to a “lack of definition and classification”. As Morgenstern

(1950, 35) explains, “the theoretical characteristics of, say, an industry or a ‘price’, are less

well established than those of a wave length”.

It is perhaps helpful to begin to break down conceptual uncertainty by considering the

following components or sub-elements:

. conceptual uncertainty due to different definitions and classifications. This overlaps

with the eighth element in the typology of errors of Morgenstern (1950): “the factor

of time”. Such uncertainties arise as economic data are often measured on a discrete

basis with observations attributed to a specific window of time – so there are errors

especially when there are changes in classification (e.g. changes in the definition of an

industry or changes to the characteristics of a specific product);

. conceptual uncertainty due to differences in the compilation process (e.g. direct

estimates based on surveys or administrative data versus indirect estimates using

temporal disaggregation techniques); and

. conceptual uncertainty due to seasonal adjustment.
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Conceptual uncertainty need not produce “errors” in the usual statistical sense – as

Morgenstern (1950) explains. But differences of definition, for example, clearly result in

uncertainties, revisions to estimates and doubts as to the use and interpretability of data

and their comparability.

3.1. A Bayesian Approach

In principle, at a formal level, the approach of Draper (1995) offers a methodological way

of understanding some aspects of conceptual uncertainty. If we consider these aspects as

part of the “model” used to measure the underlying variable, then Draper (1995) provides

an approach to think about both uncertainty about the form of the model (so-called

structural uncertainty) and the parameters of the model (so-called parametric uncertainty).

This motivates a Bayesian approach.

Bayesian Model Averaging (BMA) offers a conceptually elegant means of dealing with

model uncertainty. BMA is an application of Bayes’ theorem, Model uncertainty is

incorporated into the theorem by treating the set of models S as an additional parameter

and then integrating over S, where S ; {Si, i ¼ 1, ..., N } with N models, and the models Si

are defined as continuous density functions git( yt) for the variable of interest yt.

The posterior density estimate of the variable of interest yt given ‘data’ Vt, pt( yt | Vt), is

then defined as the weighted average of the densities git( yt) ¼ Pr( yt | Sit, Vt), where the

weights wit are the different model’s (or the different estimates’) posterior probabilities,

wit ¼ Pr(Sit | Vt):

ptðytjVtÞ ¼
XN

i¼1

witgitðytÞ; ðt ¼ 1; : : : ; TÞ; ð5Þ

where wit $ 0 and
PN

i¼1 wit ¼ 1: ptð ytjVtÞ, or, for expositional ease suppressing dependence

on the ‘data’Vt when defining the posterior probabilities, equivalently pt( yt), is the combined

density estimate.

A Bayesian approach, due to its ability to handle multiple sources of uncertainty, also

offers promise as a way to provide an integrated measure of total uncertainty – that

integrates out uncertainty about sampling and nonsampling errors or transitory and

permanent uncertainty. In addition, priors can be used to acknowledge if and when there is

additional information that can be used to guide the data in the right direction.

3.2. Measures of Transitory, Permanent and Conceptual Errors

An advantage of the typology of Manski (2015) is that when it comes to actually

measuring and quantifying the three elements of total uncertainty, the first element –

transitory statistical uncertainty – when relevant, is at least usually measurable. It is

measurable by analysing revisions to the statistics as more information becomes available

as the statistic is revised. As elaborated on in Subsection 3.2.1, measurement and

quantification of transitory statistical uncertainties is now facilitated by the relatively wide

availability of real-time (vintage) data sets for macroeconomic variables such as GDP.

These real-time data sets let one measure the revisions between successive estimates.

Many authors have proposed models of data revisions – using real-time GDP data sets –

Mazzi et al.: Data Uncertainty 301



to model and forecast this “transitory” GDP data uncertainty (e.g. see Jacobs and Van

Norden 2011; Cunningham et al. 2012; Kishor and Koenig 2012; Galvao 2017).

In turn, measurement of the permanent and conceptual uncertainties is again

challenging, as it is for sampling errors (at least for variables like GDP) and nonsampling

errors. But attempts can still be made to communicate (at least some of) these

uncertainties. A famous example of how uncertainties can be communicated even for a

variable like GDP, which as discussed, is usually subject to multiple surveys precluding

direct estimates of the data’s standard error, are the fan charts published by the Bank of

England; see Figure 1 for an example.

Figure 1 provides an illustrative example of what these fan charts look like, taken from

the Bank of England’s Inflation Report. Importantly, from Figure 1 we see that the Bank

seeks to quantify both future uncertainties but also past or historical data uncertainties.

This is emphasised in the words that accompany the fan chart pictures in the Bank’s

publications: “(t)o the left of the first vertical dashed line, the centre of the darkest band of

the fan chart gives the Committee’s best collective judgement of the most likely path for

GDP growth once the revisions’ process is complete” (Bank of England 2007, 39). As the

Bank of England explains, these fan charts should be interpreted as “the MPC’s best

collective judgement of the most likely path for the mature estimate of GDP growth, and

the uncertainty around it, both over the past and into the future.” Figure 1 reveals that the

fan becomes progressively narrower as one looks further back in time, as the data

revisions’ process is more complete and fewer future revisions are expected to older
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Fig. 1. Illustrative Bank of England fan chart –GDP data uncertainty.
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estimates. The ONS’s latest estimate of GDP growth is shown in Figure 1 by the solid

black line. Cunningham and Jeffery 2007 provide an explanation of the data revisions

model, used by Bank staff, that along with judgement from the Bank’s Monetary Policy

Committee helps shape the form of these backcast fan charts. Their model exploits

historical patterns in ONS revisions and information from qualitative business surveys.

The Bank assume that data uncertainty is determined by a Gaussian probability density

function (see Bank of England 2007); and the mean of this probability density function

does not always equal or have to equal the ONS’s latest GDP estimate. This enables the

Bank to quantify biases, as well as the variance around the point estimate. For a detailed

discussion and an ex post calibration analysis of the Bank of England’s probabilistic

backcasts see Galvao and Mitchell (2020).

3.2.1. Measurement of Transitory Uncertainty: Real-time Data sets

When considering temporary or transitory uncertainty, the availability of a properly

defined and updated real-time database constitutes a powerful tool. By a properly defined

and updated real-time database we mean one where vintages are recorded by the date of

official release. Commonly, in a real-time database, the data for each vintage (the date at

which the data are released) are presented in a different column, with the rows referring to

the date for which the time series is measured. The final data value shown in each column

is therefore the first release of the data point indicated by the row. This means that real-

time databases often take the form of data triangles – as more recent data vintages

(columns to the right) provide data over longer (more recent) periods of time. Some real-

time databases are based on vintages collected at fixed intervals, such as each week or

month. In this case, especially when vintages are collected monthly, multiple releases

within the month are lost, with only the latest stored. This can compromise the overall

quality of the revisions analysis. Returning to the treatment of transitory uncertainty,

comparison of the vertical (or column) data vintages can be used to identify characteristics

of the revisions process, such as its bias and persistence. In addition, by considering

diagonal data vintages (i.e. data down the diagonals of the data triangle) it is possible to

study the different degrees of uncertainty associated with various releases as well as

empirically check for the existence of a trade-off between timeliness and accuracy.

Finally, by comparing horizontal (or row) data vintages it is possible to study uncertainty

at specific points in time, such as those related to a period of crisis, to see if their intrinsic

uncertainty is different to observations in more normal situations.

The increased accessibility of real-time data sets, in particular in the United States as

maintained by the Federal Reserve Banks of Philadelphia and St. Louis, has enabled

statisticians and economists to analyse and model data revisions; (for example, see

Croushore and Stark 2001, 2003; Croushore 2011; McCracken and Ng 2016). Real-time

databases, especially for GDP, are now available for various countries. This includes the

Euro area (as maintained by the European Central Bank; see Giannone et al. 2012),

Switzerland (Bernhard 2016), the United Kingdom (as maintained by the Bank of

England), Canada (as maintained by Statistics Canada), New Zealand (as maintained by

the Reserve Bank of New Zealand), and the OECD. These databases thus provide a means

to measure and quantify transitory statistical uncertainty.
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3.2.2. Measurement of Conceptual Uncertainty: Seasonal Adjustment

Conceptual uncertainty involves both subjective and objective components. Measurement

of the former is more challenging; and there has been little or no work on it to date.

Measurement, perhaps qualitative, would appear to require the design and use of new

surveys to gauge, for example, the public’s interpretation of GDP data – do the public

understand correctly what GDP measures? For example, experimental evidence from 3000

members of the UK public suggests that a large fraction of the public do not correctly

understand what GDP measures; see Galvao et al. (2019). But as the sub-classification of

conceptual uncertainty suggests, some aspects of conceptual uncertainty can be measured

quantitatively (ex post, i.e. after the revision) by examining revisions to statistics.

Revisions to seasonally adjusted real-time data can be decomposed into two separate but

related sources. The first source is the application of the method used for seasonal

adjustment. As seasonal adjustment involves application of a filter to the underlying series,

with the passage of time as new data accumulate the weights attached in the filter to specific

observations change and there are revisions to the seasonally adjusted estimates; see Wallis

(1982) for further details and analysis. Burridge and Wallis (1985) discuss how the variance

of the seasonally adjusted series can be calculated when the seasonal adjustment filter is

recast as an optimal filtering problem in an unobserved components framework.

The second source of revisions is that for many series, like GDP, the unadjusted data are

themselves revised by the statistics office. Attempts to quantify these revisions, paralleling

the literature that has examined the revisions properties of output gap estimates (cf.

Orphanides and Van Norden 2002), have involved recursive real-time application of the

seasonal adjustment filter to the real-time unadjusted series. For example, Mehrhoff

(2008) considers the empirical quantification of both these sources of uncertainty for

selected German time series, using the real-time database of the Deutsche Bundesbank.

Additional uncertainties arise when calculating seasonally adjusted estimates for

aggregated variables, such as Euro area GDP. This is because Euro area GDP involves the

aggregation of GDP data for the member countries. The question then arises of when the

series should be seasonally adjusted. One can distinguish two approaches. The “direct”

approach consists of seasonally adjusting the raw data of the aggregate itself. The “indirect”

approach consists of seasonally adjusting the raw data corresponding to the sub-components

(national GDP) and then aggregating. In general, the direct and indirect adjustment for an

aggregate series are not identical. Only, under certain conditions, for so-called uniform

seasonal adjustment filters, such as X-11, does the order of seasonal adjustment and

aggregation not matter. But when the filters differ, as they will when an optimal signal

extraction method is used like an unobserved components model, the order is crucial. For

further discussion see Ghysels (1997). For completeness we note that one can also

distinguish a “multivariate” or simultaneous approach that has certain optimality properties,

although since it is computationally demanding and requires hard choices to be made about

the appropriate information set this approach is rarely considered; see Geweke (1978).

4. Consequences of Uncertainty

While the impact of sampling errors (in the first typology) or transitory statistical

uncertainty (in Manski’s typology) can be measured and quantified – at least for some
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variables – as emphasised, measuring and quantifying nonsampling errors and permanent

statistical uncertainties is much harder. This means it is not generally possible to measure

quantitatively, for a specific variable, the relative importance of the different elements or

components of total survey error as delineated in the two typologies. However, perhaps in

part subjectively formed, attempts can still be made to communicate the total error, as the

Bank of England’s fan charts illustrate.

It is an open question whether it is better to try and communicate these data

uncertainties or not; and if so, how? Is it best to communicate data uncertainties

quantitatively, like in the Bank’s fan charts, or qualitatively perhaps via textual caveats

and qualifications that emphasise that the data are uncertain?

Understanding, and certainly measuring, the consequences of uncertainty requires a

cross-disciplinary approach, involving the intersection of psychology, behavioural and

decision science and statistics. Consistent with the conclusions of Manski (2015), it

requires new empirical research to study the effects of uncertainty – and its

communication or lack of – on users’ understanding, interpretation and use of statistics.

A start is made in Galvao et al. (2019) who conduct randomised controlled experiments

and a targeted expert survey in order to assess if and how the UK public and experts

interpret and understand GDP data uncertainty. They find that the majority of the UK

public do understand that there is uncertainty inherent in GDP point estimates. But

communicating uncertainty information to them improves their understanding of why data

revisions happen but does not decrease trust in the data. Their results indicate that it is

particularly helpful to communicate uncertainty information quantitatively via intervals,

density strips and bell curves.

In the absence of (to date) a body of published research both across countries and

economic variables on this neglected issue, here three ways of understanding and

measuring the consequences of data uncertainty are discussed. First, we review the

growing literature, especially in economic statistics, that has sought to analyse and model

data revisions. Secondly, we provide a case-study illustrating how for GDP growth the size

of data revisions – of transitory statistical uncertainty – varies both across time and

countries. Thirdly, we emphasise how the effects of uncertainty, particularly of transitory

statistical uncertainty, relate to the trade-off between the timeliness and accuracy of

statistics.

4.1. Revisions: Real-Time Data Analysis

As Croushore (2011) reviews, over the last 15 years there has been a growing literature,

especially in applied macroeconomics, on if and how data revisions matter. McKenzie

(2006) delineates seven reasons for “revisions” including updated sample information,

correction of errors, benchmarking, updated base period for constant price estimates and

changes in statistical methodology.

Research has examined the properties of data revisions, how structural macroeconomic

modelling is affected by data revisions, how data revisions affect forecasting, the impact of

data revisions on monetary policy analysis, and the use of real-time data when nowcasting.

This research has been supported by the increased, but still imperfect, availability of

realtime data sets by central banks and statistical offices. Importantly, as Croushore (2011)
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concludes, until these data sets became more widely available most economists thought

that data revisions were likely to be small and did not matter. But this view has been shown

to be misplaced by real-time research: data revisions are often found to be large and have

important implications, including for policymakers like central banks.

The general framework often used to measure and analyse the properties of these data

revision uncertainties is twofold. First, studies typically report the mean (or bias) of the

revisions and test if these are statistically significant. Secondly, to provide more information

on the nature of the uncertainties and the ensuing revisions, studies discriminate between

news and noise revisions following the approach of Mankiw and Shapiro (1986).

Tests for whether revisions are news or noise are based on so-called forecast efficiency

regressions:

ynew
t 2 yold

t

� �
¼ bnews

0 þ bnews
1 yold

t þ 1t ð6Þ

ynew
t 2 yold

t

� �
¼ bnoise

0 þ bnoise
1 ynew

t þ 1t ð7Þ

where ynew
t denotes the latest or new estimate of variable y at time t, and yt

old denotes the

previous or older estimate of variable that is revised.

The null hypothesis that data revisions add information (they contain news) implies

bnews
1 ¼ 0. If data revisions remove the measurement error (noise) in the initial release then

bnoise
1 ¼ 0. If data revisions reduce noise, then data revisions are predictable. For additional

details on the application of these tests see Clements and Galvão (2010) and references therein.

4.2. Case-study on GDP: Cross-country Comparisons Measuring Data Revisions

To illustrate the importance, or otherwise, of transitory statistical uncertainties we review

recent cross-country comparisons, from existing studies, that have sought to compare GDP

data revision errors across countries. These papers build on the pioneering work of

Mankiw and Shapiro (1986) and Faust et al. (2005). Faust et al. (2005) found that in the G7

economies, revisions to GDP announcements are large – many revisions in quarterly GDP

growth are over a full percentage point at an annualised rate. Moreover, they found that

while US GDP revisions are largely unpredictable, as predicted by the news model, for

Italy, Japan and the United Kingdom, about half the variability of subsequent revisions can

be accounted for by information available at the time of the preliminary announcement –

so there was evidence for noise.

While studies that measure and then quantify data uncertainties, due to data revisions,

are a helpful method to measure transitory statistical uncertainties, as ever we should recall

the last of the ten sources of uncertainty listed in the typology of Morgenstern (1950): “the

interdependence and stability of errors”. Measures of data uncertainty based on historical

revisions measure just that: “historical” data revisions. They are therefore only a good

guide to current data uncertainties to the extent that we expect history to repeat itself. If the

statistical office, for example, has improved its measurement processes over time we

might well expect current data uncertainties to be less than historical ones.

We should emphasise that different ways of producing and estimating GDP across

countries no doubt affect the balance or relative importance of the different sources of

GDP data uncertainty.
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In more recent work, OECD (2015) compares GDP revisions across OECD countries.

OECD (2015) uses the mean revision to measure the importance of data revisions.

Figure 2, taken from OECD (2015), provides estimates of the mean revisions for a range of

OECD countries, importantly using different measures of the outturn – the final estimate

against which the first GDP estimate is compared. Of course, as data revisions are an

ongoing process the true or final estimate is never in reality observed, so an assumption has

to be made. In applied macroeconomic studies, it is common to take the t þ 2 year or t þ 3

year as the final estimate. This is based on the assumption that revisions after this date are

more unpredictable often reflecting, for example, benchmarking revisions.

Figure 2 shows that most countries make upward revisions to their initial GDP estimates

and this is so across different measures of the outturn. This implies that countries tend to

underestimate GDP growth in their early estimates. An obvious exception is the United

States that initially overstates GDP. Belgium, France, Germany, Italy, Norway, Korea and

the United Kingdom make the lowest mean revisions.

However when these revisions are tested for bias, using statistical significance tests (see

Figure 3), OECD (2015) concludes that short-term revisions (up to five months and after

one year) are random and centered around zero for most countries. Focusing again on the

Year-on-Year (YoY) growth rates, only Belgium, Australia, Norway, Denmark and the

Netherlands experience statistically significant revisions. However, there is more evidence

for bias in the longer term.

These results are supported by the more recent cross-country results reported in Walton

(2016); see Figure 4. Figure 4 again shows that most countries (again with the notable

exception of the United States) have made upwards revisions to their early GDP estimates,

and this result holds across alternative measures of the outturn. This reinforces the finding

that data uncertainties matter – and that these data uncertainties can involve mean (bias)

terms as well as variance components. An important question for future research is why

some countries have high(er) revisions and why some have low(er) and whether, for

example, institutional factors and different statistical systems help explain the observed

cross-country variations. Most OECD countries release their first GDP estimates around

30 to 45 days after the end of the quarter; so (large) cross-country differences in timeliness
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Fig. 2. OECD (2015) cross-country comparison of the importance of GDP revisions: Mean revision to first

published YoY quarterly GDP growth rates (in percentage points) from 1994Q4.

Source: OECD (2015). Reproduced with permission of the OECD.
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Fig. 4. ONS (taken from Walton 2016) estimates of the bias to GDP revisions for selected OECD and G20

countries: Mean revisions to GDP growth (chain volume measure, quarter on quarter) from 1998Q4–2015Q2.

Source: Walton (2016). Reproduced with permission of the ONS.

Australia 0.04 0.04 0.02 0.12 0.07 0.24 0.11 0.35
Belgium 0.03 0.06 0.04 0.03 0.03 0.03 0.07 0.11
Canada  0.01 –0.01 –0.01 0.07 0.03 0.17 0.05 0.26
Denmark 0.16 0.16 0.08 0.13 0.10 0.13 0.09 0.06
Finland  0.05 0.10 0.07 0.20 0.08 0.27 0.13 0.40
France  –0.02 0.00 –0.02 0.03 0.00 0.14 0.02 0.15
Germany 0.04 0.04 0.03 0.07 0.04 0.03 0.02 –0.03
Italy  0.02 –0.01 –0.01 –0.02 0.01 0.03 0.04 0.11
Japan  –0.02 –0.04 –0.01 –0.07 0.00 0.17 0.10 0.29
Korea  0.00 –0.01 0.00 –0.01 0.04 0.14 0.07 0.15
Netherlands –0.01 0.09 0.06 0.12 0.07 0.33 0.10 0.44
New Zealand 0.01 –0.01 0.00 0.14 0.06 0.24 0.11 0.34
Norway  –0.03 0.03 –0.01 0.14 0.00 0.08 –0.01 0.15
Portugal –0.01 0.01 –0.13 0.01 –0.04 0.14 0.01 0.34
Spain  0.00 0.01 0.01 0.03 0.01 0.12 0.07 0.26
Switzerland 0.00 0.01 –0.02 0.01 0.03 0.22 0.08 0.34
United Kingdom 0.02 0.04 0.01 0.07 0.02 0.11 0.05 0.15
United States 0.01 0.02 0.01 –0.03 –0.06 –0.30 –0.07 –0.33
Average  0.02 0.03 10.01 0.06 0.03 0.13 0.06 0.20

Country
5 months later

QoQ YoY
1 year later

QoQ YoY
2 year later

QoQ YoY
3 year later

QoQ YoY

Statistical significancy levels 1% 5% 10%

Fig. 3. OECD (2015) estimates of the bias to GDP revisions: Mean revision and statistical significance at

different revision intervals for QoQ and YoY quarterly GDP growth rates (in percentage points) from

1994Q4–2013Q4.

Source: OECD (2015). Reproduced with permission of the OECD.
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are likely not a key factor in explaining the observed cross-country variations in data

revisions bias.

4.3. Trade-Off Between Timeliness and Accuracy

As discussed, in particular when discussing transitory statistical uncertainty, official

measures of variables like GDP, from national statistical offices, are revised as new

information is received and methodological improvements are made. So the

aforementioned move by the ONS in the United Kingdom to wait 13 days longer before

publishing its first GDP estimate means their estimates will now be based on a higher data

content than previously. This is expected to deliver more reliable GDP estimates, subject

to fewer revisions – emphasising the important trade-off between the timeliness and

accuracy of many statistical estimates. That is, statistics with fewer uncertainties can often

be produced by delaying publication until more sampling and nonsampling information

becomes available. But this delay may impede policy decisions.

As emphasised by Ruggeri Cannata and Mazzi (2017), the choice of the optimal point on

the timeliness-accuracy trade-off curve has always been open to debate. Decisions made

have depended on the characteristics of the statistical system in a given country and users’

and policymakers’ requests. For example, in the United States, macroeconomic variables

tend to be very timely thanks to an efficient and centralised statistical system. By contrast, as

Ruggeri Cannata and Mazzi (2017) go on to discuss, in Europe focus was historically more

on accuracy although, with the advent of monetary union, pressure (from users and

policymakers) for more timely and higher frequency data increased. However, greater

decentralisation made it more difficult for Europe to speed up extant production systems. So

new statistical systems, such as the construction of flash estimates using econometric

methods, were adopted to meet the need for more timely statistics. As national statistical

offices now transition to an era of big data, it is increasingly evident that the historical trade-

offs between timeliness and accuracy will change, as timely big data are used to complement

traditional sources of information. Accuracy may well increase with timeliness.

5. Conclusion

This article emphasises the data uncertainties present in official economic statistics. It

accordingly reviews different categorisations of uncertainty, specifically the traditional

typology that distinguishes sampling from nonsampling errors and the newer, but

complementary, typology of Manski (2015) that distinguishes transitory, permanent and

conceptual uncertainties. The importance of nonsampling or permanent uncertainties for

administrative and big data sources is explained. Throughout, the article aims to

emphasise the importance of measuring and then communicating these uncertainties, as

hard as this can prove in some instances. Thereby, the article seeks to introduce and

motivate the Comunikos project at Eurostat and emphasise the need for more empirical

research to minimise public misunderstanding and misuse of official statistics.

To stress once again the relevance of measuring and communicating uncertainty in

official statistics, we emphasise the point made by Manski (2015, 2019) and Van der Bles

et al. (2019): that reporting official statistics as point estimates projects incredible

certitude. This may lead to sub-optimal decision making. In other words, this practice may
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encourage users to treat statistics as known with certainty. Or they may then make their

own, perhaps misleading, (private/subjective) estimates of the degree of uncertainty

associated with the point estimates presented to them. In short, in the absence of a body of

empirical research seeking to study the impact of data uncertainties on the public’s and

experts’ use and interpretation of official statistics, it is impossible to say, with any

confidence, if and how known and unknown data uncertainties do have an impact.

Moreover, as emphasised by Morgenstern (1950) and consistent with a more recent

literature in econometrics (cf. Granger and Pesaran 2000), what surely matters when

assessing the importance of uncertainty is how this uncertainty affects decisions. This calls

for a joint analysis of how uncertainty matters for decisions made in specific contexts; that

is, uncertainty cannot be really understood free from the context in which the uncertain

data are used. It calls for empirical and experimental studies following Kloprogge et al.

(2007) and Van der Bles et al. (2019) – like Van der Bles et al. (2018, 2020), Manclossi

and Ayodele (2016), and Galvao et al. (2019) – that consider, for a given measure of

uncertainty, how best this data uncertainty should be communicated.
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Clements, M.P., and A.B. Galṽao. 2010. “First announcements and real economic

activity.” European Economic Review 54: 803–817. DOI: https://doi.org/10.1016/-

j.euroecorev.2009.12.010.

Conti, P.L., D. Marella, and M. Scanu. 2012. “Uncertainty analysis in statistical

matching.” Journal of Official Statistics 28: 69–88. Available at: https://www.scb.se/-

contentassets/ca21efb41fee47d293bbee5bf7be7fb3/uncertainty-analysis-in-statistical-

matching.pdf (accessed December 2019).

Croushore, D. 2011. “Frontiers of real-time data analysis.” Journal of Economic

Literature 49: 72–100. DOI: https://doi.org/10.1257/jel.49.1.72.

Croushore, D., and T. Stark. 2001. “A real-time data set for macroeconomists.” Journal of

Econometrics 105(1): 111–130. DOI: https://doi.org/10.1016/s0304-4076(01)00072-0.

Croushore, D., and T. Stark. 2003. “A real-time data set for macroeconomists: Does the

data vintage matter?” The Review of Economics and Statistics 85: 605–617. DOI:

https://doi.org/10.1162/003465303322369759.

Cunningham, A., J. Eklund, C Jeffery, G. Kapetanios, and V. Labhard. 2012. “A state

space approach to extracting the signal from uncertain data.” Journal of Business and

Economic Statistics 30: 173–80. DOI: https://doi.org/10.2139/ssrn.1080189.

Cunningham, A. and C. Jeffery. 2007. “Extracting a better signal from uncertain data.”

Bank of England Quarterly Bulletin 2007Q3. Available at: https://www.bankofen-

gland.co.uk/-/media/boe/files/quarterly-bulletin/ 2007/extracting-a-better-signal-from-

uncertain-data.pdf?la ¼ en&hash ¼ 58933100

C07CD43ED04DC670F9D6721154AD4F87 (accessed December 2019).

De Jonge, E. (2020). “Communicating uncertainties in official statistics – A review of

communication methods.” Available at: https://ec.europa.eu/eurostat/documents/

3888793/12135507/KS-TC-20-011-EN-N.pdf/b2ee60fe-ed5b-ad3e-05bd-56f6b87dfec

0?t¼1608645519272 (accessed May 2021).

Draper, D. 1995. “Assessment and propagation of model uncertainty.” Journal of the

Royal Statistical Society. Series B (Methodological) 57(1): 45–97. DOI: https://doi.org/

10.1111/j.2517-6161.1995.tb02015.x.

Dungan, J., D. Gao, and A. Pang. 2002. “Definitions of uncertainty.” Available at: ftp://ftp.

cse.ucsc.edu/pub/reinas/papers/white.pdf (accessed December 2019).

European Commission. 2010. “Report on Greek government deficit and debt statistics.”

Available at: https://ec.europa.eu/eurostat/documents/4187653/6404656/COM_2010_-

report_greek/c8523cfa-d3c1-4954-8ea1-64bb11e59b3a (accessed October 2020).

Eurostat. 2015. “Eurostat statistics explained.” Available at: https://ec.europa.eu/eur-

ostat/statistics-explained/index.php/Glossary:Accuracy (accessed December 2019).

Eurostat. 2017. “European statistics code of practice: revised edition 2017.” Available at:

https://ec.europa.eu/eurostat/web/quality/principle12 (accessed December 2019).

Mazzi et al.: Data Uncertainty 311

https://www.statcan.gc.ca/eng/conferences/symposium2014/program/14251-eng.pdf
https://www.statcan.gc.ca/eng/conferences/symposium2014/program/14251-eng.pdf
https://doi.org/10.2307/1928739
https://doi.org/10.1016/j.euroecorev.2009.12.010
https://doi.org/10.1016/j.euroecorev.2009.12.010
https://www.scb.se/contentassets/ca21efb41fee47d293bbee5bf7be7fb3/uncertainty-analysis-in-statistical-matching.pdf
https://www.scb.se/contentassets/ca21efb41fee47d293bbee5bf7be7fb3/uncertainty-analysis-in-statistical-matching.pdf
https://www.scb.se/contentassets/ca21efb41fee47d293bbee5bf7be7fb3/uncertainty-analysis-in-statistical-matching.pdf
https://doi.org/10.1257/jel.49.1.72
https://doi.org/10.1016/s0304-4076(01)00072-0
https://doi.org/10.1162/003465303322369759
https://doi.org/10.2139/ssrn.1080189
https://www.bankofengland.co.uk/-/media/boe/files/quarterly-bulletin/ 2007/extracting-a-better-signal-from-uncertain-data.pdf?la=enhash=58933100C07CD43ED04DC670F9D6721154AD4F87
https://www.bankofengland.co.uk/-/media/boe/files/quarterly-bulletin/ 2007/extracting-a-better-signal-from-uncertain-data.pdf?la=enhash=58933100C07CD43ED04DC670F9D6721154AD4F87
https://www.bankofengland.co.uk/-/media/boe/files/quarterly-bulletin/ 2007/extracting-a-better-signal-from-uncertain-data.pdf?la=enhash=58933100C07CD43ED04DC670F9D6721154AD4F87
https://www.bankofengland.co.uk/-/media/boe/files/quarterly-bulletin/ 2007/extracting-a-better-signal-from-uncertain-data.pdf?la=enhash=58933100C07CD43ED04DC670F9D6721154AD4F87
https://www.bankofengland.co.uk/-/media/boe/files/quarterly-bulletin/ 2007/extracting-a-better-signal-from-uncertain-data.pdf?la=enhash=58933100C07CD43ED04DC670F9D6721154AD4F87
https://www.bankofengland.co.uk/-/media/boe/files/quarterly-bulletin/ 2007/extracting-a-better-signal-from-uncertain-data.pdf?la=enhash=58933100C07CD43ED04DC670F9D6721154AD4F87
https://www.bankofengland.co.uk/-/media/boe/files/quarterly-bulletin/ 2007/extracting-a-better-signal-from-uncertain-data.pdf?la=enhash=58933100C07CD43ED04DC670F9D6721154AD4F87
https://www.bankofengland.co.uk/-/media/boe/files/quarterly-bulletin/ 2007/extracting-a-better-signal-from-uncertain-data.pdf?la=enhash=58933100C07CD43ED04DC670F9D6721154AD4F87
https://ec.europa.eu/eurostat/documents/3888793/12135507/KS-TC-20-011-EN-N.pdf/b2ee60fe-ed5b-ad3e-05bd-56f6b87dfec0?t&equals;1608645519272
https://ec.europa.eu/eurostat/documents/3888793/12135507/KS-TC-20-011-EN-N.pdf/b2ee60fe-ed5b-ad3e-05bd-56f6b87dfec0?t&equals;1608645519272
https://ec.europa.eu/eurostat/documents/3888793/12135507/KS-TC-20-011-EN-N.pdf/b2ee60fe-ed5b-ad3e-05bd-56f6b87dfec0?t&equals;1608645519272
https://ec.europa.eu/eurostat/documents/3888793/12135507/KS-TC-20-011-EN-N.pdf/b2ee60fe-ed5b-ad3e-05bd-56f6b87dfec0?t&equals;1608645519272
https://doi.org/10.1111/j.2517-6161.1995.tb02015.x
https://doi.org/10.1111/j.2517-6161.1995.tb02015.x
https://ec.europa.eu/eurostat/documents/4187653/6404656/COM_2010_report_greek/c8523cfa-d3c1-4954-8ea1-64bb11e59b3a
https://ec.europa.eu/eurostat/documents/4187653/6404656/COM_2010_report_greek/c8523cfa-d3c1-4954-8ea1-64bb11e59b3a
https://ec.europa.eu/eurostat/statistics-explained/index.php/Glossary:Accuracy
https://ec.europa.eu/eurostat/statistics-explained/index.php/Glossary:Accuracy
https://ec.europa.eu/eurostat/web/quality/principle12


Eurostat. 2019. “ESS Standard for Quality Reports.” Available at: https://unstats.un.or-

g/unsd/dnss/docs-nqaf/eurostat-esqr_final.pdf (accessed December 2019).

Faust, J., J.H. Rogers, and J. H. Wright. 2005. “News and noise in G-7 GDP

announcements.” Journal of Money, Credit and Banking 37(3): 403–420. DOI: https://

doi.org/10.1353/mcb.2005.0029.

Frale, C., M. Marcellino, G.L. Mazzi, and T. Proietti. 2011. “EUROMIND: a monthly

indicator of the Euro Area economic conditions.” Journal of the Royal Statistical

Society: Series A (Statistics in Society) 174(2): 439–470. DOI: https://doi.org/10.1111/

j.1467-985x.2010.00675.x.

Fuller, W. 1987. Measurement Error Models. John Wiley and Sons: New York. DOI:

https://doi.org/10.1002/jae.3950030407.

Galvao, A.B. 2017. “DSGE models and data revisions.” Journal of Econometrics 196:

215–232. DOI: https://doi.org/10.1016/j.jeconom.2016.09.006.

Galvao, A. and J. Mitchell. 2020. Real-Time Perceptions of Historical GDP Data

Uncertainty, EMF Research Papers 35, Economic Modelling and Forecasting Group,

Warwick Business School. Available at: https://ideas.repec.org/p/wrk/wrkemf/35.html

(accessed September 2020).

Galvao, A. J. Mitchell, and J. Runge. 2019. “Communicating data uncertainty:

experimental evidence for UK GDP.” Economic Statistics Centre of Excellence

Discussion Paper 2019-20. Available at: https://EconPapers.repec.org/RePEc:nsr:es-

coed:escoe-dp-2019-20 (accessed December 2019).

Geweke, J. 1978. “The temporal and sectoral aggregation of seasonally adjusted time

series.” In Seasonal Analysis of Economic Time Series edited by A. Zellner.

Washington, DC: US Department of Commerce, Census Bureau. Available at:

https://www.census.gov/ts/papers/Conference1978/Geweke1978.pdf (accessed Decem-

ber 2019).

Ghysels, E. 1997. “Seasonal adjustment and other data transformations.” Journal of

Business and Economic Statistics 15: 410–418. DOI: https://doi.org/10.1080/07350015.

1997.10524719.

Giannone, D., J. Henry, M. Lalik, and M. Modugno. 2012. “An Area-Wide Real-Time

Database for the Euro Area.” Review of Economics and Statistics 94: 1000–1013. DOI:

https://doi.org/10.1162/rest_a_00317.

Goedeme, T. 2013. “How much Confidence can we have in EU-SILC? Complex Sample

Designs and the Standard Error of the Europe 2020 Poverty Indicators.” Social

Indicators Research 110(1): 89–110. DOI: https://doi.org/10.1007/s11205-011-9918-2.

Granger, C.W.J., and M.H. Pesaran. 2000. “Economic and statistical measures of forecast

accuracy.” Journal of Forecasting 19: 537–560. DOI: https://doi.org/10.1002/ 1099-

131x(200012)19:7%3C537:aid-for769%3E3.3.co;2-7.

Gromme, F. Ustek-Spilda, E. Ruppert, and B. Cakici. 2017. “Citizen data and official

statistics: Background document to a collaborative workshop.” Available at: https://

pdfs.semanticscholar.org/4bc0/6a6504c5086a2e81a299abd95ef42617b77b.pdf

(accessed December 2019).

Groves, R.M., and L. Lyberg. 2010. “Total survey error: past, present and future.” Public

Opinion Quarterly 74: 849–879. DOI: https://doi.org/10.1093/poq/nfq065.

Journal of Official Statistics312

https://unstats.un.org/unsd/dnss/docs-nqaf/eurostat-esqr_final.pdf
https://unstats.un.org/unsd/dnss/docs-nqaf/eurostat-esqr_final.pdf
https://doi.org/10.1353/mcb.2005.0029
https://doi.org/10.1353/mcb.2005.0029
https://doi.org/10.1111/j.1467-985x.2010.00675.x
https://doi.org/10.1111/j.1467-985x.2010.00675.x
https://doi.org/10.1002/jae.3950030407
https://doi.org/10.1016/j.jeconom.2016.09.006
https://ideas.repec.org/p/wrk/wrkemf/35.html
https://EconPapers.repec.org/RePEc:nsr:escoed:escoe-dp-2019-20
https://EconPapers.repec.org/RePEc:nsr:escoed:escoe-dp-2019-20
https://www.census.gov/ts/papers/Conference1978/Geweke1978.pdf
https://doi.org/10.1080/07350015.1997.10524719
https://doi.org/10.1080/07350015.1997.10524719
https://doi.org/10.1162/rest_a_00317
https://doi.org/10.1007/s11205-011-9918-2
https://doi.org/10.1002/ 1099-131x(200012)19:7%3C537:aid-for769%3E3.3.co;2-7
https://doi.org/10.1002/ 1099-131x(200012)19:7%3C537:aid-for769%3E3.3.co;2-7
https://pdfs.semanticscholar.org/4bc0/6a6504c5086a2e81a299abd95ef42617b77b.pdf
https://pdfs.semanticscholar.org/4bc0/6a6504c5086a2e81a299abd95ef42617b77b.pdf
https://doi.org/10.1093/poq/nfq065


Hand, D.J. 2018. “Statistical challenges of administrative and transaction data.” Journal of

the Royal Statistical Society: Series A (Statistics in Society) 181(3): 555–605. DOI:

https://doi.org/10.1111/rssa.12315.

Jacobs, J.P.A.M. and S. van Norden. 2011. “Modeling data revisions: Measurement error

and dynamics of “true” values.” Journal of Econometrics 161: 101–109. DOI: https://

doi.org/10.1016/j.jeconom.2010.04.010.

Kapetanios, G., M. Marcellino, F. Kempf, G.-L. Mazzi, J. Eklund, and V. Labhard. 2021.

“Measuring and communicating uncertainty in official statistics: State of the art and

perspectives.” Statistical working papers collection, Eurostat. Available at: https://ec.

europa.eu/eurostat/cros/system/files/ks-tc-20-006-en-n.pdf (accessed May 2021).

Kapteyn, A., and J.Y. Ypma. 2007. “Measurement error and misclassification: A

comparison of survey and administrative data.” Journal of Labor Economics 25(3):

513–551. DOI: https://doi.org/10.1086/513298.

Kishor, N.K., and E.F. Koenig. 2012. “VAR estimation and forecasting when data are

subject to revision.” Journal of Business and Economic Statistics 30: 181–190. DOI:

https://doi.org/10.1198/jbes.2010.08169.

Kloprogge, P., J. van der Sluijs, and A. Wardekker. 2007. “Uncertainty Communication,

Utrecht: Copernicus Institute.” Available at: http://www.nusap.net/downloads/reports/

uncertainty_communication.pdf (accessed December 2019).

Koch, G.G., and D.B. Gillings. 2006. Inference, Design-Based vs. Model-Based.

American Cancer Society. DOI: https://doi.org/10.1002/0471667196.ess1235.pub2.

Kuznets, S. 1948. “National income: a new version.” Review of Economics and Statistics

30(3): 151–179. DOI: https://doi.org/10.2307/1926746.

Kuznets, S. 1950. “Review of On the accuracy of economic observations, by Oscar

Morgenstern.” Journal of the American Statistical Association 45: 576–79. DOI:

https://doi.org/10.2307/2280732.

Laureti, T., and I. Benedetti. 2020. “Measuring and communicating uncertainty of poverty

indicators at regional level.” Statistical working papers collection, Eurostat. Available

at: https://ec.europa.eu/eurostat/documents/3888793/12137895/KS-TC-20-010-EN-N.

pdf/6745684c-c989-b3e5-33ae-7bd7dd89bf92?t¼1608634421113 (accessed May

2021).

Lui, S., J. Mitchell, and M. Weale. 2011. “Qualitative business surveys: signal or noise?”

Journal of the Royal Statistical Society Series A 174(2): 327–348. DOI: https://doi.org/

10.1111/j.1467-985x.2010.00667.x.

Manclossi, S., and V. Ayodele. 2016. “Users understanding of uncertainty measures to

describe data quality.” Presented at The 21st Government Statistical Service (GSS)

Methodology Symposium Methodology: the key to the door of innovation. Available at:

https://gss.civilservice.gov.uk/wp-content/uploads/2016/07/4.4.3-Silvia-Manclossi-

Users-understanding-and-use-of-uncertainty-measures-to-descripdf (accessed Decem-

ber 2019).

Mankiw, N.G., and M.D. Shapiro. 1986. “News or noise: An analysis of GNP revisions.”

Survey of Current Business (May 1986), US Department of Commerce, Bureau of

Economic Analysis: 20–25. DOI: https://doi.org/10.3386/w1939.

Mazzi et al.: Data Uncertainty 313

https://doi.org/10.1111/rssa.12315
https://doi.org/10.1016/j.jeconom.2010.04.010
https://doi.org/10.1016/j.jeconom.2010.04.010
https://ec.europa.eu/eurostat/cros/system/files/ks-tc-20-006-en-n.pdf
https://ec.europa.eu/eurostat/cros/system/files/ks-tc-20-006-en-n.pdf
https://doi.org/10.1086/513298
https://doi.org/10.1198/jbes.2010.08169
http://www.nusap.net/downloads/reports/uncertainty_communication.pdf
http://www.nusap.net/downloads/reports/uncertainty_communication.pdf
https://doi.org/10.1002/0471667196.ess1235.pub2
https://doi.org/10.2307/1926746
https://doi.org/10.2307/2280732
https://ec.europa.eu/eurostat/documents/3888793/12137895/KS-TC-20-010-EN-N.pdf/6745684c-c989-b3e5-33ae-7bd7dd89bf92?t&equals;1608634421113
https://ec.europa.eu/eurostat/documents/3888793/12137895/KS-TC-20-010-EN-N.pdf/6745684c-c989-b3e5-33ae-7bd7dd89bf92?t&equals;1608634421113
https://ec.europa.eu/eurostat/documents/3888793/12137895/KS-TC-20-010-EN-N.pdf/6745684c-c989-b3e5-33ae-7bd7dd89bf92?t&equals;1608634421113
https://doi.org/10.1111/j.1467-985x.2010.00667.x
https://doi.org/10.1111/j.1467-985x.2010.00667.x
https://gss.civilservice.gov.uk/wp-content/uploads/2016/07/4.4.3-Silvia-Manclossi-Users-understanding-and-use-of-uncertainty-measures-to-descripdf
https://gss.civilservice.gov.uk/wp-content/uploads/2016/07/4.4.3-Silvia-Manclossi-Users-understanding-and-use-of-uncertainty-measures-to-descripdf
https://doi.org/10.3386/w1939


Manski, C.F. 2015. “Communicating Uncertainty in Official Economic Statistics: An

Appraisal Fifty Years after Morgenstern.” Journal of Economic Literature 53(3): 631–

653. DOI: https://doi.org/10.1257/jel.53.3.631.

Manski, C.F. 2016. “Credible interval estimates for official statistics with survey

nonresponse.” Journal of Econometrics 191(2): 293–301. DOI: https://doi.org/10.1016/

j.jeconom.2015.12.002.

Manski, C.F. 2019. “Communicating uncertainty in policy analysis.” Proceedings of the

National Academy of Sciences 116(16): 7634–7641. DOI: https://doi.org/10.1073/p-

nas.1722389115

McCracken, M.W., and S. Ng. 2016. “FRED-MD: A Monthly Database for

Macroeconomic Research.” Journal of Business and Economic Statistics 34(4):

574–589. DOI: https://doi.org/10.1080/07350015.2015.1086655.

McKenzie, R. (2006), “Undertaking revisions and real-time data analysis using the OECD

main economic indicators original release data and revisions database.” OECD

Statistics Working Papers, 2006/02, OECD Publishing, Paris.

Mehrhoff, J. 2008. “Sources of revisions of seasonally adjusted real time data.” Paper

prepared for the Meeting of the OECD Short-term Economic Statistics Working Party

(STESWP), 23–24 June 2008, Paris. France. Available at: http://www.oecd.org/sdd/

fin-stats/40671433.pdf (accessed December 2019).

Mevik, A.-K. 2004. “Uncertainty in the Norweigan Business Tendency Survey.”

Available at: https://www.ssb.no/a/english/publikasjoner/pdf/doc_200410_en/do-

c_200410_en.pdf (accessed December 2019).

Mitchell, J., R. Smith, M. Weale, S. Wright, and E.L. Salazar. 2005. “An Indicator of

Monthly GDP and an Early Estimate of Quarterly GDP Growth.” Economic Journal

115(501): 108–129. DOI: https://doi.org/10.1111/j.0013-0133.2005.00974.x.

Morgenstern, O. 1950. Introduction to survey quality, Princeton University Press.

National Science Foundation 2018. “Data accuracy.” Available at: https://nsf.gov/statis-

tics/2018/nsb20181/report/sections/appendix-methodology/data-accuracy (accessed

December 2019).

Oberski, D.L., A. Kirchner, S. Eckman, and F. Kreuter. 2017. “Evaluating the quality of

survey and administrative data with generalized multitrait-multimethod models.”

Journal of the American Statistical Association 112(520): 1477–1489. DOI: https://doi.

org/10.1080/01621459.2017.1302338.

OECD 2015. “Revisions of quarterly GDP in selected OECD countries.” Statistics

Brief–July 2015 – No 22 by Zwijnenburg. Available at: https://www.oecd.org/sdd/na/

Revisions-quarterly-GDP-selected-OECD-countries-OECDSB22.pdf (accessed Decem-

ber 2019).

ONS 2017a. “Methodology for measuring uncertainty in ONS local authority midyear

population estimates: 2012 to 2016.” Available at: https://www.ons.gov.uk/methodol-

ogy/ methodologicalpublications/generalmethodology/onsworkingpaperseries/ metho-

dologyformeasuringuncertaintyinonslocalauthoritymidyearpopulationestimates20

(accessed December 2019).

ONS 2017b. “ONS methodology working paper series no. 9 – Guide to calculating

standard errors for ONS Social Surveys.” Available at: https://www.ons.gov.uk/metho-

dology/methodologicalpublications/generalmethodology/onsworkingpaperseries/ons-

Journal of Official Statistics314

https://doi.org/10.1257/jel.53.3.631
https://doi.org/10.1016/j.jeconom.2015.12.002
https://doi.org/10.1016/j.jeconom.2015.12.002
https://doi.org/10.1073/pnas.1722389115
https://doi.org/10.1073/pnas.1722389115
https://doi.org/10.1080/07350015.2015.1086655
http://www.oecd.org/sdd/fin-stats/40671433.pdf
http://www.oecd.org/sdd/fin-stats/40671433.pdf
https://www.ssb.no/a/english/publikasjoner/pdf/doc_200410_en/doc_200410_en.pdf
https://www.ssb.no/a/english/publikasjoner/pdf/doc_200410_en/doc_200410_en.pdf
https://doi.org/10.1111/j.0013-0133.2005.00974.x
https://nsf.gov/statistics/2018/nsb20181/report/sections/appendix-methodology/data-accuracy
https://nsf.gov/statistics/2018/nsb20181/report/sections/appendix-methodology/data-accuracy
https://doi.org/10.1080/01621459.2017.1302338
https://doi.org/10.1080/01621459.2017.1302338
https://www.oecd.org/sdd/na/Revisions-quarterly-GDP-selected-OECD-countries-OECDSB22.pdf
https://www.oecd.org/sdd/na/Revisions-quarterly-GDP-selected-OECD-countries-OECDSB22.pdf
https://www.ons.gov.uk/methodology/ methodologicalpublications/generalmethodology/onsworkingpaperseries/ methodologyformeasuringuncertaintyinonslocalauthoritymidyearpopulationestimates20
https://www.ons.gov.uk/methodology/ methodologicalpublications/generalmethodology/onsworkingpaperseries/ methodologyformeasuringuncertaintyinonslocalauthoritymidyearpopulationestimates20
https://www.ons.gov.uk/methodology/ methodologicalpublications/generalmethodology/onsworkingpaperseries/ methodologyformeasuringuncertaintyinonslocalauthoritymidyearpopulationestimates20
https://www.ons.gov.uk/methodology/methodologicalpublications/generalmethodology/onsworkingpaperseries/onsmethodologyworkingpaperseriesno9guidetocalculatingstandarderrorsforonssocialsu
https://www.ons.gov.uk/methodology/methodologicalpublications/generalmethodology/onsworkingpaperseries/onsmethodologyworkingpaperseriesno9guidetocalculatingstandarderrorsforonssocialsu


methodologyworkingpaperseriesno9guidetocalculatingstandarderrorsforonssocialsu

(accessed December 2019).

ONS 2018a. “Communicating quality, uncertainty and change.” Available at:

https://gss.civilservice.gov.uk/policy-store/communicating-quality-uncertainty-and-

change/ (accessed December 2019).

ONS 2018b. “VAT turnover data in National Accounts: background and methodology.”

Available at: https://www.ons.gov.uk/economy/grossdomesticproductgdp/methodolo-

gies/vatturnoverdatainnationalaccountsbackgroundandmethodology (accessed Decem-

ber 2019).

ONS 2019. “Gross domestic product (GDP) QMI.” Available at: https://www.ons.gov.u-

k/economy/grossdomesticproductgdp/methodologies/grossdomesticproductgdpqmi

(accessed December 2019).

Orphanides, A., and S. van Norden. 2002. “The unreliability of output-gap estimates in

real time.” The Review of Economics and Statistics 84: 569–583. DOI: https://doi.org/

10.1162/003465302760556422.

Peters, C.A. 2001. “Statistics for Analysis of Experimental Data.” In Environmental

Engineering Processes Laboratory Manual, edited by S.E. Powers. Champaign, IL:

AEESP. Available at: https://www.princeton.edu/~cap/AEESP_Statchap_Peters.pdf

(accessed December 2019).

Piccolo, D., and R. Simone, 2019. “The class of cub models: statistical foundations,

inferential issues and empirical evidence.” Statistical Methods and Applications 28:

389–435. DOI: https://doi.org/10.1007/s10260-019-00461-1.

Plumper, T., and E. Neumayer. 2012. “Population and sample uncertainty.” EPSA 2013

Annual General Conference Paper 166. Available https://ssrn.com/abstract ¼ 2224688

(accessed December 2019).

Ruggeri Cannata, R., and G.-L. Mazzi. 2017. “The trade-off between timeliness and

accuracy: the perspective of a statistical agency.” In Handbook on Rapid Estimates,

edited by G.L Mazzi. Eurostat and United Nations, : 123–131. DOI: https://doi.org/10.

2785/317290.

Seljak, R. 2006. “Estimation of standard error of indices in the sampling business

surveys.” Proceedings of Q2006 European Conference on Quality in Survey Statistics.

Available at: https://ec.europa.eu/eurostat/documents/64157/4374310/16-ESTIMA-

TION-OF-STANDARD-ERROR-OF-INDICES-IN-THE-SAMPLING.pdf/5721f63b-

9ac8-4767-b557-dd30b0378336 (accessed December 2019).

Smith, R.J., M.R. Weale, and S.E. Satchell. 1998. “Measurement Error with Accounting

Constraints: Point and Interval Estimation for Latent Data with an Application to U.K.

Gross Domestic Product.” Review of Economic Studies 65(1): 109–134. DOI:

https://doi.org/10.1111/1467-937x.00037.

Statistics Canada 2017. “Non-sampling error.” Available at: https://www150.statcan.gc.-

ca/n1/edu/power-pouvoir/ch6/nse-endae/5214806-eng.htm (accessed December 2019).

Stone, R., D.G. Champernowne, and J. Meade. 1942. “The precision of national income

estimates.” Review of Economic Studies 9(2): 111–125. DOI: https://doi.org/10. 2307/

2967664.

Mazzi et al.: Data Uncertainty 315

https://www.ons.gov.uk/methodology/methodologicalpublications/generalmethodology/onsworkingpaperseries/onsmethodologyworkingpaperseriesno9guidetocalculatingstandarderrorsforonssocialsu
https://gss.civilservice.gov.uk/policy-store/communicating-quality-uncertainty-and-change/
https://gss.civilservice.gov.uk/policy-store/communicating-quality-uncertainty-and-change/
https://www.ons.gov.uk/economy/grossdomesticproductgdp/methodologies/vatturnoverdatainnationalaccountsbackgroundandmethodology
https://www.ons.gov.uk/economy/grossdomesticproductgdp/methodologies/vatturnoverdatainnationalaccountsbackgroundandmethodology
https://www.ons.gov.uk/economy/grossdomesticproductgdp/methodologies/grossdomesticproductgdpqmi
https://www.ons.gov.uk/economy/grossdomesticproductgdp/methodologies/grossdomesticproductgdpqmi
https://doi.org/10.1162/003465302760556422
https://doi.org/10.1162/003465302760556422
https://www.princeton.edu/~cap/AEESP_Statchap_Peters.pdf
https://doi.org/10.1007/s10260-019-00461-1
https://ssrn.com/abstract=2224688
https://ssrn.com/abstract=2224688
https://ssrn.com/abstract=2224688
https://doi.org/10.2785/317290
https://doi.org/10.2785/317290
https://ec.europa.eu/eurostat/documents/64157/4374310/16-ESTIMATION-OF-STANDARD-ERROR-OF-INDICES-IN-THE-SAMPLING.pdf/5721f63b-9ac8-4767-b557-dd30b0378336
https://ec.europa.eu/eurostat/documents/64157/4374310/16-ESTIMATION-OF-STANDARD-ERROR-OF-INDICES-IN-THE-SAMPLING.pdf/5721f63b-9ac8-4767-b557-dd30b0378336
https://ec.europa.eu/eurostat/documents/64157/4374310/16-ESTIMATION-OF-STANDARD-ERROR-OF-INDICES-IN-THE-SAMPLING.pdf/5721f63b-9ac8-4767-b557-dd30b0378336
https://doi.org/10.1111/1467-937x.00037
https://www150.statcan.gc.ca/n1/edu/power-pouvoir/ch6/nse-endae/5214806-eng.htm
https://www150.statcan.gc.ca/n1/edu/power-pouvoir/ch6/nse-endae/5214806-eng.htm
https://doi.org/10.2307/2967664
https://doi.org/10.2307/2967664


US Census Bureau 2018. “Measures of nonsampling error (chapter 11).” Available at:

https://www.census.gov/ts/papers/Conference1978/Geweke1978.pdf (accessed Decem-

ber 2019).

Van der Bles, A.M., D. Spiegelhalter, S. Dryhurst, A. Freeman, M. Pearson, and J. Park.

2018. “Determining and facilitating the clearest ways to visualize uncertainty around

estimates, time series and curves.” Report to M2D. Available at:. https://wintoncen-

tre.maths.cam.ac.uk/projects/communicating-uncertainty/ (accessed June 2020).

Van der Bles, A.M., S. van der Linden, A.L.J. Freeman, and D.J. & Spiegelhalter. 2020.

“The effects of communicating uncertainty on public trust in facts and numbers.”

Proceedings of the National Academy of Sciences 117(14): 7672–7683. DOI: https://

doi.org/10.1073/pnas.1913678117.

Van der Bles, A.M., S. van der Linden, A. Freeman, J. Mitchell, A.B. Galvao, L. Zaval,

and D. Spiegelhalter. 2019. “Communicating uncertainty about facts, numbers and

science.” Royal Society Open Science 6: 1–42. DOI: https://doi.org/10.1098/rsos.

181870.

Van der Loo, J. Pannekoek, and L. Rijnveld. 2017. “Computational estimates of data-

editing related variance.” United Nations Economic Commission for Europe,

Conference of European Statistians, Work Session on Statistical Data Editing (The

Hague, Netherlands, 24/26 April 2017). Available at: https://www.unece.org/filead-

min/DAM/stats/documents/ece/ces/ge.44/2017/mtg2/Paper_7_DataEditingBoot-

strap.pdf (accessed December 2019).

Verma, V., G. Betti, and F. Gagliardi. 2010. “An assessment of survey errors in EU-

SILC.” Eurostat: Methodologies and working papers. Available at: https://ec.eur-

opa.eu/eurostat/documents/3888793/5848229/KS-RA-10-021-EN.PDF/2b5b31ad-

3973-48ad-9a87-8645c1d2c16c (accessed December 2019).

Wallis, K.F. 1982. “Seasonal adjustment and revision of current data: linear filters for the

X-11 method.” Journal of the Royal Statistical Society A 145: 74–85. DOI: https://doi.

org/10.2307/2981422.

Walton, A. 2016. “International comparison of GDP revisions.” Office for National

Statistics : 1–34. Available at: https://www.ons.gov.uk/economy/grossdomesticpro-

ductgdp/articles/internationalcomparisonofgdprevisions/2016-04-28 (accessed Decem-

ber 2019).

Received June 2019

Revised December 2019

Accepted November 2020

Journal of Official Statistics316

https://www.census.gov/ts/papers/Conference1978/Geweke1978.pdf
https://wintoncentre.maths.cam.ac.uk/projects/communicating-uncertainty/
https://wintoncentre.maths.cam.ac.uk/projects/communicating-uncertainty/
https://doi.org/10.1073/pnas.1913678117
https://doi.org/10.1073/pnas.1913678117
https://doi.org/10.1098/rsos.181870
https://doi.org/10.1098/rsos.181870
https://www.unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.44/2017/mtg2/Paper_7_DataEditingBootstrap.pdf
https://www.unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.44/2017/mtg2/Paper_7_DataEditingBootstrap.pdf
https://www.unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.44/2017/mtg2/Paper_7_DataEditingBootstrap.pdf
https://ec.europa.eu/eurostat/documents/3888793/5848229/KS-RA-10-021-EN.PDF/2b5b31ad-3973-48ad-9a87-8645c1d2c16c
https://ec.europa.eu/eurostat/documents/3888793/5848229/KS-RA-10-021-EN.PDF/2b5b31ad-3973-48ad-9a87-8645c1d2c16c
https://ec.europa.eu/eurostat/documents/3888793/5848229/KS-RA-10-021-EN.PDF/2b5b31ad-3973-48ad-9a87-8645c1d2c16c
https://doi.org/10.2307/2981422
https://doi.org/10.2307/2981422
https://www.ons.gov.uk/economy/grossdomesticproductgdp/articles/internationalcomparisonofgdprevisions/2016-04-28
https://www.ons.gov.uk/economy/grossdomesticproductgdp/articles/internationalcomparisonofgdprevisions/2016-04-28


The Evolution of the Italian Framework to Measure
Well-Being

Fabio Bacchini1, Barbara Baldazzi1, Rita De Carli1, Lorenzo Di Biagio1, Miria Savioli1,

Maria Pia Sorvillo1, and Alessandra Tinto1

Recently, a new approach for measuring well-being was developed by eighteen European
countries in the wake of the “Beyond GDP movement” started in the 1990 and continued by
the Stiglitz Commission. Among these European economies, eleven of them use measures of
well-being for monitoring public policy. The Italian Statistical Institute (Istat) jointly with the
National Council for Economics and Labor (CNEL) developed a multi-dimensional
framework for measuring “equitable and sustainable well-being” (Bes) and since 2013 Istat
publishes an annual report on well-being. The Bes framework is continuously updated to take
into account new challenges: the exploitation of new data sources, to produce better
indicators; new ways for making the communication more effective and foster public
awareness; the inclusion of well-being indicators in the budget documents, as established by
law. Especially for the latter, the Italian Bes can be considered a forerunner and, more
generally, the Italian experience is one of the most relevant at the European level, showing
potential of become a benchmark for other countries. This article illustrates the development
of the Italian Bes, focusing on its recent progresses and challenges.

Key words: Multidimensional well-being; beyond GDP; SDGs; composite indices; policy
evaluation; official statistics.

1. Introduction

As reported by M. Wolf (Financial Times, 30 May 2019) in March 1809, leaving the US

presidency, Thomas Jefferson wrote that “the care of human life and happiness, and not

their destruction, is the first and only legitimate object of good government”. Echos of this

brilliant intuition are scattered across history, recall Bob Kennedy’s famous speech “GDP

measures everything except that which is worthwhile”. But only in recent years has it been

translated into a suitable set of indicators useful for setting and monitoring the policy

agenda.

Along this path an important step was made in 1990 when the United Nations launched

the Human Development Report (HDR), which laid the foundations for the definition and

measurement of the concept of development, embracing non-income related dimensions

(UNDP 1990). The HDR laid on the “capability approach” of Amartya Sen and Martha

Nussbaum, focusing not on how much a nation produces, but how people who live there
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are doing (Sen 1989; Nussbaum and Sen 1993). Well-being, poverty and inequality must

be assessed in the space of capacity, that is the real opportunities that people have to live

the life they value. Economic resources and material goods should be understood as means

for the realization of functioning, that is people’s real achievements. The approach is

people-centered: the individual is an end and a means for development. In the same period

the World Bank’s World Development Report introduced an international poverty line

based on ‘a dollar a day’ and identified just over a billion people – a fifth of the world

population at the time – as living in extreme poverty (World Bank 1990).

Ten years later, in 2000, the Millennium Development Goals (MDGs) were proposed by

the UN, combining the stimulus of previous years’ UN conferences and the OECD’s

ambition to agree on an international set of indicators to measure development progress and

well-being. Later on in 2007, when the “Istanbul Declaration” (OECD 2007) was signed by

the UN, the World Bank and the European Commission to highlight the need to measure the

progress of societies going “beyond the GDP”, several initiatives aimed at measuring well-

being with economic, social and environmental statistical indicators were already in place

worldwide. Finally, on September 2015 the UN General Assembly adopted the 2030

Agenda for Sustainable Development, in which the Global Goals strive to end poverty,

protect the planet and ensure prosperity for all (UN-DESA 2016).

In this long-standing effort, the work of the Stiglitz Commission (Stiglitz et al. 2009)

represented another important pillar, stressing how important it is to propose well-being as

a multidimensional phenomenon, with different dimensions measured on a micro or macro

population level (i.e., households, regions, countries) across time. In line with the proposal

presented by the Stiglitz Commission, the OECD first developed a framework for

measuring well-being in 2011, as part of the broader Better Life Initiative (OECD 2013).

The OECD’s initiative inspired and urged several national statistical offices (NSOs),

government departments and international organizations to set structured initiatives for the

measurement of well-being through extensive collection of social, environmental and

economic indicators.

The use of well-being indicators to shape and assess public policies is a further step

along the road that has been implemented in a heterogenous way across countries, as

OECD (Exton and Shinwell 2018) and the Horizon 2020 project MAKSWELL (Making

Sustainable development and WELL-being frameworks work for policy, Tinto et al.

(2018) have documented.

Among the international experience, the Italian initiative named “equitable and

sustainable well-being” Benessere equo e sostenibile (Bes), can be considered as a

forerunner presenting a measurement system up to date and a notable example for the

inclusion of well-being indicators in the budget documents. Bes, initially run by the Italian

National Institute of Statistics (Istat) together with the National Council for Economics

and Labor (CNEL), refers to 130 indicators, available at national and regional level,

organized across 12 domains. The indicators are updated two times a year, once jointly

with the dissemination of the annual report on well-being (in the 7th edition, Istat 2019).

The Bes framework is continuously updated to take into account new challenges such as

the exploitation of new data sources, to produce better indicators. Most importantly, the

most recent Budget law (L. 163/2016) assigned to the well-being indicators to measure the

way in which public policy tries to foster citizens’ well-being. Italy is the first country in

Journal of Official Statistics318



the European Union to include well-being as one of the objectives of the Government’s

economic and social policy. Istat contributed to the selection of the subset of 12 Bes

indicators that are now included in the budget documents, accounting for its updating and

real-time estimation.

The increasing importance of well-being indicators in the political debate requires new

ways for making the communication more effective and fostering public awareness. Bes

has developed different strategies for dissemination. Presentation of the data is based on an

in-depth analysis of the dashboard of several indicators. This approach is considered best

suited for studying complex multidimensional phenomena (Stiglitz et al. 2018b). At the

same time, Istat has experimented with the use of composite indices, aggregating

indicators by domain, in line with the wake of other international experiences, and

especially of Human Development Index (HDI) by the UN (UNDP 1990, 2010).

Throughout the text, in accordance to the existing literature (Saisana and Tarantola 2002;

Harvey 2020), we will refer to an individual indicator (something that measures a specific

concept) as an “indicator”, while we will refer to an aggregated (composite) index (a

single score made by mathematically combining several other scores) as an “index”. All in

all, the Bes framework can be considered as a reference point for public debate and a good

example to be considered at national and international level.

This article aims to share the experience of the evolution of the Bes, focusing on its

recent progresses in dissemination and its practical use to improve the discussion on the

budget plan. In particular, Section 2 will describe the current framework for measuring

well-being in Italy, starting from a historical account and later concentrating on the

maintenance and development process. Section 3 will explain how Istat is addressing the

issue of the communication of the results and the different approaches adopted, with pros

and cons. Section 4 will analyze the use of well-being indicators for policy evaluation and

Section 5 will conclude.

2. The Current Framework for Measuring Well-Being in Italy

2.1. The Beyond GDP Movement in Italy

In 2003 the network “Sbilanciamoci!”, comprising 49 Italian organizations and civil

society networks working on public spending and economic policy alternatives, proposed

a composite index to measure development, the Quality of Regional Development Index

(QUARS). The proposed framework was set up along seven dimensions of development at

regional level (Environment, Economy and Labor, Rights and Citizenship, Health,

Education and Culture, Equal Opportunities, Participation). QUARS compared the

“quality of development” at regional level (Lazio and Piemonte), and provincial level

(provinces of Trento and Ascoli Piceno) and at municipal level (Arezzo and Cascina). The

proposal of seven dimensions represented a novelty in the Italian debate, while the

comparison of different territories using also social and environmental indicators stemmed

from a previous experience launched years earlier by the national daily business

newspaper “Il Sole 24 Ore” (Il Sole 24 ore 2019).

Other experiences reinforced the attention on social and environmental issues. In the

1990s Legambiente (League for the Environment) and Ambiente Italia (Environment
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Italy) started to publish the “Urban Ecosystem”, a summary index on the environmental

quality of the provincial capitals. In 2010, Confartigianato, a confederation of artisans and

small enterprises, composite index based on information related to quality of life, cultural

resources and the environment, together with GDP.

Istat contributed to this research effort to expand expanding the availability and use of

social indicators in Official Statistics (Sabbadini and Maggino 2018) by means of the

introduction of the “Multipurpose Survey System” in the 1990s. This step was important

because it gave the Italian community the opportunity to reinforce the dissemination of

social indicators even before the Istanbul Declaration, which stressed the important role of

official statistics as a key provider of data useful for monitoring the progress of societies.

2.2. The Bes Project

In the wake of international and national experiences, Istat, together with the National

Council for Economics and Labor (CNEL), launched an inter-institutional initiative in

December 2010 aimed at developing a multi-dimensional approach for the measurement

of “equitable and sustainable wellbeing” (Bes). The proposal was in line with the

recommendations issued by the OECD and the Stiglitz Commission (Stiglitz et al. 2009).

The project has been characterized by a participatory process, involving civil society,

academia and national experts. All of them were involved in the definition of the

framework and in the selection of indicators. This approch led to a wide acceptance of the

framework.

As a first step, the attention was focused on defining the Italian well-being, searching for

its most notable dimensions. To perform this task, a joint “Steering Group on the

Measurement of Progress in Italian Society” was set up. The Steering Group included

representatives from enterprises, professional associations, trade unions, environmental

groups such as WWF and Legambiente, Italian cultural heritage groups, women’s groups,

consumer protection groups and the civil society network. At the same time, between

October 2011 and February 2012, Italian citizens were asked for their opinion on the

dimensions of well-being elaborated by the Steering Committee, through a dedicated

website that included both a short questionnaire and a blog. The questionnaire was filled in

by 2,518 people on a voluntary basis. In the same period, a further extensive consultation

was set up using the Multipurpose Survey Aspects of daily life that reached 45,000 people

aged 14 years and over, representative of the population resident in Italy. Respondents

were asked to give a score from 0 to 10 to a list of 15 dimensions of well-being.

The results of the consultations and the evidence coming from international experience

were the input for the Steering Group to the definition of the domains. The following 12

domains were identified: health; education and training; work and life balance; economic

well-being; social relationship; safety; landscape and cultural heritage; environment;

subjective well-being; politics and institutions; research and innovation; quality of services.

As a second step of the process, indicators were selected to be included in each domain.

For this process Istat started up a Scientific Committee with more than 80 experts in

different domains of well-being. The selection of indicators was a crucial step, in the sense

that “what we measure” affects “what we do” (Stiglitz et al. 2009). The following criteria

were used for the selection:
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. form part of the Official Statistics,

. time series availability (starting from 2004),

. sub-national availability (Italian regions – NUTS2),

. clear interpretation of the relationship amid indicator and the well-being evolution

(UN–IAEG-MDG 2013),

. both objective and subjective measures were included,

. attention to international comparisons.

The activity of the Scientific Committee on the production of new indicators questions

in pre-existing surveys. For instance, questions on trust in institutions and questions on

perception of landscape and environment were added in the annual multipurpose survey

on Aspects of daily life. Through this process, 134 indicators were identified as

representing the 12 domains of well-being.

According to the definition of the well-being framework, attention was focused on

identifying equity amid social groups and geographic areas of the country, and

sustainability for future generations.

Equity and sustainability are cross-cutting characteristics related to all dimensions of

well-being. Measuring equity leads to focus on the distribution of well-being across

regions, socio-economic groups, gender and age, while the concept of sustainability

mainly relates to inter-generational comparison.

The importance of equity and sustainability for the definition of well-being is addressed

by international literature. Since the 1980s Amartya Sen has stated the need to consider

inequality on information more closely related to living standards (Sen 1989).

Furthermore, the recommendations defined by the Stiglitz Commission (Stiglitz et al.

2009) stated that considering inequalities in human conditions is essential for assessing

quality of life across countries and social groups. The How’s Life? report (OECD 2011)

dedicated special attention to inequalities as a central element in wellbeing assessment,

providing a valuable presentation of multidimensional inequalities related to every

dimension. In 2018, the importance of measuring equity and sustainability was further

reaffirmed by the OECD-hosted High-Level Group on the Measurement of Economic

Performance and Social Progress (HLEG) (Stiglitz et al. 2018a).

These suggestions were identified in the Italian Bes, which presented and analyzed

indicators by regions (NUTS2), gender and age groups. At the same time, specific indicators

were included in the framework to take into account sustainability for future generations.

2.3. The Development and Maintenance of the Bes Framework

After the definition of the framework and the first release of the Istat report in 2013 (Istat

2013), the agenda then focused on the development and maintenance of the framework

adopted to measure well-being. The division in charge of well-being has planned an

annual review of the indicators, taking into account new information needs and new data

sources. The proposed were first discussed with the Scientific Committee and, after the end

of its mandate, with the Commission of Users of Statistical Information (CUIS) and with

experts in the field. This approach makes it possible to maintain the original inspiration of

Bes as a common tool within the community. Following this procedure in 2017, a broad

revision of the set of indicators was carried out to improve timeliness and to strengthen the
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structure of the Landscape and Cultural Heritage, Research and Innovation and Quality of

services domains.

From the beginning, Landscape and Cultural Heritage was characterized –– more than

other domains –– by an exploratory approach. It was not one of the domains proposed by

the Stiglitz Report and it remains a unique case in the international panorama of well-being

statistics. However, some of the indicators of the original set described macro-trends or

context factors, and proved to be quite invariant or unobservable in the short term, hardly

fitting for a yearly report. Therefore, the revision carried out in 2017 led to an

improvement of the domain by strengthening the representation of short-term trends and

identifying new indicators. This led to a substantial reorganisation in which five of the

original indicators were discontinued due to quality issues. Four new indicators were

introduced, either to replace the discontinued ones (Density and importance of museum

heritage for Endowment of cultural heritage; Spread of rural tourism facilities for Quality

assessment of Regional programs for rural development), or to expand the coverage of the

concept map (Impact of forest fires and Pressure of mining and quarrying activities,

referred to the component of the natural landscape).

A general innovation introduced in the Environment domain concerns the way indicators

are organized and analyzed, according to the categories of the DPSIR model Driving Force,

Pressure, State, Impact, Response (Figure 1). The conceptual scheme breaks down the

relationship between the natural system and the anthropic system into successive phases,

connected to each other through a causal circuit. Following this pattern, innovations were

introduced in order to improve territorial representativeness, to merge indicators that

provided information on different aspects of the same phenomenon, and to enrich the

information provided on the stress exerted on water resources and waste management.

trigger
require

replace
modify
eliminate

eliminate
reduce
prevent

restore
influence

provoke
cause

Driving
Forces

Pressures

States

influence
alter

Impacts

Responses

trigger

weaken

Fig. 1. The causal framework DPSIR “driving force, pressure, state, impact, response” for describing the

interactions between society and the environment.

Source: elaboration on Istat (2017).
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With regard to the Research and Innovation domain, it was reformulated with the aim of

broadening the measurement of the different components that interact with innovation,

leaving aside the aspects more closely related to the performance of firms, which are

discussed in depth in other Istat publications (See Istat annual reports on competitiveness,

http://www.istat.it/it/competitivita). The reformulation of the domain is characterized by

three components:

1. the maintenance of the information on research and development, with the addition

of a measure relating to investments in intellectual property, now included in the

national accounts,

2. the introduction of an indicator on employment in cultural and creative industries, and

3. the inclusion of an indicator to measure the country’s capacity to attract highly

educated young people.

This approach was echoed in the work carried out by Eurostat within ESSnet-Culture,

which proposed an estimate of cultural (and creative) employment based on the cross-

reference between the classification of economic activities (NACE Rev. 2) and the

classification of occupations (ISCO-08). In light of the increased focus on the cultural and

creative component, the domain has been renamed “Innovation, research and creativity”.

The revision of the Quality of Services domain identified weaknesses due to partial

coverage of phenomena and lack of timeliness of some indicators. In order to strengthen its

structure, the conceptual scheme was reorganized, at the same time taking into account

different typologies of services (social services, infrastructure and mobility) and their

main characteristics (Allocation and Accessibility; Effectiveness and Satisfaction). An

analytical matrix was used for the analysis, which was also useful for the elaboration of the

composite index, based on the coverage of each cell of the matrix.

In 2018, improvements were mainly related to checking for the relevance of the selected

domains and to the multidimensional analysis. With regard to the first point, a set of

questions was included in the Istat Consumer confidence survey to evaluate the

importance of the 12 domains for measuring people’s well-being and quality of life.

Respondents were asked to evaluate each domain on a scale between 0 and 10 (See

Figure 2). The results confirmed that all 12 domains are considered significant, with

average marks between 7.4 (politics and institutions) and 9.5 (health). At the same time, a

new section was introduced in the report to present analyses on the multidimensional

characteristics of well-being. The first two contributions were devoted to the determinants

of subjective well-being and to the vertical inequality.

Finally, in the last edition of 2019 of the report (Istat 2019) the analysis of indicators by

region, gender and age group was accompanied by an analysis of indicators also by

educational level, in order to enhance the evaluation of equity.

3. Dissemination of the Results: Dashboard and Composite Indices

Communicating the results is an important step to take into account in order to succeed in

redirecting citizens’ focus on well-being.

Many different and complementary approaches can be used in the analysis of well-being

and in the dissemination of results. For instance, one can either opt for the analytical
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comment of a dashboard of several individual indicators or the use of one or more

composite indices aggregating conceptually unrelated indicators. While the former has the

advantage of providing a detailed picture, it does not allow for easy public communication

and easy comparisons across countries and over time (Ciommi et al. 2017; Bleys 2012). On

the other hand, composite indices can be very useful for summarizing multi-dimensional

realities, for supporting decision-makers, and for the dissemination of findings; even if

complex concepts are very difficult (some says impossible) to capture with only one index

(“different numbers are useful for different purposes, and local context is important in

selecting which numbers matter for what”, Stiglitz et al. 2018b) – there is a long-lasting

and never resolved scientific duel between aggregators and non-aggregators: for some

hints read on, for an overview see Greco et al. (2019), for a detailed analysis see Sharpe

(2004)).

For the Bes initiative (Section 2) Istat has primarily adopted the dashboard approach.

Proposed indicators are presented, analyzed and commented yearly in a report on

Equitable and Sustainable Well-being in Italy (Bes reports – eight reports published so far

since 2013). For each of the 12 well-being domains, a specific chapter is devoted to the

analysis of the level of indicators, their evolution over time and the comparison across

regions, gender, age and level of education. Since the 2018 report (Istat 2018) Istat has

decided to complement these analyses with immediate summary measures, based on the

dashboard. We can get a glimpse of temporal trends by counting how many indicators

have improved or deteriorated in the latest available year (Figure 3) providing an initial

outlook of the evolution of well-being. For example, in 2018 in Italy over 50% of the 115

indicators for which comparison is feasible show an improvement in all areas of the

country. Over the last year, in Italy, in the majority of domains over 50% of the indicators

improved, while lower values are recorded in the domains Work and life balance (41.7%),

Social Relationships (44.4%), Landscape and Cultural Heritage (44.4%) and Environment

(46.7%) (Istat 2019). Moreover, we can get a glimpse of the overall representation of

relative levels of well-being in the Italian regions by observing the distribution by quintiles

5 6 7 8 9 10

Politics and public institutions

Social relationships

Economic well-being

The Country's capacity for research and innovation

The quality of services for people and families

Landscape and cultural heritage

Feeling satisfied with life

The environment and its protection

Work and its quality

Personal security with respect to crime

Education and training

Good health and attention to lifestyles

Fig. 2. Average score attributed to the Bes domains (between 0 and 10). Italy. Year 2018. Data from Istat

Consumer confidence survey 2018.
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of the indicators in the most recent available year (Figure 4). This figure shows how the

geography of equitable and sustainable well-being reflects the traditional Italian territorial

gradient, with the northern regions showing higher levels of well-being compared to the

central and southern regions. The provinces of Bolzano and Trento have the highest levels

of well-being, with 53.2% and 60% of the indicators in the highest quintile respectively,

and less than 10% at the opposite extreme in the first quintile.

The lowest levels of well-being are recorded in Calabria and Sicilia, with 56.3% and

52.1% of the indicators falling in the first quintile, respectively (Istat 2019).

Yet, the dashboard approach (even if accompanied by these counting schemes) fails to

fulfill the strong demand for a synthesis of all the data, while it is true that composite

indices provide an easy tool to compare complex dimensions effectively, also over time,

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Work and life balance (12)
Social relationships (9)

Landscape and cultural heritage (9)
Environment (15)

Economic well-being (10)
Health (13)

Quality of services (9)
Innovation, research and creativity (7)

Education and training (11)
Politics and institutions (12)

Safety (4)
Subjective well-being (4)

Total (115)
Improvement Stability Deterioration

Fig. 3. Trend of Bes indicators: comparison between latest available year (in most cases 2018) and the previous

one by domain. Percentage of total comparable indicators. Italy.

Source: Istat (2019).

I II III IV V

(0–20) (20–40) (40–60) (60–80) (80–100)

Piemonte 8,4 10 18,5 22 28,6 34 31,9 38 12,6 15 119

Valle d'Aosta/Vallée d'Aoste 15,5 18 12,1 14 12,9 15 21,6 25 37,9 44 116

Liguria 15,0 18 20,8 25 22,5 27 25,8 31 15,8 19 120

Lombardia 12,6 15 13,5 16 15,1 18 22,7 27 36,1 43 119

Bolzano/Bozen 9,9 11 10,8 12 11,7 13 14,4 16 53,2 59 111

Trento 9,1 10 0,9 1 12,7 14 17,3 19 60,0 66 110

Veneto 9,2 11 18,3 22 13,3 16 31,7 38 27,5 33 120

Friuli–Venezia Giulia 5,0 6 11,8 14 16,0 19 29,4 35 37,8 45 119

Emilia–Romagna 12,7 15 18,6 22 13,6 16 26,3 31 28,8 34 118

Toscana                               8,3 10 12,5 15 32,5 39 30,0 36 16,7 20 120

Umbria                                10,3 12 22,2 26 31,6 37 20,5 24 15,4 18 117

Marche                                5,9 7 21,9 26 27,7 33 28,6 34 16,0 19 119

Lazio                                 21,7 26 35,0 42 18,3 22 13,3 16 11,7 14 120

Abruzzo                               12,5 15 43,3 52 21,7 26 17,5 21 5,0 6 120

Molise                                26,5 31 31,6 37 11,1 13 14,5 17 16,2 19 117

Campania                              57,5 69 15,0 18 10,8 13 6,7 8 10,0 12 120

Puglia                                38,3 46 30,8 37 12,5 15 9,2 11 9,2 11 120

Basilicata                            31,9 38 31,1 37 16,0 19 6,7 8 14,3 17 119

Calabria                              56,7 68 13,3 16 7,5 9 6,7 8 15,8 19 120

Sicilia                               52,5 63 15,8 19 13,3 16 9,2 11 9,2 11 120

Sardegna                              26,1 31 33,6 40 13,5 16 14,3 17 12,6 15 119

North 6,5 8 17,1 21 14,6 18 41,5 51 20,3 25 123

Center 9,8 12 26,2 32 40,2 49 18,0 22 5,7 7 122

South and Islands 48,4 59 24,6 30 13,1 16 11,5 14 2,5 3 122

REGIONS and 
GEOGRAPHICAL 
AREAS

Quintiles Number of 
available 
indicators

Fig. 4. Bes indicators by region and quintile. Percentage distribution. Latest available year (in most cases 2018).

Source: Istat (2019).
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facilitating the communication with the general public and promoting accountability

(Saisana and Tarantola 2002 and OECD and JRC 2008). They make it possible to measure

multidimensional concepts in a way that is usually easier to interpret than finding common

trends in many separate indicators. In fact, a complex concept is easier to communicate in

the form of a unique number than in the form of an overabundance of indicators (Greco

et al. 2019; Saltelli 2007; Stiglitz et al. 2018a). That is why composite indices have seen a

general, steep growth in use and impact over the past two decades (Becker et al. 2017;

Greco et al. 2019). That is why composite indices have seen a general, steep growth in use

and impact over the past two decades (Becker et al. 2017; Greco et al. 2019), even if several

criticisms from different angles are still raised against composite indices (Kuc-Czarnecka

et al. 2020): first of all the reduction of information they induce is not always desirable

(Ravallion 2011, 247; Stiglitz et al. 2018b, chap. 2); secondly, composite indices are

considered problematic because their construction involves arbitrary assumptions that

have to carefully assessed, for example about the weighting procedure, which has strong

implications but it is seldom justified (Saltelli 2007, Stiglitz et al. 2009), or because they are

accused of not being based on sound (economic) theory (Ravallion 2010); thirdly,

sometimes they are just examples of the abuse of metrics (Muller 2018; Saisana et al. 2011;

Wilsdon 2016). The computation and use of composite indices was also discussed in the

Bes Scientific Committee for the measurement of well-being (Section 2).

From a general perspective, composite indices for well-being should provide, in a

consistent way, both spatial and temporal comparisons. Cardinal measures are usually

more appropriate than counting measures for the measurement of well-being (Mauro et al.

2018), but there is not a well-established methodology to produce composite indices, and

researchers have to deal with potentially difficult and problematic issues, such as

standardization of variables, implicit weighting, management of substitutability rates.

Actually composite indices could “differ in the dimensions and indicators selected, the

transformations applied to the indicators, the assumed substitutability between indicators

and the relative weights given to them” (Decancq and Lugo 2013, 3).

Furthermore, at the time of the Scientific Committee’s work, one of the most important

composite index was the Human Development Index (HDI), developed by the UN (UNDP

1990, 2016). It currently uses a min-max normalization (with fixed goalposts) and an

aggregation based on a simple geometric mean. It is a summary measure of average

achievement in three key dimensions of human development: a long and healthy life,

educational attainment and having a decent financial standard of living. Even if it has

attracted (and it is still attracting) some criticism (Ravallion et al. 2012; Klugman et al.

2011; Kovacevic et al. 2010), the HDI proved to be enormously useful in shifting attention

to other development outcomes beyond income and in setting up a healthy competition

between countries on their HDI rank. When it is published it usually leads to national and

international press coverage comparing different countries, which in turn can be used by

civil society as a lever to pressure their governments (Stiglitz et al. 2018b). As remarked by

Nobel Laureate A.K. Sen (initially skeptical about aggregations) this media and public

attention would have not been received by a simple set of indicators and the success of HDI

in fostering debate on human development would not have occurred if the exercise had

stopped before a composite index was created (Sharpe 2004). The HDI has been modified

and improved over the years. First, HDI releases were based on the arithmetic mean, but in
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2010, to account for inequalities, the arithmetic mean was replaced with the geometric mean

because the geometric mean reduces the level of substitutability between different

dimensions of well-being, and at the same time it ensures that a given percentage decline in

each one of the individual indicators has exactly the same impact on the HDI. “Poor

performance in any dimension is now directly reflected in the HDI, and there is no longer

perfect substitutability across dimensions. This method captures how well rounded a

country’s performance is across the three dimensions. As a basis for comparisons of

achievement, this method is also more respectful of the intrinsic differences in the

dimensions than a simple average is. It recognizes that health, education and income are all

important, but also that it is hard to compare these different dimensions of well-being and

that we should not let changes in any of them go unnoticed” (cf. UNDP 2010, 15).

As the HDI experience shows that the success of a composite index is due not only to its

statistical rigor, but also to its simplicity and communicability. Thus, the Scientific

Committee for the measurement of well-being suggested that Istat, given its role as a

producer of official statistics, should adopt a simple, transparent, easy to interpret, but not

completely compensatory, aggregation method. After some analyses and experimen-

tations, and following the ten-steps procedure proposed by the OECD (OECD and JRC

2008), Istat has decided to adopt an aggregation method developed by Mazziotta and

Pareto (Mazziotta and Pareto 2016; Istat 2015) that provides the composite AMPI

(Adjusted Mazziotta–Pareto Index). AMPI normalizes each individual indicator between

70 and 130, but to make it easier to interpret the results, this interval is shifted so that Italy

is assigned 100 for the base year 2010. AMPI aggregates normalized indicators by

computing their arithmetic mean and then penalizing the result with respect to the

variability between them.

Istat introduced composite indices for the first time in its 2015 report (Istat 2015), one or two

for each domain, and extended their use at the regional level in the 2017 report (Istat 2017).

In the following years, some issues emerged in the use of AMPI, in particular when

commenting on the evolution of well-being over time (Bacchini et al. 2020). In fact, in the

normalization step the search for the minimum and maximum is performed along all the

time series in each domain. Then, a constraint on the base year is introduced. These two

ways of considering the time dimension might conflict with each other. AMPI, by

construction, defines equilibrium as the situation in Italy in 2010. Therefore, if we

aggregate two Italian indicators, one already at its best in 2010, and stable over time, and

another one that steadily improves from 2010 onwards, then AMPI would unduly impose

more and more burdensome penalties at the composite index over burdensome penalties at

the composite index over time. As a further and more specific example consider the raw

indicators POL3 – Trust in judicial system and POL12 – Prison density for Italy from the

domain Politics and institutions (Istat 2017). The Italian average of POL3, along the time

span 2010–2016, is 4.3. The Italian average of POL12, in the same time span, is 127.2.

From 2010 to 2015, POL3 falls from 4.6 to 4; in the same period POL12 – that is

negatively polarized (the lower, the better) – improves from 151 to 105.2. Considering

POL3 and POL12, with respect to their average values, the situation for Italy is almost

exactly symmetric in these two years. Then again, in 2010 AMPI does not impose any

penalization, while in 2016 AMPI imposes a penalization of 4.6 points, as if the first

indicator (that fell) is much more important than the second (that rose).
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Moreover, the growth rate of the composite index cannot be easily decomposed in the

temporal dynamics of the individual indicators, and fails to provide a measure of social

progress that can be juxtaposed with the classical GDP index (as opposed, among others, to

the Well-being Index by the Portuguese Institute of Statistics, (INE Portugal 2017), or The

Canadian Index of Well-being by the University of Waterloo; University of Waterloo 2016).

For example, consider the composite index Health, elaborated for the period 2009-2016

(Istat 2017). The index is made up of five individual indicators: SAL1 Life expectancy at

birth, SAL2 Healthy life expectancy at birth, SAL3 Physical status index, SAL4

Psychological status index, SAL9 Life expectancy without activity limitations at 65 years

of age. In Figure 5 the composite index for Italy is presented in two variants that combine

different choices for normalization and aggregation: AMPI (with its own normalization)

and index numbers þ geometric mean. The main deviations of the two trends are actually

due to the normalization process rather than the aggregation method. Between 2012 and

2013, AMPI improved by 0.4%, while index numbers þ geometric mean worsened by

0.8%. In fact, the raw indicator SAL9 decreased by 4.2%, while the other raw indicators

changed very little. However, even if the raw indicator SAL1 increases by just 0.4%,

AMPI normalization leads to much more variability and the normalized indicator

improves by 4.4%, overcompensating the change in SAL9 and dragging the composite up.

In fact, index numbers completely respect percentage changes, but do not control for

variability. A similar case can be made for 2014–2015.

Given the risk that AMPI composite indices could be poorly interpreted and could

consequently send misleading messages, Istat currently only publishes composite indices

in the regional factsheets at the end of the Bes report to help in reading about how well-

being at the regional level has evolved. However because of renewed pressure for clarity

and simplicity in communication (see also Section 4), we think that the time is now ripe to

reconsider the aggregation methodology and the use of composite indices as an important

aid for commenting on the evolution of well-being and on regional inequalities. Indeed,

96

98

100

102

104

106

2009 2010 2011 2012 2013 2014 2015 2016

AMPI Index no.'s + GM

Fig. 5. Composite index health computed with two different normalization and aggregation techniques (AMPI;

index numbers and geometric mean). Italy. Years 2009-2016. Data from Istat (2017).
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the use of a multidimensional framework demands a comprehensive metric that can

compute the progress/decline in well-being over time. However, the identification of such

a metric, similar to the integrated system currently adopted to produce GDP measures, is a

difficult task (Durand and Exton 2019) and requires more work and deliberation.

4. Well-Being and Policy Making

The opportunity to shift policy makers’ focus from the exclusive pursuit of economic

growth to a broader consideration of people’s well-being and sustainability has had

considerable impetus in recent years from the 2030 Agenda on Sustainable Development

Goals (SDGs) and through the OECD promotional activity that, starting in the 21st

century, recognized that measuring well-being was very important both for the credibility

and accountability of public policies. Starting with the OECD’s initiative, Stiglitz et al.

(2018a, 103) pointed out that “well-being indicators could be used in the different stages of

the policy cycle, from identifying priorities for action, to assessing the pros and cons of

different strategies to achieve policy goals, to allocate the resources (budgetary, human,

political) needed to implement the selected strategy, to monitor interventions in real time

as they are implemented, and to assess the results achieved and take decisions on how to

change policies in the future”.

Along the same line of thought, one of the initial objectives of the Italian Bes was to

provide sound quantitative support to policy makers, possibly covering all the phases of the

policy cycle as suggested also by Stiglitz et al. (2018a, 103) (Figure 6). Since 2017, the

Italian experience had represented an example of the implementation of this approach since

well-being indicators are deemed, by law, to be a target in the budget plan. Nevertheless,

some work still needs to be done to fully consider them in all phases, especially Evaluation.

4.1. The New Budget Law and Well-Being Indicators

In 2016, Italy adopted a law that introduced the indicators of well-being in the budget

documents (L. 163/2016). This act was among the most important achievements of the

Agenda setting

Policy formulation
(ex ante) 

ImplementationMonitoring

Evaluation
(ex post) Well-being

indicators

Fig. 6. The policy cycle.

Source: elaboration on Stiglitz et al. 2018a.
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efforts addressing the importance of well-being for public policy. Under this act, the

effects of fiscal measures must be considered against a selection of well-being indicators.

This process includes two new annual reports provided by the Ministry of Treasury. The

first one, published in April, is an annex to the Planning Document on Economic and

Financial Policy (DEF–Documento di Economia e Finanza) in which the Government

outlines the policy actions to be undertaken in the next three years. The report includes an

analysis for each well-being indicator on recent developments, as well as two sets of

projections of expected developments; one concerning past trends, and the other on the

expected impact of measures included in the DEF (policy scenario). In February, a second

report presented to Parliament includes an update of the analysis on the well-being

indicators, based on the Budget law for the current year approved before the end of the

year by the Parliament. This report takes into account changes in the macroeconomic

scenario and specific measures set out in the current Budget law.

These two new reports add new perspectives to the policy debate and open the

discussion to new directions, some of which were highlighted by Istat (Istat 2016) and the

Parliamentary Budget Office (UPB 2016) during the hearings in preparation of the final

draft of law 163/2016.

The timing of the two reports puts more pressure on current statistical processes since

Istat’s updating of the indicators is not always aligned with the timing indicated in the law,

due to the organization of complex production processes. In addition, updating the selected

well-being indicators means new econometric models are defined and estimated and are

able to consistently address the relationship between marcoeconomic variables and well-

being indicators. Hence, it is important to assign adequate resources to this task, and to limit

the number of indicators (recalling that the full Bes framework includes 130 indicators).

These considerations illustrate how the process set up by the new law required strong

investment, a testing period and some scope for adjustment before demonstrating the full

capacity of the well-being indicators in policy debates. Parts of these issues have been

addressed and suitable solutions have been put in place, as described below; further

remarks about usability and interpretation of results will be addressed based on the initial

implementation.

4.2. The Selection of Indicators

How a system of indicators can be set up to inform policy making has been discussed in

several publications (Martinuzzi et al. 2013; Swiss Federal Statistical Office 2012; UN

2014; Eurostat 2014a, 2014b; EU DGINS 2015), especially related to the issue of

sustainability and well-being measurements.

In addition, in the Italian case selecting indicators from the whole set of the Bes

framework was considered to be extremely sensitive. To address this, the new Budget law

required the establishment of a high level Commission. The appointed members were: the

Minister of Economy and Finance; the Istat President; the Governor of the Bank of Italy;

two recognized experts Professor Enrico Giovannini and Professor Luigi Guiso. The

Commission was to carry out the selection and to propose a suitable list of well-being

indicators to be included in the policy process. Afterwards, the Commission proposal was

to be discussed and approved by the relevant parliamentary committees.
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This two-step process aimed to ensure both technical soundness and democratic legitimacy:

the members of the Commission were entrusted with the scientific, methodological and

operational expertise, while Parliament –– as the representative body –– was responsible for

the final decision (Figure 7). Nevertheless, critical remarks were raised by some experts, who

maintained that the lack of direct involvement of civil society representatives could weaken

the credibility of the whole process (Gawronski 2017; Olini 2017).

Recognizing this issue, the Commission considered it crucial to define the criteria

informing the selection process. With a starting point in the 130 Bes indicators, general

considerations and specific criteria were discussed and published in a report (Comitato per

gli indicatori di benessere equo e sostenibile 2017) to ensure that the whole process was

transparent (see also Tinto et al. 2018).

The final list of indicators, unanimously approved by the parliamentary committees,

includes 12 indicators:

1. Mean adjusted income (per capita),

2. Income inequality (quintile ratio),

3. Incidence of absolute poverty,

4. Life expectancy in good health at birth,

5. Overweight and obesity,

6. Early school leavers,

7. Non-participation in employment,

8. Employment rate of women aged 25–49 with preschool children versus women

without children,

9. Victims of predatory crime,

10. Mean length of civil justice trials,

11. CO2 and other greenhouse gas emissions (tons per capita), and

12. Illegal building,

Subjective indicators, in particular the indicator on life satisfaction, were not included in

the final list, even if it has been argued that increasing the subjective well-being (as

expressed by the individual perception of the level of satisfaction for his/her own life)

should be considered the ultimate goal of policy (Layard 2011). However, the Commission

followed a pragmatic approach: as subjective well-being cannot be easily linked to single

130 BES
Indicators

Recommended
selection

Parliamentary
Commissions

12 Indicators
BES in DEF

High level Committee

Fig. 7. The selection process.
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policy measures, and it depends on a number of different factors that are out of the sphere

of the Budget law, they opted for its exclusion.

4.3. Lessons from the First Round of Implementation

In 2017, the Ministry of Economy and Finance (MEF) (Ministry of Economy and Finance

2017) published the DEF including, for the first time, analysis related to a subset of well-

being indicators. Only four indicators were considered: mean adjusted income; non-

participation in employment; income inequality index; CO2 and other greenhouse gas

emissions. The subjective side of well-being – considered in the full Bes framework –

was not included in the final selection of indicators. The debate about this choice is still

open: on the one hand the need to fully into account the general level of well-being, on the

other the intrinsic difficulty in linking a subjective indicator to economic measures, such as

those in the Budget law, in a forecasting model. Moreover, this first selection cannot be

considered to represent the different aspects of well-being and sustainability, yet it was

used as a benchmark for the new procedure. The four chosen indicators were updated by

Istat, whereas the MEF projected their development in the next three years both using the

actual scenario (trend) and the measures included in the DEF (policy). See Figure 8.

The policy scenario appears most of the time as a better world: the introduction of new

policies is expected to produce better effects in terms of well-being. The following

February, the same procedure was repeated in the report presented to Parliament, taking

into account the updated macroeconomic scenario and the recently approved Budget law.

This report led to a revision of the expected target for the four well-being indicators.

Following editions of the reports, up to the last one in the 2019 DEF, extended the analysis

of recent trends to the 12 indicators, although projections are limited to the four indicators.

In order to examine results and possible weaknesses, one of the four indicators, Non-

participation in the labour market is used as an example. Figure 9 shows the indicator and

the four different scenarios presented by the Government in the three reports produced

between April 2017 and April 2018. Some conclusions can be drawn from a comparison of
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Fig. 8. MEF scenarios in the 2017 DEF. Data from Istat (observed data: 2014–2016) and MEF (forecasts:

2017–2020) from MEF (2017).
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indicator forecasts over time. The issue of the starting year for simulations is sensitive: the

2017 point forecasted in the first DEF was 0.5 percentage points higher than the observed

one (included in the 2018 DEF), thereby implying an overall overestimation of the whole

forecasting period. The estimate used for the Report to Parliament (RP) was not the final

one but was surely more accurate, as it could already benefit from data published by Istat.

This demonstrates that the preliminary estimation by the Government was more

pessimistic compared to more recent estimates and that the economy performed better

compared to the forecasts included in the first release.

This brings us to a key issue. Revisions of the indicators must to be correctly analyzed in

order to disentangle the movements of the indicators in the different components: updating

of the data, forecasting errors, different effects of the policy. Clearly, only the last one

needs to be considered for the policy analysis.

With regard to the weakness of the framework highlighted in Subsection 4.1, a key point

is timeliness, that is, aligning the time of data dissemination to the provision of the law.

Istat, in cooperation with the National Statistical System, speeded up the dissemination

process by enhancing some steps, whenever possible, and even producing preliminary

pictures for some indicators.

Looking at the 12 indicators, three different approaches were adopted to fill the gap: for

seven indicators only the dissemination phase was accelerated; for three indicators

provisional data were produced (thanks to an improvement of the production process); two

indicators were based on forecasting models (Table 1).
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Fig. 9. Non-participation in the labour market –observed and forecasted rates. Italy. Years 2010–2021. Data

from Istat (observed data: 2010–2016) and MEF (forecasts: 2017–2021).

Table 1. Number of indicators updated with 3-months time lag, by method

No. Method Source

7 Currently available Istat, Ministry of Justice, Cresme
3 Ad hoc estimates on provisional data Istat, Ministry of Interiors
2 Models for ash estimates Istat and Istat based on Ispra data
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Once the well-being indicators were available for the last year, forecasting models

developed by the MEF Department of Economic-Financial Analysis and Research were

run. This activity was based only partially on past experiences, like for example for the

indicator on income-inequality (Di Nicola et al. 2015) that integrates survey data, tax

records and an estimate of tax evasion and erosion.

For the other indicators, a specific model has been developed that, like for the indicator

for CO2, runs on a different forecasting model, estimated to fill the data gap until the most

recent year. When the complete policy cycle will be related to all well-being indicators, as

suggested in Figure 6, the problem of the deviation that might be introduced by estimated

data (for some indicators) will become more urgent with respect to the ex post evaluation

of forecasted levels.

The full introduction of well-being indicators linked to all phases of the policy cycle is

the main issue hindering process fulfillment. At present, the steps of “Policy formulation”

and “Monitoring” are explicitly considered in the framework, the “Agenda setting” could

be better defined, while “Implementation” and the “Evaluation” phases are not being

directly addressed. All these issues need to be put to the attention of public debate to reach

the goal of the well-being revolution: design and discuss public policies in term of their

impact on well-being.

5. Conclusions

The international debate on the development and use of well-being indicators has grown in

years, driven both by notable suggestions from the political and economic field (Stiglitz

et al. 2009, Stiglitz et al. 2018a), and by the increasing number of measurement

frameworks carried out by national and international statistical institutions. This huge

effort to “go beyond GDP” has stimulated the policy discussion on enforcing the adoption

of well-being indicators to assess the impact of budget plans on citizens’ well-being.

The Italian experience can be considered as a forerunner. The Italian national institute

of statistics (Istat) has developed a comprehensive measurement system of 130 indicators.

The development of the debate on well-being has been fostered by the annual report on

Italian well-being (in 2019 Istat published the seventh edition) and by Istat’s role in

national and international projects on the subject (MAKSWELL and GROWINPRO).

These experiences were recognized in 2016 by the introduction of the law that made it

possible to introduce 12 well-being indicators in the budget documents. In addition, the

Italian Government is required to present the impact of its budget plan both on traditional

macroeconomic main variables as well as their impact on the 12 well-being indicators.

This process entails new challenges and generates some drawbacks that will need to

overcome in the near future: investment to improve the quality and the timeliness of the

well-being indicators; identification of a metric to connect the different domains and the

evaluation of composite indicators, for which the use of administrative sources such as tax

registers to be associated to existing surveys (58% in the case of Bes), looks very promising;

finally, the implementation of big data sources could be another important step (see, for

example deliverable 2.2 and 2.3 of the project MAKSWELL (Van den Brakel 2019, 2020).

A better understanding of the determinants of well-being is another important issue. In

the last two editions of the Bes report, we investigated inequalities such as those between
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different generations and opposite social groups. These results are expected to be useful

for the design of specific policies aiming to decrease inequalities.

Important progresses are also expected on the econometric side. The current forecasting

models and the way in which they aim to address the relationship between well-being

indicators and macroeconomics aggregate should be investigated in depth.

Finally, the use of well-being indicators in the budget plan requires fine-tuning of the

evaluation phase, in order to identify the robustness of the relationship between policy and

indicators. At the same time, this phase could be included in a specific task to extend the

use of the sustainable and equitable well-being indicators to evaluate the public

administration’s performance (see Papi et al. 2020).

Addressing these challenges within the international paradigm of well-being appears

ambitious, and reveals a set of different pathways, each of which opens up different and

amplified perspectives, none of which is without a degree of coarseness. The Italian

experience performed by Istat is an important reference for the international debate in

promoting a well-being approach to the definition of public policy.
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Improving Time Use Measurement with Personal Big Data
Collection – The Experience of the European Big Data

Hackathon 2019

Mattia Zeni1, Ivano Bison1, Fernando Reis2, Britta Gauckler2, and Fausto Giunchiglia1

This article assesses the experience with i-Log at the European Big Data Hackathon 2019, a
satellite event of the New Techniques and Technologies for Statistics (NTTS) conference,
organised by Eurostat. i-Log is a system that enables capturing personal big data from
smartphones’ internal sensors to be used for time use measurement. It allows the collection of
heterogeneous types of data, enabling new possibilities for sociological urban field studies.
Sensor data such as those related to the location or the movements of the user can be used to
investigate and gain insights into the time diaries’ answers and assess their overall quality.
The key idea is that the users’ answers are used to train machine-learning algorithms, allowing
the system to learn from the user’s habits and to generate new time diaries’ answers. In turn,
these new labels can be used to assess the quality of existing ones, or to fill the gaps when the
user does not provide an answer. The aim of this paper is to introduce the pilot study, the i-Log
system and the methodological evidence that emerged during the survey.

Key words: time use survey; big data; ubiquitous computing; smartphones; smart surveys.

1. Introduction

In October 2018 the official statistics offices of the European Statistical System (ESS)

agreed on the “Bucharest Memorandum on Official Statistics in a datafied society (Trusted

Smart Statistics)” (ESSC 2018). This memorandum was a major evolution with respect to

the Scheveningen Memorandum (ESSC 2013). The ESS committed itself to a set of

actions towards the implementation of changes in the way official statistics are produced,

with the goal of continuing to fulfil its role in a society where data, smart technologies and

artificial intelligence are a reality. As part of this effort, big data is an important potential

additional source for the production of official statistics.

Trusted smart surveys make up one of the pillars of smart statistics. Smart surveys are

enabled by personal devices, equipped with sensors and mobile applications that combine

two data collection modes: one based on active inputs from the subjects (e.g., responses to

queries, shared images), and another based on the data collected passively by the device

sensors (e.g. accelerometer, GPS). Trusted smart surveys are an extension of smart

surveys, administered thanks to a set of technologies which, together, increase privacy
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preservation and data security, enhancing their degree of trustworthiness and therefore

acceptance by citizens (Eurostat 2019b).

The Harmonised European Time Use Survey (HETUS) is one of the European official

statistics tools that could take advantage of an implementation as a trusted smart survey.

Given the novelty of the use in official statistics of data from sensors available in

smartphones, it was important to kick-start with an exploration of the possibilities of use in

the context of time use measurement. The tool chosen for this exploration was a

hackathon, at which a significant number of competing teams attempted, in a short period

of time, to find solutions to a statistical challenge.

This article reports on the experience acquired during the European Big Data Hackathon

2019, as the basis for further future development towards more evolved trusted smart

surveys. The remainder of this article is organized as follows: Section 2 presents the state

of the art, Section 3 presents the i-Log system (Zeni et al. 2014) that has been used to

perform the pilot study. Section 4 details the data collection and preparation, Section 5

describes how i-Log pilot studies are organized and carried out. Section 6 lays out the

specific use case of the European Big Data Hackathon 2019. Section 7 draws the lessons

learned from the pilot study, and finally Section 8 presents the conclusions and summarises

the main findings of this article.

2. Time Use Surveys During the Internet Era

The aim of Time Use Surveys (TUS) is the measurement of time use by individuals and

households. In more detail, TUS measure the frequency and duration of human activities,

offering a detailed view of the social behaviour of members of society. Finally, they allow

us to understand how certain variables influence use of time (Dumazedier 1975) by

households and household members.

TUS are more than just frequencies of individual and group time use, since they can be

used as “a unique tool for exploring a wide range of policy concerns including social

change; division of labour; allocation of time for household work; the estimation of the

value of household production; transportation; leisure and recreation; pension plans; and

health-care programmes, among others” (United Nations 2010). They can help to answer

different questions of social and economic relevance, such as revealing the living

conditions of a society and identifying societal changes, as well as allowing us to measure

living standards within a population and between countries. Furthermore, they provide

information about citizens’ demand for public and private services that are of high

relevance in the decision-making process and social planning. They also enable upgrading

economic accounts, improving labour force analysis, supporting the evaluation of social

change, the study of gender issues, the progress on the improvement of quality of life, and

a systematic analysis of leisure time (Robinson 1999).

TUS collect two types of information. The first is diachronic; that is, underlying activity

sequences in time episodes (e.g. of ten minutes) over a period of one day up to a week.

Such type of data is usually collected by a self-completed time-diary that allows

registering, at fixed time intervals, the sequence of an individual’s activities. For each

main activity in each interval, additional information is usually recorded, such as a

secondary activity and information about “where” and “with whom” this activity was
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done. The second type of information collected within a TUS is synchronic, which

includes a paper-based or computer-assisted set of personal interviews (CAPI) about

socio-economic individual and household background variables and often regarding

different aspects of the household and people’s wellbeing. Usually, specific information is

included in the questionnaire about less frequent activities for a period longer than a day

and/or item-specific questions like a seven-day work schedule. The seven-day work

schedule proposed by HETUS (Eurostat 2009; Merz 2009), was removed from the

guidelines of Eurostat 2019a because it is used neither by a large majority of the

participating countries, nor by Eurostat. However, as stated in the guideline “The weekly

schedule of working time can be re-introduced into HETUS when : : : new technical

solutions will be available for the survey” (Eurostat 2019b,14).

Recently, two main aspects posed new challenges to TUS (Juster and Stafford 1991).

Firstly, changes in people’s living conditions and resulting use of time require adaptions to

TUS. In this regard, the balance between in-home and out-of-home time has remained

mainly unchanged (Gershuny and Sullivan 2019) in recent decades. However, the time

people spend online has increased considerably, while the offline time spent on social

activities, activities with other people, reading books and newspapers and offline hobbies

has declined (Vilhelmson et al. 2018; Juster et al. 2004). Secondly, the increasing interest of

the academic research community places new demands on TUS (Juster and Stafford 1991).

The three main challenges TUS face today are (1) the ability to capture the complexity

of social life completely, (2) the granularity of the information, and (3) the cost to run such

a study, both in terms of money and time. In the last three decades, the research

community’s interest in TUS has grown. There is new interest in investigating the

sequence of activities and the time of the day at which they occur. Simultaneous activities

can be properly investigated, and if multiple diaries are collected within a single

household, researchers can use them to investigate patterns of co-presence,

interdependence and cooperation (Gershuny 2015). Research results obtained through

TUS pertain to three main thematic areas: (1) debates on the leisure civilisation and the

end of work; (2) work and life rhythms; and (3) intra-familial synchronising of social time

(Chenu and Lesnard 2006; Bison and Scalcon 2018.

At the same time, computers and modern technologies have completely changed the

types of activities that should be recorded. Related to the growing availability of new

technologies, the question has been raised as to whether it is more important to measure

the time spent on the computer or to capture the activities performed at the computer (e-

mailing, researching, reading, chatting, etc.) or on digital media (Kramarczyk 2015). For

example, on average in 2018, U.S. adults spent over 11 hours a day connected to linear and

digital media, performing different activities like watching, reading, listening to or simply

interacting with media, according to the Q1 2018 study by market-research group Nielsen

(The Nielsen Company 2018). This increase in the time spent on new technologies is not

only due to the younger generations. For instance, in Q1 2018, younger adults (18–34

years old) spent less than nine hours a day, as compared to older adults (50 þ ) who spend

over 12 hours a day with content available across platforms, with a maximum for adult

50–64 of 12.50 hours a day. On the other side, young adults 18–34 spend 57% of their

time-consuming media on digital devices (App/Web on a Tablet/Smartphone, Internet on

a Computer and TV-Connected Devices).
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Internet is changing the individual and societal perception of time and space (Castells

2000; Kramarczyk and Osowiecka 2014). In this perspective: (a) geographic distances are

losing their importance and abolishing the distinction between leisure and work, making the

division between family, friends and work transparent. (b) The amount of time dedicated to

each activity is reduced due to the time compression (Barney 2004); that is, the ability to

perform multiple tasks at the same time. For example, while traveling by train, it is now

possible to connect to the internet, make a commercial transaction, send an e-mail, eat a

sandwich, watch a movie, meet on/offline friends. Paradoxically, on the one hand, new

technologies lead to saving time and, at the same time, the increasing importance in our

everyday life of such activities make them time-consuming (Kramarczyk and Osowiecka

2014). Nowadays, spatial mobility requires new and more in-depth information.

It is no longer suffices to capture the travel event and the reason for that. It is also crucial

to understand travel behaviours. It is not enough to know only the origin and destination of

the trip, but it is also important to know, for example, the route and the time taken.

Moreover, in a multiplicity of tasks carried out at the same time, it is increasingly

important to have more detailed information. For example, computers are a means of

carrying out an activity (e.g. office work) but they can also replace an activity, while the

activity that has been replaced is also essential (e.g. work during a train journey).

Therefore, it is important to collect both information so that the researcher has full

flexibility depending on the research question.

Finally, an important challenge concerns the frequencies of the observations and the

time at which they are carried out. In fact, increasingly often, there is higher demand for

faster provision of data that are of high relevance in decision-making processes and social-

economic planning, or measuring well-being (United Nations 2010). However, on the

other hand, due to the high cost and the complexity, especially for work required to process

the collected data, e.g., the correct coding of open answers by dedicated coders (Hellgren

2014), most of TUS take time intervals of around ten years. Notice, how typical intra-

personal issues such as social well-being, work-life balance, use of information and

communication technologies, mobility and travel, physical activity, social environment,

geographical context, regularity and frequency of individual activities cannot be studied if

they are observed only for one day, but need to be observed for more, consecutive days, for

a typical period and at household level.

In a nutshell, the future challenge is to introduce new methods and technologies to

conduct a TUS that allows, for instance, new ways of sampling time use, to record

information that combines automatic and continuous data collection, with/without human

intervention, that is more accurate in data collection by leveraging the new opportunities

that technology offers. Through their introduction, more context sensitive data could be

collected, the burden of filling out a traditional diary could be reduced, and overall

expenses lowered.

To answer most of these challenges, one opportunity comes from new human mobile

technologies such as smartphones and the applications they run, or any other type of

wearable device (e.g., smartwatches). The smartphone has become an integral part of the

life of large parts of the population, both in economically advanced countries and in

developing countries. Over time, more and more people are using smartphones all the time

and they are using them, for instance, to send text messages, to be active on social media,
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to check the news, to find places on a map and (even) to call other people. The Mobile

Economy report Europe 2018 (GSM Association 2018) forecasts that by 2025 the

penetration rate of connected devices on the European population will be 88%, with

individual subscriptions (SIM cards) at 128% and that smartphone adoption, as a

percentage of the total connections, will be 83%.

These technologies are a valuable alternative to traditional paper diary instruments used

for surveying and they allow time use research to be carried out in a completely different

way (Fernee and Sonck 2014). Smartphones not only allow respondents to report their

activities at a finer grade pace per day and over multiple days, but also enable the

collection of complementary information, such as the person’s mood or how people feel at

random moments during the day (e.g. experience sampling), what short-term activities

they do throughout the day, and so on. Moreover, smartphones are a perfect tool for

collecting multiple types of ‘passive’ data, such as geospatial or inertial sensor streams

(from GPS and inertial sensors), and for collecting the interactions or communications

with others (by monitoring social media apps, calling, voice, text, SMS, email, video-chat

but also using Bluetooth-enabled measurements). Finally, they allow us to collect data

about how people use smartphones (by use of specialized applications supporting, for

example, visual data collection, audio recording, scanning, taking pictures, listening to

music, visiting social network sites). Even more interesting is how these types of data can

be combined with data collected with other modalities (e.g., personal and household

questionnaire by Computer Assisted Web Interviews (CAWI), smartphone beeper/

notifications that collect information at regular points in time including the time diary

information (Robinson 2002), and continuous data from sensors). The result is a much

more comprehensive overview of the respondent’s time use, behaviour and well-being

(Fernee et al. 2013; Fernee and Sonck 2014). In this way, smartphones are not simply a

replacement for the traditional paper and pencil time use diaries, but a ‘multifunctional

tool’ that allows us to combine the traditional methods with new data sources which would

not be possible without smartphones (Link et al. 2014).

Research on surveys administered via smartphone is rather new, with only few early

examples of applications that administer time use serveys (Fernee et al. 2013; Giunchiglia

et al. 2017, 2018). As pointed out by Link (2018), with such new approaches, new

methodological and technical issue arise. The former ranging from sample definition and

penetration rate, to ethics and privacy. The latter instead comprehending usability due to

poor design of the layout of the applications, connectivity related issues and battery life.

Due to these considerations, the "who, what, when, where and why" varies drastically.

Conversely, only now we can start to imagine the potential and the opportunity

presented by this new way of data collection for the scientific community and other

stakeholders to increase knowledge about human behaviour and social rhythms.

Paraphrasing and reversing the suggestion provided by Groves (2011), with a smartphone,

we now collect “Organic Data” supplemented by “Designed Data”: a fruitful combination

of behavioural data from sensors and self-report data from human respondents. In the last

two decades, the smartphone has opened the door to a new generation of measurement

tools for those who study public opinion, attitudes and behaviours as well as other

sociological phenomena (Link et al. 2014). They enable researchers to collect information

that was previously unobservable or difficult to measure, expanding the realm of empirical
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investigation (Sugie 2018). With the new functionality of a smartphone, we can capture

information on people’s attitudes, surroundings, interactions, and behaviours to gain a rich

gratitude for the different lifestyles and personalities that characterize a particular

population. In this scenario, “the use of multimode data-collection apps is not simply the

next stage in evolution of CAI, but rather a species unto itself, with elements of CAI

interacting with a new set of user expectations.” (Link et al. 2014).

3. The i-Log System

The i-Log (Zeni et al. 2014) is a system used to carry out data collection campaigns with the

ultimate goal of studying different aspects of human behaviour related to the use of time.

The system consists of (1) a backend infrastructure deployed in the cloud, designed to

handle a huge number of users and workloads. It is responsible for collecting, processing,

storing and making the collected data available for further analysis. The second component

is (2) a mobile application that runs on the users’ personal mobile devices.

The mobile application has been created for Android mobile devices (an iOS version is

currently under development) and enables continuous data collection about the user. In

more detail, two different types of data are generated: streams of personal big data from the

smartphone’s internal sensors and time diaries in the form of answers to specific questions.

This duality of data types makes i-Log unique with respect to other tools currently available

(Runyan et al. 2013; Wang et al. 2004; Hatuka and Toch 2017) and enables addressing new

challenges that concern the sociological and urban fields, in three ways. First of all, it

enables investigating the real world through data recorded by phone sensors, for example,

geolocation. Secondly, it enables improving existing time diaries (Sorokin and Berger 1939;

Zeni 2017), especially for structured ones (Hellgren 2014). Generally, the problem of time

diaries is that they are expensive and time consuming, both for the participants to fill them in

and for the researcher to analyse the data. i-Log can help in this regard thanks to its ability to

produce highly standardized and comparable survey results. Each answer to the survey is

mapped automatically to a hierarchy of concepts collected in an ontology based on WordNet

(Miller 1998). In this way, even if the survey is provided in different languages, the output is

always composed by a set of standardized concepts that do not need manual processing.

Finally, the third advantage enabled by i-Log is that it can help the respondent in providing

the answer, that is, by reducing her cognitive load. In fact, it can compensate for gaps in the

data due to the subject’s attention and memory deficits that appear in traditional

measurement tools. This is solved through the combination of data that i-Log collects,

which essentially enable the training of machine learning models using the time-diaries

answers as annotation labels. As a result, the trained models can be used to generate labels

when these are not available, filling the gaps in the data.

i-Log is operational for a data collection experiment in an uncontrolled field

environment, outside laboratory settings and with inexperienced users. Its main

characteristics in this regard are:

3.1. Optimized Battery Usage

Today’s smartphones are powerful devices with hardware characteristics comparable to

high-end personal computers. Additionally, they are empowered by an operating system
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that is designed precisely to run applications that allow it to be used in almost any

circumstance. However, this did not come without costs; energy consumption increased

significantly. The fact that in the past decade there is no major breakthrough in battery

technology highlights that the battery is currently the main limitation of today’s

smartphones. The main solution that smartphone and application producers found is to limit

the execution time of the applications on the devices as much as possible, every year with a

more aggressive solution. Therefore, creating an application that runs continuously and in

an efficient way is particularly challenging. i-Log runs continuously in the background to

collect sensor data from the device, without creating a major impact on the battery life.

3.2. Generation of Truthful Data

In order to collect truthful data from users, we decided to install i-Log on their personal

devices instead of providing dedicated ones. This choice presents different advantages,

starting from cost reduction, to speeding up the set-up time of an experiment among

others, but also multiple challenges. A considerable challenge was to reduce the impact of

the usage of the tool on the users’ smartphones as much as possible. In fact, a user who

realises her/his device has slowed down, or been impacted by our application, would have

quitted the experiment immediately, or have altered normal use, consequently altering the

collected data. For this reason, we put a lot of effort into the simplification and

improvement of i-Log performances. We completely removed the user interface typical of

most applications on the market, and instead used an approach based on notifications

(Figure 1). In fact, the user was still informed about the data collection process (Figure 1

left panel), but we decided to do so through a non-invasive notification present in the

notification area of the device. The user can understand that i-Log is running and

collecting data and perform some basic actions like stopping the data collection (another

crucial aspect related to privacy and ethics is that the user should always be in control), or

opening the settings and questions menu (Figure 1 right panel). The only situation in which

the user is required to interact with a user interface element in i-Log is when time diaries

are filled in. These questions are downloaded from a remote server at specific time

intervals as per the experiment characteristics and have specific formats.

At the moment, i-Log enables replying to different combinations of types of

questions/answers:

. Text question, multiple choice answer (Figure 2 left panel)

. Text question, single choice answer

. Text question, open text answer

. Text question, map (component)

. Map (component) question, multiple-choice answer, that is, what were you doing in

the location selected on the map below? (Figure 2 right panel)

. Image question, multiple-choice answer, that is, what do you see in this picture?

3.3. Low Resource Usage

The current version of i-Log has been designed to run on Android, but an iOS version is

currently in development. Android is the most adopted operating system worldwide and
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runs on thousands of different devices. To accommodate the requirements of most of them

we had to reduce the resources (CPU and RAM) i-Log uses as much as possible by

optimizing its code and delegating part of the intensive tasks to the backend. This as an

obvious advantage also in terms of energy use.

3.4. Ability to Work Offline

i-Log has been designed to work offline. It can perform most of its tasks even if the phone

is temporarily not connected to the internet. This is indeed what happens in reality, a

smartphone is always connected except for some specific situations, i.e., the user is in a

tunnel, in the basement, in the metro. The data are collected locally and temporarily stored

in a secure location in form of log compressed files. Periodically, these files are

opportunistically sent over the network to the backend system that processes them.

4. Data Collection and Data Preparation

Each smartphone is different: different brand, model, hardware components and different

software versions. For such reasons, available sensors differ and have different

Fig. 1. The i-Log notification system. The first notification is always on and is used to inform the user about the

data collection (“Tracking is activated”). The second one instead is present when time-diaries are available to be

filled (“You have 2 task(s) to solve”).
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characteristics (collection frequency, accuracy, reliability, etc.). This makes data

collection on a smartphone a challenging task.

In i-Log, we can distinguish between two types of sensors, hardware and software. The

former refers to those physically embedded in the device, like the accelerometer, the

gyroscope and the GPS, among others. The latter instead refers to software components

that generate measurable features, such as an event when a new notification pops up, or

when the device connects to a Wi-Fi network. In i-Log, the sensor data collection process

can be configured based on the needs of each pilot study. Configurable aspects are the

sensors from which to collect data, and the frequency at which data is collected from them.

For example, it can be decided to collect data from the accelerometer at a pace of 60 values

per second, while not collecting from the gyroscope at all. The following table shows the

complete list of sensors available at the time of writing, together with their default

collection frequency: Table 1 .

On a technical level, all data are generated as time-series, consisting of a tuple

composed of a timestamp and one or more values. As briefly mentioned above, the

smartphone generates and stores data locally before synchronizing it with the backend

server for permanent storage. The device stores time-series tuples in a buffer in memory

and as soon as the buffer is full, it is unloaded in a compressed and encrypted file on the

device local storage, inside the application sandbox that prevents other applications from

assessing them. Upon receiving the logs, the backend processes the data thanks to

Fig. 2. The i-Log user interface about text questions (left) and map questions (right).
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pipelines that make use of Apache Spark (Zaharia et al. 2016). The processed data is then

stored in a distributed Cassandra database (Hewitt 2010). On average, we expect a modern

smartphone to generate 500 Mega Bytes (MB) per day of uncompressed data. A data

collection with 500 participants would generate around 7.5 Tera Bytes (TB), without

redundancies and backups, in one month.

Once the data is stored, it is immediately available for analysis. The main way to access

these data is to read them directly from the Cassandra database which, due to its

distribution and scalability, enables responding to queries in a linear amount of time even

with huge amounts of data (in the order of TB). To make the data available to a broader

audience, not only limited to computer scientists, pipelines were created to export the data,

making use of Apache Spark (Zaharia et al. 2016), a distributed computation tool that

reads the data directly from Apache Cassandra and writes them in files on a file system

according to the Apache Parquet (Vohra 2016) format.

For the European Big Data Hackathon 2019, the participants were provided with an

environment with a big data cluster, where they could use a distributed computing infrastructure

powered by Apache Spark that naturally integrates with the Apache Parquet file format.

5. Pilot Studies

A pilot study is composed of six steps that the participants are asked to perform. These

steps are:

Table 1. List of sensors available in the i-Log application with used collection frequency.

Sensor Frequency Sensor Frequency Sensor Frequency

Acceleration 20HZ Screen
Status

On
change

Proximity On
change

Linear
Acceleration

20HZ Flight Mode On
change

Incoming Calls On
change

Gyroscope 20HZ Audio
Mode

On
change

Outgoing Calls On
change

Gravity 20HZ Battery
Charge

On
change

Incoming Sms On
change

Rotation
Vector

20HZ Battery
Level

On
change

Outgoing Sms On
change

Magnetic
Fields

20HZ Doze
MOdality

On
change

Notifications On
change

Orientation 20HZ Headset
plugged in

On
change

Bluetooth Device
Available

Once
every
minute

Temperture 20HZ Music
Playback

On
change

Bluetooth Device
Available (Low
Energy)

Once
every
minute

Atmospheric
Pressure

20HZ WIFI
Networks
Available

Once
every
minute

Running
Application

Once
every 5
seconds

Humidity 20HZ WIFI
Networks
Connected
to

On
change

Location Once
every
minute
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1. Once the subject decides to participate, he is invited to fill out a personal

questionnaire in which the sociodemographic characteristics, the psycho-social

information, together with their personal data (phone number, address, smartphone

characteristics, etc.) are collected. While initially this was run separately, in the latest

iterations of the studies, this process was included directly in i-Log, without the need

to use an external solution,

2. The subject is provided with a code (the same for every participant) to enable

initializing the i-Log application,

3. The subject is allowed to download the i-Log application from the Google Play Store

(i-Log 2019) and install it on his personal Android smartphone (at the time of

writing, the iOS version was not yet available and is currently under development),

4. The subject is required to insert the code that identifies the study into i-Log to start

using it. Without this code, i-Log does not perform any operation. We decided to add

this additional security layer to be sure about the participants of each study,

forbidding external people to participate,

5. At the first execution, i-Log presents the user with an installation procedure

(Figure 3). The objective of this procedure is to explain the purpose of the study, to

formally ask the subject to read and to give consent to the privacy statement and to

Fig. 3. The i-Log initialization procedure with informed consent, login, permissions and profile (left) and

example of permission screen prompted to the user (right).
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grant permissions to collect data from the personal device (both from a technical and

a legal point of view), and

6. Once the installation of i-Log is complete, the pilot study enters its active stage. i-

Log will now collect data from the smartphone’s internal sensors and administer the

Time Use Surveys (TUS). During this stage, the participants are asked to use the

mobile application for a specified period of time (from days to months). During this

period, a helpdesk is available for (technical) issues via email or phone, in case the

participants encounter any issues with the application that cannot be solved by

reading the provided written manuals.

HETUS uses a time resolution of ten minutes for the recording of the time of the

activities. However, in i-Log this value can be changed for every data collection campaign.

Each set of questions is pushed to the application from a cloud server, to guarantee

synchronization among the participants, and once received by i-Log it is shown as a

notification. Even if the respondent is instructed to reply as soon as the notification is

received, in a real-life study, this is not always possible. For this reason, the respondent can

be given a limited or unlimited amount of time to reply to a time episode once the

notification is received. An important feature of the application is the possibility to monitor

different aspects of the behaviour of the respondent in terms of answering behaviour to each

question. In fact, it records the time elapsed between the time of the notification and when

the subject begins to fill in the diary, and the time taken to complete the time-episode diary.

This information is useful for testing the reliability of the respondent answers (Bison et al.

2018) and is an innovative aspect introduced by i-Log and not present in paper-based TUS.

During a study, the smartphone of the user is required to be online at times to receive the

questionnaire initially or to synchronize the collected data with the cloud server. This is not a

problem for modern smartphones since they are connected for most of the time to a network,

either Wi-Fi or 3/4G. However, the application can work even if the connection is not

available for long periods of time. If for example, the user is in a building without network

coverage, the individual questions are not received when supposed to, but instead they are

all delivered only once the device is back online. Each time episode is composed of the same

questions as the HETUS study (what are you doing? where are you? who are you with?) plus

a fourth question that is a seven-point scale about the person’s mood. For each question, the

user is presented with a list of possible pre-coded activities, places and peoples.

Additionally, for the activities, it does not collect secondary activities. These choices have

been made to reduce the respondents’ cognitive load and time necessary to reply. If people

doubted whether their activity matched one of the predetermined categories, they could find

additional explanations and examples in the user manual. In addition to the time use diary,

the respondent was required to reply to two additional experience questions per day, one in

the morning and one in the evening about their mood, with a seven-point scale.

6. The European Big Data Hackathon 2019

Between the 8th and 12th of March 2019, the second European Union (EU) Big Data

Hackathon (Eurostat 2019b) took place alongside the 10th New Techniques and

Technologies for Statistics (NTTS) conference in Brussels, Belgium. Seventeen teams

nominated by European National Statistical Institutes competed to develop a data

Journal of Official Statistics352



analytics tool to address the annual challenge: “How can innovative solutions for data

collection reduce response burden and enrich or replace the statistical information/data

provided by the time use survey?”

The European Big Data Hackathon had three main objectives:

1. to solve statistical problems by leveraging algorithms and available data, by

engaging with developers and data scientists across Europe, giving them the

opportunity to work with relevant data sets in order to generate new ideas and

potentially contrive novel algorithms,

2. to produce innovative products, including visualisation tools, developing prototypes

that official statistics will be able to integrate at European and national level, and

3. to promote partnerships with the research community and the private sector, by

raising awareness about big data initiatives in Official Statistics in Europe.

6.1. Data Sources

Given the focus of the Hackathon, the teams were suggested to use big data, either the data

sets provided for the event and/or some acquired by themselves. The organizers decided to

provide personal big data about individuals, collected from their smartphones. The

members of the teams and additional volunteers collected data before the hackathon using

two frameworks, i-Log and myBigO. Additionally, the teams had at their disposal

traditional time diary data. Part of the diary data was collected on purpose for the

Hackathon, via i-Log, and part was collected previously for other purposes, from the

Modular Online Time Use Survey (MOTUS) and the HETUS.

i-Log was used to provide the main data set for the Hackathon. The time diary user input

and the sensors data specifications were adapted for the Hackathon (see Subsection 6.2).

i-Log provided the only data set where sensors big data and time diary data referred to the

same sample.

The second source of big data was the one provided by myBigO, a framework developed

in the context of BigO, an International European research project to fight against obesity

(Diou et al. 2018). Through the myBigO mobile application, activity data together with

information about mood, and pictures of meal and food advertisement was collected from

volunteers. It contained raw data from sensors, pre-processed data and self-reported data.

Sensor data included geolocation data and recorded signals from accelerometer, barometer,

light, proximity sensor, relative humidity sensor and thermometer. The processed data

contained the recognised (i.e. predicted) physical activity (steps, walking, jogging,

biking: : :), recognized visited points-of-interest (POI) and recognized transportation mode

for trips between detected POIs (foot, bike, car, bus, train). The prediction models used were

the ones trained in the BigO project. The self-reported data contained the pictures of meals

and the mood. myBigO did not collect time diary data.

A first source of time diary data was MOTUS, which is an online time use survey

administered via a website and a mobile application. The data set from MOTUS and used

in the Hackathon was collected from a sample of teachers in primary and secondary

schools in Flanders during one week in 2018 (Minnen et al. 2018). Participants encoded

their activities with reference to a pre-specified classification of 81 work-related activities.

21 activities related to personal and free time, together with the exact start and finish time.
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For each activity, participants registered where they were and with whom. In the case of a

travelling activity, they registered the mode of transportation used. In the case of a work-

related activity, they registered which technical tools they were using, type of teaching

platform and if they were satisfied with the working activity itself (scale one to seven). The

data set included individual validated data for 8,571 teachers.

A second source of time diary data was HETUS, which is a traditional paper-based time

use survey (Eurostat 2019a). This data set contained anonymised micro-data from HETUS

wave 2010. HETUS wave 2010 consisted of 18 countries that had collected TUS data

between 2008 and 2015 based on harmonised guidelines. From the 18 participating

countries, five of them were included in the Hackathon data sets: Austria (AT, 8,234

observations), Belgium (BE, 11,118 observations); France (FR, 27,903 observations);

Hungary (HU, 8,391 observations); and Norway (NO, 7,882 observations). The data

contained the background information of the individuals and their households, and a diary

where every ten minutes of the day the following information is recorded: main and

secondary activity, where the activity took place, if the individual was alone or with

someone and if ICT was used. Each data record (per diary day) contained a total of 1,656

variables.

6.2. i-Log Data Collection

To optimise i-Log for the Hackathon, both the time diary input questions and the sensor

data collection were adapted. The purpose of the adaptation was to provide the teams with

a wide range of possibilities for their analytic choices. One option was to allow the

comparison of data collected by i-Log with data collected by the HETUS survey to some

degree. The two surveys are very different, and a direct comparison is not possible;

however, it offers insights into what is feasible with innovative data collection such as

smart surveys, versus traditional data collection like the HETUS.

The app collected data through three modes: a one-time user input of personal

background characteristics at the start of the collection phase, a regular user input and an

automatic collection of sensor data throughout the whole data collection period (for

privacy preservation and data protection see Subsection 6.3).

Once, at registration time, the participants filled out personal background

characteristics, namely gender, occupation, their main activity status, the employer, and

the place of employment.

The regular user input was triggered once per hour. The choice of the frequency was

driven by personal experience during an initial pilot phase, where a frequency of twice per

hour was tested and considered too burdensome. Each hour the participants received a

notification on their smartphone with four questions, and were prompted to fill out

information about:

. their activity “What are you doing?” with 19 answer categories such as sleeping,

eating, working, and so on,

. the current location “Where are you?” with 13 categories such as home, workplace,

restaurant, and so on,

. the mode of transport (if travelling with a selection of 8 categories such as car, bus,

and so on.),
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. the persons with the participants at the time of the question “Who is with you?” with

seven categories such as nobody, partner, friends, and so on, and

. their mood “What is your mood?”.

Each question included one open-ended category. If the participants did not fill out each

user input, this created a backlog of questions that could be answered at a later stage.

The time diary input questions and its categories were adjusted as closely as possible to the

HETUS survey questions, to allow maximum analytical possibilities for the Hackathon. It is

evident that a different mode requires a revised design. When rewriting the questions to fit the

screen of the smartphone, we shortened the questions and categories. Considering that some

studies suggest that the quality of responses increase with the switch to app and online modes

with respect to paper-based surveys (Stella et al. 2018), it can be assumed that this redesign

reduces the response burden and improved the quality of the answers. The exact wording

considered possible response burden and survey mode effects. Due to time restrictions, the

user input questions could not be pretested as extensively as they could have been.

The possibility of the collection of the sensor data in i-Log is manifold. For the

Hackathon, the decision on which sensor data to collect took account of privacy preservation

rationale and collection needs. Automatically, the app collected the following sensor data:

acceleration/ gyroscope/ gravity/ rotation vector/ magnetic field/ orientation/ temperature/

atmospheric pressure/ humidity/ proximity/ position/ Wi-Fi network connections/ running

applications/ screen status, flight mode, battery status, doze modality/ headset, audio mode,

music playback (no track info)/ notifications received, touch event/ cellular network info.

Before the actual data collection, the developed i-Log app for the Hackathon underwent

a small and brief experimental pre-test. This helped to improve the actual collection phase.

Small initial communication problems that the volunteer participants in the experimental

test encountered, like how to switch on permissions to receive the input questions, were

solved instantly without any disturbance for the data collection – thanks to the instant

feedback from the backend system.

An important result of this small test showed that the user was prompted too frequently, to a

point where the risk of dropouts was too high. Therefore, the frequency of user input was

reduced to an hourly intervention. The backlog of questions created when the participant did

not fill out the user input or was offline, created some irritation and was reduced to eight times.

This is justifiable as in most cases it can be assumed that the participant has long stretches of

the same activity, such as work or sleep, where he or she should not be asked to fill out the same

activity too often. Those decisions maintained the balance between the data collection needs

on the one hand, and the volunteer data collection of the target volunteers on the other.

The target-volunteering participants for the data collection were the hackathon

participants themselves, as well as other volunteers recruited by Eurostat and the

participants. The target group was only persons using Android phones, as i-Log was only

available for this operating system at the time of the hackathon. Eurostat colleagues

received an article via the intranet describing the project in a convincing way and referring

to the privacy statement. The registration for i-Log consisted of downloading the app from

the Google play store, installing it and entering a four-digit access code. The data

collection period was from 28 January until 10 February 2019. In total, 95 persons

registered for the participation in the i-Log data collection experiment for the Hackathon.
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At the end of the data collection period, 66 participants registered around 190,000 hours

of sensor data (between all the sensors and all volunteers), as reported in Figure 4. Besides

the 29 volunteers who did not register any data, some of them did not report data every

day. The number of volunteers reporting data throughout the 14 days of data collection

varied between 39 and 52, with a clear declining trend in time (Figure 5).

Besides the data collected automatically by the application, each volunteer has

registered on average around 15 diary hourly entries per day (Figure 6). In total, between

all the volunteers 8,548 entries have been registered.

6.3. Privacy Preservation and Data Protection

Personal big data poses particular challenges for the preservation of participants’ privacy.

In particular, geolocation data makes the re-identification of individuals in anonymised

data set relatively easy (De Montjoye et al. 2013). For this reason, privacy preservation

and data protection placed particular importance in this experiment.

Privacy preservation is about the non-invasion of the private sphere of the data subject,

that is, the volunteer, meaning the non-disclosure of information he/she is not willing to

share about him/herself. This was accomplished at three levels.

At the first level, this was done by allowing the volunteer to not share the information. In

the case of the data actively inputted (i.e. the activities), the volunteer had the possibility of

not answering. In the case of the data collected automatically (i.e. sensors) there were two
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mechanisms. The first one was by not giving permissions to the mobile application to access

particular types of data (i.e. location data). This could be done in the Android settings and via

the i-Log mobile application. The second mechanism was by giving the volunteer the

possibility at any time to stop the collection of data (done via the mobile application).

At the second level, given that the volunteer chose to share his or her data, his or her

privacy is preserved by minimising the risk that his or her identity is associated with the

data, which was collected about him or her. His or her identity may be revealed by pieces

of information which are public (or easy to obtain) and unique to her. In our case, this was

mainly the email address obtained when the volunteer registered for the data collection.

We minimised the risk by separating this identifying information from the data collected

by the mobile application and by minimising the number of people and the cases where

access was given to both types of data. The linking of both types of data needs to be

possible, to comply with the legal obligation of giving the data subject the possibility to

review, change and delete her data.
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At the third level, given that even with only the data collected by the mobile application,

it may be possible to indirectly identify the volunteer if additional information about her is

obtained via other means, her privacy is preserved by minimizing the number of people

who have access to the data and by restricting the time during which that access is granted.

The people who had access to the data were the members of the 17 teams participating in

the Hackathon, two persons in Eurostat (the data controller) and two persons responsible

for the system administration of the backend. The access was granted until one month after

the end of the Hackathon. On the 12 April 2019, all the data held by Eurostat was deleted

and all individuals who had access to the data were legally obliged to delete any data still

held (by the terms of use agreed by the participants in the Hackathon).

Data protection is about assuring that only rightful people can be granted access to the

data, and not anyone else. This was done technically via the use of encryption during any

data transmission and access control to any stored data. Besides those technical measures,

this was done by imposing legal obligations to all individuals who had access to the data.

The members of the teams participating in the Hackathon had to agree to the terms of use

of the data during registration in the Hackathon, and these required them to “preserve the

confidentiality of information”. The staff of the App providers are bound legally by the

contractual relationship between their organisations and the Commission and signed non-

disclosure agreements. The staff of Eurostat are bound by the staff regulation of the

European institutions.

6.4. Results

After the announcement of the challenge in the evening of the 8th of March 2019, the

teams had two days to work on the development of a data product addressing the

challenge. On the 11th of March 2019 in the morning, each team had ten minutes to

present their data product prototype.

The advantage of a hackathon is that is allows the generation of a relatively large

number of ideas in a short time period. In total there were 17 teams participating in the

Hackathon. Out of those, six teams used, or partly used, data collected by i-Log.

The Swedish team identified places of interest (“zones”) and visualised trajectories in 3D,

with the objective to improve the response burden for time use surveys by predicting the

type of location (e.g. work, home). Based on i-Log data they created zones of mobility

patterns over the day by using geo-positioning data. Every time of movement out of the

defined zone triggers a question to the respondent to name their location. Over time this

creates a multi-selection of activities and the system is able to make suggestions about

which type of activities are being performed by the respondent based on sensor information.

The presented visualisation of trajectories can be used to reward and motivate

participants. The tool can be used for machine learning to train the model before the user

has to start filling out the questions in order to reduce the response burden and add to the

transparency of the data collection process.

The Romanian team had the objective of improving the quality of the time use survey by

using smart survey data and analysing work-life balance variables based on TUS data. The

team explored all data available to assess if there are variables that could be removed to

reduce the response burden for respondents. An imputation method for the transportation
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mode (on foot, public transport and by bicycle) was developed by using an R imputation

package to visualise the variables and results in real time. Furthermore, an analysis of

work-life balance variables was performed using HETUS and MOTUS data.

The Greek team explored how smartphone data can reduce the response burden of time

use surveys by predicting the ‘sleep activity’ events occurrency by using sensor data

concerning the ‘doze’ mode of the device. By inferring the sleep activity, the

corresponding time diaries annotations could be automaticlaly be filled by the system with

the correct label, rather than requiring the user to manually annotate them. Doze mode is

the sensor that allows to detect when the phone is in sleep mode, not used for a prolongued

period of time. The team was able to correlate such modality with the user’s sleep patterns.

A model was developed and evaluated with the respondents’ answers to check if it was

indeed sleep. As future work, other sensors could be integrated to refine precision and

recall and even to extend the model to recognize other activities.

The Dutch team chose to focus on physical activities for time use surveys. Like many

other teams, they have identified the time diary as the main source of response burden and

found that respondents tend to either reduce the amount of questions, or the time interval

between the answers gets larger over time. To tackle this problem, the team proposed to

label the activities automatically. After some exploration, the team found the i-Log data as

the most promising to use. After some data cleaning, the team built a model for predicting

activities from sensor data. Furthermore, the team started to train the model and developed

a convolutional neural network. However, some issues prevented further training. The

labelling should have been more frequent, or closer to the activity, to allow an efficient

search for the matching activity. Missing labels (nonresponse) in the accelerometer and the

small sample size made it difficult to find the matching activity.

The Croatian team developed an app to visualise the relationship between HETUS data

with i-Log data for the variables on activity and location. The objective was to compare

sensor-based data information with traditional survey questionnaire information of the

respondents. Two modules are possible to visualise in the app: activities and places of

location. The team used open source software for their development, and the major difficulty

the team faced was to standardise both sources in a way that made it usable for the app.

The Latvian team developed an app to compare data from i-Log sensor- and user input

data on questions of activity and location. The idea was to find out if no significant

movement of location might correspond to an inactive lifestyle, and if significant

movement might indicate the mode of transportation. In sum, to predict activities from

training using user input information. The team reported problems setting up the

infrastructure, which led to insufficient time for the development in the Hackathon.

After the jury evaluated all proposals, they announced the six winners of the Hackathon.

The six winners were: 1st Statistics Poland, 2nd Istat (Italy), 3rd ONS (UK), 4th Statistics

Estonia, 5th Destatis (Germany), and 6th Statistics Netherlands. At the award ceremony as

part of the conference of New Techniques and Technologies in Statistics (NTTS 2019), the

first three winners received their prize and gave the large audience a laureate lecture of

their work;

. Statistics Poland received the 1st prize for the creation of an open source prototype,

delivering a dashboard for the data analysis of the population time use,
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. Istat from Italy received the 2nd prize for the creation of “SMUTIS”, an integrated

open source environment for data analytics, visualisation and food classification.

. The 3rd prize was given to the ONS, UK, for their development of a system to enrich

the data collected via traditional questionnaire-based surveys with an automatic

processing of photos of meals taken by respondents.

The outcomes of the Hackathon and the event itself were a tremendous success. Some

teams are now in contact with HETUS and HBS production domains for further

development and/or integration of their prototypes.

To conclude, the use of sensor data to predict the location and to pre-fill the

questionnaire would reduce the response burden immensely. Furthermore, the time use

survey can be enriched by visualisations, not only to increase the motivation for

respondents to fill out the sometimes lengthy questionnaires (time diaries), but also to

make the collected data more accessible to a wider audience, and promote the richness of

information collected by the surveys.

7. Lesson Learned

The pilot study presented in this article for the European Big Data Hackathon 2019 is only

one example of the kind of study that can be performed with the i-Log system. Other

previous studies (Zeni et al. 2019), also as part of European H2020 projects (Maddalena

et al. 2019), as well as planned studies in different countries around the world for 2019 and

2020 prove the feasibility of using i-Log in the field. Each study allows i-Log to improve

the methodology and the system, as well as to introduce new functionalities.

Smartphones and related technologies are creating new opportunities and at the same

time presenting new challenges for TUS. They create new ways of sampling and recording

information, which combine automatic and continuous data collection with limited or no

human intervention. This is more accurate and reduces the burden of manually filling in a

traditional diary. It reduces the cost of performing a study and potentially increases the

number of participants. At the same time, such hybrid solutions present many new

methodological and technical problems. Mainly, challenges are the selection of a sampling

mode and the penetration rate, but it also raises issues on the ethical and privacy side, as

well as technical challenges such as usability, connectivity, design, app layout and battery

life of devices.

From a technical point of view, each study results in a vast amount of data together with

feedback collected from the participants that can be used to improve the i-Log application

and its usability. In general, we can distinguish between two main categories of elements

that can be improved: the time use survey part and the big data collection part. Regarding

the former, the main elements that the users reported as possible points to be improved

concern extending the current functionalities of the application while replying. Examples

are the possibility of replying “Same as the previous one”, having a mechanism to

automatically reply when is not possible to do so (for example, while sleeping, at the

cinema, and so on) and defining standard routines to avoid replying to all the three sub-

questions. With respect to answering behaviour, some users highlighted that they needed a

larger testing phase to understand the question wording, sequence, etc., as well as the

categories, and for the technical handling/user interface of the app. In terms of the big data
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collection part, we learned that an interesting feature to be introduced concerns collecting

data also from wearable devices in addition to smartphones. In fact, many users now have

a smartwatch or a smartband connected via bluetooth, and the data generated from them

can provide additional insights into their activities and could also help to fill in the gaps

that occur when users are not using their smartphones. Bluetooth could also be used to

detect nearby devices and physical networks of people in the real world. This functionality

was originally present in i-Log but temporarily removed due to high battery usage, but

insights show that it should be restored because it enables collecting richer data, which is

important for time use analysis.

Concerning the backend part of the system, we learned some valuable lessons from the

feedback received and from our observations. First, by moving to the whole system to the

cloud, we could reduce and optimize the resources needed to run a pilot study (and

consequently the cost). In fact, in the cloud, everything is on demand and the system can

scale up linearly depending on the load, while with standard servers they have to be bought

in advance since the purchasing process is long and complicated from a bureaucratic

angle. Also, when the pilot study is finished, the resources can be released, and the costs

are reduced to zero. The migration to a cloud infrastructure also helped in improving the

deployment phase of the whole architecture. With the Big Data Hackathon use case, we

were able to move to a one-click-deployment pattern, whereby all the components of the

backend were deployed instantly with a single user operation. This increases the

reusability of our approach and reduces the time needed to run a new pilot study in a

different site.

An additional element that improved data collection was the helpdesk towards the final

users, granting different levels of assistance. Level 1 consisted of an exhaustive FAQ guide

available online, level 2 an email address where a dedicated person could answer, and

finally, level 3 email support where requests not satisfied by level 1 or level 2 could be

answered directly by the engineers who built the system. Additionally, the helpdesk and the

different levels showed the need for a dedicated role in a pilot study called Field Supervisor.

The responsibilities of this person are to monitor the pilot study through a dedicated backend

interface that leverages on insights generated by the collected data. This data-driven

approach to support the field study helps to prevent possible unwanted situations that prompt

a user to request assistance from the help desk. One example is a specific user who does not

send data to the backend server. In such a case, the field supervisor can be notified by the

system of such behaviour, be proactive, contact the user and ask focused questions to better

understand the problem, or trigger a specific functionality. For example, enabling the

synchronization of the files over the Wi-Fi network.

8. Conclusions

In this article, we have described the experience with a pilot study of a smart survey in the

context of the European Big Data Hackathon 2019, a satellite event of the NTTS

conference, organized by Eurostat. The main tool used for this pilot was i-Log, which uses

the smartphones of a pre-selected sample of respondents and combines two data collection

modes based on active input from the subjects together with data collected passively from

sensors inside the smartphone.
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The results of this study look promising. i-Log proved capable of carrying out a real

smart survey that combines multiple data sources, which is not simply an extension of

computer-assisted interviewing (CAI). It is a very new type of data collection, with

elements of CAI interacting with a new set of user expectations. The challenges of these

novel tools are still new and partially unknown. Among them, we can mention the

validation and completeness of the data due to malfunctions in the automatic systems.

We are at the beginning of a long and challenging journey. There are many issues to be

addressed, from both a technical and a methodological point of view, such as the

exploitation of the data, and above all the protection of the respondents’ privacy.

Nevertheless, this new data collection tools offers tremendous and unimaginable new

opportunities. The important aspect is to get started.
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Maddalena, E., L.-D. Ibáñez, E. Simperl, R. Gomer, M. Zeni, D. Song, and F. Giunchiglia.

2019. “Hybrid Human Machine workflows for mobility management.” In Companion

Proceedings of The 2019 World Wide Web Conference (WWW ’19). May 2019, San

Francisco, USA: 102–109. DOI: https://doi.org/10.1145/3308560.3317056.

Merz J. 2009. Time use and time budgets: Improvements, future challenges and

recommendations. Society for the Study of Economic Inequality ECINEQ 125.

Miller, G.A. 1998. WordNet: An electronic lexical database. MIT press.

Minnen, J., J. Verbeylen, and I. Glorieux. 2018. Onderzoek naar de tijdsbesteding van

leraren in het basis- en secundair onderwijs. Deel 1: Algemeen. (Time allocation of

teachers in the primary and secondary school. Part 1: General). Vlaamse Overheid,

Brussel: Vakgroep Sociologie, Onderzoeksgroep TOR 57 blz.

Robinson, J.P. 1999. The Time-Diary Method: Structure and Uses. In Time Use Research

in the Social Sciences. New York: Academic/Plenum Publishers.

Robinson, J.P. 2002. “The time-diary method.” Time use research in the social sciences:

47–89. DOI: https://doi.org/10.1007/0-306-47155-8_3.

Runyan, J.D., T.A. Steenbergh, C. Bainbridge, D.A. Daugherty, L. Oke, and B.N. Fry.

2013. “A smartphone ecological momentary assessment/intervention ‘app’ for

collecting real-time data and promoting self-awareness.” PLoS One 8(8). DOI:

https://doi.org/10.1371/journal.pone.0071325.

Sorokin, P.A., and C.Q. Berger. 1939. Time-budgets of human behavior. Harvard

University Press

Stella C., K. Fisher, E. Gilbert, L. Calderwood, T. Huskinson, A. Cleary, and J. Gershuny.

2018. “Using new technologies for time diary data collection: Instrument design and

Journal of Official Statistics364

https://play.google.com/store/apps/details?id=it.unitn.disi.witmee.sensorlog
https://play.google.com/store/apps/details?id=it.unitn.disi.witmee.sensorlog
https://play.google.com/store/apps/details?id=it.unitn.disi.witmee.sensorlog
https://play.google.com/store/apps/details?id=it.unitn.disi.witmee.sensorlog
http://www.jstor.org/stable/2727521
http://ns.umich.edu/Releases/2004/Nov04/teen_time_report.pdf
http://ns.umich.edu/Releases/2004/Nov04/teen_time_report.pdf
https://doi.org/10.13085/eIJTUR.10.1.153-190
http://doi.org//10.13085/eIJTUR.11.1.94-111
http://doi.org//10.13085/eIJTUR.11.1.94-111
https://doi.org/10.1108/QAE-06-2017-0029
https://doi.org/10.1108/QAE-06-2017-0029
https://doi.org/10.1145/3308560.3317056
https://doi.org/10.1007/0-306-47155-8_3
https://doi.org/10.1371/journal.pone.0071325


data quality findings from a mixed-mode pilot survey.” Social Indicators Research

137(1): 379–390. DOI: https://doi.org/10.1007/s11205-017-1569-5.

Sugie, N.F. 2018. “Utilizing Smartphones to Study Disadvantaged and Hard-to-Reach

Groups.” Sociological Methods and Research 47(3): 458 – 491. DOI:

https://doi.org/10.1177/0049124115626176.

The Nielsen Company. 2018. The Nielsen Total Audience Report Q1 2018. Available at:

https://www.nielsen.com/content/dam/corporate/us/en/reports-downloads/2018-

reports/q1-2018-total-audience-report.pdf (accessed April 2020).

United Nations. 2010. “In-depth review on time-use surveys, Economic Commission for

Europe.” Conference of European Statisticians, Note by the German Federal Statistical

Office. ECE/CES/2010/25. Paris, France, 2018. Available at: http://unstats.un.org/unsd/

demographic/sconcerns/tuse/ (accessed April 2020).
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A Diagnostic for Seasonality Based Upon Polynomial Roots
of ARMA Models

Tucker McElroy1

Methodology for seasonality diagnostics is extremely important for statistical agencies, because
such tools are necessary for making decisions whether to seasonally adjust a given series, and
whether such an adjustment is adequate. This methodology must be statistical, in order to furnish
quantification of Type I and II errors, and also to provide understanding about the requisite
assumptions. We connect the concept of seasonality to a mathematical definition regarding the
oscillatory character of the moving average (MA) representation coefficients, and define a new
seasonality diagnostic based on autoregressive (AR) roots. The diagnostic is able to assess
different forms of seasonality: dynamic versus stable, of arbitrary seasonal periods, for both raw
data and seasonally adjusted data. An extension of the AR diagnostic to an MA diagnostic allows
for the detection of over-adjustment. Joint asymptotic results are provided for the diagnostics as
they are applied to multiple seasonal frequencies, allowing for a global test of seasonality. We
illustrate the method through simulation studies and several empirical examples.

Key words: Autoregressive estimator; seasonal adjustment; spectral peaks; visual
significance.

1. Introduction

The problem of identifying seasonality in published time series is of enduring importance.

Many official time series – such as gross domestic product (GDP) data – have an

enormous impact on public policy, and are heavily scrutinized by economists and

journalists. Obscuring the issue is the lack of universally agreed-upon criteria for detecting

seasonality. Furthermore, the tools that critics use to assess seasonality (e.g., seasonal

averages of growth rates, as in Rudebusch et al. 2015) sometimes differ from the

diagnostics actually employed at statistical agencies, such as Visual Significance (Soukup

and Findley 1999; McElroy and Roy 2017), the Qs diagnostic of Maravall (Findley et al.

2017), and the model-based F test (Lytras et al. 2007).

An overview of seasonality diagnostics that are currently available in popular statistical

software is given in Findley et al. (2017); also see discussions in Fase et al. (1973) and Den

Butter and Fase (1991). Desiderata for seasonality diagnostics include:

1. a rigorous statistical theory,

2. a precise correspondence between actual seasonal dynamics and diagnostic values,
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3. applicability to diverse sampling frequencies,

4. applicability to multiple frequencies of latent seasonality, which is potentially of

non-integer period, and

5. ability to address over- and under-adjustment.

Currently available diagnostics satisfy some of these criteria, but none address all facets.

With regard to the first point, a rigorous quantification of Type I and II errors is needed

so that in a production environment with thousands of time series, an analyst can set

tolerance levels for quality control. The distribution theory for diagnostic statistics should

be developed under a broad set of time series data generating processes, so that critical

values are approximately germane for typical sample sizes. As to the second point, we

intend that a diagnostic takes a low value if and only if seasonality is present in a stochastic

process; if low values could be obtained by non- seasonal processes, or high values could

be generated by seasonal processes, then the diagnostic will be worse than useless –

because it will generate false (spurious) conclusions. Thirdly, we observe that diagnostics

developed for X-12-ARIMA (Findley et al. 1998) were intended for monthly data, with

some extensions possible for quarterly series. However, there is an increasing public

demand for the publication of weekly and daily time series (see McElroy et al. 2018 for an

overview of the applications of daily time series to understanding retail holiday patterns),

which presents new challenges for official statistics; moreover, multiple forms of

seasonality (point number four) can be present. For example, daily time series have a

weekly effect and an annual effect, which are really just two different types of seasonal

effects. Note that for daily data, the annual period is 365.25, and monthly effects have an

average period of 30.25 – these non-integer seasonal periods create new challenges for

diagnostics based upon seasonal autocorrelations.

The fifth point is concerned with over- and under-adjustment of time series, for which there

is a long literature: Granger (1978) noted with concern the introduction of negative seasonal

autocorrelation into a time series by application of the Wiener-Kolmogorov (Bell 1984)

seasonal adjustment filters, although the phenomenon had been already described in Nerlove

(1964). Also see Sims (1978), Tukey (1978), and Bell and Hillmer (1984). If the extraction of

seasonality involves using overly stable seasonal filters, then seasonality will remain – we

refer to this as under-adjustment. On the other hand, using overly dynamic seasonal filters

produces negative seasonal correlation – we refer to this as over-adjustment. Ansley and

Wecker (1984) and McElroy (2012) discuss a method that reduces over-adjustment, while

model-based diagnostics of under- and over-adjustment are described in Maravall (2003),

McElroy (2008), and Blakely and McElroy (2017). Whereas under-adjustment is clearly a

problem – since measurable seasonality remains (possibly marring interpretations of growth

rates) – over-adjustment may also be undesirable, because it indicates that non-seasonal

dynamics (such as the business cycle) may have been removed from the data and erroneously

allocated to the seasonal component. This is akin to the problem of trend extraction: under-

smoothing means the extracted trend will have too many oscillations, whereas over-

smoothing will force long-term trend movements into the business cycle.

This article focuses on proposing a test for over- or under-adjustment, while allowing

for non-integer periods of seasonality. First, we must clearly parse the phenomenon of

seasonality. We propose – based on ideas developed in Lin et al. (2019) – the following
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definition of seasonality: persistency in a time series over seasonal periods that is not

explainable by intervening time periods. For a monthly series with a seasonal period equal

to twelve, seasonality is indicated by persistency from year to year that is not explained by

month-to-month changes. Note that both parts of this definition are crucial: without

seasonal persistency from year to year, no seasonal pattern will be apparent, so this facet is

clearly necessary; however, any trending time series also has persistency from year to

year, which comes through the intervening months – we need to screen out such cases.

If the seasonality is non-stationary, there are diagnostic tools available in the

econometric literature. Seasonal unit root tests (Hylleberg 1986; Hylleberg et al. 1990;

Canova and Hansen 1995; Busetti and Harvey 2003) adopt either as null or alternative

hypothesis that the form of persistence resembles a random walk year to year, for each

season. Another framework involves periodically integrated processes (Franses 1994).

Although such tests satisfy our first three criteria, these methods are not easily adapted to

non-integer periods, and cannot address the over-adjustment problem; neither are they

effective for diagnosing milder, dynamic seasonality that can be present in stationary

processes. This latter application is vital for the detection of residual seasonality in

seasonally adjusted data – seasonality in such series will not manifest unit roots, but rather

a highly evolutive pattern that is consistent with a stationary formulation.

If a time series is covariance stationary, it is natural to parse persistency in terms of

autocorrelation (cf. Proietti (1996), which measures the strength of autocorrelation at

seasonal lags). As we show in this article, we can adapt persistency to non-integer lags of the

autocovariance function (acvf) via its decomposition in terms of autoregressive (AR) roots,

and examine seasonality of arbitrary frequency through the modulus and phase of the root.

Whereas under-adjustment would be indicated by the presence of AR roots of near-unit

magnitude and seasonal phase, over-adjustment corresponds to a negative form of

persistency (i.e., negative seasonal autocorrelations) termed anti-persistency, and can be

measured through moving average (MA) roots computed from the inverse autocovariances

(McElroy and Roy 2018), that is, the autocovariances of the spectral density’s reciprocal.

This framework of using AR roots as a diagnostic of under-adjustment (and MA roots

for over-adjustment) satisfies the five criteria listed above. In Section 2 we develop the

asymptotic theory and hypothesis testing framework, also demonstrating that small values

of the diagnostic occur if and only if seasonality is present. (Appendix A of the Online

Supplement offers a foundation for understanding oscillations and seasonality.) Section 3

applies the methodology, providing the implementation details; because seasonality

becomes associated with the phase of AR roots, we can address arbitrary (regular)

sampling frequencies and multiple non-integer period seasonalities. Simulation studies are

given in Section 4, and data illustrations in Section 5. Section 6 concludes, with proofs and

an additional illustration in the Supplement.

2. Methodology

2.1. Framework

Consider a weakly stationary process {Xt} that is mean zero and purely unpredictable; then

by the Wold Decomposition (Theorem 7.6.4 of McElroy and Politis 2020) Xt ¼
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P1
j¼0cjZt2j for a white noise sequence {Zt}, and the {cj} are called the Wold coefficients.

Oscillatory behavior in the Wold coefficients corresponds to seasonality, as discussed in

online Appendix A. That background discussion also shows that the oscillations of a

sequence are governed by the magnitude and phase of the roots of the z-transform, that is,

cðzÞ ¼
P1

j¼0cjz
j. In particular, large values of jc(r 21e iv)j for r [ (0, 1) correspond to an

oscillatory pattern in the cj, where the frequency of the oscillation is v and the pattern is

“damped” (i.e., it decays as j ! 1) by the value r. The higher the value of r, the slower

the decay in the coefficients, resulting in a more persistent oscillation.

Consider a seasonal pattern of period s (i.e., the number of seasons per year), which has

frequency v ¼ 2p/s. Writing p(z) ¼ 1/c(z) (which converges outside the unit circle if the

process is invertible), we say there is r-persistent seasonality of frequency v if

p(r21eiv) ¼ 0. In the special case that {Xt} is an ARMA process with MA polynomial

u(z) and AR polynomial f(z), such a seasonal pattern exists if f(r21eiv) ¼ 0, because

p(z) ¼ f(z)/u(z) (see Theorem 5.5.3 of McElroy and Politis 2020). Similarly, oscillatory

patterns in the coefficients {pj} corresponding to pðzÞ ¼
P1

j¼0cjz
j correspond to anti-

seasonality (see discussion in onine Appendix A). We say there is r-persistent anti-

seasonality of frequency v if c(r 21e iv) ¼ 0; in the case of an ARMA process, this occurs

if u(r 21e iv) ¼ 0, because c(z) ¼ u(z)/f(z) (see Theorem 5.4.3 of McElroy and Politis

2020).

For the remainder of the article we suppose that an invertible ARIMA model has been

identified and fitted to a sample X1,: : :, XT of size T from the data process {Xt}. If the

process is stationary, then no differencing is needed and we can fit an ARMA model; the

AR(1) representation of the data process is p(z) ¼ f(z)/u(z), where f and u are stable AR

and MA polynomials (i.e., all of their roots are outside the unit circle) that are relatively

prime. If the process requires differencing, then we allow the AR polynomial f(z) to have

roots on the unit circle. Let dðzÞ ¼ 1 2
Pd

j¼1djz
j be the unit root portion of the polynomial

f(z), and let w(z) (of degree p) correspond to the non-unit roots. Then the pseudo-

autoregressive polynomial f(z) is defined as d(z) w(z). Hence, if we difference the data

with d(B) (where B is the backward shift operator), the resulting process is a stationary

ARMA with AR polynomial w(z) and MA polynomial u(z).

2.2. Testing for Seasonality

Whether or not there are unit roots in f(z), seasonality can be tested in terms of the

polynomial f(z), because p(z) ¼ f(z) /u(z). In particular, for any given v, the null

hypothesis – that r0-persistent seasonality of frequency v is present – can be formulated as

H0ðr0Þ : pðr 21e ivÞ ¼ 0 has solution r ¼ r0: ð1Þ

Note that H0(r0) holds if and only if f(r 21e iv) ¼ 0 for some r ¼ r0. We can measure

departures from r0-persistent seasonality by computing jpðr21
0 e ivÞj

2
, or its estimate based

upon maximum likelihood estimation (MLE) of the ARMA parameters. Alternatively, in

the case of an AR model we can compute ordinary least square estimates (OLS) of the

parameters; the asymptotic theory is the same. Let g(r) ¼ jp(r 21e iv)j2, and set

ĝðrÞ ¼ jp̂ðr 21e ivÞj
2
; ð2Þ
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where p̂ðzÞ ¼ f̂ðzÞ=ûðzÞ and the polynomials are estimated by replacing the coefficients

with MLEs. Our test statistic of H0(r0) is Tĝðr0Þ, where the rate T is justified by the

subsequent asymptotic theory. Next, we present theory for this test statistic in the case that

there are no unit roots in f(z).

THEOREM 1. Let {Xt} be a causal invertible ARMA(p,q) process with AR polynomial

f(z) and MA polynomial u(z). Let p(z) ¼ f(z) /u(z) and ĝðrÞ defined via (2), where the

estimates for the ARMA parameters are obtained from a sample of size T via either MLE or

OLS (in the pure AR case). It follows that when g(r) ¼ 0

TĝðrÞ
L
)

jZ 0zj
2

juðr 21e ivÞj
2
;

where z
j
¼ ðre ivÞ2j for 1 # j # p and Z , N ð0;G21

p Þ such that Gp is the p £ p Toeplitz

covariance matrix corresponding to spectral density jf(e 2il)j 22. When g(r) . 0, instead

ffiffiffiffi
T
p
ðĝðrÞ2 gðrÞÞ

L
)N ð0;VÞ;

where V ¼ h 0F 21h, F is the Fisher information matrix for the ARMA process (described

in the proof), and

h ¼

2ðfðr 21e ivÞzþ fðr 21e2ivÞ �zÞjuðr 21e ivÞj
22

ðuðr 21e ivÞjþ uðr 21e2ivÞ �jÞjuðr 21e ivÞj
24
jfðr 21e ivÞj

2

2

4

3

5;

where j
j
¼ ðre ivÞ2j for 1 # j # q.

REMARK 1. The alternative hypothesis indicates that g(r0) . 0, and Theorem 1

indicates that the test statistic is OP(T 1/2) plus T g(r0) in that case, yielding a consistent

test.

In cases where the data may have unit roots, a different theory is needed. If a pure AR

model is fitted, one can use OLS, as this allows for the parameters corresponding to unit or

explosive roots. (The Yule-Walker method (McElroy and Politis 2020), which enforces

stability, should be avoided because of substantial bias when the process has roots close to

the unit circle.) Alternatively, one can apply d(B) to difference the data, and then fit a

stationary AR model. If fitting an ARIMA model, this latter strategy is used: apply d(B),

and then fit via MLE an ARMA model. The following result allows us to test a null

hypothesis of stationary seasonality (r0 , 1) when unit roots are known to be present in

the process – testing r0 ¼ 1 requires a more complicated limit theory that is only

mentioned in the proof.

THEOREM 2. Let {Xt} be an invertible ARIMA(p þ d, q) process with differencing

polynomial d(B), stable AR polynomial w(z), and MA polynomial u(z). Set f(z) ¼ d(z)w(z),

the pseudo- autoregressive polynomial. Let p(z) ¼ f(z)/u(z) and ĝðrÞ defined via (2),

where the estimates for the ARMA parameters are obtained from a sample of size T via
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either MLE or OLS (in the pure AR case). It follows that when g(r) ¼ 0 and r , 1 that

TĝðrÞ
L
)

jZ 0zj
2

juðr 21e ivÞj
2
;

where z
j
¼ ðre ivÞ2j for 1 # j # p þ d and Z , N ð0;P 0G21

p PÞ such that Gp is the p £ p

Toeplitz covariance matrix corresponding to spectral density jw(e2il)j22 and P is a p £ p

þ d-dimensional matrix given by

P ¼

1 2d1 : : : 2dd : : : 0

..

. ..
. ..

. ..
. ..

. ..
.

0 : : : 1 2d1 : : : 2dd

2

6
6
6
4

3

7
7
7
5
: ð3Þ

When g(r) . 0, instead

ffiffiffiffi
T
p
ðĝðrÞ2 gðrÞÞ

L
)N ð0;VÞ;

where V ¼ h 0R 0F 21Rh, R ¼ diag{P,Iq} (here Iq is a q-dimensional identity matrix), F is

the Fisher information matrix for the stationary ARMA process (described in the proof),

and

h ¼

2ðfðr 21e ivÞzþ fðr 21e2ivÞ �zÞjuðr 21e ivÞj
22

ðuðr 21e ivÞjþ uðr 21e2ivÞ �jÞjuðr 21e ivÞj
24
jfðr 21e ivÞj

2

2

4

3

5;

where j
j
¼ ðre ivÞ2j for 1 # j # q.

2.3. Testing for Anti-Seasonality

Suppose now that we wish to test for the presence of anti-seasonality. Now we wish to

examine c(r 21e iv), and it is important that the process be stationary. Therefore suppose

that {Xt} is an ARMA process, where any non-stationary effects have been previously

removed by a differencing polynomial d(B). Then, for any given v, the null hypothesis of

r0-persistent anti-seasonality is written

H0ðr0Þ : pðr 21e ivÞ ¼ 0 has solution r ¼ r0; ð4Þ

where c(z) ¼ u(z)/f(z). Here H0(r0) holds if and only if u(r 21e iv) ¼ 0 for some r ¼ r0.

We can measure departures from r0-persistent anti-seasonality by computing

c r21
0 e iv

� ��
�

�
�2; set h(r) ¼ jc(r 21e iv)j2, and let

ĥðrÞ ¼ jĉðr 21e ivÞj
2
: ð5Þ

Here ĉðzÞ ¼ ûðzÞ=f̂ðzÞ, and the polynomials are estimated by replacing the coefficients

with MLEs. Theorem 1 can likewise be adapted by swapping the polynomials

appropriately, as stated below. (The proof follows the same techniques, and is therefore

omitted.) We emphasize that this theory requires an invertible moving average

polynomial, and thus cannot be used to test an over-adjustment hypothesis where r0 ¼ 1.
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COROLLARY 1. Let {Xt} be an invertible ARMA(p,q) process with AR polynomial f(z)

and MA polynomial u(z). Let c(z) ¼ u(z)/f(z) and ĥðrÞ defined via (5), where the estimates

for the ARMA parameters are obtained from a sample of size T via either MLE or OLS (in

the pure AR case). It follows that when h(r) ¼ 0

TĥðrÞ
L
)

jZ 0jj
2

jfðr 21e ivÞj
2
;

where j
j
¼ ðre ivÞ2j for 1 # j # q and Z , N ð0;G21

q Þ such that Gq is the q £ q Toeplitz

covariance matrix corresponding to spectral density ju(e2il)j22. When h(r) . 0, instead

ffiffiffiffi
T
p
ðĥðrÞ2 hðrÞÞ

L
)N ð0;VÞ;

where V ¼ h 0F 21h, F is the Fisher information matrix for the ARMA process, and

h ¼

2ðfðr 21e ivÞzþ fðr 21e2ivÞ �zÞjfðr 21e ivÞj
24
juðr 21e ivÞj

2

ðuðr 21e ivÞjþ uðr 21e2ivÞ �jÞjfðr 21e ivÞj
22

2

4

3

5;

wherez
j
¼ ðre ivÞ2j for 1 # j # p.

A limitation of the methodology behind Corollary 1 is that it cannot be applied to non-

invertible processes; to rectify this, we proceed by considering instead of h(r) the related

quantity

f ðzÞ ¼
hj j#q

X
ghzh ¼ cðzÞc z21

� �
s2 ð6Þ

for z [ C, where gh ¼ Cov Xtþh;Xt

� �
is the autocovariance function of the stationary

process {Xt}. We evaluate Equation (6) at z ¼ r 21e iv. Although f (r 21e iv) is not equal to

h(r) (in fact, it is complex-valued when r – 1), we still have f (r 21e iv) ¼ 0 if and only if

c(r 21e iv) ¼ 0. This suggests basing a test statistic on

f̂ ðzÞ ¼
hj j#q

X
ĝhzh; ð7Þ

where ĝh is the sample autocovariance based on a sample of size T. Although f̂ðzÞ is not

real-valued (and need not be positive-definite when z ¼ e 2il, because the choice of q

implicitly generates a truncation taper), a distribution theory is easily developed based

upon the sample autocovariances, and a central limit theorem can be established. Hence,

we propose to test the null H0(r0) of anti-seasonality with T f̂ r21
0 e iv

� ��
�

�
�2. The following

theory describes the asymptotic distribution, and allows for r ¼ 1 without any qualitative

change to the results.

THEOREM 3. Let {Xt} be a possibly non-invertible MA(q) process with independent and

identically distributed inputs and moving average polynomial u(z). With f(z) and f̂ðzÞ

defined via Equations (6) and (7) for any z [ C,

T f̂ ðzÞ2 f ðzÞ
�
�

�
�2 L)jZ 0y j2;
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where y 0 ¼ 1; zþ z21; : : : ; zq þ z2q
� �

and Z , N 0;V
� �

such that V is the q þ 1

£ q þ 1 asymptotic covariance matrix of the sample autocovariances at lags 0 through q,

that is, the jkth entry (for 0 # j, k # q) is given by

Vjk ¼
2

2p

ðp

2p

cos ðljÞ cos ðlkÞ f ðe2ilÞ2dl

þ
1

4p2

ðp

2p

ðp

2p

cos ðljÞ cos ðvkÞVðe il; e2iv; e ivÞdldv;

where V is the tri-spectral density given in (B.2).

REMARK 2. Under the null hypothesis, with z ¼ r21
0 e iv, the test statistic converges to

jZ 0y j
2
, whose critical values can be simulated. If the inputs have zero kurtosis then the tri-

spectral density is zero, and we can estimate V by utilizing f̂ e2il
� �

as a plug-in estimator of

f(e 2il), the spectral density; alternatively, we can plug in the periodogram and divide by 2,

approximating the integral by a Riemann sum over Fourier frequencies – see Chiu (1988)

and Deo and Chen (2000). We find that in simulations, the size of this latter approach is far

superior. The alternative hypothesis indicates that f r21
0 e iv

� �
is non-zero; asymptotically

the test statistic equals T f r21
0 e iv

� ��
�

�
�2 plus lower-order terms, and this quantity will

generate power (because it is O(T)).

3. Applications and Implementation

In the practice of seasonal adjustment one of the key tasks is to decide whether a given

time series should be seasonally adjusted. Secondarily, series that have been seasonally

adjusted should be assessed for adequacy, and among the potential problems it is

important to determine whether the series have been under-adjusted (or over-adjusted). As

discussed in the Introduction (with further exposition in online Appendix A), under-

adjustment is characterized by the presence of dynamic seasonality, whereas over-

adjustment is characterized by the presence of anti-seasonality. Therefore, there are three

potential applications of the testing methodology of Section 2:

1. a test for residual seasonality (i.e., a test of under-adjustment), used upon stationary

data that has already been adjusted (or clearly has no unit roots) and trend-

differenced, if needed,

2. a test for raw seasonality, used upon potentially non-stationary data with unit roots, and

3. a test of over-adjustment, used upon seasonally adjusted data where there is concern

about residual anti-seasonality.

For these three cases, we propose using the test statistics discussed in Theorem 1, Theorem

2, and Theorem 3 respectively, using the distribution theory for the null hypothesis to obtain

critical values. In particular, cases one and two utilize the test statistic Tĝ r0

� �
given by (2)

to test H0(r0) given by (1). The third case utilizes the test statistic T f̂ r21
0 e iv

� ��
�

�
�2 given by

(7) to test H0(r0) given by (4). Note that these null hypotheses can be calibrated according to

the concerns and priorities of the seasonal adjuster, through the determination of r0.

All of these tests are upper one-sided, with large values of the test statistic indicating

rejection of H0(r0). However, we do not have a way of knowing whether the true seasonal
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persistence (or anti-persistence) – if it exists, because possibly p r 21e iv
� �

– 0 for all r –

is greater than or less than r0. To address this question, we can consider computing both

the test statistic and p-values for a range of values of r0 [ (0,1). Because both the test

statistic and the critical values are continuous functions of r0, we thereby obtain p-values

as a continuous function of r0, say p(r0). If desired, we can invert this function, for

example obtaining p 21(a,1) as the open set of r0 such that we fail to reject H0(r0) at

confidence level a. Of course, it may happen that the p-values are low for all values of r0,

and such intervals are empty; then there is no seasonality of any degree of persistence

present. For other applications, it is useful to plot p(r0) for r0 [ (0,1), or for r in some sub-

interval of (0,1) that corresponds to the degrees of seasonal persistency that are deemed to

be of interest. If p(r) , a for all r0 in the given interval, then we can reject seasonality at

all those persistencies.

If it is desired to obtain a joint test over J different frequencies v1, : : : , vJ, then the

following approach can be used. We may have a null hypothesis for each frequency vj of

persistency r
ð jÞ
0 , and we say that the null hypothesis for seasonality across all frequencies

holds if and only if all the individual null hypotheses are valid:

H0 r
ð1Þ
0 ; : : : ; rðJÞ0

� �
: p r

ð jÞ
0 e ivj

� 	
¼ 0 for all 1 # j # J: ð8Þ

(In the case of testing for anti-seasonality, we examine c r
ð jÞ
0 e ivj

� 	
instead of

p r
ð jÞ
0 e ivj

� 	
.) By taking the minimum of the various test statistics, a rejection (of

seasonality) occurs if and only if all of the individual test statistics are significant; we fail

to reject if at least one test statistic is small, that is, there is at least one j for which r
ð jÞ
0 -

persistent seasonality exists at frequency vj. This indicates that the minimum is an

appropriate statistic; for testing seasonality we have the joint test statistic

1#j#J
min Tjp̂ðe ivj=rð jÞ

0 Þj
2
; ð9Þ

whereas for anti-seasonality testing we use

1#j#J
min Tjf̂ðe ivj=rð jÞ

0 Þj
2
: ð10Þ

The critical values are easily obtained by simulation, as the results of Theorems 1, 2, and 3

are clearly joint across various vj. If we set each r
ð jÞ
0 equal to a common r0 for each of the

component null hypotheses, then we obtain a test statistic and critical value as a function of

a single number r0, and hence we can obtain p(r0) in the manner described for a single

frequency.

Each application will dictate the frequencies v that should be considered. For a time

series with s seasons per year (or other appropriate unit of time), one should examine

v ¼ 2pj / s for 1 # j # bs=2c. For monthly data there are six frequencies to test; for

quarterly data there are two frequencies to test. (Though commonly, the last frequencies –

which are equal to p – are ignored, so that either five or one frequencies are actually

considered for monthly and quarterly data.) A daily series has both a weekly and annual

periodicity, and hence v ¼ 2pj / 7 for 1 # j # 3 and v ¼ 2pj / 365.25 for 1 # j # 182 are

potential frequencies of interest. Given the large number of test statistics with a joint

dependence structure – which, however, test different null hypotheses – some discretion
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is needed when combining into a single test of seasonality, as the significance levels may

become modified.

In practice, when testing for seasonality we must specify an ARMA model and fit it via

MLE. Our own implementation instead fits a high order AR( p) model via OLS, with p

selected via some empirical means – such as the Akaike Information Criterion (AIC) or

Bayesian Information Criterion (BIC) discussed in McElroy and Politis (2020). When the

order p is over-specified, but fixed, the test statistics are still asymptotically correctly sized –

though there may be a loss of power in finite samples, due to the inefficiency of estimating

some AR coefficients that are truly zero. However, if p is allowed to grow with sample size

(as with the use of AIC and BIC), then there is some probability of getting a high order

model, which unduly adds to the statistic’s variability, thereby lowering power. On the

other hand, a value of p that is too small implies a mis-specification, causing bias in the test

statistics. Whereas BIC is consistent for model order, AIC is upward-biased, tending to

over-specify models. Because in this particular case over-specification is less hazardous to

the asymptotic theory, the case can be made that AIC is preferable – and this surmise is

borne out by our simulation studies.

When testing for anti-seasonality we need to determine the order q of the MA

representation of the differenced seasonally adjusted data. Again, an information criterion

could be used in conjunction with maxmimum likelihood fitting of the MA model –

however, in the case that r0 ¼ 1 the moving average process is non-invertible and the

usual asymptotic theory upon which AIC and BIC are founded cannot be applied (Tanaka

1996). Alternatively, we can let q̂ be the largest q such that the sample autocovariances at

all lags higher than q fail to reject the null hypothesis that the corresponding

autocovariance is zero; we can use the variance estimate given in Paradigm 10.1.2 of

McElroy and Politis (2020) to obtain a studentized test statistic. In our implementation we

use normal critical values corresponding to a significance level of 1=
ffiffiffiffiffiffiffiffi
T=3

p
, which allow

for the test’s size to dwindle as sample size increases – thereby ensuring that q increases

with T in an empirical fashion.

A final consideration is that components – such as the seasonal adjustment or the

irregular – that are the output of a seasonal adjustment procedure will typically have

nonlinear distortions in the beginning and final portions of the sample, due to forecast

extension and/or adaptive filters; because the impact of forecast extension is localized to

the edges of the sample, one can trim the component of the first and last 2 to 3 years – see

Findley et al. (1998). In summary, we propose the following sequential procedure for de-

seasonalizing a time series:

1. Test the raw series for seasonality by fitting an ARIMA model without seasonal

differencing, testing the null (8) for r0 [ (.97, 1) with test statistic (9) for desired

seasonal frequencies,

2. If dynamic seasonality is present (indicated by failure to reject in step 1 above, for at

least one r0 [ (.97, 1)), seasonally adjust the time series and proceed to steps 3 and 4

(otherwise, the procedure is complete),

3. Test the seasonally adjusted series for seasonality by trimming the first and last three

years of data (to reduce the impact of non-linearity at the sample boundaries) and
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fitting an ARIMA model, testing the null (8) for r0 [ (.9, 1) with test statistic (9) for

desired seasonal frequencies, and

4. Test the seasonally adjusted series for anti-seasonality by trimming the first and last

three years of data (to reduce the impact of non-linearity at the sample boundaries)

and testing the joint null – given by swapping c for p in (8) – for r0 [ (.5, 1) with

test statistic (10) for desired seasonal frequencies.

We remark that critical values for tests are generated through Monte Carlo simulation,

using the asymptotic distributions given in Section 2; R code is available from the author.

The recommended seasonal frequencies are p / 2 for quarterly data, and vj ¼ pj / 6 (for

1 # j # 5) for monthly data. The range of r0 considered in the seasonality tests for raw

data are taken fairly high, the interval (.97, 1) being a suggestion based on the discussion in

online Appendix A; the idea here is that seasonal adjustment should not be undertaken

unless a fairly substantial degree of dynamic seasonality is present. However, some

practitioners have suggested seasonally adjusting time series in which a much milder

degree of seasonality is present (i.e., broaden the range of r0), to mitigate the possibility of

seasonality manifesting in aggregations of seasonally adjusted series – which has been

documented in Moulton and Cowan (2016).

In step 3, we instead consider a broader interval of (.9, 1), so that we are more concerned

about the presence of dynamic seasonality in the adjustment, as compared to the raw.

Alternatively, one could make this range consistent with step 1, in this example setting the

interval to (.97, 1). Similarly, in step 4 we screen out even mild cases of anti-seasonality by

setting the interval to (.5, 1). Finally, we note that some practitioners may not be concerned

about the presence of anti- seasonality, since it is a necessary outcome of model-based

seasonal adjustment; such users could just omit step 4.

After completing these four steps, either the analyst is satisfied with the outcome (i.e.,

either the series needs no adjustment, or it does, and its seasonal adjustment is deemed to

be adequate) or there is some deficiency, e.g., under- or over-adjustment. In this latter case,

the analyst may wish to re-examine the modeling of the time series – frequently, a

different specification of outlier effects, or a change to the ARIMA model, can result in an

improved seasonal adjustment. The case of over-adjustment is harder to address, possibly

requiring a different set of seasonal adjustment filters that produce narrower seasonal

troughs in the spectral density; this is in contrast to the case of under-adjustment, where a

more dynamic filter (with a wider seasonal spectral trough) is needed.

4. Numerical Experiments

To discern the efficacy of the method in finite samples, we consider simulating from a few

different processes.

4.1. Atomic Seasonality With Transient Noise

We study monthly Gaussian time series {Xt} generated from an AR(3) model with AR

polynomial

f zð Þ ¼ 1 2 t zð Þ 1 2 2r cos p=6
� �

zþ r2z2
� �

: ð11Þ
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This process corresponds to an atomic seasonality (i.e., there is a single seasonal frequency

involved) at the first seasonal frequency, muddled by the presence of a transient effect. The

acvf and spectrum are plotted in Figure 1, where we have set t ¼ .8 and r ¼ .9. The true

AR roots have magnitudes of 1.25 (for the real root, corresponding to the transient effect)

and 1.11 (for the complex roots corresponding to the atomic seasonality). From the plots, it

is apparent that the strong seasonality is somewhat attenuated by the transient effect, so the

impact of the atomic seasonality is weaker than it would be if t ¼ 0. As a second example,

we lower the seasonal persistency to r ¼ .8, and dampen the transient component by

setting t ¼ .3, displayed in Figure 2. Here the weak seasonality is apparent, no longer

being obfuscated by a transient effect.

For both of these processes (Figures 1 and 2) we generate 10,000 Gaussian simulations

for each sample size T ¼ 12n, where n is the number of years and n ¼ 5, 10, 15, 20. We

apply our procedure with v ¼ p/6 under four different scenarios: first, assuming that the

AR order p ¼ 3 is known in the calculation of the test statistic (based on fitting an AR(3) to

each simulation) – in this case, we use critical values from the true AR(3) process. Second,

a more realistic scenario determines the critical values from the AR(3) fitted to each

simulation, but still assumes the true order p ¼ 3 is known. Third, we use an over-specified

order ( p ¼ 24, which is twice the number of seasons) to compute the test statistic and

critical values. Fourth, we use AIC to identify the order p. We also explored the use of BIC

and an AR identification rule given in McElroy and Politis (2020, 335), but these yielded

much more badly mis-sized results and were not pursued further. In each case the critical
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Fig. 1. Autocovariance function (left panel) and spectral density (right panel) for a seasonal AR(3) process

(r ¼ .9) with transient effect (t ¼ .8). Autocovariance function is plotted as a function of lag divided by 12;

spectral density is plotted as a function of cycles per year, or 12 divided by period.
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Fig. 2. Autocovariance function (left panel) and spectral density (right panel) for a seasonal AR(3) process

(r ¼ .8) with transient effect (t ¼ .3). Autocovariance function is plotted as a function of lag divided by 12;

spectral density is plotted as a function of cycles per year, or 12 divided by period.
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values are generated for a ¼ .10, .05, .01; for the second two cases, we report the

proportion of p-values that are less than a.

We examine the size of the procedure by taking as null hypothesis that r ¼ .9 and

r ¼ .8 respectively, for the two processes. We also examine the power in both directions:

with the first process, we adopt the null hypothesis that r ¼ .8, and with the second process

we adopt the null hypothesis that r ¼ .9. The size and power results for the first process are

given in Tables 1 and 3, where the alternative entails a greater degree (r ¼ .9) of

Table 1. Size simulations from an AR(3) DGP (corresponding to Figure 1) based on

a null hypothesis of .9-persistent seasonality at frequency p/6. Results are for known

AR order (first three rows), for unknown parameters (second three rows), over-

specified AR order (third three rows), and AIC-determined AR order (last three rows).

a 5 years 10 years 15 years 20 years

.10 .149 .116 .113 .101

.05 .092 .067 .061 .054

.01 .039 .026 .021 .018

.10 .139 .115 .108 .100

.05 .084 .059 .058 .048

.01 .028 .014 .012 .011

.10 .381 .206 .152 .140

.05 .274 .133 .089 .079

.01 .135 .050 .026 .020

.10 .625 .340 .183 .139

.05 .582 .297 .131 .086

.01 .508 .258 .087 .035

Table 2. Size simulations from an AR(3) DGP (corresponding to Figure 2) based on

a null hypothesis of .8-persistent seasonality at frequency p/6. Results are for known

AR order (first three rows), for unknown parameters (second three rows), over-

specified AR order (third three rows), and AIC-determined AR order (last three rows).

a 5 years 10 years 15 years 20 years

.10 .135 .115 .109 .104

.05 .077 .058 .057 .053

.01 .021 .012 .013 .011

.10 .136 .114 .107 .103

.05 .074 .060 .057 .055

.01 .020 .014 .011 .012

.10 .424 .192 .152 .132

.05 .323 .117 .086 .072

.01 .157 .040 .023 .018

.10 .413 .483 .458 .377

.05 .297 .375 .374 .308

.01 .135 .182 .217 .192
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persistence than is hypothesized (r ¼ .8). As for the second process, the size and power

results are given in Tables 2 and 4, where the alternative entails a lesser degree (r ¼ .8) of

persistence than is hypothesized (r ¼ .9).

In general, the size is over-estimated but may be considered adequate for 10 years of

data when p is known; when p is fixed and over-specified, at least 20 years of data is

needed. Moreover, the use of AIC results in badly mis-sized test statistics in the case of the

second process, but AIC works adequately with 20 years of data in the case of the first

Table 3. Power simulations from an AR(3) DGP (corresponding to Figure 1) with

null hypothesis of .8-persistent seasonality at frequency p/6. Results are for known AR

order (first three rows), for unknown parameters (second three rows), over-specified

AR order (third three rows), and AIC- determined AR order (last three rows).

a 5 years 10 years 15 years 20 years

.10 .502 .758 .908 .961

.05 .304 .604 .820 .918

.01 .060 .230 .509 .719

.10 .465 .707 .852 .928

.05 .320 .565 .751 .865

.01 .107 .281 .476 .659

.10 .437 .207 .151 .134

.05 .328 .130 .087 .074

.01 .170 .045 .024 .020

.10 .787 .685 .677 .740

.05 .721 .578 .554 .625

.01 .611 .395 .321 .365

Table 4. Power simulations from an AR(3) DGP (corresponding to Figure 2) with

null hypothesis of .9-persistent seasonality at frequency p/6. Results are for known AR

order (first three rows), for unknown parameters (second three rows), over-specified

AR order (third three rows), and AIC- determined AR order (last three rows).

a 5 years 10 years 15 years 20 years

.10 .322 .506 .659 .786

.05 .230 .386 .541 .681

.01 .108 .205 .321 .460

.10 .281 .503 .683 .804

.05 .181 .365 .554 .694

.01 .054 .149 .292 .440

.10 .409 .204 .160 .142

.05 .306 .133 .092 .083

.01 .155 .049 .025 .023

.10 .248 .421 .605 .740

.05 .166 .318 .502 .644

.01 .062 .151 .285 .420
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process. Power is good for both processes when p is known, but drops considerably when p

is over-specified, as expected. This occurs because the additional variability due to over-

specification overwhelms the T g(r0) quantity in small samples. In these two cases where

Ha holds, g(r0) is given by .0048 and .0059 respectively.

4.2. Multiple Seasonal Peaks

Next, we consider a more nuanced process where there is apparent either a mild or intense

degree of seasonality at one or more seasonal frequencies. The process {Xt} is a monthly

Gaussian AR(10) time series with AR polynomial defined by

f zð Þ ¼
Y5

j¼1

1 2 2r ð jÞ cos ðpj=6Þzþ r ð jÞ2 z2
� 	

: ð12Þ

As a result, g(r) ¼ 0 for r ¼ r ( j ), for each vj ¼ pj / 6 (1 # j # 5). In Table 5 we report

size results for the process corresponding to r
ð jÞ
0 ¼ :9 for 1 # j # 5 (again with 10,000

simulations for each sample size), where the joint seasonality test is utilized by taking the

minimum of the frequency-specific test statistics. As above, we consider three scenarios

regarding the model order p, either using the true p ¼ 10 or the over-specified p ¼ 24. In

each case the critical values are generated for a ¼ .10, .05, .01; for the second two cases,

we report the proportion of p-values that are less than a.

For power, we first consider the same process but change the null hypothesis to

r
ð jÞ
0 ¼ :97, with results reported in Table 6. Here g(.97) takes the values .399, .135, .102,

.135, and .399 respectively for vj ¼ pj/6 (1 # j # 5). This situation corresponds to where

the actual degree of seasonality is milder than is hypothesized, with rejections indicating

no seasonality is present. As a second study, we adopt this same null hypothesis but now

the true process is non-stationary with mingled seasonal persistencies:

Table 5. Size simulations from a stationary AR(10) DGP with null hypothesis of .9-

persistent seasonality at various frequencies pj/6, 1 # j # 5. Results are for known

AR order (first three rows), for unknown parameters (second three rows), over-

specified AR order (third three rows), and AIC-determined AR order (last three rows).

a 5 years 10 years 15 years 20 years

.10 .124 .114 .105 .107

.05 .068 .054 .053 .053

.01 .017 .011 .012 .011

.10 .169 .129 .118 .107

.05 .104 .070 .063 .053

.01 .035 .017 .017 .012

.10 .395 .169 .139 .122

.05 .291 .099 .077 .064

.01 .147 .028 .021 .014

.10 .577 .271 .179 .177

.05 .477 .201 .117 .109

.01 .285 .112 .043 .035
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r
ð1Þ
0 ¼ r

ð2Þ
0 ¼ r

ð3Þ
0 ¼ 1, rð4Þ0 ¼ r

ð5Þ
0 ¼ .9. The results are reported in Table 7; we omit entries

for the case of known parameters, since the true process is non-stationary. The values of

the functional g(.97) are .121, .040, .031, .247, and .742 respectively for vj ¼ pj / 6 (1 # j

# 5). This situation corresponds to where the actual degree of seasonality is greater than is

hypothesized for the first three seasonal frequencies, with rejections indicating strong

seasonality is present.

The size results are similar to the cases of atomic seasonality considered previously:

when the AR order is known, at least 10 years of data is needed, but 20 years may be

needed if one uses AIC or an over-specified order. Power against the stationary alternative

is above 50% with 10 years of data if the order is known, but there is a loss of power in the

Table 6. Power simulations from a stationary AR(10) DGP with null hypothesis of

.97-persistent seasonality at various frequencies pj / 6, 1 # j # 5. Results are for

known AR order (first three rows), for unknown parameters (second three rows), over-

specified AR order (third three rows), and AIC-determined AR order (last three rows).

a 5 years 10 years 15 years 20 years

.10 .447 .818 .955 .990

.05 .333 .732 .922 .981

.01 .172 .537 .810 .936

.10 .509 .859 .967 .994

.05 .394 .778 .941 .986

.01 .195 .574 .842 .950

.10 .427 .394 .531 .660

.05 .330 .294 .421 .560

.01 .178 .143 .231 .353

.10 .776 .838 .942 .979

.05 .737 .762 .907 .967

.01 .635 .577 .794 .919

Table 7. Power simulations from a non-stationary AR(10) DGP with null

hypothesis of .97- persistent seasonality at various frequenciespj / 6, 1 # j # 5.

Results are for unknown parameters (first three rows), over-specified AR order

(second three rows), and AIC-determined AR order (last three rows).

a 5 years 10 years 15 years 20 years

.10 .939 .988 .996 .999

.05 .918 .982 .996 .998

.01 .866 .970 .991 .997

.10 .738 .863 .939 .965

.05 .660 .803 .913 .951

.01 .478 .661 .841 .915

.10 .912 .979 .991 .995

.05 .883 .971 .986 .993

.01 .805 .948 .975 .989
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over-specified case (as expected). Therefore the results for multiple peaks are qualitatively

similar to those of a single peak. For the case of a non-stationary alternative, the power is

much higher, even in the over-specified case; this indicates it is easier to differentiate

between non-stationary seasonality and strong stationary seasonality, versus discriminat-

ing between various cases of stationary seasonality.

4.3. Completely Non-Seasonal

Next, consider the case of an AR(1) process of parameter .8, which we suppose is observed

as a quarterly series. Because this process is clearly non-seasonal, we should expect our

AR diagnostic to have high power when we set the null hypothesis at a moderate degree of

seasonality. In this case we set r0 ¼ .9 for the null, and consider frequency v ¼ p/2, the

quarterly frequency (again generating 10,000 simulations for each sample size). For

comparison, we also investigate the Qs statistic of Maravall (Findley et al. 2017): because

the AR(1) process is non-seasonal, we expect the proportion of p-values less than a given a

to be approximately a. However, the actual autocorrelations are r4 ¼ .41 and r8 ¼ .17,

which are substantially different from zero – and Qs is predicated upon r4 ¼ r8 # 0 as an

appropriate metric (i.e., necessary and sufficient) for non-seasonality. Table 8 indicates

that Qs is mis-sized with five years of data, and has size surpassing 50% as the sample size

increases. This merely illustrates that Qs tends to flag such non-seasonal processes as

seasonal, because it fails to account for seasonal lag correlation that is explained through

the linkages of the other seasons. By way of contrast, the AR diagnostic has 100% power

for all the settings given in Table 8, demonstrating that the new test correctly classifies the

AR(1) process as non-seasonal.

4.4. Testing for Over-Adjustment

To study the test for over-adjustment, we consider a process with anti-seasonality at

frequency p/6, that is, such that f (r 21e ip / 6) ¼ 0. Such a condition is satisfied by an

MA(2) model with MA polynomial

u zð Þ ¼ 1 2 2r cos p=6
� �

zþ r2z2:

The inverse acvf and spectrum are plotted in Figure 3, where we have set r ¼ .9. The

true MA roots have magnitudes of 1.11 (for the complex roots corresponding to the anti-

seasonality). From the plots, it is apparent that the strong anti-seasonality exists due to the

trough, as well as the oscillations of the inverse acvf.

We generate 10, 000 Gaussian simulations of each sample size T ¼ 12n, for n ¼ 5, 10, 15,

20, and apply the over-adjustment test based upon the sample autocovariances. For

Table 8. Size simulations from an AR(1) DGP for the Qs

diagnostic, based on a null hypothesis of no seasonality.

a 5 years 10 years 15 years 20 years

.10 .012 .286 .509 .660

.05 .000 .225 .436 .590

.01 .000 .125 .300 .456
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scenarios, we suppose that the MA order p ¼ 2 is known in the calculation of the test

statistic, and we use critical values from the true MA(2) process. Second, we obtain critical

values for the specified MA(2) with autocovariances fitted to each simulation. Third, we use

an over-specified order (q ¼ 12, which equals the number of seasons) to compute the test

statistic and critical values. Finally, we determine the order q empirically by the procedure

mentioned in Section 3. In each case the critical values are generated fora ¼ .10,.05,.01; for

the second two cases, we report the proportion of p-values that are less than a.

We examine the size of the procedure by taking as null hypothesis that r ¼ .9, and then

investigate power by changing the process to having less anti-seasonality (r ¼ .5). The

size results are given in Table 9, and the power results are in Table 10. The test is slightly

conservative, but for the first two cases (where the MA order is known) the size is

adequate if there are 15 years of data. There is some deterioration in size with the third

case (where q is over-specified), but results are not much worse when q is determined

empirically. As for power, the gap between true and hypothesized r is fairly large, and the
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Fig. 3. Inverse autocovariance function (left panel) and log spectral density (right panel) for an anti-seasonal

MA(2) process (r ¼ .9). Inverse autocovariance function is plotted as a function of lag divided by 12; log spectral

density is plotted as a function of cycles per year, or 12 divided by period.

Table 9. Size simulations from a MA(2) DGP based on a null hypothesis of .9-

persistent anti- seasonality at frequency p / 6. Results are for known MA order (first

three rows), for unknown parameters (second three rows), for over-specified MA

order (third three rows), and for empirically- determined MA order (final three rows).

a 5 years 10 years 15 years 20 years

.10 .084 .086 .096 .092

.05 .044 .046 .050 .047

.01 .013 .012 .012 .011

.10 .069 .080 .089 .094

.05 .022 .033 .036 .047

.01 .002 .003 .005 .007

.10 .047 .067 .074 .084

.05 .016 .025 .030 .037

.01 .001 .002 .003 .004

.10 .046 .056 .075 .091

.05 .018 .019 .023 .022

.01 .003 .003 .003 .002
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results are adequate when model order is known. However, when q is over-specified or

empirically determined, the variability in the estimation of V is excessive and the power is

fairly low.

5. Empirical Illustrations

This section contains several empirical examples. First, we study a fairly typical monthly retail

series and apply the testing procedure described in Section 3. Second, we test several raw daily

time series for seasonality, illustrating the capability of the new diagnostics to handle different

seasonal frequencies. Then, we consider the problem of residual seasonality in published US

GDP. Finally, we compare two types of seasonal adjustments for a large collection of

published monthly time series, and compare the diagnostic results to those obtained using Qs.

An additional illustration is included in Appendix C of the online Supplement.

5.1. Retail 442

We first analyze series 442 (Furniture and Home Furnishings Stores) of Retail Trade and

Food Services, U.S. Census Bureau, covering the sample period of January 1992 through

August 2019 (see Figure 4). We test the raw series for seasonality, and then seasonally

adjust the series using the X11 method of X-13ARIMA-SEATS (U.S. Census Bureau

2015), which involves identification of outliers, holiday effects, and a SARIMA model for

forecast extension of the data. Next, we test the seasonal adjustment for both under-

adjustment and over-adjustment. Here we focus on producing a confidence interval for r,

for each of the five seasonal frequencies pj / 6 (1 # j # 5), for the cases considered.

The series is displayed with its seasonal adjustment (left panel) and seasonal factors

(right panel) of Figure 4. The left panel seems to indicate a very obvious seasonal pattern,

which is confirmed by the seasonal factors displayed in the right panel. To apply the test

Table 10. Power simulations from a MA(2) DGP with r ¼ .5, based on a null hypothesis

of .9- persistent anti-seasonality at frequency p/6. Results are for known MA order (first

three rows), for unknown parameters (second three rows), for over-specified MA order

(third three rows), and for empirically-determined MA order (final three rows).

a 5 years 10 years 15 years 20 years

.10 .373 .630 .829 .921

.05 .239 .465 .682 .821

.01 .085 .205 .369 .517

.10 .413 .671 .834 .921

.05 .267 .512 .697 .826

.01 .085 .233 .381 .563

.10 .057 .093 .117 .128

.05 .022 .041 .057 .069

.01 .000 .005 .009 .013

.10 .057 .066 .087 .111

.05 .021 .021 .022 .030

.01 .002 .001 .002 .002

McElroy: A Diagnostic for Seasonality 385



statistic in practice, we fit the AR p̂
� �

model with p̂ selected by AIC, first differencing the

data if appropriate to remove deterministic trend effects and possible non-stationary trend

unit roots. For the seasonal adjustment and the seasonal factors, we also remove the first

and last three years of data. For the differenced raw data AIC yields p̂ ¼ 16, but p̂ ¼ 2 for

the trimmed (and differenced) seasonal adjustment, and p̂ ¼ 15 for the seasonal factors.

For the over-adjustment test, we set q ¼ 12. The intervals for r are given in Table 11,

where all values of r between .5 and 1 (using a grid mesh of size .0001) are listed such that

the p-value for the corresponding null hypothesis exceeds .01.

The results indicate that the raw data has strong seasonality present at all five of the

seasonal frequencies. Next, testing the seasonal adjustment for residual seasonality

indicates adequacy – no seasonality is detected. The seasonal factors appear to have

captured all the seasonality that was present in the raw data, because there is failure to

reject the null of persistent seasonality with very high values of r. Finally, the test for

over-adjustment indicates there are some spectral troughs of moderate scope at all the

seasonal frequencies, because anti-seasonality cannot be rejected for persistencies up to

.838 (for the multiple test). This is consistent with known features of seasonal adjustment

filters.

5.2. NZ Immigration

We consider an analysis of daily data described in McElroy and Jach (2019). Figure 5 displays

six daily imigration series of New Zealand, covering the period September 1, 1997 through

July 31, 2012. The six series are labeled as NZArr, NZDep, VisArr, VisDep, PLTArr, and

PLTDep. The plots show trend and seasonal behavior, and there is also a weekly effect. There

is some evidence that each of these six series may not be stationary even after trend-

Table 11. Intervals for r, such that the corresponding null hypothesis is not rejected at a 1% level. Rows

correspond to raw data, seasonally adjusted data tested for under-adjustment, seasonal factors, and seasonally

adjusted data tested for over-adjustment.

Component p/6 2p/6 3p/6 4p/6 5p/6 All

Raw [.994, 1) [.994, 1) [.996, 1) [.994, 1) [.989, 1) [.994, 1)
SA (Under) Y Y Y Y Y Y
SF [.997, 1) [.997, 1) [.997, 1) {.999} [.992, 1) [.998, 1)
SA (Over) (0,.907) (0,.870) (0,.913) (0,.899) (0,.860) (0,.838)
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Fig. 4. Retail series 442 (furniture and home furnishings stores): raw series in grey with seasonal adjustment in

black (left panel), and seasonal factors in black (right panel).
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differencing (there are fixed effects present), which tempers our findings accordingly. We

apply the seasonality diagnostics to the differenced logged data for some of the frequencies

suggested in Section 3, namely v ¼ 2pj / 7 for 1 # j # 3 and v ¼ 2p/365.25. An AR p̂
� �

model is fitted with p̂ selected by AIC, which is recorded in Table 12 along with the identified

intervals forr (all values between .5 and 1 such that the p-value exceeds .01). We find that high

order AR processes are needed (due to the autocorrelation present at an annual period), and

that strong seasonality is present at both annual and weekly frequencies for all six series (with
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Fig. 5. Log of six New Zealand immigration series (September 1, 1997 through July 31, 2012).

Table 12. Intervals for r, such that the corresponding null hypothesis is not

rejected at a 1% level. Rows correspond to each of the six component series.

Series p̂ 2p/365.25 2p/7 4p/7 6p/7

NZArr 447 {.999} {.999} [.998, 1) [.998, 1)
NZDep 405 {.999} {.999} [.998, 1) [.998, 1)
VisArr 391 {.999} {.999} [.997, 1) [.999, 1)
VisDep 404 {.999} Y [.999, 1) [.999, 1)
PLTArr 391 [.999, 1) {.999} [.999, 1) [.999, 1)
PLTDep 398 [.999, 1) [.999, 1) [.999, 1) [.999, 1)
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the exception of the first weekly seasonal for the VisDep series) – this confirms the

exploratory analysis of these series given in McElroy and Jach (2019).

5.3. Gross Domestic Product (GDP)

There has been an ongoing public debate regarding the presence of residual seasonality in

GDP, which is published by the Bureau of Economic Analysis (BEA). In recent years GDP

(and some of its major components) has been observed to grow at a lower rate in the first

quarter (see Furman 2015; Gilbert et al. 2015; Stark 2015; Rudebusch et al. 2015; Groen

and Russo 2015). These critiques have prompted research into seasonality diagnostics and

seasonal adjustment at BEA (see the discussion in Lengerman et al. 2017). McCulla and

Smith (2015) review BEA’s response, and Phillips and Wang (2016), Lunsford (2017),

and Wright (2018) delineate continuing difficulties.

We plot the logged quarterly data (left panel of Figure 6) together with growth rates

(differences of logs) plotted by quarter (right panel of Figure 6), where the vertical dotted

lines demarcate the different annual series for each of the four quarters. In more recent

years, it appears that the first quarter is lower than the other quarters, and the question is

whether this is significant. We applied the seasonality diagnostic to the differences of the

logged data at frequency p / 2, having obtained p̂ ¼ 16 from AIC, and found that

seasonality was rejected for all values of r [ [.5, 1). Repeating the procedure, but focused

on just the last 20 years of data, we found (with p̂ ¼ 2) the same results. This is confirmed

by examination of sample acvf and spectral plots – though when p is allowed to increase

(corresponding to a likely over-specification) to 8, 12, or 16, a modest peak appears in the

spectrum, somewhat off-shifted from frequency p / 2. From this preliminary analysis, we

do not find evidence of residual seasonality in GDP.

5.4. Census Data

We examined a collection of 233 monthly time series published by the U.S. Census

Bureau, available from www.census.gov/retail/index.html. In particular, we study 65 time

series of Retail Trade and Food Services (MRTS), 22 time series of Wholesale Trade:

Sales and Inventories (MWTS), 4 time series of Manufacturers’ Shipments, Inventories,

and Orders (M3), 87 time series of Manufacturing and Trade Inventories and Sales

(MTIS), and 55 time series of New Residential Construction (RES). All are monthly with a

1950 1970 1990 2010
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Fig. 6. Log GDP (1947 through 2016) as a time series plot (left panel) and plotted by quarter for growth rates

(right panel).
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start date of January 1992 or later, and with an end date of September 2019. A variety of

features are present in these series: varying degrees of persistence and evolution in

seasonal patterns; presence of outliers and calendrical effects; varying degrees of

aggregation. In order to assess the performance of the new diagnostics, we extract seasonal

adjustments and irregular components by application of the software X-13ARIMA-

SEATS (U.S. Census Bureau 2015), using either the X11 option (which uses ad hoc filters

in a nonlinear extraction scheme, together with ARIMA model-based forecast extension)

or the SEATS option (which uses a fully model-based filtering paradigm).

We use the automatic modeling option of the software, so that calendrical effects and

extremes (except for additive outliers) are removed along with the seasonal component. In

many cases a log transformation is identified, and the order of differencing needed for the

seasonally adjusted component is extracted from the software run; after transformation

and differencing (this is not applied to the irregular), we apply the Qs statistic as well as our

proposed diagnostic for under- adjustment and over-adjusment. For the latter two

diagnostics, we set the values of r between .98 and 1 in order to focus on the more

egregious cases of residual seasonality. Setting the threshold a ¼ .05, any Qs p-values

above a indicate adequacy of the seasonal adjustment, whereas for the under-adjustment

test we require the p-value to be less than a for adequacy. For the over- adjustment test (for

which Qs cannot be used without substantial modifications) p-values less than a indicate

that over-adjustment has not occurred. We tally for each of the five batches of series the

incidences of adequacy, presented in Tables 13 and 14.

The results based on the seasonal adjustments (SA) and irregular (Irr) are fairly similar,

except when examining the case of over-adjustment, where there are some discrepancies

(in particular, for MRTS). For both the X11 and SEATS methods, results for Qs and the

proposed test of under-adjustment are broadly similar, although Qs is more prone to

identifying residual seasonality. This is intuitive, because any degree of positive lag 12

autocorrelation will place the process in the alternative space of the Qs test, whereas only

high degrees of such positive autocorrelation will trigger the test for under-adjustment.

For the test of over-adjustment most of the SA and Irr are deemed inadequate due to the

large spectral troughs induced by filtering – both the X11 and SEATS methods produce

this effect. Given the discussion of Bell and Hillmer (1984), these findings are not

surprising.

Table 13. Number of series seasonally adjusted by X11 that are

deemed to be adequate, according to whether the Qs test, the test of

under-adjustment, or the test for over-adjustment is applied, for

either the seasonally adjusted (SA) component or the Irregular (Irr).

X11 Test MRTS MWTS M3 MTIS RES

SA Qs 63 22 86 4 53
SA Under 64 22 87 4 55
SA Over 3 2 4 1 1
Irr Qs 63 22 86 4 55
Irr Under 64 22 87 4 55
Irr Over 4 0 4 0 1

Total 65 22 87 4 55
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6. Summary

We have shown an approach to seasonality detection that aims to achieve the five criteria

outlined in the Introduction. This approach depends upon a notion of seasonal persistency

that relies upon the Wold Decomposition, and seasonality is measured by evaluating the

corresponding AR representation at z ¼ r21eiv for various r [ (0, 1). By examining

different values of v, various periodic effects can be simultaneously investigated. For

instance, in daily time series we can examine weekly effects (v given by 2p / 7, 4p / 7, or

6p / 7) together with annual effects (v ¼ 2p / 365.25, among other integer multiples).

When a series is down-sampled, or flow-aggregated, one can easily adapt the phase criteria

for seasonality, although we do not mathematically derive here how the AR roots are

changed by such alterations of sampling frequency.

The AR diagnostic tests are principally useful for detecting under-adjustment in a

seasonal adjustment, as well as for detecting whether seasonality exists in a raw series. The

former exercise is designated as testing for adequacy of seasonally adjusted data, whereas

the latter is referred to as pre-testing, that is, determining whether a given series is a

candidate for seasonal adjustment. (Because seasonal adjustment procedures are not

idempotent in general, there is a cost associated with seasonally adjusting data that does

not warrant such a procedure.) In order to detect over-adjustment, we propose the use of

the MA diagnostic tests. Theory and simulation supports the use of these methods on

stationary or non-stationary time series data.

The article shows how the diagnostics can be applied as a joint test over multiple

frequencies, thereby allowing for a single test of seasonality (or anti-seasonality).

Directionality of rejections can be determined through computing p-values as a function of

the persistency r; by this means, we can determine whether a rejection of seasonality at a

given level r favors the presence of more or less persistent seasonality. We stress that

testing for raw seasonality avoids the difficult distribution theory of unit root tests by the

device of rejecting ever more persistent formulations of stationary seasonality – this is a

pragmatic approach to a thorny statistical problem.

A limitation of this article’s approach is that the time series must either be stationary, or

can be reduced to stationarity by a differencing polynomial. This precludes testing for

fixed seasonality (given by seasonal dummies in a regression), and precludes detecting

Table 14. Number of series seasonally adjusted by SEATS that are

deemed to be adequate, according to whether the Qs test, the Root test of

under-adjustment, or the Root test for over-adjustment is applied, for either

the seasonally adjusted (SA) component or the irregular (Irr).

SEATS Test MRTS MWTS MTIS M3 RES

SA Qs 64 22 85 4 52
SA Under 65 22 87 4 55
SA Over 3 1 2 0 2
Irr Qs 65 22 86 4 55
Irr Under 65 22 87 4 55
Irr Over 6 1 2 0 2

Total 65 22 87 4 55
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more exotic forms of seasonality (such as seasonal heteroscedasticity); mainly, the method

is useful for detecting dynamic (r , 1) or unit root (r ¼ 1) types of seasonality. A

mitigating factor is that in practice an AR or ARMA model will be fitted to compute the

diagnostic, and the size and power are sensitive to model selection.
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Applying Machine Learning for Automatic Product
Categorization

Andrea Roberson1

Every five years, the U.S. Census Bureau conducts the Economic Census, the official count of
US businesses and the most extensive collection of data related to business activity. Businesses,
policymakers, governments and communities use Economic Census data for economic
development, business decisions, and strategic planning. The Economic Census provides key
inputs for economic measures such as the Gross Domestic Product and the Producer Price Index.
The Economic Census requires businesses to fill out a lengthy questionnaire, including an
extended section about the goods and services provided by the business.

To address the challenges of high respondent burden and low survey response rates, we
devised a strategy to automatically classify goods and services based on product information
provided by the business. We asked several businesses to provide a spreadsheet containing
Universal Product Codes and associated text descriptions for the products they sell. We then
used natural language processing to classify the products according to the North American
Product Classification System. This novel strategy classified text with very high accuracy rates -
our best algorithms surpassed over 90%.

Key words: Text analytics; artificial intelligence; data collection.

1. Introduction

The North American Product Classification System (NAPCS) is a comprehensive,

hierarchical classification system for products (goods and services) that is consistent

across the United States, Canada, and Mexico, and promotes improvements in the

identification and classification of products across international classification systems,

such as the Central Product Classification System of the United Nations.

Beginning with the 2017 Economic Census, NAPCS will be used to produce economy-wide

product tabulations. Respondents were asked to report data from a long, pre-specified list of

potential products in a given industry, with some lists containing more than 50 potential

products. The definitions of these NAPCS codes can be very complex and ambiguous.

Businesses have expressed the desire to alternatively supply Universal Product Codes (UPC) to

the U. S. Census Bureau, as they already maintain UPCs in their databases (Thompson and Ellis

2015).

Businesses are generally readily able to report attributes for the business such as total

sales, total payroll, and total number of employees. It is much more burdensome for

businesses to provide, in a traditional survey instrument, detailed information about their

products. Much work has been done around the categorization of products using product
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descriptions (Chen and Warren 2013), but no known study has applied these techniques for

the calculation of official statistics (statistics published by government agencies) using only

the text of UPC product descriptions. The question we address in this article is: Can we use

UPC codes and their associated descriptions to accurately classify products into NAPCS?

The main contributions of the article are:

. We present a novel method for survey data collection to automate the U.S. Economic

Census with supervised machine learning.

. We provide a product categorization strategy for the three North American countries’

classification systems.

. This strategy leverages new approaches and technologies to improve collection

speeds, reduce costs, and alleviate respondent burden.

2. Classification Methods

The classification of data requires a class membership decision y’ of an unidentified data

item x’ given some data set D ¼ (x1, y1), : : : , (xn, yn) of data elements xi that belong to the

class yi. Here, xi is a UPC description and yi [ {1, : : : , P} is its associated NAPCS code.

We use three classification algorithms to categorize products: Support Vector Machine

(SVM) with linear kernel, Logistic Regression (LR), and Multinomial Naı̈ve Bayes (MNB).

2.1. Support Vector Machines

Support Vector Machines (SVMs) were developed by Vapnik (2000) based on the

structural risk minimization principle from statistical learning theory. Statistical learning

theory, the backbone of SVMs, provides a new framework for modeling learning

algorithms, merges the fields of ML and statistics, and inspires algorithms that overcome

many theoretical and computational difficulties. In recent years, SVMs have found a wide

range of real-world applications, including face detection from images (Osuna et al. 1997),

object recognition (Blanz et al. 1996), speaker identification (Schmidt and Gish 1996;

Moreno and Ho 2003), biomedical data classification (Shoker et al. 2005), and text

categorization. The many applications of SVMs for text categorization generated

considerable research interest in our study.

Joachims (2001) explains how SVMs can achieve good classification performance

despite the high-dimensional feature spaces in text classification. The complexity of text-

classification tasks are analyzed and sufficient conditions for good generalization

performance are identified. The article also provides a formal basis for developing new

algorithms that are most appropriate in specific scenarios. The disadvantage of SVMs is

that the classification result is purely dichotomous, and no probability of class membership

is given (Masood and Al-Jumaily 2013). Another disadvantage of SVMs is the “black

box” nature of these classifiers, the decisions made by the model are not easily

explainable. The model produced does not naturally provide any useful intuitive reasons

about why a particular point is classified in one class rather than another. This leads us to

explore models that will be easily understood by our customers. We consider Logistic

Regression (LR), where the most important features of the model gives us insights into its

inner workings and provides direction for improving performance.
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2.2. Logistic Regression

Regression modeling is one of several statistical techniques that enable an analyst to

predict a response based upon a set of inputs. Linear regression models are commonly used

when the range of the response is continuous, and can theoretically take any value. LR,

invented in the 19th century for the description of the growth of population and the course

of chemical reactions, predicts the probability of an occurrence of an event by fitting data

to a logistic curve (Zhang et al. 2011). As the output is restricted to the interval (0, 1), the

assumption of an infinite range fails. The logistic function used in this prediction method is

useful in that it can take any value from negative infinity to positive infinity as input.

2.3. Naı̈ve Bayes

The Naı̈ve Bayes classifier is a classifier based on Bayes Theorem with the naive

assumption that features are independent of each other. The Bernoulli Naı̈ve Bayes model

uses a set of binary occurrence features. When classifying a text document for example,

the Bernoulli Naı̈ve Bayes model is convenient because we could represent the presence or

the absence of the given word in the text with a binary feature. On the other hand, this

model does not take into account how often the word occurs in the text. The Multinomial

Naı̈ve Bayes model (MNB) uses a set of count-based features, each of which does account

for how many times a particular feature, such as a word is observed in a document. MNB

and SVM are popular choices (Ikonomakis et al. 2005; Joachims 1998; Sebastiani 2002).

Both can efficiently deal with high dimensionality and data sparsity.

2.4. Comparison between Logistic Regression, Naı̈ve Bayes, and Support Vector

Machines

Both Naı̈ve Bayes (Eyheramendy et al. 2003) and Logistic Regression (Zhang et al. 2003)

are examples of probabilistic algorithms. Here the dependent variable is a category

(Cosmetics or Personal Hygiene). We have a set of text as predictors or features, which

come from our UPC product descriptions. This is called training data in ML terminology.

MNB takes advantage of probability theory and Bayes’ Theorem to predict the NAPCS

class. The algorithm is probabilistic, meaning we calculate the probability of each class for

a given text, and then output the most likely class. These probabilities are determined by

using Bayes’ Theorem, which describes the probability of a feature, based on prior

knowledge of conditions that might be related to that feature.

The parameters of an LR model can be estimated by the probabilistic framework called

maximum likelihood estimation. Under this framework, a probability distribution for the

response variable (NAPCS code) must be assumed, and then a likelihood function defined

that calculates the probability of observing the outcome given the input data and the

model. This likelihood function can then be optimized to find the set of parameters that

gives the greatest possible probability to the training data.

Support Vector Machines, however, are non-probabilistic classifiers. It has the same

goal as MNB and LR. Given training data, find the best SVM model, and use the model to

classify new UPC descriptions. The difference is that the optimization problem is finding

the hyperplane that best separates UPC text labeled “Cosmetics” from those labeled
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“Personal Hygiene”. The ML models take the UPC description “Diamond of California

Shelled Pistachios” and predict the associated NAPCS code for “snack foods” as pictured

in Figure 1.

3. Relevant Literature

Word (or n-gram) frequencies are typical units of analysis when working with text

collections. The general term n-gram means ‘sequence of length n’. A three-word

sequence is called a trigram, a sequence of two words is called a bigram, and a single word

is called a unigram. It may come as a surprise that reducing a book to a list of word

frequencies retains useful information, but this has been demonstrated in natural language

processing (NLP) research (Pagliardini et al. 2018). Treating texts as a list of word

frequencies (a vector) also makes available a vast range of mathematical tools developed

for studying and manipulating vectors.

Text feature extraction is the process of transforming what is essentially a list of words

into a feature set that is usable by a classifier. In Bag-of-Words feature selection, the

document is treated as an unordered list of words. Under this approach, words are ranked

solely by their frequencies. In this case, the set of feature vectors can be considered as a

matrix where each row is one instance and each column represents a word found in any of

the documents. Thus, each cell (i,j ) represents the number of times a word appears in the

text of the document. It can be noted that this model builds a n £ m matrix where, for our

work, n is the number of UPC text descriptions and m is the number of words without

repetition that appear in the n descriptions.

In our analysis, we were able to extract features by using an n-gram model to transform

the data into feature vectors for use in our models. We gathered word frequencies (or term

frequencies) associated with texts into a document-term matrix using the CountVectorizer

class from the scikit-learn python package.

The document-term matrix is usually very high dimensional and sparse. It can create

issues for ML algorithms during the learning phase. Therefore, it is recommended to

UPC Description NAPCS Code

DIAMOND OF CALIFORNIA SHELLED

PISTACHIOS

snack foods

Which NAPCS code?

Universal Product Code

Retail sales of candy, prepackaged cookies,

and snack foods

Retail sales of food dry goods and other

foods purchased for future consumption

(Include flour, sugar, fats and oils, coffee,

honey, jams and jellies, pasta, and crackers.)

Retail sales of fresh fruit and vegetables 

Fig. 1. Example of UPC description Categorization. Given a UPC text description of Pistachios, we seek to

predict the associated snack foods NAPCS category. A business might sell pistachios and have trouble deciding

what the correct class is: snack foods, dry goods, or fresh fruits and vegetables.
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reduce the dimensionality of the data set by either feature selection or dimensionality

reduction methods (Wang and Manning 2012). The former selects important features from

the original feature set, whereas the latter learns new features from the original set in some

other dimension. We will apply Chi-Square (x2) and Mutual information (MI) as feature

selection methods, and Latent Semantic Analysis (LSA) as a dimensionality reduction

technique (Roberts 1996).

3.1. Chi-Square Dictionary

The x2 test is used in statistics to test the independence of two events. More precisely in

feature selection, it is used to test whether the occurrence of a specific term and the

occurrence of a specific class are independent. Given a document D we estimate the

quantity x2(D, t, c) for each term, and rank them by their score:

x2ðD; t; cÞ ¼
X

et2{0;1}

X

ec2{0;1}

ðNetec
2 Eetec

Þ2

Eetec

ð1Þ

where et takes the value 1 if the document contains term t and 0 otherwise, and ec takes the

value 1 if the document is in class c and 0 otherwise. The x2 statistic is a measure of how

much expected counts E and observed counts N deviate from each other. A high value of

x2 indicates that the hypothesis of independence, which implies that the expected and

observed counts are similar, is incorrect. Features with very small probabilities deviate

significantly from the independence assumption and are therefore considered important. In

this context, x2 helps identify the most relevant features in the data, where ranking these

features may lead to improved classification performance (Bahassine et al. 2018).

3.2. Mutual Information Dictionary

In information theory, MI measures how much information a word contains about the

class. We might not want to use all the features, but just reliable discriminators (Kozareva

2015). We formally define the MI of a word w and a class c as I(w, c) where I is given by:

X

ew2{0;1}

X

ec2{0;1}

pðew; ecÞ log
pðew; ecÞ

pðewpðecÞ
ð2Þ

Essentially the MI is a way of capturing the degree of dependence between two variables.

MI compares the probability of observing ew and ec together with the expected joint

distribution if ew and ec were independent. MI measures the divergence of the actual joint

distribution from the expected distribution under the independence assumption. The larger

the divergence is, the higher the MI would be. For each feature we compute the MI, and we

repeat this analysis with varying feature sizes.

3.3. Latent Semantic Analysis Dictionary

Latent Semantic Analysis (LSA) is a technique for extracting and inferring relations of

expected contextual usage of words in documents. LSA takes documents that are semantically

similar (talk about the same topics) but are not similar in the vector space, and re-represents
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them in a reduced vector space in which they have higher similarity. LSA applies Singular

Value Decomposition (SVD) to the term-document matrix (TDM). It factors the TDM into

three matrices, to form a smaller, low-rank approximation to the original matrix (Bast and

Majumdar 2005). The rank-k LSA model of a TDM, A 2 Rm£n, is its ran-k SVD,

Ak ¼ UkSkVT
k ð3Þ

where Uk 2 Rm£k, Sk 2 Rk£k, Vk 2 Rn£k, contain the k leading left singular vectors, singular

values, and right singular vectors, respectively. In practice, the reduction in size is usually

substantial; from a TDM with tens of thousands of documents and terms, to a low-rank

approximation with only a few hundred basis vectors for each document (Roberts 1996).

4. Data

To evaluate our approach to test which ML classifier would perform best in product

classification, we analyzed 14,000 UPC product descriptions for 44 NAPCS categories,

annotated by U.S. Census analysts. The data was provided by a business in the Health and

Personal Care Stores sub-sector (class code 446). These data have disproportionate class labels

in the response variable. Most of the data is distributed between the cosmetics and personal

hygiene NAPCS codes. After removing categories with under 15 products we are left with 16

NAPCS categories. The distribution of our UPC description data is pictured in Figure 2.

Text-based data is inherently unstructured and must be converted to a structured format

for predictive modeling or other type of analysis. This was done by applying text

processing techniques. Punctuations and numbers were removed from UPC text. Next, all

of the letters were converted to lowercase. Another common preprocessing step is the

Classification text description

Frequency
0 50 100 150 200 250 300 350 400

Frozen foods

Computers and communication

Tobacco products

Alcoholic beverages

Dry goods and other foods

Cleaning supplies

Toys, games, and hobby

Home furnishings

Miscellaneous household goods

Soft drinks and nonalcoholic bev

Office and school supplies

Greeting cards and calendars

Medicines, vitamins, minerals

Snack foods

Cosmetics and fragrance

Personal hygiene supplies

Fig. 2. Product Distribution. This is the distribution of the test data set that was used to measure how well the

model generalizes to unseen data.
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removal of white space. It is typically the result of all the left over spaces or tabs that were

not removed along with the words that were deleted. All white space was removed.

A further preprocessing technique is the removal of stop words. They are words which

are filtered out before or after processing of natural language data (text). Any group of

words can be chosen as the stop words for a given purpose. Stop words are words that are

so common in a language that their information value is almost zero, that is, they do not

carry significant information. We would not want these words taking up space in our

database, or taking up valuable processing time. Some examples are “a”, “about”, “be”,

“do”. Therefore, it is recommended to remove them before further analysis.

5. Implementing Machine Learning Algorithms

The most widely used library for implementing ML algorithms in Python is scikit-learn. This

library is a Python module integrating a wide range of state-of-the-art ML. This package

focuses on bringing ML to non-specialists using a general-purpose high-level language.

Emphasis is put on ease of use, performance, documentation, and API consistency.

A well-fitted model should not just provide good prediction accuracy on the data it was

fitted to, it should also generalize to data not yet seen. We can estimate this generalization

accuracy with a technique called cross-validation. The simplest form of cross-validation is

as follows: the data are separated into a training set and a test set. The algorithm is fit on

the training set and the accuracy (e.g., the percent is correctly classified) is evaluated on

the test set, giving an estimate of how the fit generalizes.

All classifiers have various parameters which can be tuned to obtain optimal

performance. Tuning is performed for varying values of the tuning parameters, searching

for those that give the best generalization accuracy (Guenther and Schonlau 2016). This

can be done by choosing a small number of possible values to test for each parameter, and

trying all possibilities on the grid of their combinations. This is known as a grid search. In

the context of ML, hyperparameters are parameters whose values are set prior to the

commencement of the learning process. In scikit-learn, hyperparameter tuning can be

conveniently done with the GridSearchCV estimator. It takes as input an estimator (such

as accuracy) and a set of candidate hyperparameters. Cross-validation scores are then

computed for all hyperparameter combinations, in order to find the best one. In this

research, we tune the LR, MNB, and SVMs with GridSearchCV.

For LR, we use the sklearn.linear_model.LogisticRegression package in the scikit-learn

library.

The parameters are as follows:

† penalty: It specifies the norm used in penalization. It can be ‘l1’, or ‘l2‘. The default

value is ‘l2’.

† C: It is the inverse of the regularization strength. Smaller values specify stronger

regularization.

We first observe that setting the parameter C is crucial as performance drops for

inappropriate values of C. The LR regularization parameter was set in the range of

(C ¼ 1024, 1023, : : : ,105, 106). A large C can lead to an overfit model, while a small C

can lead to an underfit model. We used GridSearchCV with 10-fold cross-validation to

tune C in this hyperparameter space.
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The package used for SVM classification in the scikit-learn library is svm.SVC.

The parameters are as follows:

† C: It is the regularization parameter, C, of the error term.

† kernel: It specifies the kernel type to be used in the algorithm. It can be ‘linear’, ‘poly’,

‘rbf’, ‘sigmoid’, ‘precomputed’, or callable. The default value is ‘rbf’.

† degree: It is the degree of the polynomial kernel function (‘poly’) and is ignored by all

other kernels. The default value is 3.

† gamma: It is the kernel coefficient for ‘rbf, ‘poly’, and ‘sigmoid’. If gamma is ‘auto’,

then 1
n

features will be used instead.

Training SVMs with a linear kernel is faster than with any other kernel. When you train

an SVM with a linear kernel, you only need to optimize the C regularization parameter.

When training with other kernels, you also need to optimize the gamma parameter, which

means that peforming a grid search will usually take more time. Therefore, linear kernels

are indeed very well suited for text-categorization. It should be kept in mind, however, that

this is not the only solution. In some cases, using another kernel might be better. The

recommended approach for text classification is to try a linear kernel first, because of its

advantages. An SVM with a linear kernel is similar to logistic regression. Therefore, in

practice, the benefit of SVMs typically comes from using non-linear kernels to model non-

linear decision boundaries. In this study, in an effort to get the best possible classification

performance, it was of interest to try the other kernels to see if accuracy was improved.

We did a set of experiments with different kernel functions such as the linear, RBF,

polynomial, and sigmoid in order to see the quality of generalization for each kernel

function. Using sklearn’s SVM implementation svm.SVC, we apply a grid-search to find

the best pair (C, gamma) for each kernel function using 10-fold cross-validation. In order

to increase efficiency, we try exponentially growing sequences of (C, gamma) to identify

good parameters (C ¼ 225, 223, : : : ,215; gamma ¼ 2215 , 2212, : : : ,212). After the

optimal (C, gamma) is found, the training data is trained using the SVMs with different

kernels and the best parameters to generate the final models. After testing our SVM

algorithm with various kernel transformations, we identified the linear kernel as the most

efficient kernel that resulted in the highest classification results.

For MNB, we use the sklearn.naive_bayes.MultinomialNB package in this scikit-learn

library.

The parameters are as follows:

† alpha: It specifies the smoothing parameter. The default value is ‘0’.

The alpha parameter controls the level of smoothing applied in the training set. This can be

useful when items in the test set would have zero probability based on the training set.

There is no good rule of thumb for setting this parameter, so the experiment included

several values within a parameter grid search.

6. Experiments and Results Data

Feature selection is simply selecting and excluding given features without changing them.

Dimensionality reduction transforms features into a lower dimension. Table 1 shows a
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summary of the feature selection and dimensionality reduction techniques that are

considered for each classifier.

6.1. Results

We define classification accuracy as the percentage of UPC codes for which the

classification agreed with the known categories. A UPC code description, whose fitted

state differs from the ground truth label, is defined as an error. Classification accuracy,

precision, recall, and F-scores were used as performance metrics. Precision captures the

fraction of UPC codes classified as cosmetics that are truly cosmetics. Recall captures the

fraction of codes that are truly cosmetic, that are found by the model. The F-score is the

weighted harmonic mean of precision and recall.

We also calculated Cohen’s Kappa coefficient to measure agreement, beyond chance,

between the fitted results and the ground truth data (Grandini et al. 2020). Kappa values range

between 21 (all text incorrectly classified) and 1 (all text correctly classified). A Kappa value

equal to zero indicates a performance no better than random. This was especially important

since our data set has severe class imbalance, a classifier could obtain high accuracy by always

guessing the most frequent class. Table 2 shows the accuracy rates obtained on various feature

sets, across all considered classification and feature selection models. For the LSA

dimensionally reduced data, it no longer makes sense to use MNB, since the features are no

longer valued in positive integers. However, we can still use SVM and LR for classification

(Tong and Koller 2002).

Performance at feature set size 1,100 showed that all models received a boost of 5

percentage points or more using the LSA model, with SVM and LR tied for best. The

frequency based Unigram model, Chi-Square, and MI model achieved very good results

with a feature set of 1,100, but LSA demonstrated much better results than any other model.

LR, SVM, and MNB displayed a large increase in accuracy at the feature set size of

4,100. With the exception of the bigram model, and the combined unigram and bigram

model, all our methods surpassed 90% accuracy with the feature set of 4,100. The optimal

feature set size, however, seems to be at 9,100, the entire vocabulary, where we continue to

see growth in accuracy without any overfitting. SVM was the overall best performer as the

feature set size increased, marginally beating LR and MNB by at most two percentage

points. Table 3 summarizes performance metrics for the frequency based unigram model.

Precision, Recall, and the F-scores are also all above 90%. All of the Kappa values indicate

Table 1. Summary of feature selection and classification methods.

Feature reduction methods Abbreviation Classifiers Abbreviation

Chi-square feature selection x2 Support vector machine SVM
x2 Logistic regression LR
x2 Multinomial naı̈ve bayes MNB

Mutual information feature MI Support vector machine SVM
selection MI Logistic regression LR

MI Multinomial naı̈ve bayes MNB
Latent semantic analysis LSA Support vector machine SVM

dimensionality reduction LSA Logistic regression LR
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that the model results were not due to chance. While dimension reduction wasn’t useful for

this data set, this serves as an important benchmark for future data collection.

6.2. Error Analysis

Examples closer to the decision boundary are frequently misclassified, that is they are

more difficult to identify. Figure 3 shows some misclassified examples. The UPC

Description No7 Lip Balm Coral Blossom was predicted to belong to the personal hygiene

NAPCS code. The lip balm pictured in Figure 3 closely resembles the packaging of

lipstick. It may be useful in the future to consider the brand of a company like No7 (a

cosmetics brand), to more accurately predict NAPCS.

We also noticed errors due to annotator disagreement, subject experts determined

Colorsilk H/C Light Blonde was mislabeled as Cosmetics. Respondent and annotator

inconsistencies will be eliminated by creating an official gold standard.

Table 2. Accuracy Comparison. We can observe that generally, SVM and LR perform Better than MNB.

Classifier 100
words

1,100
words

4,100
words

7,100
words

9,100
words

Chi-square feature selection with unigrams
SVM .55 .83 .94 .96 .96
LR .55 .83 .93 .95 .95
MNB .49 .79 .92 .94 .94

Mutual information feature selection with unigrams
SVM .64 .87 .95 .95 .96
LR .64 .87 .94 .94 .95
MNB .57 .83 .93 .94 .94

LSA dimensionality reduction with unigrams
SVM 76 .92 .95 .96 .96
LR .77 .92 .95 .95 .95

Unigrams
SVM .62 .87 .95 .95 .96
LR .62 .86 .94 .95 .95
MNB .60 .83 .93 .93 .93

Bigrams
SVM .47 .62 .71 75 76
LR .47 .62 .70 75 76
MNB .47 .62 .71 75 77

Unigrams+bigrams
SVM .61 .84 .93 .95 .95
LR .61 .85 .93 .94 .95
MNB .60 .83 .92 .93 .93

Table 3. Classification results using 9,100 features. SVM slightly outperforms the other classifiers.

Classifier Precision Recall F-score Kappa

Unigrams
SVM .96 .96 .96 .94
LR .95 .95 .95 .94
MNB .93 .93 .93 .92

Journal of Official Statistics404



To validate our model further, we looked at which features it is using to make decisions.

Figure 4 shows the most important abbreviations in the UPC text data for the cosmetics

NAPCS. Cover Girl (cg), Maybelline (mayb), Revlon (rev), are major cosmetics brands.

This demonstrates our model is making understandable decisions.

UPC Description Actual Predicted

NEUT MEN SKN CLRNG ACNE WSH 5.1OZ 5001425000 5001450000

CALDESENE PROTECTING POWDER 5OZ 5001425000 5001450000

COLORSILK BTTRCRM NAT BRWN 60/51N 5001425000 5001450000

NO7 LIP BALM CORAL BLOSSOM  .09OZ 5001450000 5001425000

DR FRED SUMMIT SKN/WHITNR 202 2OZ 5001450000 5001425000

COLORSILK H/C LIGHT BLONDE #81 5001450000 5001425000

Fig. 3. Misclassified Examples. Most of the model’s mistakes were between the cosmetics NAPCS code

(5001450000) and the personal hygiene code (5001425000). Personal hygiene was predicted as cosmetics nine

times. Cosmetics was predicted as personal hygiene five times.

Least Important Most Important

nyx

cg

mayb

rev

wnw

lorel

rml

kiss

bbees

mny

nivea

c sg

hershey

dove

nice

adv

walg

hmark

lor eye

cgbg

–2 –1 0 0 5

Fig. 4. Importance Scores for Cosmetics NAPCS. On the left we have the ten least important features, the ten

most important are shown on the right. The most important feature was nyx, the least important was nivea.
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7. Conclusions

The economic census – based on a representative sample of approximately four million

businesses from about 400 industries – is vital to understanding how the nonagricultural

sectors of the US economy are performing. Statistics from the economic census are used

by policymakers and trade and business associations, as well as individual business

owners. In 2017 theeconomic census was updated to collect data on more than 8,000

products through the NAPCS classification system. Due to the nature of this survey

change, which included detailed product data collection, response rates were lower than

expected.

The challenge of collecting the same product data in efficient, innovative, and less costly

ways motivated this study. Respondents have found it burdensome to report data from a

long, prespecified list of potential products. To this end, we turn to modern methods and

techniques for data collection and classification. We consider integrating alternate data

sources for survey collection processes, and an automated survey questionnaire system.

We examine three commonly used ML models for text classification; LR, MNB, and

SVM in order to predict NAPCS codes. We found the best performing model is SVM. All

of the experiments were carried out on a 2.7GHz Intel 4-Core i7-6820 CPU with 16 GB of

RAM, using scikit-learn software and Microsoft Windows 10 operating system. Very high

processing speeds were achieved in the learning phase. The processing time was under 180

ms on a 2.7 GHz PC. The best performing SVM model achieves a good accuracy above

95%, but there is room for improvement.

The year 2018 was an inflection point for truly groundbreaking new developments for

deep learning approaches to NLP. Traditionally, NLP models were trained after random

initialization of the model parameters (also called weights). Transfer learning is a concept

in deep learning where you take knowledge gained from one problem and apply it to a

similar problem. A technique where instead of training a model from scratch, we use

models pre-trained on a large data set and then fine-tune them for specific NLP tasks

(Malte and Ratadiya 2019).

The Google AI paper BERT: Pre-training of Deep Bidirectional Transformers for

Language Understanding collected honors from the ML community. Google researchers

(Devlin et al. 2019) present a deep bidirectional Transformer model that redefines the

state-of-the-art for eleven NLP tasks, surpassing human performance in the challenging

area of question answering. Language models learn the sequential nature of language, the

nuanced flow of words and sentences, and the context in which words appear (Malte and

Ratadiya 2019). These models have a much more nuanced understanding of language than

prior approaches.

BERT (Devlin et al. 2019), ULMFiT (Howard and Ruder 2018), and GPT (Radford et al.

2018) have shown excellent results on multiple NLP tasks like sentiment analysis,

sentence similarity, and document multi-label classification. Relying on deep neural

networks, various research groups trained these new models with tremendous amounts of

data and compute power.

The hope is that transfer learning for NLP will significantly reduce the effort to create

systems dealing with text classification. Unfortunately, in practice, it is not so trivial.

BERT is a huge model with more than 100 million parameters. We not only need a GPU to
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fine tune it, but also at inference time, a CPU is not enough. Using large models in a

production environment requiring large amounts of compute and memory, is currently

impractical for our National Statistics Office (Zafrir et al. 2019). In future work, we hope

to explore these models.

LR remains the clear choice when the primary goal of model development is to look for

possible causal relationships between independent and dependent variables, and a modeler

wishes to easily understand the effect of predictor variables on the outcome given that the

model equation is also provided. This will be useful to both analysts reviewing our

predictions, and also future performance assessments.

We believe we can achieve better consistency, and response by automating

classification for US businesses. We think this is a more precise strategy as indicated

by our high accuracy rates. This research yields promising results and potentially reduces

administration cost in survey processing. We have demonstrated a more efficient

methodology for classifying NAPCS that can also be considered by other North American

countries, and other official statistics agencies. This work also lays the foundation for not

collecting this information only every five years, but with the timeliness that intelligent

predictions provide.

8. Future Work

Our next steps include obtaining UPC data from other businesses such as a clothing and

electronics store. We plan to test the models on additional data sets. If these methods

continue to perform well, we will consider system-to-system agreements with several

companies. Our vision is to have more companies opting into the system-to-system

arrangement over time.

While there are thousands of papers published each year on how to design and train

models, there is surprisingly less research on how to manage and deploy such models in

production. The result of model development is typically trained models that can be used to

render predictions as part of some application or service (Lee et al. 2018). The final phase of

rendering predictions is often referred to as prediction serving, model scoring, or inference.

Prediction serving requires integrating ML software with other systems including user-

facing application code, live databases, and high-volume data streams. Due to domain-

specific requirements, prediction serving has been widely studied in areas such as ad-

targeting and content-recommendation (Agarwal et al. 2015). These targeted approaches do

not address the full set of system challenges necessary to developing high value ML

applications. We require specialized solutions engineered for our unique customer needs.

Our future work includes providing practical lessons for developing ML applications,

whether you are developing your own prediction serving system or using off-the-shelf

software. We also seek to incorporate the Census general-purpose low-latency prediction

serving system for automatic product classification. Census currently uses an application

programing interface (API), in conjunction with a web-based survey instrument, to apply

ML with Logistic Regression to survey responses in real-time. The current system in

production has achieved low latency, high throughput and graceful performance

degradation under heavy load. Looking toward the 2022 Economic Census, we want to

reduce respondent burden while providing the data of greatest need to stakeholders.
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A Product Match Adjusted R Squared Method for Defining
Products with Transaction Data

Antonio G. Chessa1

The occurrence of relaunches of consumer goods at the barcode (GTIN) level is a well-known
phenomenon in transaction data of consumer purchases. GTINs of disappearing and re-
introduced items have to be linked in order to capture possible price changes.

This article presents a method that groups GTINs into strata (‘products’) by balancing two
measures: an explained variance (R squared) measure for the ‘homogeneity’ of GTINs within
products, while the second expresses the degree to which products can be ‘matched’ over time
with respect to a comparison period. The resulting product ‘match adjusted R squared’
(MARS) combines explained variance in product prices with product match over time, so that
different stratification schemes can be ranked according to the combined measure.

MARS has been applied to a broad range of product types. Individual GTINs are suitable as
products for food and beverages, but not for product types with higher rates of churn, such as
clothing, pharmacy products and electronics. In these cases, products are defined as
combinations of characteristics, so that GTINs with the same characteristics are grouped into
the same product. Future research focuses on further developments of MARS, such as
attribute selection when data sets contain large numbers of variables.

Key words: Consumer price index; product relaunch; stratification.

1. Introduction

The increased availability of electronic transaction data sets for the consumer price index

(CPI) offers possibilities to national statistical institutes (NSIs) to enhance the quality of

index numbers. More refined methods can be applied that deal with the dynamics of

consumption patterns in a more appropriate way than traditional fixed-basket methods. For

instance, multilateral methods can be used to specify monthly weights based on actual sales

at the most detailed item level and new items can be directly included in index calculations

(De Haan and Van der Grient 2011; Ivancic et al. 2011; Krsinich 2014; Chessa 2016; Chessa

et al. 2017; ABS 2017; Diewert and Fox 2017; Van Loon and Roels 2018).

Electronic transaction or scanner data sets contain expenditures and quantities sold of

items purchased by consumers at physical or online sales points of a retail chain. The sales

data are often aggregated by retailers into weekly sales for each individual item, which is

uniquely identified by its Global Trade Item Number (GTIN); that is, the barcode.
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Transaction data sets also contain characteristics, such as brand and package volume, of

the items sold. While traditional price collection methods typically record prices of several

tens of items in shops, electronic transaction data sets may contain several tens of

thousands of items for a single retail chain.

GTINs represent the most detailed item level in electronic transaction data sets. Each item

has a unique barcode. This essentially means that NSIs are given a set of tightly defined

items. The ratio of monthly expenditure and quantity sold yields a transaction price, which

can be followed for each item from month to month. However, items may be removed from

the market and reintroduced with modified packaging, for instance, in order to fit a retailer’s

new product line. Quality characteristics of such ‘relaunch’ items may remain the same, but

the barcodes may change after reintroduction, and also the prices compared with those under

the previous GTINs. The barcodes of the old and new, reintroduced items have to be linked

in order to capture price changes under such relaunches.

Typical market segments that feature relaunches are pharmacy items, clothing and

electronics. Rates of item churn may reach high levels, since new item assortments are

frequently introduced to replace their predecessors. GTINs of relaunch items have to be

linked, which means that broader item definitions are needed in such situations. A generic

concept is therefore introduced in this article to denote groups of linked items, which is

called product. However, a product may also be equivalent to a single item, which is a

logical choice in situations where relaunches do not occur.

Old and new GTINs can be linked manually for small samples of items. However, this

becomes infeasible when NSIs aim at processing all GTINs each month, or at least those

GTINs that account for a high percentage of total expenditure. To date, a method for

linking GTINs of relaunch items or, in more general terms, for defining products, that is

both broadly applicable and efficient does not appear to exist. Recent studies from

different NSIs have shown a need for such a method (Bilius et al. 2018; Hov and

Johannesen 2018; Keating and Murtagh 2018). Finding a generic and efficient method is

the objective of this article.

Section 2 shows several examples of product types with different dynamics of GTINs

that enter and leave an assortment. This section gives an initial, rough impression of the

possible impact of different choices with regard to product definition on a price index. The

central element of this article, the method MARS for defining products, is described in

Section 3. MARS (product Match Adjusted R Squared) has been applied to different types

of products, with different rates of churn: food items, clothing, pharmacy products and

electronics. Some results are shown in Section 4.

Section 5 treats specific methodological and practical topics concerning product

definition. Transaction data sets usually contain a small number of product attributes

(often up to four or five in our experience). Are the available attributes sufficient for

defining products? An important question from a practical perspective is how MARS

could be applied in a production environment. Conclusions are presented in Section 6.

2. Assortment Dynamics

As was mentioned in the previous section, certain types of products are affected more by

item relaunches than other product types. This section gives several examples with
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different rates of churn. Combining GTINs based on common characteristics is one

possible way of linking GTINs of relaunch items. This section also gives an initial

impression of the impact of linking versus not linking on a price index, which serves to

highlight the importance of the problem of product definition.

The focus in this article is primarily on transaction data. Four product types from data

sets of four different Dutch retail chains are considered: milk, cheese and eggs of a

supermarket chain, infant garments of a department store chain, hair care products of a

pharmacy chain and televisions of an electronics retailer. About four years of data are used

for the first two product types and three years of data for the other two product types.

The dynamics of products leaving and entering an assortment over time can be measured

in different ways. Chessa et al. (2017) quantify the percentages of existing, leaving and

entering products in each month with respect to the preceding month for different types of

products. A similar measure is used in this section, which is modified on two points:

(1) The comparison or base month is fixed, and is taken to be the first month of a 13-

month time window (December of the previous year), and

(2) The share of ‘existing products’ in the total number of products sold in a month is

taken as a measure of assortment dynamics. Existing products are products that are

sold both in the base month and in the current month.

These two choices can be translated into the following formal notation. Quantities of an

item i sold in month t are denoted by qi;t and Gt is the set of items sold in month t. The

comparison or base month is denoted as month 0. Let G0;t be the set of items/GTINs that are

sold both in the base month and in (current) month t. The measure of dynamics proposed in

this article does not merely count numbers of products, but quantifies the numbers sold. This

choice expresses the extent of churn more appropriately. For instance, a high number of new

products with low sales is not necessarily problematic, in the sense that linking old and new

GTINs hardly affects a price index in such situations because of their low expenditure shares.

The proposed measure of dynamics is defined as follows at GTIN level:

X
i2G0;t

qi;tX
i2Gt

qi;t

: ð1Þ

The numerator is equal to the number of items sold in month t that were also sold in the

base month, and the denominator is equal to the total number of items sold in month t. It is

easy to see that this measure is equal to 1 when there are no new items in month t, while it

decreases when the sales quantities of new items increase. High values of the ratio

therefore mean that the existing items prevail in the sales; in other words, the items sold in

month t match well with the items sold in the base month. For this reason, Expression (1)

will be referred to as the ‘degree of product match’ in month t.

Other choices could be made for different aspects, such as a different base period and to

include disappearing products as well. Admittedly, a better choice for the base period would be

to take the whole previous year instead of a single month. Products may leave temporarily. A

longer period would therefore be recommendable for seasonal products. But for non-seasonal

items we do not expect significant differences, as was also noted in Chessa (2018, 23–25).
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In the above definition of product match, adding the quantities sold for disappearing

items that were still sold in the base month to the denominator of Expression (1) would not

influence the results when comparing different stratification schemes, since the

denominator would be the same in every scheme. In other definitions of product match,

such as the version based on numbers of products in Chessa (2018), disappearing items had

negligible effect on the results.

Examples of product match are shown in Figure 1 for the four types of products

mentioned above. The graphs clearly illustrate how much product match can vary across

different types of products. Rates of churn are relatively low for milk, cheese and eggs.

Most items that were sold in the base month are still sold at the end of a year, as the

existing items dominate the sales. The shares of existing items in the sales quantities for

hair care drop to about 70% at the end of each year, so that new items account for about

30%. In this case, we are less confident of choosing GTINs as products. Relaunches are

known to occur in this market segment (Chessa 2013).

The other two product types, televisions and infant garments, show extremely low product

match values at the end of each year. Item turnover reaches very high levels in the course of a

year. Almost entirely new product lines are introduced each year, which practically replace

the previous ones. Infant garments are influenced by fashion trends, which may offer an

explanation for the high turnover rates and the rapidly decreasing product match.

Traditional bilateral matched model approaches are hard to use at GTIN level under

such circumstances, because of the poor continuity of GTINs over time. This is also the

case for more sophisticated methods like multilateral methods, since these methods are not

able to identify price changes either when relaunches occur. A separate method is

developed for handling this problem, which is the purpose of MARS.
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Fig. 1. Degree of product match for four product categories.
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Figure 2 shows price indices when each GTIN is taken as a separate product. These

indices are calculated with the ‘QU method’, a term that is used to denote a family of

‘quality adjusted’ or ‘generalised’ unit value methods (Von Auer 2014). The multilateral

Geary-Khamis method is an example of the class of QU methods; it is used for processing

transaction data in the Dutch CPI since January 2016 and is also the index method used in

this article (Chessa 2016). The terms QU and Geary-Khamis are used interchangeably in

this article for the same index method.

Making no distinction between GTINs represents the other extreme of the stratification

spectrum. In that case, all GTINs would be considered of the same quality. Expenditures

and sales quantities are summed over all GTINs within a product category. The ratio yields

a weighted average price, known as ‘unit value’ (ILO et al. 2004). The unit value indices

are shown as well in Figure 2.

The graphs show considerable differences between the two indices, especially for

televisions. Existing models usually decrease in price after being introduced. New models

are often more expensive than their predecessors. The index at GTIN level does not

consider any of these higher prices as price changes with respect to older models. This

explains why this index decreases. Higher prices of new models are seen as price increases

from a unit value perspective, which explains the behaviour of the unit value index. New

products may have higher prices because of relaunches, but also because they differ in

terms of quality. Shifts in buying behaviour towards more expensive, higher quality

products are also considered as price increases by the unit value. Similar explanations for

the differences can be given for the other three product groups.

Although the indices represent two extreme cases of product stratification, the

differences nevertheless make clear that product definition may have a substantial impact
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Fig. 2. Price indices at GTIN level and unit value indices for the four product categories (1st month ¼ 100).
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on a price index. We are therefore dealing with an influential choice aspect, which requires

a balanced and efficient method in order to make careful choices.

3. Product Definition With MARS

3.1. Preliminary Remarks and Terminology

We start this section by introducing some terminology. The term item was already

introduced at the beginning of this article, which is used here interchangeably with GTIN.

Different items, that is, with different barcodes but not necessarily in terms of quality, may

have to be linked when relaunches occur. The more generic term product is introduced to

denote a set of one or more GTINs, which share certain quality characteristics. A product

can therefore also be viewed as a combination of characteristics. The latter term is used

here as a specific ‘value’ of the more generic term attribute or variable. For example,

‘screen size’ is an attribute of televisions, and ‘42 inch’ is a specific characteristic.

Items are subdivided into products, and the set of all products forms a partition of

GTINs. The term stratification is used in this article as well for partition, where ‘partition’

is the formal mathematical term. In a partition, each item is assigned to exactly one

product, such that products are pairwise disjoint (different products do not have items in

common). GTINs may also be chosen as different products, as was illustrated in the

previous section, so the set of GTINs is one of the possible partitions. In the examples with

unit values there is only one product, which contains all GTINs of a product category.

GTINs should provide a suitable level of stratification for product categories with high

degrees of product match. GTINs also represent the most detailed level of product

homogeneity in transaction (scanner) data sets. GTINs can therefore be considered as a

serious stratification candidate for milk, cheese and eggs. We will return to this in

Section 4, when the results of the method MARS are presented. How to select a suitable

level of stratification for product categories with low degrees of product match at GTIN

level is less obvious. Broader defined products will increase product match, but

homogeneity may be adversely affected.

There are different ways of partitioning GTINs into products. Available attributes of

GTINs can be used for this purpose. Different selections and combinations of attributes

give rise to different partitions. Each product in a partition contains GTINs with the same

characteristics. For example, the attributes brand, screen size and screen type yield one

partition of the set of televisions. The characteristics ‘Samsung’, ‘between 51 and 59 inch’

and ‘Ultra HD’ define a specific product of this partition. The GTINs within each product

are then considered to be of the same or comparable quality. An attribute may be selected

or not. This means that a set of GTINs can be partitioned into 2n ways for n attributes, to

which the partition with GTINs as distinct products can be added (thus yielding 2n þ 1

partitions).

3.2. Formalisation of MARS

From the introduction to this section it may be clear that numerous ways of partitioning a

set of GTINs exist, each of which may have a different impact on product match and

homogeneity. The aim is to find a method that balances these two properties in an optimal
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way in some sense. Measures of product match and homogeneity will be set up in order to

operationalise this idea. The two measures are eventually combined, which allows

evaluation and ranking of GTIN partitions.

First, some notation is introduced in addition to the notation already used in Section 2.

We denote a partition by K and use k to indicate an element of a partition, which we have

called a ‘product’. In theory, different partitions Kt can be defined each month t, for

example by changing the set of attributes. However, such dynamic cases are highly

complex and are probably not yet well-understood in terms of price index calculation. This

study therefore deals with situations where products, once defined, are kept fixed for some

period. A time window of 13 months would be in line with CPI convention, as product

definitions are typically reviewed and possibly revised at the end of each year. We can

therefore drop the time dimension from the notation for partitions.

We denote the degree of product match for a partition K in month t with respect to the

base month by mK
t and the degree of product homogeneity by RK

t . It is useful to consider

desirable properties for these two measures. Attribute selection and product definition are

in fact new subjects in the processing of large electronic data sets for index calculation, so

that an initial attempt is made below at defining properties.

. Property 1. For two partitions K and K 0 such that K 0 is a refinement of K, so every

element of K 0 is a subset of an element of K, the degree of product match of the

refinement K 0 cannot be larger than the product match of K, that is: mK 0

t # mK
t .

. Property 2. For two partitions K and K 0 such that K 0 is a refinement of K, the

refinement K 0 is at least as homogeneous as K. In formal terms, we have RK 0

t $ RK
t for

all t.

It is reasonable to expect that broader defined products will increase product match, or at

least stay the same, while the opposite is the case for homogeneity. This is in fact what the

two properties say. Measures that satisfy both properties are defined below.

3.2.1. Product Match

Expression (1) applies to GTINs as separate products, so a generalisation is needed. We

introduce K0;t # K for the set of products that are sold both in base month 0 and a second

month t, with t $ 0. In practical applications, month 0 will usually be December of the

previous year and t a month in a 13-month window that runs until December of the present

year. Let qk
t denote the number of items sold for product k in month t; in formal terms:

qk
t ¼

P
i2Gt

qi;t1k ið Þ, where the indicator function 1k ið Þ takes the value 1 if item i belongs to

product k and is equal to 0 otherwise. The degree of product match of partition K in month

t is defined as follows:

mK
t ¼

X
k2K0;t

qk
tX

i2Gt
qi;t

: ð2Þ

It is easily verified that this measure satisfies Property 1. Note that 0 # mK
t # 1 for all K.
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3.2.2. Product Homogeneity

A homogeneous product is a product that consists of items of the same quality. Finding a

measure for the homogeneity of a set of different products boils down to finding a method

that expresses their quality differences. Hedonics is an approach that comes to mind when

reflecting on this complex problem. Although this class of methods has been broadly

studied, it is certainly not without limitations (Chessa et al. 2017).

Index methods usually express differences among products in terms of prices. This

article also takes item prices to set up a measure of product homogeneity. Alternative

choices have not yet been studied; some suggestions for further research are mentioned in

Subsection 5.3. We introduce the following notation for prices. Let the price of item i in

month t be denoted by pi;t and let �pk
t denote the unit value for product k in month t, that is:

�pk
t ¼

X

i2Gt

pi;tqi;t1kði Þ

X

i2Gt

qi;t1kði Þ
; ð3Þ

where the denominator is equivalent to qk
t . The unit value over all items in month t is

denoted by �pt:

�pt ¼

X

i2Gt

pi;tqi;t

X

i2Gt

qi;t

: ð4Þ

MARS uses the proportion of explained variance in product prices, relative to the total

variance in item prices, as a measure of product homogeneity. The contribution of each

product or item is weighted by the quantities sold. This yields the following weighted R

squared measure:

RK
t ¼

X

k2K

qk
t �pk

t 2 �pt

� �2

X

i2Gt

qi;t pi;t 2 �pt

� �2
: ð5Þ

More precisely, this is in fact a measure of heterogeneity between products. The

complementary measure uses the price variance of GTINs within products. We want this

measure to be as low as possible and, consequently, the explained variance as high as

possible. Higher values of RK
t thus denote better homogeneity.

Note that RK
t ¼ 0 when all items are combined into one product and RK

t ¼ 1 when each

item is a separate product. Expression (5) satisfies Property 2. Together with the

previously mentioned properties, this implies that 0 # RK
t # 1 for all K.

An alternative homogeneity measure could be defined by using coefficients of variation

of the products in a partition. These statistics are commonly used in price statistics, not

only in the CPI for data analyses, but also in PPPs. However, it can be shown that

coefficients of variation do not satisfy Property 2 in general.
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3.2.3. MARS: Combining Product Match and Homogeneity

The method MARS aims at evaluating and ranking item partitions. To this end, the

measures of homogeneity and product match will be combined. We thus obtain an R

squared measure that is adjusted for the degree of product match, which explains the

acronym MARS. Some guidance on suitable functions for the combined measure could be

provided by considering properties of rank orderings of partitions.

Transaction data sets, but also other data sources like web scraped data or traditionally

collected data, are usually incomplete. For example, the available product variables are a

subset of attributes that characterise items, and data sets are usually delivered by retailers

in some aggregate form (e.g. aggregated over outlets). The ranking of partitions should not

be affected by the degree of detail and aggregation of the data. These considerations

motivate the following property.

. Property 3. For any two sets of partitions K 0 and K of the same set of items, with

K0 , K, the ordering of partitions on K 0 should be preserved on larger sets K that

include K 0.

Property 3 has direct implications for the form of the combined measure of homogeneity

and product match. For instance, an arithmetic mean of Expressions (2) and (5) does not

necessarily satisfy Property 3. A multiplicative form does satisfy this property, which is

the choice made for the method MARS. In relation to this it is useful to note that

Expressions (2) and (5) represent measurements on different ratio scales. Item partitions

can be compared and ordered in a meaningful way by taking the product of the

homogeneity and product match measures. In this article, R squared and degree of product

match are thus combined as follows, for every month t:

MK
t ¼ RK

t m
K
t : ð6Þ

A multiplicative function also has the characteristic that partitions with either low

values for R squared or degree of product match will be ranked as unattractive

stratification options.

It will be clear that 0 # MK
t # 1, since Expressions (2) and (5) also have this property.

Expression (6) allows us to evaluate and rank item partitions, such that the partition with

the highest value of MK
t is preferred. MARS yields values in every month t, so, in theory,

the ranking of partitions may differ from month to month. The values of MARS in

different months have to be combined in some way in order to produce one ranking.

Different methods can be envisaged, which will be described and compared in Section 4.

One approach to overcome this is to use a price index to deflate prices and then combine

the deflated prices of each product over all months. However, we prefer to stick to the

approach proposed in this article, since the addition of a price index would make the

method more complex, computationally more intensive and also dependent on index

method. The method presented in this article can be combined with any index method,

which is a major advantage since different index methods are normally used in the CPI for

different forms of price collection.

A separate remark is made for the partition where all items are combined into one

product (unit value case). The multiplicative form of measure (6) implies that MK
t ¼ 0 for
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all t, which means that the single product partition will always be rejected. If this is found

to be a limitation, then a simple remedy could be to increase both the numerator and the

denominator of Expression (5) by some constant, say 1. This yields a monotonic

transformation of R-squared, which therefore still satisfies Property 2, takes values in (0,

1] and preserves the value 1 for the GTIN level. Also Property 3 is still satisfied. However,

in practice we do not expect that we have to use modified measures.

3.2.4. Example

We illustrate MARS with an example with a small number of items and only one month

of data. Consider three GTINs, say A, B and C. The prices and quantities of the GTINs

in some month are given in Table 1. The ‘status’ of each GTIN is also given: GTIN A

was sold in the base month and is still sold but is about to leave at a reduced price, GTIN B is

new and GTIN C is a regularly sold item. GTIN B could be seen as a relaunch of GTIN A.

We could also specify attributes in order to construct partitions. But, for simplicity,

attributes and characteristics are excluded from this example since the number of GTINs is

very small. Three GTINs can be partitioned in five ways:

1. A-B-C: each GTIN is a different product,

2. AB-C: GTINs A and B are combined into one product (AB), while C is a separate

product,

3. A-BC: B and C are combined into one product, while A is a separate product,

4. AC-B: A and C are combined into one product, while B is a separate product, and

5. ABC: the three GTINs are combined into one product.

The results are shown in Table 2. A clear preference emerges for partition AB-C, in

which exiting GTIN A is linked to new GTIN B, while ‘persisting’ GTIN C is treated as a

separate product. This partition maximises the degree of product match, while it makes a

minor concession in terms of homogeneity. We can thus say that MARS has picked up the

relaunch. Product match is also maximised by linking new GTIN B to C, but this partition

(A-BC) greatly affects homogeneity.

Table 1. Prices, quantities and status of the three GTINs.

GTIN Price Quantity Status

A 2.00 1 Exiting
B 4.00 20 New
C 2.00 40 Sold in both months, not exiting

Table 2. Results of MARS for the five partitions.

Partition R squared Product match Combined

A-B-C 1 0.672 0.672
AB-C 0.929 1 0.929
A-BC 0.008 1 0.008
AC-B 1 0.672 0.672
ABC 0 1 0
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4. Results for Different Product Types

This section presents the results of MARS for the data of the four product categories that

were introduced in Section 2. The method is applied to each of the three or four years of

data. The product attributes that are available in the four transaction data sets are used to

set up partitions, which are evaluated and ranked with MARS, including the partition in

which each GTIN is a separate product.

In this article, products are defined either by combinations of product characteristics or

as GTINs. A mixture of these two choices, by using existing GTINs as products when

these are not about to disappear and attributes for linking disappearing and new GTINs, is

also interesting. This option results in tighter products. As the corresponding price indices

hardly differ from those that will follow in this section, this hybrid option is omitted.

Details can be found in Chessa (2019, 14–16).

The available product attributes are shown in Table 3. Several remarks can be made

about the attributes. GTIN classifiers denote GTIN groups defined by retailers. This

information is also contained in the data, which is used by NSIs to facilitate the mapping

from GTIN to COICOP in the CPI. The most detailed classifiers could also be used as

additional attributes, which is done in this study. For example, the broadest of the two

classifiers of milk, cheese and eggs contains seven classes. The second classifier is a

further refinement. For example, ‘dairy beverages’ is subdivided into milk, buttermilk and

several other groups. The classifiers for hair care distinguish between conditioners and

shampoo, and the most detailed classifier mainly by hair type (e.g. normal, dry).

Apart from package volume, the other attributes are categorical variables. This is also

the case for screen size (televisions), which is expressed as a range (e.g. from 28 to 32

inch). Screen type in fact means display technology (e.g. OLED, Ultra HD). Because of

the level of detail used by the retailer to specify colours for clothing, we decided to

compress colours into three classes (white, black and coloured). The other attributes were

used as specified by the retailers. The example with colour shows that different choices can

also be made in terms of how the specified characteristics (i.e. the different colours) are

used. Using them as specified or further compressing the range of colours increases the

number of partitions. This illustrates again the complexity of the problem of product

definition from a combinatorial perspective.

Partitions have been set up by using the product attributes in Table 3. These partitions,

together with the partition in which every GTIN represents a separate product, are

evaluated and ranked with MARS. The method MARS yields a score in each month for

every partition. The monthly scores are combined into a single score, which is eventually

used to rank the partitions.

Table 3. Product attributes in the four transaction data sets.

Product category Variables/attributes

Milk, cheese, eggs Brand, package volume, 2 GTIN classifiers
Infant garments Type of garment, volume (#items), fabric,

sleeve length, colour, fit, size
Hair care Brand, package volume, 2 GTIN classifiers
Televisions Brand, screen size, screen type
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In this section, the MARS scores of the last three months are taken to compute an

average score for each partition. The idea behind this choice is that the effects of churn

become more apparent towards the end of a year, since the products that are sold in the

base month will dominate sales in the first months of a year. The results are shown in

Table 4. An obvious question is whether the rankings of the partitions will change when

the three-month period is extended. We will come back to this later in this section.

These results invite us to make a number of remarks:

. The partition ‘GTINs as products’ is only chosen for milk, cheese and eggs, and

emerges as the best partition in each year,

. The results tell us that products for clothing, hair care and televisions should be

defined by sets of attributes. The three product categories are characterised by

moderately to rapidly decreasing degrees of product match at GTIN level (high rates

of churn), and

. For milk, cheese and eggs, hair care and televisions, the selection of attributes is quite

stable over the years. The results for infant garments show more variability.

These findings probably summarise what results could be expected beforehand in a

broad sense. GTINs are an appropriate choice for milk, cheese and eggs, and also for other

COICOP 01 items (not shown here) but not for the other product categories because of the

higher rates of churn.

GTINs are not selected as products for hair care, infant garments and televisions. The

degrees of product match at GTIN level are very low for infant garments and televisions in

the second half of each year (Figure 1). New GTINs may thus have to be linked to GTINs

that leave the stores. The results show that in most cases a small set of attributes is selected

and used for linking. The number of attributes selected in the third and fourth year for

infant garments is clearly larger than in the first two years. Apparently, the degree of

product match increases for tighter defined products in the third and fourth year.

The variability in the sets of selected attributes raises an important question on how

MARS could be used in CPI production. In practice, decisions about product definition are

made for the next year. The item partitions in this section are obtained by using the data of

the corresponding year. It is therefore of tremendous practical interest to know the extent

to which the price indices presented in this section change when the best partition of the

current year is used to compute an index with the data of the next year. We will return to

this question in Subsection 5.2.

Figure 3 shows the monthly MARS scores for various GTIN partitions. Several remarks

can be made based on these graphs. First, the GTIN scheme has the highest MARS scores

Table 4. Partitions selected by MARS for the four product categories in each year.

Product category Year 1 Year 2 Year 3 Year 4

Milk, cheese, eggs GTINs GTINs GTINs GTINs
Infant garments Type, volume,

sleeve length
Type, volume,

colour, fit
All attributes All attributes,

except colour
Hair care All attributes Brand, volume Brand, volume
Televisions Screen size,

screen type
Screen size, screen

type, brand
Screen size, screen

type, brand
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in the first months of each year, which confirms the idea expressed above to shift the focus

towards the second half of a year in terms of evaluating and ranking partitions. As was

noted previously, this is most apparent for hair care, infant garments and televisions

because of the high churn rates.

Second, the MARS scores in the second half of each year lead to the same ordering of

the partitions in almost all months in the graphs of Figure 3. This means that extending the

three-month period up to six months in order to calculate an average MARS score for

every partition would hardly change the results for the data in this article. The same

conclusion was obtained in a previous study (Chessa 2018).

Third, the partition that results from selecting all attributes for milk, cheese and eggs

shows a particular behaviour in the second and fourth year. It reaches much lower MARS

scores than the other two partitions in the second half of these two years. Product match

turns out to be much lower than at GTIN level. This should not happen, since the GTIN

level is a refinement of any partition based on attributes. This means that Property 1 in

Subsection 3.2 is violated. The rapid decreases in product match for the ‘all attributes’

partition are caused by changes in the names of some GTIN classifiers. Products with

changed names are considered as new products, which in reality are existing products with

new classifier descriptions.

This example shows the practical usefulness of Property 1 and that MARS can also be

used as a data monitoring tool. More generally, this also shows that stratifying items by

attributes requires high quality metadata, which have to be checked each month prior to

compiling the CPI. For example, retailers may decide to abbreviate names of GTIN

classifiers (e.g. “bt. milk” instead of “buttermilk”). Such changes in names have to be

identified in a timely manner also in order to assign GTINs to their correct COICOP.
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Fig. 3. MARS scores for different partitions of the four product categories.
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The price indices that correspond with the highest ranked partitions in each year

(Table 4) are compared with the index for GTINs as products and the unit value index. The

first two indices are calculated with the previously mentioned QU method (end of

Section 2). This is done on 13-month time windows. Longer-term index series are obtained

by linking the 13-month indices to the indices in the base month (December of the

previous year).

The three indices are shown in Figure 4. The index for milk, cheese and eggs at GTIN

level is the same as the index for the best partition. The indices for the best partitions for

the other product categories show large differences with the indices at GTIN level and the

unit value index. The partitions are based on attributes, which enable picking up price

differences between new and exiting GTINs with the same characteristics. This results in

higher indices compared with the indices at GTIN level for hair care, infant garments and

televisions.

The indices for the best partitions for infant garments and televisions also differ

substantially from the unit value indices. The differences between these two indices for

hair care are smaller. Although products are defined as combinations of characteristics,

this does not mean that we should expect the corresponding indices to behave like a unit

value index. Products may be tightly defined in such partitions, as is indicated by the

figures in Table 5. In relation to this, note that MARS allows new and disappearing

products to occur also at broader product levels than GTIN.

In some cases, the average number of GTINs per product is quite large. This may be

caused by the relatively small number of attributes in the transaction data sets. On the

other hand, it cannot be excluded that broader groups are sufficiently homogeneous. The
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Fig. 4. Price indices for the yearly best partitions, compared with the indices at GTIN level and the unit value

indices.
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data for infant garments contain seven attributes. The partition with four attributes

reaches high MARS scores and clearly dominates the partition based on all available

attributes in the first two years (Figure 3). Intuitively, this could be interpreted as a sign

that the clothing data contain enough attributes. This topic will be discussed further in

Subsection 5.1.

Apart from the question of whether the available product attributes are sufficient, it is

also interesting to ask whether the price indices for the best partitions are stable.

Sensitivity analyses were carried out by varying the weights for the two measures of

MARS. Homogeneity and product match are in fact assigned the same weight in

Expression (6). Tighter products are favoured by increasing the weight of homogeneity.

An increase of this weight from 0.5 to 0.75, that is, making homogeneity three times

more important than product match, hardly changes the results. Brand would be selected

for televisions also in the first year and all attributes would be selected for hair care in the

second year. No changes were found for the other two product categories. The price

indices are not shown since these hardly changed. A previous study on consumer

electronics showed stable results for a similar sensitivity analysis (Chessa 2018).

5. Topics of Further Research

5.1. Information on Product Attributes

This section discusses methodological questions related to the availability of product

attributes in transaction data sets. Roughly, two situations may occur: data sets containing

a limited number of attributes (the situation in this article) and data sets that contain a large

number of attributes. Although transaction data sets typically contain up to four or five

attributes, there are NSIs, like Statistics Netherlands, that recently received data sets with

tens of product attributes. The request and acquisition of more detailed data is driven by a

growing experience with the use of transaction data in the CPI and retailers’ growing

familiarity with data acquisition and usage by NSIs. Maintaining relationships between

NSIs and retailers is an important part of this process.

The two situations concerning data availability lead to the following questions:

(1) In cases with small numbers of product attributes, is the number of attributes

sufficient for defining products? Are there ways to establish whether more attributes

are needed?

(2) If the number of attributes is large, say in the order of tens of attributes, the number of

stratification schemes quickly becomes too large to enumerate and evaluate. The

question is how large solution spaces could be handled efficiently.

Table 5. Average number of GTINs per product.

Product category Year 1 Year 2 Year 3 Year 4

Milk, cheese, eggs 1 1 1 1
Infant garments 20.3 24.6 4.2 5.8
Hair care 3.0 5.4 6.0
Televisions 21.7 6.6 7.1
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5.1.1. Small Numbers of Attributes

First, note that the question about sufficiency of product attributes becomes more relevant

when the rate of churn increases (i.e. when product match decreases). GTINs are suited as

products for stable assortments, in which case the question is not relevant. The COICOP

milk, cheese and eggs is an example of this (Figure 3). MARS results in a selection of

attributes for the other three product categories. Not all attributes are needed in most years,

which could be interpreted as an indication that the available attributes are sufficient and

also that products can be defined with a limited number of attributes. However, Chessa

(2019, 17) showed that adding attributes from web scraped data for televisions leads to a

different set of attributes and a significantly different price index.

This example shows that the question on data sufficiency is a difficult one. Suggestions

to deal with this problem are given below:

. Adding attributes from a second source, such as web scraping. Building and

maintaining web scrapers and analysing data requires time. If the main purpose is to

use product characteristics, then it should be sufficient to scrape such information

once a month. If information about a lot of attributes is available on websites, then the

question below has to be addressed, on how variables can be selected from a large set

of product attributes,

. Alternative approaches could be considered if web scraping is not feasible in the short

term. A practical approach could be to ask CPI analysts to inspect whether products

with the highest expenditure shares should be stratified further. More refined

stratifications could then be evaluated with MARS,

. The second suggestion may be time-consuming. Another approach could be to

generate product refinements in an automatic way by introducing a dummy attribute

with a number of ‘values’ (dummy characteristics). The idea then is to draw a value

for every GTIN at random, which leads to a further product refinement. This process

can be repeated a number of times and the resulting stratification schemes can be

evaluated with MARS. Improved MARS scores indicate a need for collecting

information about additional attributes. A brief illustration of this idea can be found

in Chessa (2018, 32–33).

5.1.2. Large Numbers of Attributes

NSIs have various possibilities to extend sets of product attributes in transaction data. This

can be done by web scraping, but also by requesting additional information from retailers.

Data sets containing tens of attributes are already being received by NSIs, which raises the

question as to how such numbers can be handled for product definition. Stratification

schemes based on, say up to about 10 attributes, can all be evaluated separately, but this

quickly becomes inefficient for larger numbers of attributes.

The problem addressed in this article is a combinatorial optimisation problem, in which

Expression (6) is the objective function to be maximised over a set of item partitions. A

number of optimisation methods are worth investigating:

. The best-first search method selects the variable that gives the largest improvement in

the objective function at each iteration step. The procedure is repeated with the
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remaining variables until the objective function does not improve anymore (Russell

and Norvig 2003). This method does not guarantee a global optimum, but is attractive

for its simplicity and speed, as n variables require at most n nþ 1ð Þ=2 evaluations,

. Branch and bound searches for an optimal stratification scheme by setting up a rooted

tree, where a branch specifies whether a variable is either selected or not. Each node,

or subtree, represents a subset of stratification schemes, with the full set contained in

the root. Upper bounds of the objective function to be maximised are calculated at

each node, which are compared with the best solution found so far. If an upper bound

is smaller than the current value of the objective function then the corresponding

subtree can be excluded from further exploration. For details, see Land and Doig

(1960) and Little et al. (1963), and

. Another method that may be worth considering is simulated annealing (Kirkpatrick

et al. 1983; Granville et al. 1994). This is an iterative method that decides whether to

stay in the current ‘state’ (i.e. stratification scheme) or move to a new state with a

certain probability. The transition probabilities are specified such that a move to a

scheme with a lower MARS score than the current one has positive probability, in order

to avoid being trapped in local optima. The probability of accepting a scheme with a

lower MARS score is gradually decreased as the number of iteration steps increases.

To get a first impression of the performance of best-first search (BFS), the method was

applied to the four data sets used in this article, although cases with more attributes are

obviously more interesting. The method trivially gives the same results for milk, cheese and

eggs, as the GTIN level gives the highest MARS scores. However, BFS gives the same

results also for the other three data sets in each year. The data on infant garments contain

seven attributes. The selection of attributes changes from year to year (Table 4), but BFS

yields the same results.

BFS can be applied in a simple and efficient way, and the excellent results obtained for

the data sets in this article make it a very appealing and promising method. As it may get

stuck in a local maximum, it is worth combining BFS with the other two methods

mentioned above. BFS could be applied at each node of the tree in a branch and bound

method. BFS can also be used to generate an initial state in a simulated annealing

algorithm and could also be used in subsequent stages. These combined strategies are

worth investigating in future research.

5.2. Practical Issues

An important question is how MARS could be applied in a balanced way in production.

Different factors should be considered, such as:

. The ‘retail dimension’. Should MARS be applied to each retail chain separately or is

it possible to combine the data of different retail chains for the same product

category?,

. The ‘product dimension’. Also in this case the question is which level of aggregation

would be feasible under resources and time constraints, and

. The ‘time dimension’. This refers to the frequency of maintenance of product

definitions during a year.

Chessa: An Adjusted R Squared Method for Defining Products 427



Applying MARS to each retail chain for the same aggregate is probably very time

consuming from a production perspective. People working in a production environment

have a limited amount of time that they can spend on analysing the results of product

stratification. To give an idea, there are more than 50 COICOPs at the most detailed

publication level (five-digit COICOP) for COICOP 01 (food and non-alcoholic

beverages). The number of applications of MARS would thus become quite large only

for supermarkets. Applying MARS to the pooled data of all retail chains for the same

product category seems a better idea. Retail chains should be distinguished when applying

MARS, which can be done by treating retail chain as a distinct attribute.

A similar problem arises in the product dimension. Applying MARS below COICOP-5

level would result in a large number of applications. The proposal of combining data of

retail chains and applying MARS at COICOP-5 level therefore seems a balanced proposal.

Another important question is how often product definitions should be checked and

possibly revised during a year. Will once a year, at the end of a year, be sufficient? Or

should more checks be carried out? Once a year is most compatible with current CPI

routine and also saves time. A higher frequency has the advantage of timely signalling

sudden changes in product assortments, like changes in product churn.

The results in Section 4 showed that product definitions may change over time. Those

for infant garments even change each year. Product definitions were established by making

use of the data of the same year. In practice, decisions have to be taken for the next year.

An interesting question therefore is to what extent the indices will change if these are

based on the product definitions established in the preceding year. Figure 5 shows that the

resulting price indices are accurate. The results also suggest that it may be sufficient to

check product definitions at the end of a year. Some monitoring, say after half a year, is

nevertheless useful.
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Fig. 5. Price indices when using the product definitions of the preceding year.
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5.3. Possible Alternatives for MARS

Taken from a more general perspective, the idea behind MARS is to find similarity

measures for items within strata (homogeneity) and over time (product match). A number

of specific choices lead to the method MARS:

. MARS does not make direct use of attribute values in the homogeneity measure, but

rather uses a mapping of the vector of characteristics of each item onto a one-

dimensional variable, which is the item’s price in this study,

. The (squared) Euclidean distance of an item to the average price of its corresponding

stratum is taken here as an item’s similarity measure, which are combined for

different items into an overall homogeneity measure, and

. The measure of product match makes use of the numbers of items sold.

The reasons for choosing item prices and numbers of items sold were given in Section 2

and Subsection 3.2. However, these choices may also have shortcomings:

. Prices and numbers sold may vary substantially from month to month, for example

during sales periods. Such variations may affect the ranking of item partitions, and

. The choice of item prices has the advantage that distance measures between items can

be easily defined and calculated, but on the other hand results in indirect comparisons

of the characteristics of different items.

The results in Section 4 showed that the ranking of partitions remains stable within a

year for each product type, based on the MARS scores in the last six months of each year.

The variability in the rankings increases over subsequent years. The set of selected

attributes may change from year to year, but this could be a sign of new developments in a

market segment (electronics is a typical example). Such developments should be detected

and accounted for in both product definition and index calculation.

Nevertheless, it is worth studying alternatives for the choices made in MARS.

Inspiration may be gained from the vast literature on cluster analysis and similarity

measurement. The following suggestions may serve as a starting point:

. One direction could be to study more robust choices in the current method. For

example, the number of items sold could be replaced by the number of items within

products. This choice may be less sensitive to relaunches, but has the advantage of

being more robust in sales periods. An additional advantage is that the number of

items within item strata can also be applied to other data sources, like web scraped

data,

. Alternative distance measures could be considered, such as the maximum norm

instead of the Euclidean norm, and

. Alternatives to item prices in the homogeneity measure could be considered, by

directly comparing the vectors of characteristics of different items. This increases the

complexity of the problem, since product attributes may reflect different types of

measurement (e.g. numerical, categorical or binary). Transaction data contain

different types of attributes, which is also the case for the data used in this study

(Table 3, Section 4). The literature on similarity measurement contains studies that

focus on a specific type of variable, like numerical variables (Mafteiu-Scai 2013) and
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categorical variables (Boriah et al. 2008), and also studies that combine similarity

measures for different types of variables (Hoffmann et al. 2015).

6. Final Remarks

Price collection is traditionally carried out by following prices of representative items that

satisfy product definitions. This approach is feasible for relatively small product samples.

So, historically, the problem of product definition is not new. But it needs a new, more

efficient treatment when NSIs consider switching to big electronic data sets and aim at

processing a significant part of such data sets or even to their full extent.

The method MARS facilitates such a transition, as this method can be used to automate

the problem of product definition to a high degree. The need for a higher degree of

automation and data processing was not the only motivation behind the development of

MARS. The method also contributes to formalising the notion of “product”, which has

been an unfilled gap in price statistics so far.

MARS yields tightly defined products for stable assortments, while products are defined as

broader strata, based on common characteristics, as churn rates increase. The latter result was

also found in a previous study on consumer electronics (Chessa 2018). MARS is able to

identify relaunches, so that price changes associated with this phenomenon will be picked up.

The results in this article and in Chessa (2018) also show that the price indices for the

stratification scheme with the highest MARS scores are quite stable. The sensitivity analyses

that have been carried out hardly affect the results of MARS and the corresponding indices.

MARS has been extensively applied to transaction data. Web scraping is a rapidly

growing field, which motivates applying MARS also to web scraped data. This requires

finding proxies for quantities sold (e.g. number of scraped product prices per month, see

Chessa and Griffioen 2019). The suggestions mentioned in Subsection 5.1 for dealing with

small and large numbers of product attributes and the suggestions in Subsection 5.3 for

alternative versions of MARS are also worth investigating in future research.
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Variance Estimation after Mass Imputation Based on
Combined Administrative and Survey Data

Sander Scholtus1 and Jacco Daalmans1

This article discusses methods for evaluating the variance of estimated frequency tables based
on mass imputation. We consider a general set-up in which data may be available from both
administrative sources and a sample survey. Mass imputation involves predicting the missing
values of a target variable for the entire population. The motivating application for this article
is the Dutch virtual population census, for which it has been proposed to use mass imputation
to estimate tables involving educational attainment. We present a new analytical design-based
variance estimator for a frequency table based on mass imputation. We also discuss a more
general bootstrap method that can be used to estimate this variance. Both approaches are
compared in a simulation study on artificial data and in an application to real data of the Dutch
census of 2011.

Key words: Data integration; finite-population bootstrap; categorical data; census tables.

1. Introduction

Administrative data are being used ever more frequently in the production of official

statistics (Bethlehem 2008). In many cases, available registers cannot meet all demands

made by users of official statistics and therefore have to be supplemented by other data

sources, most notably sample surveys. To ensure that the resulting statistics are of

sufficient quality, it is necessary to evaluate their accuracy – in particular, their variances.

In general, estimating the variance of an estimator based on combined administrative and

survey data is not a trivial task.

As a running example, we consider variance estimation for frequency tables in the

Dutch decennial virtual population census. Since 1981, the Dutch census tables have been

estimated by re-using data from existing sources rather than collecting data with a

dedicated questionnaire. Nowadays, most variables needed for the census are available

from administrative sources with (near-)complete population coverage. An exception

occurs for educational attainment, which is observed partly in education registers and

partly in the Labour Force Survey (LFS). For about seven million Dutch persons (of a total

of 17 million), educational attainment is not observed.
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In the Dutch censuses of 2001 and 2011, the “repeated weighting method” was used to

handle missing data during estimation of census tables (Schulte Nordholt et al. 2004, 2014).

It is known that repeated weighting has practical limitations for the estimation of large

numbers of high-dimensional frequency tables, and these limitations were indeed

encountered during the 2011 census (Daalmans 2018). As an alternative approach, it has

been proposed for the next census to use mass imputation to predict all missing values of

educational attainment (De Waal et al. 2018). This naturally leads to the question how to

determine the precision of estimated entries in frequency tables based on mass-imputed data.

In principle, one may try to use analytical approximations to estimate the variance of

statistical tables after mass imputation and, by extension, other estimators based on

combined administrative and survey data. For instance, Knottnerus and van Duin (2006)

developed an analytical variance approximation for estimated census tables based on

repeated weighting. For the particular case of estimated frequency tables, we will present a

new formula for the design-based variance of mass-imputed estimates in Section 2. This

formula is of interest for a class of problems in which a categorical variable is mass-

imputed, using one or more auxiliary variables. It is assumed here that a certain model is

applied that predicts, for each record, the probabilities for each of the categories of the

target variable. For instance, this can be a logistic regression model. Imputations for

missing values are then drawn based on these predicted probabilities.

In general, a drawback of analytical variance estimation is that a separate expression has

to be derived for each estimator and each data configuration. In fact, for some estimators

based on combined data, deriving an adequate variance expression may prove to be

impossible. Therefore, a resampling method such as the bootstrap may be a more attractive

option. In Section 3, a generic bootstrap method will be described for this purpose. Unlike

the analytical approach of Section 2, this bootstrap approach does not depend on the

specific context of mass imputation of a categorical variable and could therefore easily be

applied to many other estimators based on combined administrative and survey data.

Both approaches have been tested on a small artificial population in a simulation study

(Section 5). In Section 6, we will describe an application of both approaches to real data of

the Dutch virtual census 2011. Both applications in Sections 5 and 6 make use of a specific

imputation model that has been proposed for the next Dutch census, the “continuation-

ratio model”; this model will be outlined in Section 4. In particular, we will present a new

analytical expression for the large-sample variances of predicted probabilities based on

this model. Some conclusions follow in Section 7.

2. Analytical Variance Estimation for Mass-Imputed Tables

We will now consider the estimation of frequency tables based on mass imputation in

more detail. Let uhc ¼
P

i2Uhiyci denote the true count in a particular cell of a table

involving our target variable. Here, U is the target population and yc is an indicator

variable such that yci ¼ 1 if person i belongs to category c of the target variable and yci ¼ 0

otherwise (c ¼ 1, : : : ,C, where C denotes the total number of categories). Furthermore, h

is a similar indicator variable for the cross-classification of all other variables in the table,

that is, hi ¼ 1 if person i contributes to this cell according to these other variables and

hi ¼ 0 otherwise.
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As is common in official statistics, we will consider the target population and the values

of variables for units in this population as fixed. All variables other than the target variable

represented by y1, : : : ,yC are supposed to be completely observed for all units in the

population. The target variable is partially observed. In general, it could be observed for

some units in an administrative source and for other units in a sample survey. We suppose

that missing values on the target variable are imputed throughout the population (mass

imputation; see, e.g., De Waal et al. 2011). After mass imputation, uhc is estimated as

follows:

ûhc ¼ uhc1 þ ûhc2 ¼
i2U1

X
hiyci þ

i2S2

X
hiyci þ

i2U2\ S2

X
hi

,
yci

0

@

1

A: ð1Þ

Here, U1 consists of all persons in U for which the target variable is observed in a register.

From the remaining subpopulation, U2 ¼ U\U1, a probability sample S2 is available with

observed values of the target variable. Finally, for all i2U2\S2, the indicator yci is

unknown and replaced by an imputation
,
yci in Equation (1).

We will consider the register part of the population, U1, to be fixed. In general, the

sample S2 may be a subsample of a sample S drawn from U. Note that the size of the

register overlap S1 ¼ S > U1 is then random in general.

In the application to be discussed in Section 6, Equation (1) is used to estimate a table in

the Dutch virtual census, where y1, : : : ,yC represent levels of educational attainment. In

this case, the imputations are based on a model that is estimated only on data from S2, as

the register data are known to be selective. The results in this section can be applied to any

frequency table involving a categorical variable that is mass-imputed. This includes the

special case where only sample survey data are available (U1 ¼ B).

In general, we suppose that the missing values of yci are imputed by drawing –

independently for each person i2U2\S2 – a vector
,
y1i; : : : ;

,
yCi

� �
from a multinomial

distribution with predicted probabilities p̂1i; : : : ; p̂Ci

� �
, so that for each i exactly one of

the values
,
yci is equal to 1 and the other values are equal to 0. The predicted probabilities

p̂ci are obtained from an imputation model estimated on the observed distribution of yc in

the sample S2. An example of an imputation model will be discussed in Section 4.

The uncertainty in ûhc 2 uhc comes from three different sources: the random selection of

persons in U2\S2 that have to be imputed, the uncertainty in the predicted probabilities p̂ci

for these persons, and finally the stochastic drawing of the imputations
,
yci based on these

predicted probabilities. All of these uncertainties are directly or indirectly related to the

selection of the probability sample S2 and therefore depend on the design of this sample.

In principle, it is possible to evaluate the variance of ûhc 2 uhc analytically. Here, we

will make the simplifying assumption that the predicted probabilities p̂ci in S2 satisfy the

following condition, for all c ¼ 1, : : : ,C:

i2S2

X
hi p̂ci 2 yci

� �
¼ 0: ð2Þ
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Under this assumption, the following variance formula is derived in Appendix (Subsection 8.1):

var ûhc 2 uhc

� �
¼ E

i2U2\ S2

X
hip̂ci 1 2 p̂cif g

8
<

:

9
=

;
þ

i2U2

X

j2U2

X
hihj cov p̂ci; p̂cj

� �
: ð3Þ

For many commonly used models, Equation (2) may be reasonable, at least as an

approximation. For instance, it is satisfied exactly when imputation is based on a logistic

regression model, fitted by maximum likelihood to a simple random sample S2, which

includes the cross-classified variable h as a predictor (see, e.g., Agresti 2013, 192–193).

However, there are also many situations where Equation (2) will not hold exactly; for

instance, if S2 in the previous example has a complex survey design, the sampling weights

are used when estimating the logistic regression model and these weights are not contained

in the space spanned by the predictor variables. In Appendix (Subsection 8.1), it is argued

that Equation (3) will be a reasonable approximation to the true variance even when

Equation (2) does not hold, provided that the sampling fraction of S2 from U2 is sufficiently

small (see the Appendix for details). In the next section, a bootstrap method will be

described that can be used instead of Equation (3) if the use of Equation (2) is problematic.

To complete the specification of var ûhc 2 uhc

� �
, an expression is needed for

cov p̂ci; p̂cj

� �
in Equation (3). The precise form of this covariance depends on the

imputation model and the sample design. For the proposed imputation model for

educational attainment in the Dutch census, an approximate expression for cov p̂ci; p̂cj

� �

will be derived in Section 4 and Appendix (Subsection 8.2); there it is also discussed under

which conditions Equation (2) holds (approximately) for this model. Evaluating the

resulting variance formula may be computationally challenging in practice.

Based on the observed data, the variance in Equation (3) could be estimated as follows:

cvarvar ûhc 2 uhc

� �
¼

i2U2\ S2

X
hip̂ci 1 2 p̂ci

� �
þ

i2U2

X

j2U2

X
hihjdcovcov p̂ci; p̂cj

� �
: ð4Þ

Here, dcovcov p̂ci; p̂cj

� �
denotes an estimator of cov p̂ci; p̂cj

� �
. Again, the precise form of this

term depends on the imputation model and the sample design. Note that the first term in

Equation (4) follows from the fact that any random variable is an unbiased estimator for its

own expectation.

Note that in Scholtus (2018) an alternative variance estimator was derived, without

Equation (2) but with the additional technical assumption that p̂ci is stochastically

independent of the sample inclusion indicator of S2 for all units. Based on the simulation

study presented there and in Section 5 of this article, it appears that this assumption can be

failed in practice and as a result this alternative formula may underestimate the true

variance. Note that this independence assumption is not easy to check based on the

observed data, unlike Equation (2).

As far as we are aware, the above design-based variance of a mass-imputed estimator

for categorical data has not been mentioned before in the literature. Valliant et al. (2000)

discussed estimators of this type from a model-based perspective, but focused mainly on

numerical target variables. Kim et al. (2020) consider variance estimation for a more

general imputation model, for a situation that they call ‘mass imputation’ but which does

not involve imputation of missing data throughout the target population.
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3. A Bootstrap Method

The classical bootstrap (Efron 1979; see, e.g., Efron and Tibshirani 1993, for an

introduction) uses resampling with replacement from an original sample to approximate

the sampling distribution of a target estimator. This method cannot be used directly here,

as it does not account for finite-population sampling. In fact, mass imputation is

meaningful only in the context of a finite population.

Different extensions of the bootstrap to finite-population sampling have been

developed; see Mashreghi et al. (2016) for a recent overview. For estimators that involve

weighting or imputation, a particularly useful extension is based on generating pseudo-

populations. This methodology was developed by Gross (1980), Booth et al. (1994), Canty

and Davison (1999), and Chauvet (2007). At Statistics Netherlands, Kuijvenhoven and

Scholtus (2011) applied this type of bootstrap method to combined register and LFS data

on educational attainment, for various estimators based on weighting. Here, we will

describe a slight extension of their method that can accommodate more general estimators.

As a generalisation of Equation (1), suppose that the estimator of interest is û ¼ t(S,U1),

for some functional t(.). The underlying finite-population parameter is u. Let pi denote the

inclusion probabilities of sample S, and write the design weights wi ¼ 1=pi as

wi ¼ bwicþ wi, with bwic2N and wi2½0; 1Þ. Here, bzc denotes the integer part of z2R, that is,

the largest integer that is smaller than or equal to z. The bootstrap algorithm consists of the

following steps:

† For each a ¼ 1, : : : , A do the following:

1. Create a pseudo-population Û*
a by taking vi copies of each unit i2 S, where the

random inflation weight vi is chosen to be vi ¼ bwic with probability 1 2 wi and

vi ¼ bwicþ 1 with probability wi. (Note that Kuijvenhoven and Scholtus (2011)

proposed to obtain these random inflation weights by applying Fellegi’s method

for controlled random rounding. This has the nice property that Û*
a

�
�
�
� ¼ Uj j holds

with certainty, rather than just in expectation.)

2. For each b ¼ 1; : : : ;B do the following:

a. Draw a sample S*
ab from Û*

a according to the same design that was used to draw

S from U. For k2Û*
a the inclusion probability is chosen to be p*

k / pi, with i the

unit in the original sample S of which unit k is a copy. Here, the proportionality

constant is chosen so that
P

k2Û*
a
p*

k ¼ Sj j holds.

b. Analogously to the original estimation procedure yielding û ¼ t(S,U1),

construct the bootstrap replicate û *
ab ¼ t(S*

ab, U1).

3. Compute the variance estimate for û–u based on pseudo-population Û*
a as

vaðû2uÞ ¼ ðB 2 1Þ21
PB

b¼1 û *
ab 2 û *

a

� �2

; with û *
a ¼ B21

PB
b¼1û

*
ab.

† Compute the final variance estimate for û 2 u by averaging over the pseudo-

populations: cvarvarboot
^
u 2 u
� �

¼ A21
PA

b¼1va
^
u 2 u
� �

:

The outer for loop of this algorithm is intended to reduce the noise due to the random

assignment of integer-valued inflation weights to units with non-integer sampling weights

in Step 1. Previous results in Chauvet (2007) and Kuijvenhoven and Scholtus (2011)

suggest that this additional for loop may have little added value in practice (i.e., choosing

A ¼ 1 leads to variance estimates of a similar accuracy as choosing A . 1). It can

Scholtus and Daalmans: Variance Estimation after Mass Imputation 437



certainly be avoided in the special case that all wi are integer-valued. For variance

estimation, B ¼ 200 replicates are often considered sufficient in the bootstrap literature

(Efron and Tibshirani 1993 sec. 6.4). If the sample S is based on a multi-stage design, an

extended version of the above pseudo-population approach may be used to account for

clustering (Chauvet 2007; Mashreghi et al. 2016).

The contents of Step 2b depend on the original estimation procedure. For ûhc in

Equation (1). based on mass imputation, in this step we basically re-estimate the

imputation model and use this to impute the missing values in the pseudo-population. In

general, the bootstrap sample S*
ab may contain copies of units from S \ S2, that is, units that

overlap with the register part of the population. In analogy with the original imputation

procedure, only the subset of units in S*
ab that originate from S2, say S*

2ab, is used to re-

estimate the imputation model. Similarly, only the missing values for the subset of units in

the pseudo-population Û
*

a that originate from S2, say ^U
*
2a, are subject to imputation. The

missing values in ^U
*
2a occur for those units that are not contained in the bootstrap sample

S*
2ab, that is, ^U

*
2a\ S*

2ab. The register part of the pseudo-population is not imputed in the

bootstrap procedure, as the contribution of the register part to ûhc is considered fixed. In

summary, Step 2b consists here of the following steps:

. Define Û*
2a as the subpopulation of Û*

a consisting of copies of units from S2, and define

S*
2ab ¼ S*

ab > Û*
2a.

. Use S*
2ab to re-estimate the imputation model for y1; : : : ; yC.

. Impute the missing values of y1; : : : ; yC in Û*
2a\ S*

2ab using the re-estimated model.

. Compute the replicate û
*

hc;ab ¼
P

k2U1
hkyck þ

P
k2S*

2ab
hkyckþ

� P
k2Û

*

2ab\ S*
2ab

hk
,
yck

�

analogously to Equation (1).

Note that only the contribution of the non-register part to û
*

hc;ab varies between replicates.

The bootstrap method is straightforward to implement and can in fact re-use most of the

code that was created to compute the original estimates. It is a computationally intensive

method. A potentially useful aspect is that the time-consuming parts of the above bootstrap

algorithm have to be performed only once. For instance, with mass imputation, the mass-

imputed pseudo-populations could be stored and used to compute a variance estimate for

any estimator ûhc by generating the replicates û
*

hc;ab ‘on the fly’. Since each pseudo-

population consists of copies of units in the original sample S, all relevant information can

be stored in a matrix of Sj jABC integers; see Scholtus (2018) for details.

4. The Continuation-Ratio Model for Imputation

In Sections 5 and 6 we will present applications of the variance estimation methods of

Sections 2 and 3 to simulated and real data on educational attainment. In these

applications, use is made of the imputation approach proposed for educational attainment

in the next Dutch virtual census. In the present section we will briefly discuss the

underlying imputation model.

The imputation approach is based on logistic regression. Since educational attainment

has C .2 categories, the binomial logistic regression model cannot be applied directly. To

account for the fact that educational attainment is an ordinal variable, De Waal et al.
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(2018) proposed to use an extension of logistic regression known as the continuation-ratio

model.

The continuation-ratio logistic regression model (Agresti 2013 sec. 8.3.6) consists of

C 21 ordinary binomial logistic regression models. Each of these binomial models refers

to the conditional probability qci that person i does not attain a higher level than a

particular level c, given that this person at least reached level c (c ¼ 1; : : : ;C 2 1):

q1i ¼ P y1i ¼ 1j x ¼ xi

� �
:

qci ¼ P yci ¼ 1jy1i ¼ : : : ¼ y c21ð Þi ¼ 0; x ¼ xi

� �
; c ¼ 2; : : : ;C 2 1
� �

:

Here, xi denotes a vector of auxiliary variables used in the model. Note that each

conditional probability qci refers to a binary choice ( yci ¼ 1 or yci ¼ 0). The continuation-

ratio logistic regression model thus consists of a sequence of models of the form:

log
qci

1 2 qci

	 


¼ bT
c xi; c ¼ 1; : : : ;C 2 1

� �
: ð5Þ

Agresti (2013) noted that maximum likelihood estimates of all parameters in the

continuation-ratio model can be obtained by estimating the C 2 1 binomial logistic

regression models in Equation (5) separately, each of them being estimated on the subset

of the sample that satisfies the relevant condition of the form y1i ¼ : : : ¼ y c21ð Þi ¼ 0.

From the estimated model parameters, the conditional probability that a person with

characteristics xi has education level c may then be predicted by

q̂ci ¼
exp

^
b

T

c xi

� �

1þ exp
^
b

T

c xi

� � ; c ¼ 1; : : : ;C 2 1
� �

: ð6Þ

Subsequently, predictions for the marginal probabilities pci ¼ P yci ¼ 1j x ¼ xi

� �
as used

in Section 2 can be derived by the following recursive relation:

p̂1i ¼ q̂1i;

p̂ci ¼ q̂ci 1 2
Xc21

k¼1

p̂ki

 !

; c ¼ 2; : : : ;C 2 1
� �

;

p̂Ci ¼ 1 2
XC21

c¼1

p̂ci:

ð7Þ

To account for finite-population sampling – possibly with a complex survey design –

pseudo maximum likelihood estimation can be used (Chambers and Skinner 2003; see also

Appendix, Subsection 8.2). Under this approach, a large-sample approximation to

cov p̂ci; p̂cj

� �
for the predicted probabilities from the continuation-ratio model is derived in

Appendix (Subsubsection 8.2.2). The computation of these approximate covariances

involves a recursive algorithm over c ¼ 1, : : : , C. Moreover, to evaluate Equations (3) or

(4) this algorithm would need to be run for each pair (i 2 U2, j 2 U2) or at least each pair

with hi ¼ hj ¼ 1, which can be computationally challenging for populations of realistic
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size. In practice, some efficiency may be gained by noting that

cov p̂ci; p̂cj

� �
¼ cov p̂ck; p̂cl

� �
whenever xi ¼ xk and xj ¼ xl. (Scholtus 2018).

In general, Equation (2) need not hold exactly for the continuation-ratio model with

C . 2. Sufficient conditions under which Equation (2) holds exactly are provided in

Appendix (Subsubsection 8.2.4). There is also argued that, for large samples, Equation (2)

should hold approximately in practice provided that the imputation model contains h, the

variables that define the sampling design of S2, and the interaction of h with these variables.

5. Simulation Study

An extensive test of the bootstrap method from Section 3 for various estimators based on

weighting with combined register and survey data was conducted in Kuijvenhoven and

Scholtus (2011). This bootstrap method has been in use at Statistics Netherlands since

2010 to estimate variances for publications on educational attainment based on weighting.

In this section, we describe the results of a simulation study for an estimator based on mass

imputation. We also compare the bootstrap variance estimates to the analytical estimates

from Equation (4).

All computations were done in the R environment for statistical computing. The survey

package (Lumley 2018) was used for pseudo maximum likelihood estimation. A fast

implementation of the analytical variance estimator was created using the data.table

package (Dowle et al. 2019).

As a basis for this study, we used the data of the synthetic Samplonia population (see, e.g.,

Bethlehem 2009). A target population of size N ¼ 5 £ 745 ¼ 3725 was created by

concatenating five copies of all persons aged over 14 in Samplonia. In this simulation, there

were no register data, so U1 ¼ B; and U ¼ U2. The sample S ¼ S2 was drawn according to a

simple random sampling design without replacement, with sample size n ¼ N/5 ¼ 745.

Mass imputation of educational attainment for persons in U2\S2 was based on a

simplified version of the imputation approach proposed for the Dutch census, outlined in

Section 4. In this simulation study, educational attainment was classified into C ¼ 3

categories, labelled as ‘low’, ‘medium’, and ‘high’. The continuation-ratio model was

applied with auxiliary information of the form gender £ (age þ income). Here, gender

consisted of two classes, age consisted of three levels, and income was used as a

continuous variable. This model was based on the available variables in the Samplonia

data set; it should be noted that the imputation model proposed for the Dutch census uses

different auxiliary variables (see Section 6).

The target frequency table in this study consisted of a cross-classification of age and

educational attainment (both with three levels). Table 1 below shows the true population

counts (left panel) and approximate true standard deviations of the mass-imputed Equation

(1) for these counts (right panel). The latter were obtained by drawing 20,000 samples

from the population and for each of them estimating the model, applying mass imputation

and tabulating the target estimates.

Next, we simulated 100 samples from the population and estimated the variances by two

approaches:

. using the analytical variance estimator (4), with dcovcov p̂ci; p̂cj

� �
based on the large-

sample approximation in Appendix (Subsection 8.2);
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. using the bootstrap algorithm of Section 3, with A ¼ 1 (as no rounding was necessary

here) and B ¼ 200.

Table 2 shows the mean estimated standard deviations and (in brackets) their standard

deviation across 100 simulations. The table shows that both approaches produced

estimated standard deviations that were close to their true values on average. From the

values in brackets it can be seen that the estimated standard deviations from the analytical

approach were more precise than those of the bootstrap approach (i.e., there was less

variation between simulated samples).

We found that Equation (2) was approximately satisfied in these samples; this is as

expected, since the imputation model included the variable age as a predictor and all

observations had the same design weight. Finally, a note on computation times: across 100

simulated samples the average computation time was about 2.4 minutes per sample for the

bootstrap method and just under five seconds per sample for the analytical method.

6. Application to Real Data

6.1. Setup

In this application we estimate variances for one table for the Dutch Population and

Housing Census 2011. The table under consideration contains the Dutch population by

Geographic area (12 categories), Sex (two categories), Age (eight categories) and

Educational attainment (six categories), which makes up 12 £ 2 £ 8 £ 6 ¼ 1,152 cells in

Table 1. True counts and simulated true standard deviations for an artificial population.

True counts True standard deviations

Educational attainment Educational attainment

Age (years) Low Medium High Low Medium High

Young (15–35) 330 795 400 34.5 42.2 36.8
Middle (36–55) 115 560 480 22.3 36.8 36.1
Old (56þ ) 120 525 400 22.8 35.6 34.5

Table 2. Mean and standard deviation of estimated standard deviations for estimated counts after mass

imputation, based on 100 simulations.

Estimated analytical st. dev. Estimated bootstrap st. dev.

Educational attainment Educational attainment

Age (years) Low Medium High Low Medium High

Young (15–35) 34.1 41.8 36.6 34.1 41.9 36.4
(1.3) (0.7) (1.2) (2.2) (2.3) (2.0)

Middle (36–55) 22.5 36.8 36.1 22.7 36.6 36.0
(1.7) (0.8) (1.0) (2.4) (2.0) (2.1)

Old (56þ ) 22.8 35.4 34.3 22.5 35.2 34.5
(1.8) (0.8) (1.0) (1.9) (2.1) (2.2)
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total. Geographic area, Sex and Age are available from central population registers that

fully cover the target population of the census. Educational attainment is available for a

subset of the population.

In this evaluation study Educational attainment is estimated from the Educational

Attainment File (EAF), with reference day January 1, 2011. The EAF is a database that

includes data from multiple registers and LFS data from multiple years. Data from the

EAF can be matched to the population registers at the micro level. The EAF is planned to

be used for the 2021 census.

The EAF contains a ‘register part’ and a ‘non-register part’, which include 9,363,909 and

7,291,890 persons, respectively. These two parts refer to the people for which register

information on educational attainment is and is not available (U1 and U2 in the notation of

Section 2). The focus of this simulation study is entirely on the non-register part. For

340,472 out of 7,291,890 persons, educational levels are available from an LFS. The

missing observations are imputed at the micro level, using the continuation-ratio model that

was introduced in Section 4. The imputed data are used to estimate counts and variances for

the aforementioned table: Geographic area £ Sex £ Age £ Educational attainment.

It should be noted that for this study we had only limited information about the origin of

the sample data S2. First, we did not have any information about the larger sample S from

which S2 was obtained by removing the overlap with U1. Second, the data in S2 are an

integrated sample of several LFS rounds and we only had the final recalibrated sampling

weights but no information about the underlying sampling design and the way different

years were combined. For the purpose of this study, we approximated the design of S2 by

that of a simple random sample without replacement from U2. This should give reasonable

results for comparing the analytical and bootstrap methods, as the same approximation

was used for both approaches. For a future application to the real Dutch census, a better

approximation will be made which accounts for the complex survey design of the LFS.

The EAF-based data set was enriched with information from other data sources that are

included in the system of Social Statistical Data sets (SSD). The variable Income (six

categories: five quantiles and unknown/not available) was used as a stratification variable

in the imputation model; that is to say, a separate continuation-ratio model was estimated

for each income class. Income has been chosen because it has a relatively strong

association with Educational attainment (Daalmans 2017). The variables Age,

Geographic area and Sex that are contained in the target table were also used as an

auxiliary variable for most of the cases. However, for the lowest class of education and

three strata of income only Sex was taken as auxiliary variable. This choice will be

explained further on.

As before, the bootstrap method in Section 3 was implemented with B ¼ 200 and A ¼ 1

and all computations were done using R and the survey and data.table packages.

6.2. Results

The computation time was much longer for the bootstrap method than for the analytical

method: about 21.5 hours versus 48 minutes and 26 seconds. Note that the bootstrap

computations could easily be parallelised across multiple processors to save time.

However, we did not do this here.
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For the analytical Equation (4), for each cell of the target table a double sum needs to be

computed of all people that have the same combination of values for the auxiliary variables

in the imputation model, that is, Age, Sex and Geographic area and stratification variable

Income. The maximum number of items over which this sum extends was 2,937 and the

average number was 296. The largest double sum contained approximately nine million

elements (29372), which does not seem too problematic from a computational point of view.

A first question is whether 200 bootstrap iterations are enough. To answer that question,

we consider the ratio of the estimated standard deviations after 200 and 190 iterations.

Table 3 below shows percentiles of these ratios for the 1,152 cells of the target table

For all but a few cells the difference is smaller than ^ 3%. For more than half of the

cells the difference is even below ^ 1%. These results also show that there is no structural

upward or downward trend of the standard deviations between the 190th and 200th

iteration.

We now give an impression about the results of the bootstrap procedure. The coefficient

of variation (CV) has been computed for each cell, that is, the ratio of the estimated

standard deviation to the mean, that is, the average cell count over the 200 bootstrap

samples. As we consider the non-register part of the EAF only, the mean is derived from

the non-register part of the EAF.

In Figure 1, the CV is plotted against the sample size of the cell. As expected, cells with

the least number of sample survey observations have the highest CVs.

We now turn to the main question of this simulation exercise: the difference in results

for the standard deviations between the bootstrap method and the analytical

approximation. First, we plot the CVs of both approaches against each other in Figure 2,

subdivided for each (imputed) educational category.

The graph shows similarities between the CVs of both methods, especially for the

categories 3 and 4 that are the most frequently occurring. To assess this further, percentiles

of the ratios of the CVs are given in Table 4. These ratios compare the CVs of the

analytical method with those of the bootstrap method and have been derived from all cells,

that is, all educational levels.

The difference between the analytical and the bootstrap method is reasonably small. For

instance, the median value is 0.97, the 90th percentile is 1.79 and the 10th percentile is

0.59. This gives us some empirical evidence that the analytical procedure gives close

approximations to the true variance.

In Figure 3, density plots are shown of the ratio of the CVs of the analytical and

bootstrap method. The solid black line represents the density of all cells in the table. The

other lines represent the density for subsets of 20% of cells in the table, where the cells are

ordered by sample size from smallest (quintile 1) to largest (quintile 5). As expected, the

largest deviations occur for cells with relatively few observations. Interestingly, it appears

that the analytical method tends to underestimate the CV slightly compared to the

bootstrap method for all quintiles except the first one, where it has a tendency to

overestimate the CV.

Table 3. Percentile of the ratios of standard deviations after 200 and 190 iterations.

Percentile 0.01 0.05 0.10 0.25 0.50 0.75 0.90 0.95 0.99
SD-ratio 0.981 0.985 0.987 0.992 0.998 1.007 1.014 1.020 1.035
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A possible explanation for this underestimation in cells where the sample size is

sufficiently large is that the condition in Equation (2) does not hold in this application, as

the imputation model contains the main effects of Sex, Geographic area and Age but not

their interactions. Thus, variance Equation (4) neglects a source of uncertainty; see also

the discussion at the end of Appendix (Subsection 8.1). To illustrate this further, we also
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computed the analytical CVs and bootstrap CVs for the table Geographic area £

Educational attainment, that is, one of the marginal tables of the original table. For this

lower-dimensional table, Equation (2) is expected to hold approximately in this

application. In Figure 4, the ratio of the CVs of the analytical and bootstrap method is

plotted against the sample size per cell for the 72 cells in this table. It is seen that here the

two approaches are in closer agreement and that the ratio of the CVs tends to one for cells

with large sample sizes.

Finally, it should be noted that for some strata the number of observations was too small

for a reliable estimation of all regression coefficients. Initially, Sex, Geographic area and

Age were included in the model for each stratum. For some strata, this led to extremely

high analytically derived standard deviations, when compared to the bootstrap. The

problem was especially apparent for the highest income classes. In these strata, low

educational attainment barely occurs. As a consequence, the regression coefficients for

estimating the probability of low educational levels could not be reliably estimated. Due to

near-multicollinearity of the auxiliary variables, extremely high standard deviations were

returned for some coefficients by Equation (9) in Appendix (Subsubsection 8.2.1). The

impact of this diminished after reducing the regression model, that is, after using only Sex

as an auxiliary variable in certain strata. This shows that the analytical approach is

sensitive to model selection. It also appears that the analytical variance estimates are more

sensitive to model over-parametrisation than the mass-imputed estimates themselves.

Model selection is an important step in an application to the census anyhow, due to the

availability of a large number of auxiliary variables. All variables that appear in the target

Table 4. Percentiles of the ratios of CVs based on the analytical and bootstrap method.

Percentiles 0.01 0.05 0.10 0.25 0.50 0.75 0.90 0.95 0.99
CV-ratios 0.356 0.494 0.589 0.748 0.967 1.360 1.785 2.086 2.760
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tables to be produced can be used. These are: Age, Country of citizenship, Place of usual

residence, Household status, Industry / sector of economic activity, Size of locality, Place

of birth, Place of usual residence one year prior to the census, Sex, Status in employment,

and Year of arrival in the country. Some of these have a large number of categories, which

often include ‘rare’ cases. An example from the Dutch census is the category “Oceanic”

for Country of citizenship. On the one hand, it is attractive to include as many auxiliary

variables in the imputation model as available, because a relation between a target variable

(to be imputed) and some other variable can only be properly measured if that other

variable is taken as an auxiliary variable in the imputation model. Also, a model with few

auxiliary variables is more likely to be mis-specified, leading to bias in the mass-imputed

estimator. On the other hand, as we have seen before, including many auxiliary variables

in the imputation model might lead to a large variance, because the number of

observations can be insufficient for reliable estimation of the regression coefficients.

Hence, a trade-off must be made between variance and (potential) bias and it can be

inevitable to aggregate some categories of auxiliary variables in an imputation model.

Several automatic procedures can be implemented for this purpose. In the analytical

approach, one might manually ‘optimise’ the aggregation level of the auxiliary variables

for the sample survey at hand. In the bootstrap approach, one must take into account that

different resamples are obtained at each iteration. Therefore, the bootstrap methods

require some automation in the selection of the imputation model.

7. Discussion and Conclusion

This article has developed a new design-based variance formula for estimated frequency

tables after mass imputation of one of the variables. A case is considered in which one

target variable is observed for a sample of the population and where all missing values for

the target population need to be imputed. Furthermore, it is postulated that the imputations
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are based on a model that predicts, for each record, the probabilities for the different

categories of the target variable.

The above problem is relevant for the Dutch census. One of the census variables,

educational attainment, cannot be observed for the entire target population. All non-

observed values can be imputed, for instance by using logistic regression or one of its

variants. Several frequency tables need to be produced for the Dutch census that cross-

classify educational attainment with other variables that are observed for the whole

population. The analytical expressions in this article can be used to estimate the variances

of the cells of these tables. Although the case of the Dutch census has been mentioned

often in this article, the problem is more generally relevant for other applications in which

a categorical variable is imputed for an entire target population.

In Section 2 we presented an analytical variance expression that allows for a broad

class of imputation methods. Each imputation method gives rise to a specific completion

of the expression. The special case of the continuation-ratio model was considered in

Section 4. We have derived a new analytical variance approximation for this specific

model.

As an illustration, the analytical approximation was applied to a Dutch census table in

Section 6. The results have been compared to outcomes of a bootstrap method, adapted

from Kuijvenhoven and Scholtus (2011), which can be applied more generally to

estimators based on combined data sources. The results demonstrated that the analytical

variance approximation works reasonably well. For the large majority of cases, the

estimated standard deviation was between 0.5 and 1.5 times the standard error of the

bootstrap method. Moreover, we have demonstrated that both methods can be applied to a

data set of a significant size, that is, approximately seven million imputations.

The analytical variance estimator was derived under the simplifying assumption that

Equation (2) holds, at least approximately. This condition can be verified in practice: if the

left-hand-side of Equation (2) is small in comparison to ûhc2, then the analytical variance

approximation proposed here should work well. In situations where this condition does not

hold, our analytical approach is likely to underestimate the true variance for cells with a

sufficiently large sample size (see Appendix, Subsection 8.1). The question of the design-

based variance of the mass-imputed Equation (1) is relevant for our statistical office and,

we believe, for the wider official statistical community. As far as we are aware, there is no

analytical method currently available in the literature to derive this variance in a general

setting, which avoids introducing Equation (2) or some other assumption that might be

violated in practice. Alternatively, the bootstrap method from Section 3 may be used

regardless of whether Equation (2) holds.

In general, the computation time can be a limiting factor for the estimation of variances

for large data sets. The analytical approximation requires the computation of a double

sum. The number of terms in this sum can become quite large. However, the bootstrap

method can be expected to have an even larger computational burden for many

applications. The bootstrap method requires work that is equivalent to imputing the entire

target population many times. In our case study, approximately seven million records

needed to be imputed 200 times. This led to a computation time that was about a factor 30

larger than for the analytical approximation. This illustrates that, although the bootstrap is
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more flexible than the analytical approach, analytical approximations may still be useful

and even necessary for variance estimation in practice.

Our application also revealed that the analytical approximation of the variances is more

sensitive to model over-parametrisation than the mass-imputed estimates themselves. This

stresses the importance of using the analytical approximation in combination with a proper

model selection method. When this is neglected, there is a risk of a serious over-estimation

of variances.

An alternative variance estimation approach that was not considered in this study is

multiple imputation (Rubin 1987). Similar to our bootstrap method, this would require

imputing the missing values of educational attainment throughout the population several

times. In fact, the bootstrap algorithm of Section 3 could be adapted to be used for multiple

imputation. A practical advantage of multiple imputation compared to direct

bootstrapping would be that it requires fewer replicates. A limitation of multiple

imputation, compared to the approaches considered here, is that it cannot be used to

estimate the variance of an arbitrary estimator, but only that of the associated multiple

imputation estimator. Thus, in this approach the variance estimation method actually

guides the choice of the estimator itself, which then has to be based on a multiply-imputed

file. For practical reasons there are currently no plans to generate more than one

imputation per person in the official microdata of the Dutch virtual census, so multiple

imputation is not an option for variance estimation in this application. For this reason, it

was not considered here. However, it may be interesting to compare multiple imputation to

our analytical and bootstrap method in a more extensive future study.

Future work may focus on extending the variance estimation methods considered here.

The analytical approach could be extended to the case of imputing multiple categorical

variables, or a combination of categorical and numerical variables. An extension of the

analytical approach is also needed to handle imputation methods that are not based on a

parametric model, such as hot deck imputation. Finally, it may be interesting to develop

variance estimation techniques – either analytical or by means of resampling – that can

account for uncertainty in the measurement of register-based variables, including the

effects of micro-integration (Bakker 2011) when overlapping data are available from a

register and a survey.

8. Appendix

8.1. Derivation of Variance Formula (3)

Conditioning on a realisation of the random sample S2 and using a standard

decomposition formula for conditional variances, we can write the variance of the

estimator ûhc in Equation (1) as:

var
^
uhc 2 uhc

� �
¼ E var

^
uhc 2 uhcjS2

� �� �
þ var E

^
uhc 2 uhcjS2

� �� �
:

Substituting the definitions of uhc and ûhc from Equation (1) and using the fact that

imputations for different persons are independent, we obtain (with uhc2 ¼
P

i2U2
hi

yci):
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var
^
uhc 2 uhc

� �
¼ E var

^
uhc2 2 uhc2jS2

� �� �
þ var E

^
uhc2 2 uhc2jS2

� �� �

¼ E var
i2U2\ S2

X
hi

~yci 2 yci

� ��
�S2

0

@

1

A

8
<

:

9
=

;

þ var E
i2U2\ S2

X
hi

~yci 2 yci

� ��
�S2

0

@

1

A

8
<

:

9
=

;

¼ E
i2U2\ S2

X
hi var ~yci 2 ycijS2

� �
8
<

:

9
=

;
þ var

i2U2\ S2

X
hiE ~yci 2 ycijS2

� �
8
<

:

9
=

;

¼ E
i2U2\ S2

X
hip̂ci 1 2 p̂ci

� �
8
<

:

9
=

;
þ var

i2U2\ S2

X
hi p̂ci 2 yci

� �
8
<

:

9
=

;
:

For the third equality it was used that h2
i ¼ hi. For the last equality it was used that

E ~ycijS2

� �
¼ p̂ci and var ~ycijS2

� �
¼ p̂ci 1 2 p̂ci

� �
based on a multinomial distribution. The

first term in this expression is easily estimated in practice (cf. Equation (4)), so we leave

this term as it is and focus on elaborating the second term.

It should be noted that p̂ci, the predicted probability that person i belongs to category c,

is obtained from a model that is estimated on the observed data from sample S2. Hence, p̂ci

is a random variable that depends on S2. In general, this complicates the evaluation of the

above variance component. However, under the assumption that Equation (2) holds, the

second term can be simplified and we find:

var
i2U2\ S2

X
hi p̂ci 2 yci

� �
8
<

:

9
=

;
¼ var

i2U2

X
hi p̂ci 2 yci

� �
8
<

:

9
=

;

¼
i2U2

X

j2U2

X
hihj cov p̂ci 2 yci; p̂cj 2 yci

� �

¼
i2U2

X

j2U2

X
hihj cov p̂ci; p̂cj

� �
:

The last equality follows since we treat the values of yci in the finite population as fixed

here. Hence, Equation (3) is obtained.

More generally, if Equation (2) is not satisfied, it follows from the above derivation that

var
^
uhc 2 uhc

� �
¼ ~V þ VS2

2 2CU2;S2
;

where ~V denotes the variance from Equation (3), VS2
¼ var

�P
i2S2

hi p̂ci 2 yci

� ��
and

CU2;S2
¼ cov

�P
i2U2

hi p̂ci 2 yci

� �
;
P

i2S2
hi p̂ci 2 yci

� ��
. Since

P
i2S2

hi p̂ci 2 yci

� �
is an

unweighted sample total, it seems intuitively reasonable to expect the contributions of the

terms VS2
and CU2;S2

to var
^
uhc 2 uhc

� �
to be negligible if the sampling fraction of S2 is

‘small enough’, even when Equation (2) does not hold.
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To make this argument somewhat more precise, we suppose that S2 is a simple random

sample with S2j j= U2j j,,1: Let Nh denote the number of units in U2 with hi ¼ 1 and let nh

denote the expected number of units in S2 with hi ¼ 1. It can be shown that the standard

Horvitz-Thompson estimator for uhc then has a variance of order O N2
h=nh

� �
. In practice,

the available background variables to impute yc usually have limited predictive value, so

we expect the variance of the mass-imputed estimator to have the same order of

magnitude: varðûhc 2 uhc) ¼ O N2
h=nh

� �
. (We have also confirmed this empirically for the

application in Section 6; results not shown here.) Furthermore, if Equation (2) does not

hold, VS2
has the same order as

var
i2S2

X
hi pci 2 yci

� �
8
<

:

9
=

;
¼ n2

hvar
1

nh i2S2

X
hi pci 2 yci

� �
8
<

:

9
=

;
¼ O nhð Þ:

Here, we used that p̂ci–pci is of a smaller order than pci 2 yci ¼ O 1ð Þ and that

var
�

1
nh

P
i2S2

hi pci 2 yci

� ��
¼ O 1=nh

� �
; see Särndal et al. (1992, 214) for the latter result.

For the covariance term, we find:

CU2;S2

�
�

�
� #

i2U2

X
hi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var p̂ci 2 yci

� �q ffiffiffiffiffiffiffi
VS2

p
¼ O Nh

ffiffiffiffiffi
nh

p� �
:

Thus, if S2 is a simple random sample and nh,, N
2=3
h , then both VS2

and CU2;S2
are of

negligible order and it follows that var
^
uhc 2 uhc

� �
< ~V even when Equation (2) does not

hold exactly.

Furthermore, under the weaker condition nh,, Nh the term VS2
is still negligible

but CU2;S2
may not be when Equation (2) does not hold. Note that

CU2;S2
¼ VS2

þ cov
i2U2\ S2

X
hi p̂ci 2 yci

� �
;

i2S2

X
hi p̂ci 2 yci

� �
8
<

:

9
=

;
:

Provided that the imputation model does not introduce bias, the average prediction

error hi p̂ci 2 yci

� �
over U2 should tend to cancel out for repeated samples. This

suggests that we may expect in practice that cov
�P

i2U2\ S2
hi p̂ci 2 yci

� �
;
P

i2S2

hi p̂ci 2 yci

� ��
, 0. Therefore, since

var
^
uhc 2 uhc

� �
¼ ~V 2 VS2

2 2 cov
i2U2\ S2

X
hi p̂ci 2 yci

� �
;

i2S2

X
hi p̂ci 2 yci

� �
8
<

:

9
=

;

for cells where VS2
is negligible but CU2;S2

is not, we may expect that

var
^
uhc 2 uhc

� �
. ~V . That is to say, when Equation (2) is violated and nh,, Nh but

not nh,, N
2=3
h , then Equation (3) is more likely to underestimate the true variance

than to overestimate it.

Although these conclusions have been derived for the case of a simple random sample,

we expect that they extend to other sampling designs that are commonly used in practice

for social surveys. In practice, the available design variables for social surveys usually are

correlated only weakly to the variables of interest, leading to a limited design effect on the

order of magnitude of various variance terms.
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8.2. Details of the Continuation-Ratio Model

8.2.1. (Pseudo) Maximum Likelihood Theory for the Continuation-Ratio Model

First, suppose that S2 were a sample of independent, identically distributed

observations from the underlying distribution of the continuation-ratio model of

Section 4. Agresti (2013, sec. 8.3.6) shows that the log likelihood function may then

be written as:

l ¼
XC21

c¼1 i2S2;$c

X
yci bT

c xi

� �
2 log 1þ exp bT

c xi

� �� � �

where S2;$1 ¼ S2 and S2;$c (c ¼ 2; : : : ;C 2 1) denotes the subsample of units in S2

with y1i ¼ : : : ¼ y c21ð Þi ¼ 0. As the C 2 1 terms of l have no parameters in common,

it is clear that maximum likelihood estimates can be obtained by solving the

following likelihood equations:

0 ¼
›l

›bc

¼
i2S2;$c

X
ycixi 2

exp
^
b

T

c xi

� �

1þ exp
^
b

T

c xi

� � xi

8
<

:

9
=

;

¼
i2S2;$c

X
yci 2 q̂ci

� �
xi c ¼ 1; : : : ;C 2 1
� �

where the last equality follows from Equation (6). Clearly, this is equivalent to fitting

each binomial logistic regression model in Equation (5) separately to the associated

subsample S2;$c. Furthermore, it follows from standard inference theory for maximum

likelihood that, asymptotically, for any pair of vectors
^
bc and

^
bd (c – d),

^
bc 2 bc

^
bd 2 bd

0

@

1

A , N
0

0

 !

;
X TD$cX
� �21

0

0 X TD$dX
� �21

0

B
@

1

C
A

0

B
@

1

C
A;

here, the matrix X contains rows xT
i for each unit and D$c denotes an associated

diagonal matrix with D$1ð Þii¼ q1i 1 2 q1i

� �
and, for c . 1,

D$cð Þii¼
qci 1 2 qci

� �
if y1i ¼ : : : ¼ y c21ð Þi ¼ 0;

0 otherwise:

(

For a more detailed derivation, see Scholtus (2018).

In a finite-population setting, instead of the above approach pseudo maximum

likelihood estimation can be used (Chambers and Skinner 2003 chap. 2). The original

model is then interpreted as a superpopulation model from which the target population has

been generated. The parameters of interest (say, bU2;c) are now implicitly defined by the

likelihood equations that would be obtained if yci were observed for the entire population
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U2:

0 ¼
i2U2;$c

X
ycixi 2

exp bT
U2;c

xi

� �

1þ exp bT
U2;c

xi

� � xi

8
<

:

9
=

;

¼
i2U2;$c

X
yci 2 qU2;ci

� �
xi c ¼ 1; : : : ;C 2 1
� �

;

where U2;$c is defined analogously to S2;$c. Note that here we ignore the register part of

the population U1 as there is no need to estimate an imputation model for these units.

To account for the sample design of S2, the parameters bU2;c are estimated from a

weighted version of the likelihood equations:

0 ¼
i2S2;$c

X
w2i ycixi 2

exp
^
b

T

c xi

� �

1þ exp
^
b

T

c xi

� � xi

8
<

:

9
=

;
ð8Þ

¼
i2S2;$c

X
w2i yci 2 q̂ci

� �
xi c ¼ 1; : : : ;C 2 1
� �

;

with w2i ¼ 1=p2i the design weight of unit i2S2 based on its inclusion probability p2i.

(Note: if S2 is actually a subsample of a larger sample S from U, as discussed in

Section 2, then these inclusion probabilities should also reflect the subsampling step.)

This provides consistent estimates of bU2;c (and bc).

It follows from a Taylor series linearisation (Chambers and Skinner 2003, 23) that the

large-sample variance of the estimated parameters with respect to the finite population can

be estimated by the following ’sandwich’ estimator:

cvarvar
^
bc 2 bU2;c

� �
¼ X T ^

D$c;w2
X

� �21
^
Gc X T ^

D$c;w2
X

� �21

: ð9Þ

Here,
^
D$c;w2

is a diagonal matrix with elements
^
D$1;w2

� �

ii
¼ w2iq̂1i 1 2 q̂1i

� �
and, for

c . 1,

^
D$c;w2

� �

ii
¼

w2iq̂ci 1 2 q̂ci

� �
if y1i ¼ : : : ¼ y c21ð Þi ¼ 0

0 otherwise;

( )

;

while
^
Gc is a design-based estimator of var

�P
i2S2;$c

w2i yci 2 qU2;ci

� �
xi

�
. Since the latter

expression is an ordinary Horvitz-Thompson estimator, we can use (Särndal et al. 1992,

48):

^
Gc ¼

i2S2;$c

X

j2S2;$c

Xp2ij 2 p2ip2j

p2ij

xi yci 2 q̂ci

� �
ycj 2 q̂cj

� �
xT

j ;

where p2ij denotes a second-order inclusion probability of S2. Finally, by a similar

argument it can be shown that
^
bc 2 bU2;c and

^
bd 2 bU2;d (c – d) are still asymptotically

independent.
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8.2.2. Conditional Probabilities: Large-Sample Covariances

Given the results in Subsubsection 8.2.1, large-sample variances and covariances of the

predicted conditional probabilities q̂ci can be derived in a straightforward manner from a

first-order Taylor series approximation to Equation (6). For pseudo maximum likelihood

estimation it follows that, asymptotically, cov q̂ci; q̂dj

� �
< 0 for c – d, while cov qci; qcj

� �

is estimated consistently by:

dcovcov q̂ci; q̂cj

� �
¼ q̂ci 1 2 q̂ci

� �
q̂cj 1 2 q̂cj

� �
xT

i X T ^
D$c;w2

X
� �21

^
Gc X T ^

D$c;w2
X

� �21

xj: ð10Þ

In particular, it follows that predicted conditional probabilities for different levels of

educational attainment are asymptotically independent. We refer to Scholtus (2018) for

more details on the derivation.

8.2.3. Marginal Probabilities: Large-Sample Covariances

Before proceeding to the marginal probabilities p̂ci, we introduce the following useful

lemmas.

. Lemma 1. For any set of four random variables A, B, C and D such that

– A is independent of B and D, and

– C is independent of B and D,

it holds that cov (AB,CD) ¼ E(AC) cov (B,D) þ E(B)E(D) cov (A,C).

. Lemma 2. For any set of three random variables X, Y and Z such that X is

independent of Y and Z, it holds that cov(XY,Z) ¼ E(X)cov(Y,Z).

Lemma 1 may be derived by conditioning on A and C. Lemma 2 follows as a corollary

of the first lemma by choosing A ¼ X, B ¼ Y , C ¼ 1 and D ¼ Z.

Denote cov p̂ci; p̂dj

� �
¼ Ccdij, for i; j2U2 and 1 # c; d # C. To evaluate the second

component of variance formula (3), we only need the ’diagonal’ terms Cccij. However, to

derive expressions for these diagonal terms it will be seen below that we also need to

consider the terms Ccdij with c – d.

Since p̂1i ¼ q̂1i, C11ij ¼ cov q̂1i; q̂1j

� �
can be estimated by Equation (10). For

2 # c # C 2 1, using Equation (7) we can write:

Cccij ¼ cov q̂ci 1 2
Xc21

k¼1

p̂ki

 !

; q̂cj 1 2
Xc21

l¼1

p̂lj

 !( )

:

According to Equation (7), each p̂ki is constructed from just the probabilities

q̂1i, : : : ,q̂ki. Since the conditional probabilities q̂1i, : : : ,q̂(C-1)i are known to be

asymptotically mutually independent, it follows that q̂ci is asymptotically independent

of all p̂1i, : : : ,p̂(c-1)i and all p̂1j, : : : ,p̂(c-1)j for j – i. Therefore, we can

(asymptotically) apply Lemma 1 to the above expression for Cccij, with A ¼ q̂ci,
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B ¼ 1 2
Pc21

k¼1p̂ki, C ¼ q̂cj and D ¼ 1 2
Pc21

l¼1 p̂lj. This yields:

Cccij < E q̂ciq̂cj

� �
cov 1 2

Xc21

k¼1

p̂ki; 1 2
Xc21

l¼1

p̂lj

 !

þ E 1 2
Xc21

k¼1

p̂ki

 !

E 1 2
Xc21

l¼1

p̂lj

 !

cov q̂ci; q̂cj

� �
;

and therefore (for c ¼ 2; : : : ;C 2 1)

Cccij < cov q̂ci; q̂cj

� �
þ qciqcj

� �
Tc21;ij

þ 1 2
Xc21

k¼1

pki

 !

1 2
Xc21

l¼1

plj

 !

cov q̂ci; q̂cj

� �
;

ð11Þ

with the short-hand notation

Tc;ij ¼
Xc

k¼1

Xc

l¼1

Cklij; c ¼ 1; : : : ;C 2 1
� �

(Note: in a finite-population context, in Equation (11) qci and pci should be replaced by

qU2;ci and the associated marginal probabilities pU2;ci. In what follows we will ignore this

distinction as it is not essential to the argument). For the remaining case c ¼ C, it follows

directly from Equation (7) that

CCCij ¼ cov 1 2
XC21

k¼1

p̂ki; 1 2
XC21

l¼1

p̂lj

 !

¼
XC21

k¼1

XC21

l¼1

cov p̂ki; p̂lj

� �
¼ TC21;ij: ð12Þ

It remains to find an expression for Tc;ij. The following recursion is derived at the end of

this subsection: for c ¼ 1; : : : ;C 2 1 it holds asymptotically that

Tc;ij <
Xc

k¼1

Ckkij 2
Xc

k¼2

qki þ qkj

� �
Tk21;ij; ð13Þ

with the convention that the second sum is zero for c ¼ 1.

We now have all the required ingredients to estimate all terms cov p̂ci; p̂cj

� �
¼ Cccij that

occur in Equation (3), at least for large samples. The following algorithm can be used:

1. Estimate cov q̂ci; q̂cj

� �
by (10) for all c ¼ 1; : : : ;C 2 1 and define

^
C11ij ¼

^T1;ij ¼dcovcov q̂1i; q̂1j

� �
.

2. Repeat the following steps for c ¼ 2; : : : ;C 2 1:

a. Estimate Cccij in line with (11) by

^
Cccij ¼ dcovcov q̂ci; q̂cj

� �
þ q̂ciq̂cj

� �
^Tc21;ij þ 1 2

Xc21

k¼1

p̂ki

 !

1 2
Xc21

l¼1

p̂lj

 !

dcovcov q̂ci; q̂cj

� �
:
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b. Estimate Tc;ij in line with Equation (13) by

^Tc;ij ¼
Xc

k¼1

^
Ckkij 2

Xc

k¼2

q̂ki þ q̂kj

� �
^Tk21;ij:

3. Finally, define
^
CCCij ¼

^TC21;ij in line with Equation (12).

An illustration of the first steps of this algorithm is given in Scholtus (2018). Note that the

algorithm manages to avoid a circular argument, because Cccij is estimated in Step 2a using
^Tc21;ij and Tc;ij is estimated in Step 2b using only the estimated covariances
^
C11ij; : : : ;

^
Cccij.

We conclude this subsection by deriving expression (13). By definition, the expression

holds exactly for c ¼ 1. Therefore, suppose that 2 # c # C 2 1. We begin by evaluating

the ‘off-diagonal’ terms Ccdij with c – d. First suppose that d , c. We can write:

Ccdij ¼ cov q̂ci 1 2
Xc21

k¼1

p̂ki

 !

; p̂dj

( )

:

Since q̂ci is asymptotically independent of all p̂1i; : : :; p̂ðc21Þi and also of p̂dj; Lemma 2 can

be applied to this expression, with X ¼ q̂ci; Y ¼ 1 2
Pc21

k¼1p̂ki and Z ¼ p̂dj: This yields:

Ccdij < E q̂ci

� �
cov 1 2

Xc21

k¼1

p̂ki; p̂dj

 !

¼ 2qci

Xc21

k¼1

Ckdij; ðd , cÞ

Similarly, we obtain for d , c that Cdcij < 2qcj

Pc21
l¼1 Cdlij.

These expressions can be substituted in the definition of Tc;ij, to find:

Tc;ij ¼
Xc

k¼1

Ckkij þ
Xl¼1

k21

Cklij þ
Xc

l¼kþ1

Cklij

( )

<
Xc

k¼1

Ckkij 2
Xk21

l¼1

qki

Xk21

m¼1

Cmlij

 !

2
Xc

l¼kþ1

qlj

Xl21

m¼1

Ckmij

 !( )

¼
Xc

k¼1

Ckkij 2
Xc

k¼2

qki

Xk21

l¼1

Xk21

m¼1

Cmlij

 !

2
Xc

l¼2

qlj

Xl21

k¼1

Xl21

m¼1

Ckmij

 !

¼
Xc

k¼1

Ckkij 2
Xc

k¼2

qkiTk21;ij 2
Xc

l¼2

qljTl21;ij;

from which Equation (13) follows. In the third line, we used that the middle term is empty

(hence zero) for k ¼ 1 and we re-arranged the summation over k and l in the right-most

term.

8.2.4. Marginal Probabilities: Equation (2)

Suppose first that the imputation model satisfies the following Assumptions:
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1. The model includes the cross-classified variable h as a predictor.

2. The model includes all variables that determine the sampling design of S2 as

predictors.

3. All predictor variables are categorical (coded as dummy variables) and the model

contains all higher-order interactions of these predictor variables.

The following lemma establishes in particular that, under these Assumptions, Equation (2)

is satisfied exactly by the predicted marginal probabilities p̂ci from the continuation-ratio

model.

Lemma 3. Under Assumptions 2 and 3 it holds that
P

i2S2
xip̂ci ¼

P
i2S2

xiyci for

c ¼ 1; : : : ;C.

Proof. First, it follows from Equation (8) that in this case, for all c ¼ 1; : : : ;C 2 1,

i2S2;$c

X
xiq̂ci ¼

i2S2;$c

X
w2i xip2ið Þq̂ci ¼

i2S2;$c

X
w2i xip2ið Þyci ¼

i2S2;$c

X
xiyci ¼

i2S2

X
xiyci

The second equality follows because, under Assumptions 2 and 3, xip2i is contained in the

span of xi; the last equality follows because yci ¼ 0 for all i2S2\S2,$c. In particular, this

establishes that
P

i2S2
xip̂1i ¼

P
i2S2

xiy1i since p̂1i ¼ q̂1i.

Now suppose that
P

i2S2
xip̂ki ¼

P
i2S2

xiyki has been shown to hold for all

k ¼ 1; : : : ; c 2 1. For p̂ci (with c ¼ 2; : : : ;C 2 1) we find from Equation (7):

i2S2

X
xip̂ci ¼

i2S2

X
xiq̂ci 1 2

Xc21

k¼1

p̂ki

 !

¼
i2S2

X
xiq̂ci 1 2

Xc21

k¼1

yki þ
Xc21

k¼1

yki 2
Xc21

k¼1

p̂ki

 !

¼
i2S2;$c

X
xiq̂ci 2

i2S2

X
xiq̂ci

Xc21

k¼1

p̂ki 2 yki

� �
( )

¼
i2S2

X
xiyci 2

Xc21

k¼1 i2S2

X
xiq̂ci p̂ki 2 yki

� �
:

Thus, to establish the result for p̂ci, it suffices to show that
P

i2S2
xiq̂ci p̂ki 2 yki

� �
¼ 0 for

all k ¼ 1; : : : ; c 2 1. Consider an infinite Taylor series expansion of q̂ci from Equation

(6). in terms of
^
b

T

c xi around 0. Each term in this series contains a product of one or more

elements of the vector xi. By assumption 3 above, all of these products are contained in xi

itself. One further application of assumption 3 yields that xiq̂ci is also contained in the span

of xi. Hence, it follows by induction that
P

i2S2
xiq̂ci p̂ki 2 yki

� �
¼ 0 for all k ¼

1; : : : ; c 2 1 and that
P

i2S2
xip̂ci ¼

P
i2S2

xiyci.

Finally, to complete the proof of Lemma 3, for c ¼ C we find from Equation (7) that

i2S2

X
xip̂Ci ¼

i2S2

X
xi 1 2

XC21

k¼1

p̂ki

 !

¼
i2S2

X
xi 1 2

XC21

k¼1

yki

 !

¼
i2S2

X
xiyCi

In practice, Equation (3) will often not be satisfied. Higher-order interaction terms may be

excluded from the imputation model if they are not significant, and there may also be
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predictor variables on a continuous scale. Consider the following weaker version of

Equation (3):

3*) The model includes the interaction of h and the variables of the sampling design.

We argue that, for large samples and provided that Assumptions 2 and 3* are satisfied,

Equation (2) should still hold approximately.

Namely, under Assumptions 2 and 3* it follows analogously to Equation (8) that
P

i2S2
hip̂

mlr
ci ¼

P
i2S2

hiyci for predicted probabilities p̂mlr
ci based on an ordinary

multinomial logistic regression model. Furthermore, Agresti (2013, 301) notes that,

compared to this multinomial logistic regression model, the main benefits of using a

specialised model such as continuation-ratio that reflects the ordinal aspect of the target

variable are "improved model parsimony and power" in small samples. If the sample is

large enough, the ordinary multinomial logistic regression model should be able to capture

the ordinal aspect nearly as well. This suggests that, asymptotically, it should hold that
P

i2S2
hip̂ci=

P
i2S2

hip̂
mlr
ci ! 1. Hence, when Equation (2) holds exactly in the multinomial

logistic regression model, it should also hold approximately in the continuation-ratio

model.
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Assessing and Adjusting Bias Due to Mixed-Mode in Aspect
of Daily Life Survey

Claudia De Vitiis1, Alessio Guandalini1, Francesca Inglese1, and Marco D. Terribili1

The mixed-mode (MM) designs are adopted by NSIs both to contrast declining response and
coverage rates and to reduce the cost of the surveys. However, MM introduces several issues
that must be addressed both at the design phase, by defining the best collection instruments to
contain the measurement error, and at the estimation phase, by assessing and adjusting the
mode effect. In the MM surveys, the mode effect refers to the introduction of bias effects on
the estimate of the parameters of interest due to the difference in the selection and
measurement errors specific to each mode. The switching of a survey from single to mixed-
mode is a delicate operation: the accuracy of the estimates must be ensured in order to
preserve their consistency and comparability over time. This work focuses on the methods
chosen for the evaluation of the mode effect in the Italian National Institute of Statistics
(ISTAT) mixed-mode survey “Aspects of Daily Life – 2017”, in the experimental context for
which an independent control single-mode (SM) PAPI sample was planned to assess the
introduction of the sequential web/PAPI survey. The presented methods aim to analyze the
causes that can determine significant differences in the estimates obtained with the SM and
MM surveys.

Key words: Mixed-mode; mode effect; R-indicator; instrumental variable approach;
propensity score.

1. Introduction

The mixed-mode (MM), that is, the use of different collection techniques in the same

survey, is a relatively new approach that ISTAT, as well as other NSIs, is adopting

especially for social surveys. Its use is spreading both to contrast declining response rates

and to reduce the total cost of the surveys (De Leeuw 2005). The use of different data

collection modes, in fact, helps in contacting different types of respondents in the most

suitable way for each of them, allowing a gain both in population coverage and response

rate. However, it introduces a bias, named mode effect, that must be addressed at different

levels: in the design phase by defining the best collection instruments to contain the

measurement error; in the estimation phase by assessing and treating the bias effects due to

the introduction of the mixed-mode data collection, in order to ensure the accuracy of the

estimates. The switching of a survey from single to mixed-mode must be planned by

aiming to make the MM estimates consistent and comparable with the analogue ones

obtained in the previous SM survey editions, to ensure that any changes in the time series

are exclusively due to real changes of the observed phenomenon.
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Mixed-mode can simultaneously generate nonresponse error (selection effect) and

measurement error (measurement effect). Selection effect occurs when different types of

respondents choose different modes to answer. This is not actually a problem, but rather a

“desirable” consequence of MM surveys. Measurement effect, on the other hand, refers to

the influence of a survey mode on the answers that respondents give, such that one person

would give different answers in different modes and is caused by differences in the

measurement errors specific to each mode. These errors can be due to differences in

interviewer effect and social desirability, primacy and recency effects, recall bias,

acquiescence, and so on (De Leeuw 2005; Tourangeau and Yan 2007).

The main problem of MM designs is that the selection and measurement effects are

confounded, especially when modes are managed in a sequential way. As a consequence,

methods for carrying out the inferential process to disentangle the two effects and obtain

unbiased estimates of measurement error are needed. The experimental survey designs, as

parallel independent samples or re-interview approaches, can facilitate the estimates of the

selection and measurement effects (Buelens et al. 2018).

This article focuses on methods for assessing and adjusting mode effect in a survey setting

where an independent single-mode survey is carried out together with a MM survey. The

methods chosen are applied to the experimental situation of ISTAT “Multipurpose Survey

on Households – Aspects of Daily Life (ADL) – 2017” ISTAT (2019). In the 2017 edition,

the mixed-mode approach was used for the first time, as a web mode was added to the

traditional PAPI mode in a sequential design. A parallel single-mode (SM) PAPI design was

planned to allow for an assessment of mode effect on two independent samples collected

with different modes. The goal of the analysis presented is the evaluation of the impact on

the final estimates of switching from single to mixed-mode. The field of comparison is a

survey that produces several indicators for satisfying both national and European

requirements. For this purpose, different components of the total non-sampling error are

compared in the two samples, as selection effects due to total nonresponse and measurement

errors. The total nonresponse is evaluated for both SM and MM samples through the

indicators of the representativeness of response (Schouten et al. 2009; Bethlehem et al.

2011; Schouten et al. 2011) and the response rates, using auxiliary variables.

Selection and measurement effects of some survey variables are estimated on the MM

respondents set, considering two different approaches: the instrumental variable approach

proposed by Vannieuwenhuyze et al. (2010) in the experimental context where a

benchmark single-mode survey is available and the propensity score method, generally

used in the observational study (Rosenbaum and Rubin 1983; Vandenplas et al. 2016).

Finally, a comparison between estimates obtained using different methods for adjusting

selection effect is made on the mixed-mode sample (web-PAPI).

The final aim of this article is to point out methods and analyses useful to ensure the

accuracy of a complex inferential process for a MM survey, on the basis of evidences on a

real survey.

The article is organized as follows: in Section 2 the survey context is outlined, Section 3

describes the outline of the analyses carried out, Section 4 reports methods and results of the

comparison between the single and the MM surveys, Section 5 illustrates methods applied to

disentangle selection and measurement effects and results, while Section 6 focuses on the

adjustment of mode effects. Lastly, Section 7 outlines some concluding remarks.
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2. Survey and Experimental Context

The ADL is carried out each year on a selected sample of about 24,000 households. The

sample is spread across nearly 850 Italian municipalities using a two-stage sampling design.

The sample of households is selected from the centralized municipal register. In the 2017

edition of the ADL survey, a mixed-mode design was introduced for the first time: a web mode

has been added to the traditionally used PAPI mode in a sequential design. In order to analysz

the impact of the MM on the estimates of the parameters of interest, a survey design was made

in which the sample of each municipality was randomly divided to two sub-samples. In the

first sub-sample, of larger size (19,262 households), the mixed web/PAPI mode has been

administered sequentially (mixed-mode, MM design), while in the second one (8,014

households), only the PAPI interview has been proposed (single-mode SM, control sample).

The two surveys started simultaneously with an invitation letter sent by ISTAT, about

one month before, to invite the households to participate in the survey. In the PAPI single-

mode (SM) survey, filling two questionnaires in paper form is required: the basic survey

questionnaire administered face-to-face by a municipal interviewer to all individuals in the

household and a self-reported questionnaire delivered by the municipal interviewer to each

individual of the household. In the sequential MM survey, ISTAT sent an invitation letter

to all sample households inviting them to fill the questionnaires in electronic form via the

web, using the credentials given by ISTAT in the presentation letter. If the household did

not complete the questionnaire on the web, at the end of the period foreseen for online

filling (about two months with two reminder letters), a municipal interviewer personally

address the same questionnaires to all the individuals.

3. Outline of the Analyses of the Mode Effect

3.1. The Analyses

The analyses carried out on the ADL survey aimed firstly to evaluate the impact of the

introduction of MM design on the estimate of the parameters of interest with respect to the

single-mode design and, subsequently, to analyze in-depth the reasons that determine

significant differences in the estimates obtained with the two designs. For this purpose, the

study was developed on several levels of analysis, corresponding to different operational

steps. The first level is based on the comparison between the two samples (SM and MM);

the second level addresses the evaluation of the components of the mode effect (selection

and measurement) of the MM design; and the third level consists of some experiments to

adjust for the selection effect in the MM response set.

The analyses were developed thanks to the acquisition of mode insensitive auxiliary

variables (socio-demographic) that has been obtained through the linkage of the units of SM

and MM samples with administrative data performed through the individual code. The

administrative database comes from the Archimede Project, (Integrated archive of

economic and demographic microdata, Garofalo 2014; Ballabio et al. 2018) built for

expanding ISTAT information provided by administrative archives to produce longitudinal

paths and cross-sectional collections of microdata to be made available to different users.

The auxiliary variables acquired on the individuals selected in the samples are: education

level, occupation type, tax income, citizenship, geographical area and municipal type.
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For some analyses, these structural variables were redefined at the household level, as the

household as a whole is involved in the response process and the “choice” of the mode. The

household auxiliary variables, defined by aggregating the individual ones, are: higher

education level (below/equal/above high school diploma); income class (five quintiles – (1)

,EUR 10,508, EUR 10,508–20,281, EUR 20,281–29,778, EUR 29,778–46,079, and

EUR .46,079); (2) citizenship (Italian/Foreign household); (3) household type (one-

individual under 35, one-individual 35–64, one-individual over 64, two-individuals at least

one under 35, two-individuals all over 34, more than two individuals at least one under 25,

more than two individuals all of them over 24); (4) municipal type (Metropolitan cities,

metropolitan area, other municipalities with ,2,000, 2,000–10,000, 10,000–50,000,

.50,000 inhabitants); (5) different geographical areas, such as Italian regions (NUTS 2)

and macro-areas (NUTS 1: North West, North East, Center, South, Islands).

In the first step of the analysis, tests were performed on the differences in the estimates

calculated on SM and MM samples, for a set of relevant survey variables, to highlight the

variables suspected of being significantly susceptible to mode effect. Subsequent analyses,

based on response rates and some indicators of the representativeness of response, were

conducted to study the total nonresponse effect in the two samples, considering a set of

the household structural variables. The total nonresponse can introduce a bias effect in

the survey estimates and compromise their precision level. While the precision of the

estimates is directly related to the response rate, the bias does not only depend on the

response rate but also on the difference between respondents and non-respondents. To

assess the overall quality of the surveys (especially in terms of the magnitude of the bias),

two types of indicators of representative response were used, the global R-indicator and

the partial unconditional R-indicator (Schouten et al. 2009; Bethlehem et al. 2011;

Schouten et al. 2011). Dissimilarities in both response rates and indicators of

representative response could explain, at least partly, differences in the estimates of the

survey produced with the SM and MM samples, due to the different composition of SM

and MM respondents (selection effects) with respect to a given set of auxiliary variables.

In the second step, the assessment of the mode effect in the MM survey was carried out

for some target variables following different methods that make the respondent units to the

web and PAPI modes comparable: the propensity score (Rosenbaum and Rubin 1983) is

applied using only the MM respondents and a PAPI mode as the reference; the

instrumental variable approach proposed by Vannieuwenhuyze (2010) is adopted using

the PAPI mode of the SM respondents as a benchmark. The MM estimates can be affected

either by the different composition of the web and PAPI respondents or by differences in

measurement errors generated from each mode (Hox et al. 2015).

In the third step, some experiments to adjust for MM selection effect were made. In

particular, the calibration on fixed proportions of the web and PAPI respondents were

applied in order to stabilize the total measurement error over time (Buelens and Van den

Brakel 2014). This method was compared with other weighting methods, as propensity

score and calibration on demographic known totals (individual structural variables).

In the following scheme, the steps and the methods considered in the study are listed.

The structure of “Scheme 1” could be used for (at least) two purposes: (1) to present results

from a case study (the ADL-experiment in this case); (2) to describe how different

methods can be applied when analyzing a mixed-mode experiment.
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3.2. Analysis Validation: Assessing the Significance of the Estimated Parameters

To properly assess the estimated parameters and effects, their significance must be studied

in view of sampling variance. Due to the complexity of the estimated parameters and the

complex sampling design adopted in ADL, bootstrapping (Efron 1979; Efron and

Tibshirani 1986; Wolter 2007) would seem the most suitable solution. However, despite

its widespread use for variance estimation in statistics, there is some controversy when

using a method that implies some modelization.

Drawing bootstrap samples entails incorporating additional potential sources of

variability when using methods that rely on models estimated on the original sample. In

fact, in each bootstrap sample, the model must be estimated, and therefore, variability due

to parameter estimation of the model is added. The device suggested by Austin and Small

(2014) can be adapted to this context (for instance, when using R-indicators and propensity

score). They suggest estimating the model for the whole sample and then selecting

bootstrap samples and applying the methods just considering the parameters estimated

from the original sample, that is, as the model is given. An alternative method is to use

pseudo-replication (Rust and Rao 1996). Each replication is defined by a random weight

assigned, according to the sample design, to each unit of the original sample. Also in this

case, the model must be estimated just one time and this enables the estimation of the

variance without involving additional variance due to the estimation of the model.

Scheme 1. Operational steps of the analysis

Method Objective Assumptions/conditions

First
step

1) Tests on the differences in the
estimates calculated on the
two samples for a set of
relevant survey
variables

Highlighting the
variables for which a
suspect of mode effect
was significant

Independence between
the two samples

2) Tests on the response rates in
the SM and MM sample.

Analysis of the response
processes and evaluation
of the bias

Independence between
the two samples; MAR
assumption for the

3) Response rates and tests caused by the total non-
response

response models

4) Indicators of
representativeness

Second
step

5) Instrumental variable
approach

Disentangling measure-
ment and selection
effects

Representativity
assumption

6) Propensity score MAR assumption for
the response models;
Balancing assumption

Third
step

7) Weighting methods as pro-
pensity score,
calibration

To adjust selection effect Ignorability of selection
mechanism;
Measurement error
negligible

8) Mode calibration To stabilize the total
measurement error over
time

Invariance over time of
measurement error
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The two replication methods provide very similar results. However, for the present

purpose the pseudo-replication method has been used and 500 pseudo-replications of the

ADL sample, according to the sample design, have been carried out with the aim of

properly assessing the estimated parameters and effects.

4. First Step: The Comparison Between the Single and the Mixed-Mode Survey

4.1. Test of Differences Between Estimates

Tests on the differences in the estimates between the SM and MM surveys were

performed, through chi-square test, to determine whether there are significant differences

between the distributions of the answer with respect to the data collection mode and t-test

to determine whether the difference between proportions of individuals for each item is

significant with respect to the data collection mode (Martin and Lynn 2011). The

hypothesis tests concerned numerous survey indicators. Among these variables, the

difference for the distributions of the following variables were found to be significant: life

satisfaction; reading books in the last year; use of PC; use of internet; trust in others;

frequency of seeing friends. Figure 1 shows the detailed distributions for three variables

for which the two independent response sets produced estimates showing the most relevant

differences between categories (NR is the nonresponse category).

4.2. Response Rates

The response rates in the SM and MM surveys are calculated on the list of the households

sampled, and deleting non-eligible units and “unresolved” units (Eurostat 2014). In the

response rate analysis, some household structural variables were used.

To test whether the differences between the response rates in the two independent

samples (SM, MM) are statistically significant, a z-test was used, with a confidence level

1-a ¼ 0.99. In Table 1 the response rates for the two surveys and a Zc statistic are

reported by macro-areas.

The SM and MM surveys achieved different response rates. The response rate was

generally slightly higher for the MM survey (74% versus 71% of the SM), while for the

web mode the response rate varied greatly between Italian macro-areas (ranging from 36%

in the North East to 17% in the South and Islands).

The response rate results were significantly different in the North-West and the North-

East. This type of analysis, extended to other structural variables, revealed that the

response rates in the two surveys are significantly different when the household presents

some characteristics, such as mixed nationality, lower-income class, is composed of just

one individual between 35 and 64 years old or of more than two individuals, at least one of

them under 26 years old.

Further analyses were conducted to assess whether the response rate distributions are

independent of structural variables. The hypothesis of independence between the response

and the auxiliary variables was tested through a chi-square test. The results highlighted that

these variables influence the response in both surveys, above all the variables that

characterize households based on education level, lower income class and mixed-

nationality-households, and where the households live, such as northern metropolitan cities.
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4.3. Indicators of Representativity

The indicators of representativity, called R-indicators, are based on a measure of the

variability of the response propensity, with respect to a given set X of auxiliary variables,

known for both respondent and non-respondent units (sample-based auxiliary

information). R-indicators may measure deviations from representative response with

respect to a vector of available X. The response is representative with respect to some

Life satisfaction  

p-value 

t-test 0.0944 <.0001 0.0447 <.0001 0.6749 0.7956 <.0001 0.2378 0.0338 <.0001 
x2-test 

t-test 
x2-test 

t-test 
x2-test 

<.0001 

NRNoYes
<.0001
<.0001

Frequency of seeing friends 

p-value 

<.0001 0.3397 0.0202 0.6559 0.0032 0.0003
<.0001

0.64
0.48

0.95
1.65

2.92
9.40

17.32
24.61

24.94
8.10

5.02
3.97

0.52
0.47

0.57
1.13

2.60
8.18

17.16
24.72

28.11
8.42

5.48
2.65

1.00.50.0

Reading books in the last year
1.00.50.0

1.00.50.0

0
1
2
3
4
5
6
7
8
9

10
NR

MM SM

54.78

41.55

3.67

57.50

39.95

2.55

No

Yes

NR
MM SM

14.88
25.95
20.40
19.35

10.74
5.18

1.96
1.53

17.35
27.34
20.77
18.50

8.21
5.09

1.60
1.14

 All days

 All days

More than once a week

More than
once a week

Once
a week

A few times
a month

(less than 4)

A few times
during the year Never I don’t have friends NR

Once a week
A few times a month

A few times during the year
Never

I don't have friends
NR

MM SM

<.0001 0.8902

10 3 5 6 7 8 9 10 NR42

0.0006 <.0001 

0.0008 <.0001

Fig. 1. Distributions of the responses for MM and SM samples for some survey target estimates with p-values of t-

test andx 2-test on the distributions. NR is the nonresponse category, significant differences at 95% are in bold font.

De Vitiis et al.: Assessing and Adjusting Bias Due to Mixed-Mode 467



categorical variable X when the average response probabilities over the classes of X are

equal (Schouten et al. 2009).

Schouten et al. (2009) propose two indicators of representativity in the population to

compare the quality surveys or the quality of the same survey over time that are based on

the standard deviation, S(rX), of the response propensities rX (the response propensity

function for the auxiliary variables X): the global R-indicator, R rX

� �
¼ 1 2 2S rX

� �
, and

the unconditional partial R-indicator, Pu Z; rX

� �
¼ SB rXjZ

� �
. The first indicator describes

how the respondent units reflect the target population according to certain characteristics

and measure how much the response set in a survey deviates from the representative

response. It takes values on the interval [0, 1], with the value 1 indicating the most

representative response. The response is not representative if there is much variation in

response probabilities, reflected by a large standard deviation.

The unconditional partial R-indicator, instead, can be seen as a measure of the impact of the

specified variable on deviations from the representative response (Schouten et al. 2011). This

indicator measures the distance to representative response for a single auxiliary variable and is

based on the between variance of the response propensities given a stratification with categories

of Z: it is non-negative and assumes values less than or equal to 0.5. At the subpopulation

(category) level it assumes values between -0.5 and 0.5: a negative value indicates that a

subpopulation is under-represented, while a positive value indicates that a subpopulation is

over-represented, and the value 0 means that it is represented (Schouten et al. 2011).

The sample-based R-indicators are obtained using a response model (logit or probit

regression models) and auxiliary variables known for respondents and nonrespondents are

used to estimate the response propensity. Response propensity, rX, is the conditional

expectation of Ri (response indicator variable which takes the value 1 if unit i responds and

the value 0 otherwise) given the vector of values xi. of the vector X of auxiliary variables.

The estimator of R-indicator, R̂(r̂X ¼ 122Ŝ(r̂X), is obtained using the estimator of the

variance of the response propensities, Ŝ2 r̂X

� �
¼ 1

N21 s

P
di r̂X xið Þ2 brrX

� �2
(di is the design

weight and brrX is the weighted sample average of the estimated response propensities). The

R̂ðr̂XÞ can be used to derive the standardized absolute maximum bias (Bethlehem et al.

2011), B̂m r̂X

� �
¼ 1 2 R̂ r̂X

� �� �
=2brrX .

The estimator of unconditional partial R-indicator, expressed as P̂u Z; r̂X

� �
¼ ŜB r̂XjZ

� �
,

is obtained using the estimator of the between variance, Ŝ
2

B r̂xjZ
� �� �

¼
PK

k¼1
N̂k

N
brrx;k 2 brrx

� �2
, given a K strata of variable Z that can be included or not in the model

Table 1. Sample size and response rate in the SM and MM surveys by macro-area.

Macro area SM Total MM Web in MM

n Response
rate

n Response
rate

Zc Response
rate

North West 1900 65.9% 4369 71.2% 24.193* 32.5%
North East 1741 70.2% 4028 73.6% 22.657* 36.0%
Center 1616 68.6% 3735 70.2% 21.169 27.8%
South 1781 79.3% 5314 79.4% 20.090 17.7%
Islands 976 71.3% 1816 74.2% 21,649 17.3%
ITALY 8014 71.0% 19262 74.0% 25,091* 26.8%

* The difference between SM and Total MM response rates is statistically significant at a confidence level of 99%.
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for response. At the level of the subpopulation (strata) Z ¼ k, the unconditional partial

R-indicator is P̂u Z; k; r̂x

� �
¼ ŜB r̂xjZ ¼ k

� �
, with the estimator of the variance

ŜBðr̂xjZ ¼ kÞ ¼

ffiffiffiffi
N̂k

N

q
ðbrrx;k 2 brrxÞ.

The estimate of response probabilities through the sample introduces additional

precision loss in the R-indicator estimates. To evaluate the estimates of the global R-

indicator and the unconditional partial R-indicator, the standard error and the confidence

intervals must be calculated.

For the considered survey context, the estimates of the indicators of the representative

response are obtained starting from different logistic regression models for response,

log½rx=ð1 2 rxÞ� ¼ x0b. The models are defined at the national level (Italy) and for three

macro-areas (North, Center, South and Islands), considering as dependent variable the

response indicators, RSM;i for the SM sample and RMM;i for the MM sample, and as

independent variables the vector of the household structural variables. The covariates of

the logit models with a significant regression coefficient are: household type, income class,

higher educational level and geographical areas (five macro-areas in the model for the

national level and the municipal type in the models for the macro-areas).

Tables 2 to 5 present, for both SM and MM samples, the estimates of R̂ r̂x

� �
, the values

of the standardized absolute maximum bias proposed by Bethlehem et al. (2011), and the

related standard error (SE) with the confidence intervals at 95% (CI 95%). As already

discussed in Subsecon 3.2, standard errors are obtained through the pseudo-replication

method to take into account the sample design of the survey and correctly estimate the

variance of the R-indicators without involving the estimation of the model. Then,

confidence intervals are computed using a Gaussian assumption for the sampling variance.

Table 2 shows that, at the national level the MM response set deviates less from the

representative response with respect to the SM sample, 0.854 in the first and to 0.812 in the

second, confirming a better representativity of the mixed-mode survey. For the North, the

values of the R-indicator are similar for the two samples, for the other macro-areas they are

very different. The response in these cases is more representative when the MM survey is

adopted. Although the web response rates are much lower in the South and Islands, it

Table 2. Global R-indicator estimates for the SM and MM samples in the macro-area and at national level.

Macro-
area

SM sample MM sample

Estimate
(CI 95%)

SE Absolute
maximum

bias

Estimate
(CI 95%)

SE Absolute
maximum

bias

North 0.847 0.00311 0.0516 0.840 0.00433 0.0578
(0.841, 0.853) (0.832, 0.848)

Center 0.752 0.00428 0.0844 0.842 0.00491 0.0572
(0.744, 0.760) (0.832, 0.852)

South 0.840 0.00339 0.0608 0.907 0.00429 0.0337
and
Islands

(0.833, 0.847) (0.899, 0.915)

Italy 0.814 0.00183 0.0657 0.854 0.00214 0.0542
(0.810, 0.818) (0.850, 0.858)
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seems that in the MM survey the response set better reflects the population of interest with

respect to certain characteristics used in the models. At the national level, the upper limit

of the bias is higher in the SM survey than in the MM survey. Similar results are shown for

the Center and the South and Islands.

The unconditional partial R-indicators, P̂u Z; r̂X

� �
and P̂u Z; k; r̂x

� �
, for SM and

MM samples are calculated considering the logistic regression model for response defined

at the national level (Italy) toevaluate the contribution to the representativeness of the response

of the variables “income class”, “household type” and “higher educational level”.

The unconditional partial R-indicator for “income class” assumes a higher value in the

SM sample rather than in the MM sample: this means that the variable contributes more to

the non-representativeness of the response in the SM sample. At subpopulation (strata)

Table 3. Unconditional partial R-indicator estimates for the income class and strata.

Variable
Strata

SM sample MM sample

Estimate CI 95% SE Estimate CI 95% SE

Income class 0.0032 (0.0029,
0.0035)

0.00016 0.0020 (0.0017,
0.0023)

0.00014

,10508 20.0449 (20.0451,
20.0447)

0.00012 20.0359 (20.0361,
20.0357)

0.00011

10508–20281 20.0077 (20.0077,
20.0077)

0.00001 20.0016 (20.0016,
20.0016)

0.00000

20281–29778 0.0142 (0.0142,
0.0142)

0.00002 0.0035 (0.0035,
0.0035)

0.00001

29778–46079 0.0141 (0.0141,
0.0141)

0.00002 0.0123 (0.0123,
0.0123)

0.00002

.46079 0.0261 (0.0260,
0.0262)

0.00004 0.0238 (0.0237,
0.0239)

0.00003

Table 4. Unconditional partial R-indicator estimates for the household typology and strata.

Variable
Strata

SM sample MM sample

Estimate CI 95% SE Estimate CI 95% SE

Household
type

0.0029 (0.0027,
0.0031)

0.00013 0.0019 (0.0017,
0.0021)

0.00008

A 20.0267 (20.0268,
20.0266)

0.00007 20.0276 (20.0277,
20.0275)

0.00006

B 20.0328 (20.0329,
20.0327)

0.00007 20.0199 (20.0200,
20.0198)

0.00003

C 20.0126 (20.0126,
20.0126)

0.00002 20.0114 (20.0114,
20.0114)

0.00001

D 20.0015 (20.0015,
20.0015)

0.00001 20.0080 (20.0080,
20.0080)

0.00001

E 0.0219 (0.0219,
0.0221)

0.00003 0.0166 (0.0166,
0.0166)

0.00001

F 0.0096 (0.0096,
0.0096)

0.00002 0.0091 (0.0091,
0.0091)

0.00001

G 0.0206 (0.0205,
0.0207)

0.00003 0.0155 (0.0155,
0.0155)

0.00001
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level, it can be noted that for the first and second quintiles of the distribution (lower

incomes) there is an under-representation of the two samples, although it is more marked

for the respondents of the SM survey. In addition, there is a greater over-representation of

households with higher incomes in the SM survey (Table 3).

Table 4 shows the results of the unconditional partial R-indicator for “household

type” and the following categories: one-individual ,¼34 (A); one-individual 35–64 (B);

one-individual .¼65 (C); two-individuals at least one ,¼35 (D); two-individuals all .34

(E); more than two individuals at least one ,¼24 (F); more than two individuals all .24 (G).

According to the indicator, the variable “household type” contributes more to the non-

representativeness of the response in the SM sample (0.00291) than in the MM sample

(0.00195). For the subpopulations, it should be noted that for households with one-

individual and two individuals aged less than or equal to 35 years (A and D) there is an

under-representation of the two response sets, although it is more accentuated for the SM

survey except for the last subpopulation. There is still more over-representation for

households with two individuals over 34 (E) and households with more than two

individuals (F and G) in the SM survey compared to the MM survey (Table 4).

Table 5 refers to the results of the unconditional partial R-indicator for the variable “higher

educational level” and the categories below high school diploma (A), equal high school

diploma (B) and above high school diploma (C). Table 5 shows the contribution to the

representative response of the modality “higher educational level”, on the total. It is very low in

both response sets. However, it is alwayshigher (in absolute value) in the MM survey than in the

SM survey. At the subpopulations level, it should be noted that for households with equal high

school diploma (B) there is an over-representation which more accentuated in the MM survey.

5. Second Step: Evaluation of Mode Effect in the MM Sample

5.1. Instrumental Variable Approach

The instrumental variable approach proposed by Vannieuwenhuyze et al. (2010) is useful

for the evaluation of both selection and measurement effects in the experimental context

with parallel survey designs and a reference mode. The method requires the validity of the

comparability and representativity assumptions and the equivalence of the measurement

errors between the reference mode and the same mode used in the mixed-mode design.

Table 5. Unconditional partial R-indicator estimates for the household typology and strata.

Variable
Strata

SM sample MM sample

Estimate CI 95% SE Estimate CI 95% SE

Higher
educational
level

0.0002 (20.0002,
0.0006)

0.00020 0.0003 (20.0002,
0.0008)

0.00025

A 0.0111 (0.0111,
0.0111)

0.00002 0.0120 (0.0120,
0.0120)

0.00002

B 0.0049 (0.0049,
0.0049)

0.00001 0.0111 (0.0111,
0.0111)

0.00002

C 20.0034 (20.0043,
20.0025)

0.00038 20.0030 20.0089,
20.0081)

0.00023
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The instrumental variable approach has been adopted starting from two comparable

response sets (SM and MM), in which the SM survey (only PAPI mode) is used as a

benchmark. In order to make the SM and MM response sets comparable, that is, to ensure

that they are not affected by selection effects due to different response processes, a

calibration procedure is adopted separately. That is, the sampling weights are modified to

match the distributions of socio-demographic known totals (age class, sex, educational

level) at the regional level. Then, on the response set of the SM and MM surveys with

adjusted weights, the probability distributions of the survey variable are estimated

introducing the instrumental variable I, which identifies the respondents of the SM and the

MM surveys (ISM, IMM), and the variable M, that classifies the respondents in the MM

survey according to PAPI and web modes (binomial variable that assumes value 1 for

PAPI and 0 for web). The instrumental variables ISM and IMM each have a multinomial

distribution with p paramet vector: (pSM¼pSM,1 , : : : ,pSM, p) where pSM,i is the change

that ISM ¼ i with 0 # pSM, i # 1 and
i

P
pSM; i ¼ 1 for (i ¼ 1, : : : ,p); (pMM¼pMM,1 , -

pMM¼pMM,1 , : : : ,pMM, p) where pMM,i is the change that IMM ¼ i with 0 # pMM, i # 1

and
i

P
pMM; i ¼ 1 for (i ¼ 1, : : : ,p).

The frequency distributions for ISM and IMM, estimated (calibration weights) from both

SM and MM response sets are: the distribution of the PAPI responses from SM, P(ISM; the

distribution of the PAPI responses from MM, P(IMMjM ¼ 1); the distribution of the web

responses from MM, P(IMMjM ¼ 0); the distributions of the PAPI and the web responses

from all MM, P(M ¼ 1 ), P(M ¼ 0).

From these distributions, it is not possible to estimate the selection and measurementeffects.

In fact, should be necessary to include the not observed distribution P(ISMjM ¼ 0), which

represents the counterfactual distribution as if the PAPI respondents in the MM had responded

to the web mode (PAPI to web-MM). Starting from the observed distributions, through the

total probability formula, P(ISM) ¼ P(ISMjM ¼ 0) P(ISM) þ P(ISMjM ¼ 1) P(M ¼ 1),

Vannieuwenhuyze et al. (2010) derive the distribution, P ISMjM ¼ 0
� �

¼ P ISMð Þ 1
P M¼0ð Þ

2P ISMjM ¼ 1
� �

P M¼1ð Þ
P M¼0ð Þ

. From this equation, as P ISM ¼ ið Þ ¼ pSM;i, they obtain for each

category of ISM, the probabilities pSM;ijM ¼ 0 for the respondents who chose the web mode.

The estimate of the selection effect is obtained as the difference between the PAPI-MM

and the PAPI to web-MM probability distributions, while the estimate of the measurement

effect is obtained as the difference between the web-MM and the PAPI to web-MM

probability distributions.

The following tables (Table 6 and Table 7) show the results of the application of the

instrumental variable approach for some target variables of the ADL survey, such as

“reading books in the last 12 months” and “use of PC in the last year”.

Table 6 shows the presence of both selection and measurement effects. The positive

selection effect for the No category may be indicative of the fact that the PAPI respondents

in the MM sample are more likely to respond No than the web respondents.

Concerning the “Use of PC” (Table 7), for the first category both measurement and selection

effects are negative, while with respect to the other categories, they are positive. More

individuals respond to other categories when this question is asked in the web mode. The

positive selection effect for all categories, except to the first category, indicates that the PAPI

respondents in the MM sample are more likely to provide these answers then the web

respondents.
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5.2. Propensity Score Method

The propensity score (PS) stratification (Rosenbaum and Rubin 1983) can be used to

assess the selection and measurement effects. This approach is adopted in observational

studies by achieving a balance of covariates between comparison groups. In MM surveys

the propensity score can be interpreted as the probability of mode assignment conditional

on observed covariates. With adjustments based on PS, the confounding effects of the

selection mechanism are mitigated.

The application of this method implied: an estimation of the propensity score model

parameters; the definition of subclassification (strata) of respondents based on propensity

score; the validation of the balancing assumption, through a chi-square test of the

independence between the mode choice and each covariate; for each balanced group, the

calculation of weights that equate the weighted proportion of web respondents with the

proportion of PAPI respondents in the same stratum.

A logit regression model was used in which the binary response variable is the mode

choice web/PAPI is the dependent variable and the structural household variables are the

covariates of the model. The covariates of the logit model with a significant regression

coefficient are: Italian region, type of municipality, household typology, income class and

higher educational level. For eight out of ten of the deciles of the distribution of the

predicted probabilities, the independence hypothesis was accepted for all variables.

For each balanced group k, a correction factor, or weight, of the selection effect has been

calculated as wk ¼
nk;PAPI=nPAPI

nk;web=nweb
(Vandenplas et al. 2016), being nk;T the number of respondents

to the mode T (web or PAPI) in the group k. This corrector allows an overall evaluation of the

mode effect in the balanced classes: the selection effect is obtained for each target variable,

following Vandenplas et al. (2016), as the difference between the web responses adjusted with

wk and the unadjusted web responses, while the measurement effect is obtained as the

Table 7. Probability distributions of Use of PC and estimate of the selection and measurement effects.

Category web-MM PAPI-MM PAPI-SM PAPI to
web-MM

Selection
effect

Measurement
effect

Yes, in the last
3 months

0.6430 0.4331 0.5279 0.6945 20.2614 20.0515

Yes, from 3
months to 1
year ago

0.0321 0.0265 0.0260 0.0251 0.0014 0.0070

Yes, more than
1 year ago

0.0595 0.0501 0.0484 0.0455 0.0045 0.0140

Never 0.2293 0.4559 0.3734 0.2285 0.2273 0.0008
Nonresponse 0.0360 0.0345 0.0243 0.0063 0.0282 0.0297

Table 6. Probability distributions of reading books in the last 12 months and estimate of the selection and

measurement effects.

Category web-MM PAPI-MM PAPI-SM PAPI to
web-MM

Selection
effect

Measurement
effec

No 0.4086 0.6291 0.5754 0.4813 0.1478 20.0727
Yes 0.5531 0.3348 0.3989 0.5115 20.1767 0.0416
Nonresponse 0.0383 0.0361 0.0256 0.0073 0.0288 0.0311
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difference between the web responses adjusted with wk and the unadjusted PAPI responses. In

Table 9 (see Appendix, Section 8) the majority of the estimated effects are significantly

different from zero (a ¼ 0:05), based on the bootstrap simulation (see details in Subsection

3.2). What can be underlined from Table 9 is that for many of the items of the selected

indicators both the effects are relevant.

For the variable “Reading books in the last 12 months” the results of the estimation for

selection and measurement effects obtained through the application of the instrumental

approach (Table 6) and the propensity score (Table 9) are similar. The two results show the

existence of both a selection and a measurement effect in the same direction. However, for

the other variable “Use of PC” (Table 7 and Table 9) the results are not similar. A possible

explanation is that this variable is strongly influenced by the propensity of web response:

the calibration variables used in the first approach to make the samples comparable could

be not sufficiently effective, while the propensity score based on auxiliary variables could

be more effective in defining comparable groups of respondent units.

6. Third Step: Adjusting Mode Effect in the MM Sample

6.1. Weighting Methods

In this section, some methods for adjusting mode effect are applied: the weighting

methods, as propensity score and calibration, are used to correct the selection effect.

Generally, the weighting methods assume that the selection effect is ignorable and the

measurement error due to the mix of techniques is negligible or at least constant over time,

so as not to affect the estimates of variation. The assumption of the invariance over time of

measurement error in repeated sequential MM surveys is not very sustainable, because the

composition of the respondents by mode can change over the years, leading to variations in

the total measurement error.

To avoid the misinterpretation of variations in the composition of respondent samples as

variations in the estimates, a calibration procedure that takes into account fixed levels of

mode proportions is used. This method is proposed by Buelens and Van den Brakel (2014)

and aims to keep the measurement error constant over the survey occasions. The

calibration procedure simultaneously performs with respect to both auxiliary variables,

that correct the selection effect, and to fixed levels of proportions of response by mode,

that stabilize the total measurement error.

Alternative weighting adjustment methods (standard calibration and propensity score

subclassification adjustment) are implemented and compared with the previous one.

6.2. Results

Table 8 shows the comparison of the estimates of the distribution of “Reading books” that

derive from the application of different methods.

These methods are based on calibration procedures that involve distributions of the

same socio-demographic totals (age class. sex. educational level) at geographical area

level, but that differ for other aspects of the procedure: (1) calibration on only socio-

demographics; (2) calibration on socio-demographics and observed fixed levels of mode

proportions by six municipal typologies; (3) calibration on socio-demographics and
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hypothesized fixed levels (assuming for future occasions an increase of the web response

rate in the South and Islands) of mode proportions by six municipal typologies; and (4)

calibration on socio-demographics with sampling weights corrected for the web selection

effect through correction factors deriving from propensity score (see Subsection 5.2).

What emerges from the table is that the two calibrations including the constraints with

respect to the fixed level of mode proportions (methods 2 and 3) determine a difference in

the estimate of about 1%.

7. Concluding Remarks

The set of the analyses presented can be considered as a possible framework of steps,

usable by researchers of NSIs to carry out an assessment of mode effect in similar

situations. They try to cover all the different approaches applicable in this specific survey

context, even though they do not claim to be exhaustive.

The analyses carried out highlight several issues linked to the introduction of the mixed-

mode in a social survey. The results show that in MM surveys, the bias due to the total

nonresponse is reduced. However, it is still cumbersome to get an overall evaluation of the

total measurement error based on different conflicting factors, such as the response process

and the mode choice. In fact, it is not easy to under]stand if the different effects are

correctly disentangled and estimated.

The analyses conducted on the experimental context of the ADL survey highlight that the

MM design helps to better catch the overall population and all the subpopulations that

compose it, than the single-mode design. Anyway, the positive impact of MM in terms of

obtaining a less selective response does not necessarily improve the accuracy of the estimates.

The quality of some of the produced estimates seems affected by a measurement effect.

The results of the analyses conducted on many target variables in the survey, only

partially reported in this article, can provide useful advice in planning a further edition of the

ADL survey, in order to benefit from the coverage improvement derived from mixing the

techniques. In fact, appropriate actions to prevent measurement errors in the survey design

phase can make it possible to applly the calibration procedure proposed by Buelens and Van

den Brakel (2014) to control for the estimate changes in the time series due to the variation in

the composition of web and PAPI respondents (selection effect).

The application of all the methods presented is subject to two important conditions: (1)

the availability and the quality of the auxiliary information, which should be mode

insensitive and properly explain the selection effect; (2) the validity of the hypotheses

underlying the methods, which must be verified by the researcher as far as possible.

In conclusion, the mode effect analyses in a MM survey imply an underlying effort that

is hardly compatible with the usual resources and the timing of a statistical process: such

Table 8. Estimate of the distribution of "Reading books in the last 12 months" with different methods.

Variable Category Estimate (%)

SM estimate Meth. 1 Meth. 2 Meth. 3 Meth. 4

Reading No 57.81 59.92 59.00 58.66 59.92
books (last Yes 39.68 36.51 37.43 37.73 36.33
12 months) Nonresponse 2.49 3.58 3.56 3.61 3.75
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efforts are challenging and demanding and often there is no time to make them. In general,

in order to limit the measurement effect, which is the main drawback of the mixed-mode,

in advance as much as possible, accurate planning at the data collection phase is advisable.
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Measuring the Accuracy of Aggregates Computed
from a Statistical Register

Giorgio Alleva1, Piero Demetrio Falorsi2, Francesca Petrarca1, and Paolo Righi2

The Italian National Statistical Institute (Istat) is currently engaged in a modernization
programme that foresees a significant revision of the methods traditionally used for the
production of official statistics. The main concept behind this transformation is the use of the
Integrated System Statistical Registers, created by a massive integration of administrative
archives and survey data. In this article, we focus on how to measure the accuracy of register
estimates of a population total from measurements calculated at the unit level. We propose the
global mean squared error (GMSE) as a statistical quantity suitable for measuring accuracy in
the context of the production of official statistics. It can be defined to explicitly consider the
main sources of uncertainty that may affect registers. The article suggests a feasible
calculation strategy for the GMSE that allows National Statistical Institutes to build
algorithms that can promptly be applied for each user request, thus improving the relevance,
transparency and confidence of official statistics. Through a simulation study, we verified the
efficacy of the proposed strategy.

Key words: Integration; anticipated variance; linearization; mean square error; total survey
error.

1. Background and Scope of the Article

The article focuses on how to measure the accuracy of population totals obtained from

register data starting from uncertainty measures computed at the unit level. We consider

the context where the users may autonomously define their totals, having direct access to

the register microdata. In general, their statistics are unplanned and unpredictable in

advance. The estimates of population totals are fundamental for knowing the dimension of

quantitative variables or the level of diffusion of qualitative variables in a population.

They represent the dominant part of the output that the different users produce from data

and the common target parameters of the National Statistical Institute (NSIs). Standard

linearization techniques (Särndal et al. 1992; Wolter 1986) allow extending the approach

proposed herein for measuring the accuracy of non-linear statistics (such as correlations or

regression parameters, and so on of a distribution) computable from the register

microdata.

The background of the research activity described in this article is the modernization

programme that the Italian National Statistical Institute (Istat 2016) launched some years

q Statistics Sweden

1 Sapienza University of Rome, Via del Castro Laurenziano 9, 00161 Rome, Italy. Emails: giorgio.alleva@
uniroma1.it and francesca.petrarca@uniroma1.it
2 Italian National Institute of Statistics (Istat), Via Cesare Balbo, 16 – 00184 Rome, Italy. Emails: piero.falorsi@
gmail.com and parighi@istat.it

Journal of Official Statistics, Vol. 37, No. 2, 2021, pp. 481–503, http://dx.doi.org/10.2478/JOS-2021-0021

http://dx.doi.org/10.2478/JOS-2021-0021


ago. The main concept underlying this transformation is the use of the Integrated System

of Statistical Registers (ISSR) as the basis for the production of all official statistics. This

transformation represents a strategic challenge: it proposes abandoning the paradigm of

statistical inference based on sample surveys that has been used for the past 75 years and

moving on to a mixed data source paradigm for the future (Citro 2014; Alleva 2017). The

ISSR is the result of a massive integration of administrative archives with survey data.

According to the statistical quality framework followed by Statistics Canada (2009),

also reported by Wallgren and Wallgren (2014), the term survey includes the following

components: (1) a census, which attempts to collect data from all members of a

population; (2) a sample survey, in which data are collected from a (usually random)

sample of population members; (3) a collection of data from administrative records, in

which data are derived from 2 records originally kept for non-statistical purposes; and (4) a

derived statistical activity, in which data are estimated, modelled, or otherwise derived

from existing statistical data sources. Each of the previous components introduces

different sources of uncertainty that should be considered both for predicting the target

variables at the individual level and for the register aggregate. For instance, component (1)

introduces the possibility of coverage errors, which we can address with specific statistical

models. Component (2) includes sampling errors, and components (3) and (4) comprise

the uncertainty derived by models adopted for building predictions at the individual level.

To construct ISSRs as the single informative infrastructure for the production of official

statistics starting from a microdata level, different statistical techniques have been

adopted. Many of these techniques result in computing predictions at the unit level. The

register values remain the output of statistical processes subject to statistical uncertainty

for both units and variables. The main strategic choice is whether to make the use of ISSR

limited and to allow the dissemination of only planned outputs with a certified accuracy or

to make the system more flexible, allowing different users, to produce their own statistics

from the ISSR. We propose here to opt for the second option, which makes the Institute

more relevant for its users, but exposes the NSI to the threat of inappropriate use of the

register data by unaware users. Indeed, users who have access to the microdata could

conceivably produce their estimates fully unaware of any problems associated with the

quality of their register statistics. The European Statistical System (ESS) is aware of the

importance of producing new measures of accuracy for multi-source statistics such as

those produced by statistical registers (Eurostat 2019). In this article, we suggest a

computational strategy for facilitating flexible and correct use of register data by enabling

users to quickly estimate global mean squared error (GMSE) on their own. In Section 2,

we give the notation and introduce the measure of accuracy we propose to adopt for the

register aggregates. Then, in Section 3, to facilitate comprehension, we introduce a

simplified statistical framework in which the register is not affected by coverage errors.

Section 4 describes the calculus of the GMSE for the simplified statistical framework.

Section 5 illustrates the main computational challenges. Section 6 deals with coverage

errors. Sections 7 and 8 show the first results of a simulation study and provide

preliminary conclusions with some initial reflections on how to develop a feasible

validation approach. The derivations of the main results are available in Appendix

(Section 9) and in Appendices 2, 3 and 4 published as online supplementary materials for

this article.

Journal of Official Statistics482



2. Notation and Proposed Measure of Accuracy

Let U be the unknown target population of interest, including N(U) statistical units. Let Ud

be a statistical domain of interest, which is a subset of U with N(Ud
) units. The target

parameter of interest, YUd
, is the total of the variable y within the domain Ud:

YUd
¼
X

k[Ud

yk; ð1Þ

where yk is the true value of the variable y for unit k.

Let R be a statistical register, including N(R) statistical units: ideally, each statistical unit

in U should be represented by a corresponding unit in R.

Furthermore, let Rd be a subset of R of size N(Rd
), which represents the target domain Ud.

Let ŷk be the value recorded in the register that predicts the value yk. These predicted

values can be computed according to different statistical models or algorithms. For

estimating YUd
, the users can simply sum the predicted ŷk values over Rd:

ŶRd
¼
X

k[Rd

ŷk: ð2Þ

ŶRd
is a register-based statistic as in Wallgren and Wallgren (2014) and is the result of an

estimation process. We may define the accuracy of ŶRd
based on the difference between

this statistic and the actual value, YRd
. The accuracy depends on various factors, such as

the coverage error of the register and the measurement errors of predictions.

The data structure of the population U and the statistical register, R, are illustrated in

Table 1, where the right part represents the population and the left part represents the

statistical register. In our table xk denotes a vector of I, auxiliary variables available in R

for each unit k. Note that the true yk values are rarely available in the register. The last

columns on both parts of the table (the right and the left) are dichotomous membership

variables indicating whether the unit is included in domain d. The true values of these

Table 1. Data structure in population U and in statistical register R.

Population U Statistical register R

Identifier
of the
population
unit true
unknown

True
y

Value

True mem-
bership
variable

(0,1) of the
domain d

Code
in R

Predicted
value

Auxiliary
variables

Register
membership
variable of
the domain

d

1 ŷ1 x1 1 Over-
..
. ..

. ..
. ..

.
coverage

1 y1 1 ..
.

0
..
. ..

. ..
. ..

. ..
. ..

. ..
.

k yk 0 k ŷk xk 1
..
. ..

. ..
. ..

. ..
.

1
..
. ..

. ..
.

N(R) ŷN(R)
xNðRÞ

..

.

..

. ..
. ..

.
Under-

N(U) yN(U)
1 coverage
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variables in the population may coincide with what is reported in the register. The areas

with a grey background in the table highlight the over/under-covered units in R.

Depending on the specific objective, the target variable, denoted with the symbol y, and

the auxiliary variables, indicated with the symbol x, can be represented by information

provided by each of the survey components illustrated in Section 1. To better clarify the

different roles, the auxiliary variables are known, and the target variables are those

predicted at the unit level. The auxiliary variables are, for example, the sex and age of

people in the population register or tax paid by firms in the business register.

In a total survey error approach (Biemer 2010), the mean squared error (MSE)

represents the simplest way to measure the accuracy of registered-based statistics. It is

expressed as the expected squared difference between the estimator and the true unknown

population value:

MSEðŶRd
Þ ¼ EðŶRd

2 YUd
Þ2 ¼ VðŶRd

Þ þ ½BiasðŶRd
Þ�2; ð3Þ

where E(·) denotes the operator of expectation and V(·) indicates the operator of the

variance. Each specific approach to inference focuses on different sources of variability

and bias in the definition of the MSE; these are related to what is treated as fixed or random

in the specific inferential approach. For instance, design-based (Cochran 1977) or model-

assisted approaches (Särndal et al. 1992) treat the population values yk as unknown

constants, and the sample selected, with the sample design P, is the only source of

randomness; therefore, they develop their expectations considering only the variability of

the sampling design. The model- based approach (Vaillant 2009; Chambers and Clark

2015) considers the sample as fixed and the yk values as random variables generated

according to the model, M; thus, they develop the MSE considering only the variability

embedded in the model. The expectation developed from the model generating the data

will be denoted as EM, and the expectation calculated from the variability of the sampling

design will be indicated as EP. The same notation will be adopted for the operator of

variance, thus defining the operators VM and VP.

Here, we propose to develop the MSE, taking into consideration all the random

components involved in the inferential process for building the predictions. We can simply

do this by defining the operator of expectation in Equation (3) as a concatenation of

elementary expectation operators, each of which considers a specific random component.

Following the proposal of Wolter (1986), who introduces the concept of global variance,

the measure we propose could be denominated as a global MSE (GMSE). The GMSE can

be expressed as

GMSEðŶRd
Þ ¼ EPEMðŶRd

2 YUd
Þ2: ð4Þ

When planning the sampling design, GMSE is also known as anticipated variance (Isaki

and Fuller 1982; Särndal et al. 1992; Nedyalkova and Tillé 2008; Nirel and Glickman

2009; Falorsi and Righi 2015). Here, the measure is not limited to the sampling context

and incorporates additional sources of variability and bias. For instance, the nonresponse

by defining GMSE as:

GMSEðŶRd
Þ ¼ EPEMENRðŶRd

2 YUd
Þ2; ð5Þ
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in which ENR indicates the expectation under the models adopted for imputing the

nonresponse in survey data. Continuing the illustration, let us consider the case in which

we collect the y variable from a census affected by nonresponse. In this case, we can define

the GMSE as

GMSEðŶRd
Þ ¼ ENRðŶRd

2 YUd
Þ2:

The GMSE could be accepted as a measure of precision by the main professional

families of methodologists within the NSIs: at least, those who base their inference only on

statistical models and those who use the statistical models as a support for inference that

continues to be based essentially on sampling design. The global measure has a number of

advantageous qualities, including the following: generality, stability over time and

robustness in the case of model failures. GMSE is simple to use and communicate to users.

It is based on the first and second moments of the random distributions of the specific

source of uncertainty. Its calculus does not imply full knowledge of the underlying

distributions.

We observe that well-known approaches for estimating GMSE are based on replication

methods (Scholtus 2019). However, these techniques are highly time-consuming: the

replicates have to produce the whole process generating ŶRd
. Therefore, in the context of

the massive and continuous production of official statistics by NSIs, replication methods

do not seem to be a feasible solution.

To facilitate informed and correct use of a registry, once the user defines the target total

and the specific domain of interest (Rd), it would be useful to build a dynamic data vector,

for example, ŝ2
dy;k for k ¼ 1, : : : , NðRdÞ, so that the GMSE estimate is:

dGMSEGMSE ŶRd

� �
¼
X

k[Rd

ŝ2
dy;k: ð6Þ

The quantities ŝ2
dy;k are unit and domain specific. However, we will see in Section 5 that

the amount of information to be stored for their calculation is limited for each

unpredictable user request. The dependency on the domain is limited to a few useful

variables in the register. Therefore, in our proposal, we do not suggest storing the ŝ2
dy;k

values, but we do recommend stockpiling some intermediate values, not domain specific,

from which the ŝ2
dy;k may be easily calculated, thus making the proposed solution

applicable in the real contexts of NSI informative infrastructures (this will become clearer

in Section 5 below). We also note that the definition of the computational formulae for

determining quantities ŝ2
dy;k represents a relevant result since it enables the NSI to build

algorithms that can be applied promptly for each user request even those not planned in

advance. To produce the proposed assurance of accuracy at the micro-level (given in

Equation 6), we propose a computational strategy based on the following two primary

approximations:

1. the linearization of estimatorŶRd
with respect to each specific source of variability

considered in GMSE. The validity of this assumption will be proven as true in the

typical asymptotic contexts that are used in these cases (see Appendix A3 in online

supplementary materials);
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2. the adoption of a form of calculus of the sampling variances based only on first

inclusion probabilities.

The computational strategy is made simpler by the well-known result of Kendall and

Stuart (1976, 196), according to which we can express the GMSE as a sum of conditional

values that is more manageable for the calculus. We repeatedly use this result in Section 4

and in Appendix (Section 9). Finally, we note that although some believe that the use of

approximations could weaken the methodological proposal, we find ourselves today in a

context where NSIs do not calculate accuracy at all. Furthermore, approximate solutions

are usual, for example, in the case of sample variances where closed forms are not

available.

3. A Simplified Statistical Framework

Here, we suppose that coverage error is negligible, which implies Rd ; Ud. We also

assume that the xk ¼ (xk1, · · ·, xki, · · ·, xkI)
0

values are not subject to the measurement error.

The main sources of variability considered here are the model, M, generating the data y

and the sampling design, P. The model and the sampling design are always developed

under the non-informative assumption of the current survey sampling activity. The model

formulation and fitting are independent of the sampling design and vice versa.

3.1. Model Uncertainty

Regarding the first source, we can suppose that each yk value is to be expressed as the sum

of two components:

yk ¼ ~yk þ ek; ð7Þ

where ~yk ¼ EMð ykÞ is the theoretical value according to which the value of y is generated

from a given statistical model, M, for unit k, and ek denotes the random error with model

expectations given by

EMðekÞ ¼ 0; EMðe
2
kÞ ¼ VMðekÞ ¼ s2

y;k; EMðekelÞ ¼ sy;k;l; ð8Þ

where e‘ indicates the random error of unit ‘.

The structure of a model expectation is quite general and may be easily applied to

different statistical models. For instance, consider a well-known model with domain

random effects, adopted as a small area estimation technique, yk ¼ ~yk þ 1k þ zd for

k [ Ud, in which 1k is random noise and zd is a random domain effect; we may then

reformulate the model expectation structure of this model, according to Equation 8, by

defining ek ¼ 1k þ zd for k [ Ud.

3.2. Sampling Uncertainty

A generalized framework for defining sampling designs, illustrated in detail in Falorsi and

Righi (2015), assumes a sample S of fixed size n selected from R, in accordance with

sample design P with inclusion probabilities p ¼ (p1, : : : , pk, : : : , pNðRÞ)
0

. Many

practical sampling designs define domains that are planned sub-populations so that the
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sample sizes have been fixed before selecting the sample. Denote by R[h ](h ¼ 1, : : : , H)

the planned domain of size NðR½h�Þ ¼
P

k[R dkðhÞ where dk(h) ¼ 1 if k [ Rh and dk(h) ¼ 0

otherwise. Fixed size sampling designs are those satisfying
P

k[S dk ¼ n, where

dk ¼ (dk(1), : : : , dk(h), : : : dk(H))
0 and n ¼ (n1, : : : , nh, : : : , nH)0 is the vector of integer

numbers defining the sample sizes fixed at the design stage, with
P

k[S dkðhÞpk ¼ n. In our

setting, planned domains can overlap; therefore, unit k may have more than one value

dk(h) ¼ 1 (for h ¼ 1, : : : , H). Several customary fixed size sampling designs invite

particular consideration. A well-known example is the stratified simple random sampling

without replacement (SSRSWOR) design, where strata are the planned domains and each

dk vector has H 2 1 elements equal to zero and one element equal to 1, which implies that

each unit j belongs to one and only one planned domain. The total Y estimated with the

Horvitz-Thompson estimator is ŶHT ¼
P

k[S ykð1=pkÞ. We suppose that the N(R) £ H

matrix D ¼ (d1, : : : , dj, : : : , dNðRÞ )
0 is non-singular. According to this general sampling

design framework, Deville and Tillé (2005) proposed an approximated expression of the

variance for ŶHT based on the Poisson sampling theory given by

VP ŶHT

� �
ø

NðRÞ

ðNðRÞ 2 HÞ

� �X

k[R

1

pk

2 1

� �
h2

k ð9Þ

wherehk ¼ yk 2 pkd
0

k

X

J[R

djd
0

jpj 1 2 pj

� �
" #21X

j[R

pj

1

pj

2 1

� �
djyj: ð10Þ

Equation 9 resembles the variance expression of the Horvitz-Thompson estimator under

a Poisson sampling design, but it uses the residuals, hk, instead of the original value, yk. In

practice, when H ¼ 1, this is the variance approximation of the conditional Poisson

sampling (Deville and Tillé 2005). The above approximation works well when the number

of domains H remains small compared to the overall population size N(R). A conservative

approximation of Equation (10) may be obtained by substituting hk with the yk values.

3.3. Predictions

Let us suppose that ~yk can be expressed as a function f (·)

~yk ¼ f ðxk;qÞ; ð11Þ

in which q ¼ (q1, : : : qi, : : : , qI)
0

is a vector of I unknown parameters.

Let

ŷk ¼ f ðxk; t̂Þ; ð12Þ

be the register predictions, where t̂ ¼ (t̂1, : : : , t̂i, : : : , t̂I)
0 represents the estimate of q

based on observation of the values yk on the sample S. The resulting estimator ŶRd
, given

by the Equation 2 belongs to the class of projection estimators that can be developed either

under the model-assisted approach (Kim and Rao 2012) or the model-based approach

(Chambers and Clark 2015; FAO, part.5, 2014).
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Remark. The predictions ŷk can be built in different ways, thus defining different forms

of Equation 2, as follows:

ŷk ¼
yk if k [ S > R

f ðxk; t̂Þ if k [ S > R

(
ðaÞ; ŷk ¼

yk if k [ S > R

f ðxk; t̂Þ þ êk if k [ S > R‘

(
ðbÞ

êk is a residual that can be selected either from the residuals estimated in sample S or from the

estimated distribution of the y values (Chen and Haziza 2017). With predictions built as in

expression (a), the use of the resulting estimator is more common when using the standard

prediction approach for inference. Form (b) is appropriate in cases where register values are

used for calculating indicators, such as quantiles or correlations in which the variability at

the unit level is relevant. Furthermore, when y is categorical, each specific value of the ŷk

values in R can be set equal to one of the standard modalities of the y variable.

4. The Calculus or the GMSE in the Simplified Statistical Framework

4.1. Decomposition of GMSE

In the observational setting described in Section 3, there are two random vectors of N(R)

units: y ¼ ( y1, : : : ,yk, : : : , yNðRÞ)
0 and l ¼ ðl1; · · ·; lk; : : : ; lNðRÞ Þ

0, which is the vector of

sample membership indicators with lk ¼ 1 if k [ S and lk ¼ 0 otherwise. We suppose

that the estimate t̂ of q is model unbiased, which means EMðt̂jlÞ ¼ q, where EM(t̂jl)

denotes the model expectation conditioned on the sample realized value of the vector l.

Thus, GMSE may be expressed as (see Appendix, Section 9)

GMSE ŶRd

� �
¼

EP VM ŶRd
jl

� �� 	
2VM YUd

� �

EP VM ŶRd
jl

� �� 	
2VM YUd

� �
22CovM EP ŶRd

jy
� �

; YUd

� 	

8
><

>:

if EP ŶRd
jy

� �
–YUd

ð13aÞ

if EP ŶRd
jy

� �
–YUd

ð13bÞ
;

where EP ŶRd
jy

� �
denotes the sampling expectation conditioned on the realized value of

the vector y. As seen from Equation (13a), if the estimator ŶRd
is design unbiased for the

aggregateYUd
, then GMSE will neutralize variability attributing it to the pure model

variability of population parameter YUd
. The conditions for fulfilling design unbiasedness

are given in Section 3 of Kim and Rao (2012).

4.2. Calculus of the Dominant Component of GMSE

The dominant component of GMSEðŶRd
Þ) is EP VM ŶRd

jl
� �� 	

. Indeed, the term VM YUd

� �

contributes negatively to the expression Equation (13a), whereas it enters a positive

component of the difference VM YUd

� �
2 2CovM EP ŶRd

jy
� �

; YUd

� 	� �
in the Equation (13b).

We also note that the term 22CovM EP ŶRd
jy

� �
; YUd

� 	
is of the same order of magnitude as

the component VM YUd

� �
and represents the model covariance between the two population

totals YUd
and EP ŶRd

jy
� �

. The overall difference VM YUd

� �
2 2CovM EP ŶRd

jy
� �

; YUd

� 	� �

becomes negative when EP ŶRd
jy

� �
. 1

2
YUd

with YUd
. 0. In most of the empirical

situations that are encountered, the difference tends to be negligible or negative.
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In the following discussion, we will present some asymptotic behaviors of the variables

of interest. We refer to the results shown in the literature on the subject (see, for example,

Isaki and Fuller 1982; Wolter 1985; Särndal et al. 1992; Deville 1999; Breidt and Opsomer

2017). Here, we limit ourselves to recalling the general framework of our assumptions (as

according to Deville 1999): assuming that (1) the size N of the population and the size n of

the sample tend to infinity; (2) N -1Y has a finite limit, where Y is the total of the variable y,

N is the size of a sequence of populations of increasing size; (3) N 21 (Ŷ 2 Y) with Ŷ the

estimator of the total converges in probability to zero; and (4) n 21/2 N 21 (Ŷ 2 Y) tends to

a multi-dimensional normal distribution, observing the central limit theorem. A

consequence of these assumptions is that the terms that are Op(n 21/2) in the

decomposition of EP VM ŶRd
jl

� �� 	
can be considered small, and the product of two such

small quantities can be deemed negligible.

We focus now on the predominant component EP VM ŶRd
jl

� �� 	
.First, we note that the

estimate ŶRd
may be seen as an overall function of three random components, y, l and t̂, in

which the quantities xk and gd,k (for k [ R) are considered known and not random, with

gd,k ¼ 1 if k [ Rd and gd,k ¼ 0 otherwise. We can express the register-based statistic

ŶRd
¼ ŶRd

t̂; y;ljX;gd;q
� �

as a function of the three random components, given as the fixed auxiliary variables,

X ¼ (x1, : : : ,xk, : : : ,xNðRÞ )
0, domain membership variables, gd ¼ (gd,1, : : : ,gd,k, : : : ,

gd;NðRÞ )
0, and super population parameter, q.

We arrive at the final computable expression of EP[VM(ŶRd
jl)] through a three-step

linearization (see Appendix A4 in online supplementary materials). We carry out the first

linearization on the random quantities t̂ and the second and third linearization steps on the

random vectors y, and l. We calculate each that are first derived, taking into consideration

the specific source of variability for the given conditional set-up.

1. First linearization step. The estimator ŶRd
is linearized with respect to the vector t̂

where the derivatives are computed at the model expected value q, thus obtaining:

ŶRd
¼ EM ŶRd

jl;q
� �

þ
X

k[R

XI

i¼1
gd;k f kiðt̂i 2 qiÞ þ r1; ð14Þ

where

f ki ¼
›f ðxk; t̂Þ

›t̂i






t̂i¼qi

: k ¼ 1; : : : ;NðRdÞ; i ¼ 1; : : : ; I; being r1 ¼ 0p 1=
ffiffiffi
n
p� �

; ð15Þ

is a remainder of minor order. Discarding the remainder, the model variance,

VM(ŶRd
jl), which represents the core part of EP[VM(ŶRd

jl)], is given by:

VM ŶRd
jl

� �
ø VM

X

k[R

XI

i¼1
gd;kf ki t̂i 2 qi

� �

l
" #

¼ VM g
0

dF t̂ 2 q
� �

jl
h i

¼ g
0

dF VM t̂jl
� �� 	

F 0gd; ð16Þ

where F ¼ [fki] is a N(R) £ I matrix.
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2. Second linearization step. The term

X

k[R

XI

i¼1
gd;kf ki t̂i 2 qi

� �
¼ g

0

dF t̂ 2 q
� �

in Equation (16) is linearized with respect to the y variables, where the derivatives

are computed at t̂ ¼ q and y ¼ ~y ¼ (~y1, : : : , ~yk, : : : ,~yNðRÞ )
0

keeping the l vector

fixed. The mathematical explanations are detailed in Appendix A2 in the online

supplementary materials. Here, in this section, we limit ourselves to providing and

describing the main and essential results. Let

X

j[R

gjðt̂; y;lÞ ¼ 0I ; ð17Þ

be the system of GEE, generalized estimating Equations (Ziegler 2015) for

estimating the vector t̂ in which

gjðt̂; y;lÞ ¼ ½gj1ðt̂; y;lÞ; : : : ; gjiðt̂; y;lÞ; : : : ; gjIðt̂; y;lÞ�0; ð17bÞ

is the I vector of the score functions g(t̂;y; l) for the parameter t̂i (i ¼ 1, : : : ,I) of unit

j, where 0I is a vector of I zeroes. Adopting the linear approximation first proposed by

Binder and Patak (1994) and then, among others, by Chambers and Clark (2015,

123–125), we have:

ðt̂ 2 qÞ ø A21
q

X

j[R

gjðq; y;lÞ; ð18Þ

being

Aq ¼ ailjq ¼

›
X

j[R

gji t̂; y;l
� �

›t̂l










t̂¼q

2
664

3
775;

a (I £ I) matrix (in which i, ‘ ¼ 1, : : : ,I), and where gj(q; y; l) ¼ {gji(q; y; l);

i ¼ 1, : : : , I} is defined in Equation (17b) by the substitution of t̂ with q. Thus,

according to the Equation (A3) of Appendix A2 in online supplementary materials,

we have the following approximation, which holds for n .. I:

VM ŶRd



l
� �

ø VM

X

k[R

X

j[R

XI

i¼1
gd;kf kiujijlyj



l
" #

¼ VM g
0

dF
X

j[R

ujjlyj






l
 !

¼ g
0

dF
X

j[R

ujjlu
0

jjls
2
y;j þ

X

l–j

ujjlu
0

ljlsy;jl

" #
F 0gd; ð19Þ

where ujjl ¼
2› A21

q g j q;y;lð Þ½ �
›yj





y¼~y
ðuj1jl; : : : ; uj1jl; : : :uj1jlÞ’:
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For the general linear model in which ~yk ¼ x
0

kq, the matrix Aq is an I £ I identity

matrix.

3. Third linearization step. According to the approach proposed by Graf (2015) and by

Vallée and Tillé (2019), the terms ujjl, included in Equation (19), are linearized with

respect to the sampling indicators l around the sample design expected value p.

We have,

ujjl ø uj;p þ ›ujðlj 2 pjÞ; ð20Þ

where uj,p is obtained as ujjl by substituting the values of lj with the corresponding

expected values pj and

›uj ¼
›ujjl

›lj






l¼p

¼ ›uj1; : : : ; ›uji; : : :; ›ujI

� � 0
:

Then, we have

EP ujjlu 0jjl

� 
¼ uj;pu 0j;p þ ›uj›u 0jpj 1 2 pj

� �
: ð21Þ

EP ujjlu 0ljl
� �

¼ uj;pu 0l;p þ ›uj›u 0l pjl 2 pjpl

� �
; ð22Þ

where pj‘ is the joint inclusion probability of units j and ‘.

Then, considering the sampling expected values Equations (21) and (22) into

Equation (19), we have

EP VM ŶRd
jl

� �� 	
ø g 0dF EP VM t̂jl

� �� 	�
F 0gd

�

¼ g 0dF
X

j[R

uj;pu 0j;p þ ›uj›u 0jpj 1 2 pj

� �� 
s2

y;j

h(
þ

X

l–j

uj;pu 0l;p þ ›uj›u 0l pjl 2 pjpl

� �� 
sy;jl

io
F 0gd: ð23Þ

The above expression cannot be computed for many usual sampling designs since the

joint inclusion probabilities, pj‘, are unknown. Starting from result of Equation (9),

we propose an upward approximation of Equation (23) based on the first-order

inclusion probabilities, which we recommend for the calculus of EP VM ŶRd
jl

� �� 	
:

EP VM ŶRd
jl

� �� 	

# g 0dF
X

j[R

uj;pu 0j;p þ ›uj›u 0jpj 1 2 pj

� �� 
s2

y;j þ
X

l–j

uj;pu 0l;psy;jl

 !" #
F 0gd:

ð24Þ

In Appendix A3 in the online supplementary materials, we give a lower bound of

EP VM ŶRd
jl

� �� 	
. Equation (24) is defined using unit-level elements: uj,p, ›uj, pj, s

2
y;jsy;j‘

which are not domain specific.
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4.3. Calculus of the Other Components of GMSE

According to the model setting (3.2), the component VMðYUd
Þ is given by

VM YUd

� �
¼
X

j[Rd

s2
y;j þ

X

l–j

sy;jl

 !
: ð25Þ

For the calculus of CovM[EP(ŶRd
jy),YUd

], we adopted a linearization consisting of two

steps, where in the first step, the estimator ŶRd
is linearized with respect to the vector t̂ and

the first step is computed at the sampling design expected value t ¼ EP(t̂jl). In the second

step, adopting the same approach as Binder and Patak (1994), the estimating expressions

of t are linearized around ~y and q, thus obtaining:

CovM EP ŶRd
jy

� �
; YUd

� 	
ø
X

k[R

X

j[R

XI

i¼1
gd;k f ki uji;p s2

y;j þ
X

l–jð Þ> l[Rdð Þ

gd;l sy;jl

0
@

1
A: ð26Þ

4.4. Plug-In Estimate of the GMSE

The plug-in estimate of GMSE may be computed by inserting the estimates of t̂, ŷk

(k ¼ 1, : : : , N(R)), ŝ
2
y;j and ŝy;jl ( j, ‘ ¼ 1, : : : , N(R)) in place of the unknown parameters

q, ~yk (k ¼ 1, : : : , N(R)), s
2
y;j and sy;j‘ ( j, ‘ ¼ 1, : : : , N(R)) in the expressions of the

different components of the GMSE. According to Ziegler (2015, point 5, 121), these plug-

in estimates are strongly consistent estimators of the different components of the variance.

4.5. Example with the Logistic Model

Consider a logistic model where yk ¼ 1 with probability ~yk ¼ f(xk;q) and yk ¼ 0 with

probability 1 2 ~yk, where f ðxk;qÞ ¼ ex 0 kq= 1þ e x 0 kq
� �

. Under the model-based

approach, the estimating equations for the calculus of the GMSE using the first-order

linear approximations, derived by the log-likelihood, are

X

j[R

gj t̂; y;l
� �

¼
X

j[R

xj yj 2
ex 0 j t̂

1þ ex 0 j t̂

" #
lj:

The matrix Aq is given by:

Aq ¼ –
X

j[R

xjx
0
je

x 0 jq

1þ ex 0 jq
� �2

" #
lj

and the vectors ujjl, uj,p and ›uj are expressed as ujjl ¼ 2A21
q xjlj; uj;p ¼ 2A21

q xjpj;

›uj ¼ 2A21
q xj:
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5. Tips on Computational Aspects

GMSE may be expressed as the sum of elementary unit variances, s2
dy;k, over the register

domain units:

GMSE ŶRd

� �
ø
X

k[Rd

s2
dy;k: ð27Þ

Considering jointly the Equations (13a) or (13b), (24), (25) and (26), we have that the

quantities s2
dy;k are given by

s2
dy;k ¼

s2
Ady;k 2 s2

Bdy;k

s2
Ady;k þ s2

Bdy;k 2 2s2
Cdy;k

8
<

:

if EP ŶRd
jy

� �
¼ YUd

ð28aÞ

if EP ŶRd
jy

� �
– YUd

ð28bÞ

where s2
Ady;k; s2

Bdy;k and s2
Cdy;k are the elementary unit variances from the sum of

which(over the register domain units) the three components of GMSE are obtained

(namely, EP VM ŶRd
jl

� �� 	
;VM YUd

� �
and CovM EP ŶRd

jy
� �

; YUd

� 	
Þ.

With simple algebra from Equations (24), (25) and (26), we have:

s2
Ady;k ¼

X

k 0–kð Þ> k 0[Rdð Þ

XI

i¼1

XI

i¼1
f kif k 0t 0Vy;ii 0 ; ð29Þ

s2
Bdy;k ¼ s2

yk þ
X

ðk 0–kÞ>ðk 0[RdÞ

sy;kk 0 ; ð30Þ

s2
Cdy;k ¼

X

j[R

XI

i¼1
f ki uki;p s2

yj þ
X

ðk 0–kÞ>ðk 0[RdÞ

sy;kk 0

 !
; ð31Þ

in which

vy;ii 0 ¼
X

j[R

s2
y ; uji;puji 0;p þ

X

l–j

uji;puli 0;psy;jl

 !
þ ›uji›uji 0s

2
y;jpj 1 2 pj

� �
: ð32Þ

From Equation (24), we see that the sum over the domain units of s2
Ady;k is an upward

approximation of the component of EP[VM(ŶRd
jl)]

EP½VMðŶRd
jlÞ� #

X

k[Rd

s2
Ady;k ¼

X

k[Rd

X

k 0[Rd

XI

i¼1

XI

i¼1
f ki f k 0i 0vy;ii 0 : ð33Þ

The estimates ŝ2
dy;k (introduced in Equation 6) of the elementary unit variances s2

dy;k

may be estimated using the usual plug-in technique

ŝ2
dy;k ¼

ŝ2
Ady;k 2 ŝ2

Bdy;k

ŝ2
Ady;k þ ŝ2

Bdy;k 2 2s2
Cdy;k

8
<

:

if EP ŶRd
jy

� �
¼ YUd

ð34aÞ

if EP ŶRd
jy

� �
– YUd

ð34bÞ

by substituting the expressions of ŝ2
Ady;k, ŝ2

Bdy;k and ŝ2
Cdy;k the estimates t̂, ŷk

(k ¼ 1, : : : ,N(R)), ŝ
2
y;j and ŝy;jl j; l ¼ 1; : : : ;NðRÞ

� �
, in place of the unknown parameters

q, ~yk (k ¼ 1, : : : , N(R)), s
2
y;j and sy;jl j; l ¼ 1; : : : ;NðRÞ

� �
.
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From the above expressions, the main results are as follows.

1. Domain characterization. The quantities vyii 0, fki, uji,p, ›uji, s
2
yj, and sy;j‘ (and their

corresponding plug-in estimates v̂y;ii 0 ; f̂ki; ûji;p, ŝ2
yj and ŝy;jl) are not domain

specific. s2
Ady;k, s2

Bdy;k and s2
Cdy;k are domain specific since they are defined as a sum

over Rd.

2. Space for the storage. A small amount of space is needed for storing the (I £ I)

matrix v̂y ¼ v̂yii 0 ; i; i0 ¼ 1; : : : ; I
� �

whereas storing the matrix F̂ ¼

f̂ki; k ¼ 1; : : : ;NðRÞ; i ¼ 1; : : : ; I
� �

requires a large volume of space. The

quantities ûji;p; ŝ
2
y;j, and ŝy;j‘ require a large volume of space. They are directly

involved only in the calculus of the subdominant parts of GMSE and generally result

in providing a negative contribution to this quantity.

3. Computational complexity. Regarding the predominant component, the calculus of the

matrix v̂y involves the estimation of the parameters t̂, ŝ2
y;j andŝ2

y;jl and the calculus of

the vectors ûj;p and ›ûj including different steps of linearization. On the other hand,

the calculus of F̂ will indeed seem simple once the estimate of the parameter t̂ has

beenobtained, and the calculus of the values f̂ki may be obtained directly by just

applying the specific analytical expression to the xk vector. On the fly, the calculus of

the sub dominant components of GMSE may be cumbersome mainly because of the

domain dependency on the sum
P

k 0–kð Þ> k 0[Rdð Þ sy;kk 0 ; nevertheless, if we neglect these

terms, we introduce only as light upward approximation of the GMSE.

4. Stability over time. The quantities v̂y and the functional form of F̂ are relatively table

over time. The functional form of F̂ does not change unless the method of prediction

is modified. The matrix v̂y is essentially a function of (A) the sample design

properties(and does not depend on the specific sample selection),which change only

rarely when ever the survey is restructured, and (B) the structure of the model

variances and covariances ŝ2
y;j and ŝ2

y;j‘, which change rarely and only in the case

where there is a structural break in the y value sand in the model for their generation.

The above expressions and the results of the empirical experiment (in Section 7) offer

some suggestions on how to develop a feasible and robust computational strategy. First,

we note that the subdominant components give a negative contribution to GMSE and that

this tends to be negligible for unplanned domains in which EP ŶRd
jy

� �
– YUd

. This finding

invites the examination of two different alternatives: one for the planned domain (for

which EP ŶRd
jy

� �
¼ YUd

) and the other for unplanned domains.

For the planned case where domains are well known in advance and limited in number,

the Equation (13a) is used for the computation. In particular:

1. The matrix v̂y is computed and stored.

2. The matrix F̂ is not stored. The values f̂ki are computed on the fly on the basis of its

functional form, which links these values directly to the auxiliary variables xk and to

the parameters t̂.

3. With regard to the computation of matrix F̂, the only two objects that are

permanently stored are the vector of the parameter t̂ and the functional forms that

permit the computation of the f̂ki values.

4. The elementary unit variances ŝ2
Bdy;k are computed and stored.

Journal of Official Statistics494



For the unplanned domains (Equation (13b)), generally unpredictable in their number,

the quantity EP VM ŶRd
jl

� �� 	
is used as an upward approximation of the GMSE. This can

be easily computed on the fly on the basis of the stored material as defined in points 1 and 3

listed above.

6. The Coverage Errors

The register may be affected by coverage errors, which implies NðRdÞ – NðUdÞ, where NðRdÞ

is the number of units in domain d listed in the register, and NðUdÞ is the domain population

size.

An unbiased estimate N̂unb;ðUdÞ may be obtained directly from the register with the

Extended Dual System Estimator (Nirel and Glickman 2009; Pfeffermann 2015) by

summing up the predicted values of a particular w variable over the register units:

N̂unb;ðUdÞ ¼
X

k[Rd

ŵk; ð35Þ

in which

ŵk ¼
P̂ k [ Ujk [ R
� �

P̂ k [ Rjk [ U
� � ð36Þ

represents the model (roughly) unbiased prediction of

wk ¼
P k [ Ujk [ R
� �

P k [ Rjk [ U
� � ð37Þ

where P̂(k [ Ujk [ R) is the model’s unbiased estimate of the conditional probability

P(k [ Ujk [ R) such that unit k included in the register belongs to the population and P̂

(k [ Rjk [ U) is the model’s unbiased estimate of the conditional probability

P(k [ Rjk [ U) such that unit k belonging to the population is included in the register.

This approach has been adopted for the Italian Population Base Register by integrating the

register data with the Census Population Coverage Survey carried out each year as a

component of the Italian Permanent Census Survey System (Righi et al. 2021). The GMSE

of N̂unb;ðUdÞ may be expressed as and specified as described in Subsection 4.2 by defining

the predictions and model’s expected values of the w variables (instead of the y variables).

Moreover, we note that in the case in which the register is affected by coverage errors, a

weighted estimator of the total of a generic y variable in the domain Ud, YUd
can

conveniently be expressed as:

ŶUd
¼
X

k[Rd

ŷkŵk:

The GMSE of this estimator can be obtained by considering its linear approximation:

GMSE ŶUd

� �
ø GMSE

X

k[Rd

ŷkwk þ
X

k[Rd

~ykŵk

 !
: ð38Þ

We omit further technical developments, which can be easily derived according to the

procedure given in Section 4.
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7. Experimental Study

This experimental study, which is based on real data, compares the empirical GMSE of a

Monte Carlo simulation with the approximate GMSE obtained from Taylor approximations.

The data set for the empirical study is an administrative archive that contains

information regarding the population of 21,782 Sapienza University of Rome (Italy)

alumni who graduated between March 1, 2008 and February 28, 2009 and who signed a

job contract in the three years following graduation (Alleva and Petrarca 2013; Gruppo

UNI. CO 2015; Petrarca 2014, a, b). The study focuses on the disciplinary sectors of

engineering, sciences, literature, economics and statistics, psychology, chemistry and

pharmacy, and architecture. The data set has 7,085 units. However, the simulations

conducted on other subsets of disciplinary sectors confirm the results shown here.

The target y variable is the number of days worked during the three years after graduation.

The vector of auxiliary variables for a unit is xk ¼ (xk1, xk2, xk3, xk4, xk5, xk6, xk7, xk8)
0

, where

xk1 ¼ 1; xk2: gender of a graduate; xk3: age at the time of graduation; xk4: graduation on time

(yes/no); xk5: graduation from a second-cycle programme (yes/no); xk6: number of days that

a graduate has waited before obtaining a permanent contract; xk7: number of days that a

graduate has waited before obtaining a contract with a highly qualified position (ISCO

1-ISCO 2); and xk8: number of days that a graduate has waited before obtaining a contract

with an actual duration of more than or equal to eight months.

7.1. Standard Simulation and Linear Approximation

We generated 1,000 populations of 7,085 units. For each population, a vector of the target

variables yk was generated as described in Section 3 by taking the sum of two components:

yk ¼ EM( yk) þ ek ¼ ~yk þ ek, where ~yk is the vector of the fitted values obtained from a

linear regression model attuned to the super-population, and ek is generated with a normal

distribution with mean 0 and variance equal to the variance of the yk in the real data set

(s 2 ¼ 0.1159733 · 107). For each population, 1,000 samples of n ¼ 500 units were selected

utilizing a simple random sample design without replacement. The two processes

that generate populations and samples allow us to simulate the model and sampling

uncertainty. For each sample we obtained from a simple linear regression model, the

estimated regression coefficients t̂ formulate the ŷ ¼ Xt̂ vector to be utilized for

constructing predictions. The sum of these values restricted to the domain built the ŶRd

estimates.

The evaluation of our information by linear approximation only requires us to know the

matrix of the auxiliary variables and then implement the calculation of the formulae given

in the text. We had two types of domains: the internal domains for which the domain

membership variable belongs to the vector of auxiliary variables and the external domains

otherwise. Note that in the case of internal domains, we apply a generalized regression

estimator (Särndal et al. 1992). The size of each domain is presented in Table 2.

7.2. Results

First, we discuss the simulation results concerning GMSE for the two large domains:

gender and scientific group (obtained by summing sciences, chemistry and pharmacy,
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economics and statistics and engineering) and the domain others (containing architecture,

literature and psychology).

In Tables 3 and 4, we report thevaluesofGMSE and its components for the large internal and

external domains, respectively. For the sake of brevity, the tables display only the results for

gender female and scientific group. Similar results were produced for the other two domains.

Part A of Table 3 reports the experimental results of the EP[VM(ŶRd
jl)] in the case of an internal

domain (gender female), whereas part B of Table 3 shows the results for an external domain

(scientific group) achieved using the Monte Carlo simulation and linear approximations,

hereinafter referred to as “empirical” and “linearized” expectations, respectively.

For the empirical expectations of the GMSE, we considered Equations (4) and (13a) for

the internal domains. In the case of the external domain, the evaluation of GMSE is based

on Equation (13b) because in this case, the projection estimator is biased, EP[(ŶRd
jy)] –

YUd
. Equations (3.2) and (3.7) of Table 3 show that the dominant part of GMSE comes

from EP[VM(ŶRd
jl)].

For the linearized Equations (3.3–7.5 of Table 3-part A; 3.8–3.10 of Table 3-part B),

we give the estimates for the dominant contribution of GMSE computed from the

definitions of Equation (23) applied to the linear regression model. As expected, these

evaluations are sufficiently in agreement with one another.

Table 3. GMSE and its components.

A: Case of an internal domain (Gender_female)
Empirical

VM(YUd
) ¼ 426.6

GMSE(ŶRd
) ¼ EPEM(ŶRd

2 YUd
)2 ¼ 6,649.0 (3.1)

GMSE(ŶRd
) ø EP[VM(ŶRd

jl)] 2 VM(YUd
) ¼ 7,069.9-426.6 ¼ 6,643.3 (3.2)

Linearized
VM(YUd

) ¼ g 0d
P

y gd ¼ 496.5 (3.3)
EP½VMðt̂jlÞ� ¼

P
j[R½EPðujjlu 0 jjlÞs

2
yj� ¼ 7; 021:6 (3.4)

GMSE(ŶRd
) ¼ EP[VM(ŶRd

jl)] 2 VM(YUd
) ¼ 7,021.6-496.5 ¼ 6,525.1 (3.5)

A: Case of an external domain (Scientific group)

Empirical
VM(YUd

) ¼ 380.2
GMSE(ŶRd

) ¼ EPEM(ŶRd
2 YUd

)2 ¼ 2,996.4 (3.6)
GMSE(ŶRd

) ø EP[VM(ŶRd
jl)] þ VM(YUd

) – 2CovM[EP(ŶRd
jy),YUd

]
¼ 3,045.8 þ 380.2 2 429.5 ¼ 2,996.5 (3.7)

Linearized
VM(YUd

) ¼ g
0

d

P
y gd ¼ 390.6 (3.8)

EP[VM(t̂jl)] ¼
P

j[R½EPðujjlu
0

jjl
Þs2

yj� ¼ 2,990.3 (3.9)
GMSE(ŶRd

) ¼ EP[VM(ŶRd
jl)] þ VM(YUd

) 2 2CovM[EP(ŶRd
jy),YUd

]
¼ 2,990.3 þ 390.6-429.5 ¼ 2,951.4 (3.10)

The numbers are scaled by a factor of 10^7.

Table 2. Internal and external domains with their size.

Internal domain Population size External domain Population size

Gender_female 4,281 Scientific group 3,368
Gender_male 2,804 Others 3,717
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Our attention now focuses on EP[VM(ŶRd
jl)]. Experiment serves to investigate the

external disciplinary sector domains, allowing us to compute the expectation EP[VM(-

ŶRd
jl)] for small and large domains. Table 4 reports the values of EP[VM(ŶRd

jl)] in the

case of simulation (column A) and linearization (column B). The differences between the

two estimates are positive and small, ranging between 16 and 41‰.

Figures 1a and 1b show the data of Table 4, where the circled points correspond to the

values of external domains, whereas the diamond points correspond to the values for the

Table 4. Values of EP½VMðŶRd
jlÞ� in the case of simulation and linearization.

Domains Domain
population

Expected
sampling

EP[VM(ŶRd
jl)] Difference*

(A-B)
Relative

difference
size fraction

(nd/Nd)
Empirical*

(A)
Linearized*

(B)
(A-B)/A

Architecture 905 0.128 214.2 210.8 3.36 0.016
Chemistry

and
Pharmacy

400 0.056 85.8 83.2 2.56 0.030

Economics
and
Statistics

1,349 0.190 472.6 458.3 14.23 0.030

Engineering 1,259 0.178 590.6 580.5 10.13 0.017
Literature 1,975 0.279 1,039.4 1,020.7 18.70 0.018
Psychology 837 0.118 248.0 237.9 10.15 0.041
Sciences 360 0.051 38.8 37.5 1.26 0.033
Scientific

group
3,368 0.475 3,045.8 2,990.3 55.50 0.018

*The numbers are scaled by a factor of 10^7.
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Fig. 1. Absolute (a) and relative (b) differences in EP½VMðŶRd
jlÞ� between simulation and linearization

according to the size of the domain.

*The point S refers to the internal domain gender_female
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internal domain gender female, also shown here for completeness. The trend lines were

drawn without considering the values of the internal domain.

As shown in Figure 1a, the difference between the empirical and linearized expectations

indicates a positive relationship with the population size of the external domains. On the

other hand, Figure 1b, shows that the relative difference increases when the domain

sample size decreases. These findings confirm that the linearization method produces a

downward approximation directly related to the sample size.

8. Conclusions

In this article, we have proposed the global mean square error as an appropriate measure to

assess the accuracy of register aggregates. This measure has some relevant qualities:

generality, stability over time and robustness in the case of model failure. It is easy to use and

communicate to users and could be accepted as a measure of accuracy by the main

professional families of methodologists within the National Statistical Institutes.

Our approach is based on only the first and second moments of the random distributions

of the specific source of uncertainty. Its calculus does not imply full knowledge of the

underlying distributions.

In addition, we suggested an immediate GMSE calculation strategy for any unexpected

user request by simply aggregating domain-dependent variances estimated at the unit

level. The amount of information to store for this calculation is limited, and the domain

dependency is limited to a few useful variables. The calculation strategy suggested here is

a powerful advantage of our proposal, as it allows NSIs to build algorithms that can be

applied instantly to any user request, thus improving the relevance, transparency and

confidence of official statistics.

The simulation conducted confirms the accuracy of the different GMSE decompositions

proposed in Section 4 as model-assisted projection estimators, whether they are design-

unbiased or biased. Furthermore, the very small discrepancies between empirical and

linearized expectations suggest that the proposed approximation method can be undertaken as

a valid computational strategy. We emphasize once again that the linearized variance is

calculated using unit-level elements: uj,p, ›uj, pj, s
2
y;j and is suitable for the calculation of an

accuracy measurement of the statistics based on registers.

In addition to the more extensive validation studies to be launched to confirm the

benefits and robustness of the empirical results, the main further steps to be taken in the

research outlined here are the definition of a validation strategy and targeted extensions

with regard to both other sources of uncertainty and parameters other than means and

totals that cannot be expressed as simple linear functions of the register predictions.

Although significant validation may not be feasible at this stage, we suggest that NSIs

plan, on a regular (e.g., annual) basis, experimental studies conducted for specific domains

where the GMSE values obtained as proposed in this article are compared with

corresponding values obtained from other approaches. We suggest considering replication

methods that repeat the whole process of calculating the register predictions. These

experiments may show inconsistencies in the experimental evidence on which further

empirical and theoretical investigations should be considered. Furthermore, they could

validate whether the asymptotic properties adopted here hold.
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Beyond the coverage error considered here, other extensions need to be developed. In

our view, those on which research should be prioritized are linkage errors and predictions

based on machine learning algorithms. For both cases, it should be analyzed whether the

main tools adopted here, the linearization and decomposition of the GMSE into simpler

conditional components, could be successfully applied. Other simple and straight forward

extensions could be obtained by considering standard linearization techniques to measure

the accuracy of non- linear parameters derived from register microdata, such as

correlations, regression parameters or quantiles.

Finally, we stress that another aspect to consider in facilitating the strategy feasibility and

its wider applicability is to implement software tools that make it easy to calculate GMSE

from the microdata of the register and from the functional form used to build the forecasts.

9. Appendix

9.1. Demonstration of the Equations (13a) and (13b)

To derive Equation (13a), we add and subtract the overall mean, EPEMðŶRd
Þ ¼ ~YRd

in the

expression of GMSE. We have

GMSEðŶRd
Þ ¼ EPEMðŶRd

2 EPEMðŶRd
Þ þ EPEMðŶRd

Þ2 YUd
Þ2

¼ EPEMðŶRd
2 EPEMðŶRd

ÞÞ2 þ EPEMðEPEMðŶRd
Þ2 YUd

Þ2

þ 2EPEM ŶRd
2 EPEMðŶRd

Þ
� �

EPEMðŶRd
Þ2 YUd

� �� 	

¼ EP½VMðŶRd
jlÞ�2 VMðYUd

Þ;

since, from Kendall and Stuart (1976, 196), it is

EPEM ŶRd
2 EPEM ŶRd

� �� �2
¼ EP VM ŶRd

jl
� �� 	

þ VP EM ŶRd
jl

� �� 	
;

and EM(t̂jl) ¼ q, then

VP EM ŶRd
jl

� �� 	
ø VP

X

k[Rd

f ½xk; EMðt̂jlÞ�

" #
¼ VP

X

k[Rd

f ðxk;qÞ

" #
¼ 0

EPEM
~YRd

2 YUd

� �2
¼ EM

~YRd
2 YUd

� �2
¼ VM YUd

� �
and

EPEM ŶRd
2 EPEM ŶRd

� �� �
ðEPEM ŶRd

� �
2 YUd

�� 	

¼ EPEM ŶRd

� �� �2
2EM Y2

Ud

� h i
¼ 2VM YUd

� �
:

To demonstrate Equation (13b), consider that

EMEP ŶRd
2 EPEM ŶRd

� �� �
EPEM ŶRd

� �
2 YUd

� �

¼ 2EM EP ŶRd
jy

� �
YUd

� �� 	
þ EPEM ŶRd

� �
¼ 2CovM EP ŶRd

jy
� �

; YUd

� �
:
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A Hybrid Technique for the Multiple Imputation
of Survey Data

Humera Razzak1 and Christian Heumann1

Most of the background variables in MICS (Multiple Indicator Cluster Surveys) are
categorical with many categories. Like many other survey data, the MICS 2014 women’s data
suffers from a large number of missing values. Additionally, complex dependencies may be
existent among a large number of categorical variables in such surveys. The most commonly
used parametric multiple imputation (MI) approaches based on log linear models or chained
Equations (MICE) become problematic in these situations and often the implemented
algorithms fail. On the other hand, nonparametric MI techniques based on Bayesian latent
class models worked very well if only categorical variables are considered. This article
describes how chained equations MI for continuous variables can be made dependent on
categorical variables which have been imputed beforehand by using latent class models. Root
mean square errors (RMSEs) and coverage rates of 95% confidence intervals (CI) for
generalized linear models (GLM’s) with binary response are estimated in a simulation study
and a comparison is made among proposed and various existing MI methods. The proposed
method outperforms the MICE algorithms in most of the cases with less computational time.
The results obtained by the simulation study are supported by a real data example.

Key words: Complex dependencies; MICE; multiple indicator cluster surveys.

1. Introduction

Information on many variables (e.g., mortality, nutrition, child health and women

reproductive health, and so on) is collected in different large-scale surveys. Multiple

Indicator Cluster Surveys or MICS is such a large-scale complex survey which provides

opportunities to fill data gaps for monitoring the health situation of children and women in

under developed countries. Information based on background variables of the indicators in

MICS are very important for data analysis, and for policy making (Corsi et al. 2017).

However, the problem of missing data is inevitable in such studies. For example, the data

set of individual women from MICS 2014 Punjab, which has been used in the survey data

example latter, has between 14 to 95 percentages of data missing on more than 200

women’s background characteristics (e.g., demographics, age, education, motherhood and

recent births and so on). Whereas, only few variables are completely observed.

Respondents feeling shy to answer sexual activity related questions etc. may result in

missing data problem.
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1.1. Statement of the Problem

The representativeness of the sample can be reduced and inferences about the population

can be distorted due to missing values. Moreover, ignoring missing data can lead to a bias

of unknown direction and magnitude in the estimated parameters. Therefore, it is critical

to impute the data, which usually provides more accurate inference compared to ad-hoc

methods (e.g., complete case (CC) analysis or single imputation) even when variables are

missing at random (MAR) (Abdella and Marwala 2005; Little and Rubin 2002). Multiple

imputation (MI) was originally introduced to handle nonresponse in public use data files or

shared databases (Rubin 1987).

Usually, household survey data sets contain mixed type variables (i.e., both continuous

and categorical variables with many categories). Additionally, complex dependencies may

be existent among a large number of categorical variables in such surveys. Often the

number of continuous variables is less as compared to categorical variables in such studies

(Chandra et al. 2005; Gulliford et al. 1999). The most commonly used parametric MI

approaches based on log linear models or chained Equations (MICE) (Raghunathan et al.

2001; Van Buuren 2007) become problematic in these situations and often the

implemented algorithms fail. On the other hand, nonparametric MI techniques based on

Bayesian latent class models have been seen working very well if only categorical

variables are considered. Therefore, one is limited in the choice of MI methods, that is,

either; one has to sacrifice continuous variables in the analysis (or categorize them) or has

to sacrifice categorical variables if many categorical variables are involved. Due to certain

limitations, various MI approaches cannot be used together without correct modifications.

These limitations create serious problems for researchers to obtain complete data sets with

mixed type variables. Our aim is many fold. Firstly, to develop methods for imputing

mixed type data from large scale complex surveys. Secondly, to avoid difficulties of

complicated models in high dimensions. Thirdly, to combine existing techniques to handle

incomplete large scale complex data sets. Lastly, to gain computational efficiency.

An easy to implement hybrid MI technique is proposed in this article which describes

how different model-based imputation approaches can be blended together to impute

mixed type data having complex dependency structures. The reminder of this article is

organized as follows. In Section 2, we describe methodological background of existing

approaches to deal missing data problem and their shortcomings in high dimensions. In

Section 3, combining rules for imputed data sets are described. The hybrid algorithm is

described in Section 4. Section 5 compares the performance of different imputation

methods in simulation studies. In Section 6, the proposed method is applied to a survey

data set. Results are discussed in Section 7. Concluding remarks are given at the end.

2. Methodological Background

Missing data problem arises, for example, due to item nonresponse (INR) or entry errors

and so on. Besides INR, general reasons for the missing data sets may include system

failures. There are three missing data mechanisms. Missing values in any data can be

missing completely at random (MCAR), or missing at random (MAR), or missing not at

random (MNAR) (Rubin 1987; Little and Rubin 2002). In MCAR, the probability of

missing data on a variable is not associated to itself and or other measured variables. In
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MAR, the probability of missing depends on other, observed, variables. Finally, data are

MNAR if the probability of missing depends on the variable value itself. Practically all

methods implemented in software assume MAR. MNAR is called “non-ignorable” if the

parameters driving the missing data process and the parameters driving the data generating

process are distinct (or independent in a Bayesian analysis), but this is not further

considered in the article. Exact missing data mechanisms are often unknown when dealing

with large scale data sets. Therefore, most of the time, certain assumptions are made

accordingly. Li et al. (2012) address some problems with missing large data. Little’s

MCAR test proposed by Little (1988) is used commonly for testing missing data being

MCAR.

2.1. Review of Existing Approaches

The CC analysis sacrifices all units where at least the value of one variable is missing.

Such methods are still very popular in psychological research (Schlomer et al. 2010). In a

regression setting, if the probability that a covariate is missing, depends on the response

variable, the CC analysis (listwise deletion) can lead to biased estimates (Little and Rubin

2002). The CC method also results in a loss of power, which can make the analysis

inefficient (Little and Rubin 2002). Despite of being the worst available methods

(Wilkinson and Task Force on Statistical Inference 1999), CC is still the most applied

technique due to the simplicity and availability as default options in statistical software

packages (Van Ginkel 2007). The hot-deck method is another approach and belongs to the

family of a single-imputation approach. This method replaces missing values with values

from a “similar” responding unit (Andridge and Little 2010) and the empirical distribution

obtained is used to draw the imputed values. In the case that the entire sample of

respondents is being used as a single donor pool, this method produces consistent and

unbiased estimates for missing completely at random (MCAR) data (Rubin 1976; Little

and Rubin 2002). This method uses covariate information, avoids strong parametric

assumptions and requires no careful modelling to develop selection criteria for imputing a

value because it does not have any parametric model (Schafer and Graham 2002).

However, the problem with this method is that it lacks the clear criteria to guide the

selection of the donor set of complete cases (Pérez et al. 2002). Bayesian bootstrap (Rubin

1987) is a useful alternative when standard hot-deck becomes unsuitable to impute in the

presence of a large number of variables (Andridge and Little 2017). Other proposed

methods for missing data use various statistical methods including self-organizing maps

(SOM) (Kohonen 1995; Oja and Kaski 1999), k-nearest neighbour (kNN) (Batista and

Monard 2003), multi-layer perceptron (Sharpe and Solly 1995), recurrent neural networks

(Bengio and Gingras 1995). Auto-associative neural network imputations, with genetic

algorithms are proposed by Pyle (1999), Narayanan et al. (2002), Chung and Merat (1996),

Marseguerra and Zoia (2005) and Marwala and Chakraverty (2006) also implement some

of the well-known methods used for handling missing data. Multi-task learning

approaches are some other techniques based on machine learning methods (Ankaiah and

Ravi 2011).. According to the studies of Horton and Kleinman (2007), Honaker et al.

(2011), Royston and White (2011) and Van Buuren and Groothuis-Oudshoorn (2011),

over the last three decades a wide range of variety and settings of MI techniques has been
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introduced for catering missing data problem in different research areas (Abdella and

Marwala 2005; Honaker et al. 2011; Little and Rubin 2002; Schafer and Graham 2002).

MI, likelihood based analysis, and weighting approaches are alternatives to listwise and

pairwise deletion methods. These methods usually make the assumption that the missing

data is missing at random (MAR), hence making the estimates unbiased, consistent, and

asymptotically normal (Allison 2002; Barnard and Meng 1999; Roth 1994; Schafer and

Graham, 2002) if that assumption holds.

Model-based imputation is currently considered the most popular method of addressing

missing data problems. The true complete-data distribution and the missing-data

mechanism form the basis of the imputation model which can be explicit or implicit by

nature (Rubin 1987). Indicators in survey data sets are mostly categorical. Schafer (1997)

describes that MI with log-linear models can be used to generate imputed values for such

indicators by capturing the associations in the joint distribution. A severe restriction is that

the number of variables must in general be small (Vermunt et al. 2008). A brief description

of model-based imputation methods and their shortcomings in high dimensions are given

the following sections.

2.2. The Fully Conditional Specification (FCS)

The fully conditional specification (FCS) (Van Buuren 2007), also known as MI by chained

Equations (MICE) (Raghunathan et al. 2001; Van Buuren 2007) is a model-based

imputation method. Missing values are sequentially imputed by estimating a series of

univariate conditional models. Normal regressions and logistic or multinomial logistic

regressions are used for continuous and categorical dependent variables, respectively.

Alternatively, a method called predictive mean matching (PMM) can be used. Newer

implementations also allow classification and regression trees (CART). MICE is an iterative

method and imputes missing values variable by variable. It uses the current regression

estimates for the response variable, where the response variable in this context is the actual

target variable in the iterative process for which missing values are imputed. Draws from the

posterior predictive distribution of the unobserved data given the observed data can be used

to impute missing values. M imputed data sets are created by repeating this process (Rubin

1987). By conducting the analysis on each of these data sets, the resulting M point and M

variance estimates are then combined by a set of rules (Rubin 1987). MICE assumes that

equivalent, or at least nearly as good, draws for the joint distribution of the variables can be

approximated by the sequential draws from the univariate conditional models. Missing

values in continuous variables are often treated using a multivariate normal MI. These

models are often robust to departure from normality by nature (Graham and Schafer 1999;

Schafer 1997). There are three main limitations or difficulties in the implementation of

MICE. First, the possible lack of compatibility among the set of univariate conditional

regression models and the joint distribution of the variables being imputed (Arnold and

Press 1989; Gelman and Speed 1993). Although an algorithm is proposed which selects the

sequence of regression models such that they are assumed to be a good fit for the data, but it

is very complicated to establish exact conditions for convergence (Zhu and Raghunathan

2016). Second, the risk of overlooking higher order interactions arises when MICE includes

only the main effects in the univariate conditional regression models, although using CART
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may resolve this problem. Third, the procedure is very time consuming when higher-order

interactions are included parametrically in the model (Vermunt et al. 2008). Since

categorical variables are internally represented as dummy variables which could easily

double the actual number of predictors, the implementation of the FCS MI by chained

equations algorithm becomes extremely slow or difficult in the presence of categorical

variables with missing values. The R package “mice” by Van Buuren and

Groothuis-Oudshoorn (2011) implements MI by chained equations.

2.3. Fully Bayesian Joint Modelling (JM) and Latent Class (LC) Imputation

The joint modelling (JM) MI involves specifying a multivariate distribution for the data and

draws imputations from their conditional distributions by Markov Chain Monte Carlo

(MCMC) methods. Latent Class MI is a JM technique which imputes missing categorical

data in the presence of a large number of observed categorical variables (Vermunt et al.

2008). There are two main advantages of the Latent Class (LC) analysis. Firstly, the variation

in observed variables can be explained by using a small number of latent classes. Secondly, it

is directly applicable in the presence of many categorical variables. These advantages makes

LC analysis a natural choice to apply in the missing categorical data setting. Vermunt et al.

(2008) show that LC MI outperforms log-linear imputation however, only limited

assessments of the method in terms of missing data mechanism scenarios are available. To

understand the JM approach multiply impute large categorical data sets, it is important to

understand few details regarding how mixture models are used for density estimation and MI.

The distribution of categorical data can be described by a mixture model known as

Latent Class Model or LCM (Lazarsfeld 1950). Mixture models are considered as flexible

tools which model the association structure of a set of variables (their joint density) by

utilizing a finite mixture of simpler densities (McLachlan and Peel 2000). The probability

of having a specific response pattern is defined by each mixture component in a Latent

Class Analysis (LCA). A weighted average of the class-specific densities generates the

estimated overall density. As described by Lazarsfeld (1950), the scores of different items

are independent of each other within latent classes due to local independence assumptions

in LCA. A brief introduction to the mathematical form of a LCM as a tool for density

estimation is given in the following lines.

Let yij be the score of the ith person on the jth categorical item belonging to an n £ J data-

matrix Y (i ¼ 1,..., n, j ¼ 1,..., J), yi the J-dimensional vector with all scores of person i,

and xi a discrete (unobserved) latent variable with K categories. In the LCM, the joint

density P ( yi; p) has the following form:

Pðyi;pÞ ¼
XK

k¼1
Pðxi ¼ k;pxÞ P yijxi ¼ k;py

� �

¼
XK

k¼1
Pðxi ¼ k;pxÞP

J
j¼1P yijjxi ¼ k;pyj

� �
ð1Þ

wherep ¼ (px,py) is a set of LCM parameters which can be partitioned into two parts. The

first part contains the latent class proportions (px) and the second contains class-specific

item response probabilities (py). A separate set of parameters for each of the J items (pyj) is

assigned to the second part. Due to the fact that a mixture distribution is used, a weighted

Razzak and Heumann: Hybrid Multiple Imputation 509



sum of the K class-specific multinomial densities P( yijxi ¼ k; py) generates the overall

density. In this generation, the latent proportions are used as weights. From (1) it can be seen

that the product over the J independent multinomial distributions (conditional on the k-th

latent class) makes use of the local independence assumption. The first, second, and higher-

order moments of the J response variables can be captured in LC models by setting the

number of latent classes large enough (McLachlan and Peel 2000). The generated higher-

order moments are actually the univariate margins, bivariate associations, and higher-order

interactions when dealing with categorical variables (Vermunt et al. 2008). The unit’s

posterior class membership probabilities, that is, the probability that a unit belongs to the k-

th class given the observed data pattern yi, is the quantity of interest when using LC models.

According to the theorem of Bayes we can define this quantity as follows:

Pðxi ¼ kjyi; pÞ ¼
P xi ¼ k;pxð ÞPð yijxi ¼ k;pyÞ

P yi;p
� � : ð2Þ

A fully Bayesian JM approach is proposed by Si and Reiter (2013) which is called

Dirichlet process mixture of products of multinomial distributions (DPMPM). This

apporach uses nonparametric Bayesian versions of Latent Class Models (LCM)

(Lazarsfeld 1950) to multiply impute high-dimensional categorical data (Vermunt et al.

2008). DPMPM approach has two stages. In stage one, a mixture of independent

multinomial distributions is modelled for a contingency table of the categorical variables.

In the second stage, the mixture distributions are estimated non-parametrically with

Dirichlet process prior distributions. Arbitrarily complex dependencies can be described

by such mixtures of multinomials. Since the computation of these dependencies is

practical and generally easy, they can serve as an effective general purpose MI engine.

These models have been successfully used to impute missing values in up to 80 categorical

variables (Si and Reiter 2013). Murray and Reiter (2016) have also worked on combining

Dirichlet process mixtures of multinomial and multivariate normal distributions for

categorical and continuous variables, but this approach involves complicated models to

create the dependence structure between the continuous and the categorical variables. The

DPMPM approach by Dunson and Xing (2009) is described as:

1. Assume that each individual i belongs to exactly one of K ,1 latent classes,

2. For i ¼ 1, : : : , n, let xi e 1; : : : ; kf g indicate the class of individual i, and let pk ¼

P xi ¼ kð Þ. Assume further, that p ¼ {p1, : : : ,p1} is the same for all individuals.

Within any class, we suppose that each of the j variables independently follows a

class-specific multinomial distribution i.e., for any value yj e 1; : : : ; dj

� �
let ¥

jð Þ
kjy

¼ P yij ¼ yjjxi ¼ k
� �

.

Here dj is the the total number of categories for the variable j.

Mathematically expressing the finite mixture model as:

yijjxi; ¥
,

ind Multinomial ð¥
jð Þ

xi1
; : : : ; ¥

jð Þ
xidj
Þ for all i and j ð3Þ

xijp , Multinomial p1; : : : ; p1

� �
for all i: ð4Þ

For prior distributions on ¥ and p , we have

pk ¼ Vk Pl,k1 2 Vg

� �
For k ¼ 1; : : : ; 1
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Vk ii
,
d Beta ð1;aÞ

a , Gamma ðaa; baÞ

¥kj , Dirichlet ðaj1; : : : ; ajdj
Þ

Every Vk is drawn from a Beta distribution with parameters (1, a), where, a, the

concentration parameter of the process, vary according to a Gamma distribution with

parameters (aa, ba). The conditional responses (and their prior) have multinomial densities

with Dirichlet priors.

The R (R Core Team, 2018) package “NPBayesImputeCat” by Quanli et al. (2018) is a

tool for non-parametric Bayesian JM MI, but the implementation of this package is

restricted to categorical variables.

3. Rubin’s Inference

In order to incorporate the uncertainty introduced by missing data and the imputations into

the inferences, the estimates for quantities of interest obtained by analyzing each

completed data set are combined by utilizing rules proposed by Rubin (1987). Let Q be

any quantity of interest (e.g., a population proportion or a probability or a regression

coefficient). For m ¼ 1, : : : , M, let q mð Þ and u mð Þ be respectively the point estimates of Q

in the m-th imputed data set with variance estimates q mð Þ. Valid inferences for a scalar Q by

combining the q mð Þ and u mð Þ according to Rubin (1987) are obtained as follows:

�qM ¼
XM

m¼1

qðmÞ

M
ð5Þ

bM ¼
XM

m¼1

ðqðmÞ 2 �qMÞ
2

M 2 1
ð6Þ

�uM ¼
XM

m¼1

uðmÞ

M
ð7Þ

�qM can be used to estimate Q and the variance of �qM can be estimated by

TM ¼ 1þ
1

M

� �
bM þ �uM ð8Þ

with degrees of freedom vM ¼ M 2 1ð Þ 1þ
�uM

1þ
1

M

� �
bM

� �2

0
BBB@

1
CCCA: ð9Þ

Confidence intervals can be constructed using standard multiple imputation confidence

interval construction rules, which approximately follows a t-distribution. (For more detail

see Rubin 1996; Barnard and Meng 1999; Reiter et al. 2006; Harel and Zhou 2007).
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4. Proposed Hybrid Architecture

Since the application of the package “NPBayesImputeCat” (Quanli et al. 2018) is limited

to only categorical variables, the incomplete data set is proposed to be portioned into two

sets, one consisting of categorical variables (Miss.cat), (which MICE may not be able to

impute due to reasons described in the introduction) and other consisting of continuous

variables (Miss.num) where variables may be missing in both sets. A fully Bayesian JM

(DPMPM) approach is used to fill in missing values by utilizing the package

“NPBayesImputeCat” in Miss.cat. This results in a complete version (Imp.cat) of

categorical variables independent of information available in the continuous variables.

This complete version (Imp.cat) of categorical variables can be used by MICE to construct

chained equations based on categorical variables which have already been imputed by the

fully Bayesian joint models to now impute the continuous variables. To achieve this, the

data set (Miss.num) is added to the data set (Imp.cat) and MICE is run. This provides one

completely imputed data set where the imputations of the continuous variables obtained by

FCS using chained equations depend on the information available in the imputed

categorical variables. This process is repeated M times to obtain multiple imputed data sets

using different algorithms offered by the R package “mice” (Van Buuren and

Groothuis-Oudshoorn, 2011) along with some prior specifications and a number of

mixture components used in the R package “NPBayesImputeCat” (Quanli et al. 2018).

Algorithm 1 explains the proposed hybrid architecture in detail.

.Algorithm 1. Proposed hybrid architecture

Require: P nxp matrix with incomplete data

1. Miss.cat, Miss.num ˆ Initial division of p variables into factor and numeric subsets.
2. for z 5 1, : : :, Z do
3. for m 5 1, : : :, M do
4. Imp. Pz

catm
ˆ Imputing Miss.cat using R package “NPBayesImputeCat”.

5. Imp. Pz
catm

Miss:znumm
ˆ Combining Imp. Pz

catm
and Miss:znumm

to generate partially
imputed data set.

6. Impz
m ˆ Imputing Imp. Pz

catm
Miss:znumm

using R package “mice” i.e.,
f ðMiss:znumm

jImp:Pz
catm
Þ

7. Impz
m ˆ Final imputed data set.

8. �qz
M ˆ

PM
m¼1

q mð Þ

M
Pooled point estimates1.

9. bz
M ˆ

PM
m¼1

q mð Þ2�q
z

Mð Þ
2

M21

10. �u
z
M ˆ

PM
m¼1

u mð Þ

M

11. Tz
M ˆ 1þ 1

M

� �
bz

M þ �u
z
M Pooled variances2.

12. end for
13. q̄ ˆ

PZ
z¼1

�q
z

M

Z
Average of pooled point estimate3.

14. �T ˆ
PZ

z¼1
T

z

M

Z
Average of pooled variance4.

end for

1: �qZ
M are pooled point estimates over M imputed data sets across z simulations.

2: TZ
M are pooled variances over M imputed datas ets across z simulations.

3: �q is an average of pooled point estimates (�q
zð Þ

) across z simulations.

4: �T is an average of pooled variances (T zð Þ) across z simulations.
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5. Simulation Studies

Simulation studies are conducted to examine the impact of MI by our proposed method.

The incomplete data is generated as MAR with (known) effect and the number of

categorical variables is kept more than the number of continuous variables, aiming to

compare strategies in a realistic data situation.

We generate a sample of size n ¼ {1,000} for five (X1, X2, X3, X4, X5) dimensional

correlated random covariates from a multivariate normal distribution MVN. The marginal

distributions of X1, X2, X3, X4, X5 are normal and we set the mean and variance of each

variable to 0 and 0.5 respectively. The correlation structure is given as:

R ¼

1 · · · r

..

. . .
. ..

.

r · · · 1

0
BBB@

1
CCCA;

where r ¼ 0.5. The following component-wise threshold is used to transform random

covariates into binary values.

Xij ¼
0 if Xij # 0:5;

1 if Xij . 0:5;

(

where i ¼ 1, : : : , 5 and j ¼ 1, : : : , 1,000.

Outcomes for two continuous covariates X6 and X7 are generated from normal

distributions (ND) i.e.,

X6 , Nðm6;
ffiffiffi
2
p
Þ; ð10Þ

X7 , Nðm7;
ffiffiffi
2
p
Þ: ð11Þ

Where m6 and m7 are two random vectors of means specified for the ND by using by the

following relations.

m6 ¼ 20:2X1 2 0:3X2 þ 0:5X3 2 0:2X4 þ 0:22X5; ð12Þ

m7 ¼ 22þ m6: ð13Þ

To be noted here, m6 assumes different values for each sample units according the

different values of Xij. Similarly m7 assumes different values for each sample units

according the different values of m6. As a consequence m6 and m7 are random vectors of

j ¼ 1, : : : ,1,000 values. We generate X8 from Bernoulli distributions with probabilities

governed by the logistic regression with

logit PðX8Þ ¼ 23þ 1:5X1 2 2:15X2 þ 2:25X3 þ 1:6X4 2 1:88X5 þ 1:11X6

2 0:96X2X3 þ 2:3X1X3 þ 0:5X2X6 2 2X5X6 þ 1:21X1X5

2 2:7X1X2 þ 1:2X1X2X3 þ 3X6X7: ð14Þ
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A covariate dependent binary response y is generated from Bernoulli distributions with

probabilities governed by the logistic regression with

logit PðyÞ ¼ 0:2 2 0:1X1 2 0:1X2 2 0:1X3 þ 0:3X4 2 0:5X5 þ 0:2X6 2 0:1X7 2 0:1X8

and btrue ¼ ð0:2; 20:1; 20:1; 20:1; 0:3; 2 0:5; 0:2; 20:1; 20:1Þ: ð15Þ

We suppose that values in all covariates are missing at random with the following

probabilities

p ¼ 1
e 2t2X7ð Þ

1 þ e 2t2X7ð Þ
� � ; ð16Þ

where t is a constant. The probabilities defined above yield about 10% to 15 % of the

observations in Xi to be missing (at random) for t ¼ 21.5 and t ¼ 20.5 respectively. We

repeat the process 1,000 times, each time generating new binary response variables and

new missing patterns.

We use three purely MICE based MI methods, namely classification and regression

trees (MICE.CART) (Breiman 2001), predictive mean matching (MICE.PMM) (Morris et al.

2014) and the Default (MICE.DEF) which uses logistic models for categorical and PMM

for continuous variables. We use two Hybrid Multiple Imputation (HMI) methods, for

example H.CART and H.DEF depending on various combinations with MICE algorithms

(Default and CART) and different tuning parameters (aa, ba; k). Since Si and Reiter (2013)

did not observe noticeable differences in the posterior distributions of u for higher values

of prior specifications, we set relatively small prior specification values (i.e., aa ¼ 0.25,

ba ¼ 0.25). Akande et al. (2017) suggest that the latent classes (k) less than 40 can appear

sufficiently large based on tuning with initial runs. However, we follow Dunson and Xing

(2009) who suggest that large enough k can make the latent class model consistent for any

joint probability distribution in case of dependencies among variable. Therefore, we

further define H.CART1, H.CART2, H.CART3 and H.DEF1, H.DEF2, H.DEF3 to compare

the performance of H.CART and H.DEF methods for three sufficiently large number of

latent classes (i.e., k ¼ 80,150,400) and run each MCMC chain for 1,000 iterations using

the first 200 as burn-in. The R (R Core Team, 2018) version 3.0.1 is used to perform all

calculations. The packages “mice” (Van Buuren and Groothuis-Oudshoorn, 2011), version

2.17 and “NPBayesImputeCat” (Quanli et al., 2018), version 0.1 are used to perform

MICE for continuous data and non-parametric Bayesian MI for categorical variables,

respectively. According to Van Buuren (2012) a small number of imputations may be

created in the beginning when building the imputation model with an exploratory analysis,

and increase M gradually for the final analysis. Therefore, the number of multiple

imputations (M ¼ 10) is large in order to get better estimates of standard errors. Even a

higher number of M would have been desirable but would have led to further increased

computing times. However, three sets of M ¼ 10 imputed data sets are generated using

MICE methods, that is, MICE.PMM, MICE.DEF and MICE.CART. Similarly six sets of

(M ¼ 10) imputed data sets are generated using H.CART1, H.CART2, H.CART3,

H.DEF1, H.DEF2 and H.DEF3. In order to achieve convergence and estimates from

simulations in a reasonable time, a Gibbs sampler with 100 Markov-Chain-Monte-Carlo
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(MCMC) iterates is used. Two hundred iterations are run to insure convergence and to

have the results of the simulations in a reasonable time when using the HMI methods.

5.1. Evaluation Criteria

The quality of MI methods is evaluated based on two error-based measurements i.e., root

mean square error (RMSE) and empirical standard error (ESE) (Akande et al. 2017;

Armina et al. 2017). RMSE is computed as a combination of the bias and variance of the

estimate (Burton et.al. 2006). ESE can be considered to access the between imputation

variations. The smaller values for RMSE and ESE indicate better performance (Oba et al.

2003). RMSE and ESE are calculated using the following formulas:

Root mean square error ðRMSE�qm
Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXZ

z¼1
ð�qz

M 2 bÞ2

Z
;

s

ð17Þ

Empirical standard errors ðESE�qm
Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXZ

z¼1
ð�qz

M 2 �qÞ2

Z
;

s

ð18Þ

where �q
z
M denotes the estimated parameter pooled over M imputed data sets in simulation

run number z and b denotes the original parameter. The arithmetic mean of �q
z
M across all

z ¼ {1, : : : , Z} simulations is presented by �q. The value for �q is calculated as follow:

�q ¼
XZ

z¼1

�qZ
M

Z
: ð19Þ

The average value of the standard errors (
ffiffiffiffiffiffiffiffi
TM

p
) across all z ¼ {1, : : : , Z} simulations

can also be used to measure the performance for the MI methods. It can be calculated as:

ffiffiffiffi
T
p
¼
XZ

z¼1

ffiffiffiffiffiffiffiffi
Tz

M

p

Z
: ð20Þ

The amount of bias, which shows how good our estimator is in estimating the real value,

can be calculated by a simple difference that is,

Bias ¼ RMSE – ESE ð21Þ

5.2. Results and Discussions

As discussed earlier, we used two HMI methods that is, (“H.CART” and “H.DEF”) for

comparison with three MICE based MI methods, that is, (“MICE.DEF”, “MICE.CART” and

“MICE.PMM”). We generated simulations for two missing rates that is, 10% and 15% of

values MAR. Simulated root mean square errors (RMSEs), empirical standard errors

(ESEs) and coverage rates of 95% confidence intervals for all regression coefficients are

estimated via combining rules described above and a comparison is made among the

proposed and various existing MI methods. Tables 1–2 display the coverage rates of 95%

confidence intervals (CI) and RMSE (ESE) and estimated bias for the 10% and 15% MAR

data sets, across 1,000 simulations respectively. Figures 1–2 and Figures 3–4 show
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boxplots of the pooled point estimates and standard errors for 10% and 15% MAR data

sets, across 1,000 simulations respectively.

Overall, “MICE.DEF” tends to result in the all mean coverage rates concentrated around

95% for 10% and 15% MAR. Mean coverage rates for “MICE.PMM” tend to be concentrated

around 95% for 10% and fewest high rates (i.e., 97% for X1 and X8) under 15% MAR.

“MICE.CART” results in coverage rates above 95% for most of the covariates under 10%

MAR. Sometimes it reaches very high rates for categorical covariates (i.e., 98%, 97%, 97%

for X1, X3 and X8 respectively) under 15% MAR, except one binary covariate (X4) where it
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Fig. 1. Simulated data: Boxplots of the pooled point estimates for eight regression coefficients (i.e.,

b1, : : : ,b8) under 10% MAR over 1000 simulations. Withi each plot the methods are: MICEDEF (default),

MICECART (classification and regression trees), MICEPMM ( predictive mean matching), CART1 (combination of

prior specifications values (i.e., aa ¼ 0.25, ba ¼ 0.25, k 80) and CART), H.CART2 (combination of prior

specifications values (i.e.,aa ¼ 0.25, ba ¼ 0.25, k 150 and CART), H.CART3 (combination of prior specifications

values (i.e., aa ¼ 0.25, ba ¼ 0.25, k 400) and CART), H.DEF1 (combination of and prior specifications values

(i.e., aa ¼ 0.25, ba ¼ 0.25, k 80) and default), H.DEF2 (combination of prior specifications values (i.e.,

aa ¼ 0.25, ba ¼ 0.25, k 150) and default), H.DEF3 (combination of prior specifications values (i.e., aa ¼ 0.25,

ba ¼ 0.25, k 400) and default).
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reaches low rate (i.e., 94%). Mean coverage rates for “H.DEF1, H.DEF2, H.DEF3” tend to be

concentrated around 95% for most of the covariates under 10% MAR except a binary

covariate X8 where it reaches high rates under H.DEF2 and H.DEF3 (i.e., 97%). Under 15%

MAR “H.DEF1”, “H.DEF2”, “H.DEF3” tend to result in the coverage rates above 95% for

most of the covariates. Mean coverage rates for the binary covariate X8 under “H.DEF2”,

“H.DEF3” are equal to “MICE.PMM” and “MICE.CART” and comparable to that of

“H.DEF1”. This may imply that larger values for k have effect on the overall performance of
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Fig. 2. Simulated data: Boxplots of the pooled standard errors for eight regression coefficients (i.e., 1, : : : , 8)

under 10% MAR over 1000 simulations. Within each plot the methods are: MICEDEF (default), MICECART

(classification and regression trees), MICEPMM ( predictive mean matching), CART1 (combination of prior

specifications values (i.e., aa ¼ 0.25, ba ¼ 0.25, k 80) and CART), H.CART2 (combination of prior specifications

values (i.e., aa ¼ 0.25, ba ¼ 0.25, k 150 and CART), H.CART3 (combination of prior specifications values (i.e.,

aa ¼ 0.25, ba ¼ 0.25, k 400) and CART), H.DEF1 (combination of and prior specifications values (i.e.,

aa ¼ 0.25, ba ¼ 0.25, k 80) and default), H.DEF2 (combination of prior specifications values (i.e., aa ¼ 0.25,

ba ¼ 0.25, k 150) and default), H.DEF3 (combination of prior specifications values (i.e., aa ¼ 0.25, ba ¼ 0.25,

k 400) and default).
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“H.DEF” MI methods. We observe that all three MI methods based on “H.CART” result in

the mean coverage rates for all covariates that are concentrated slightly above 95% under

10% and 15% MAR, but the results are comparable to that of “MICE.CART” where the

longest upper tail, sometimes reaching very high rates (i.e., 15% MAR: X1 ¼ 98%) (see

Table 1). However, we observe no such real differences in the Monte Carlo Errors. This can

be due to limited number of simulation runs used. We observe that the estimated mean ESEs

and RMSEs for all HMI methods are smaller as compared to “MICE.DEF” and “MICE.PMM”
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Fig. 3. Simulated data: Boxplots of the pooled point estimates for eight regression coefficients (i.e., 1, : : : , 8)

under 15% MAR over 1000 simulations. Within each plot the methods are: MICEDEF (default), MICECART

(classification and regression trees), MICEPMM (predictive mean matching), CART1 (combination of prior

specifications values (i.e., aa ¼ 0.25, ba ¼ 0.25, k 80) and CART), H.CART2 (combination of prior specifications

values (i.e., aa ¼ 0.25, ba ¼ 0.25, k 150 and CART), H.CART3 (combination of prior specifications values (i.e.,

aa ¼ 0.25, ba ¼ 0.25, k 400) and CART), H.DEF1 (combination of and prior specifications values (i.e.,

aa ¼ 0.25, ba ¼ 0.25, k 80) and default), H.DEF2 (combination of prior specifications values (i.e., aa ¼ 0.25,

ba ¼ 0.25, k 150) and default), H.DEF3 (combination of prior specifications values (i.e., aa ¼ 0.25, ba ¼ 0.25,

k 400) and default).
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under 10% and 15% MAR for most of the covariates. The estimated mean ESEs and RMSEs

for “MICE.CART” are similar to all HMI methods under 10% and 15% MAR for most of the

covariates. The amount of bias is also relatively less for the proposed HMI methods (see

Table 2). The average point estimates based on proposed HMI methods are close to the

corresponding true values in most of the cases (see Figures 1–2). Average standard errors

based on proposed HMI methods are also smaller for all cases as compared to three MICE

based MI methods (see Figures 3–4).
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Fig. 4. Simulated data: Boxplots of the pooled standard errors for eight regression coefficients (i.e., 1, : : : , 8)

under 15% MAR over 1000 simulations. Within each plot the methods are: MICEDEF (default), MICECART

(classification and regression trees), MICEPMM (predictive mean matching), CART1 (combination of prior

specifications values (i.e., aa ¼ 0.25, ba ¼ 0.25, k 80) and CART), H.CART2 (combination of prior specifications

values (i.e., aa ¼ 0.25, ba ¼ 0.25, k 150 and CART), H.CART3 (combination of prior specifications values (i.e.,

aa ¼ 0.25, ba ¼ 0.25, k 400) and CART), H.DEF1 (combination of and prior specifications values (i.e.,

aa ¼ 0.25, ba ¼ 0.25, k 80) and default), H.DEF2 (combination of prior specifications values (i.e., aa ¼ 0.25,

ba ¼ 0.25, k 150) and default), H.DEF3 (combination of prior specifications values (i.e., aa ¼ 0.25, ba0.25,

k 400) and default).

Razzak and Heumann: Hybrid Multiple Imputation 519



T
a

b
le

1
.

E
st

im
a

te
d

co
ve

ra
g

e
p

ro
b

a
b

il
it

ie
s

fo
r

se
ve

ra
l

M
I

m
et

h
o

d
s

u
n

d
er

d
if

fe
re

n
t

m
is

si
n

g
p

er
ce

n
ta

g
es

a
n

d
M

A
R

a
ss

u
m

p
ti

o
n

.
A

ll
re

su
lt

s
a

re
b

a
se

d
o

n
1

0
im

p
u
ta

ti
o

n
s.

E
st

im
a

te
s

a
re

sh
o

w
n

fo
r

ei
g

h
t

re
g

re
ss

io
n

co
ef

fi
ci

en
ts

(i
.e

.
b

1
,:
:
:,
b

8
).

1
0

%
M

A
R

C
o

ef
.

M
IC

E
. P

M
M

M
IC

E
. C

A
R

T
M

IC
E

. D
E

F
H

.D
E

F
1

H
.C

A
R

T
1

H
.D

E
F

2
H

.C
A

R
T

2
H

.D
E

F
3

H
.C

A
R

T
3

b
1

9
5

9
7

9
5

9
6

9
5

9
6

9
5

9
6

9
6

b
2

9
5

9
6

9
5

9
6

9
6

9
6

9
6

9
6

9
6

b
3

9
6

9
7

9
6

9
6

9
7

9
6

9
6

9
6

9
6

b
4

9
5

9
6

9
6

9
4

9
4

9
5

9
4

9
4

9
5

b
5

9
5

9
6

9
5

9
5

9
6

9
5

9
7

9
5

9
7

Coverage(%)

b
6

9
4

9
6

9
6

9
5

9
6

9
5

9
5

9
4

9
6

b
7

9
5

9
5

9
5

9
6

9
7

9
5

9
6

9
5

9
6

b
8

9
6

9
6

9
5

9
6

9
7

9
7

9
6

9
7

9
7

1
5

%
M

A
R

b
1

9
7

9
8

9
4

9
7

9
6

9
8

9
6

9
8

9
6

b
2

9
5

9
6

9
5

9
7

9
7

9
6

9
6

9
6

9
6

b
3

9
5

9
7

9
5

9
7

9
7

9
7

9
6

9
6

9
7

b
4

9
5

9
5

9
6

9
6

9
5

9
6

9
6

9
6

9
6

b
5

9
5

9
4

9
6

9
6

9
6

9
5

9
6

9
5

9
6

Coverage(%)

b
6

9
6

9
5

9
6

9
6

9
6

9
6

9
6

9
6

9
6

b
7

9
5

9
5

9
6

9
5

9
6

9
5

9
6

9
6

9
6

b
8

9
7

9
7

9
6

9
8

9
6

9
7

9
7

9
7

9
7

C
A

R
T

1
is

a
co

m
b

in
at

io
n

o
f

M
IC

E
. C

A
R

T
,
p

ri
o

r
sp

ec
ifi

ca
ti

o
n

s
v

al
u
es

(i
.e

.
a
a
¼

0
.2

5
,
b
a
¼

0
.2

5
,
k
¼

8
0
),

H
.C

A
R

T
2

is
a

co
m

b
in

at
io

n
o

f
M

IC
E

. C
A

R
T

an
d

p
ri

o
r

sp
ec

ifi
ca

ti
o

n
s

v
al

u
es

(i
.e

.

a
a
¼

0
.2

5
,b

a
¼

0
.2

5
,
k
¼

1
5

0
),

H
.C

A
R

T
3

is
a

co
m

b
in

at
io

n
o

f
M

IC
E

. C
A

R
T

an
d

p
ri

o
r

sp
ec

ifi
ca

ti
o

n
s

v
al

u
es

(i
.e

.a
a
¼

0
.2

5
,
b
a
¼

0
.2

5
,
k
¼

4
0

0
).

H
.D

E
F

1
is

a
co

m
b

in
at

io
n

o
f

M
IC

E
. D

E
F

an
d

p
ri

o
r

sp
ec

ifi
ca

ti
o

n
s

v
al

u
es

(i
.e

.a
a
¼

0
.2

5
,b

a
¼

0
.2

5
,k
¼

8
0
),

H
.D

E
F

2
.i

s
a

co
m

b
in

at
io

n
o

f
M

IC
E

. D
E

F
an

d
p

ri
o

r
sp

ec
ifi

ca
ti

o
n

s
v

al
u
es

(i
.e

.a
a
¼

0
.2

5
,b

a
¼

0
.2

5
,k
¼

1
5

0
),

H
.D

E
F

3

is
a

co
m

b
in

at
io

n
o

f
M

IC
E

. D
E

F
an

d
p
ri

o
r

sp
ec

ifi
ca

ti
o
n
s

v
al

u
es

(i
.e

.
a
a
¼

0
.2

5
,

b
a
¼

0
.2

5
,

k
¼

4
0

0
).

Journal of Official Statistics520



T
a

b
le

2
.

E
st

im
a

te
d

co
ve

ra
g

e
p

ro
b

a
b

il
it

ie
s

fo
r

se
ve

ra
l

M
I

m
et

h
o

d
s

u
n

d
er

d
if

fe
re

n
t

m
is

si
n

g
p

er
ce

n
ta

g
es

a
n

d
M

A
R

a
ss

u
m

p
ti

o
n

.
A

ll
re

su
lt

s
a

re
b

a
se

d
o

n
1

0
im

p
u
ta

ti
o

n
s.

E
st

im
a

te
s

a
re

sh
o

w
n

fo
r

ei
g

h
t

re
g

re
ss

io
n

co
ef

fi
ci

en
ts

(i
.e

.
b

1
,:
:
:,
b

8
).

B
o

ld
fi

g
u

re
s

in
d
ic

a
te

th
e

sm
a

ll
es

t
ro

o
t

m
ea

n
sq

u
a

re
er

ro
rs

a
m

o
n

g
n

in
e

M
I

m
et

h
o

d
s.

1
0

%
M

A
R

C
o

ef
.

M
IC

E
. P

M
M

M
IC

E
. C

A
R
T

M
IC

E
. D

E
F

H
.D

E
F

1
H

.C
A

R
T

1
H

.D
E

F
2

H
.C

A
R

T
2

H
.D

E
F

3
H

.C
A

R
T

3

b
1

0
.1

6
(0

.1
6

)
0

0
.1

4
(0

.1
4

)
0

0
.1

6
(0

.1
6

)
0

0
.1

5
(0

.1
5

)
0

0
.1

5
(0

.1
5

)
0

0
.1

5
(0

.1
5

)
0

0
.1

5
(0

.1
5

)
0

0
.1

5
(0

.1
5

)
0

0
.1

5
(0

.1
5

)
0

b
2

0
.1

6
(0

.1
6

)
0

0
.1

5
(0

.1
5

)
0

0
.1

6
(0

.1
5

)
0

0
.1

5
(0

.1
5

)
0

0
.1

5
(0

.1
5

)
0

0
.1

5
(0

.1
5

)
0

0
.1

5
(0

.1
5

)
0

0
.1

5
(0

.1
5

)
0

0
.1

5
(0

.1
5

)
0

b
3

0
.1

6
(0

.1
6

)
0

0
.1

5
(0

.1
5

)
0

0
.1

6
(0

.1
6

)
0

0
.1

6
(0

.1
6

)
0

0
.1

5
(0

.1
5

)
0

0
.1

6
(0

.1
6

)
0

0
.1

5
(0

.1
5

)
0

0
.1

6
(0

.1
6

)
0

0
.1

5
(0

.1
5

)
0

b
4

0
.1

6
(0

.1
6

)
0

0
.1

5
(0

.1
5

)
0

0
.1

6
(0

.1
6

)
0

0
.1

6
(0

.1
6

)
0

0
.1

6
(0

.1
6

)
0

0
.1

6
(0

.1
6

)
0

0
.1

6
(0

.1
6

)
0

0
.1

6
(0

.1
6

)
0

0
.1

6
(0

.1
6

)
0

b
5

0
.1

6
(0

.1
6

)
0

0
.1

6
(0

.1
6

)
0

0
.1

6
(0

.1
6

)
0

0
.1

6
(0

.1
5

)
0

0
.1

5
(0

.1
5

)
0

0
.1

6
(0

.1
5

)
.0

1
0

.1
5

(0
.1

5
)

0
0

.1
6

(0
.1

5
)

.0
1

0
.1

5
(0

.1
5

)
0

Coverage(%)

b
6

0
.0

8
(0

.0
8

)
0

0
.0

8
(0

.0
8

)
0

0
.0

8
(0

.0
8

)
0

0
.0

8
(0

.0
8

)
0

0
.0

8
(0

.0
8

)
0

0
.0

8
(0

.0
8

)
0

0
.0

8
(0

.0
8

)
0

0
.0

8
(0

.0
8

)
0

0
.0

8
(0

.0
8

)
0

b
7

0
.0

5
(0

.0
5

)
0

0
.0

4
(0

.0
4

)
0

0
.0

4
(0

.0
4

)
0

0
.0

4
(0

.0
4

)
0

0
.0

4
(0

.0
4

)
0

0
.0

5
(0

.0
5

)
0

0
.0

4
(0

.0
4

)
0

0
.0

5
(0

.0
4

)
.0

1
0

.0
4

(0
.0

4
)

0
b

8
0

.1
9

(0
.1

9
)

0
0

.1
7

(0
.1

7
)

0
0

.1
9

(0
.1

9
)

0
0

.1
7

(0
.1

7
)

0
0

.1
7
(0

.1
6

)
.0

1
0

.1
7

(0
.1

7
)

0
0

.1
7

(0
.1

6
)

.0
1

0
.1

7
(0

.1
7

)
0

0
.1

7
(0

.1
6

)
.0

1

1
5

%
M

A
R

b
1

0
.1

5
(0

.1
5

)
0

0
.1

4
(0

.1
4

)
0

0
.1

7
(0

.1
7

)
0

0
.1

4
(0

.1
4

)
0

0
.1

5
(0

.1
5

)
0

0
.1

4
(0

.1
4

)
0

0
.1

5
(0

.1
5

)
0

0
.1

4
(0

.1
4

)
0

0
.1

5
(0

.1
5

)
0

b
2

0
.1

6
(0

.1
6

)
0

0
.1

5
(0

.1
5

)
0

0
.1

7
(0

.1
7

)
0

0
.1

5
(0

.1
5

)
0

0
.1

5
(0

.1
5

)
0

0
.1

5
(0

.1
5

)
0

0
.1

5
(0

.1
5

)
0

0
.1

5
(0

.1
5

)
0

0
.1

5
(0

.1
5

)
0

b
3

0
.1

7
(0

.1
7

)
0

0
.1

5
(0

.1
5

)
0

0
.1

7
(0

.1
7

)
0

0
.1

5
(0

.1
5

)
0

0
.1

6
(0

.1
6

)
0

0
.1

5
(0

.1
5

)
0

0
.1

6
(0

.1
6

)
0

0
.1

6
(0

.1
5

)
0

0
.1

6
(0

.1
6

)
0

b
4

0
.1

6
(0

.1
6

)
0

0
.1

6
(0

.1
6

)
0

0
.1

6
(0

.1
6

)
0

0
.1

6
(0

.1
5

)
.0

1
0

.1
6

(0
.1

6
)

0
0

.1
6

(0
.1

5
)

.0
1

0
.1

6
(0

.1
6

)
0

0
.1

6
(0

.1
5

)
.0

1
0

.1
6

(0
.1

6
)

0
b

5
0

.1
7

(0
.1

7
)

0
0

.1
7

(0
.1

6
)

0
0

.1
7

(0
.1

7
)

0
0

.1
6

(0
.1

6
)

0
0

.1
6

(0
.1

6
)

0
0

.1
7

(0
.1

6
)

.0
1

0
.1

6
(0

.1
6

)
0

0
.1

7
(0

.1
6

)
.0

1
0

.1
6

(0
.1

6
)

0

Coverage(%)

b
6

0
.0

8
(0

.0
8

)
0

0
.0

8
(0

.0
8

)
0

0
.0

8
(0

.0
8

)
0

0
.0

8
(0

.0
8

)
0

0
.0

8
(0

.0
8

)
0

0
.0

8
(0

.0
8

)
0

0
.0

8
(0

.0
8

)
0

0
.0

8
(0

.0
8

)
0

0
.0

8
(0

.0
8

)
0

b
7

0
.0

5
(0

.0
5

)
0

0
.0

5
(0

.0
5

)
0

0
.0

5
(0

.0
5

)
0

0
.0

5
(0

.0
5

)
0

0
.0

5
(0

.0
5

)
0

0
.0

5
(0

.0
5

)
0

0
.0

5
(0

.0
5

)
0

0
.0

5
(0

.0
5

)
0

0
.0

5
(0

.0
5

)
0

b
8

0
.2

0
(0

.2
0

)
0

0
.1

8
(0

.1
7

)
0

0
.2

1
(0

.2
1

)
0

0
.1

7
(0

.1
7

)
0

0
.1

8
(0

.1
7

)
.0

1
0

.1
8

(0
.1

7
)

.0
1

0
.1

8
(0

.1
7

)
.0

1
0

.1
8

(0
.1

7
)

.0
1

0
.1

8
(0

.1
7

)
.0

1

C
A

R
T

1
is

a
co

m
b

in
at

io
n

o
f

M
IC

E
. C

A
R

T
,
p

ri
o

r
sp

ec
ifi

ca
ti

o
n

s
v

al
u
es

(i
.e

.
a
a
¼

0
.2

5
,
b
a
¼

0
.2

5
,
k
¼

8
0
),

H
.C

A
R

T
2

is
a

co
m

b
in

at
io

n
o

f
M

IC
E

. C
A

R
T

an
d

p
ri

o
r

sp
ec

ifi
ca

ti
o

n
s

v
al

u
es

(i
.e

.

a
a
¼

0
.2

5
,b

a
¼

0
.2

5
,
k
¼

1
5

0
),

H
.C

A
R

T
3

is
a

co
m

b
in

at
io

n
o

f
M

IC
E

. C
A

R
T

an
d

p
ri

o
r

sp
ec

ifi
ca

ti
o

n
s

v
al

u
es

(i
.e

.a
a
¼

0
.2

5
,
b
a
¼

0
.2

5
,
k
¼

4
0

0
).

H
.D

E
F

1
is

a
co

m
b

in
at

io
n

o
f

M
IC

E
. D

E
F

an
d

p
ri

o
r

sp
ec

ifi
ca

ti
o

n
s

v
al

u
es

(i
.e

.a
a
¼

0
.2

5
,b

a
¼

0
.2

5
,k
¼

8
0
),

H
.D

E
F

2
.i

s
a

co
m

b
in

at
io

n
o

f
M

IC
E

. D
E

F
an

d
p

ri
o

r
sp

ec
ifi

ca
ti

o
n

s
v

al
u
es

(i
.e

.a
a
¼

0
.2

5
,b

a
¼

0
.2

5
,k
¼

1
5

0
),

H
.D

E
F

3

is
a

co
m

b
in

at
io

n
o

f
M

IC
E

. D
E

F
an

d
p
ri

o
r

sp
ec

ifi
ca

ti
o
n
s

v
al

u
es

(i
.e

.
a
a
¼

0
.2

5
,

b
a
¼

0
.2

5
,

k
¼

4
0

0
).

Razzak and Heumann: Hybrid Multiple Imputation 521



6. Survey Data Example

The Bureau of Statistics Punjab has conducted the Multiple Indicator Cluster Survey

(MICS) Punjab, 2014 Pakistan in collaboration with the United Nations Children’s Fund

(UNICEF). The MICS 2014 women’s data comprises more than 200 background

characteristics (e.g., demographics, age, education, motherhood and recent births) on

61,286 observations from 36 districts of Punjab. Face to face interviews with household

members are conducted to collect data. The documents related to MICS Punjab consisting

of the final report, key findings, survey plan, list of indicators and questionnaires can be

found on the MICS website (www.http://bos.gop.pk). The health benefits of breastfeeding

are no longer in doubt (WHO 2003). Breastfeeding does not only contribute to the early

development of a child but is also crucial for the wellbeing of the mother as well. MICS

2014 women’s data can be used to determine the effect of various factors affecting the

feeding practices in Punjab. This analysis could be very helpful in decision making

policies regarding women and child health.

6.1. Imputation of MICS Background Variables

Since MICS data for women contains data with a possibly complex dependency structure,

the application of the package “mice” can become problematic due to various limitations,

for example non-convergence of the Gibbs sampler in special cases, large amount of

missing values, tedious work required for specification of imputation models and

interaction terms in presence of large data bases with hundreds of variables and

multicollinearity problems (Van Buuren and Oudshoorn 1999). It was not possible to have

a proper comparison of the proposed and existing MI approaches in such cases. Therefore,

it was decided to select a subset containing seven continuous and 37 categorical variables.

The selection of variables is made according to the evidence from demographical and

behavioral risk factors effecting inclination towards breastfeeding. Some of the selected

categorical variables, that is, district, has lots of categories (k ¼ 36), hence keeping the

analysis comparable and challenging at the same time. Among these 44 variables, five

variables have less than 14% missing values; 15 variables have between 32% to 68 %

missing values; 22 variables have between 80% to 95% missing values. Only two variables

are completely observed. The summary of all categorical and continuous variables in

survey data can be seen in the Tables S1–S2 of supplementary file respectively. All

variables are included in the imputation model. The reasons of missing observations in

MICS data are typical, that is, nonresponse, don’t know, not reached etc. For the sake of

multiple imputations, all reasons for item nonresponse are treated as MAR.

20 sampling simulations are run and M ¼ 10 completed data sets are generated for each

MI method. The binary response (Ever Breastfeed) which compromises two categories

(Yes / No) is finally modeled using a GLM analysis model depending on four categorical

variables (Mother Ever Attended School: two categories, Delivery by C Section: two

categories, Satisfaction from Health: two categories, Area: two categories) and two

continuous covariates (Age of Mother and Freq. of Mother Reads New). The R package

“VIM” (Templ et al. 2012) is utilized to explore the pattern of missing values. Figure 5

displays the proportion of missing values and the missing data pattern for the variables

used in the analysis model. The graphics of incomplete categorical variables used in
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survey data are presented in first four aggregate plots of supplementary file (see Figure S1

in online supplemental file). Aggregate plots for the continuous variables used in the

survey data can be seen in Figure S2 of supplementary file. Since there are no true values

to compare for in the survey data example, we calculated the complete case (CC) estimates

for comparison purposes (Table 3). The time taken by each MI method is shown in Table 4.

Boxplots of the pooled point estimates and standard errors for survey data are shown in

Figures 6 and 7 respectively.

6.2. Results and Discussions

Figure 5 in the survey data example displays the bar plot on the left side which shows the

proportions of missing values in the predictors. The categorical predictor “Delivery By C

Section” has the highest amount of missing values (i.e., more than 80%) followed by “Ever

Breastfeed” (about 80%), “Satisfaction From Health” (about 60%) and “Freq. of Mother
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Fig. 5. Survey data: Aggregation graphic for the variables in the analysis model.

Table 3. Survey data: complete case (CC) estimates

Variables est se

Age 0.14 0.06
Mother attended School 20.59 0.77
Freq. mother reads news 20.09 0.15
Dilevery by CSecion 0.43 0.25
Satisfaction from health 0.27 0.27
Area 0.16 0.25

The CC analysis uses only the complete cases (n ¼ 4264),

“est” and “se” denote the point estimates and standard errors

of the coefficients of the GLM, respectively
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Reads New” (about 40%). The amount of missing values is rather small for “Mother Ever

Attended School” and “Age” (i.e., less than 20%). The categorical predictor “Area” has no

missing values. An aggregation plot on the right side shows all existing combinations of

missing (red) and observed (blue) values. The frequencies of different combinations can

be seen by a small bar plot on the right side (Templ et al. 2012). The aggregation plot

reveals that if missing values occur in the variable “Ever Breastfeed”, they most often also

occur in the variables “Satisfaction From Health”, “Freq. of Mother Reads New” and

“Delivery By C Section”. We note, that the standard errors for most of the coefficients are

relatively smaller to the (absolute) point estimates under all MI methods (see Figures 6–7).

We noticed that point estimates in MICE.CART are nearer to the estimates in complete case

analysis for most of the cases as compared to the hybrid methods (see Table 3). In the

survey data example, the HMI methods tend to show smaller pooled standard errors for

most of the co-variates as compared to the MICE methods. We see, that when HMI MI

methods are applied to the survey data set, the pooled standard errors are comparatively

smaller for all covariates as compared to the “MICE.DEF” MI method and smaller for most

the covariates (i.e., “Age”, “Freq. of Mother Reads New”, “Delivery By C Section” and

“Area”) as compared to the “MICE.PMM” MI method. The “H.CART” method tends to

show smaller pooled standard errors for the covariates (i.e., “Age” and “Delivery by C

Section”) as compared to its counterparts. For the rest of the co-variates, the differences

are also not so high, which suggests a reasonable performance compared to MICE, see

Figures 6–7. The computational burden is significantly reduced for most of the settings

using the proposed HMI methods, see Table 4.

7. Concluding Remarks

Investigation of optimal strategies for fitting MI on the classical regression techniques in

the presence of a large number of variables is questionable. There is no general agreement

on especially to the how many variables should the imputation model have. According to

Van Buuren (2012) the number of predictors should be as large as possible for the

generally accepted principle for imputation. On the other hand Hardt et al. (2012)

Table 4. Survey data: Time taken by

various MI methods

Method Time

MICE.CART 4.20d
MICE.PMM 3.52d
MICE.DEF 3.14d
H.DEF1 1.70d
H.CART1 1.62d
H.DEF2 1.68d
H.CART2 1.64d
H.DEF3 1.82d
H.CART3 1.77d

Note: Time ¼ the time to complete 10

multiple imputation by variants of MI

across 20 simulations and d ¼ days
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recommends that the small number of variables will be sufficient to successfully

implement MI in the R package “mice”. It is worth noting that the performance of the

regression techniques is known to deteriorate as number of variables increases and it is

generally not feasible to include all variables in imputation models. Little (2018) focuses

on the flexibility of MICE by referring a large list of references to the application of

chained equation MI in real applications. As opposed to Little (2018), we claim that high-

dimensional real applications in these references are limited. Many of the references
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Fig. 6. Survey data: Boxplots of pooled point estimates for variables in the analysis model. Within each plot the

methods are: MICEDEF (default), MICECART (classification and regression trees), MICEPMM (predictive mean

matching), CART1 (combination of prior specifications values (i.e., aa ¼ 0.25, ba ¼ 0.25, k 80) and CART),

H.CART2 (combination of prior specifications values (i.e., aa ¼ 0.25, ba ¼ 0.25, k 150 and CART), H.CART3

(combination of prior specifications values (i.e., aa ¼ 0.25, ba ¼ 0.25, k 400) and CART), H.DEF1 (combination

of and prior specifications values (i.e., aa ¼ 0.25, ba ¼ 0.25, k 80) and default), H.DEF2 (combination of prior

specifications values (i.e., aa ¼ 0.25, ba ¼ 0.25, k 150) and default), H.DEF3 (combination of prior

specifications values (i.e., aa ¼ 0.25, ba ¼ 0.25, k 400) and default).
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applied MICE to epidemiological real data in context of large sample sizes rather than a

large number of mixed type variables. Hybrid MI techniques open the door to conduct

imputation in the high-dimensional setting by combining various properties of existing MI

approaches, the main advantages of the proposed methodology are as follows: (1) it is

flexible and can be implemented to mixed type high-dimensional data, (2) it does not rely

on heuristic rules of thumb for predictor selection and (3) it is fast.
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Fig. 7. Survey data: Boxplots of the pooled standard errors for variables in the analysis model. Within each plot

the methods are: MICEDEF (default), MICECART (classification and regression trees), MICEPMM (predictive mean

matching), CART1 (combination of prior specifications values (i.e., aa ¼ 0.25, ba ¼ 0.25, k 80) and CART),

H.CART2 (combination of prior specifications values (i.e., aa ¼ 0.25, ba ¼ 0.25, k 150 and CART), H.CART3

(combination of prior specifications values (i.e., aa ¼ 0.25, ba ¼ 0.25, k 400) and CART), H.DEF1 (combination

of and prior specifications values (i.e., aa ¼ 0.25, ba ¼ 0.25, k 80) and default), H.DEF2 (combination of prior

specifications values (i.e., aa ¼ 0.25, ba ¼ 0.25, k 150) and default), H.DEF3 (combination of prior

specifications values (i.e., aa ¼ 0.25, ba ¼ 0.25, k 400) and default).
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Various issues concerning the implementation of the hybrid imputation models need

further research. For example, CART method resulted similar or improved performance

over hybrid models in most our all applications in simulation studies where we have

considered moderate rates of missingness. Whereas, for real world applications where we

have high missing rates, hybrid models performed relatively better than CART which

gives an indication that we may need even higher rates of missingness than we used in our

simulations to get improved performance over CART. Moreover for better performance it

may be that we need an even larger number of imputations than we used in our application.

Also HMI methods eliminate the use of predictor selection beforehand. Further

comparisons can be made for data with ordinal nature and more categories with large

values of prior specifications. Our proposed method is also computationally inexpensive

and requires less time even when performed with a large number of iterations. However, of

note, one limitation of the proposed method is that, the information available in the

continuous variables is not used for imputing the categorical variables. Therefore, it is too

early to make any final conclusion until unless experiments with diversity of settings are

conducted.
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