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Estimation and inference of domain means subject to 

qualitative constraints 

Cristian Oliva-Aviles, Mary C. Meyer and Jean D. Opsomer1 

Abstract 

In many large-scale surveys, estimates are produced for numerous small domains defined by cross-

classifications of demographic, geographic and other variables. Even though the overall sample size of such 

surveys might be very large, samples sizes for domains are sometimes too small for reliable estimation. We 

propose an improved estimation approach that is applicable when “natural” or qualitative relationships (such as 

orderings or other inequality constraints) can be formulated for the domain means at the population level. We 

stay within a design-based inferential framework but impose constraints representing these relationships on the 

sample-based estimates. The resulting constrained domain estimator is shown to be design consistent and 

asymptotically normally distributed as long as the constraints are asymptotically satisfied at the population 

level. The estimator and its associated variance estimator are readily implemented in practice. The applicability 

of the method is illustrated on data from the 2015 U.S. National Survey of College Graduates. 
 

Key Words: Design-based estimation; Monotone estimation; National Survey of College Graduates. 

 

 

1  Introduction 
 

For many large-scale surveys, a goal is to produce estimates for a large number of domains, many of 

which might have small sample size. These domains are typically created by cross-classifying categorical 

variables such as demographic, geographic or other similar characteristics of interest. For instance, the 

U.S. Current Population Survey releases estimates for domains defined by sex, age, race and/or 

educational attainment. Similarly, the U.S. American Community Survey produces detailed estimates by 

sex, age, race/ethnicity for different levels of geography (depending on the release). In another example 

we will discuss further below, the U.S. National Survey of College Graduates is interested in estimates 

defined by crossing level and field of degree, occupation and gender. Depending on the survey program, 

such “granular” estimates are often as important as the higher-level or population estimates. 

However, although the overall sample size of such surveys might be very large, samples sizes for 

numerous domains are often too small for reliable estimates. One possible approach to avoid this problem 

could be to aggregate small domains into bigger scales so that more reliable direct estimators can be 

produced for those scales, leading to the generation of more aggregated information than the actual 

desired scale. An alternative to producing small domain estimates could be changing from a design-based 

to a model-based estimation methodology such as small area models. While that is certainly a statistically 

valid approach for creating precise estimates at small scales, it is labor-intensive and sensitive to potential 

model misspecification. It also replaces the sampling error by model error, so that the mode of inference 

changes. For those reasons, statistical agencies prefer to stay within the design-based approach, which 

offers robustness and also allows to stay with the standard mode of inference for surveys. 

mailto:jopsomer@mac.com
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In this paper, we present an estimation approach that is applicable when “natural” or qualitative 

relationships are expected to hold among the domain means at the population level. These relationships 

can be used to stabilize the sample domain estimates, while staying within the design-based mode of 

estimation and inference. The type of relationships we are considering here lead to inequalities among 

population domain means. For instance, certain job types might be expected to receive better salaries than 

others, or individuals with graduate degrees in a given discipline are expected to have higher salaries than 

those without graduate degrees in that discipline. However, given that small domains tend to produce 

estimates with high variability, such expected population-level relationships are often violated at the 

sample level. While such violations should be expected by data users due to statistical variability, they 

might lead them to question the overall reliability of the survey, by producing “absurd” estimates. 

There is a large literature in survey statistics related to calibrating survey estimates, see e.g. Särndal, 

Swensson and Wretman (1992) for an overview. While these estimators also rely on constraints, there are 

important differences, including the fact that the constraints are equality constraints and that they are 

applied to the survey weights, not the estimates themselves. While we do not explore this here, it would be 

possible to combine calibration and constrained estimation, since the latter could use calibrated domain 

estimates as the starting point for constructing constrained domain estimates. In the model-based setting, 

Rueda and Lombardía (2012) adapted methods in small area estimation for the case of monotonically 

ordered domain means. 

Recently, Wu, Meyer and Opsomer (2016) proposed a domain mean estimation methodology that 

relies on the assumption of monotone population domain means along a single domain-defining 

categorical variable (e.g., age classes). By combining the monotonicity information of domain means and 

design-based estimators in the estimation stage, they proposed a constrained estimator that respects the 

monotone assumption. Such an estimator was shown to improve precision and variability of domain mean 

estimates in comparison with direct estimators, given that the assumption of monotonicity is reasonable. 

We generalize this work here by allowing a much larger class of constraints between domain means, 

applicable to the multi-dimensional setting. Many other types of constraints beyond monotonicity may be 

expected to hold between population domain means in real surveys, especially in the presence of domains 

defined by the cross-classifications of many categorical variables. In general, any set of linear inequality 

constraints can be represented through a constraint matrix, where each row defines a constraint and each 

column a domain mean. For illustration of a constraint matrix, suppose the variable of interest is the 

annual average salary of faculty in land-grant universities of a certain size. Further, consider domains 

generated from the cross-classification of the variables job position 1( ;x  1 = Untenured and 2 = Tenured) 

and three specific departments 2( ;x  1 = Anthropology, 2 = English and 3 = Engineering). Under the 

assumptions that, on average within a discipline, tenured faculty have higher salaries than untenured 

faculty; and that, within tenured and untenured, Engineering faculty members are expected to have higher 

salaries than those in either the Anthropology or English departments, then we can express the 

corresponding restrictions as,  
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( )11 21 12 22 13 23= , , , , , ,     μ
T

 with ij  representing the mean of the domain that corresponds to 

1 =x i  and 2 = ;x j 0  being the zero vector, and the inequality being element-wise. This paper 

describes a new constrained estimator for population domain means that respect constraints that can be 

expressed with matrix inequalities of the form given in (1.1). By combining design-based domain mean 

estimators with these shape constraints, we propose a broadly applicable estimator that improves precision 

and variability of the most common direct estimators. 

The remainder of the paper is organized as follows. In Section 2 we formally introduce the constrained 

estimator and propose a linearization-based method for variance estimation. This section also contains 

some scenarios of interest where shape constraints can naturally arise for survey data. Section 3 states the 

main theoretical properties of the constrained estimator. The necessary assumptions used in these 

theoretical derivations are also stated in this section. Proofs of main theorems and auxiliary lemmas are 

provided in the Appendix. Section 4 shows through simulations that the constrained estimator improves 

domain mean estimation and variability in comparison with the unconstrained estimator, even when the 

assumed shape holds only approximately at the population level. Section 5 demonstrates the advantages of 

the proposed methodology on real survey data through an application to the 2015 National Survey of 

College Graduates. A few concluding remarks are provided in Section 6. 

 
2  Constrained estimation and inference for domain means 

 
2.1  Notation and preliminaries 
 

Let NU  be the set of elements in a population of size .N  Consider a sample Ns  of size Nn  that is 

drawn from NU  using a probability sampling design ( ) .Np   Denote ( ), = Prk N Nk s   and , =kl N  

( )Pr ,N Nk s l s   as the first and second order inclusion probabilities, respectively. Assume that 

, ,> 0, > 0k N kl N   for , .Nk l U  To simplify notation, we will adopt the usual convention of 

suppressing the subscript N  unless it is needed for clarity. Denote  
= 1

D

d d
U  as a domain partition of ,U  

where D  is the number of domains and each dU  is of size .dN  Also, let ds  be the subset of size dn  of s  

that belongs to .dU  
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For any study variable ,y ( )
1

= , ,
DU U Uy yy

T
 denotes the vector of population domain means, 

where  

 = .d

D

kk U

U

d

y
y

N


 (2.1) 

We will focus on the Hájek estimator of ,
DUy  given by  

 =
ˆ
d

d

k kk s

s

d

y
y

N




 (2.2) 

with ˆ = 1 ,
d

d kk s
N 

  and let sy  to be the vector of estimators. The results will also hold for the 

Horvitz-Thompson estimator with minor modifications, but it will not be explicitly addressed in what 

follows. 

 
2.2  Proposed estimator 
 

Assume there is information available regarding relationships between the population domain means 

that can be expressed with m  constraints through a m D  irreducible constraint matrix .A  A matrix A  

is irreducible if none of its rows is a positive linear combination of other rows, and if the origin is also not 

a positive linear combination of its rows (Meyer, 1999). In practical terms, this means that there are no 

redundant constraints in .A  To take advantage of sy  to obtain an estimator that respects these shape 

constraints, we propose the constrained estimator ( )
1

= , ,
Ds s s θ

T
 to be the unique vector that 

solves the following constrained weighted least squares problem,  

 ( ) ( )min subject to ;s s s− − 
θ

y θ W y θ Aθ 0
T

 (2.3) 

where sW  is the diagonal matrix with elements 1 2
ˆ ˆ ˆ ˆ ˆ ˆ, , , ,DN N N N N N  and 

=1
ˆ ˆ= .

D

dd
N N  The 

constrained problem in equation (2.3) can be alternatively written as finding the unique vector s  that 

solves  

 
2

min subject to ,s s− z A 0


   (2.4) 

where 1 2= ,s s sz W y 1 2= ,sW θ  and 1 2= .s s
−A AW  The transformed constrained matrix sA  is also 

irreducible if A  is, and it depends on the sample although A  does not. The solution s  is the projection 

of sz  onto the set of vectors   that satisfy the condition .s A 0  This set is a polyhedral convex cone, 

called the constraint cone s  defined by ;sA  specifically,  

  = : .D
s s  A 0 R  (2.5) 

We use the notation ( )= ,s s s z  where ( ) u S  stands for the projection of u  onto the set ,S  

i.e., the closest vector in S  to .u  
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Projections onto such cones are well understood; see Rockafellar (1970) or Meyer (1999) for details. In 

terms of this work, the main results from cone projection theory are summarized here. The cone can be 

characterized by a set of edges generating the cone; that is, a vector is in the cone if and only if it is a 

linear combination of the edges with non-negative coefficients. (Picture a pyramid with vertex at the 

origin, extending out indefinitely.) Subsets of the edges define the faces of the cone, and the projection of 

sz  onto the cone lands on one of the faces. Once the edges defining this face are determined, the 

projection can be characterized as an ordinary least-squares projection onto the linear space spanned by 

this subset of edges. This property is crucial for both the algorithm for projection and for inference, 

because the projection onto the cone can be characterized as a linear projection. 

For this work, we will project sz  onto the polar cone 0
s  (Rockafellar, 1970, page 121), defined as  

  0 = : , 0, ,D
s s     ρ ρ  R  (2.6) 

where , = .u v u vT  That is, the polar cone is the set of vectors that form obtuse angles with all vectors 

in .s  The polar cone is analogous to the orthogonal space in linear least-squares projections, in that the 

projection of a vector onto the polar cone is the residual of its projection onto the constraint cone, and 

vice-versa. Meyer (1999) showed that the negative rows of an irreducible matrix are the edges 

(generators) of the polar cone, leading to the following characterization of the polar cone in (2.6):  

 0

=1

= : = , 0, = 1, 2, , ,
j

m
D

s j s j
j

a a j m
 

   
 

ρ ρ γR  (2.7) 

where 
1 2
, , ,

ms s sγ γ γ  are the rows of .s−A  Robertson, Wright and Dykstra (1988, page 17) 

established necessary and sufficient conditions for a vector s  to be the projection of sz  onto .s  That 

is, s s   solves the constrained problem in (2.4) if and only if  

 , = 0, and , 0, .s s s s s s− −    z z       

Moreover, the above conditions can be adapted to the polar cone as follows: the vector 0
s s ρ  

minimizes 
2

s −z ρ  over 0
s  if and only if  

 , = 0, and , 0 for = 1, 2, , .
js s s s s s j m− − z ρ ρ z ρ γ  (2.8) 

The conditions in (2.8) can be used to show that the projection of sz  onto the polar cone 0
s  coincides 

with the projection onto the linear space generated by the edges 
jsγ  such that , = 0.

js s s−z ρ γ  This 

set of edges could be empty, meaning that the projection onto 0
s  is equal to the projection onto the zero 

vector. In that case, the unconstrained minimum satisfies all the constraints. Alternatively, this set of edges 

might not be unique. To formalize these ideas, denote  , = :
js J sV j Jγ  for any  1, 2, , .J m  

Define the set ,s JF  as,  
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 , = : = , 0, ,
j

D
s J j s j

j J

a a j J


 
   

 
ρ ρ γF R  (2.9) 

where , =s  0F  by convention. (Technically, this set is the closure of a face of the cone.) That is, ,s JF  

is a closed polyhedral sub-cone of 0
s  that starts at the origin and is defined by the edges in , .s JV  Further, 

let ( ),s JVL  be the linear space generated by the vectors in , .s JV  It is shown in Meyer (1999) that 

projecting onto 0
s  is equivalent to projecting onto ( ), ,s JVL  for an appropriate set .J  If the rows of the 

constraint matrix A  are linearly independent, then the minimal set J  is unique; otherwise there may be 

more than one J  that defines the linear space. In the latter case, however, the projection is still unique 

(see Theorem 1 of the next section). 

Wu et al. (2016) considered the solution to (2.3), in the special case of a monotone relationship 

between domains defined along a single categorical variable. In that case, the solution is equivalent to that 

of the Pooled Adjacent Violator Algorithm (PAVA), which has an explicit expression in terms of a 

pooling of neighboring domains. The theoretical results in Wu et al. (2016) were obtained using that 

explicit expression, and hence do not apply to the more general setting considered here. Nevertheless, as 

was the case with the simple 6-domain example in Section 1 and in many situations of practical interest, 

the specific matrix A  will often correspond to a multivariate partial ordering of the domain means. Under 

partial ordering, the solution to the constrained minimization in (2.3) is again equivalent to a pooling of 

neighboring domains in such a way that the partial order constraints are respected. See for instance 

Robertson et al. (1988, page 23) for an explicit expression of this pooled domain expression under partial 

ordering, including the definition of the pooling. However, unlike PAVA in the univariate case, this does 

not lead to a practical general computational algorithm. In the current paper, we will allow for arbitrary 

irreducible constraint matrix ,A  which will include partial ordering and univariate monotonicity as 

special cases. 

One possible general approach to computing s  is based on the edges of the constraint cone .s  

However, the number of edges can be considerably larger than the number of constraints for large values 

of ,D  especially for the case when there are more constraints than domains (see Meyer, 1999). Moreover, 

given the lack of a general closed form solution for the edges of s  (when > ),m D  the edges need to 

be computed numerically in that case. This task is computationally demanding, which makes this 

approach an inefficient way to compute .s  A more efficient algorithm based on computing the projection 

onto the polar cone has been developed: the Cone Projection Algorithm (CPA) (Meyer, 2013). This 

alternative approach takes advantage of the easy-to-find edges 
jsγ  of the polar cone, the conditions in 

(2.8), and the fact that ( ) ( )0= .s s s s s  −  z z z  The latter fact is a key component on the proofs 

of the main theoretical results shown in this paper. CPA has been implemented in the software R into the 

coneproj package. See Liao and Meyer (2014) for further details. 

For the situations in which the constraints correspond to complete or partial ordering, the CPA solution 

once again corresponds to domain pooling. After this, the domain mean estimates can be explicitly 
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computed as sample-based domain means for the CPA-determined pooled domains. This greatly facilitates 

incorporating this methodology into survey estimation practice, because the pooled domain definitions can 

be readily communicated as part of the instructions accompanying a survey dataset release, and the 

estimates can be calculated without requiring access to specialized software. 

 
2.3  Variance estimation of 

ds
  

 

Estimating appropriately the variance of 
ds  is a complicated task, derived from the fact that the 

projection of sz  onto 0
s  (or onto )s  might not always land on the same linear space ( ),s JVL  for 

different samples .s  To better understand that, we define sG  as the set of all subsets  1, 2, ,J m  

such that ( ) ( )( )0
, ,= ,s s s s J s JV   z z L F  as defined in (2.9). As noted earlier, there could be 

different sets 1J  and 2J  such that the projection onto the polar cone 0
s  is equal to projecting onto either 

( )
1,s JVL  or ( )

2, .s JVL  However, independently of which set is chosen, the projection sρ  is unique. 

To illustrate the above point, consider the following restrictions when there are only 3 domains: the 

first domain mean is expected to be at the most equal to the second domain mean, and the third domain 

mean is expected to be at least equal to the average of the first two domain means. Hence, the constraint 

matrix A  can be expressed as  

 
1 1 0

= .
1 1 2

− 
 
− − 

A   

Suppose it is observed that 
1 2 3

= < .s s sy y y  The transformed vector sz  has elements of the form  

 
1 1 2 2 3 3

1 2 3
ˆ ˆ ˆ

= , = , = .
ˆ ˆ ˆs s s s s s

N N N
z y z y z y

N N N
  

In this setting, it is straightforward to see that ( )0 = .s s z 0  In the process of computing it using the 

general algorithm, we project sz  onto each of the 22 = 4  linear spaces generated by the polar cone 

edges  

 
1 2

1 2 1 2 3

ˆ ˆ ˆ ˆ ˆ
= , , 0 , = , , 2 .

ˆ ˆ ˆ ˆ ˆs s

N N N N N

N N N N N

   
− −   

   
   

γ γ

T T

  

Hence, it can be seen that the conditions ( ) ( )( )0
, ,= =s s s s J s JV   z 0 z L F  are satisfied only 

for =J   and  = 1 ,J  which implies that   = , 1 .s G  Moreover, note that ,sV   and  , 1sV  do 

not span the same linear spaces, which is what complicates the variance estimation of .
ds  In the model-

based case with continuous variables, the set of sample vectors where these scenarios occur has measure 

zero. However, they cannot be excluded in the design-based setting. 

We propose a variance estimator for 
ds  that relies on the sets in sG  and is based on linearization 

methods. Consider any fixed set ,sJ  G  and let ,s JP  be the projection matrix corresponding to the 

linear space ( ), ,s JVL  where ,s P  is the matrix of zeros by convention. By the selection of ,J  then sρ  
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can be expressed as , ,s J sP z  which implies that 
sθ  can be written as 1 2 1 2

, ,= ,s J s s s J s s
−−θ y W P W y  

where we add the subscript J  in 
sθ  to be aware that the expression depends on the chosen .J  

Now, observe that ,s Jθ  is a smooth non-linear function of the ˆ ’sdt  and the ˆ ’s,dN  where 
d̂t  is the 

Horvitz-Thompson estimator of = .
d

d kk U
t y

  Therefore, treating J  as fixed, we obtain the 

asymptotic variance of ,ds J  via Taylor linearization (Särndal et al., 1992, page 175) as  

 ( ),AV = ,
d

k l

s J kl
k U l U k l

u u


  

  (2.10) 

where = ,kl kl k l   −  and  

 
=1 =1

= 1 1 for = 1, 2, , ,
i i

D D

k i k k U i k U
i i

u y k N  +    

with 1A  being the indicator variable for the event ,A  and  

 
( ) ( ) ( ) ( )1 1 1 1 1 1 1 1

, ,

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ, , , , , , , , , , , , , , , , , , , ,
= ; = .

ˆˆ
d d

D D D D D D D D

s J s J

i it t N N t t N N t t N N t t N N

i i
t N

 
 

= =

 

 
  

In addition, a consistent estimator of the asymptotic variance in (2.10) is given by  

 ( ),

ˆ ˆ
ˆ = ,

d

kl k l

s J
k s l s kl k l

u u
V 

   


  (2.11) 

where  

 
=1 =1

ˆˆˆ = 1 1 for = 1, 2, , ,
i i

D D

k i k k s i k s
i i

u y k N  +    

with ˆˆ ,i i   obtained from ,i i   by substituting the appropriate Horvitz-Thompson estimators for each 

population total. We propose the estimator in (2.11), computed at the J  obtained in the sample, as a 

variance estimator of .
ds  

To provide a clear example of the proposed variance estimator for ,
ds  consider the setting presented 

at the beginning of this subsection. Since   = , 1 ,s G  it might be of interest to compute the 

estimated variance of ,ds J  for  = 1J  and certain .d  The matrix  , 1sP  is the projection matrix 

corresponding to the linear space generated by 
1
,sγ  given by  

   ( )

2 1 2

1

1 2 1 2 1, 1

ˆ ˆ ˆ 0

ˆ ˆ ˆ ˆ ˆ= 0 .

0 0 0

s

N N N

N N N N N
−

 −
 
 + −
 
 
 

P   
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Note that  , 1sP  is a function of ( )
1 2 3

ˆ ˆ ˆ, ,N N N  because 
1sγ  is. Using the above equation,  , 1sθ  can be 

simplified to the following expression,  

 

       ( ) 1 2 1 2

31 2 3

1 2 1 2

, 1 , 1 , 1 , 1

1 2 1 2

1 2 1 2 3

1 2 1 2 3

ˆ ˆ ˆ ˆ
= , , = , ,

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ
= , , .

ˆ ˆ ˆ ˆ ˆ

s s s s

ss s s s

N y N y N y N y
y

N N N N

t t t t t

N N N N N

  
 + +
  + + 

+ + 
 

+ + 

θ

T

T

T

  

Therefore, given a domain ,d  the ’s  and ’s  can be derived by taking the partial derivatives of  , 1ds  

with respect to the ˆ’st  and ˆ ’s,N  and evaluating such derivatives at the ’st  and ’s.N  For = 2,d  that is,  

 

( )

1 2 3

1 2

1 2

1 2 32

1 2

1
= = , = 0,

= = , = 0.

N N

t t

N N

  

  

+

+
−

+

  

The ˆ’s  and ˆ’s  are computed by substituting Horvitz-Thompson estimators in the above equations, 

which are then used to evaluate ˆ
ku  for each k  in the sample .s  Finally, the proposed variance estimator 

in (2.11) can be computed. 

 
3  Properties of the constrained estimator 

 
3.1  Assumptions 
 

To derive our theoretical results, we make assumptions on the asymptotic behavior of the population 

NU  and the sampling design :Np  
 

A1. The number of domains D  is fixed.  

A2. 1lim sup < ,
r

N kk U
N y−

→ 
  for = 1, 2.r  

A3. For = 1, , ,d D  there exist constants d  and > 0dr  such that ( )1 2
, =

dU N dy O N −−  

and ( )1 2
, ,d N dN N r O N −− =  for all .d  

A4. The sample size Nn  is non-random and satisfies 0 < < 1.limN Nn N→  In addition, there 

exists , 0 < < 1,  such that ,d N Nn n D  for all d  and all .N  

A5. For all ,N > 0,min
Nk U k   *

, > 0,min
Nk l U kl    and  

                
, :

< .lim sup max
N

N kl
k l U k lN

n
 → 

    
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A6. The Horvitz-Thompson estimator ˆ
Nsx  of the 2D -dimensional vector of population means 

( )1
1 1= , , , , ,

NU D DN t t N N−x
T
 satisfies  

                ( ) ( ) ( )
1 2

2
ˆ ˆvar , ,

N N N N

d

p s s U D

−
→−x x x 0 IN   

and  

                ( ) ( ) ( )1ˆ ˆ ˆvar var = ;
N N Ns p s p No n −−x x   

where qI  denotes the identity matrix of dimension ,q  the design variance-covariance 

matrix ( )ˆvar
N Np sx  is positive definite, and ( )ˆ ˆvar

Nsx  is the Horvitz-Thompson estimator 

of var .
Np  

 

Assumption A1 establishes that the number of domains remains constant as the population size 

changes. The condition in Assumption A2 is made to ensure design consistency of Horvitz-Thompson 

estimators at the population and domain levels. In particular, note that this condition is satisfied when the 

variable y  is bounded, which can be naturally assumed for many types of survey variables. Assumption 

A3 guarantees that the population domain means and sizes converge to the limiting values d  and ,dr  

respectively. Alternatively, the   values can be thought as superpopulation expectations for a distribution 

that generates the population elements ky  as independent draws. In fact, our theoretical results depend on 

whether the assumed constraints hold for these superpopulation expectations and not for the population 

domain means. Although this might seem to be inappropriate given our interest on using constraints at the 

population level, Assumption A3 ensures that the shape of the domain means would be reasonably close to 

the shape of the superpopulation means. Assumption A4 states that the sample size in each domain cannot 

be smaller than a fraction of the ratio ,n D  which would be obtained by dividing equally the sample size 

over all domains. This assumption aims to ensure that the moments of smooth functions of the 1
d̂N t−  and 

the 1 ˆ
dN N−  are bounded. Also, it assumes that the sample size is non-random. This can be adapted to a 

random sample size by imposing certain conditions on the expected sample size ( ) .p nE  Assumption A5 

establishes non-zero lower bounds for both first and second order inclusion probabilities, and states that 

the design covariances kl  must converge to zero at least as fast as 1.n −  Assumption A6 ensures 

asymptotic normality for ˆ ,
Nsx  which is needed to maintain normality properties on non-linear estimators 

that are expressed as smooth functions of ˆ .
Nsx  It is also used to establish consistency conditions on the 

variance-covariance estimator. For specific designs, asymptotic normality results are available in the 

literature, including the classical result by Hájek (1960) for Poisson sampling and simple random 

sampling without replacement. Additional central limit theorems for stratified sampling include Krewski 

and Rao (1981), who considered stratified unequal probability samples with replacement, Bickel and 

Freedman (1984), who considered stratified simple random sampling without replacement, and Breidt, 

Opsomer and Sanchez-Borrego (2016), who considered general unequal probability designs, with or 

without replacement. 
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3.2  Main results 
 

We derive the theoretical properties of the constrained estimator by focusing on the projection onto 

0
s  instead of .s  Recall that the edges of the polar cone 0

s  are simply the m  rows of ,s−A  denoted 

by ;
jsγ  and that ,sρ  the projection onto 0 ,s  can be described by the sets .sJ  G  Being able to 

characterize the property that sJ  G  in terms of the vectors in ,s JV  allow us to obtain theoretical 

convergence rates, which are used to develop inference properties of the constrained estimator. When the 

set sJ  G  produces a set of linear independent vectors , ,s JV  then it is straightforward that sρ  can be 

written as ( )
1

, , , , ,= ,s J s s J s J s J s J s

−
P z A A A A zT T  where ,s JA  denotes the matrix formed by the rows of 

sA  in positions .J  Hence, based on the conditions in (2.8), sJ  G  if and only if  

 ( )
1

, , , ,, 0 for , and
js s J s s s J s J s J sj J

−
−   z P z γ A A A z 0T  (3.1) 

in this case, where the latter condition assures that ( )( ), , .s s J s JV z L F  However, it is possible that 

the set sJ  G  produces a set of linearly dependent vectors , .s JV  In that case, Theorem 1 below 

guarantees that it is always possible to find a subset *J J  such that *,s J
V  is a linearly independent set 

that spans the same linear space as ,s JV  and that satisfies * .sJ  G  Thus, analogous conditions as in 

(3.1) can be established using *J  instead of .J  

 

Theorem 1. Let A  be a m D  irreducible matrix with rows .j−γ  Let 0  be its corresponding polar 

cone. For any set  1, 2, , ,J m  define  = : .J jV j Jγ  Further, denote 
JF  to be the 

subcone of 0  generated by the edges given by the set .J  For a vector ,z  define its set G  to be formed 

by all sets  1, 2, ,J m  such that ( ) ( )( )0 = .J JV   z z L F  Suppose J  is a non-

empty set such that JV  is a linearly dependent set and .J  .G  Then, there exists *J J  such that 

*J
V  is a linearly independent set, ( ) ( )* = ,JJ

V VL L  and * .J  .G  
 

All above concepts that have been defined at the sample level can be analogously defined at the 

superpopulation level. In particular, let G  be the set of all subsets  1, ,J m  such that 

( ) ( )( )0
, ,= ,J JV       z z L F  where ,z 0 ,

, JV  and , JF  are the analogous versions of 

,sz 0 ,s ,s JV  and ,s JF  obtained by substituting sy  and sW  by ( )1= , , D μ  and =W  

( )1 2diag , , , .Dr r r  Necessary and sufficient conditions as in (2.8) can be analogously established to 

characterize the vector ρ  to be the projection onto 0 .  

Recall the set sG  could vary for different samples. Also, note that highly variable small samples are 

likely to choose sets sJ  G  that are not chosen in the “asymptotically correct” .G  However, as the 

sample size increases, these incorrect choices are less likely to occur since the sample domain means get 

closer to the limiting population domain means. This idea is made more precise in Theorem 2, which 

states that sets that are not in G  have an asymptotically negligible probability of being chosen in the 

sample. 

 

Theorem 2. Consider any set  1, 2, ,J m  such that .J  .G  Then, ( ) ( )1= .sP J O n− G  
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Theorem 3 below shows the asymptotic normality of the constrained estimator and justifies the use of 

the linearization-based variance estimator for the observed projection (or pooling, in the case of partial 

ordering) for asymptotic inference for the finite population domain mean. This generalizes Theorem 2 of 

Wu et al. (2016), where only monotone restrictions were considered. Note the presence of a bias term B  

in the mean of the asymptotic distribution. This undesirable situation occurs when there is more than one 

set J  G  such that their corresponding edges in , JV  span different linear spaces, or equivalently, that 

the projection onto the polar cone 0
  belongs to the intersection of those different linear spaces. 

However, when the constraints hold strictly, i.e., > ,Aμ 0  the vector z  is strictly inside the constraint 

cone ,  and in this case there is no set J    such that ( )( ), = .JV  z 0L  Thus, in this case, the 

bias term vanishes. 

 

Theorem 3. Suppose that μ  satisfies .Aμ 0  Consider any set J  such that .sJ  .G  Then  

 ( ) ( ) ( )
1 2

,
ˆ , 1 ,

d d ds J s UV y B 
−

→−
L N   

for any = 1, 2, , ,d D  where ( )= n
N

B O  is a bias term that vanishes when > .Aμ 0  
 

Theorem 3 relies on the fact that the assumed shape constraints hold for the vector of limiting domain 

means μ  instead of for the vector of population domain means .Uy  In the next section, we show through 

simulations that the constrained estimator improves both estimation and variability when the population 

domains are approximately close to the assumed shape, in comparison with unconstrained estimators. 

 
4  Performance of constrained estimator 

 
4.1  Simulations 
 

We run simulation experiments to measure the performance of the proposed methodology to carry out 

estimation and inference of population domain means. Given a pair of natural numbers 1D  and 2 ,D  we 

generate the limiting domain means d  from the monotone bivariate function ( )1 2,x x  given by  

 ( )
( )

( )

2 2

1 2 1 1

2 2

4 exp 0.5 2
, = 1 4 .

1 exp 0.5 2

x D
x x x D

x D


+
+ +

+ +
  

The d  are created by evaluating ( )1 2,x x  at every combination of 1 1= 1, 2, ,x D  and 2 = 1,x  

22, , ,D  producing a total number of domains equal to 1 2= .D D D  We set 1 = 6D  and 2 = 4.D  

Note that although the function ( )1 2,x x  produces a matrix rather than a vector of domain means, it can 

be vectorized in order to represent the limiting domain means as the vector .μ  For each domain ,d  we 

generate its = =dN N D 400 elements by adding independent and normally distributed noise with 

mean 0 and variance 2  to the .d  Once the elements of the population have been simulated, then the 
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population domain means Uy  are computed. The population domain means used for simulations when 

= 1  are displayed in Figure 4.1. Observe that these domain means are reasonably (not strictly) 

monotone with respect to 1x  and 2 .x  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.1 Population domain means for simulations when = 1.  

 

 
Samples are drawn from a stratified sampling design without replacement, with 4 strata that cut across 

the D  domains. Strata are constructed using an auxiliary variable   that is correlated with the variable of 

interest .y  The vector   is created by adding independent standard normally distributed noise to ,d D  

for each element in domain .d  Then, stratum membership is assigned by sorting the vector   and creating 

4 blocks of 4 =N 2,400 elements each based on the sorted .  To make the design informative, we 

sample =n 480 elements divided across strata in (60, 120, 120, 180). This probability sampling design is 

similar to the one described in Wu et al. (2016). 

We consider 4 different scenarios obtained from the combination of two possible types of shape 

constraints and = 1  or 2. The first type of constraints assumes the population domain means are 

monotone increasing with respect to both 1x  and 2x  (double monotone), while the second type of 

constraints assumes monotonicity only with respect to 1x  (only 1x  monotone). For a fixed ,  the exact 
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same population is considered for the two possible types of constraints. For each scenario, the 

unconstrained sy  and constrained 
sθ  estimates are computed along with their linearization-based 

variance estimates (see (2.11)). Constrained estimates are computed using the CPA, and their variance 

estimates are computed by relying on the sample-selected set .sJ  G  In addition, 95% Wald confidence 

intervals based on the normal distribution are constructed for both estimators. 

To measure the precision of sy  and 
sθ  as estimators of the population domain means ,Uy  we 

consider the Weighted Mean Squared Error (WMSE) given by  

 ( ) ( ) ( )WMSE = ,s s U U s Uy y − − φ φ W φ
T

E   

where sφ  could be either the unconstrained or constrained estimator and UW  is the diagonal matrix with 

elements ,dN N = 1, , .d D  The WMSE values are approximated by simulations as  

 
( )( ) ( )( )

=1

1
,

B
b b

s U U s U
bB

− − φ y W φ y
T

  

where B  is the number of simulations, and 
( )b
sφ  is the estimator for the thb  sample. 

Simulation results are summarized in Figures 4.2 - 4.5, and are based on =R 10,000 replications. 

These display the 24 domains divided in groups of 6, where each group is assumed to be monotone. For 

the double monotone scenario, similar plots with groups of 4 monotone domains each can be also 

pictured. As illustrated in the fits of a single sample in these figures, it can be seen that the constrained 

estimates can be exactly equal to the unconstrained estimates for some domains. In those cases, their 

variance estimates are also equal. Overall, confidence intervals for the constrained estimator tend to be 

tighter in comparison with those for the unconstrained estimator. On average, the constrained estimator 

behaves slightly differently than the population domain means, due to the latter’s non-strict monotonicity. 

As an advantage, the percentiles for the constrained estimator are narrower, demonstrating that the 

distribution of the proposed estimator is tighter than the distribution of the unconstrained estimator. For 

small values of ,  the unconstrained estimates are more likely to satisfy the assumed restrictions, which 

leads to small improvements on the constrained estimator over the unconstrained. In contrast, shape 

assumptions tend to be more severely violated in unconstrained estimates for larger values of ,  allowing 

the proposed estimator to gain much more efficiency on these cases. This latter property can be noted by 

observing that the constrained estimator percentile band gets farther away from the unconstrained 

estimator band as   increases. 

In terms of variability, the constrained estimator has the smaller variance of the two estimators. 

Interestingly, it gets overestimated by its corresponding linearization-based variance estimate. In contrast, 

the variance estimate of the unconstrained estimator underestimates the true variance, which is a known 

and often observed drawback of linearization variances. Despite this difference, confidence intervals for 

both estimators demonstrate a similar good coverage rate when = 1,  meanwhile such coverage gets 

slightly improved by the constrained estimator when = 2.  
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Figure 4.2 Plots of simulation results for the unconstrained and constrained estimators under the double 

monotone scenario with = 1 . In the “Mean and percentiles” plot, 
dU

y  is hidden by 
ds

y . 
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Figure 4.3 Plots of simulation results for the unconstrained and constrained estimators under the only 
1

x  

monotone scenario with = 1 . In the “Mean and percentiles” plot, 
dU

y  is hidden by 
ds

y . 
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Figure 4.4 Plots of simulation results for the unconstrained and constrained estimators under the double 

monotone scenario with = 2 . In the “Mean and percentiles” plot, 
dU

y  is hidden by 
ds

y . 
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Figure 4.5 Plots of simulation results for the unconstrained and constrained estimators under the only 
1

x  

monotone scenario with = 2 . In the “Mean and percentiles” plot, 
dU

y  is hidden by 
ds

y . 
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Table 4.1 shows that the constrained estimator is more precise on average than the unconstrained 

estimator. The precision of the constrained estimator improves when the monotonicity with respect to the 

two variables is assumed, instead of only with respect to 1.x  This is expected here, because the underlying 

surface is indeed doubly monotone, so that the estimator benefits from imposing the stronger constraint. 

 
Table 4.1 

Empirical WMSE values 
 

 Unconstrained Only 
1

x  monotone Double monotone 

= 1   0.0593   0.0362   0.0298  

= 2   0.2384   0.1175   0.0832  

 
4.2  Replication methods for variance estimation 
 

In practice, it is common for large-scale surveys to use replication-based methods for variance 

estimation. Examples of such surveys are the last editions of the NHANES and the National Survey of 

College Graduates (NSCG). To study the performance of replication-based variance estimators under the 

proposed constrained methodology, we carry out simulation studies based on the delete-a-group Jackknife 

(DAGJK) variance estimator proposed by Kott (2001). 

We perform replication-based simulation experiments using the setting described in Section 4.1. To 

compute the DAGJK variance estimator, we first randomly create G  equal-sized groups within each of 

the 4 strata. Then, for each replicate = 1, , ,g G  we delete the thg  group in each of the strata, adjust 

the remaining weights by ( ) ( )1
= ,g G

k kG
w w

−
 where 1= ;k kw  −  and compute the replicate constrained 

estimate ( )g
sθ  using the adjusted weights. The DAGJK variance estimate of ,

ds ( )JK
ˆ ,

dsV   is obtained by 

calculating  

 ( ) ( )( )
2

JK
=1

1
ˆ = .

d d d

G
g

s s s
g

G
V

G
  

−
−   

A replication-based variance estimator of 
dsy  is obtained by substituting 

sθ  by .sy  

Our simulations consider only the double monotone scenario, with = 1 or 2, and =G 10, 20 or 30. 

The sample size is set to either =n 480 or =n 960, where the latter case is obtained by doubling the 

original sample size in each strata. Figures 4.6 - 4.9 contain simulation results based on 10,000 

replications. In contrast to the behavior of the linearization-based variance estimates, it can be seen that 

the DAGJK estimates tend to overestimate the variance of the unconstrained estimator, as is often 

observed in practice. Both replication-based and linearization-based variance estimates of the constrained 

estimator overestimate the true variance, so that the results are more consistent across variance estimation 

methods. As the number of groups G  increases, DAGJK estimates tend to be greater, especially for small 

values of .  Such increments on DAGJK estimates have the direct consequence of increasing the 

coverage rate as G  gets larger. In addition, the coverage rate for both estimators is improved (closer to 
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0.95) when the sample size is increased. Overall, it appears that replication variance estimation is a 

practical alternative to linearization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 Variance estimation (top) and coverage rate (bottom) simulation results based on linearization 

and DAGJK methods for the unconstrained (left) and constrained (right) estimators, under the 

double monotone scenario with =
N

n 480 and = 1. 
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Figure 4.7 Variance estimation (top) and coverage rate (bottom) simulation results based on linearization 

and DAGJK methods for the unconstrained (left) and constrained (right) estimators, under the 

double monotone scenario with =
N

n 480 and = 2. 
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Figure 4.8 Variance estimation (top) and coverage rate (bottom) simulation results based on linearization 

and DAGJK methods for the unconstrained (left) and constrained (right) estimators, under the 

double monotone scenario with =
N

n 960 and = 1. 
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Figure 4.9 Variance estimation (top) and coverage rate (bottom) simulation results based on linearization 

and DAGJK methods for the unconstrained (left) and constrained (right) estimators, under the 

double monotone scenario with =
N

n 960 and = 2. 
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5  Application of constrained estimator to NSCG 
 

To demonstrate the utility of the proposed constrained methodology in real survey data, we consider 

the 2015 National Survey of College Graduates (NSCG), which is sponsored by the National Center for 

Science and Engineering Statistics (NCSES) within the National Science Foundation, and is conducted by 

the U.S. Census Bureau. The 2015 NSCG data and documentation are available on the NSF website 

(www.nsf.gov/statistics/srvygrads). The purpose of the NSCG is to provide data on the characteristics of 

U.S. college graduates, with particular focus on those in the science and engineering workforce. 

We consider the total earned income before deductions in previous year (2014) to be the variable of 

interest (denoted by EARN). To avoid the high skewness of this variable, a log transformation is 

performed. Moreover, we take into account only those who reported a positive earning amount. A total of 

76,389 observations was considered in our analysis. In addition, 252 domains are considered. These are 

determined by the cross-classification of four predictor variables. These variables and their assumed 

constraints are as follows: 
 

• Time since highest degree. This variable defines the year of award of highest degree. The period 

from 2015 to 1959 is divided into 9 categories, where the first 8 categories (denoted by 1-8) are 

of 6 years each, and the last category (denoted by 9) is of 9 years. Constraint: given the other 

predictors, the average total earned income increases with respect to the time since highest 

degree from year category 1 to 7. No assumption is made with respect to categories 8 and 9, as 

those people are likely to be retired (at least 42 years since their highest degree).  

• Field of study. This nominal variable defines the field of study for highest degree, based on a 

major group categorization provided within the 2015 NSCG. The 7 categories for this variable 

are: 

1: Computer and mathematical sciences,  

2: Biological, agricultural and environmental life sciences,  

3: Physical and related sciences,  

4: Social and related sciences,  

5: Engineering,  

6: S&E-related fields,  

7: Non-S&E fields.  

Constraint: given the other predictors, the average total earned income for each of the fields 2 

and 4 is less than for the fields 1, 3 and 5. No assumption is made with respect to categories 6 

and 7, as they cover many fields for which a reasonable order restriction might be complicated 

to impose. 

• Postgrad. This binary variable defines whether the highest degree is at the postgraduate level 

(YES) or at the Bachelor’s level (NO). Constraint: given the other predictors, the average total 

earned income is higher for those with postgraduate studies. 
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• Supervise. This binary variable defines whether supervising others is a responsibility in the 

principal job (YES) or not (NO). Constraint: given the other predictors, the average total earned 

income is higher for those who supervise others in their principal job.  

 

Figures 5.1 and 5.2 show the unconstrained and constrained estimates for each of the four groups 

obtained from the cross-classification of the Postgrad and Supervise binary variables. Note that since the 

assumed constraints constitute a partial ordering, then the constrained estimates are obtained by pooling 

domains. These figures show that the constrained estimator has a smoother behavior than the 

unconstrained. Moreover, it tends to correct for the some of the “spikes” produced by the unconstrained 

estimator, which are usually a consequence of a very small sample size. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.1 Unconstrained (left) and constrained (right) domain mean estimates for the 2015 NSCG data, 

given that Postgrad = NO is fixed. 

(a) Supervise = YES (unconstrained).                                  (b) Supervise = YES (constrained). 

 (c) Supervise = NO (unconstrained).                                    (d) Supervise = NO (constrained). 
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Figure 5.2 Unconstrained (left) and constrained (right) domain mean estimates for the 2015 NSCG data, 

given that Postgrad = YES is fixed. 
 

Standard errors for both unconstrained and constrained estimates are computed using the 2015 NSCG 

replicate weights, which are based on successive difference replication method (Opsomer, Breidt, White 

and Li, 2016). The replicate weights and adjustment factors were provided by the Program Director of the 

Human Resources Statistics Program from the NCSES and are available upon request. 

Figure 5.3 displays the ratio of these estimates for each of the 252 domains. In the vast majority of 

cases, the standard error estimates of the proposed estimator are lower than those for the unconstrained 

estimator, with improvements of as much as 7 times smaller. However, there are some cases where the 

opposite behavior occurs. These are investigated in Figure 5.4, which shows plots of two different domain 

(a) Supervise = YES (unconstrained).                                  (b) Supervise = YES (constrained). 

 (c) Supervise = NO (unconstrained).                                    (d) Supervise = NO (constrained). 
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“slices”: one with respect to the Time since highest degree variable and other with respect to Field 

category. These plots include unconstrained and constrained estimates, Wald confidence intervals and 

sample sizes. Each of these two slices contain one of the two domains that can be easily identified in 

Figure 5.3 to have the smallest ratios. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Ratio of the estimated standard errors of unconstrained estimates over those for constrained 

estimates for the 2015 NSCG data. 

 
The first of these domains is displayed in Figure 5.4(a) and 5.4(c), indexed by 5. The unconstrained 

estimates for the domains indexed by 5 and 6 violate the monotonicity assumption, and thus, are being 

pooled to obtain the constrained estimates (additional pooling with domains in other “slices” is also 

occurring, but not visible in this plot). As can be seen in Figure 5.4(a), the confidence interval is narrower 

for the unconstrained estimates. However, the estimated standard error of the unconstrained estimator of 

domain 6 is very large, and pooling with domain 5 greatly stabilizes both the estimator and the estimated 

standard errors for that domain. Figure 5.4(c) shows that the samples sizes on these domains are 

reasonably large at approximately 100 observations each, implying that the noticed monotonicity violation 

might be in fact true in the population. The final decision on the balance between the improved stability of 

some domains with the potential for bias due to incorrect constraints would need to be carefully evaluated. 

The second domain where unconstrained estimates produce smaller standard deviation estimates is 

displayed in Figure 5.4(b) and 5.4(d), indexed by 1. Here, this domain is being pooled with its neighboring 

domain to obtain the constrained estimate. However, as these two domains have very low sample sizes, 

the unconstrained estimates might be considered as unreliable, so that their estimated standard errors are 

R
a
ti

o
 

     Domain 

                 Ratio 

Ratio < 1 
Ratio ≥ 1 



172 Oliva-Aviles et al.: Estimation and inference of domain means subject to qualitative constraints 

 

 
Statistics Canada, Catalogue No. 12-001-X 

not a good indication of their precision. The constrained estimator appears to be preferred here because of 

the increase in the effective cell size. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 Unconstrained and constrained estimates with Wald confidence intervals (top) and sample sizes 

(bottom) for the 2015 NSCG data, given that Postgrad = YES and Supervise = YES. 
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6  Conclusions 
 

We have proposed a general methodology to estimate domain means which makes it possible 

incorporate natural restrictions between domains into design-based estimation. It was shown to improve 

estimation and inference, especially on small domains. As this new methodology covers a broad range of 

shape assumptions beyond univariate monotonicity, it aims to jointly take advantage of several types of 

qualitative information that arises naturally for survey data. Additional shapes that may be imposed 

include convexity or log-concavity; the latter might be imposed if the population domain means are 

believed to be increasing and then decreasing over a set of domains. Future work by the authors will 

include a “relaxed monotone” estimator to be used when the population domain means are “roughly” 

monotone in some sequence of domains. For the relaxed monotone estimator, a type of moving average 

over the domains is used to implement the constraints, allowing the estimator to have some departures 

from monotonicity. 

We also proposed a design-based variance estimation method of the estimator, which only requires 

knowledge of the sample-specific constraint set. Replication-based methods are shown to behave 

similarly. From the computational side, the estimator is based on the Cone Projection Algorithm which is 

efficiently implemented in the package coneproj and freely available. In the important practical case of 

partial ordering, the constrained estimator is equivalent to a pooling of neighboring domains, so that once 

the constraint set is identified by CPA, subsequent computations of estimators and variance estimators can 

be done directly using traditional design-based estimation for the relevant domains. 

An important practical issue, as illustrated in the NSCG analysis in Section 5, is the determination of 

when the imposed constraint might not be valid for a particular survey application. Recently, Oliva-

Aviles, Meyer and Opsomer (2019) proposed the sample-based Cone Information Criterion as a criterion 

to choose between the constrained and unconstrained fits for the estimator of Wu et al. (2016). That 

approach is generalizable to the setting considered here, and is currently under development. 

 
Appendix 
 

The first part of this appendix contains lemmas used to obtain the theoretical results discussed in this 

paper. Proofs of the theorems are included at the end of this appendix. 
 

Lemma 1. If a non-zero vector can be written as the positive linear combination of linearly dependent 

non-zero vectors, then it can be expressed as the positive linear combination of a linearly independent 

subset of these.  
 

Proof. Let v  be a non-zero vector such that it can be written as 
=1

=
k

i ii
av  where 1 2, , , k  

are non-zero vectors and > 0ia  for = 1, 2, , .i k  If this set of vectors is not linearly independent, 

then there exist constants 1 , , ,kb b  not all zero, such that 
=1

= ,
k

i ii
b 0  and for any ,c  R =v  

( )
=1

.
k

i i ii
a cb+  Let : 0= ;min

ii b i ic a b−  then 0i ia cb+   for = 1, ,i k  but for at least 
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one ,i  = 0.i ia cb+  Then we have written v  as a positive linear combination of a proper subset of the 

vectors. If this subset is still linearly dependent, the process can be repeated. 
 

Lemma 2. If A  is a m D  irreducible matrix and B  is a D D  nonsingular matrix, then =A AB  

is also irreducible.  
 

Proof. Suppose =A c 0T  for some ,mc R .c 0  Then =B A c 0T T  implies that =A c 0T  by 

the non-singularity of .B  Because A  is irreducible, we must have ,=c 0  so the origin is not a positive 

linear combination of rows of .A  Next, suppose that one of the rows of A  is a positive linear combination 

of other rows of .A  This means we can write = ,A b 0T  where = 1jb −  for some  1, ,j m  

and 0,ib  .i j  But =A b 0T  implies that =B A b 0T T  implies that =A b 0T  by the non-

singularity of .B  We can’t have =A b 0T  for this ,b  so we can’t have a row of A  is a positive linear 

combination of other rows of .A  Therefore, A  is irreducible. 
 

Lemma 3. Let A  be a m D  matrix. Also, let 1S  and 2S  be D D  diagonal matrices with nonzero 

elements on the diagonal. For any set  1, 2, , ,J m  denote ,i JV  to be the set of vectors in rows 

J  of = ,i iA AS = 1, 2.i  Then, for any * ,J J  

 ( ) ( ) ( ) ( )* *1, 2,1, 2,
= = .J JJ J

V V V VL L L L   

 

Proof. Let , = ,i J J iA A S = 1, 2;i  where JA  denotes the submatrix of A  that contains the rows in 

positions .J  First, assume that ( ) ( )* 1,1,
= .JJ

V VL L  Since * ,J J  it is straightforward to see that 

( ) ( )* 2,2,
.JJ

V VL L  Now, consider any ( )2, JVv L  so that 2, 2= =J Jv A a S A aT T  for some 

vector .a  Then, we have ( )1
1 2 1 1,= .J JV− S S v S A a LT  By assumption, there exists a vector b  such 

that 1
1 2 =−S S v *1 .

J
S A bT  Therefore, ( )* *2 2,

= .
J J

Vv S A b LT  Thus, ( ) ( )*2, 2,
.J J

V VL L  

Analogously, it follows that ( ) ( )* 2,2,
= JJ

V VL L  implies ( ) ( )* 1,1,
= .JJ

V VL L  
 

Lemma 4. Under Assumptions A1-A5, the following statements hold: 

(i) The 1
d̂N t−  are uniformly bounded.  

(ii) The 1 ˆ
dN N−  are uniformly bounded above and uniformly bounded away from zero.  

(iii) var ( ) ( )1 1ˆ =dN t O n− −  and var ( ) ( )1 1ˆ = .dN N O n− −  

(iv) ( ) ( )
21 1ˆ =d d dN t r O n− − − E  and ( ) ( )

2
1 1ˆ = .d dN N r O n− − − E  

 

Proof.  

(i) Note that  

                
ˆ

= d
k k kk s k Ud

y yt

N N N





 


 
  

which does not depend on ,s  and is bounded independently of N  by Assumption A2.  
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(ii) From Assumptions A4 and A5, note that  

                1 1 1 1
ˆ

= 1 ,
d

d d

k d
k s

n n N
N N N

DN N N


  − − − −



      

where both lower and upper bounds do not depend on ,s  and are bounded for all N  by 

Assumptions A1 and A4.  

(iii) Note that  

                ( ) ( )
2

1 1

2 , :

ˆvar = var max
d

d
d

kk U

d k k kl
k l U k lk s

y n
n N t n N y n

N N




− −

 

 
 +  

 


   

which is bounded by Assumptions A2, A4 and A5. Setting 1ky   and following an 

analogous argument, it can be shown that ( ) ( )1 ˆvar = 1 .dn N N O−  

(iv) Since  

                ( ) ( )
2

21 1ˆ ˆ= var ,
d

d

d d d d U d d

N
N t r N t y r

N
 − −  

 − + −  
 

E   

Assumption A3 and (iii) lead to the desired conclusion. Analogously, we find  

                ( ) ( )
2

1 1ˆ = .d dN N r O n− − −
 

E   

 

Proof of Theorem 1. First, suppose that ( ) ( )( )0 = = .JV  z z 0L  In that case, any subset 

*J J  such that JV  is linearly independent will satisfy ( )( )* *= .
J J

V z 0L F  Hence, it is 

enough to choose *J J  such that *J
V  is linearly independent and spans ( ) .JVL  Now, suppose that 

( )0 .  z 0  Since ( ) ( )( )0 = ,J JV   z z L F ( )( )JV z L  can be written as the positive 

linear combination of vectors ,jγ .j J  Moreover, ( )( ) , = 0J jV− z z γL  for .j J  From 

Lemma 1, there exists 0J J  such that 
0JV  is linearly independent and ( )( )JV z L  can be written 

as a positive linear combination of the vectors in 
0
,JV  which implies that ( )( )

0
.J JV z L F  In 

addition, since ( )( ) , = 0J jV−z z γL  for 0 ,j J ( )( ) ( )( )
0

= .J JV V z zL L  Thus, ( )0 = z  

( )( )
0

.JV z L  If ( ) ( )
0

=J JV VL L  then *
0=J J  satifies all required conditions. Now, assume that 

( ) ( )
0

.J JV VL L  The fact that ( )( ) ( )( )
0

=J JV V z zL L  implies that ( )( )
1

=JV z L  

( )( )
0JV z L  for any set 1J  such that 0 1 .J J J   Further, since ( )( )

0 0J JV z L F  then 

( )( )
1 1

.J JV z L F  Thus, it is enough to choose the set *J  such that *
0J J J   and *J

V  is a 

linearly independent set that spans ( ) .JVL  
 

Proof of Theorem 2. To prove this theorem, we start with a set J  G  and find necessary conditions for 

such set to belong to .sG  These necessary conditions, expressed as inequalities in terms of smooth and 

continuous functions of the ˆ
dN N  and the ˆ ,dt N  are then used to bound the probability of interest. 
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Finally, we use Theorem 5.4.3 in Fuller (1996) to show that this probability converges to zero with a rate 

of ( )1 .O n−  

Let ,A , JA  and 
d

γ  be the analogous versions of ,sA ,s JA  and 
dsγ  obtained by substituting sy  

and sW  by μ  and ,W  respectively. Lemma 2 ensures that both sA  and A  are irreducible since A  is. 

First, suppose   G  and let = .J   Then, from conditions in (2.8), s  G  if and only if 

, 0
js s z γ  for = 1, 2, , .j m  In contrast, suppose that , 0

j  z γ  for = 1, 2, , .j m  

Hence, ,  G  which contradicts our choice of .J  Therefore, there exists 0j  such that 

0

, > 0.
j z γ  Then, we have  

 

( ) ( ) ( )

( )

0 0 0 0

0 0

0

0 0

0

2

2

2

0 , = , , ,

, ,
= 1

,

1
, ,

,

j j j j

j j

j

j j

j

s s s s s

s s

s s

P P P

P

   

 

 

 

 

    − 

 − 
   
    

  −
  

z γ z γ z γ z γ

z γ z γ

z γ

z γ z γ
z γ

G

E

  

where the last inequality is obtained by an application of Markov’s inequality (see for example Casella 

and Berger (2002), Section 3.6.1). We show now that the expected value in the last term is ( )1 .O n−  Note 

that the expression inside of the expected value in the above inequality is a function of vector 

( )1 1 1 1
1 1

ˆ ˆˆ ˆˆ = , , , , , .s D DN t N t N N N N− − − −x
T

 Let ( )
1f   be such a function (which does not depend 

on ),N  and denote ( )1 1 1= , , , , , .D D Dr r r r  x  To apply Theorem 5.4.3 in Fuller (1996) with 

= 1, = 2s  and ( )1 2= ,Na O n−  first we need to show that the following conditions are satisfied: 

(a) ( ) ( )
2 1ˆ = .s O n

− −
 

x xE  

(b) 1f  is uniformly bounded in a closed and bounded sphere ..S  

(c) ( ) ( )1 2,

1

i if x  is continuous in x  over ,.S  where  

                ( ) ( ) ( )1

0

1

, ,

1 0 1 =
= .r

i i r

r

i i

x x

f f


 
x x

x x   

(d) x  is an interior point of ..S  

(e) There is a finite number K  such that  

                ( ) ( )1 2,

1 for all ,i if K x x S   

                ( ) ( ) ( )1

1 1and .if K f K  x x   

 

Condition (a) is directly met by Lemma 4 (iv). In addition, Lemma 4 (i)-(ii) guarantees that there exist a 

constant > 1M  such that 1
d̂N t M−   and 1 1 ˆ .dM N N M− −   Hence, there exists a closed and 

bounded sphere S  that it is contained within these constant bounds. Moreover, from Assumption A3, we 

can conclude that , x S  so condition (d) is satisfied. To show that condition (b) is met, note that 1f  is 
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a continuous function in S  since both 1 2
sW −  and 

dsy  exist for any .x .S  Therefore, the Extreme 

Value Theorem (see Theorem 4.15 in Rudin (1976)) ensures that 1f  is uniformly bounded in ..S  

Conditions (c) and (e) are satisfied since 1f  is a continuous rational function in ,.S  implying that 1f  is 

infinitely differentiable and its derivatives are bounded in ..S  Finally, all conditions (a)-(e) are fulfilled. 

Therefore, from Theorem 5.4.3 in Fuller (1996), we can conclude that ( )  ( )1
1 = ,f O n−xE  since 1f  

and its first derivative with respect to the 1
d̂N t−  and 1 ˆ

dN N−  evaluate to zero at .x  

Now, take any J    such that ,J  G  and assume that .sJ  G  Theorem 1 guarantees that we 

can always choose a subset *J J  such that * ,sJ  G *,s J
V  is linearly independent, and ( )*,

=
s J

VL  

( ), .s JVL  Note that ( )( ) ( )* * * * *

1

, , , , ,
= .s ss J s J s J s J s J

V
−

 z A A A A zL T T  Let ( )* * * *

1

, , , ,
= .ss J s J s J s J

−
b A A A zT  

Hence, from conditions in (2.8), we have that sJ  G  implies that *,
,

s J
b 0  and * *, ,

, 0
js ss J s J

− z A b γT  

for any .j  Define ( )* * * *

1

, , , ,
=

J J J J    

−
b A A A zT  and assume that *,

,
J
b 0  and * *, ,

, 0
jJ J  

− z A b γT  

for = 1, 2, , .j m  These conditions would imply that * ,J  G  contradicting the original 

assumption that ,J  G  since ( ) ( )* ,,
= JJ

V V
L L  from Lemma 3. Therefore, either there is an 

element of *, J
b  that is strictly negative or there exists 0j  such that * *

0, ,
, > 0.

jJ J  
−z A b γT  

Hence, proving that ( ) ( )1=sP J O n− G  in any of these two scenarios will conclude the proof. 

Suppose the th
0j  element of *, J

b  is strictly negative. That is, *
0 ,

< 0,j J
e bT  where je  denotes the 

indicator vector that is 1 for entry j  and 0 otherwise. Then, we have  

 

( ) ( ) ( )

( )
( )

* * * *
0 0 0 0

* *
0 0

*
0

, , , ,

2

2 , ,

,

0 =

1
.

s j j j js J s J J J

j js J J

j J

P J P P
 





   −  −

  −
 

e b e b e b e b

e b e b
e b

G T T T T

T T

T
E

  

Denote ( )2
ˆ

sf x  to the expression inside the above expected value. An analogous argument to the one used 

for the function 1f  can be applied to the rational continuous function 2f  over ,S  to conclude that 

( )  ( )1
2

ˆ = .sf O n−xE  Note that we also used the fact that * *, ,s J s J
A A T  is an invertible matrix for any 

.x S  

Lastly, suppose there exists 0j  such that * *
0 0

, , ,
= , > 0,

jj J J   
 −z z A b γT  and denote 

0, =j
 z * *

0, ,
, .

js ss J s J
−z A b γT  Then, we have  

 

( ) ( ) ( )

( )

0 0 0 0

0 0

0

, , , ,

2

, ,2
,

0 =

1
.

s s

s

s j j j j

j j

j

P J P P
 





   

 


   − 

  − 

z z z z

z z

z

G

E
  

Denote ( )3
ˆ

sf x  to the expression inside the above expected value. An analogous argument to the one used 

for the functions 1 2,f f  is applied to conclude that ( )  ( )1
3

ˆ = .sf O n−xE  
 

Proof of Theorem 3. Take any sJ  G  and any domain .d  Note that the condition Aμ 0  implies that 

.  G  Then, we can write 
d ds Uy −  as  
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 ( ) ( ) ( )= , = , =
\

= 1 1 1 ,
d d d d d G d G d G d G

c
G G

s U s U J s J U J J s J U J J
J J

y y y y y
 

  
  

− − + − + − 
G G

  

where we used that , = .
d ds sy   Now, an unfeasible variance estimator ( ),AV

ds J  can be written as  

 ( ) ( ) ( ) ( ), = , = , =
\

AV = AV 1 AV 1 AV 1 .
d d d G G d G G

c
G G

s J s J s J J J s J J J
J J

y
 

  
  

+ + 
G G

  

Hence,  

 

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )

1 2 1 2

, =

1 2

, , =
\

1 2

, , =

1 2

=

1 2

, , , =
\

1 2

,

AV = AV 1

AV 1

AV 1

= AV 1

AV 1

AV

d d d d d d

d G d G d G

G

d G d G d G
c

G

d d

d G d G d G G

G

d G
c

G

s J s U s s U J

s J s J U J J
J

s J s J U J J

J

s s U J

s J s J U J J J
J

s J

J

y y y y

y

y

y y y









 

 

 

  

 

− −



−

 

−



−



−

 

−



− −

+ −

+ −


−



+ −

+









G

G

G

G
( )

( ) ( )

( ) ( )

, , =

1 2

, , =
\

1 2

, , =

1 2 3

1

AV 1

AV 1

= ,

d G d G G

d G d G d G

G

d G d G d G
c

G

s J U J J J

s J U J U J J
J

s J U J U J J

J

N N N

y

y

c c c







 

 

−

 

−




− 



 
+ − 

 

 
+ − 

  

+ +





G

G
  

where ,d GU J  is the population version of , .
d Gs J  A first order term Taylor expansion of ,d Gs J  and 

Assumption A6 allow to conclude that each term of the form  

 ( ) ( )
1 2

, , ,AV
d G d G d Gs J s J U J  

−
−   

converges in distribution to a standard normal distribution. Therefore, 1Nc  also converges to a standard 

normal distribution. Note that for each ,c
GJ  G  

 ( ) ( ) ( ) ( )
1 2 1 2 1 2 1 2

, , , ,AV = AV = ( ),
d G d G d d G d G ds J U J U s J U J Uy n n y O n   

− −
− −         

while ( )1
=1 =

GJ J pO n −  by Theorem 2 (since ).sJ  G  Thus, ( )1 2
3 = .N pc O n −  Now, note that 

,d GU J − ( )1 2=
dUy O N −  when \GJ  G  by Assumption A3. Hence, for any \ ,GJ  G  

 ( ) ( ) ( ) ( )
1 2 1 2 1 2

, , , ,AV = AV = ,
d G d G d d G d G ds J U J U s J U J U

n
y n n y O

N
   

− −  
− −        

 
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which implies that ( )2 = n
N N

c O  (bias term). Thus, by combining these properties of 1 ,Nc 2 Nc  and 

3 ,Nc  we conclude that  

 ( ) ( ) ( )
1 2

,AV , 1 ,
d d ds J s Uy B 

−
→−
L N   

where ( )= .n
N

B O  

Now, write the feasible variance estimator ( ),
ˆ

ds JV   as  

 ( ) ( ) ( ) ( ), = , = , =
\

ˆ ˆ ˆ ˆ= 1 1 1 .
d d d G G d G G

c
G G

s J s J s J J J s J J J
J J

V V y V V
 

  
  

+ + 
G G

  

By Assumption A6, we have that ( ) ( ) ( )1
, ,

ˆ AV =
d G d Gs J s J pV o n  −−  for any ,GJ  which implies that 

( ) ( ) ( )
1 2 1 2 1 2

, ,
ˆ AV = .

d ds J s J pV o n  −−  Hence, an application of Slutsky’s theorem allows to replace 

( )
1 2

,AV
ds J

−
 by ( )

1 2

,
ˆ .

ds JV 
−

 

To prove the last part of this theorem, just note that >Aμ 0  implies  = . G  Thus, the term 2 Nc  

does not exist and the bias term vanishes.  
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Bayesian hierarchical weighting adjustment and survey 

inference 

Yajuan Si, Rob Trangucci, Jonah Sol Gabry and Andrew Gelman1 

Abstract 

We combine weighting and Bayesian prediction in a unified approach to survey inference. The general 

principles of Bayesian analysis imply that models for survey outcomes should be conditional on all variables 

that affect the probability of inclusion. We incorporate all the variables that are used in the weighting 

adjustment under the framework of multilevel regression and poststratification, as a byproduct generating 

model-based weights after smoothing. We improve small area estimation by dealing with different complex 

issues caused by real-life applications to obtain robust inference at finer levels for subdomains of interest. We 

investigate deep interactions and introduce structured prior distributions for smoothing and stability of 

estimates. The computation is done via Stan and is implemented in the open-source R package rstanarm and 

available for public use. We evaluate the design-based properties of the Bayesian procedure. Simulation studies 

illustrate how the model-based prediction and weighting inference can outperform classical weighting. We 

apply the method to the New York Longitudinal Study of Wellbeing. The new approach generates smoothed 

weights and increases efficiency for robust finite population inference, especially for subsets of the population. 
 

Key Words: Weighting; Prediction; Multilevel regression and poststratification; Structured prior. 

 

 

1  Introduction 
 

1.1  Background 
 

Design-based and model-based approaches have long been contrasted in survey research (Little, 2004). 

The former automatically takes into account survey design, while the latter can yield robust inference for 

small sample estimation. Rao (2011) provides an appraisal of frequentist and Bayesian methods on survey 

sampling practice. Classical design-based approaches use weights to adjust the sample to the population; 

see Chen, Elliott, Haziza, Yang, Ghosh, Little, Sedransk and Thompson (2017) for a review of various 

weighted estimators for a population mean. However, classical survey weighting usually relies on many 

user-defined choices so that the process of weighting can be difficult to codify in real-world surveys 

(Gelman, 2007). The Bayesian approach for finite population inference (Ghosh and Meeden, 1997) allows 

prior information to be incorporated, when appropriate, but is subject to model misspecification. 

In the present paper we combine Bayesian prediction and weighting in a unified approach to survey 

inference, applying scalable and robust Bayesian regression models to account for complex design features 

under the framework of multilevel regression and poststratification (MRP, Gelman and Little (1997); Park, 

Gelman and Bafumi (2005); Ghitza and Gelman (2013); Si, Pillai and Gelman (2015)). MRP adjusts for 

complex design and response mechanisms and improves small area estimation (Fay and Herriot, 1979; Rao 

and Molina, 2015). We deal with different complex issues caused by real-life applications and much finer 

levels for subdomain inference of interest. Our method yields efficient and valid finite population inference, 

especially for subgroups, and constructs model-based weights after smoothing. 
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The contributions of this paper are two folded: 1) as innovative Bayesian methodology developments we 

develop a new structured prior setting to handle high-order interaction terms; and 2) to improve survey 

research and operation, we combine Bayesian prediction and weighting as a unified approach to survey 

inference, accounting for design features in the Bayesian modeling. We generalize MRP for finite population 

inferences and construct stable and calibrated model-based weights to solve the problems of classical 

weights. We disseminate the R package rstanarm implementing the proposed methods for public use, 

promoting the model-based approaches in survey research and operational practice. More importantly, the 

paper builds the groundwork to use MRP in the survey weighting adjustment and data integration, for 

example, to make inferences with nonprobability surveys. Our proposed methods offer one important and 

practical tool for designing and weighting survey samples (Valliant, Dever and Kreuter, 2018). 

 
1.2  Framework 
 

For a finite population of N  units, we denote the variable of interest as ( )1= , , Ny y y  and the 

inclusion indicator variable as ( )1= , , ,NI I I  where = 1iI  if unit i  is included in the sample and 

= 0iI  otherwise. Here, inclusion refers to selection and response. The general inference framework 

considers the joint distribution for I  and .y  Design-based inference considers the distribution of I  and 

treats y  as fixed. Under probability sampling, model-based inferences can be based on the distribution of 

y  alone given the variables that affect the inclusion mechanisms are included in the model (Royall, 1968), 

that is, under the ignorable inclusion mechanism when the distribution of I  given y  is independent of the 

distribution of y  (Rubin, 1976, 1983). 

To account for the factors that affect inclusion, classical design weights adjust for unequal probabilities 

of sampling, with subsequent weighting adjustments accounting for coverage problems and nonresponse 

during data collection or data cleaning. Classical weights are thus generated as a product of multiple 

adjustment factors: inverse probability of selection, inverse propensity score of response, and 

poststratification (also called calibration or benchmarking; Holt and Smith (1979)). Each of these 

adjustments can be approximate when the probability of selection, the probability of response, or population 

totals are estimated from data. Beyond any approximation issues, even if the inclusion model is known 

exactly, extreme values of weights will cause high variability and then inferential problems, especially when 

the weights are weakly correlated with the survey outcome variable (Rao, 1966a, b; Hájek, 1971; Särndal, 

Swensson and Wretman, 1992). When the weighting process involves poststratification or nonresponse 

adjustment ‒ where the weights themselves are random variables ‒ the variance estimation will be different 

from the cases only with fixed design weights. It is nontrivial to analytically derive a variance estimator 

under the multi-stage weighting adjustment or complex sampling design. 

In practice, the construction of survey weights requires somewhat arbitrary decisions of the selection of 

variables and interactions, pooling of weighting cells, and weight trimming. It can be unclear whether and 

how to incorporate auxiliary information (Groves and Couper, 1995). Discussion of smoothing and 

trimming in the survey weighting literature (e.g., Potter, 1988, 1990; Elliott and Little, 2000; Elliott, 2007; 
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Xia and Elliott, 2016) has focused on estimating the finite population total or mean, with less attention to 

subdomain estimates. Beaumont (2008) proposes to regress weights on the survey variables and use the 

predicted values as smoothed weights, where the direction is inspiring but tangential to the inference 

objective where good inference properties are desired for the survey variable of interest rather than the 

weights. Borrowing information on survey outcomes potentially increases efficiency and calls for a 

general framework. 

Gelman (2007) recommends regression models including as covariates any variables that affect 

selection and response, including stratification variables, clusters, and auxiliary information. Any of these 

approaches can be sensitive to the prior specification for stable estimation; this is the model-based 

counterpart to the decisions required for smoothing or trimming classical survey weights. Flexible 

prediction techniques, such as spline functions, penalized regression and tree-based models, have been 

proposed to accommodate model-assisted survey estimation (Särndal et al., 1992; Wu and Sitter, 2001; 

Breidt and Opsomer, 2017; McConville and Toth, 2018). 

Model-based and model-assisted weighting adjustment methods for finite population total estimation 

have been compared by Henry and Valliant (2012). The model-based weighting methods in the 

superpopulation perspective (Valliant, Dorfman and Royall, 2000) use predictions from regression models 

to derive case weights, where the predictions are based on hierarchical linear regression models with 

various bias corrections (Chambers, Dorfman and Wehrly, 1993; Firth and Bennett, 1998). Based on the 

finite population total estimation, model-assisted methods derive case weights mainly from calibration on 

benchmark variables (Kott, 2009) via the generalized regression estimator (GREG, Deville and Särndal 

(1992)). However, the case weights derived from regression predictions can be highly variable and even 

negative and may damage some domain estimates. Model-based approaches play a vital role in small area 

estimation but are subject to misspecification and need new developments when the number of domains is 

large and the inclusion mechanism is not simply random. 

To protect against model misspecification, Little (1983) recommends modeling differences in the 

distribution of outcomes across classes defined by differential probabilities of inclusion. Si et al. (2015) 

construct poststratification cells based on the unique values of inclusion probabilities and build 

hierarchical models to smooth cell estimates as advocated by Little (1991, 1993). 

We propose to use Bayesian hierarchical models accounting for survey design to generate weights that 

can be used in design-based inference. The inference is well calibrated and valid with good frequentist 

properties (Little, 2011). For large samples, the inference will parallel with design-based inference. For 

small samples, the hierarchical model smoothing will stabilize domain estimation and generate robust 

weighting adjustment. 

We use the intrinsic variables that are used for design weight construction, nonresponse adjustment 

and calibration, assume they are discretized, and construct poststratification cells based on the cross-

tabulation. Weights are derived through the regressing survey outcome on variables used for weighting 

given the poststratification. The inclusion of the outcome variable into weighting and poststratification can 
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avoid model misspecification and potentially increase efficiency (Fuller, 2009). Multilevel model 

estimates shrink the cell estimates towards the prediction from the regression model. The MRP framework 

combines multilevel regression and poststratification, accounts for design features in the Bayesian 

paradigm, and is then well equipped to handle complex design features. Our proposal distinguishes from 

the model-based weights in the literature by using the poststratification cell structure and improves by 

smoothing, thus avoiding negative weight values. 

Si et al. (2015) incorporate weights into MRP, increasing flexibility and efficiency comparing to the 

pseudo-likelihood approach (Pfeffermann, 1993). In the present paper we go further, starting from the 

variables that are used for weighting and constructing model-based weights as byproducts under MRP. We 

develop a novel prior specification for the regularization to handle potentially large numbers of 

poststratification cells. The prior setting allows for variable selection and keeps the hierarchical structure 

among main effects and high-order interaction terms for categorical variables. That is, if one variable is 

not predictive, then the high-order interactions involved with this variable are also likely to be not 

predictive, to facilitate model interpretation. McConville and Toth (2018) use tree-based methods to 

automatically select poststrata based on auxiliary variables that are potentially correlated with the survey 

outcome. Our proposed structured prior plays a similar role with the recursive partitioning algorithm to 

facilitate poststrata selection but improves efficiency by partial pooling. We use the smoothed weights and 

estimates that are more stable than the regression tree estimator, and the Bayesian framework propagates 

all sources of uncertainty while McConville and Toth (2019) ignore the variance for tree growing and use 

mean squared error to approximate the variance. 

We have implemented the computation in the R package rstanarm (Goodrich and Gabry, 2017). The 

fully Bayesian inference is realized via Stan (Stan Development Team, 2018, 2017), which uses 

Hamiltonian Monte Carlo sampling with adaptive path lengths (Hoffman and Gelman, 2014). Stan 

promotes robust model-based approaches by reducing the computational burden of building and testing 

new models. The rstanarm package allows for efficient Bayesian hierarchical modeling and weighting 

inference. The codes are publicly available and reproducible. Our developed computation software 

provides the accessible platform and has the potential to support the unified framework for survey 

inference. 

Section 2 introduces the motivating problem of weighting for an ongoing social science survey. We 

discuss the method in detail Section 3. Section 4 describes the statistical evaluation of model-based 

prediction and weighting inference, and demonstrate the efficiency gains in comparison with classical 

weighting. We apply the proposal to the real-life survey in Section 5. Section 6 summarizes the 

improvement and discusses further extension. 

 

2  Motivating application 
 

Our methodological research is motivated by operational weighting practice for ongoing surveys. Our 

immediate goal is to construct weights for the New York City (NYC) Longitudinal Study of Wellbeing 
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(LSW; Si and Gelman (2014); Wimer, Garfinkel, Gelblum, Lasala, Phillips, Si, Teitler and Waldfogel 

(2014)), a survey organized by the Columbia University Population Research Center, aiming to provide 

assessments of income poverty, material hardship, and child and family wellbeing of city residents. 

We use the LSW as an example to illustrate practical weighting issues and our proposed improvement, 

with the understanding that similar concerns arise in other surveys. The survey includes a phone sample 

based on random digit dialing and an in-person respondent-driven sample of beneficiaries from Robin 

Hood philanthropic services and their acquaintances. We focus on the phone survey here as an illustration. 

The LSW phone survey interviews 2,002 NYC adult residents, including 500 cell phone calls and 1,502 

landline telephone calls, where half of the landline samples are from low-income areas defined by zipcode 

information. The collected baseline samples are followed up every three months. We match the samples to 

the 2011 American Community Survey (ACS) records for NYC. The discrepancies are mainly caused by 

the oversampling of the low-income neighborhoods and nonresponse. 

The baseline weighting process (Si and Gelman, 2014) adjusts for unequal probability of selection, 

coverage bias, and nonresponse. Classical weights are products of estimated inverse probability of 

inclusion and raking ratios (Deville, Särndal and Sautory, 1993). However, practitioners have to make 

arbitrary or subjective choices on the selection and values of weighting factors. For example, to construct 

weights for individual adults, we have to weight up respondents from large households, as just one adult 

per sampled household is included in the sample. Gelman and Little (1998) recommend the square root of 

the ratio of household sizes to family sizes for this weighting adjustment because using household sizes as 

weights (for example, ACS Weighting Method, 2014) tend to overcorrect in telephone surveys. The raking 

operation procedure in practice adjusts for socio-demographic factors without tailoring for particular 

surveys. 

The survey organizers are interested in the aspects of life quality of city residents, such as the 

percentage of children who live under poverty and material hardship. Thus, it is important to get accurate 

estimates for subpopulations. We would like to develop an objective procedure and let the collected 

survey data determine the weighting process. The basic principle is to adjust for all variables that could 

affect the selection and response into weighting. Ideally, we expect that variables used for weighting 

should include phone availability (number of landline/cell phones and duration with interrupted service), 

family structure, household structure, socio-demographics and potentially their high-order interaction 

terms. However, the ACS records only provide information on family size, age, ethnicity, sex, education 

and poverty gap (a family poverty measure). Meanwhile, considering the substantive analysis goal, the 

variables describing the number of elder people in the family, the number of children in the family, and 

the family size, as well as their interactions with poverty gap are recommended by the survey organizers 

to be included into the weighting process to balance the distribution discrepancy with the population. 

To generate classical weights, we select the raking factors that could affect the selection and response, 

including sex, age, education, ethnicity, poverty gap, the number of children in the family, the number of 

elder people in the family, the number of working aged people in the family, the two-way interaction 
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between age and poverty gap, the two-way interaction between the number of persons in the family and 

poverty gap, the two-way interaction between the number of children in the family and poverty gap, and 

the two-way interaction between the number of elder people in the family and poverty gap. We collect the 

marginal distributions from ACS and implement raking adjustment. The generated weights have to be 

trimmed due to some extreme values. 

However, it is possible that the subjective weighting adjustment includes some variables or interactions 

that are not essentially predictive or does not take account for all the important factors that could be of 

substantive interest later. The raking adjustment assumes that these factors are independent. This will 

cause biased domain inference bases on the cross-tabulation if the correlation structure in the sample is 

different from that in the population. Ideally, we should match based on the joint distribution of these 

weighting related variables. However, small cell sizes or empty under the deep interactions will lead to 

extremely large weights that need cell collapsing. 

The problems we face with classical weighting for the LSW baseline survey are reflective of problems 

for most operational weighting practice in real-life surveys, which are often complicated with complex 

designs, longitudinal structure or multi-stage response mechanisms. The ad-hoc decisions that often go 

into classical weighting schemes can result in different practitioners generating different sets of weights 

for the same survey. In order to avoid the need for subjectivity, it is important to propose a model-based 

weighting procedure that allows the data to select weighting factors. We would like to incorporate these 

variables used for weighting into the model for survey outcomes for efficiency gains, model their high-

order interaction terms under regularized prior setting and generate the weights that can be equally treated 

as classical weights. A large number of variables used for weighting and deep interactions will cause small 

weighting cells based on the cross-tabulation. The small weighting cells call for statistical adjustment for 

smoothness and stability. 

MRP have achieved success for domain estimation at much finer levels. Borrowing the strength of 

hierarchical modeling framework with an informative prior distribution, we should be able to obtain the 

estimate after smoothing the sparse cells. Poststratification via census information will match the estimate 

from the sample to the population. The combination of regression and poststratification is similar to the 

endogenous poststratification concept (Breidt, 2008; Dahlke, Breidt, Opsomer and Keilegom, 2013). We 

introduce the MRP framework in detail. 

 

3  Method 
 

3.1  Multilevel regression and poststratification 
 

In the basic setting, we are interested in estimating the population distribution of the survey outcome 

.y  When the weighting process is transparent, we can directly include the auxiliary variable X  into 

regression modeling for the survey outcome .y  Here X  is a q -dimensional vector of variables that affect 

the sampling design, nonresponse and coverage. Conditional on ,X  the distribution of inclusion indicator 

I  is ignorable. 



Survey Methodology, December 2020 187 

 

 
Statistics Canada, Catalogue No. 12-001-X 

The selection of the auxiliary variables and the availability of their joint distributions in the population 

are the key to success for MRP, and also for all other methods to adjust for the sampling selection and 

nonresponse bias and yield valid population inferences. We recommend including all variables that 

potentially affect the sample inclusion, such as design information, paradata, and socio-demographics. 

One advantage of MRP is to perform variable selection and stabilize weights in contrast to noisy classical 

weights. 

Another practical challenge is that the population distribution of the calibration variables may be 

unknown. We obtain the joint population control distribution from ACS in our application study. Wang, 

Rothschild, Goel and Gelman (2015) used the aggregated exit polls, Zhang, Holt, Yun, Lu, Greenlund and 

Croft (2015) used the census tract-level information and Yougov (Yougov, 2017) used the Current 

Population Survey to directly obtain such information for the poststratification adjustment. In practice, we 

recommend to obtain the population information either directly from census or large studies with minimal 

errors or estimated based on available information in related studies. Some auxiliary variables’ population 

distribution may not be available in the census database, such as the number of phones, and we can 

estimate from other surveys as reference samples. Reilly, Gelman and Katz (2001) applied models to 

predict the unknown population poststratification information. When marginal distributions are available, 

Little and Wu (1991) discuss an equivalent model approach for raking and Si and Zhou (2020) develop a 

Bayes raking estimation in the population cell size estimation. We discuss extensions to develop an 

integrative framework accounting for the estimation uncertainty of unknown control information in 

Section 6. The availability of population control information with high quality and predictive power 

directly affects inferential validity, either for model-based or design-based approaches. 

Under MRP, the auxiliary variables X  are discretized, and their cross-tabulation constructs the 

poststratification cells ,j  with population cell sizes jN  and sample cell sizes ,jn  for 1, , ,j J=  where 

J  is the total number of poststratification cells (Little, 1991, 1993; Gelman and Little, 1997; Gelman and 

Carlin, 2001). Then the total population size is 
=1

= ,
J

jj
N N  and the sample size is 

=1
= .

J

jj
n n  

Poststratification inference is different from design-based inference under stratified sampling by the 

fact that ’sjn  are now random functions of the sampling distribution .I  In the repeated sampling of ,I  

there is a nonzero probability that = 0jn  for some .j  The usual resolution of this problem is to 

condition on ’sjn  observed in the realized sample, however, the sample inference is not design-unbiased 

conditionally on ’s.jn  The MRP framework assumes a model for ’sjn  to account for the design feature. 

The poststratification implicitly assumes that the units in each cell are included with equal probability. 

Suppose   is the population estimand of interest, such as the overall or domain means, and it can be 

expressed as a weighted sum over any subset or domain D  of the poststrata,  

 = ,
j jj D

jj D

N

N











 (3.1) 

where j  is the corresponding estimand in cell .j  The proposed poststratified estimator will be of the 

general form,  
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 PS = ,
j jj D

jj D

N

N











 (3.2) 

where j  is the corresponding estimate in cell .j  Various modeling approaches can be used to estimate 

the cell estimates, such as the flexible nonparametric Bayesian models and machine learning algorithms 

(Rasmussen and Williams (2006); Hastie, Tibshirani and Friedman (2009)). Here, we illustrate using a 

hierarchical regression model. 

In practice, survey weights are attached to each unit, even though they are not attributes of individual 

units. It is natural to generate unit-level weights based on the entire survey design, and use the weighted 

averages of the form, such as 
=1 =1

= .
n n

i i ii i
w y w    Our goal here is to obtain an equivalent set of 

unit-level weights iw  through a model-based procedure for the estimation of PS  to connect weighting 

and poststratification. Therefore, regression models can be used to obtain ,j  poststratification accounts 

for the population information, and model-based weights are re-derived via the expression (3.2). 

In classical regression models, full poststratification is a special case, where the cell estimates are 

computed separately for each cell without any pooling effect, i.e., no pooling. For example, if we are 

interested in the population mean, then the cell means will be used as the cell estimates. Generally, 

classical regression models are conducted on cell characteristics without going to the extreme fitting 

separately for each cell. If more interactions among the characteristics are included, the resulted weights 

become more variable. On the other side, complete pooling ignores the heterogeneity among cells. 

Hierarchical regression models will smooth the variable estimates under partial pooling. 

Gelman (2007) uses the exchangeable normal model as an illustration and shows that the 

poststratification estimate PS  for population mean can be expressed as a weighted average between the 

cell means and the global mean, which yields the unit weights, also as a weighted average between the 

completely smoothed weights, 1,jw =  and the weights from full poststratification, =jw  

( ) ( ) .j jN N n n  Hierarchical poststratification is approximately equivalent to shrinkage of weights 

through the shrinkage of the parameter estimates. The degree of shrinkage goes to zero as the sample size 

increases, which implies that estimates from the model are close to the truth under the sampling design. 

However, further developments are necessary to handle a large number of cells and deep interactions, and 

rigorously evaluate the performance of model-based weights. 

In our application to the LSW study, the variables used for weighting include age (5 categories), 

ethnicity/race (5 categories), education (4 categories), sex (2 categories), poverty measure (5 categories), 

family size (4 categories), the number of elder people (3 categories) and the number of children (4 

categories), in the family, and this results in = 5 5 4 2 5 3 4 4 =J        48,000 poststrata. 

The majority of the poststratification cells will be empty or sparse due to the limited sample size (2,002). 

The sample cell sizes are unbalanced. Often cells are arbitrarily collapsed or combined (Little, 1993) 

without theoretical justification. Recent model-based weighting smoothing procedures across cells could 

not handle such sparse cases (Elliott and Little, 2000). Xia and Elliott (2016) introduced a Laplace prior 
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for weight smoothing across a modest number of poststrata based on inclusion probabilities but ignored 

the variables used for weighting and their hierarchy structure. Using the MRP framework, we account for 

the variable hierarchy structure to smooth and pool the estimates across the sparse and unbalanced cell 

sizes with a novel set of prior distributions. 

 

3.2  Structured prior distribution 
 

We introduce a structured prior distribution to improve MRP under the sparse and unbalanced cell 

structures, thus yielding stable model-based survey weights that account for design information. Suppose 

the population distribution of X  is known, that is, we can obtain ’sjN  from the external data to describe 

a joint distribution of the variables used for weighting. Extension to unknown ’sjN  is discussed in 

Section 6. In practice, the number of poststratification cells J  can be large, even much larger than the 

sample size .n  The variables used for weighting could affect the inclusion through a complex relationship 

or a differential response mechanism. Deep interactions are essential for complex relationship structure, 

but we cannot include all and have to select the predictive main effects and interactions. 

Suppose the collected survey response is continuous, ,iy  for = 1, , ,i n  and we are interested in 

the population mean Y  estimation. We use ( )1 , , JX X
TT T  to represent the J q  predictor matrix in 

the population under the poststratification framework. For illustration, assume a normal distribution,  

  ( )2~ , ,i yj iy N    (3.3) 

where  j i  denotes the cell j  that unit i  belongs to. We can also consider unequal variances, allowing 

the cell scale y  to vary across cells, indexed as .j  For the prior specification of ,j  one choice can be 

= ,j
j X   and   is assigned with some prior distribution. In the hierarchical regression example of 

Gelman (2007), a multivariate normal distribution is considered, ( )~ ,i i yy N X    and ( )~ 0, ,N    

where the covariates include all main effects and a few selected two-way interactions in X  and the 

covariance matrix   is diagonal with different scales. However, the model is subject to misspecification, 

and the generated weights could be negative. 

Since jX  consists different level indicators of the q  discrete auxiliary variables, we can express the 

population cell mean j  as  

 
( )

( )

( )

( )

( )

( )

1 2

1 2
0 , , ,= ,

q

q
j j k j k j k

k S k S k S

    
  

+ + + +    (3.4) 

where ( )lS  is the set of all possible l -way interaction terms, and ( )
,
l

j k  represents the thk  of the l -way 

interaction terms in the set ( )lS  for cell .j  For example, ( )1
, ’sj k  with ( )1k S  refer to the main effects, 

( )2
, ’sj k  with ( )2k S  being the two-way interaction terms, for cell .j  This decomposition covers all 

possible interactions among the q  variables. When the cell structure is sparse, variable selection is 

necessary. In practical applications, we recommend the initial inclusion of covariates and interactions with 

substantive importance and scientific interest in Model (3.4) and perform Bayesian variable selection 

under the proposed structured prior setting. 



190 Si et al.: Bayesian hierarchical weighting adjustment and survey inference 

 

 
Statistics Canada, Catalogue No. 12-001-X 

We induce structured prior distributions to be able to handle deep interactions and account for their 

hierarchy structure, where the high-order interaction terms will be excluded if one of the corresponding 

main effects is not selected. Larger main effects often lead to larger effects of the involved interaction 

terms. Ideally, more shrinkage should be put on the high-order interactions than that on the main effects, 

and the prior setting should reflect the nested structure. The challenge embodies the problem in Bayesian 

inference for group-level variance parameters in an ANOVA structure (Gelman, 2005, 2006). Volfovsky 

and Hoff (2014) introduce a class of hierarchical prior distributions for interaction arrays that can adapt to 

the potential similarity between adjacent levels, where the covariance matrix for the high-order 

interactions is assumed as a Kronecker product of the covariance matrices of main effects after adjusting 

relative magnitudes. Our proposal extends by inducing more structure among the variance parameters, 

more shrinkage and smoothing effect to handle an extremely large number of cells with unbalanced sizes 

than the generally balanced setting in Volfovsky and Hoff (2014), and improves the computation 

performance. 

We start with independent prior distributions on the regression parameters :  

 ( ) ( )( )( )2

, ~ 0, ,l l
j k kN     

where ( )l
k  represents the local scale and   is the global error scale, for ( )lk S  and = 1, , .l q  The 

error scale is the same across the main effects and high-order interactions, while the local scales are 

different. The shrinkage effect is induced through the specification of local scales. We assume the local 

scale of high-order interactions is the product of those for the corresponding main effects after adjusting 

relative magnitudes.  

 ( ) ( )

( )

( )

0

0
= ,ll l

k l
kl M

  


   

where ( )l  is the relative magnitude adjustment and ( )kM  is the collection of corresponding main effects 

that construct the thk  l -way interaction in the set ( ) .lS  For example, the local scale of the three-way 

interaction among age, sex, and education, middle-aged men with college education, will be the product of 

those for the main effects on age, sex, and education, that is, the product of the local scale parameters for 

middle-aged, men, and college educated, respectively. 

We use the following hyperpriors on the scale parameters:  

                      error scale: ~  Cauchy+ (0, 1)  

                      local scale for main effects: (1) ~ (0, 1)k N +
 

                      local scale for high-order interactions: ( ) ( ) ( )
( )

00

1=l l
kk ll M

  
  (3.5) 

                      relative magnitude for high-order interactions: ( ) ( )~ 0, 1 ,l N +
 for = 2, , .l q  
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Here Cauchy+ and N +  denotes the positive part of the Cauchy and normal distributions, respectively. 

Gelman (2006) proposes the half-Cauchy prior for the scale parameter in hierarchical models, which has 

the appealing property that it allows scale values arbitrarily close to 0, with heavy tails allowing large 

values when supported by the data. When ( )l
k  is close to 0, the posterior samples of ( )

,
l

j k  are shrunk 

towards 0. The scale parameter for the high-order interaction terms will be 0 if any of the related scale 

parameters for the main effects is 0. The overall regularization effect is determined by the error scale and 

the multiplicative scale parameters of the corresponding main effects. We assign a noninformative prior 

distribution to the intercept term and weakly informative prior distributions to the two global error scale 

parameters ( ), ,y   where ~y Cauchy+ (0, 5). 

The global-local shrinkage prior can stabilize random effects modeling in small area estimation (Tang, 

Ghosh, Ha and Sedransk, 2018). Our proposed prior specification features the global-local shrinkage and 

group selection of all possible level indicators for the same variable, similar to the group lasso (Yuan and 

Lin, 2006). We achieve the goal of variable selection under the similar specification with the Horseshoe 

prior distribution (Carvalho, Polson and Scott, 2010) and improve by setting up the group selection and 

multiplicative scales for high-order interactions for sparsity gains. We introduce weakly informative half-

Cauchy prior distributions to error scales and informative half-normal prior distributions to the local scale 

parameters to improve parameter shrinkage estimation and computation efficiency. When the posterior 

estimation of the scale parameter is close to 0, indicating the variable is not predictive; post-processing 

can be done to exclude the variable from poststratification cell construction for dimension reduction. This 

class of priors allows for variable selection in high dimension and keeps the hierarchical structure among 

main effects and interactions. 

Piironen and Vehtari (2016) recommend the prior choice for the global shrinkage hyperparameters 

based on prior beliefs about the number of nonzero coefficients in the model. The hierarchy setting with 

correlated variables requires further investigation. We use the default choice Cauchy+ (0, 1) and conduct 

an extensive sensitivity analysis of the hyperparameter specification, where the results do not change. 

 
3.3  Model-based weights 
 

We can re-express (3.4) and (3.5) as the exchangeable normal model:  

 ( )
( )

( )( )
22 2

0
=1

~ , , = .
q

l
j k

l lk S

N       


   (3.6) 

Conditional on the variance parameters, the posterior mean in the normal model with normal prior 

distribution is a linear function of data; thus we can determine equivalent weights *’siw  so that one can re-

express the smoothed estimate 
=1

J

j jj
N N  as a classical weighted average, * *

=1 =1
.

n n

i i ii i
w y w   

Combining the posterior mean estimates for j  and the model-based estimate given in Model (3.2), 

Gelman (2007) derives the equivalent unit weights in cell j  that can be used classically.  



192 Si et al.: Bayesian hierarchical weighting adjustment and survey inference 

 

 
Statistics Canada, Catalogue No. 12-001-X 

 

2 2

2 2 2 2

1
1,

1 1

j y j

j

j y j j y

n N N
w

n n n n



 

 

   
  + 

+ +
 (3.7) 

where the model-based weight is a weighted average between full poststratification without pooling 

(weights of ( ) ( ))j jN N n n  and complete pooling (weights equal to 1). The pooling or shrinkage 

factor is ( )2 21 1 ,j yn  +  which depends on the group and individual variances as well as sample size 

in the cell. The model-based weights are random variables, and fully Bayesian inference will propagate 

the corresponding variability. We collect the posterior mean values and treat as the weights that can be 

used the same as classical weights. 

 

3.4  Computation 
 

The Bayesian hierarchical prediction and weighting inference procedure is reproducible and scalable. 

We implement the proposed structured prior distributions in the open source R package rstanarm 

(Goodrich and Gabry, 2017). The computation codes are available online (Si, Trangucci and Gabry, 2020) 

for public use. We present the example code for the real data application in Appendix A to demonstrate 

the user-friendly and efficient computation interface, where survey practitioners can straightforwardly use 

and adapt. The fully Bayesian inference is realized via Stan. As open source and user-friendly software, 

Stan contributes to the wide application of Bayesian modeling. Survey practitioners resist model-based 

approaches mainly due to computation burden. However, model-based methods are ready to face the new 

challenges on big survey data, such as unbalanced cell structure, combining multiple surveys and 

analyzing streaming data. The development of Stan can improve the generalization of the model-based 

approach and provide the computational platform for the unified survey inference framework. 

In our implementation, the Markov chain Monte Carlo samples mix well and the chains converge 

quickly. The fast computation speed widens the usability of model-based survey inference approaches. 

The proposed prior specification improves the stability for smoothed weights under partial pooling. We 

compare the model-based weights with classical weights in Section 4 and 5 to demonstrate the calibration 

for design-based properties (Little, 2011). Furthermore, we illustrate the proposed improvement for 

domain estimation under unbalanced and sparse sample cell structure. 

 

4  Simulation studies 
 

We evaluate the Bayesian procedure by the design-based properties and demonstrate the validity. We 

consider two main simulation scenarios: a slightly unbalanced structure with a moderate number of 

poststratification cells and a very unbalanced structure with a large number of poststratification cells. We 

evaluate the statistical validity of the model-based and weighted estimation for the finite population and 

domain inference to demonstrate the improved capability to solve the classical weighting problems. To 

illustrate the capability of variable selection and hierarchy maintenance and the resulting efficiency gains, 

we compare the posterior estimation with that under independent prior setting but without the 
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multiplicative scale constraint, which is similar with Horseshoe prior under group specification, called as 

independent prior distributions in the paper: ( ) ( )( )( )2
~ 0, .l l

k kN   

We consider model-based predictions under the structured prior (Str-P) and the independent prior (Ind-

P) distributions. For weighted inference, we evaluate the estimation after applying the model-based 

weights under structured prior (Str-W) setting, model-based weights under independent prior (Ind-W) 

distributions, weights obtained via raking adjustment (Rake-W), classical poststratification weights (PS-

W), and inverse probability of selection weighting (IP-W). We present the graphical diagnosis tools to 

compare the weights and weighted inference. 

We borrow 2011 ACS survey of NYC adult residents treating it as the “population”, and randomly 

draw samples out of it according to a pre-specified selection model without nonresponse. We collect 

covariates from ACS and simulate the outcome variable to obtain the true distribution as a benchmark. 

The details of model specifications for the following scenarios are presented in Appendix B. We 

implement the raking procedure by balancing the marginal distributions of the calibration variables in the 

selection model and generate the raking weights. The classical poststratification weights ’sj jN n  are 

obtained by matching the selected sample cell indices with those of the population cells. The selection 

model can provide the inverse probability of selection weights by matching the sampled unit indices. We 

also generate model-based weights under independent prior distributions for the main effects and high-

order interaction terms of the ACS variables. The generated weights are normalized to average 1 for 

comparison convenience. 

 
4.1  Slightly unbalanced structure 
 

We first handle slightly unbalanced structure when the number of poststratification cells and the 

sample cell sizes are moderate. We implement repeated sampling process to investigate the frequentist 

properties of model-based predictions and weighted inferences. With little shrinkage effect on high-order 

interactions, the model-based prediction and weighting with structured prior distributions have similar 

performance with that under independent prior distributions, while outperforming the classical weighting 

approaches. 

Assume three variables are included in the selection and outcome models: age, ethnicity, and 

education. We discretize the three variables in ACS as age (18–34, 35–44, 45–54, 55–64, 65+), eth (non-

Hispanic white, non-Hispanic black, Asian, Hispanic, other), and edu (less than high school, high school, 

some college, bachelor degree or above). The number of poststratification cells is 5 5 4 = 100.   We 

assume the outcome depends on deep interactions, including all the main effects, two-way and three-way 

interaction terms among the three variables; and the selection indicator depends on the three main effects. 

The specific values of the coefficients are given in Tables B.2-B.3 in Appendix B. The values are set to 

reflect the strong correlations between the covariate and dependent variables. And the effects are not 

necessarily similar across the adjacent factor levels, different from the scenarios in Volfovsky and Hoff 
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(2014). The error scale in the outcome model is set as 1, where the true value is always fully recovered 

from the posterior estimation. The data generation model is different from the estimation model, but the 

latter is flexible enough to cover the former since the dependency structure will be recovered by the 

estimation. The proposal is robust against model misspecification. 

We repeat the sampling 500 times. The sample sizes vary between 2,141 and 2,393 with median 2,288. 

Empty sample cells occur with spread-out selection probabilities (ranging from 0.001 to 0.269) over the 

repeated sampling process. The number of occupied cells in the sample is between 80 and 93 with median 

87. The slightly unbalanced cell structure is common in practical surveys with simple and clean sampling 

design. The population quantities of interest include the overall mean, domain means across the 

13 (= 5 4 4)+ +  marginal levels of three variables and domain mean for nonwhite youths (an example of 

interaction between age and race/ethnicity). We examine the absolute value of estimation bias, root mean 

squared error (RMSE), standard error (SE) approximated by the average value of standard deviations 

(Ave. SD) and nominal coverage rate of the 95% confidence intervals. 

The outputs in Figure 4.1 show that the model predictions have the smallest RMSE, the smallest SE 

with reasonable coverage rates, and comparable bias among all the methods. All variables affecting the 

outcome and selection mechanism are included in the modeling to satisfy the Bayesian principle for 

ignorable sampling mechanism. The model will predict all the cell estimates including the empty cells in 

the sample, fully using the population information and poststratification cell structure. The weighting 

inference is conditional on the observed units within occupied cells, and thus less efficient than the model 

predictions. Generally, the model-based weighting inference has smaller RMSE and SE but more 

reasonable coverage rates than that with classical weighting. Raking adjustment is not valid for the 

domain estimation with large bias, large RMSE, and poor coverage, even though the selection mechanism 

depends on only the main effects. The inverse probability of selection weighting inference tends to have 

large SE but low coverage rates, especially for domain estimation. The poststratification weighting 

inference is close to the model-based weighting estimation since the domain sizes are modestly large. The 

cell shrinkage effect towards no weighting is small (between 0 and 0.19 with mean 0.05) under slightly 

unbalanced design. The number of cases who are less than high school educated is small (around 80), 

resulting in large estimation bias and SE for the weighting inferences, but not in model-based predictions. 

The model-based predictions stabilize the small area estimation by smoothing, as shown in Table 4.1 that 

displays the numerical comparison for the subdomain inference. 

Model prediction performs well and similarly under the structured prior distribution or independent 

prior distribution. This is expected due to the small shrinkage effect. The cell structure is slightly 

unbalanced, and the outcome and selection models depend on all the main effects and high-order 

interaction terms. But the structured prior setting yields more efficient inference than the independent 

prior setting with smaller SE. This improvement is obvious in the very unbalanced design as shown in the 

following simulation of Section 4.2. 
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Figure 4.1 Comparison of prediction and weighting performances on the validity of finite population 

inference under slightly unbalanced design. The y-axis denotes different groups for the mean 

estimation. The x-axis includes two model-base prediction methods (Str-P, Ind-P), two model-

based weighting methods (Str-W, Ind-W), and three classical weighting methods (PS-W, Rake-W, 

IP-W). Str-P: model-based prediction under the structured prior; Ind-P: model-based prediction 

under the independent prior distribution; Str-W: model-based weighting under structured prior; 

Ind-W: model-based weighting under independent prior distribution; Rake-W: weighting via 

raking adjustment; PS-W: poststratification weighting; and IP-W: the inverse probability of 

selection weighting. The plots show that the model-based predictions outperform weighting with 

the smallest RMSE, the smallest SE, reasonable coverage rates, and comparable bias among all 

the methods. Model-based weighting inference has smaller RMSE and SE but more reasonable 

coverage rates than that with classical weighting. 
 

 

Table 4.1 

Comparison of prediction and weighting performances on the subgroup mean for non-white youth under 

slightly unbalanced design 
 

 Str-P   Ind-P   Str-W   Ind-W   PS-W   Rake-W   IP-W  

Abs.Bias   0.02   0.02   0.05   0.05   0.04   0.03   0.02  

RMSE   0.07   0.07   0.11   0.11   0.10   0.17   0.17  

Ave.SD   0.08   0.08   0.13   0.13   0.13   0.13   0.13  

Coverage   0.97   0.98   0.94   0.94   0.94   0.88   0.86  
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Additionally, we considered nine cases with different survey outcome models and sample selection 

models depending on various predictors as in Table B.1 in Appendix B. The specific values of the 

coefficients are given in Tables B.2-B.3. The conclusions are consistent that the model-based prediction 

and weighting yield more efficient and precise inference than that under classical weighting, in particular 

for domain estimation. 

 
4.2  Very unbalanced structure 
 

Complex sampling design and response mechanisms tend to create very unbalanced data structures 

where most poststratification cells are sparse and empty. The proposed structured prior setting brings in 

strong regularization effect to stabilize the model prediction and improves the estimation efficiency, 

especially for domain estimation, outperforming the independent prior distributions. The posterior 

inference on scale parameters can inform variable selection to improve model interpretation. When the 

main effects are not predictive, neither are the related high-order interactions. However, the posterior 

inference with independent prior distributions distorts the hierarchical structure between main effects and 

high-order interactions and hardly informs variable selection. The classical weighting inferences are 

highly variable in the sparse scenario. 

Following the LSW, we collect eight variables in the 2011 ACS-NYC data that affect sample 

inclusion: age (18–34, 35–44, 45–54, 55–64, 65+), eth (non-Hispanic white, non-Hispanic black, Asian, 

Hispanic, other), edu (less than high school, high school, some college, bachelor degree or above), sex 

(male, female), pov (one household income or poverty measure, poverty gap under 50%, 50–100%, 100–

200%, 200–300%, more than 300%), cld (0, 1, 2, 3+ young children in the family), eld (0, 1, 2+ elders in 

the family), and fam (1, 2, 3, 4+ individuals in the family). The number of unique cells occupied by this 

classification is 8,874, while the number of poststratification cells constructed by the full cross-tabulation 

is 48,000. 

In the simulation described in Table B.4 and Table B.5, the selection probability depends on the main 

effects of all variables, while the outcome depends on the main effects of five variables. The cell selection 

probabilities will be clustered, where some cells have the same selection probabilities. The error scale in 

the outcome model is set as 1. The selection probabilities fall between 0 and 0.90 with average 0.12, and 

we select 6,374 units. Even though the sample sizes are large, the simulation creates a very unbalanced 

structure. The majority of the cells are empty, and 1,096 of 1,925 selected cells have one unit. Starting 

from an estimation model with sparsity, we assume the Model (3.4) for the cell estimations includes the 

main effects of the eight variables, eight two-way interactions, and two three-way interactions. These 

terms are potentially important factors for weighting from the survey organizer’s view. Our proposal can 

provide the insight of variable selection and then facilitate dimension reduction. 

When only the main effects are predictive, the posterior median values under the structured prior 

setting for the scales of the cld, eld, and fam are small (0.002, 0.003, 0.000), and the posterior median 
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values for the scales of all high-order interactions are close to 0 (with magnitude smaller than or around 

0.0001). The posterior mean of the error scale is 0.99 with SE 0.008, close to the true value 1. This is 

consistent with the simulation design. With independent prior distributions, however, the hierarchical 

structure between the main effects and high-order interaction terms is ignored. The posterior samples of 

scale parameters of the high-order interactions can be larger than that of the main effects. It is unclear 

about their predictive power and then hard to decide which terms to be selected. The posterior samples of 

the variance parameters under the independent prior distributions tend to be highly variable with heavy 

tails. For example, the variances of the main effects of age and sex have extremely large sampled values 

(14,496 and 390,000) and skewed distributions. For variables with a small number of levels, such as sex, 

the group-level variance estimation is sensitive to the prior distribution, and the independent prior 

distribution cannot regularize well. The structured prior distribution performs better by assuming the prior 

distributions share some common parameter and using more information for estimation and then is able to 

stabilize the variance estimation. The structured prior setting yields more stable inference than the 

independent prior, and moreover can facilitate variable selection. 

The proposed structured prior setting suggests that we exclude the nonpredictive main effects and 

high-order interactions from the regression model for cell estimates, by either post-processing the 

posterior samples of the corresponding scales and coefficients to be 0 or refitting the updated model. In 

the simulation design, three variables affect the selection probability but are not related to the outcome. 

The inclusion of these variables into the regression model will increase the inference variability. The 

poststratification cell structure accounts for the eight variables to meet the ignorable sampling assumption. 

A further modification could be the exclusion of the three variables from the poststratification, which 

could make the assumption of ignorable sampling vulnerable but have efficiency gains. This is a tradeoff 

between efficiency and robustness that needs balance based on substantive interest. The selection of 

survey outcome variables in the weighting process needs further investigation, which we will elaborate in 

Session 6. We compared the inference with that after excluding the nonpredictive terms and obtained 

similar outputs for the finite population and domain estimation since the parameter estimates are close to 0 

for the nonpredictive terms. Here we present the outputs keeping such variables in the poststratification 

cell construction and the regression model. 

First, we compare the generated weights by the model-based and classical methods. We collect the 

posterior samples of generated weights and present the posterior mean as the model-based weights. The 

model-based weights have smaller variability and narrower range than the classical weights, as shown in 

Figure 4.2. The iterative proportional fitting procedure does not converge after the default 10 iterations 

that need increasing. We examine the distribution of the outcome after accounting for the weights and 

compare with the population and sample distribution in the right plot of Figure 4.2. The sample 

distribution differs from the population distribution by underestimating the outcome values. The weighted 

distribution shifts towards the true population. The outcome distributions after weighting are similar 

among the model-based and classical methods, and the model-weights generate a smooth distribution of 
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outcomes. This is reasonable as we expect the model-based weights perform similarly with classical 

weights on point estimation but improve efficiency by reducing the variability. The shrinkage effect under 

the structured prior distribution is large, between 0.86 and 1.00 with mean 0.90. The very unbalanced cell 

structure needs a strong smoothing effect across cells. The model-based weights under the structured prior 

and independent distributions have similar distributions with the poststratification weights, so the latter 

two sets of weights are omitted in Figure 4.2. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Comparison of generated weights after logarithmic transformation and weighted outcome 

distributions under a very unbalanced design. Str-W: model-based weighting under structured 

prior; Rake-W: weighting via raking adjustment; and IP-W: inverse probability of selection 

weighting. Sample: sample distribution of the outcome; and POP: population distribution of the 

outcome. The model-based weights are more stable and generate a more smoothed outcome 

distribution after weighting than the raking weights and the inverse probability of selection 

weights. 

 

We examine the inference for the overall mean and domain means across the marginal levels and for 

nonwhite young adults. The conclusions are the same as that in Section 4.1. Model-based prediction 

outperforms weighting inference with smallest bias and SE. The benefit can be explained by that the 

model uses the population information for empty cell prediction under regularization. Model-based 

weighting inference has smaller SE than that with classical weighting. Even when the selection 

probabilities depend on only main effects, raking yields small bias but performs badly with large SE. 

Under the very unbalanced design, the model-based weighting inference under structured prior setting 

is more efficient than that under independent prior setting or with poststratification weights. We compare 

the SE of the marginal mean estimates of the eight variables from the three weighting methods and plot 

the relative ratios in the left plot of Figure 4.3. The model-based weighting inference has smaller SE than 

the poststratification weighting, and the weighting under structured prior setting has the smallest SE. 

Because the sample sizes and the domain sizes are large and the data generation model is sparse, the 
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model-based weighting inference has a little but not much improvement over the poststratification 

weighting inference due to small smoothing effect. 

The model-based prediction and inference under the structured prior setting are more efficient than that 

under the independent prior setting. The SEs are smaller with the structured prior than those with the 

independent prior in the right plot of Figure 4.3. To demonstrate the efficiency gain, we look at the SEs 

for the population cell estimates. The Bayesian structural inference generally has smaller variability than 

that with independent prior, especially in the sparse scenarios. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Efficiency comparison of prediction and weighting performances on finite population domain 

inference under a very unbalanced design. The left plot examines the mean estimation across the 

margins defined by the eight variables. The right plot presents the population cell mean 

estimation. The model-based weighting and prediction under the structured prior distribution 

yield smaller SE than those under independent prior. Model-based weighting yields smaller SE 

than poststratification weighting. 

 

We assume different outcome and selection models with different covariates with scenarios 

summarized in Table B.4 and achieve the same evaluation conclusions. 

 

5  Application to longitudinal study of wellbeing 
 

With the background introduced in Section 2, we apply the prediction and weighting inference to the 

NYC Longitudinal Study of Wellbeing. We match the LSW to the adult population via the ACS. We 

would like to conduct finite population and domain inference and generate weights allowing for general 

analysis use. The outcome of interest is the self-reported score of life satisfaction on a 1–10 scale. We 

model the outcome as normally distributed, which is not quite correct given that the responses are discrete, 
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but should be fine in practice for the goal of estimating averages. We first include the same eight variables 

to construct the poststratification cells and use the same estimation model as those in Section 4.2 under the 

structured prior setting. The posterior inference shows that the variables sex, cldx, eldx, and psx are not 

predictive, and neither are the related high-order interactions. The scale estimates of such terms have 

posterior median values close to 0 and several large values as long tails. The posterior samples of scales 

for several high-order interactions among the remaining four variables concentrate around 0, showing 

these quantities are not predictive. Another complexity is that, for the sample cells of the LSW, the 

corresponding population cells are not available in the ACS data. This could happen because the sampling 

frame is not the ACS survey. The population information is unknown for such cells, and untestable 

assumptions have to be made. The model fitting improves after variable selection when we check the 

prediction errors for cell estimates. 

Hence, we use four variables after selection, age, eth, edu and pov, which constructs 500 

poststratification cells. The 2,002 units in the LSW spread out in 359 cells. The largest sample cell has 86 

units, while 92 cells have only one unit. The covariates in the model (3.4) for cell estimates include the 

main effects of the four variables, five two-way interactions (age * eth, age * edu, eth * edu, age * inc and 

eth * inc), and two three-way interactions (age * eth * edu and age * eth * inc). We implement the fully 

Bayesian inference with the structured prior distributions. We are interested in estimating the average 

score of life satisfaction for overall and several subgroups of NYC adults and construct weights for 

general analysis purposes using the LSW. 

The posterior median of the unit scale inside cells y  is 1.93 with 95% credible interval [1.87, 1.99]. 

The posterior median of the group scale   is 0.79 with 95% credible interval [0.65, 1.02]. These lead to 

moderately large shrinkage effects between 0.11 and 0.90 with mean 0.30 across cells. The moderate 

shrinkage effect makes sense based on the four variables and up to three-way interactions being included. 

The posterior mean values of the model-based weights are presented in the left plot of Figure 5.1. We can 

generate the raking weights after adjustment for the marginal distributions of the four variables and 

poststratification weights based on the ACS data. The population information is obtained after applying 

the ACS personal weights. 

Comparing with the classical weights, our model-based weights have smaller variability with standard 

deviation 0.32 and the ratio of the maximum and minimum value 3.87, and these values are much smaller 

than those for the raking and poststratification weights, as shown in Table 5.1. The right plot in Figure 5.1 

shows the distribution of the lift satisfaction score after weighting. The model-based weighted 

distributions and classically weighted distributions are similar as expected, which is consistent with the 

results in Section 4.2. The weighting process adjusts for the sample distribution by upweighting the high 

scores and downweighting the low scores. The LSW oversamples poor residents who tend not be satisfied 

with life, and the weighting adjustment balances the discrepancy. 
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Figure 5.1 Comparison of generated weights after logarithmic transformation and weighted distributions of 

life satisfaction score in the LSW. Str-W: model-based weighting under structured prior; Rake-

W: weighting via raking adjustment; IP-W: inverse probability of selection weighting, and 

Sample: sample distribution of the outcome. The weighted distributions are similar between 

model-based weights and classical weights, but model-based weights are more stable than classical 

weights. 

 

Table 5.1 and Figure 5.2 present the finite population and domain inference. The average score of life 

satisfaction for NYC adults is 7.24 with standard error 0.05, predicted by the structural model. The 

estimate is similar to that under model-based weighting and raking inferences, but lower than the 

poststratification weighting inference. However, the difference is not significant. For example, the 

structural model predicts the average score of life satisfaction for middle-aged, college-educated whites 

with income more than three times the poverty level as 7.40 with standard error 0.10, higher than that 

under weighting inferences. Nevertheless, the predicted scores for the elder with relatively low income 

(7.37 with SE 0.15) and low-income black New Yorkers (7.01 with SE 0.18) are lower than those under 

weighting inferences. The discrepancy could be explained by the nonrepresentativeness of the LSW and 

the deep interactions included by the model. The subgroup of individuals who are middle-aged, college-

educated whites may be undercovered in the LSW − as empty poststratification cells occurring − with 

overcoverage among elderly poor blacks. Weighting the collected samples cannot infer or extrapolate 

inference on those who are not present in the survey. Though the differences are not significant, inferences 

conditioning on the collected samples cannot recover the truth, especially for the empty cell estimates. 

Figure 5.2 shows the model-based prediction yields a higher score for young, highly educated and 

Hispanic NYC adults, but a lower score for those with poverty gap < 50%, comparing with the weighted 

inference. 
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Table 5.1 

Comparison of prediction and weighting performances on estimating various domain averages for life 

satisfaction in the LSW. Str-P: model-based prediction under the structured prior; Str-W: model-based 

weighting under structured prior; Rake-W: weighting via raking adjustment; and PS-W: poststratification 

weighting 
 
 Str-P Str-W Rake-W PS-W 

SD of weights / mean of weights   0.32 0.66 0.80 

Max weight / min weight   3.87 81.28 274.65 

Overall average for NYC adults ( =n 2,002) 

Est  7.24 7.23 7.24 7.30 

SE  0.05 0.05 0.05 0.06 

Average for middle-aged, college-educated whites with poverty gap > 300% ( = 222n ) 

Est  7.40 7.34 7.34 7.34 

SE  0.10 0.11 0.11 0.11 

Average for elders with poverty gap < 200% ( = 154n ) 

Est  7.37 7.52 7.49 7.53 

SE  0.15 0.18 0.19 0.22 

Average for blacks with poverty gap < 50% ( = 57n ) 

Est  7.01 7.16 7.30 7.16 

SE  0.18 0.26 0.28 0.29 

 
The SEs are similar for the overall mean estimation between predictions and various weighting 

inferences because of the large sample size. For domain estimation, the model-based prediction and 

weighting are more efficient than that with raking and poststratification weighting, and the model-based 

prediction has the smallest standard error. The efficiency gains of model-based prediction and weighting 

are further demonstrated by domain mean estimation for life satisfaction scores across the marginal levels 

of four variables, shown in Figure 5.2. The model-based prediction and weighting particularly improve 

small domain estimation and increase the efficiency. 

Survey practitioners often compare the weighted distribution of socio-demographics with the 

population distribution to check the weighting. While weighting diagnostics need further research and 

management, we follow this routine to compare the model-based and classical weights. We calculate the 

Euclidean distances between the weighted distributions and the population distribution for the main effects 

and high-order interactions among the four variables in the LSW, shown in Table B.6 in Appendix B. The 

weighted distributions are generally close to the true distributions. Raking focuses on adjusting for the 

marginal distributions of calibration variables but distorts the joint distributions, where the dependency 

structure is determined only by the sample without calibration. The poststratification weighting adjusts for 

the joint distribution, but empty cells in the sample present from the exact matching. The unbalanced cell 

structure yields unstable inference. The model-based weighting smooths the poststratification weightings 

and outperforms raking to match the distributions of three-way and four-way interaction terms. 

Practitioners often rely upon the marginal distributions to evaluate weighting performances, thus in favor 

of raking. However, raking yields high variable and potentially biased inferences, shown in the Section 4, 

even in the cases when raking adjustment is correct. Modification of model-based weighting to satisfy 

such desire on matching marginal distributions will be a future extension to incorporate constraints. 
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Figure 5.2 Comparison of predictions and weighting performances on estimating life satisfaction score across 

the margins of four variables in the LSW. Str-P: model-based prediction under the structured 

prior; Str-W: model-based weighting under structured prior; Rake-W: weighting via raking 

adjustment; and PS-W: poststratification weighting. Model-based predictions and weighting 

generate different estimates for several subsets and are generally more efficient comparing with 

classical weighting. 
 

 

6  Discussion 
 

We combine Bayesian prediction and weighting as a unified approach to survey inference. Multilevel 

regression with structured prior distributions and poststratification on the population inference yield 

efficient estimation when accounting for the design feature. The computation is implemented via Stan and 

disseminated through the R package rstanarm for public use, and the software development promotes 

the model-based approaches in survey research and operational practice. We construct stable and 

calibrated model-based weights to solve the problems of classical weights. This article builds up the 

model-based prediction and weighting framework and serves as the first contribution to evaluate the 

statistical properties of model-based weights and compare the performances with classical weighting. 

Model-based weights are smoothed across poststratification cells and improve small domain estimation. 

The structured prior uses the hierarchical structure between the main effects and high-order interaction 

terms to introduce multiplicative constraints on the corresponding scale parameters and informs variable 

selection. Model improvement can be done after post-processing the posterior inferences. The Bayesian 

structural model yields more stable inference than that with independent prior distributions. Such 

hierarchy assumption may not be valid for special cases, such as the Exclusive-Or problem where two 

variables show no main effects but a perfect interaction. However, we do not have strong evidence in the 

application studies against the plausibility of hierarchy. Furthermore, the unified prediction and weighting 

approach is well equipped to deal with complex survey designs and big data in surveys, such as streaming 

data and combining multiple survey studies. 
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The general MRP framework is open to flexible modeling strategies. In this article, we illustrate by a 

regression model with all variables of interest and the high-order interactions and incorporate structured 

prior distributions for regularization. Other approaches, such as nonparametric models and machine 

learning tools, can be implemented under the MRP framework, being robust against model 

misspecification. Si et al. (2015) use Gaussian process regression models to borrow information across 

poststratification cells based on the distances between the inverse inclusion probability weights. Further 

extensions include applying such flexible approaches to weight smoothing and deriving the model-based 

weights. 

The broad application opportunities come with various challenges that need further investigation. The 

model-based weights are outcome dependent, which improves the efficiency but potentially reduces the 

robustness. Survey organizers prefer a set of weights that can be used for general analysis purpose, 

without being sensitive to outcome selection. We can compare different weights constructed by several 

important outcomes and conduct sensitivity analysis. When the model-based weights give different 

inference conclusions, we recommend choosing the set of weights that generate the most reasonable 

results, with scientific reasoning and be consistent with the population inference. 

The weighted marginal distributions of the calibration variables are a bit different from the population 

inferences, as in Section 5, which does not meet the usual weighting diagnosis standard of survey 

organizers. The model-weights tend to match the joint distribution to that in the population, but weight 

smoothing may bring in bias. Tradeoff constraints can be induced to the model to match the marginal 

distributions. 

Another practical challenge is that the population distribution of the calibration variables may be 

unknown, that is, the population poststratification cell sizes ’sjN  are unknown. A supplemental model is 

needed to allow estimation of this information from the sample and integrated with MRP to propagate all 

sources of uncertainty as an extension, similar to the framework in Si and Zhou (2020) by incorporating 

known margins. The model-based predictions and weighting inferences need further extensions to handle 

discrete outcomes, inference on regression coefficients and non-probability or informative sampling 

designs (Kim and Skinner, 2013). It will be useful to link these ideas on survey inference with the 

biostatistical and econometrics literature on inverse propensity score and doubly robust weighting (Kang 

and Schafer, 2007). 
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Appendix 
 

A. Example code 
 

Here we present code for the application described in the data. We have written a function 

model_based_cell_weights to calculate the model-based weights from a fitted rstanarm model. 

 

model_based_cell_weights <− function(object, cell_table) { 

 stopifnot( 

  is.data.frame(cell_table), 

  colnames(cell_table) == c("N", "n") 

 ) 

 draws <− as.matrix(object) 

 Sigma <− draws[, grep("^Sigma\\[", colnames(draws)), drop = FALSE] 

 sigma_theta_sq <− rowSums(Sigma) 

 sigma_y_sq <− draws[, "sigma"]^2 

 Ns <− cell_table[["N"]] # population cell counts  

 ns <− cell_table[["n"]] # sample cell counts  

 J <− nrow(cell_table) 

 N <− sum(Ns) 

 n <− sum(ns) 

 # implementing equation 7 in the paper (although i did some algebra first to 

 # simplify the expression a bit) 

 Nsy2 <− N * sigma_y_sq 

 ww <− matrix(NA, nrow = nrow(draws), ncol = J) 

 for (j in 1:J) { 

  ww[, j] <− 

   (Nsy2 + n * Ns[j] * sigma_theta_sq) / (Nsy2 + N * ns[j] * sigma_theta_sq) 

 } 

 return(ww) 

} 

# prepare population data: acs_ad has age, eth, edu and inc 

acs_ad %>% 

 mutate( 

  cell_id = paste0(age, eth, edu, inc) 

 ) −> acs_ad 

acs_design <− svydesign(id = ~1, weights = ~perwt, data = acs_ad) 

agg_pop <− 

 svytable( ~ age + eth + edu + inc, acs_design) %>% 

 as.data.frame() %>% 

 rename(N = Freq) %>% 

 mutate(  
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  cell_id = paste0(age, eth, edu, inc) 

 ) %>% 

 filter(cell_id %in% acs_ad$cell_id) 

# prepare data to pass to rstanarm  

# SURVEYdata has 4 variables used for weighting: age, eth, edu and inc; and outcome Y 

dat_rstanarm <− 

 SURVEYdata %>% 

 mutate( 

  cell_id = paste0(age, eth, edu, inc)  

 )%>% 

 group_by(age, eth, edu, inc) %>% 

 summarise(  

  sd_cell = sd(Y),  

  n = n(),  

  Y = mean(Y),  

  cell_id = first(cell_id)  

 ) %>%  

 mutate(sd_cell = if_else(is.na(sd_cell), 0, sd_cell)) %>% 

 left_join(agg_pop[, c("cell_id", "N")], by = "cell_id")  

# Stan fitting under structured prior in rstanarm  

fit <− 

 stan_glmer(  

  formula =  

   Y ~ 1 + (1 | age) + (1 | eth) + (1 | edu) + (1 | inc) +  

   (1 | age:eth) + (1 | age:edu) + (1 | age:inc) + 

   (1 | eth:edu) + (1 | eth:inc) +  

   (1 | age:eth:edu) + (1 | age:eth:inc),  

  data = dat_rstanarm, iter = 1000, chains = 4, cores = 4,  

  prior_covariance =  

   rstanarm::mrp_structured( 

    cell_size = dat_rstanarm$n,  

    cell_sd = dat_rstanarm$sd_cell,  

    group_level_scale = 1,  

    group_level_df = 1 

   ),  

  seed = 123,  

  prior_aux = cauchy(0, 5),  

  prior_intercept = normal(0, 100, autoscale = FALSE),  

  adapt_delta = 0.99 

 ) 

# model-based weighting  

cell_table <− fit$data[,c("N","n")]  

weights <− model_based_cell_weights(fit, cell_table)  
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weights <− data.frame(w_unit = colMeans(weights),  

      cell_id = fit$data[["cell_id"]],  

      Y = fit$data[["Y"]],  

      n = fit$data[["n"]]) %>% 

    mutate(  

     w = w_unit / sum(n / sum(n) * w_unit), # model-based weights  

     Y_w = Y * w 

    )  

with(weights, sum(n * Y_w / sum(n)))# mean estimate  

 

B. Simulation designs 
 

Here we present the simulation designs, coefficient values, and comparison on the weighted 

distributions of socio-demographics as a supplement to Sections 4 and 5. 

 

Table B.1 

Covariates in the outcome (O) and selection (S) models for slightly unbalanced design 
 

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 

 O S O S O S O S O S O S O S 

age                             
eth                          
edu                          

age*eth                     
age*edu                    
eth*edu                  

age*eth*edu                  

 

Table B.2 

Assumed regression coefficients in the outcome model for the simulation using a slightly unbalanced design 
 

 All  Main effects  Two variables 

age (0.5, 1.375, 2.25, 3.125, 4) (0.5, 1.375, 2.25, 
3.125, 4) 

(0.5, 1.375, 2.25, 3.125, 4) 

eth (-2, -1, 0, 1, 2) (2, -1, 0, 1, 2) 0  

edu (3, 2, 1, 0) (3, 2, 1, 0) (3, 2, 1, 0) 

age*eth (4, 2, 1, 1, 3, 3, 2, 1, 1, 1, 2, 3, 2, 2, 1, 4, 4, 3, 2, 3, 2, 4, 
1, 4, 1) 

0  0  

age*edu (-2, -1, 2, 2, 1, -2, 2, 1, 0, -2, 1, -2, -1, 2, 1, -1, -1, 2, 0, 
2) 

0  (2, 0, -2, -2, 1, 1, -1, -2, -2, -1, -1, 
1, 0, -1, -1, 2, 2, 1, -1, 0) 

eth*edu (1, -2, 0, -3, -1, 0, -1, -2, 0, -1, -3, -3, 0, -1, -1, 0, 0, -1, 0, 
-1) 

0  0  

age*eth*edu (-1, -0.5, 0.5, -1, -1, -0.5, -1, 0, -1, 0, -1, 0, 1, 1, 0.5, 1, 1, 
-1, -1, 0, -1, -0.5, -0.5, -1, 1, -1, -0.5, -1, 1, 0, 0.5, 0.5, 1, 
0.5, 1, 1, 1, 0.5, 1, 0, 0, -0.5, 0, 1, -1, -1, 0, -1, -1, -1, 
-0.5, -0.5, 0, 1, -1, 0, 0, -0.5, 1, -0.5, 0.5, -1, 1, 0, 1, 0, 
-1, 0, -0.5, 1, -0.5, -1, -0.5, 0, 0.5, -0.5, 1, 0.5, -0.5, 0.5, 
0, 1, 0, 1, 0.5, 0.5, 0.5, 0, 0, -0.5, 1, -1, 0, 1, 1, 1, 1, -0.5, 
-1, -1) 

0  0  
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Table B.3 

Assumed regression coefficients in the selection model for the simulation using a slightly unbalanced design 
 

 All Main effects  Two variables 

Intercept -2 -2 -2 

age (-2, -1.75, -1.5, -1.25, -1) (0, 0.5, 1, 1.5, 2) (-2, -1.5, -1, -0.5, 0) 

eth (-1, -0.25, 0.5, 1.25, 2) (-2, -1.5, -1, -0.5, 0) (-1, -0.5, 0, 0.5, 1) 

edu (0, 0.67, 1.33, 2) (0, 1, 2, 3) 0  

age eth (1, 1, -1, 1, -1, 1, -1, 0, 0, -1, 0, 0, -1, 1, 0, 0, -1, 1, 1, 
-1, -1, 0, 1, -1, 1) 

0  (-1, 1, 1, 1, -1, -1, -1, 0, -1, -1, -1, 
-1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 1, 
0, 0) 

age edu (0, 1, -1, -1, 0, 1, 1, 0, 1, 0, 1, -1, -1, 1, 1, -1, 0, -1, 1, 1) 0  0  

eth  edu (-1, -1, 0, -1, -1, 1, 1, 1, 1, 0, -1, 0, -1, 0, -1, 1, 0, -1, -1, 
-1) 

0  0  

age eth  edu (0.8, -0.4, 0.6, -0.2, 0.8, 0.2, 0.4, 0.8, 0.4, -0.6, -0.8, 
-0.4, -0.8, -0.4, 0.4, -1, 0.6, -0.8, -0.6, 0.6, -0.2, 0.2, 0.6, 
-0.6, 0, 0, -1, -0.2, 0.6, 0.8, -0.4, 0.2, -0.8, 0.4, 0.6, -0.6, 
0.8, 0, 0.2, -1, 1, 0.4, 0, 0.8, -0.2, 0, 0, 0.6, -0.8, -0.8, 
-0.2, 0.4, -1, -0.8, 1, -0.2, 0, 0.8, 0.6, 0.8, -0.2, -0.2, 
-0.8, 1, 0.8, 0.8, -0.4, -0.8, 0.4, -0.4, 1, -0.6, -1, -0.6, 
-0.2, 1, 1, -0.2, 1, 0.6, 0.4, 0.8, 0.2, -0.2, -0.6, 0, 0.8, 
-0.4, 0.4, 0.4, 0.6, -1, -0.8, -0.8, 1, 1, 0.4, 0.6, 0.4, 0.8) 

0  0  

 
Table B.4 

Covariates in the outcome (O) and selection (S) models for a very unbalanced design 
 

 Case 1 Case 2 Case 3 Case 4 

 O S O S O S O S 

age                 
eth                 
edu                 
sex                 
pov                 
cld              
eld                

fam                
age*eth             
age*edu             
eth*edu             
eth*pov             
age*pov             
pov*fam             
pov*eld             
pov*cld           

age*eth*edu             
age*eth*pov             

 
Table B.5 

Assumed regression coefficients in the outcome (O) and selection (S) models for a very unbalanced design 
 

 O S 

age (2, 0, -2, -2, 1) (0, 0.75, 1.5, 2.25, 3) 

eth (1, -1, -2, -2, -1) (-1, -0.5, 0, 0.5, 1) 

edu (-1, 1, 0, -1) (0, 0.67, 1.33, 2) 

sex (-1, 2) (-1, 0) 

pov (2, 1, -1, 0, -1) (0, 1, 2, 3, 4) 

cld 0  (-1, -0.33, 0.33, 1) 

eld 0  (-2, -1, 0) 

fam 0  (-1, -0.67, -0.33, 0)  
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Table B.6 

Euclidean distances between the weighted distributions and the population distribution. Str-W: model-based 

weighting under structured prior; Rake-W: weighting via raking adjustment; and PS-W: poststratification 

weighting 
 

 Str-W PS-W Rake-W 

age 0.04 0.02 0.00 
eth 0.08 0.06 0.00 
edu 0.08 0.03 0.00 
inc 0.02 0.02 0.00 

age * eth 0.05 0.03 0.05 
age * edu 0.05 0.02 0.05 
age * inc 0.03 0.01 0.03 
eth * edu 0.06 0.04 0.05 
eth * inc 0.04 0.04 0.03 
edu * inc 0.06 0.03 0.04 

age * eth * edu 0.03 0.02 0.05 
age * eth * inc 0.03 0.02 0.04 
age * edu * inc 0.03 0.01 0.04 
eth * edu * inc 0.04 0.02 0.04 

age * eth * edu * inc 0.02 0.01 0.04 
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Firth’s penalized likelihood for proportional hazards 

regressions for complex surveys 

Pushpal K. Mukhopadhyay1 

Abstract 

This article proposes a weight scaling method for Firth’s penalized likelihood for proportional hazards 

regression models. The method derives a relationship between the penalized likelihood that uses scaled weights 

and the penalized likelihood that uses unscaled weights, and it shows that the penalized likelihood that uses 

scaled weights have some desirable properties. A simulation study indicates that the penalized likelihood using 

scaled weights produces smaller biases in point estimates and standard errors than the biases produced by the 

penalized likelihood using unscaled weights. The weighted penalized likelihood is applied to estimate hazard 

rates for heart attacks by using a public-use data set from the National Health and Epidemiology Followup 

Study (NHEFS). SAS® statements to estimate hazard rates using data from complex surveys are given in the 

appendix. 
 

Key Words: Monotone likelihood; Delete-one jackknife; Weight scaling. 

 

 

1  Introduction 
 

The Cox proportional hazards regression model (Cox, 1972) is widely used to analyze survival data. It 

is a semiparametric model that explains the effect of explanatory variables on hazard rates. The model 

assumes a linear form for the effect of the explanatory variables but allows an unspecified form for the 

underlying survivor function. The parameters of the model are estimated by maximizing a partial 

likelihood (Cox, 1972, 1975). 

For estimating canonical parameters in the exponential family distributions, Firth (1993) suggested 

multiplying the likelihood by the Jeffreys prior to obtain a maximum likelihood estimate that is first-order 

unbiased. The penalized likelihood is of the form  

 ( ) ( ) ( )
0.5

=pL L Iβ β β   

where ( )L β  is the unpenalized likelihood, I  is the information matrix, and β  is a vector of regression 

parameters. Firth’s penalized likelihood is a very useful technique in practice, not only to reduce bias but 

also to correct for monotone likelihoods. 

Proportional hazards regression models often suffer from monotone likelihoods, in which the 

likelihood converges to a finite value but at least one parameter diverges (Heinze, 1999). Firth’s penalized 

likelihood is also used to correct monotone likelihoods and to obtain parameter estimates that converge 

(Heinze, 1999; Heinze and Schemper, 2001; Heinzel, Rüdiger and Schilling, 2002). 

Although Firth’s penalized likelihood is useful for reducing biases and for obtaining estimates from 

monotone likelihoods, the penalized likelihood is not studied for complex surveys involving unequal 
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weights. It is reasonable to use a weighted likelihood for complex surveys to compensate for unequal 

weighting (Fuller, 1975; Binder and Patak, 1994). Survey data sets commonly include design weights or 

analysis weights for which the sum of the weights is an estimator of the population size. However, these 

unscaled weights will not appropriately scale the information matrix that is used in the penalty term. It is 

desirable for proportional hazards regression parameters for survey data to have the following two 

properties: 

• Invariance: The point estimates and standard errors for the regression parameters should be 

invariant to the scale of the weights.  

• Closeness: The Taylor linearized variance for the estimated regression parameters should 

be close to the delete-one jackknife variance.  

 

In this article, we first show that if the Firth correction is not used, then both the invariance and 

closeness are satisfied; but if the Firth correction is used with the unscaled weights, then the point 

estimates and the standard errors are not invariant to the scale of the weights. That is, if the weights are 

multiplied by a constant and the Firth correction is used, then the point estimates and standard errors will 

be different. We then propose a commonsense weight scaling method and demonstrate that the Firth 

correction using the scaled weights has both properties. The only difference between the scaled and 

unscaled weights is that the sum of the scaled weights is equal to the sample size, but the sum of the 

unscaled weights is an estimator of the population size. 

 

1.1  Example that uses unscaled weights 
 

 We used a data set from a study of 65 myeloma patients who were treated with alkylating agents (Lee, 

Wei and Amato, 1992) to demonstrate the properties of Firth’s penalized likelihood that uses unscaled 

weights. Survival times in months were recorded for each patient. Patients who were alive after the study 

period were considered to be censored. The following variables were available for each patient: 

• Time: Survival time in months,  

• Vstatus: Patient status, zero or one, indicating whether the patient was alive or dead, 

respectively,  

• LogBUN: Log of blood urea nitrogen level,  

• HGB: Blood hemoglobin level.  

 

To create a monotone likelihood, we added a new explanatory variable, Contrived, such that its value 

at all event times is the largest of all values in the risk set (see the example “Firth’s Correction for 

Monotone Likelihood” in “The PHREG Procedure” in SAS Institute Inc. (2018)). The variable Contrived 

has the value 1 if the observed survival time is less than or equal to 65; otherwise it has the value 0. 

To demonstrate the effect of weights in Firth’s penalized likelihood, we created three weight variables, 

w1, w3, and w5, with the values of 1, 1,000, and 100,000 for each observation, respectively. Proportional 
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hazards regression parameters are estimated by maximizing a weighted likelihood as described in 

Section 1.2. Because 1w  has the value 1 for all observations, using 1w  in the analysis is equivalent to 

performing the unweighted analysis. 

We fitted the following two proportional hazards models using the PHREG procedure in SAS/STAT® 

(see “The PHREG Procedure” in SAS Institute Inc. (2018)): 

 ( ) ( ) ( )0 1 2, = exp LogBUN HGBt t   +Z   

 ( ) ( ) ( )0 1 2 3, = exp LogBUN HGB Contrivedt t    + +Z   

where ( )t  and ( )0 t  are the hazard function and the baseline hazard function, respectively. Firth’s 

penalized likelihood is not required in order to fit the first model without Contrived (the likelihood 

converged in three iteration steps), but the second model containing the variable Contrived does not 

converge without the Firth penalty in the likelihood. Table 1.1 displays the value of the likelihood and the 

three regression coefficients for 14 iterations. Although the objective function and the coefficients for 

LogBun and HGB converge to a finite value after the fourth iteration, the coefficients for Contrived 

diverges. This is an example of a monotone likelihood for the variable Contrived. Because of this 

monotonicity, Firth’s penalized likelihood must be used to fit the second model containing Contrived. 

 

Table 1.1 

Maximum likelihood iteration history showing a monotone likelihood for the variable Contrived 
 

Iteration Number Likelihood Value LogBUN HGB Contrived 

1 -140.693405 1.994882 -0.084319 1.466331 

2 -137.784163 1.679468 -0.109068 2.778361 

3 -136.971190 1.714061 -0.111564 3.938095 

4 -136.707893 1.718174 -0.112273 5.003054 

5 -136.616426 1.718755 -0.112370 6.027436 

6 -136.583520 1.718829 -0.112382 7.036445 

7 -136.571515 1.718839 -0.112384 8.039764 

8 -136.567113 1.718841 -0.112384 9.040985 

9 -136.565495 1.718841 -0.112384 10.041434 

10 -136.564900 1.718841 -0.112384 11.041600 

11 -136.564681 1.718841 -0.112384 12.041660 

12 -136.564601 1.718841 -0.112384 13.041683 

13 -136.564571 1.718841 -0.112384 14.041691 

14 -136.564560 1.718841 -0.112384 15.041694 

 
If Contrived is not used as an explanatory variable, then all three sets of weights produce the same 

point estimates and Taylor linearized variance estimates (Table 1.2). The delete-one jackknife variance 

estimates are also the same for all three sets of weights. Thus, the point estimates and the standard errors 

are invariant to the scale of the weights when the Firth correction is not used. 
 

Table 1.2 

Parameter estimates and standard errors without the Firth correction for all three sets of weights 
 

   Estimate Std. Err. 

LogBUN  1.674 0.583 

HGB  -0.119 0.060 
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However, if the unscaled weights are used, then the point estimates for Contrived are not invariant to 

the scale of the weights. Table 1.3 displays the parameter estimates for three sets of weights when 

Contrived is used as an explanatory variable (and Firth’s penalized likelihood is applied). Because the 

likelihood is not monotone (Table 1.1) for LogBun and HGB, the point estimates for these two 

coefficients are not affected by the scale of the weights. 

 

Table 1.3 

Parameter estimates with the Firth correction and unscaled weights 
 

   Weight 1w  Weight 3w  Weight 5w  

Estimate Std. Err. Estimate Std. Err. Estimate Std. Err. 

LogBUN  1.722 0.584 1.719 1.85E-2 1.719 1.85E-3 

HGB  -0.112 0.061 -0.112 1.93E-3 -0.112 1.93E-4 

Contrived  3.815 1.558 10.629 1.38 14.633 1.02 

 
If Contrived is not used as an explanatory variable, then the ratio of jackknife standard errors to Taylor 

linearized standard errors is 1.13 and 1.10 for all three sets of weights for the variables LogBUN and 

HGB, respectively. Thus the ratio of the jackknife variance to the Taylor linearized variance for the 

unpenalized likelihood is invariant to the scale of weights, and it is reasonable to expect the ratio to be 

invariant when the penalized likelihood is used. 

 

1.2  A brief review of point and variance estimates for regression parameters 

for finite populations 
 

Before we discuss the weight scaling method, we briefly review point and variance estimates for 

regression parameters for proportional hazards regression of complex surveys involving unequal weights. 

Lin and Wei (1989); Binder (1990, 1992); Lin (2000); and Boudreau and Lawless (2006) discussed 

pseudo-maximum likelihood estimation of proportional hazard regression parameters for survey data. For 

a more general description for estimating regression parameters for complex surveys, see Kish and 

Frankel (1974); Godambe and Thompson (1986); Pfeffermann (1993), Korn and Graubard (1999, 

Chapter 3), Chambers and Skinner (2003, Chapter 2), and Fuller (2009, Section 6.5). Wolter (2007) 

described different variance estimation techniques for survey data. 

Let  = 1, 2, ,N NU  be the set of indices and let NF  be the set of values for a finite population 

of size .N  The survival time of each member of the finite population is assumed to follow its own hazard 

function, ( ) ,i t  expressed as  

 ( ) ( )( ) ( ) ( )( )
0= ; = expi i it t t t t   Z Z β   

where ( )0 t  is an arbitrary and unspecified baseline hazard function, ( )i tZ  is a vector of size P  of 

explanatory variables for the thi  unit at time ,t  and β  is a vector of unknown regression parameters. 

The partial likelihood function introduced by Cox (1972, 1975) eliminates the unknown baseline 

hazard ( )0 t  and accounts for censored survival times. If the entire population is observed, then this 

partial likelihood function can be used to estimate .β  Let Nβ  be the desired estimator. 
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Assuming a working model with uncorrelated responses, Nβ  is obtained by maximizing the partial log 

likelihood,  

 ( ) ( )( ) = log L ; ,
N

N i i
i

l t t

β β Z
U

  

with respect to ,β  where ( )( )L ; ,i it tβ Z  is Cox’s partial likelihood function. 

Assume that a probability sample NA  is selected from the finite population .NU  Let i  be the 

selection probability and ( )1
i iw  −=  be the sampling weight for unit .i  Further assume that explanatory 

variables ( )i tZ  and survival time it  are available for every unit in sample .NA  A design unbiased 

estimator for the finite population log likelihood is  

 ( ) ( )( )  ( )( ) 1= log L ; , = log L ; , .
N N

i i i i i i
i A i A

l t t w t t −

 
 β β Z β Z   

A sample-based estimator ˆ
Nβ  for the finite population quantity Nβ  can be obtained by maximizing 

the partial pseudo-log likelihood ( )( ); ,i il t tβ Z  with respect to .β  The design-based variance for ˆ
Nβ  is 

obtained by assuming that the set of finite population values NF  is fixed. 

The weighted Breslow likelihood can be expressed as  

 ( )
( )( )

( )( ) =1

exp
=

exp

k

i
k

k

K
i i

w
k

i i

w t
L

w t











β Z
β

β Z
D

D

R

  

where kR  is the risk set just before the thk  ordered event time ( ) ,kt kD  is the set of individuals who fail 

at the ( ) ,kt  and K  is the number of distinct event times. 

The point estimates for β  are obtained by maximizing ( ) ( ) = log .l Lβ β  

Although the weights are sufficient for estimating regression coefficients for the finite population, 

stratification and clustering information must also be used to estimate sampling variability. In order to 

estimate sampling variability, you can use either the Taylor series linearization method or a replication 

method. 

 

1.2.1  Analytic variance estimator using the Taylor series linearization method 
 

The Taylor series linearization method uses a sum of squares of the weighted score residuals to 

estimate the sampling variability. 

Define ( )
( ) ( )
( ) ( )

1

0

,

,
, = ,

t

S t
t

S β

β
Z β  where  

 ( ) ( ) ( ) ( )( )0 , = exp
N

i i i
A

S t w I t t tβ β Z   

and  

 ( ) ( ) ( ) ( ) ( )1 , = exp ( ) .
N

i i i i
A

t w I t t t tS β β Z Z   
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The score residual for the thi  subject is  

 

( ) ( ) ( ) 

( ) ( )( )
( ) ( )

( ) ( ) 
0

= ,

exp
,

,
N

i i i i i

j i j i j

j i j j
j A j

t t

w I t t t
t t

S t

 −

 
−  − 

 


u β Z Z β

β Z
Z Z β

β

  

where i  is the event indicator. 

Then the Taylor linearized variance estimator is  

 ( ) ( ) ( )1 1ˆ ˆ ˆˆ = G− −V β β βI I   

where ( )β̂I  is the observed information matrix and the p p  matrix G  is defined as  

 
, : <

ˆ ˆˆ ˆ
=

N

i j ij j ji i

i j A i j ij i j i j

  

    

−    
− −   

   


u uu u
G   

where ij  are the joint inclusion probabilities for units i  and .j  

In particular, for stratified cluster designs in which the PSUs are selected by using a simple random 

sample without replacement, the p p  matrix G  reduces to  

 
( )

( ) ( )
=1 =1

1
=

1

hnH
h h

hi h hi h
h ih

n f

n
+  + 

−
− −

−
 G e e e e   

where hi+e  is the weighted sum of the score residuals, ˆ ,hiju  in stratum h  and PSU ;i ..he  is the mean of 

;hi+e hn  is the number of PSUs; and hf  is the sampling fraction in stratum .h  

These estimators are well studied in the sample survey literature. For example, Binder (1992) and Lin 

(2000) provide conditions under which β̂  and ( )ˆˆ V  are consistent. Chambless and Boyle (1985) derived 

the design-based variance and asymptotic normality for discrete proportional hazards models. 

 

1.2.2  Replication variance estimator using the delete-one jackknife method 
 

The jackknife method is a commonly used replication variance estimation method for complex 

surveys. To create replicates, it deletes (assigns a zero weight to) one PSU at a time from the full sample. 

In each replicate, the sampling weights of the remaining PSUs are modified by the jackknife coefficient 

.r  The modified weights are called replicate weights. 

Let PSU ri  in stratum rh  be omitted from the thr  replicate; then the replicate weights and jackknife 

coefficients are given by  

 ( )

0 = and =

= and =

r r

r
hij hij r r r

hij r

i i h h

w w i i h h

w h h











  

and 
1

= ,
hr

hr

n

r n


−
 respectively, for all observation units j  in stratum h  and PSU .i  The number of PSUs 

in stratum rh  is .
rhn  
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The jackknife method can be applied to estimate variances for the estimated regression parameters for 

Cox’s model because the model parameters are solutions of a set of estimating equations that are smooth 

functions of totals (the corresponding score functions are given in Section 2). Properties of jackknife 

variance estimators for proportional hazard regression models are discussed in Shao and Tu (1995, 

Section 8.3). 

To apply the jackknife method, model parameters are estimated by using the full sample and by using 

every replicate sample. Let β̂  be the estimated proportional hazards regression coefficients from the full 

sample, and let ˆ
rβ  be the estimated regression coefficients from the thr  replicate. Then the covariance 

matrix of β̂  is estimated by  

 ( ) ( ) ( )
=1

ˆ ˆ ˆ ˆ ˆˆ = .
R

r r r
r

 
− −V β β β β β   

If the sampling fractions are not ignorable, then the covariance matrix of β̂  is estimated by  

 ( ) ( ) ( ) ( )
=1

ˆ ˆ ˆ ˆ ˆˆ = 1
R

r r r r
r

f 
− − −V β β β β β   

where =
hr

hr

n

r N
f  is the sampling fraction in stratum .rh  

In practice, both Taylor linearized variance and jackknife variance estimates are used to construct 

Wald t  confidence intervals with R H−  degrees of freedom, where R  is the number of PSUs (or the 

number of replicates) and H  is the number of strata. 

It is straightforward to show that the jackknife variance estimator is algebraically equivalent to the 

Taylor linearized estimator for design linear estimators. But for design nonlinear estimators, such as the 

regression coefficients for proportional hazards regression models, the jackknife method tends to produce 

slightly higher variance estimates than the Taylor linearized method (Fuller, 2009). 

Note that if the full sample estimate suffers from a monotone likelihood, then it is very likely that most 

replicate samples will also suffer from monotone likelihoods. This will results in many “unusable” 

replicate estimates. 

Survey data analysis procedures in SAS/STAT support both Taylor linearized and replication variance 

estimation methods (Mukhopadhyay, An, Tobias and Watts, 2008). 

 
2  Weight scaling 
 

Let iw  be the weight for unit .i  We propose to use ( ) ( )= 1 =
N N N

i i i i iA A A
w w w n w w    as the 

scaled weight. By construction, the scaled weights are invariant to the scale of the weight. That is, 

( ) ( )* = = =
N N

i i i i i iA A
w n w w n w w w    for all 0.   

Firth’s penalized likelihood is given by ( ) ( ) ( )
0.5

= ,pL Lβ β βI  where ( )L β  and ( )βI  are the 

unpenalized likelihood and information matrix, respectively. The penalized log likelihood is  

 ( ) ( ) ( )( )= 0.5 log .pl l +β β βI   



222 Mukhopadhyay: Firth’s penalized likelihood for proportional hazards regressions for complex surveys 

 

 
Statistics Canada, Catalogue No. 12-001-X 

In particular, when the scaled weights are used, the Breslow unpenalized log partial likelihood 

(Breslow, 1974) is  

 ( ) ( ) ( ) ( )( ) 
=1

= log exp
k k k

K

i i k i i i k
k i i i

l w t w w t
  

 −   β β Z β Z
D D R

  

where iw  is the unscaled weight for unit .i  

Denote  

 ( ) ( ) ( )( ) ( ) = exp
k

aa
k i i k i k
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w t t
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

S β β Z Z
R

  

where k  is the thk -ordered event time, = 0, 1, 2,a ( ) 
0

i kt


Z  is 1, ( ) 
1

i kt


Z  is the vector ( ) ,i ktZ  and 

( ) 
2

i kt


Z  is the matrix ( )  ( )  .i k i kt t Z Z  

Then the score function is given by  
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and the Fisher information matrix is given by  
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Denote  
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where = 0, 1, 2;a = 1, , ;p P  and ( ) ( ) ( )( ), 1 ,= , , .i i i pt Z t Z tZ  Then  
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where = 1, , .p P  
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Point estimates and Taylor linearized standard errors for the penalized likelihood are obtained from the 

score functions and the Hessian as described in Section 1.2. The jackknife standard errors are obtained by 

maximizing the penalized likelihood in every replicate sample. 

Appendix 1 shows that under certain regularity conditions, the point estimators obtained by 

maximizing Firth’s penalized likelihood are design-consistent. 

 

2.1  Penalized likelihoods and the scale of weights 
 

In this section, we derive a relationship between the penalized log likelihood that uses scaled weights 

and the penalized log likelihood that uses unscaled weights, and we demonstrate that Firth’s penalized 

likelihood using unscaled weights does not have the invariance property. 

Let ( );wl wβ  be the log likelihood using weights ,w  and let ( );wl wβ  be the log likelihood using 

weights ,w  where =i iw w  for all i  and 0.   The Breslow log likelihood can be written as 
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Because the second term on the right-hand side does not contain ,β  the derivative and the Hessian of 

the log likelihood are only a multiplier of   and the parameter estimates and standard errors are invariant 

to the scale of the weights. 

However, the following relation shows that the point estimates that are obtained by maximizing the 

penalized log likelihood are not invariant to the scale of the weights: 
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The additional term in the right hand side of the preceding equation involves the regression parameters. 

Thus the point estimates and the standard errors are not invariant to the scale of the weights. 

By construction, point estimates that use the penalized log likelihood and the scaled weights are 

invariant to the scale of the weights. 

 
2.2  Example that uses scaled weights 
 

Consider the myeloma study described in Section 1.1. We refit the same proportional hazards 

regression model using LogBUN, HGB, and Contrived as explanatory variables, but now we use scaled 

weights in constructing Firth’s penalized likelihood. 

Table 2.1 displays point estimates and standard errors from Firth’s penalized likelihood using scaled 

weights and the Taylor linearized variance estimator. These statistics are invariant to the scale of the 

weights. 

 
Table 2.1 

Parameter estimates and their standard errors using the Taylor linearized method with the Firth correction 

and scaled weights 
 

   Weight 1w  Weight 3w  Weight 5w  

Estimate Std. Err. Estimate Std. Err. Estimate Std. Err. 

LogBUN  1.722 0.564 1.722 0.564 1.722 0.564 

HGB  -0.112 0.064 -0.112 0.064 -0.112 0.064 

Contrived  3.815 0.458 3.815 0.458 3.815 0.458 

 
Standard errors using jackknife replicates are also invariant to the scale of the weights. For replicate 

variance estimation methods, every set of replicate weights must be scaled using the same scaling factor 

that is used to scale the full sample weights. Table 2.2 displays point estimates and standard errors from 

Firth’s penalized likelihood using scaled weights and the jackknife replicate variance estimator. 

 
Table 2.2 

Parameter estimates and their standard errors using jackknife replicates with the Firth correction and scaled 

weights 
 

   Weight 1w  Weight 3w  Weight 5w  

Estimate Std. Err. Estimate Std. Err. Estimate Std. Err. 

LogBUN  1.722 0.653 1.722 0.653 1.722 0.653 

HGB  -0.112 0.074 -0.112 0.074 -0.112 0.074 

Contrived  3.815 0.642 3.815 0.642 3.815 0.642 

 
Estimates from the penalized log likelihood using the scaled weights also have the closeness property. 

The ratios of jackknife standard errors to Taylor linearized standard errors are 1.16, 1.17, and 1.40 for all 

three sets of weights for the variables LogBUN, HGB, and Contrived, respectively (Tables 2.1 and 2.2). 
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3  Applications in complex surveys 
 

Data from complex surveys frequently contain unequal weights, strata, and clusters. It is recommended 

that the weights and other design features be used in the analysis stage. Weighted data provide a better 

representation of the study population than unweighted data. In this section, we compare the scaled and 

unscaled weights to estimate proportional hazards regression coefficients through a simulation study and 

apply the Firth penalized likelihood using the scaled weights to estimate survival times from a data set 

from NHEFS. 

 
3.1  A simulation study 
 

We performed a small simulation study to compare biases in parameter estimates and standard errors 

for scaled and unscaled weights using Firth’s penalized likelihood. We used two sampling methods to 

select samples from a fixed finite population: a simple random sample without replacement (SRS) in 

which each observation unit gets an equal weight; and a probability proportional to size (PPS) without 

replacement sample in which the sampling weight for an observation unit depends on the value of a size 

measure associated with the hazard function for the unit. For the purpose of finite population inference, 

we treat the estimated proportional hazards regression parameters in the finite population as the “true” 

parameter values. Biases are measured from these true values. 

Finite populations of size 10,000 are generated as follows:   

• ( )1 2 10Z , Z , , Z ~ Bernoulli 0.75 ,   

• ( )1 2 10= exp 0.69 0.69 0.69 ,h Z Z Z− − − −   

• ( )~ uniform 0, 1 ,u   

• ( )= log ,t u h   

• ( )~ Bernoulli ,c v   

• ( )~ uniform 10 , 10 0.1m h h +  

 

where h  is the hazard function, t  is the survival time, c  is a censoring indicator, and m  is a size measure 

for each unit. Six finite populations are generated by using different censoring values ( = 0.1, 0.3, 0.5, 

0.7, 0.8, 0.9). See Bender, Augustin and Blettner (2005) for methods of generating survival times. Ten 

regressors ( )1 2 10Z , Z , , Z  are generated using Bernoulli distributions to create monotone likelihoods, 

especially when the sample size is small and the censoring rate is high. 

Samples are selected from each finite population by using two sampling methods: simple random 

samples without replacement; and probability proportional to size samples without replacement, where the 

variable m  is used as the size measure. Four sample sizes are used for each sampling method: 50, 100, 

500, and 1,000. Sampling weights for all units for SRS depend only on the sample size, but the sampling 

weight for a unit for PPS depends on both the sample size and the observed value of the variable m  for 

that corresponding unit. To ensure the same distribution of the censored observations in the sampled data 
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as in the population, samples are selected independently from censored and uncensored units in the 

population. 

Finally, the regression parameters from the proportional hazards regression model  

 ( ) ( ) ( ), = expt    + + +0 1 1 2 2 10 10Z t Z Z Z   

are estimated from each sampled data set, where ( )0 t  is the baseline hazard, t  is the survival time, and 

c  is the censored indicator. The regression parameters are estimated by maximizing the weighted Firth 

penalized likelihood. Note that the unpenalized likelihood does not converge in most cases because of the 

monotonicity of the likelihood in the simulated data. When the likelihood is not monotone, we found that 

the point estimates obtained by using the penalized likelihood are very close to the point estimates 

obtained by using the unpenalized likelihood. Heinze and Schemper (2001) reported similar findings for 

unweighted data. 

We compare relative biases in point estimates and standard errors using the jackknife method for 

scaled and unscaled weights. The relative biases (RBs) are defined below (Sitter, 1992). 

Let ˆ
s  be the point estimate and ˆ

sv  be the variance estimate for one component of β  from data set .s  

Define the following: 

Relative bias for point estimates, ˆ ,  

 ( )
( )

1

=1

ˆ
ˆRB = .

S
s T

s T

S
 




−
−

   

Relative bias for variance estimates, v̂  

 ( )
( )

1

=1

ˆ MSE
ˆRB =

MSE

S
s T

s T

v
v S −

−
   

where the true MSE is  

 ( ) ( )
2

1ˆ ˆMSE =T s T
s

S  − −   

and T  is the “true” parameter value obtained by fitting the proportional hazards regression model using 

all units in the finite population. The ratio of RBs is defined as the ratio of the RB using the unscaled 

weights to the RB using the scaled weights. 

The median of ratios of RBs over 5,000 repetitions is displayed in this section. We report the median 

because there are some “bad” samples in which convergences are questionable even with the Firth 

correction. These “bad” samples produce few estimates with very large biases. Because of these large 

biases, the mean of the ratio of RBs is a more unstable statistic than the median. Without the “bad” 

replicates, the mean and medians are very close. We also noticed that the penalized log likelihood using 

the unscaled weights produces more of these “false” convergences. 

Results for all regressors 1 2 10Z , Z , , Z  are similar. For simplicity, we display results for only two 

regressors, 3Z  and 8Z .  
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Ratios of RBs in parameter estimates for unscaled and scaled weights for the variables 3Z  and 8Z  are 

displayed in Figures 3.1, 3.2, 3.3, and 3.4. For small sample sizes and a large number of censored 

observations, RBs using scaled weights are much smaller than RBs using unscaled weights. For large 

sample sizes, RBs from both weights are similar primarily because the Firth option is not necessary, since 

the convergence is not an issue with large data sets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1  Ratio of relative biases in parameter estimates for SRS samples for Z3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2  Ratio of relative biases in parameter estimates for SRS samples for Z8. 
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Figure 3.3  Ratio of relative biases in parameter estimates for PPS samples for Z3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4  Ratio of relative biases in parameter estimates for PPS samples for Z8. 
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displayed in Figures 3.5, 3.6, 3.7, and 3.8. RBs for standard errors follow the same trend as RBs for point 

estimates. However, RBs for standard errors are higher than RBs for point estimates. For small sample 

sizes and a large number of censored observations, RBs using scaled weights are much smaller than RBs 
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using unscaled weights. For large sample sizes, RBs from both scaled and unscaled weights are similar 

primarily because the Firth option is not necessary, since the convergence is not an issue with large data 

sets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5  Ratio of relative biases in standard errors for SRS samples for Z3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6  Ratio of relative biases in standard errors for SRS samples for Z8. 
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Figure 3.7  Ratio of relative biases in standard errors for PPS samples for Z3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8  Ratio of relative biases in standard errors for PPS samples for Z8. 

 
Table 3.1 displays the first quartile, median, and third quartile for ratio of RBs in point estimates and 

standard errors for sample size 50. Results for variable 3Z  for 10% and 90% censoring are reported in the 

table. We observed that for all variables, the first and third quartiles for ratio of RBs do not contain 1 

when the sample size is small and the percentage of censoring is high. However, as expected, for large 
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samples and a small number of censored observations, the difference in RBs between the scaled and 

unscaled weights is small. 

 
Table 3.1 

Ratio of RBs in point estimates and standard errors for sample size 50 (variable 
3

Z )  
 

 Ratio of RBs in Point Estimates 

Design 90% Censored 10% Censored 

First Quartile Median Third Quartile First Quartile Median Third Quartile 

SRS  1.81 4.38 7.37 1.00 1.03 1.06 

PPS  3.36 5.73 11.54 0.99 1.03 1.08 

 Ratio of RBs in Standard Errors 

Design 90% Censored 10% Censored 

First Quartile Median Third Quartile First Quartile Median Third Quartile 

SRS  9.03 17.26 40.87 1.03 1.15 1.33 

PPS  5.57 12.13 29.92 1.00 1.15 1.33 

 
3.2  An application using NHEFS 
 

We studied the time to get a heart attack and its relation to blood cholesterol and smoking using a data 

set from NHEFS. 

The NHEFS is a national longitudinal survey in the United States that is used to determine the 

relationships between clinical, nutritional, and behavioral factors; to determine hospital utilizations; and to 

monitor changes in risk factors for an initial cohort that represents the NHANES I population. A cohort of 

size 14,407 was selected for the NHEFS. Vital and tracing status data, interview data, health care facility 

stay data, and mortality data from 1987 are available for public use. For more information about the 

survey and the data sets used in this section, see the Centers for Disease Control and Prevention’s website 

(https://www.cdc.gov/). 

We used 4,673 observations from 1987 NHEFS public-use interview data to study the occurrence of 

first heart attack for the 1987 survey population and its relation to blood cholesterol and smoking. The 

following variables are used:   

• Stratum, the stratum identification.  

• ObservationWeight, the sampling weight associated with each observation unit.  

• PSU, the primary sampling unit identification.  

• Age, the event-time variable, defined as follows:   

▪ age of the subject when the first heart attack was reported for subjects who 

reported a heart attack,  

▪ age of the subject as reported in the interview for subjects who never reported 

a heart attack.  

• HeartAttack, the heart attack indicator (1 = heart attack reported).  
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• Income, household income standardized to mean zero.  

• HighBloodChol, the indicator that a subject has a high or low blood cholesterol level.  

• Smoker, subject’s smoking habit (1 = current, 2 = former, –1 = non-smoker).  

• Race, the race of the subject (1 = black, 2 = white, 3 = other).  

• Gender, the gender of the subject.  

 

The SURVEYPHREG procedure in SAS/STAT (Mukhopadhyay, 2010) is used to fit a proportional 

hazards regression model for age on income, blood cholesterol, smoking habit, race, gender, and race and 

gender interaction. Heart attack is used as the censored indicator. Observation weights range from 1,164 to 

121,040 with mean 16,036.51, median 12,321, and coefficient of variation 74.35. The subjects are divided 

into 644 clusters and 35 strata. 

PROC SURVEYPHREG is used in this section instead of PROC PHREG because the NHEFS uses 

complex survey design involving stratification, clustering, and unequal weights. PROC SURVEYPHREG 

supports STRATA, CLUSTER, and WEIGHT statements to account for stratification, clustering, and 

unequal weights, respectively. In addition, PROC SURVEYPHREG supports both Taylor series 

linearization and jackknife variance estimation methods for survey data (Mukhopadhyay, 2010). We used 

the jackknife variance estimation method for this study. SAS statements to fit this model are given in 

Appendix 2. 

The 4,673 subjects in the sample represent almost 74.9 million individuals in the 1987 study 

population. Among all the subjects, 213 subjects reported at least one heart attack, and the other 4,460 

subjects are considered to be censored. The 213 event observations in the sample represent an estimated 

3.2 million population units, and the 4,460 censored observations in the sample represent an estimated 

71.7 million population units. There are 95.44% observations in the sample that have not reported a heart 

attack which estimates 95.68% individuals in the population (Table 3.2) without a heart attack. 

 
Table 3.2 

Number of censored and uncensored observations and their sum of weights 
 

   Total Event Censored Percent Censored 

Number of Observations  4,673 213 4,460 95.44 

Sum of Weights  74,938,614 3,239,653 71,698,961 95.68 

 
Without the Firth penalty, the Newton-Raphson optimization converges by satisfying the relative 

gradient convergence criterion (GCONV = 1E–8), but coefficients for the variables Smoker and Race do 

not converge. The coefficients for Smoker = 2 are 7.47, 10.87, and 11.83; and the coefficients for 

Race = 1 are 7.55, 10.95, and 11.17 in the last three iterations, respectively. This phenomenon is very 

common when you have a monotone likelihood (see Table 1.1). Among 644 replicate samples 
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(= 644 PSUs), monotone likelihood is observed in 542 replicates. Firth’s penalized likelihood is a good 

alternative when you encounter monotone likelihoods. 

We use the FIRTH option in PROC SURVEYPHREG (see “The SURVEYPHREG Procedure” in SAS 

Institute Inc. (2018)) to maximize Firth’s penalized likelihood. The FIRTH option in PROC 

SURVEYPHREG uses the scaled weights. The penalized likelihood optimization converges with 

GCONV = 1E–8, along with reasonable convergence in all coefficients. Convergence is also achieved in 

all 644 replicate samples with the Firth penalty. 

Table 3.3 displays the estimated hazards ratios along with their 95% Wald confidence intervals for 

blood cholesterol levels and smoking. In the 1987 study population, the estimated hazard of having a heart 

attack for a subject with low blood cholesterol is 0.6 times the estimated hazard of having a heart attack 

for a subject with high blood cholesterol. Because the 95% confidence interval does not contain 1, it is 

reasonable to conclude that the hazard of having a heart attack for a subject with low blood cholesterol is 

significantly lower than the hazard of having a heart attack for a subject with high blood cholesterol after 

adjusting for smoking, race, and other regressors in the 1987 study population. 

The estimated hazard ratios for nonsmokers, current smokers, and former smokers are 0.59, 0.64, and 

1.1, respectively. The estimated hazard for nonsmokers to have a heart attack is lower than the estimated 

hazard for current or former smokers. However, we do not have enough evidence to conclude that hazard 

ratios for smoking are significantly different at the 95% level after adjusting for blood cholesterol, race, 

and other regressors in the 1987 study population. 

 
Table 3.3 

Hazard ratios for blood cholesterol and smoking, and their 95% Wald confidence intervals 
 

   

Point Estimate 

Confidence Limit 

Lower Upper 

HighBloodChol 0 vs 1  0.643 0.469 0.882 

Smoker -1 vs 1  0.590 0.259 1.345 

Smoker -1 vs 2  0.641 0.361 1.140 

Smoker 1 vs 2  1.087 0.359 3.290 

 
4  Summary 
 

Firth’s penalized likelihood is useful for obtaining maximum likelihood estimates from a monotone 

likelihood from proportional hazards regression models. We proposed a weight scaling method and 

demonstrated that Firth’s penalized likelihood using the scaled weights have some desirable properties for 

complex surveys. A simulation study shows that estimated biases in point estimates and standard errors 

using the scaled weights are lower than estimated biases using the unscaled weights. Although Firth’s 

penalized likelihood produces “good” estimates in most simulated data sets, there are a few data sets in 

which the Firth penalty failed to produce “good” convergences. The Firth penalized likelihood that uses 
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scaled weights successfully corrected for a monotone likelihood when we estimated hazard rates for heart 

attacks using a data set from the NHEFS. Although the numeric results are quite encouraging, further 

research is needed to derive asymptotic distributions of the estimators obtained by using Firth’s penalized 

likelihood. 

We recommend the unpenalized likelihood when convergence is not an issue, but we recommend 

Firth’s penalized likelihood using the scaled weights when a monotone likelihood is encountered in fitting 

proportional hazards regression models for complex surveys. 
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Appendix 1 

 
Consistency of the Firth penalized likelihood estimator 
 

The estimators in Section 2 are defined as the solution to a system of equations that are constructed by 

using the score functions from proportional hazards regression models. In this appendix, we show that 

under certain regularity conditions these estimators are design consistent. Properties of estimators that are 

solutions to a set of estimating equations are well studied in the survey literature. For example, see Binder 

(1983), Godambe and Thompson (1986), and Fuller (2009, Section 1.3.4). 

However, the estimating equations for proportional hazards regression models are more complex than 

the estimating equations for generalized linear models because the score functions involve weighted sums 

over the sampled units. Binder (1992) and Lin (2000) showed that the estimators obtained by solving the 

estimating equations for proportional hazards regression models are consistent. In this appendix, we 

follow arguments similar to those of Lin (2000) and Andersen and Gill (1982). 

Several technical assumptions are necessary to show that the point estimates are consistent. We need 

assumptions about the estimating equations, the finite population, and the sample design ‒ to whit:   

• The functions defining the estimating equations should be smooth and convex.  

• The finite population should be such that the moments for population quantities that are 

used in defining the estimating equations exists.  

• The sample design should be such that the Narain-Horvitz-Thompson (NHT) estimators 

(Rao, 2005) for the population totals are well behaved.  
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All these assumptions are common in the sample survey literature; for example, see Fuller (2009). The 

score functions for proportional hazards regression models involve ratios of means of exponential 

functions that are infinitely differentiable. 

Let NU  and NF  denote, respectively, the index set and values for the thN  finite population in a 

sequence of populations indexed by ,N  and let NA  be a sample of size n  from .NU  To study large 

sample properties for sample-based estimators, we assume sequences of population and samples such that 

N →   and ( ) ,N n− →   keeping the sampling fraction, ,n
N

 fixed. 

Assume ( )( ) 
=1

= , , Z
N

N i i i i
t  F  is an independent random sample of size N  from the joint 

distribution of ( )( ), , Z ,T    where t  is the failure time or the censoring time, whichever is less; = 1  if 

the failure time is less than the censoring time and 0 otherwise; and ( )Z   is a vector of possibly time-

varying explanatory variables. 

Let β  be a set of regression parameters for the superpopulation that is defined by the joint distribution 

of ( )( ), , .T Z   Let Nβ  be a set of finite population parameters obtained by solving the estimating 

equations when all N  units in the population are observed, and let ˆ
Nβ  be an estimator of Nβ  that is 

obtained by solving the weighted estimating equations by using only the sampled units. Our objective is to 

show that ˆ
Nβ  approaches Nβ  and that they both approach β  as the sample size and population size 

increase. 

Consider the estimating equations that correspond to Firth’s penalized likelihood described in 

Section 2. For simplicity, we write these equations when there are no tied events. To further simplify 

notation, we write each component of the estimating equations separately. The finite population 

parameters, ,Nβ  are a solution to the penalized partial likelihood score function, ( ) =NU β  

( ) ( )( ), 1 ,, , ,N N PU U β β  where 
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where  

 ( ) ( ) ( ) ( )( ) ( ) 1, = exp
N

aa
i i i

i

S t N I t t t t
−



β β Z Z
U

  

 ( ) ( ) ( ) ( )( ) ( ) ( ) 1
,, = exp

N

aa
p i i i p i

i

Q t N I t t t Z t t
−



β β Z Z
U

  

and where = 0, 1, 2;a ( ) ( ) ( )( ), 1 ,= , , ;i i i pZ t Z t Z t  ( ) ( ) ( ) ( ) ( ) ( )1 1 1
1, = ( , , , , ) ;Pt S t S t S β β β ( )tr   

denotes the trace of a matrix; ( )I   denotes the indicator function; = 1, 2, , ;p P  and P  is the number 

of regression parameters. Note that ( ) ( ),aS tβ  and ( ) ( ),a
pQ tβ  depend on ,N  although the notation does 

not reflect this for reasons of simplicity. 

In defining the score function for the penalized likelihood, we assume that the information matrix for 

the finite population, ( ), ,NI tβ  is always positive definite. 

However, in any realistic situation, not all units in the finite population are available. Let a sample NA  

be selected by using a probability design that assigns a nonzero selection probability, ,i  to every unit in 

the population. Let 1=i iw  −  be the design weight. A sample-based estimator, ˆ ,Nβ  is obtained by solving 

the estimated penalized partial likelihood score equations. Assuming that N  is known, a sample-based 

estimator for ( )
,N pU β  is 
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are the NHT estimators for ( ) ( ),aS tβ  and ( ) ( ), ,a
pQ tβ  respectively. 

Because ( ) ( )ˆ ,aS tβ  and ( ) ( )ˆ ,a
pQ tβ  use weighted sums over sampled units, we need techniques 

defined in Lin (2000) to study large sample properties of these estimators. Define ( ) ( )= ,i i iG t I t t   
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and the sample-based score functions are 
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Note that the quantities ( )aS  and ( )a
pQ  are simply means over finite population quantities. Define the 

limits of these means as follows: 
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Thus the finite population score function, ( )
, ,N pU β  converges to the superpopulation score function 
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Now assume that the population quantities, ,iZ  that are used to define the score functions have finite 

moments and the sequence of sample designs is such that any smooth functions of NHT estimators are 

consistent. Because ( )
NU β  is a smooth function of population totals, and each total is estimated by using 

a NHT estimator, ( )ˆ
NU β  is design-consistent for ( ) .NU β  That is, ( ) ( )( ) ( )ˆ = 1 .N N NU U o−β β F  

Therefore, by using arguments similar to Lin (2000) and Andersen and Gill (1982), it can be shown that 

Nβ  and ˆ
Nβ  converge to the same limit. 

Because n N  is fixed, 
N

iA
w  is the NHT estimator for ,N  and ( )Û β  is a consistent estimator (not 

necessarily unbiased) of 0, both ( )Û β  and ( ) ( )ˆn N U β  converge to the same limit with the same order of 

convergence. It is straightforward to show that ( ) ( )ˆn N U β  and ( ) ( )ˆ ,
N

iA
n w U β  the estimating 

equations that use the scaled weights, have the same expectation. 
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Appendix 2 
 

SAS program to obtain the Firth penalized likelihood estimates 
 

The SAS statements at the end of this section fit a proportional hazards regression model using the 

scaled weights in Firth’s penalized likelihood. The PROC statement invokes the procedure, and the 

VARMETHOD = JK option requests the jackknife variance estimation method. You can also specify 

VARMETHOD = TAYLOR, VARMETHOD = BRR, or VARMETHOD = BOOT to request the Taylor 

series linearized, balanced repeated replication, or bootstrap replication variance estimation method, 

respectively. The DETAILS sub-option of the VARMETHOD = JK option prints estimates from each 

replicate sample along with the convergence status. The WEIGHT statement specifies the sampling 

weights, the STRATA statement specifies the strata, and the CLUSTER statement specifies the PSUs. The 

MODEL statement specifies the analysis model. The FIRTH option in the MODEL statement requests 

Firth’s penalized likelihood. The two HAZARDRATIO statements requests hazard ratios for blood 

cholesterol and smoking, respectively. The ODS OUTPUT statement stores replicate estimates and 

convergence status from each replicate in the SAS data set RepEstimatesFirth. This data set is useful for 

checking the convergence status of every replicate sample. 

 

proc surveyphreg data = NHEFS varmethod=jk (details); 

class Gender HighBloodChol Race Smoker; 

weight ObservationWeight; 

strata Stratum; 

cluster PSU; 

model EventTime*HeartAttack(2) = Income HighBloodChol 

Smoker Race Gender Race*Gender / firth; 

hazardratio HighBloodChol; 

hazardratio Smoker; 

ods output repestimates=RepEtimatesFirth; 

run; 
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Probability-proportional-to-size ranked-set sampling from 

stratified populations 

Omer Ozturk1 

Abstract 

This paper constructs a probability-proportional-to-size (PPS) ranked-set sample from a stratified population. A 

PPS-ranked-set sample partitions the units in a PPS sample into groups of similar observations. The 

construction of similar groups relies on relative positions (ranks) of units in small comparison sets. Hence, the 

ranks induce more structure (stratification) in the sample in addition to the data structure created by unequal 

selection probabilities in a PPS sample. This added data structure makes the PPS-ranked-set sample more 

informative then a PPS-sample. The stratified PPS-ranked-set sample is constructed by selecting a PPS-ranked-

set sample from each stratum population. The paper constructs unbiased estimators for the population mean, 

total and their variances. The new sampling design is applied to apple production data to estimate the total 

apple production in Turkey. 
 

Key Words: PPS sampling; Stratified PPS; Ranked-set sample; Sample allocation. 

 

 

1  Introduction 
 

In survey sampling studies, selection of a sampling design depends on the structure of the population. 

In this paper, we consider a population structure having two main features. It must contain a size variable 

X  and a variable of interest .Y  The values of the size variable should be approximately proportional to 

the values of the Y -variable, and the values of the X -variable should be available for all population units 

prior to sampling. The second feature of the population structure is that a small percentage of population 

units should produce extreme values in both the Y - and X -variables with different proportionality 

constants. These units usually produce larger means and variances than the rest of the units in the 

population in both the Y - and X -variables. This population structure is very common in practice. In 

agricultural sampling, a farm population in a state or country may contain two variables, the crop 

production Y  and the farm size X  in acres. Farms can be divided into two groups, the farms that have 

small/normal sizes and the mega-farms that have extremely large values in the X - and Y -variables. The 

percentage of the mega-farms would be small, but they may have larger means and variances in the Y - 

and X -variables and the proportionality constant between the Y - and X -values may be larger. 

The population structure in the Monthly Retail Trade Survey performed by the United States Census 

Bureau would be another example. In this case, the population is defined by the business establishments 

that have Employer Identification Numbers (EINs). The Census Bureau uses a very complex design in 

which the previous years’ annual revenues are used to construct a size variable. The structure of the 

population fits the setting we consider in this paper. Revenues from the previous years would be 

approximately proportional to the current revenues. The revenues for most of the businesses would take 

typical values, while revenues of a certain percentage of businesses would be extremely large, producing a 
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larger mean and variance and a different proportionality constant. Different proportionality constant may 

happen because large businesses may be more/less productive than the rest of the businesses. 

We provide a third example using apple production data in Turkey in 2002. The data set was collected 

by the Turkish Statistical Institute and reported in Kadilar and Cingi (2003) and Ozturk and Bayramoglu-

Kavlak (2018). It contains two variables, apple production ( )Y  (in 1,000kg) and the numbers of apple 

trees ( )X  in townships (or localities). The sampling units are the 851 localities in the data set. The X -

values in all townships are available in the sampling frame prior to sampling. Figure 1.1 provides the 

scatter plot of the Y - and X -values, where we see that the value of the Y -variable is an increasing 

function of the X -value. We also observe that red-colored points marked with “ ”X  in the plot have large 

values for both X - and Y -variables and their proportionality constant is different from the other points. 

Hence, this population fits into our population structure. 

The apple production data have additional structures. The entire population is stratified into seven 

different geographical regions: Marmara, Aegean, Mediterranean, Central Anatolia, Black Sea, Eastern 

Anatolia and Southeastern Anatolia. These regions have different climate patterns and apple production 

changes significantly from one region to another. The extreme observations marked with “ ”X  in 

Figure 1.1 come from the Marmara, Aegean, Mediterranean and Central Anatolia regions. This is a natural 

setting to construct a PPS-ranked-set sample from each sub-population. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1  Scatter plot of apple production. 
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The variable X  in our population setting provides information about the relative size of the units in 

the entire population. Since the variable Y  is approximately proportional to the variable ,X  the size of 

the unit indicates the importance of its contribution to the variable of interest .Y  Hence, important units 

should have higher probability of being included in the sample. Probability-proportional-to-size (PPS) 

sampling deliberately imposes higher selection probabilities for important units to produce unbiased and 

highly efficient estimators for the population mean and/or total. The main contribution of this paper is to 

introduce a new sampling design which combines the ranking information in a ranked-set sample (RSS) 

with the advantage of unequal selection probabilities as used in a PPS sample. 

A typical PPS sample contains the triplets ( ), , ,i i iY u = 1, , ,i n  where iY  and i  are the value of 

Y  and the selection probability of the unit iu  for each draw under sampling with replacement selection. 

Though PPS sampling can be done without replacement, here all references to PPS sampling refers to 

sampling with replacement. Readers may refer to Thompson (2002, page 53) for the details of PPS 

sampling. In a PPS sample, the size variable is not necessarily used directly in the construction of the 

estimators. On the other hand, the values of the X -variable are available for all population units even for 

the units not included in the PPS sample. Hence the X -variable could help us to borrow additional 

information from a comparison set of H  unmeasured units. 

For the construction of a typical data point ( ), ,i i iY u  in a PPS-ranked-set sample, we select H  units 

from the population using PPS sampling with replacement to form a comparison set  1 , , .Hu u  We 

rank these units without measurement based on the X -variable with no additional cost. We then measure 

the value of the Y -variable for only one unit, the unit having rank ,iR  obtaining      ( ), , ,
i i iR R RY u  where 

 iRY  and  iR  are the value of the Y -variable and the selection probability of the unit  iRu  at each draw. 

A data point in the comparison set,      ( ), , ,
i i iR RY u  provides more information than a data point in a PPS 

sample, ( ), , ,i i iY u  since the rank iR  borrows additional information from the other 1H −  unmeasured 

units in the comparison set. In this paper, we use this idea to construct a PPS-ranked-set sample that is 

more informative than a PPS sample. The details of this sampling procedure will be provided in Section 2. 

The position information is used in a slightly different context in ranked-set sample (RSS) and 

judgment-post-stratified (JPS) sampling designs to borrow information from the unmeasured population 

units. Construction of a ranked-set sample of size n  requires one to determine two integers d  and ,H  

= ,n dH  where H  and d  are the set and cycle sizes, respectively. The set size H  controls the amount 

of information that can be borrowed from the units in comparison sets. The cycle size d  is used to 

increase the total sample size in a RSS. Once H  and d  are chosen, one then selects nH  units from the 

population and partitions them into n  disjoint comparison sets, each having H  units. Units in each 

comparison set are ranked without measurement using the X -variable and the value of the Y -variable 

 ( ); = 1, ,h jY j d  associated with the thh  ranked X  is measured in d  different comparison sets, 

= 1, , .h H  The measured values   , = 1, , ; = 1, , ,h jY h H j d  are called a ranked-set sample. 

The construction of a JPS sample of size n  starts with a simple random sample of size n  and measures 

all of them, ,iY = 1, , .i n  For each measured unit in this sample, one then selects an additional 1H −  



246 Ozturk: Probability-proportional-to-size ranked-set sampling from stratified populations 

 

 
Statistics Canada, Catalogue No. 12-001-X 

units from the population to form a comparison set of size .H  The rank iR  of the measured unit iY  in 

each of these comparison sets is determined. The pairs of ( ), ,i iY R = 1, , ,i n  constitute a JPS sample. 

The RSS and JPS samples create induced order statistics for the Y -variable through the ranks of the 

X -variable in comparison sets. Hence, the random variable  h iY ( iY  given that =iR h  for the JPS 

sample) is stochastically smaller than the random variable  h j
Y  ( iY  given that = )jR h  for .h h  This 

stochastic ordering property induces an implicit stratification among the measured sample units. 

Efficiency improvements of RSS and JPS samples over a simple random sample can be anticipated from 

the partition of the total variation into between- and within-strata variation. For further details on these 

sampling designs, readers may refer to the review paper in Wolfe (2012) and references therein. Both RSS 

and JPS samples use the position information of the units in the comparison sets, but they do not 

completely use the information provided by the selection probabilities in a PPS sample. All units in 

comparison sets for RSS and JPS are selected with equal probabilities. Hence, they may not be appropriate 

for the population structure that we consider in this paper. 

MacEachern, Stasny and Wolfe (2004) introduced the JPS design in an infinite population setting. In a 

finite population setting, constructions of the JPS and RSS samples depend on whether the comparison 

sets are selected with or without replacement. Patil, Sinha and Taillie (1995) considered an RSS design in 

a finite population, where none of the units in a comparison set is returned to the population prior to 

selection of the next comparison set. Deshpande, Frey and Ozturk (2006) expanded the RSS sampling 

design with three different without replacement selection policies and constructed nonparametric 

confidence intervals for population quantiles. 

Probability sampling has also generated extensive research interest in RSS and JPS sampling. Al-Saleh 

and Samawi (2007), Ozdemir and Gokpinar (2007 and 2008), Gokpinar and Ozdemir (2010), Ozturk and 

Jafari Jozani (2013), Frey (2011) and Ozturk (2014) computed inclusion probabilities and constructed 

Horwitz-Thompson type estimators for the population mean and total based on a ranked-set sample. These 

research papers show that an RSS design yields a substantial amount of improvement in efficiency over 

the usual simple random sampling design. Ozturk (2016) developed estimators for the population mean 

based on a JPS sample, where he showed that the estimator needs a finite population correction factor 

similar to the one used in a simple random sample. 

A few researchers have applied the RSS methodology to existing survey sampling designs. Muttlak 

and McDonald (1992) incorporated the RSS sampling design with a line intersect method. Sroka (2008) 

used it in stratified sampling by constructing an RSS sample from each stratum. Wang, Lim and Stokes 

(2016) considered the RSS design in a cluster randomized design with a mixed effect model, where the 

cluster effect is treated as random. They showed that use of RSS at the cluster level has much bigger 

impact on efficiency than using the RSS at the within-cluster level. Nematollahi, Salehi and 

Aliakbari Saba (2008) used the RSS design in a finite population setting only in the second stage of a two-

stage sampling with replacement selection scheme. Since they use the RSS design only in the second stage 

with replacement, the efficiency improvement of their estimator with respect to a two-stage SRS sample 
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estimator was minimal. Sud and Mishra (2006) also used a two-stage cluster sample with ranked set 

sampling design in a finite population setting under the assumption that the cluster population sizes are all 

equal. Ozturk (2019a) developed design based statistical inference for a two-stage clustered ranked-set 

sample in a finite population setting. 

In this paper, we develop statistical inference for the PPS-ranked-set sampling design in a population 

setting where the values of the size variable are roughly proportional to the values of the variable of 

interest and a small percentage of population units produces large X - and Y -values with a different 

proportionality constant. We motivate the new sampling design using apple production data. Section 2 

introduces the PPS-ranked-set sample in a finite population setting. It constructs unbiased estimators for 

the population mean, total and their variances. We show that the PPS-ranked-set sample estimator has 

smaller variance than a PPS sample estimator. Section 3 extends the PPS-ranked-set sample to a stratified 

population and constructs unbiased estimators for the population mean, total and their variances. Section 4 

considers four different sample size allocation procedures to minimize the variance of the estimator under 

a cost model and different stratum population structures. Section 5 provides an efficiency comparison for 

the PPS-ranked-set sample estimator of the population mean with respect to other competing estimators. 

Section 6 illustrates the use of PPS-ranked-set sample data to estimate the apple production in Turkey. 

Section 7 provides some concluding remarks. All proofs are given in the Appendix. 

 

2  Probability-proportional-to-size ranked-set sample 
 

We consider a finite population of size ,N  1= , , .N
Nu uP  Assume that each unit in the 

population possesses two characteristics Y  and .X  The values of X  are available for all units and the 

values of Y  are roughly proportional to the values of .X  A small percentage of the population units may 

produce extreme values for both Y - and X -variables with a different proportionality constant. Let i  be 

the probability that the unit iu  is selected from ,NP  for each draw.  

 =i P  (unit iu  is selected from NP  under sampling with replacement selection for each draw),  

where i  is proportional to the size of X  for unit .iu  The values of the variable Y  in the population NP  

are denoted by 1 , , .Ny y  The mean and variance of this population are defined as  

 
=1

1
=

N

N k
k

y
N

   and ( )
2

2

=1

1
= .

N

N k N
k

y
N

 −   

We first briefly introduce the notation for a PPS sample. Let n  be the sample size. We consider a PPS 

sample, ( ), , ,i i iY u = 1, , ,i n  constructed from population NP  under a sampling with replacement 

selection scheme with selection probability .i  The probability mass function (PMF) and the cumulative 

distribution function (CDF) of the random variable iY  are given by  

 ( ) ( ) ( ) ( ) ( )
1=1 = =1

= = = = , = = .
yN N

i j j j j
j z y j

P Y y f y I y y F y I y z     
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We note that, since the sample units ,iu = 1, , ,i n  are selected with replacement, the ,iY = 1, , ,i n  

are independent and identically distributed. We now consider the order statistics ( ):h nY  in a sample of size 

.n  The CDF of the thh  order statistics in a sample of size n  is given by  

 

( ) ( ) ( ) ( ) 

( ) ( ) ( ) ( ) ( ) ( )

:

=

: : :

= 1

= ,

n
n r

r
h n

r h

h n h n h n

n
F y F y F y

r

f y F y F y

−

−

 
− 

 

−


 

(2.1)

 

where ( ) ( )
:h nF y −  is the left-limit at .y  

We now construct a PPS-ranked-set sample that combines the ranking information in comparison sets 

with the information provided by the selection probabilities in a PPS sample. Let H  be the set size. Using 

a PPS sampling design, we select H  units from the population with replacement to form a comparison set 

 1= , , HS u u  with selection probabilities,  
1
, , .

Hu u   Units in this set are ranked from the 

smallest to the largest based on the values of the size variable ,X  yielding       ( )( )*
1 1 1 1= , , , , ,S Y u X  

      ( )( ), , , ,H H H HY u X  where  hY  is the value of the Y -variable and  h  is the selection probability 

of the unit  hu  that correspond to the thh  smallest X ( )( )hX  in the set. The smallest ranked unit in set *S  

is selected and measured for the variable ,Y  1 ,Y  and its selection probability,  1 ,  is recorded. The 

remaining 1H −  units are not measured. They are used only to obtain the rank of 1u  based on ranking of 

the X - measurements. We construct another comparison set using a PPS sample and rank the units based 

on the X -variable. This time, we measure the Y -variable on the unit that corresponds to the second 

smallest X -value and record its selection probability,    ( )2 2, .Y   We continue constructing comparison 

sets and measuring the Y -variables until we have the measurement from the unit that corresponds to the 

largest X -value,    ( ), .H HY   The measured values    ( ), , = 1, , ,h hY h H  are called a cycle. To 

increase the sample size to = ,n Hd  the entire process is repeated for d  cycles. The measured values 

   , ,h j h jY  = 1, , ,h H = 1, ,j d  are called a PPS-ranked-set sample, where    ,h j h jY   are the Y -

measurement and selection probability of the unit  hu  that corresponds to the thh  smallest value of the X -

variable in the set h  and cycle .j  We refer to  h iY  as the induced thh  order statistic since its position is 

induced by the X -values in the set. We note that the induced order statistic  h iY  and induced ordered unit 

 h iu  are defined in comparison sets with set size .H  To simplify the notation we omit the set size H  and 

write    ;= ,h i h H iY Y    := .h i h H iu u  

The PPS-ranked-set sample is illustrated in Table 2.1 for the set size = 3H  and the cycle size = 2.d  

For each cycle, the table contains three comparison sets (rows). Each set has three units. The units in each 

set are ranked based on the X -variable. The units on the diagonal (bold faced) are measured for the 

values of the Y -variables, and their selection probabilities are recorded. The last column contains the 

measured values of the units in the PPS-ranked-set sample. Each measured data point in Table 2.1 

provides three pieces of information: (1) the value of ,Y  (2) the selection probability of the unit under 

sampling with replacement, and (3) the relative position of the unit in its comparison set. One can make an 
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intuitive comparison between the PPS-ranked-set sample and other sampling designs in the literature. For 

example, a simple random sample provides the information in item (1), a ranked-set sample provides the 

information in items (1) and (3), and a PPS sample provides the information in items (1) and (2). We 

anticipate (and show in Theorem 1) that the PPS-ranked-set sample is more informative than all three of 

these sampling designs, and therefore has smaller variance, since it provides the information in items (1), 

(2) and (3). 

 
Table 2.1 

Illustration of the PPS-ranked-set sample for the set size = 3H  and cycle size = 2d  
 

Cycle Set Ranked units in comparison sets Measurements 

1 1 
                 ( ) , , ,1 11 1 1 1

Y π X     ( ) 2 12 1 2 1, , ,Y X     ( ) 3 13 1 3 1, ,Y X     ( )1 1 1 1,Y   

2 
                 ( ) 1 11 1 1 1, , ,Y X     ( ) , , ,2 12 1 2 1

Y π X     ( ) 3 13 1 3 1, ,Y X     ( )2 1 2 1,Y   

3 
                 ( ) 1 11 1 1 1, , ,Y X     ( ) 2 12 1 2 1, , ,Y X     ( ) , , 3 13 1 3 1

Y π X     ( )3 1 3 1,Y   

2 1 
                 ( ) , , ,1 21 2 1 2

Y π X     ( ) 2 22 2 2 2, , ,Y X     ( ) 3 23 2 3 2, ,Y X     ( )1 2 1 2,Y   

2 
                 ( ) 1 21 2 1 2, , ,Y X     ( ) , , ,2 22 2 2 2

Y π X     ( ) 3 23 2 3 2, ,Y X     ( )2 2 2 2,Y   

3 
                 ( ) 1 21 2 1 2, , ,Y X     ( ) 2 22 2 2 2, , ,Y X     ( ) , , 3 23 2 3 2

Y π X     ( )3 2 3 2,Y   

 
We note that  1hY  is not necessarily the same as the Y -value of the unit having the thh  smallest Y -

value ( )( )1hY  since its rank is induced based on the size variable X . The square brackets are used to 

denote the possibility of within-set ranking error. If there is no ranking error, the square brackets are 

replaced with round parentheses. In this case ( )1hY  becomes the thh  order statistic in a set of size .H  

In a recent study, Ozturk (2019b) used the induced ranks post-experimentally in a PPS-judgment-post-

stratified sample. The key difference between a PPS-ranked-set sample and a PPS-judgment-post-

stratified sample is in the implementation of the ranking process. The ranks in a PPS-ranked-set sample 

are obtained prior to measurement of the Y -variable, but the ranks in a PPS-judgment-post-stratified 

sample are obtained post-experimentally after measuring the Y -variables in a PPS sample. 

Throughout the paper, our ranking procedure satisfies the consistency requirement  

 ( )   ( )
:

=1

HF = ,
H

h H
h

y F y  (2.2) 

where   ( )
:h HF y  is the CDF of   .h iY  The proof of equation (2.1) is provided in Presnell and Bohn (1999). 

The consistency in the ranking process indicates that the same ranking procedure, however imperfect it 

might be, is applied in all comparison sets. Hence, the equality in equation (2.1) holds for ranking methods 

that use the size variable .X  

We construct an estimator for the population mean from the PPS-ranked-set sample:  

 
 

 

PR ,
=1 =1

1
= .

H d
h i

N
h i h i

Y
Y

HdN 
   



250 Ozturk: Probability-proportional-to-size ranked-set sampling from stratified populations 

 

 
Statistics Canada, Catalogue No. 12-001-X 

An estimator for the population total is given by PR , PR ,= .N NT NY  The standard PPS estimator, often 

referred to as the Hansen-Hurwitz estimator, with sample size =n dH  has the same form as the estimator 

PR ,Y  but it does not use the ranking information:  

 ,
=1

1
= .

n
i

P N
i i

Y
Y

nN 
   

The variance of ,P NY  is given in standard text books to be (see, for example, Thompson, 2002, page 52) 

 ( )
,

2

12
,

2 2
=11

1 1
= Var = Var = .

P N

N
k

P N k NY
k k

Y y
Y N

nN nN
  

 

   
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   
   

 

Theorem 1. Let    ( ), ,h i h iY  = 1, , ,h H = 1, ,i d  be a PPS-ranked-set sample from population 

.NP  Under any consistent ranking scheme satisfying equation (2.1), the estimator ( )PR , PR ,N NY T  is 

unbiased for the population mean (total). Their variances are equal to 
PR ,

2

NY
  and 

PR ,

2

NT   

 

  ( )   ( )
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2
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2
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22 2 2
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where  
 

 
( )1

1: = h

h

Y

h H E


  and  
 

 
( )  

1

1

2
2 2

: := h

h

Y

h H h HE


 −  are the mean and variance of     .h i h iY   

 

We note that the last two expected values in Theorem 1 are computed using the randomization 

distribution. Theorem 1 shows that the estimator PR , NY  has always smaller variance than the variance of 

the mean of a PPS estimator as long as there is meaningful information to rank the sample units in a 

comparison set. For settings where the PPS sample is appropriate, ranking information would be available 

since the size variable X  is approximately proportional to the variable .Y  Hence, it provides reasonably 

accurate ranking for the units in the comparison sets. 

The probability mass function in Theorem 1,   ( ): ,kh Hf y  is given for perfect ranking as in equation 

(2.1). Under imperfect ranking,   ( ): kh Hf y  is the PMF of the induced order statistic  1,hY  and its form is 

not known. In the next theorem, we provide an unbiased estimator for 
PR ,

2

NY
 ( )

PR ,

2

NT  regardless of the 

quality of the ranking information.  

Theorem 2. Let    ( ), ,h i h iY  = 1, , ;h H = 1, , ,i d  be a PPS-ranked-set sample from population 

.NP  Under any consistent ranking scheme satisfying equation (2.1), unbiased estimators of 
PR ,

2

NY
  and 

PR ,

2

NT  are given by  

 ( )

 

 
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For moderately large sample sizes, we can use the normal approximation to provide approximate 

( )1 − 100% confidence intervals for the population mean and total, namely,  

 
PR , PR ,

2 2
PR, , 2 PR, , 2

ˆ ˆ, ,
N NN n H N n HY T

Y t T t  − −    

where ,n H at −  is the tha  upper quantile of a t-distribution having degrees of freedom = .df n H−  The 

=df n H−  is proposed to take into account the heterogeneity between judgment ranking classes. For 

smaller sample sizes, one can approximate the degrees of freedom using the Satterthwaite approximation. 

We now investigate the efficiency of the PPS-ranked-set sample estimator using several populations 

that fit the structure presented in Section 1. The finite populations are generated using the model below. 

I. For a fixed population size ,N  generate the size variable X  from an exponential distribution 

with mean 100 and order these N  random numbers from the smallest to the largest, 

( ) ( )1 < < ,Nx x  where ( )ix  is the thi  smallest value of the X -values.  

II. Let *N  be he largest integer such that ( )* 1 .N N  −  Generate the Y -values from either  

                

( )

( )

*

*

= 1, ,
=

= 1, , ,

ii

i

ii

x i N
y

x i N N



 

+


+ +
 (2.3) 

or  

                           

( ) ( )

( ) ( )

*

*

= 1, ,
=

= 1, , ,

ii i

i

ii i

x x i N
y

x x i N N

 
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+


+ +

 (2.4) 

where i  is generated from a normal distribution with mean zero and variance 1 and  iy  is 

the value of the Y -variable that corresponds to the value of ( ) .ix  

 

For a given integer ,N  this model generates N  pairs of ( ),Y X -measurements, for which the values 

of the Y -variable are proportional to the values of the X -variable. For the population units producing the 

largest ( )100 1 − % of the Y -values, the slope of the regression line between the Y - and X -variables is 

  times larger than the slope of the regression line for other units. The variance of the Y -variable is 

constant in model (2.3) and increases with the X -values in model (2.4). 

We performed a simulation study to investigate the efficiency of the PPS-ranked-set sample estimator. 

Finite populations of size =N 2,000 are generated from models (2.3) and (2.4). The slope parameter   is 

selected to be 2 or 3. The parameter   controls the correlation between the Y - and X -variables, 

( )= cor , ,X Y  and is selected to be = 3, 8, 20.  The parameter   controls the percentage of 

population units having a larger proportionality constant for the units with the extreme Y -values. We 

consider   values of 0.05, 0.10 and 0.20. For this population setting, we compare the efficiency of the 

PPS-ranked-set sample estimator with the PPS and ratio estimators of the population mean. The PPS with 

replacement samples were generated using the Lahiri (1951) method, which does not select any of the 

units with probability one from the population, and gives every unit in the population a positive 

probability of being selected in the sample. For each sample, the sample size is fixed at = ,n dH  with 
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= 5d  and = 5, 10.H  Relatively smaller sample sizes ( )= 25, 50n  are used to asses the small sample 

behaviors of the coverage probabilities of the confidence intervals of population mean. Simulation size is 

taken to be 20,000. Since the ratio estimator is not a design unbiased estimator, we use the mean squared 

error (MSE) of the ratio estimator to compare its efficiency with the PPS-ranked-set sample estimator. The 

MSE of the ratio estimator is computed as follows  

 ( )
20,000

2

, ,
=1

1
MSE = , = ,

20,000

i

R R i N R i X
i i

Y
Y Y

X
 −   

where 
iY  and 

iX  are the sample means of the Y - and X -variables, respectively, in the thi  iteration of 

the simulation, and X  is the population mean of the X -variable. 

 

Table 2.2 

Relative efficiency of the PPS-ranked-set sample estimator and coverage (COV) probability of the associated 

confidence interval for the population mean 
 

Constant variance model eq. 2.3 Increasing variance model, eq. 2.4 

      H  
PR ,

2

MSE

N

R

Y


 ,

PR ,

2

2

P N

N

Y

Y




 COV        H  

PR ,

2

MSE

N

R

Y


 ,

PR ,

2

2

P N

N

Y

Y




 COV  

2 0.05 0.933 5 5.385 1.657 0.939 2 0.05 0.918 5 3.335 1.348 0.949 

2 0.05 0.933 10 7.281 2.231 0.936 2 0.05 0.918 10 4.012 1.587 0.950 

2 0.05 0.932 5 4.338 1.523 0.945 2 0.05 0.844 5 1.607 1.090 0.950 

2 0.05 0.932 10 5.389 1.907 0.944 2 0.05 0.844 10 1.731 1.144 0.950 

2 0.05 0.926 5 2.093 1.235 0.952 2 0.05 0.611 5 1.128 1.018 0.947 

2 0.05 0.926 10 2.158 1.358 0.951 2 0.05 0.611 10 1.167 1.035 0.949 

2 0.10 0.951 5 5.136 1.900 0.930 2 0.10 0.939 5 3.404 1.533 0.952 

2 0.10 0.951 10 6.982 2.567 0.938 2 0.10 0.939 10 4.017 1.778 0.949 

2 0.10 0.951 5 4.283 1.748 0.941 2 0.10 0.875 5 1.660 1.157 0.952 

2 0.10 0.951 10 5.339 2.188 0.945 2 0.10 0.875 10 1.718 1.181 0.949 

2 0.10 0.946 5 2.227 1.372 0.953 2 0.10 0.648 5 1.134 1.040 0.950 

2 0.10 0.946 10 2.273 1.490 0.950 2 0.10 0.648 10 1.129 1.029 0.948 

2 0.20 0.975 5 4.005 1.989 0.939 2 0.20 0.965 5 2.888 1.631 0.948 

2 0.20 0.975 10 5.253 2.764 0.941 2 0.20 0.965 10 3.316 1.941 0.952 

2 0.20 0.974 5 3.419 1.843 0.942 2 0.20 0.911 5 1.581 1.210 0.950 

2 0.20 0.974 10 4.100 2.370 0.947 2 0.20 0.911 10 1.598 1.238 0.949 

2 0.20 0.970 5 1.873 1.442 0.950 2 0.20 0.711 5 1.151 1.067 0.951 

2 0.20 0.970 10 1.819 1.585 0.954 2 0.20 0.711 10 1.123 1.047 0.949 

3 0.05 0.873 5 5.560 1.679 0.936 3 0.05 0.867 5 4.700 1.551 0.945 

3 0.05 0.873 10 7.596 2.286 0.935 3 0.05 0.867 10 6.130 1.998 0.945 

3 0.05 0.873 5 5.220 1.636 0.940 3 0.05 0.832 5 2.697 1.253 0.950 

3 0.05 0.873 10 6.973 2.178 0.938 3 0.05 0.832 10 3.121 1.414 0.950 

3 0.05 0.870 5 3.862 1.462 0.947 3 0.05 0.687 5 1.416 1.062 0.949 

3 0.05 0.870 10 4.610 1.774 0.946 3 0.05 0.687 10 1.504 1.100 0.950 

3 0.10 0.914 5 5.274 1.924 0.926 3 0.10 0.909 5 4.601 1.786 0.944 

3 0.10 0.914 10 7.257 2.632 0.937 3 0.10 0.909 10 5.969 2.289 0.945 

3 0.10 0.914 5 5.005 1.877 0.934 3 0.10 0.880 5 2.791 1.402 0.953 

3 0.10 0.914 10 6.717 2.505 0.940 3 0.10 0.880 10 3.144 1.551 0.950 

3 0.10 0.912 5 3.875 1.674 0.945 3 0.10 0.747 5 1.451 1.111 0.951 

3 0.10 0.912 10 4.635 2.027 0.946 3 0.10 0.747 10 1.479 1.119 0.949 

3 0.20 0.957 5 4.090 2.009 0.936 3 0.20 0.953 5 3.694 1.886 0.944 

3 0.20 0.957 10 5.434 2.825 0.940 3 0.20 0.953 10 4.664 2.497 0.948 

3 0.20 0.957 5 3.919 1.968 0.940 3 0.20 0.929 5 2.446 1.490 0.950 

3 0.20 0.957 10 5.073 2.703 0.942 3 0.20 0.929 10 2.680 1.680 0.952 

3 0.20 0.956 5 3.125 1.768 0.946 3 0.20 0.815 5 1.414 1.155 0.950 

3 0.20 0.956 10 3.588 2.194 0.949 3 0.20 0.815 10 1.409 1.162 0.949 
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Table 2.2 presents the efficiency results and the coverage (COV) probabilities of the approximate 95%-

confidence intervals for the population mean based on the PPS-ranked-set sample mean. The efficiency 

results show that the PPS-ranked-set sample estimator has higher efficiencies than the PPS and ratio 

estimators for all simulation parameters in Table 2.2. The efficiency increases with each of the simulation 

parameters , ,H   for fixed values of all the other parameters. For example, in the constant variance 

model, for fixed values of = 2, = 0.05 and =H 5, the efficiency values with respect to the ratio and 

PPS estimators are 2.093 and 1.235 for = 0.926 and 5.385 and 1.657 for = 0.933, respectively. The 

same efficiency values in the increasing variance model are 1.128 and 1.018 for = 0.611 and 3.335 and 

1.348 for = 0.918, respectively. Similar observations can be made for other combination of simulation 

parameters. 

The coverage probabilities of the confidence intervals for the population mean are relatively close to 

the nominal coverage probability 0.95 for both the constant and increasing variance models. 

 
3  The PPS-ranked-set sample from stratified populations 
 

In this section, we construct a PPS-ranked-set sample from a stratified population. The entire 

population is divided into L  stratum populations,  1, ,= , , ,l

l

N
l N lu uP  where lN  is the population 

size for the thl  stratum population, = 1, , .l L  The stratum population means, variances and totals are 

given by  

 ( )
22

, ,
=1 =1

1 1
= , = , = , = 1, , ,

l l

l l l l

N N

N i l N i l N l l N
i il l

y y t N l L
N N

   −    

where ,i ly  is the value of Y  on unit ,i lu  in population .lNP  The mean, total and variance of the overall 

population are defined as follows  

 ( )
2

2
, ,

=1 =1 =1 =1

1 1
= , = , = ,

l lN NL L

N i l N N N i l N
l i l i

y t N y
N N

   −      

where 
=1

= .
L

ll
N N  The population total can be written as = .Nt N  From this stratified population, 

we construct the stratified-PPS-ranked-set (SPR) sample  

     , ,, , = 1, , ; = 1, , ; = 1, , ,l lh i l h i lY i d h H l L   

where ld  and lH  are the cycle and set sizes, respectively, in the stratum sample from population .l  Let 

=l l ln d H  be the sample size for stratum ,l = 1, , .l L  The estimators of the population mean and total 

are then given by  

 
 

 

,

SPR , PR ,
=1 =1 =1 =1 ,

1
= =

l l

l

H dL L
h i ll l

N N
l l h il l l h i l

YN N
Y Y

N N N H d 
      

and  

 SPR , SPR ,= .N NT NY   
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If one ignores ranking information and uses PPS sampling, the stratified-PPS sample can be written as  

  , ,, , = 1, , , = 1, , .i l i l lY i n l L   

The estimator of the population mean based on the stratified-PPS (SP) sample is given by  

 
,

SP, ,
=1 =1 =1 ,

1
= = .

l

l

nL L
i ll l

N P N
l l il l i l

YN N
Y Y

N N N n 
     

The variance of SP , NY  can be found in standard text books  

 
SP ,

2
2 2

2 2
,22 2

=1 =1 =1

1
= = .

l

l lN

NL L
l k l

k l N P NY
l k ll l k

N y N
N

N n N N
   



 
− 

 
    (3.1) 

The next theorem shows that SPR , NY  and SPR, NT  are unbiased estimators for the population mean and 

total, respectively.  

Theorem 3. Let     , ,, , = 1, , ; = 1, , ; = 1, , ,l lh i l h i lY i d h H l L  be a stratified-PPS-

ranked-set sample from a stratified population. Under any consistent ranking model satisfying equation 

(2.1), the estimators SPR , NY  and SPR, NT  are unbiased for the population mean ( )N  and total ( ) ,Nt  

respectively, and their variances are given by 
SPR ,

2

NY
  and 

SPR ,

2 ,
NT  

 
 ( )

SPR , PR , SP ,

SPR , SPR ,

2 2
2

2 2 2 2
, :22 2

=1 =1 =1

2 22

1
= =

= .

l

l llN N Nl

N N

HL L
l l

P N l Nh HY Y Y
l l hl l l

T Y

N N
N

N N N n H

N

     

 

 
− −  

 
  

  

 

The proof of Theorem 3 follows from Theorem 1. Theorem 3 indicates that the variance of the sample 

mean SPR , NY  based on a stratified-PPS-ranked-set sample is always less than or equal to the variance of 

the sample mean SP , NY  based on the stratified-PPS-sample for settings where PPS sampling is 

appropriate. 

From Theorem 2, an unbiased estimator for the variance 
SPR ,

2

NY
  is given by  

 
( )

 

 

 

 
SPR ,

2
2

, ,2

2 2 22
=1 =1 =1 , ,

1
ˆ = , > 1; = 1, , .

2 1

l l l

N

H d dL
h i l h j ll

lY
l h i j il l l l h i l h j l

Y YN
d l L

N d d H N


 

  
− 

−   
    

This unbiased variance estimator provides a way to construct an approximate confidence interval for the 

population mean ,N  namely,  

 
SPR ,SPR, , 2

ˆ ,
NN df Y

Y t     

where 
=1 =1

= .
L L

l ll l
df n H−   For smaller sample sizes, the degrees of freedom can also be 

approximated using the Satterthwaite approximation to adjust for the effect of unequal stratum population 

variances. A similar expression can be written for a confidence interval for the population total .Nt  
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4  Sample size determination 
 

One of the objectives of a stratified sampling design is to maximize the information content of the 

sample. Since our sampling design involves selecting samples from each one of the stratum populations, 

sample size allocation to strata populations becomes an important issue and has a big impact on the 

information content of the sample. We consider four different allocation methods: equal, proportional, 

Neyman and optimal allocation for a given cost model. The sample size allocation (as it relates to the 

efficiency of the estimator) depends very much on the cost structure of the sampling procedure and the 

magnitudes of the stratum-level variances. Hence, these four allocation procedures yield different 

efficiency results, since they try to minimize either the cost of sampling or the contribution of the stratum-

level variances. 

Note that the number of strata L  is fixed and the sample size for stratum population l  is .ln  For equal 

allocation, all stratum sample sizes are equal to ,ln n L = 1, , ,l L  where n  is the total sample size 

in the stratified-PPS-ranked-set sample. For proportional allocation, the sample size ln  is selected to be 

proportional to the stratum population size lN = 1, , ,l L  namely,  

 = , = 1, , .
l

l

N
n n l L

N
  

Once ln  is determined in this way, one can set =l l ld n H  for given set size .lH  For the setting where 

PPS sampling is appropriate, ranking in comparison sets is performed based on the size variable .X  Since 

the variable X  is proportional to the variable ,Y  we expect that the X - and Y -variables are highly 

correlated. Hence, we select a moderately large value for lH  for given ,ln  such as =lH 5, 6 or 10. 

Under proportional allocation, the variance of SPR , NY  is given by  

 ( )  SPR ,

2

2 2
:

=1 =1 =1

1
= = ,

l

lN

HL L
l

h HY
l h ll l l

P
NN nH NN n


     (4.1) 

where  
12 2

:=1
= .

l

ll

H

l h HH h
   

The Neyman allocation minimizes the variance of the estimator with respect to the sample size ln  

subject to the constraint that the sum of the stratum sample sizes equals .n  Using Lagrange multipliers one 

can show that  

 

=1

=
l

l L

ll

n
n




  

minimizes the variance of SPR , .NY  Under a Neyman allocation, the variance of SPR , NY  reduces to the 

simple form  

 ( )
SPR ,

=12

2
=1

= .
N

L
L

l ll

Y
l

N
N n

 



  (4.2) 

If the survey study has a budget constraint, the sample size allocation can be optimized by minimizing 

the variance of the estimator with a budgetary constraint in a cost function. A simple cost function for a 

stratified-PPS-ranked-set sample is given by  
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 ( )0
=1

= ,
L

T l l l
l

C C c r n+ +  (4.3) 

where TC  is the total cost, 0C  is the overhead cost, lc  is the cost of measuring a single observation from 

the stratum l  and lr  is the cost of ranking lH  observations in the comparison set in a stratum .l  For 

settings where PPS-ranked-set sampling is appropriate, we expect that lr  is either zero or very small. 

Under this cost function, the optimal allocation of the sample sizes is given by  

 

=1

= , = 1, , .
l l l

l L

l l ll

c r
n n l L

c r





+

+
  

Under the cost model (4.3), the variance of SPR , NY  is given by  

 ( )
SPR ,

=12

2
=1

= .
N

L
L

l l l l l ll

Y
l

c r c r
C

N n

 


+ +
   

We now compare the stratified-PPS-ranked-set sample estimator under the equal, proportional and 

Neyman allocation procedures. Under equal allocation, each stratum sample has the same sample size 

= ,ln n L = 1, , .l L  The variance of SPR , NY  under the equal allocation is given by  

 ( )
SPR ,

2

2

2
=1

= .
N

L
l

X
l

L
E

N n


   (4.4) 

The difference between the variances of SPR , NY  under the equal and proportional allocations can be 

written as  

 
2

2 2

, ,
=1

( ) ( ) = .
L

l l

Y Y
SPR N SPR N

l l

L N N
E P

Nn NN


 

− 
−  

 
  (4.5) 

We expect that this difference would be positive for settings where large stratum populations have large 

variances. In that case, a proportional allocation increases the sample size for a large stratum population to 

reduce the contribution from this stratum sample to the variance of the estimator. 

For Neyman allocation, we have  

 ( ) ( )  
SPR , SPR ,

22 2

2
=1

1
= 0

N N

L

lY Y
l

E N
N n
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and  
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where 22
. =1

= .
L

ll
L   As expected, Neyman allocation always yields a smaller variance than both 

equal and proportional allocations, but it requires that the variance of the induced order statistics are 

known prior to construction of the sample. For the setting where the set sizes lH H  for all stratum 

samples and the stratum population variances are known (or may be estimated) from previous studies, the 

Neyman allocation can be approximated as follows  

 

=1 =1

ˆ
= , = 1, , ,

ˆ

l

l

Nl

l L L

l Nl l

nn
n l L



 


 
  

where 2ˆ
lN  is the estimate of the variance, 2 ,

lN  of stratum population .l  

 
5  Efficiency comparison of the new sampling design and estimator 
 

In this section, we investigate the efficiency of the stratified-PPS-ranked-set sample estimators. We 

consider a stratified population with three strata ( )= 3 .L  To see the effects of the stratum population 

sizes and variances on the allocation procedures, we generated stratified populations with different 

population sizes and variances. For clarity of notation, we define the proportions of population sizes and 

variances as follows:  

 

=1 1

= , = , = 1, , .l

l Nl

l

Nl

N L L

l Nl l

N
p p l L

N





= 

  

We note that proportional and Neyman allocations select stratum sample sizes proportional to 
lNp  and 

,
Nl

p  respectively. 

In this part of the simulation, the population values of the Y - and X -variables are generated with a 

model different from the models in equations (2.3) and (2.4). For stratum population ,l  we generate 

( )* * *
1, ,= , ,

ll l N lX XX  from  

 ( )( )* 1
, = 1 ; 0.1 ; = 1, , ,i l lX F i N i N− +   

where ( );F   is the cumulative distribution function of the exponential distribution with mean 10 (rate 

= 0.1). To simplify construction of the values of the X -variable from the stratum population, we re-

scaled *
,i lX  by  

 
( )

*
,

,
*

= , = 1, , .
min

i l

i l l

l

X
X i N

X
  

The values of the variable Y  in the stratum population l  are generated from the quantiles of a normal 

distribution using the variable , ,i lX = 1, , .li N  We first compute  

 ( )( )1
, = 1 ; , ; = 1, , ,i l l l l lG i N i N  − +   

where ( ); ,G a b  is the CDF of a normal distribution with mean a  and standard deviation .b  The values of 

the Y -variable are then constructed from  
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 , , ,= , = 1, , .i l i l i l lY X i N   

In this construction, it is clear that the values of the Y -variable are proportional to the values of the X -

variable. Hence, use of the stratified-PPS-ranked-set sample would be appropriate. 

For the simulation study, the total population size ,N  the sample size n  and the location parameter 

( )= 1, 2, 3l l  are selected to be =N 700, =n 90, and =l 5, respectively. The values lN  and l  are 

varied to establish the values of 
lNp  and 

Nl

p  in Tables 5.1 and 5.2. For the first four rows, the 

population sizes and standard deviations are selected to be 1 =N 100, 2 =N 200, 3 =N 400 and 
1

=N 35, 

2
=N 10, 

3
=N 5, respectively. For the last four rows, the population sizes and standard deviations are 

selected as 1 =N 400, 2 =N 200, 3 =N 100 and 
1

=N 35, 
2

=N 10, 
3

=N 5, respectively. To make the 

comparison easier, the same set size H  ( )= 2, 3, 5, 6H  is used in all stratum populations for any 

combination of particular choices of 
lNp  and ,

Nl

p = 1, , .l L  

An unbiased estimator of the variance of the sample mean requires that 2,ld   for = 1, , .l L  In 

Neyman and proportional allocations, this assumption may not hold in certain stratum samples when 
lNp  

or 
Nl

p  is too small. In this case, we modified the Neyman and proportional allocations to make sure that 

2ld   by reducing the maximum ld  and increasing any ld  smaller than 2. These allocation procedures 

may not be optimal under this modification. 

 
Table 5.1 

Relative efficiencies of the stratified-PPS-sample (SP) with respect to the stratified-PPS-ranked-set (SPR) 

sample; E: Equal allocation; P: Proportional allocation; N: Neyman allocation 
 

 Proportion of 
l

N  Proportion of 2
N

l
  Efficiencies 

H  
1N

p  
2N

p  
3N

p  2

1N

p


 2

2N

p


 2

3N

p


 
( )

( )
SP

SPR

2

2

Y

Y

E

E




 

( )

( )
SP

SPR

2

2

Y

Y

P

P




 

( )

( )
SP

SPR

2

2

Y

Y

N

N




 

2 0.143 0.286 0.571 0.726 0.161 0.113 1.472 1.408 2.007 

3 0.143 0.286 0.571 0.726 0.161 0.113 1.927 1.850 2.627 

5 0.143 0.286 0.571 0.726 0.161 0.113 2.803 3.001 3.823 

6 0.143 0.286 0.571 0.726 0.161 0.113 3.229 3.059 4.402 

2 0.571 0.286 0.143 0.945 0.047 0.008 1.468 1.496 1.506 

3 0.571 0.286 0.143 0.945 0.047 0.008 1.915 1.917 1.965 

5 0.571 0.286 0.143 0.945 0.047 0.008 2.769 2.715 2.689 

6 0.571 0.286 0.143 0.945 0.047 0.008 3.180 3.358 2.440 

 
Table 5.1 presents the relative efficiencies of the stratified-PPS-ranked-set sample mean with respect to 

the stratified-PPS sample mean for the equal, proportional and Neyman allocation procedures. The 

efficiencies are computed using equations (3.1), (4.1), (4.2) and (4.4). It is clear that the stratified-PPS-

ranked-set sample mean has higher efficiency than the stratified-PPS sample mean for all allocation 

procedures. The efficiency improvement increases with the set size .H  
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Table 5.2 

Relative efficiencies of the stratified-PPS-ranked-set sample estimator with respect to Neyman allocation and 

the coverage probabilities of confidence intervals; E: Equal allocation; P: Proportional allocation; N: Neyman 

allocation 
 

 Proportion of 
l

N  Proportion of 2
N

l
  Efficiencies Coverage Prob 

H  
1N

p  
2N

p  
3N

p  2

1N

p


 2

2N

p


 2

3N

p


 
( )

( )
SPR

SPR

2

2

Y

Y

E

N




 

( )

( )
SPR

SPR

2

2

Y

Y

P

N




 Eq Prop Neyman 

2 0.143 0.286 0.571 0.726 0.161 0.113 1.021 1.358 0.951 0.947 0.946 

3 0.143 0.286 0.571 0.726 0.161 0.113 1.021 1.354 0.950 0.945 0.948 

5 0.143 0.286 0.571 0.726 0.161 0.113 1.021 1.214 0.949 0.950 0.953 

6 0.143 0.286 0.571 0.726 0.161 0.113 1.021 1.372 0.950 0.933 0.948 

2 0.571 0.286 0.143 0.945 0.047 0.008 2.327 1.357 0.941 0.947 0.945 

3 0.571 0.286 0.143 0.945 0.047 0.008 2.325 1.381 0.944 0.949 0.951 

5 0.571 0.286 0.143 0.945 0.047 0.008 2.201 1.334 0.939 0.946 0.949 

6 0.571 0.286 0.143 0.945 0.047 0.008 1.739 0.979 0.941 0.943 0.944 

 
Table 5.2 presents the efficiencies of the allocation procedures and the coverage probabilities of the 

approximate confidence interval for the population mean constructed from the stratified-PPS-ranked-set 

samples. Again the efficiencies are computed from the analytic expressions in equations (3.1), (4.1), (4.2) 

and (4.4), but the coverage probabilities are computed from a simulation study by generating 5,000 

stratified-PPS-rankek-set samples. The PPS samples are generated using the function ‘lahiri.design’ in the 

R-package SDaA, Verbeke (2014). Efficiencies of the equal and proportional allocations are compared 

with respect to the Neyman allocation. Since the Neyman allocation is optimal, we see that all entries, 

except 0.979 in the last row of column 9, are greater than 1, as expected. The reason that the proportional 

allocation is better than the Neyman allocation in the last row is that the Neyman allocation is modified. 

The Neyman allocation yields 1 2 3= 14, = 1, = 0.d d d  This allocation is modified to 1 2= 11, = 2,d d  

3 = 2d  so that the cycle size in each stratum sample is greater than 1. The proportional allocation in the 

last row did not need any modification. Since the Neyman allocation is no longer optimal in this case, it is 

not as efficient as the proportional allocation. 

Neyman allocation is always better than equal allocation even when we modify it for the cycle sizes. 

The efficiency of proportional allocation with respect to equal allocation can be obtained by dividing 

column 8 by column 9 in Table 5.2. If the ratio of the entries in column 8 and column 9 is greater than 1, 

proportional allocation is more efficient than equal allocation. 

It is clear that in the first 4 rows of Table 5.2, equal allocation is better than proportional allocation. In 

these populations, smaller stratum populations have larger variances. Hence, proportional allocation 

selects less data from the stratum having large variance and more data from the stratum having small 

variance. In the last four rows of Table 5.2, where large populations have large variances, proportional 

allocation has higher efficiency than equal allocation since it allocates larger sample sizes to strata with 

larger variances. These are consistent with the finding in equation (4.5), which indicates that proportional 

allocation is more efficient when large stratum populations have large variances. 
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The last three columns of Table 5.2 provide the coverage probabilities of the confidence intervals for 

the population mean for equal, proportional and Neyman allocation procedures. It is clear that all coverage 

probabilities are very close to the nominal coverage probability 0.95. 

 
6  Example 
 

In this section, we apply the stratified PPS-ranked-set sample design to apple production data. We 

considered that the apple production data provided by Turkish Statistical Institute is a finite population. 

The apple farms in this population are divided into seven different ( )= 7L  geographical regions. The 

farms in each region are considered a stratum population. Table 6.1 indicates that the population sizes 

( ) ,lN  means ( )
lN  and standard deviations ( )

lN  vary significantly. Hence, it is natural to use stratified 

sampling to reduce the sampling variation. Since the number of apple trees ( )X  in each township is 

available and the correlation coefficients ( )l  between the X - and Y -variables are relatively high in the 

stratum populations, the PPS-ranked-set sample in each stratum population would be a reasonable choice. 

 
Table 6.1 

Population characteristics of the apple production data (in tons, 1 ton = 1,000kg)  
 

Strata ( )l   
l

  
l

  
l

N  
l

  

Marmara ( )= 1l   1,536.8 6,425 106 0.816 

Aegean ( )= 2l  2,233.7 11,604.9 105 0.856 

Mediterranean ( )= 3l  9,384.31 29,907.5 94 0.901 

Black Sea ( )= 4l  967 2,389.7 204 0.713 

Central Anatolia ( )= 5l  5,588 28,643.4 171 0.986 

Eastern Anatolia ( )= 6l  631.4 1,171.1 103 0.885 

Southeastern Anatolia ( )= 7l  72.4 111.3 68 0.917 

 
We treated the apple production data as a stratified population and simulated stratified-PPS-ranked-set 

(SPR) samples for sample size =n 210 and set sizes = 2, 3, 5, 6.H  In order to compare the SPR with 

the competitor sampling designs, we also generated samples using stratified simple random sample 

(SSRS) and stratified-PPS (SP) sample. Samples are selected with the equal (E), proportional (P) and 

Neyman (N) allocation procedures in all three sampling designs. 

For Neyman and proportional allocations, whenever the stratum cycle size ld  is less than 2, the 

Neyman and proportional allocations are modified by changing all < 2ld  to 2 and reducing the 

maximum ld  so that the total sample size still equals .n  This modification allows us to obtain an unbiased 

estimator for the variance of the stratified-PPS-ranked-set sample mean. 
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Table 6.2 

The relative efficiencies of the stratified SRS, PPS and PPS-ranked-set sample designs and the coverage 

probabilities of the approximate confidence interval for the population mean of the apple production data; E: 

Equal allocation; P: Proportional allocation; N: Neyman allocation 
 

 Stratified SRS Stratified PPS Stratified PPS-RSS Coverage Prob 

H  
( )

( )
SSRS

SPR

2

2

Y

Y

E

E




 

( )

( )
SSRS

SPR

2

2

Y

Y

P

P




 

( )

( )
SSRS

SPR

2

2

Y

Y

N

N




 

( )

( )
SP

SPR

2

2

Y

Y

E

E




 

( )

( )
SP

SPR

2

2

Y

Y

P

P




 

( )

( )
SP

SPR

2

2

Y

Y

N

N




 

( )

( )
SPR

SPR

2

2

Y

Y

E

N




 

( )

( )
SPR

SPR

2

2

Y

Y

P

N




 Equ. Prop. Neyman 

2 1.139 1.154 1.321 1.143 1.158 1.259 1.777 1.901 0.943 0.939 0.948 

3 1.254 1.251 1.447 1.243 1.243 1.351 1.759 1.872 0.945 0.943 0.952 

5 1.399 1.371 1.464 1.399 1.470 1.326 1.566 1.668 0.947 0.942 0.949 

6 1.475 1.454 1.434 1.437 1.435 1.294 1.434 1.580 0.944 0.938 0.947 

 

Table 6.2 provides the relative efficiencies of the PPS-ranked-set sample mean with respect to other 

competing estimators. These entries are obtained from a simulation of 10,000 replications. It is clear that 

the SPR sample mean is more efficient than both SSRS and SP sample means for all allocation 

procedures. Efficiencies in general increase with the set size H  when the stratum cycle sizes 

( )= > 1l ld n H  are not too small (H  is not large). When H  is large, the Neyman allocation is 

modified to make sure that 2.ld   In this case, the modified Neyman allocation loses its optimality 

properties, but it is still better than the other allocation procedures. 

In Section 4, we observed that if the large populations have large variances, proportional allocation is 

better than equal allocation. Table 6.1 indicates that some of the smaller stratum populations have very 

large variances. For example, the population in the Mediterranean region (the second smallest population) 

has 94 farms, but its standard deviation is the largest among the 7 stratum populations. Hence, the 

efficiencies of the proportional and equal allocations in the SSRS and SP samples appear to be the same 

with respect to the SPR samples (columns 2, 3 for SSRS and columns 5, 6 for SP). 

For the stratified-PPS-ranked-set sample, Neyman allocation provides a substantial amount of 

improvement over the equal and proportional allocations. The efficiency improvement is a deceasing 

function of the set size ,H  but this reduction is due to the use of the modified Neyman allocation for large 

set sizes (i.e, small ).ld  

In the stratified-PPS-ranked-set sample, equal allocation is more efficient than proportional allocation. 

This can be seen from the ratio of columns 8 and 9. If we divide column 8 by column 9, all entries would 

be less than 1, which indicates that equal allocation has smaller variance than proportional allocation. This 

is again consistent with equation (4.5), which shows that equal allocation is better if the large stratum 

populations have small variances. 

Table 6.2 also provides the coverage probabilities of approximate 95% confidence intervals for the 

population mean. It is clear that the coverage probabilities for all allocation procedures are very close to 

the nominal coverage probability of 0.95. 

 

7  Concluding remarks 
 

A probability-proportional-to-size sampling provides highly efficient estimators for the population 

mean and total when there exists a size measure for every unit in the population. The size measure 
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contains significant information about the importance of each unit being included in the sample. It also 

provides important information about the relative position (rank) of the population units. Combining these 

two pieces of information in a meaningful way leads to a new sampling design, the stratified-PPS-ranked-

set sampling. The stratified-PPS-ranked-set sampling combines the efficiency gains of the probability 

sampling and the position (rank) information of the sample unit in a comparison set. 

We constructed unbiased estimators for the population mean, total and their variances. The sample size 

allocation to each stratum plays a significance role in the efficiency of the estimators. The choice of the 

sample size allocation depends on sampling cost, stratum population sizes and variances. If the larger 

populations have larger variances, proportional allocation works reasonably well. The new sampling 

design is applied to an apple production data in a stratified population. 

 

Appendix 
 

Proof of Theorem 1: We first note that    ( ), ,h i h iY  = 1, , ,i d  are iid random variables. We then 

write  

 

( )
 

 

 ( )

  ( )   ( )

11

PR ,
=1 =1 =11

: :
=1 =1 =1 =1

=1 1
= =

1 1
= = .

H H N
khh

N k
h h k kh

H N N H
k k

k kh H h H
h k k hk k

P Y yY
E Y dE dy

dHN dHN

y y
f y f y

HN HN

 

 

 
 
 

  

   

  

Using the consistency of the ranking procedure in equation (2.1), we write  

 ( ) ( ) ( )PR ,
=1 =1 =1 =1

1 1 1
= = = = = .

N N N N
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N k j k j k N
k k j kk k

y y
E Y Hf y I y y y

HN N N
 

 

   
   
   

      

 

For the proof of the variance, consider  
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 
 

      
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

 

 

(A.1)

 

Again using the consistency of the within-set ranking procedure in equation (2.1), we write  

 

 

 
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2 2 2

1 1 1 1

2 2 2 2
=1 1 1 11

2
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1 1 1 1
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We now insert this result in equation (A.1) and write  

 

( ) ( )  

( )  ( )

( )

22
PR , PPS :

2
=1

2
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2

=1
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1
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1
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N N h H
h

H

Nh H
h

Y Y n
nHN

Y N
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Y

 

 

+ −

− −





   

This completes the proof. 

Proof of Theorem 2: It is easy to see that  
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Semi-automated classification for multi-label open-ended 

questions 

Hyukjun Gweon, Matthias Schonlau and Marika Wenemark1 

Abstract 

In surveys, text answers from open-ended questions are important because they allow respondents to provide 

more information without constraints. When classifying open-ended questions automatically using supervised 

learning, often the accuracy is not high enough. Alternatively, a semi-automated classification strategy can be 

considered: answers in the easy-to-classify group are classified automatically, answers in the hard-to-classify 

group are classified manually. This paper presents a semi-automated classification method for multi-label open-

ended questions where text answers may be associated with multiple classes simultaneously. The proposed 

method effectively combines multiple probabilistic classifier chains while avoiding prohibitive computational 

costs. The performance evaluation on three different data sets demonstrates the effectiveness of the proposed 

method. 
 

Key Words: Semi-automated classification; Open-ended questions; Multi-label data. 

 

 

1  Introduction 
 

Open-ended questions in surveys are often manually classified into different class or categories. When 

data are large, manual classification is time consuming and expensive in the sense that it requires 

professional human coders with sufficient knowledge. At the same time, analyzing the text answers from 

open-ended questions is important because they do not constrain respondents’ answers and thus may give 

more accurate information than closed-ended questions (Schonlau and Couper, 2016). 

The advance of statistical learning techniques can be used for automatic classification for text data 

from open-ended questions. A statistical learning model such as Support Vector Machines (SVM) 

(Vapnik, 2000) and Random Forests (Breiman, 2001) may be trained based on training data and used to 

predict new data. Analyzing text data from open-ended questions with statistical learning methods has 

received increasing attention in social sciences (Matthews, Kyriakopoulos and Holcekova, 2018; Ye, 

Medway and Kelley, 2018). 

While the use of statistical learning methods reduces the total cost for the coding task, fully automated 

classification for open-ended questions remains challenging. It is often difficult to achieve an overall 

classification accuracy as high as the accuracy that can be achieved by human coders and with a 

classification accuracy which is acceptable to use for research purposes. Semi-automated classification 

uses statistical approaches to partially automated classification in that easy-to-classify answers are 

categorized automatically and hard-to-classify answers are categorized manually. (Gweon, Schonlau, 

Kaczmirek, Blohm and Steiner, 2017; Schonlau and Couper, 2016). 

Answers to open-ended questions are often associated with multiple categories simultaneously. In the 

community of machine learning, this type of data is referred to as multi-label data. This is different from 
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the traditional multi-class data where a text answer can only belong to a single class or label. Recently, 

Schonlau, Gweon and Wenemark (2019) evaluated the use of existing machine learning algorithms for 

fully automated coding of multi-label open-ended questions. 

This paper focuses on semi-automated classification for multi-labelled text data from open-ended 

questions. As far as we are aware, there is no published work on semi-automated classification for multi-

label data. Most of the previous work on semi-automated classification deal with multi-class data. Also 

most research in machine learning that analyzes multi-label data assumes fully automated classification. In 

this paper we consider existing algorithms for multi-label data that may be suitable for semi-automatic 

classification. We also propose a new method to improve the classification performance of existing 

methods in the specific context of multi-label semi-automatic classification. This is illustrated with three 

examples of multi-labelled text data from open-ended questions. We show that the proposed method can 

achieve a higher accuracy than Binary Relevance, Label Powerset, and Probabilistic Classifier Chains 

(Dembczyński, Cheng and Hüllermeier, 2010) for semi-automated classification. 

The rest of this paper is organized as follows: In Section 2, we review elements of semi-automated 

classification for open-ended questions. In Section 3, we review approaches to multi-label classification. 

In Section 4, we present the details of the proposed approach. In Section 5, we evaluate the proposed 

method as well as other commonly used algorithms based on multi-label text data from open-ended 

questions. In Section 6, we conclude with a discussion. 

 
2  Semi-automated classification for text data 
 

This section describes how text answers to open ended-questions are converted into ngram variables 

and how a learning algorithm is evaluated in semi-automated classification. 

 
2.1  Converting text answers into ngram variables 
 

To use text answers as the input features for a learning algorithm, we may transform the original texts 

into a different representation using text mining approaches. A common transformation approach is to 

create indicator variables, each of which indicates the presence or absence of a certain word (unigram) or 

a short word sequence (bigram, or more generally, ngram variables) (Sebastiani, 2002; Schonlau, 

Guenther and Sucholutsky, 2017). Applying this technique, we may convert any text answer into a vector 

in which each element is binary and corresponds to a word (or a word sequence). Instead of indicator 

variables, variables containing word frequency can also be used (Manning, Raghavan and Schütze, 2008; 

Guenther and Schonlau, 2016). 

Typically, there are several thousands of ngram variables including redundant words. We may reduce 

the number of ngram variables by applying some preprocessing techniques such as stemming (i.e., 

reducing words to their grammatical root) and thresholding (i.e., removing words occurred less than a 
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certain time) and removing very common words (stopwords) (Manning et al., 2008; Guenther and 

Schonlau, 2016). 

 
2.2  Production rate 
 

Semi-automated classification requires a score or a probability that shows a level of confidence about 

the prediction. A threshold on that score or probability divides the text answers into easy-to-classify and 

hard-to-classify texts. All new text answers with high scores above a threshold may be categorized 

automatically and all others are categorized manually. The threshold is a user-specified value and can be 

set depending on the combination of desired prediction accuracy in the easy-to-classify group and the 

acceptable number of difficult-to-classify answers that need manual coding. The production rate refers to 

as the fraction of text answers that belong to the easy-to-classify group. That is, the production rate is the 

proportion of observations that can be categorized automatically. In general, production rate and accuracy 

are inversely related. If we chose a low production rate, only the easiest answers will be in the easy-to-

classify group and the accuracy of the automatic classification will be high. If we increase the production 

rate, more complicated answers will be automatically classified and accuracy will tend to decrease. 

For multi-label data, the definition of accuracy is no longer obvious. Evaluation measures for multi-

label data are discussed in Section 3.1. 

 
3  Multi-label classification 
 

Consider a set of possible output labels  1, 2, , .L=L  In multi-label classification, each instance 

with a feature vector dx R  is associated with a subset of these labels. Equivalently, the subset can be 

described as ( )1 2= , , , ,Ly y yY  where = 1iy  if label i  is associated with the instance, and = 0iy  

otherwise. A multi-label classifier h  learns from training data to predict ( ) ( )1 2
ˆ ˆ ˆ ˆ= = , , , Ly y yh x Y  

for a given .x  

Next, we review some common multi-label algorithms and their relationship to an evaluation criterion, 

subset accuracy. 

 
3.1  Evaluating multi-label algorithms in semi-automated classification 
 

Evaluating the classification of a text answer into a single label is straightforward: the label is either 

correct or not and accuracy refers to the percentage of correctly classified answers; equivalently, error 

refers to the percentage of misclassified answers. For answers that are classified into multiple labels, there 

are several ways to combine the accuracy of each single label to an overall evaluation measure for the set 

of multiple labels. These evaluation measures include subset accuracy, Hamming loss, F-measure and log 

loss. For a predicted set of multiple labels, subset accuracy is 1 if all of the L  labels are correctly 

predicted and 0 otherwise. Hamming loss evaluates the fraction of misclassified labels. F-measure is the 
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harmonic mean of precision and recall and log loss evaluates the uncertainty of the prediction averaged 

over the labels when a probability score for each label is given. 

In this paper we develop a methodology for subset accuracy (equivalently, in terms of loss, 0/1 loss). 

This is a strict metric because a zero score is given even if all labels are correctly classified except one. 

However, subset accuracy is appropriate for semi-automated classification because if an algorithm has 

difficulty classifying even a single label, the entire observation needs to be manually classified. That is, 

automated classification shall be conducted only if the model is highly confident in the entire predicted 

label set. 

Because subset accuracy requires that all labels are simultaneously correctly classified, we are 

interested in finding the label set *Y  that maximizes the joint probability conditional on a text answer :x  

 ( ) ( )*
1= argmax = argmax , , .LY P P y yY YY x x   

In the next section we discuss common approaches to estimating the joint probability proposed in the 

machine learning community. 

 
3.2  Multi-label approaches that optimize subset accuracy 
 

Various approaches have been proposed for predicting multi-label outcomes. Since we use subset 

accuracy as the evaluation measure, we focus on methods that aim to maximize the joint conditional 

distribution. 

The simplest approach, called Binary Relevance (BR), transforms a multi-label problem into separate 

binary problems. That is, BR constructs a binary classification model for each label independently. For an 

unseen observation, the prediction set of labels is obtained simply by combining the individual binary 

results. In other words, the predicted label set is the union of the results predicted from the L  binary 

models. If each of the binary models produces probability outcomes, BR can produce an estimate for 

( ) ( ) ( )1 2 .LP y P y P yx x x  Note that this coincides with the joint probability ( )1 , , LP y y x  if the 

labels are independent (conditional on ).x  This implies that the product of the probabilities obtained by 

BR will estimate ( )1 , , LP y y x  accurately only if the labels are conditionally independent. The joint 

probability may be inaccurate if the labels are substantially correlated given .x  

Another approach tailored for subset accuracy is Label Powerset learning (LP). This approach 

transforms a multi-label classification into a multi-class (i.e., multinomial) problem by treating each 

unique label set Y  that exists in the training data as a single class. For example, when 3L =  there could 

be up to 32  classes ,ic ( )= 1, , 8i  observed in the training data. Then any algorithm for multi-class 

problems can be applied using the transformed ic  classes. Training a multi-class classifier takes into 

consideration dependencies between labels. For a new observation, LP predicts the most probable class 

(i.e., the most probable label set). If an algorithm for multi-class data gives probabilistic outputs (some 

algorithms classify without computing probabilities), LP directly estimates the class probabilities (i.e., the 
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joint probability ( )).P Y x  However, this approach cannot estimate the joint probability for any label set 

unseen in the training data. As a consequence, if the true label set of the new observation is an unseen 

observation the prediction cannot be correct. Another drawback of LP is that the number of classes in the 

transformed problem can increase exponentially (up to 2 L  number of classes). This can be problematic 

when L is large since each combination of labels may be present in just one or a few observations in the 

training data which makes the learning process difficult. 

A third approach to multi-label learning is Classifier Chains (CC) (Read, Pfahringer, Holmes and 

Frank, 2009, 2011). As in binary relevance, in CC also a binary model is fit for each label. However, CC 

fits the binary models sequentially and uses the binary label results obtained from previous models as 

additional predictors in subsequent models. That is, the model for the thi  label iy  uses x  and 1 1, , iy y −  

as features. (For example, the model for 1y  uses x  as features, the model for 2y  uses x  and 1y  as 

features and so on.) Passing label information between binary classifiers allows CC to take label 

dependencies into account. In the prediction stage, CC successively predicts the labels one at a time. The 

prediction results of the previous labels are used for predicting the next label in the chain. 

This idea is extended to Probabilistic Classifier Chains (PCC) (Dembczyński et al., 2010). PCC 

explains CC using a probabilistic model. Specifically, the conditional joint distribution can be described as  

 ( ) ( ) ( )1 1 1 1
=2

, ..., = , , ,
L

L j j
j

P y y P y P y y y −x x x  (3.1) 

and PCC estimates the probabilities ( ) ( ) ( )1 2 1 1 2 1, , , , , , , , .L LP y P y y P y y y y −x x x  

PCC finds the label set that maximizes the right hand side of equation (3.1). However, there is no 

closed-form solution for finding the label set. A few different solutions have been suggested. 

Dembczyński et al. (2010) used an exhaustive search (ES) that considers all possible combinations. 

However, an exhaustive search may not be practical when L  is large, because the number of possible 

combinations ( )2L  increases exponentially. To overcome this problem, optimization strategies based on 

the uniform cost search (UCS) (Dembczyński, Waegeman and Hüllermeier, 2012) and the *A  algorithm 

(Mena, Montañés, Quevedo and Del Coz, 2015) have been proposed. First, the estimated joint conditional 

probability may be represented by a probability binary tree. Then a search algorithm finds the optimal path 

(in our case, the path that gives the highest joint probability) from the root and the terminal node. 

Compared with ES, UCS substantially reduces the computational cost for PCC to reach the label set with 

the highest joint probability (Dembczyński et al., 2012). 

In theory, when applying the product rule, the order of the categories 1 , , Ly y  does not matter. For 

example, both ( ) ( )1 2 1 ,P y P y yx x  and ( ) ( )2 1 2 ,P y P y y xx  equal to ( )1 2, .P y y x  In practice, the 

two chains may lead to different estimates. This means the performance of PCC may be affected by the 

order of the labels in the chain. 

To alleviate the influence of the category order, an ensembling approach (EPCC) (Dembczyński et al., 

2010) that combines multiple probabilistic chains has been proposed. First m  PCC models are trained 
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where each PCC model is based on a randomized order of the labels. In the prediction stage, the average 

conditional joint probability over the m  PCC models is computed for each possible label set. Then the 

predicted label set is the label set with the highest average predicted probability. Let ( )ˆ
jP Y x  be the 

conditional joint probability estimated by the thj  PCC model. The ensemble strategy predicts the label set 

Ŷ  such that  

 
( )

=1
ˆ

ˆ = argmax .

m

jj
P

m


Y

Y x
Y   

Note that EPCC does not combine the predicted label sets but conditional joint probabilities. To find the 

highest average probability from m  PCC models, all individual probabilities are required and this forces 

us to use ES to compute the conditional joint probability for all 2 L  label combinations from all m  PCC 

models. Hence, although EPCC reduces the problem of influence of label order, the method will not be 

useful if the problem deals with a large number of labels or when m  is large. To reduce the computational 

cost for combining multiple PCC models, we propose a new approach to ensembling the PCC models in 

the next section. 

 
4  The majority-voted-based ensemble of PCC for semi-automated 

classification 
 

The proposed method aims to ensemble multiple PCC models at much less computational cost. As 

mentioned in Section 3.2, the best label set (with the highest joint probability) for a single PCC can be 

found by a fast search strategy. In this paper, we use UCS, since the implementation is simple and the 

algorithm always finds the optimal solution. Using UCS, the proposed method obtains ˆ
jY ( )= 1, , ,j m  

the label set predicted by the thj  PCC model and ˆ ,jP  the estimated probability that ˆ
jY  is the true label 

set. Among the m  predicted label sets, the proposed method chooses the most frequent label set for the 

final prediction. That is,  ( )
1

ˆ ˆ ˆ= mode , , .mY Y Y  In case there are ties in the mode, we choose the label 

set whose averaged probability estimate is the highest. 

Semi-automatic classification requires a score that measures how easy/hard the prediction is. Whether 

a text answer is classified automatically or manually is determined based on this score. Next, a score is 

proposed: Let J  be the set that contains all indices j ( )1 j m   for which ˆ
jY  is the most frequent one 

 ( )ˆ ˆi.e., = : = .jJ j Y Y  The proposed score for the prediction is  

          
ˆ

=
ji J

P J

J m
 

   
       


 (4.1) 

 
ˆ

= .
ji J

P

m


 (4.2) 
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The first factor of equation (4.1) is the average joint probability of the predicted label set. The second 

factor of equation (4.1) is the fraction of the PCC models that predict the predicted label set among the m  

models. Multiplying the two components makes sense: a prediction may be more accurate if the (average) 

probability related to the chosen label set is high (the first factor) and more individual chain models vote 

for the same label set (the second component). We call this approach Majority-vote-based Ensemble of 

Probabilistic Classifier Chains (MEPCC). We later show empirically that combining the two factors 

indeed improves performance over just using a single factor. Table 4.1 illustrates an example for 5 labels 

( )5L =  and 7 PCC models ( )7 .m =  The MEPCC approach stores the probability of one label set from 

each PCC model. Because MEPCC combines over the probabilities corresponding to the best label set 

from different PCC models, MEPCC can take advantage of the UCS (or any other) strategy. Note that a 

search strategy like UCS cannot be used for EPCC where all individual probabilities for all label 

combinations are required. More succinctly, MEPCC combines over the maximal probabilities of each 

PCC, whereas EPCC maximizes over the average probabilities, requiring evaluation of all individual 

probabilities. We summarize the procedure of MEPCC in Algorithm 1. 

 

Table 4.1 

An example of the MEPCC classification of a single observation with = 5L  and = 7m  
 

PCC model Prediction 1
y  

2
y  

3
y  

4
y  

5
y  

1 5
( , , x)P y y  

1 1Ŷ  1 1 0 0 1 0.875 

2 2Ŷ  1 1 0 0 1 0.921 

3 3Ŷ  0 0 1 1 0 0.743 

4 4Ŷ  0 0 0 1 0 0.882 

5 5Ŷ  0 0 0 1 0 0.643 

6 6Ŷ  0 1 0 1 0 0.739 

7 7Ŷ  1 1 0 0 1 0.824 

final prediction Ŷ  1 1 0 0 1 
0.875 0.921 0.824

= = 0.374
7


+ +

 

 
 

Algorithm 1. The MEPCC algorithm 

Input: Number of models ,m  an instance vector ,x  corresponding PCC models ,jh  the uniform cost search algorithm U  

for = 1j  to m  do 

 (a) Using jh  and ,U  obtain ( )ˆ = argmaxj PYY Y x  

 (b) Store ( )ˆ ˆ=j jP P Y x  

end for 

Obtain the label set  ( )
1

ˆ ˆ ˆ= mode , , mY Y Y  

Obtain  ˆ ˆ= : =jJ j Y Y  

Obtain the score 
ˆ

=
ji J

P

m
 

 

Return Ŷ  and   
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5  Experiments 

 
5.1  Data 
 

We evaluated the performance of the MEPCC algorithm on three different data sets: Civil 

disobedience, Immigrant and Happy data (the Happy data are available upon request by contacting Marika 

Wenemark marika.wenemark@liu.se. The Immigrant and Civil Disobedience data are available from the 

GESIS Datorium http://dx.doi.org/10.7802/1795). For each data set, an open-ended question was asked to 

the respondents and their answers have been coded manually with possibly multiple labels. 

The Civil data set was collected to study cross-cultural equivalence about Civil disobedience. Behr, 

Braun, Kaczmirek and Bandilla (2014) first asked respondents a closed-ended question from the ISSP 

(ISSP Research Group, 2012) How important is it that citizens may engage in acts of Civil disobedience 

when they oppose government actions? (Not at all important 1 − Very important 7). The respondents were 

then asked: What ideas do you associate with the phrase “Civil disobedience”? Please give examples. 

Answers were classified into 12 labels: non-productive, violence, disturbances, peaceful, listing activities, 

breadth of actions, breaking law, breaking rules, government:dissatisfaction, government:deep rift, 

copy/paste from the Internet, other. The survey data were collected in different languages and we use a 

merged data set (Spanish, German and Danish) that contains 1,029 observations. 

The Immigrant data set was collected to study cross-national equivalence of measures of xenophobia. 

In the 2003 International Social Survey Program (ISSP) on National Identity, the questionnaire contained 

four statements regarding beliefs on Immigrants such as Immigrants take jobs from people who were born 

in Germany. After rating each statement, respondents were asked to answer to an open-ended question: 

Which type of Immigrants were you thinking of when you answered the question? The previous statement 

was: [text of the corresponding item]. Braun, Behr and Kaczmirek (2013) classified answers into 14 

labels: non-productive, positive, negative, neutral/work, general, Muslim countries, eastern European, 

Asia, ex-Yugoslavia, EU15, sub Sahara, Sinti/Roma, legal/illegal, other. In this article, we use 1,006 

observations from the German survey. 

The Happy data set was collected to study the relationship between positive factors and mental health 

and care needs. Wenemark, Borgstedt-Risberg, Garvin, Dahlin, Jusufbegovic, Gamme, Johansson and 

Bjrn (2018) asked respondents “Name some positive things in your life, that are uplifting or make you 

Happy: (you may write several things)”. Answers were classified into 13 labels: nothing, relationships 

(family or romantic), working/studying, health, self-esteem, joy/happiness, well-being: 

drinking/eating/drugs/sex, spirituality, money, nature, hobbies, culture, and exercise. The data set contains 

2,350 observations. 

Table 5.1 contains summary statistics about the three data sets. 
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Table 5.1 

Summary statistics of data sets: number of total observations, features and labels and average number of 

relevant labels, and percentage of observations that are associated with more than one label | | > 1
(P )

L  
 

Data #  observations #  features L av. #  of labels | | > 1
P

L  

Civil 1,029 305 12 1.15 13.80% 

Immigrant 1,006 273 14 1.19 13.72% 

Happy 2,350 492 13 2.77 87.40% 

 
5.2  Experimental setup 
 

We compared the proposed MEPCC method against BR and LP and PCC. For PCC, we used the 

uniform search to reach a predicted label set and the estimated probability of equation (3.1) for the 

confidence score of the prediction. EPCC was not included in the comparison because its computational 

cost makes it infeasible for prediction for our data sets. (In our experiment on the Immigrant data with 14 

labels, running the exhaustive search for PCC ( )1m =  for a single prediction took a single computer 

(Intel Core i7 CPU with 8GB RAM) over 30 minutes. This implies that predicting 200 observations using 

EPCC ( )10m =  would take more than 1,000 hours.) Support vector machines (SVM) (Vapnik, 2000) 

were used as the base classifier on unscaled variables with a linear kernel and tuning parameter = 1.C  

For probabilistic output, the SVM scores were converted into probabilities using Platt’s method (Platt, 

2000). The analysis was conducted in R  (R Core Team, 2014) using the 1071e  package (Meyer, 

Dimitriadou, Hornik, Weingessel and Leisch, 2014) for SVM. 

For each data set, 5-fold cross validation (CV) was performed. That is, we randomly divided the data 

into five equal-sized parts and used the first four parts as the training data and the last part as the test data. 

Performance evaluation is only made on the test data. Each of the five parts were used as test data and the 

results were averaged. 

 
5.3  Performance of the MEPCC approach 
 

We first investigated the performance of the MEPCC. The score in equation (4.1) has two components. 

To demonstrate that both components are helpful, we evaluate the proposed score as well as two different 

scores where one of the components is missing. That is, we compared the MEPCC with three different 

scores , 1  and 2:  

                   (MEPCC) =
ji J

J

J m
 

   
       

 P
  

      (MEPCC  11) =
ji J

J
 

 
−   

 

 P
  

      (MEPCC 
22) = .

J

m


 
−  

 
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Prioritizing the text answers based on 2  results in many ties. The tied answers were randomly reordered 

to be able to calculate subset accuracy at each production rate. Figure 5.1 shows the subset accuracy of 

each approach as a function of the production rate. The text answers with higher scores were classified 

first. For example, production rate 0.2 means only 20% of the test data with the highest scores were 

classified automatically by the models. When the production rate equals 1, there was no difference 

between the MEPCC models because the predicted label sets are always the same. The difference is how 

they prioritize the text answers from the easiest-to-classify to the hardest-to-classify answers. When the 

production rate was less than 1, MEPCC outperformed MEPCC-1 and MEPCC-2 for all three data. The 

results show that both components in equation (4.1) were helpful for prioritizing the observations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Subset accuracy of three variations on MEPCC as a function of production rate. 
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5.4  Effect of the number of PCC models 
 

We then investigated to what extent the number of PCC models affects the predictive performance of 

MEPCC. Figure 5.2 shows the performance of MEPCC for different number of PCC models ( ) .m  When 

m  was low, increasing m  led to huge improvement of the subset accuracy of MEPCC. However, once 

there were enough PCC models (e.g., 10),m =  adding more PCC models did not improve the subset 

accuracy. The empirical results show that MEPCC does not require many PCC models for performing 

well. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 The effect of the number of PCC models (m) used for MEPCC. 
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highest score. MEPCC used   as a score, while each of the other approaches used the probability of the 

predicted label set estimated by that method. Note when = 1,m  MEPCC and PCC are identical; the score 

  coincides with the probability of the label set predicted by PCC. 

Figures 5.3 and 5.4 illustrate the respective subset accuracy and Hamming loss for the different 

methods as a function of the production rate on the Happy, Immigrant and Civil data. For the Immigrant 

and Happy data, the highest subset accuracy at most production rates was obtained by MEPCC. For the 

Civil data, MEPCC and LP performed the best. In terms of Hamming loss, MEPCC achieved the lowest 

error at most production rates for all data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Semi-automated result (subset accuracy) for the three data from the 5-fold cross validation. 
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Figure 5.4 Semi-automated result (Hamming loss) for the three data from the 5-fold cross validation. 
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be classified manually. For example, if the client decides that at least 80% accuracy is required for 

automated classification, then approximately 39.3% of the Civil data, 42.5% of the Immigrant data, and 

27.6% of the Happy data can be classified automatically by MEPCC with subset accuracy 0.891, 0.916 

and 0.857, respectively. Note that this is a huge improvement compared to applying BR that could only 

automatically classify 9.3% of the Civil data, 12.8% of the Immigrant data, and 8.7% of the Happy data 

with lower subset accuracies. Table 5.3 shows the relationship between predicted and actual accuracy by 

aggregating to ranges of predictions for each method and data set. For MEPCC the actual accuracy is 

within the range of the predicted accuracy in most cases, much better than for the other methods. 

 
Table 5.2  

Semi-automated result for the three data at different decision thresholds. P represents the percentage of 

automated predictions and SA represents the subset accuracy for the automated prediction results 
 

Data Threshold 
BR LP PCC MEPCC 

P SA P SA P SA P SA 

Civil 0.9 0.7% 0.667 16.5% 0.967 0.0% NA 13.0% 0.978 

 0.8 9.3% 0.893 34.3% 0.898 15.1% 0.787 39.3% 0.891 

 0.7 18.4% 0.846 46.6% 0.852 36.4% 0.817 45.8% 0.860 

 0.6 25.4% 0.768 50.6% 0.831 52.1% 0.771 52.9% 0.820 

Immigrant 0.9 3.7% 0.858 11.1% 0.959 1.3% 0.558 31.5% 0.947 

 0.8 12.8% 0.779 30.4% 0.890 27.7% 0.859 42.5% 0.916 

 0.7 26.6% 0.743 38.6% 0.863 42.4% 0.829 55.1% 0.862 

 0.6 41.7% 0.715 53.6% 0.806 50.5% 0.795 62.7% 0.839 

Happy 0.9 1.3% 0.592 8.9% 0.850 0.1% 0.750 1.0% 0.830 

 0.8 8.7% 0.734 14.3% 0.802 7.2% 0.726 27.6% 0.857 

 0.7 32.8% 0.776 17.7% 0.793 29.9% 0.767 43.7% 0.817 

 0.6 53.2% 0.745 22.2% 0.761 49.2% 0.744 52.0% 0.790 

 
Table 5.3 

Semi-automated result for the three data at different ranges of thresholds. P represents the percentage of 

automated predictions and SA represents the subset accuracy for the automated prediction results 
 

Data 
Predicted 

accuracy 

BR LP PCC MEPCC 

P SA P SA P SA P SA 

Civil  0.9, 1.0  0.7% 0.667 16.5% 0.967 0.0% NA 13.0% 0.978 

  )0.8, 0.9  8.7% 0.896 17.8% 0.834 15.1% 0.787 26.2% 0.846 

  )0.7, 0.8  9.0% 0.769 12.2% 0.710 21.3% 0.828 6.5% 0.681 

  )0.6, 0.7  7.0% 0.566 4.1% 0.584 15.7% 0.655 7.1% 0.563 

Immigrant  0.9, 1.0  3.7% 0.858 11.1% 0.959 1.3% 0.558 31.5% 0.947 

  )0.8, 0.9  9.1% 0.750 19.3% 0.843 26.4% 0.869 11.0% 0.829 

  )0.7, 0.8  13.8% 0.710 8.2% 0.747 14.7% 0.757 12.5% 0.688 

  )0.6, 0.7  15.1% 0.602 15.0% 0.659 8.1% 0.623 7.7% 0.670 

Happy  0.9, 1.0  1.3% 0.592 8.9% 0.850 0.1% 0.750 1.0% 0.830 

  )0.8, 0.9  7.4% 0.755 5.4% 0.717 7.1% 0.730 26.5% 0.858 

  )0.7, 0.8  24.0% 0.792 3.4% 0.751 22.7% 0.779 16.2% 0.749 

  )0.6, 0.7  20.4% 0.693 4.6% 0.615 19.3% 0.703 8.3% 0.647 
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Table 5.4 shows the runtime of each method for training the model and predicting all instances in test 

data (Intel Core i7 CPU with 8GB RAM). Unsurprisingly, the runtime of MEPCC at = 10m  is roughly 

10 times of that of PCC in both of the training and prediction stages. 

 
Table 5.4 

Runtime (in seconds) of each method for the three data 
 

Data Stage BR LP PCC MEPCC 

Civil Train 1.688 0.641 1.128 11.787 

 Prediction 0.269 0.044 37.142 374.611 

Immigrant Train 1.363 0.510 0.894 8.724 

 Prediction 0.200 0.056 35.369 334.075 

Happy Train 11.160 16.164 7.371 78.293 

 Prediction 0.567 3.691 177.847 1,746.529 

 
6  Discussion 
 

Using three examples, we have investigated several approaches for automated classification for any 

desired production rate when data are multi-labeled. In terms of subset accuracy and Hamming loss, the 

proposed method, MEPCC, achieved the best performance at most production rates in all three data sets. 

There were trade-offs between the prediction performance and the production rate for all methods. At 

low production rates, high subset accuracy and low Hamming loss were achieved for a small number of 

easy-to-classify answers. However, accuracy (loss) tended to decrease (increase) as more difficult answers 

were included (i.e., production rate increased). 

Either subset accuracy or production rate can be set at a target rate which determines the second 

measure. For example, targeting 80% minimum subset accuracy for an automated prediction, MEPCC 

categorizes 39.3% of the Civil data, 42.5% of the Immigrant data, and 27.6% of the Happy data 

automatically. Such a reduction is considerable. In an applied research environment, reducing the need for 

manual coding in a data set with 5,000 observations, a reduction by 50% may save several weeks of 

coding time. If production rate is fix at 80%, MEPCC could achieve a subset accuracy of 70% (Civil), 

75% (Immigrant), and 68% (Happy). 

The Hamming loss represents the fraction of misclassified labels. Figure 5.4 shows that the 

improvement of MEPCC over BR was quite noticeable at lower production rates but relatively small at 

100% production rate. 

MEPCC outperformed PCC at most production rates on all three data. This shows that combining 

multiple PCC models substantially improves the performance. As can be seen from Figure 5.2, even 

combining 5 models resulted in a substantial improvement throughout the whole range of production rate. 

The difference tended to be greater at lower production rates. This means MEPCC is even more preferred 

for semi-automated classification, where a high accuracy is required rather than a high production rate. 

The performance of MEPCC converged as m  increased in all three data sets. The difference between the 
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MEPCC models were negligibly small when should be an equation was larger than 10. This is a desirable 

result in practice because employing too many PCC models for an ensemble model is unnecessary. 

For all three data we found that the proposed method was not sensitive to the choice of the search 

algorithm for each PCC model (results and figures not shown). That is, the classification results of 

MEPCC with the uniform cost search were similar to those with the greedy search. While the proposed 

method uses the uniform cost search, the greedy approach may also be considered especially when the fast 

prediction time matters. 

Figure 5.3 shows LP beats BR for the Civil and Immigrant data sets and BR beats LP for the Happy 

data set with respect to subset accuracy. We see two reasons: 1) LP performed well when the number of 

unique label sets was relatively small (Civil: 39, Immigrant: 59). However, the performance of LP was not 

effective but less well for the Happy data where the number of unique label sets was large (346). 2) BR 

does not take into account correlations among the labels. BR beat LP where bivariate label correlation 

were low (Happy data) and LP beat BR where bivariate label correlations were larger (Civil and 

Immigrant Data). Compared to BR and LP, MEPCC seems to be robust to those aspects (the number of 

unique label sets and the magnitude of label correlations). 

The semi-automatic procedure introduced here works best in repeated survey questions where results 

from previous waves have been labeled or for one-off questions where the sample size is large. How large 

should the training data be? We have used 5-fold cross-validation to evaluate the algorithm, but cross-

validation is not appropriate in a production environment. If the question was asked in a previous wave, 

train the algorithm on all labeled data from all previous waves. If not, set a “sufficiently large” number of 

texts aside for labeling and training, and use the semi-automatic procedure on the remainder of the data. 

How large “sufficiently large” is depends on the task at hand. For single labeling tasks we have found that 

often 500 training samples are sufficient (Schonlau and Couper, 2016). There is a tradeoff: a larger data 

set predicts more accurately but also reduces the scope for time savings as fewer unlabeled observations 

remain. Under reasonable assumptions, Schonlau and Couper (2016) suggested human coding time 

savings for a single-label semi-automatic coding procedure attempting to code 1,000 (9,500) texts might 

be 14 (133) hours. 133 hours is equivalent to 16.6 eight-hour working days. Whether those time savings 

are large enough to warrant implementation of a semi-automatic procedure may be best decided with 

knowledge of the specific task and in the context of the specific production environment. 

If some label combinations cannot occur in individual data sets, such constraints on label combinations 

may be added. For example, for the Happy data, if the label “nothing” is turned on all other labels must be 

turned off. Knowing that “nothing” is incompatible with other labels requires some domain expertise. It 

would be straightforward to modify the algorithm to accommodate this constraint. Of course, all methods 

except BR already exploit dependencies between labels; implementing this constraint may not affect 

performance very much. We did not implement such constraints in this article to avoid the appearance of 

the algorithms heavily relying on the constraints. 

Limitations of this work include that the experimental study was conducted using three text data sets 

only. While there is no guarantee that performance will be equally good on other data sets, data used in 
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this paper consider different topics in different languages, which increases the appeal of MEPCC. Also, all 

of the multi-label algorithms in this article used the same base learner (SVM) for classification. While 

SVM is one of the best performing approaches, other learning methods that produce probability outcomes 

could be chosen. 

In conclusion, we investigated semi-automated classification for open-ended questions when the data 

are multi-labelled using existing multi-label algorithms. We have proposed a new algorithm for semi-

automatic classification that effectively combines multiple PCC models. The experimental results on three 

different example data show that the proposed approach outperforms BR, LP and PCC in terms of subset 

accuracy and Hamming loss at most production rates. Although we focused on survey data from open-

ended questions, the proposed approach can also be applied to other types of multi-label data when semi-

automated classification is desired. A comprehensive analysis encompassing a variety of data in the 

context of semi-automated classification deserves further investigation. 
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