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Estimation and inference of domain means subject to
gualitative constraints

Cristian Oliva-Aviles, Mary C. Meyer and Jean D. Opsomer?

Abstract

In many large-scale surveys, estimates are produced for numerous small domains defined by cross-
classifications of demographic, geographic and other variables. Even though the overall sample size of such
surveys might be very large, samples sizes for domains are sometimes too small for reliable estimation. We
propose an improved estimation approach that is applicable when “natural” or qualitative relationships (such as
orderings or other inequality constraints) can be formulated for the domain means at the population level. We
stay within a design-based inferential framework but impose constraints representing these relationships on the
sample-based estimates. The resulting constrained domain estimator is shown to be design consistent and
asymptotically normally distributed as long as the constraints are asymptotically satisfied at the population
level. The estimator and its associated variance estimator are readily implemented in practice. The applicability
of the method is illustrated on data from the 2015 U.S. National Survey of College Graduates.

Key Words: Design-based estimation; Monotone estimation; National Survey of College Graduates.

1 Introduction

For many large-scale surveys, a goal is to produce estimates for a large number of domains, many of
which might have small sample size. These domains are typically created by cross-classifying categorical
variables such as demographic, geographic or other similar characteristics of interest. For instance, the
U.S. Current Population Survey releases estimates for domains defined by sex, age, race and/or
educational attainment. Similarly, the U.S. American Community Survey produces detailed estimates by
sex, age, race/ethnicity for different levels of geography (depending on the release). In another example
we will discuss further below, the U.S. National Survey of College Graduates is interested in estimates
defined by crossing level and field of degree, occupation and gender. Depending on the survey program,
such “granular” estimates are often as important as the higher-level or population estimates.

However, although the overall sample size of such surveys might be very large, samples sizes for
numerous domains are often too small for reliable estimates. One possible approach to avoid this problem
could be to aggregate small domains into bigger scales so that more reliable direct estimators can be
produced for those scales, leading to the generation of more aggregated information than the actual
desired scale. An alternative to producing small domain estimates could be changing from a design-based
to a model-based estimation methodology such as small area models. While that is certainly a statistically
valid approach for creating precise estimates at small scales, it is labor-intensive and sensitive to potential
model misspecification. It also replaces the sampling error by model error, so that the mode of inference
changes. For those reasons, statistical agencies prefer to stay within the design-based approach, which
offers robustness and also allows to stay with the standard mode of inference for surveys.

1. Cristian Oliva-Aviles, Genentech, Inc.; Mary C. Meyer, Colorado State University; Jean D. Opsomer, Westat, Inc. E-mail:
jopsomer@mac.com.
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In this paper, we present an estimation approach that is applicable when “natural” or qualitative
relationships are expected to hold among the domain means at the population level. These relationships
can be used to stabilize the sample domain estimates, while staying within the design-based mode of
estimation and inference. The type of relationships we are considering here lead to inequalities among
population domain means. For instance, certain job types might be expected to receive better salaries than
others, or individuals with graduate degrees in a given discipline are expected to have higher salaries than
those without graduate degrees in that discipline. However, given that small domains tend to produce
estimates with high variability, such expected population-level relationships are often violated at the
sample level. While such violations should be expected by data users due to statistical variability, they
might lead them to question the overall reliability of the survey, by producing “absurd” estimates.

There is a large literature in survey statistics related to calibrating survey estimates, see e.g. Sarndal,
Swensson and Wretman (1992) for an overview. While these estimators also rely on constraints, there are
important differences, including the fact that the constraints are equality constraints and that they are
applied to the survey weights, not the estimates themselves. While we do not explore this here, it would be
possible to combine calibration and constrained estimation, since the latter could use calibrated domain
estimates as the starting point for constructing constrained domain estimates. In the model-based setting,
Rueda and Lombardia (2012) adapted methods in small area estimation for the case of monotonically
ordered domain means.

Recently, Wu, Meyer and Opsomer (2016) proposed a domain mean estimation methodology that
relies on the assumption of monotone population domain means along a single domain-defining
categorical variable (e.g., age classes). By combining the monotonicity information of domain means and
design-based estimators in the estimation stage, they proposed a constrained estimator that respects the
monotone assumption. Such an estimator was shown to improve precision and variability of domain mean
estimates in comparison with direct estimators, given that the assumption of monotonicity is reasonable.

We generalize this work here by allowing a much larger class of constraints between domain means,
applicable to the multi-dimensional setting. Many other types of constraints beyond monotonicity may be
expected to hold between population domain means in real surveys, especially in the presence of domains
defined by the cross-classifications of many categorical variables. In general, any set of linear inequality
constraints can be represented through a constraint matrix, where each row defines a constraint and each
column a domain mean. For illustration of a constraint matrix, suppose the variable of interest is the
annual average salary of faculty in land-grant universities of a certain size. Further, consider domains
generated from the cross-classification of the variables job position (x,; 1 = Untenured and 2 = Tenured)
and three specific departments (X,; 1 = Anthropology, 2 = English and 3 = Engineering). Under the
assumptions that, on average within a discipline, tenured faculty have higher salaries than untenured
faculty; and that, within tenured and untenured, Engineering faculty members are expected to have higher
salaries than those in either the Anthropology or English departments, then we can express the
corresponding restrictions as,
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-1 10 0 00
0 0-1 100
0 00 0-11
Ap > 0, where =(-1 0 0 0 10}, (1.0)
0 0-10 10
0-1 00 01
0 00-101

0= (fyy, Hoys Mips Moy Hyzs Hag) > With ; representing the mean of the domain that corresponds to
X, =1 and x, = j;0 being the zero vector, and the inequality being element-wise. This paper
describes a new constrained estimator for population domain means that respect constraints that can be
expressed with matrix inequalities of the form given in (1.1). By combining design-based domain mean
estimators with these shape constraints, we propose a broadly applicable estimator that improves precision
and variability of the most common direct estimators.

The remainder of the paper is organized as follows. In Section 2 we formally introduce the constrained
estimator and propose a linearization-based method for variance estimation. This section also contains
some scenarios of interest where shape constraints can naturally arise for survey data. Section 3 states the
main theoretical properties of the constrained estimator. The necessary assumptions used in these
theoretical derivations are also stated in this section. Proofs of main theorems and auxiliary lemmas are
provided in the Appendix. Section 4 shows through simulations that the constrained estimator improves
domain mean estimation and variability in comparison with the unconstrained estimator, even when the
assumed shape holds only approximately at the population level. Section 5 demonstrates the advantages of
the proposed methodology on real survey data through an application to the 2015 National Survey of
College Graduates. A few concluding remarks are provided in Section 6.

2 Constrained estimation and inference for domain means

2.1 Notation and preliminaries

Let U, be the set of elements in a population of size N. Consider a sample s, of size n, that is
drawn from U using a probability sampling design p, (). Denote 7, , = Pr(k e sy ) and 7, , =
Pr(k esy, | € sy) as the first and second order inclusion probabilities, respectively. Assume that
Ten >0, 7y >0 for k, I € Uy. To simplify notation, we will adopt the usual convention of
suppressing the subscript N unless it is needed for clarity. Denote {Ud};’:l as a domain partition of U,
where D is the number of domains and each U, is of size N,. Also, let s, be the subset of size n, of s
that belongsto U ;.
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For any study variable y, y, = (Vul’ VUD)T denotes the vector of population domain means,
where

= 2.1
Vo = =N, (2.1)
We will focus on the Hajek estimator of 'y, , given by
z Yy /”k
kes
Ve N, (2.2)

with N, = Zkes 1/7,, and let ¥ to be the vector of estimators. The results will also hold for the
Horvitz-Thompson estimator with minor modifications, but it will not be explicitly addressed in what
follows.

2.2 Proposed estimator

Assume there is information available regarding relationships between the population domain means
that can be expressed with m constraints through a m x D irreducible constraint matrix A. A matrix A
is irreducible if none of its rows is a positive linear combination of other rows, and if the origin is also not
a positive linear combination of its rows (Meyer, 1999). In practical terms, this means that there are no
redundant constraints in A. To take advantage of ¥ to obtain an estimator that respects these shape
constraints, we propose the constrained estimator 0, = (6?~ : 9SD)T to be the unique vector that

REEREN

solves the following constrained weighted least squares problem,
min(y, — 8)" W,(§, — 8) subject to A@ > 0 (2.3)

where W, is the diagonal matrix with elements N, /N, N,/N, ..., Ny /N, and N = 3> N,. The
constrained problem in equation (2.3) can be alternatively written as finding the unique vector ¢ that
solves

min||z, - o||° subject to A > 0, (2.4)

where 2. = WY2g_, ¢ = WY20, and A, = AW,Y? The transformed constrained matrix A, is also
irreducible if A is, and it depends on the sample although A does not. The solution ¢, is the projection
of Z, onto the set of vectors ¢ that satisfy the condition A ¢ > 0. This set is a polyhedral convex cone,
called the constraint cone €, defined by A.; specifically,

Q. = {p e R Ag > 0}. (2.5)

We use the notation ¢, = T1(Z,| Q,), where IT(u|.5") stands for the projection of u onto the set .5,
i.e., the closest vector in §* to u.
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Projections onto such cones are well understood; see Rockafellar (1970) or Meyer (1999) for details. In
terms of this work, the main results from cone projection theory are summarized here. The cone can be
characterized by a set of edges generating the cone; that is, a vector is in the cone if and only if it is a
linear combination of the edges with non-negative coefficients. (Picture a pyramid with vertex at the
origin, extending out indefinitely.) Subsets of the edges define the faces of the cone, and the projection of
Z, onto the cone lands on one of the faces. Once the edges defining this face are determined, the
projection can be characterized as an ordinary least-squares projection onto the linear space spanned by
this subset of edges. This property is crucial for both the algorithm for projection and for inference,
because the projection onto the cone can be characterized as a linear projection.

For this work, we will project Z onto the polar cone Q? (Rockafellar, 1970, page 121), defined as
QY ={peR(p ¢ <0 Vo eQf, (2.6)

where (u, v) = u'v. That is, the polar cone is the set of vectors that form obtuse angles with all vectors
in Q.. The polar cone is analogous to the orthogonal space in linear least-squares projections, in that the
projection of a vector onto the polar cone is the residual of its projection onto the constraint cone, and
vice-versa. Meyer (1999) showed that the negative rows of an irreducible matrix are the edges
(generators) of the polar cone, leading to the following characterization of the polar cone in (2.6):

Q(S) = {p (S RD [\ = Zansjy aj 2 01 J = 11 21 e m}’ (27)
j=1

where v, v, ..., v, are the rows of —A,. Robertson, Wright and Dykstra (1988, page 17)

established necessary and sufficient conditions for a vector ¢ to be the projection of Z, onto Q.. That

S

is, ., € Q. solves the constrained problem in (2.4) if and only if
(z, - ¢, ¢,) =0, and (2, - ¢, §) <0, V$ € Q.

Moreover, the above conditions can be adapted to the polar cone as follows: the vector p, e Q?
minimizes ||z, — p||° over Q° if and only if

(z, - ps, p;) = 0, and <is - P, Ysj> <0 for j=1,2 .., m (2.8)

The conditions in (2.8) can be used to show that the projection of Z, onto the polar cone Q? coincides
with the projection onto the linear space generated by the edges Y, such that (ZS - P ysj> = 0. This
set of edges could be empty, meaning that the projection onto Q? is equal to the projection onto the zero
vector. In that case, the unconstrained minimum satisfies all the constraints. Alternatively, this set of edges
might not be unique. To formalize these ideas, denote V, ; = {ysj: je J} forany J < {1, 2,..., m}.
Define the set 7, ; as,
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150 Oliva-Aviles et al.: Estimation and inference of domain means subject to qualitative constraints

f_;J ={p e RP:p = Zajysj, a; >0, jeJ}, (2.9
jed

where 7, , = 0 by convention. (Technically, this set is the closure of a face of the cone.) Thatis, _7, |
is a closed polyhedral sub-cone of Q? that starts at the origin and is defined by the edges in V, . Further,
let £(V, ;) be the linear space generated by the vectors in V_ ;. It is shown in Meyer (1999) that
projecting onto Q¢ is equivalent to projecting onto £ (V,_,), for an appropriate set J. If the rows of the
constraint matrix A are linearly independent, then the minimal set J is unique; otherwise there may be
more than one J that defines the linear space. In the latter case, however, the projection is still unique
(see Theorem 1 of the next section).

Wu etal. (2016) considered the solution to (2.3), in the special case of a monotone relationship
between domains defined along a single categorical variable. In that case, the solution is equivalent to that
of the Pooled Adjacent Violator Algorithm (PAVA), which has an explicit expression in terms of a
pooling of neighboring domains. The theoretical results in Wu et al. (2016) were obtained using that
explicit expression, and hence do not apply to the more general setting considered here. Nevertheless, as
was the case with the simple 6-domain example in Section 1 and in many situations of practical interest,
the specific matrix A will often correspond to a multivariate partial ordering of the domain means. Under
partial ordering, the solution to the constrained minimization in (2.3) is again equivalent to a pooling of
neighboring domains in such a way that the partial order constraints are respected. See for instance
Robertson et al. (1988, page 23) for an explicit expression of this pooled domain expression under partial
ordering, including the definition of the pooling. However, unlike PAVA in the univariate case, this does
not lead to a practical general computational algorithm. In the current paper, we will allow for arbitrary
irreducible constraint matrix A, which will include partial ordering and univariate monotonicity as
special cases.

One possible general approach to computing ¢, is based on the edges of the constraint cone Q..
However, the number of edges can be considerably larger than the number of constraints for large values
of D, especially for the case when there are more constraints than domains (see Meyer, 1999). Moreover,
given the lack of a general closed form solution for the edges of Q_ (when m > D), the edges need to
be computed numerically in that case. This task is computationally demanding, which makes this
approach an inefficient way to compute ¢.. A more efficient algorithm based on computing the projection
onto the polar cone has been developed: the Cone Projection Algorithm (CPA) (Meyer, 2013). This
alternative approach takes advantage of the easy-to-find edges Vs, of the polar cone, the conditions in
(2.8), and the fact that T1(Z, |Q,) = Z, — I1(Z,|Q?). The latter fact is a key component on the proofs
of the main theoretical results shown in this paper. CPA has been implemented in the software R into the
conepro package. See Liao and Meyer (2014) for further details.

For the situations in which the constraints correspond to complete or partial ordering, the CPA solution
once again corresponds to domain pooling. After this, the domain mean estimates can be explicitly
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computed as sample-based domain means for the CPA-determined pooled domains. This greatly facilitates
incorporating this methodology into survey estimation practice, because the pooled domain definitions can
be readily communicated as part of the instructions accompanying a survey dataset release, and the
estimates can be calculated without requiring access to specialized software.

2.3 Variance estimation of 4,

Estimating appropriately the variance of ésd is a complicated task, derived from the fact that the
projection of z_ onto Q¢ (or onto Q) might not always land on the same linear space £ (V, ,) for
different samples s. To better understand that, we define &, as the set of all subsets J < {1, 2, ..., m}
such that TT(z, | Q7) = TI(2,|£L(V,,,)) € 7. ;. as defined in (2.9). As noted earlier, there could be
different sets J, and J, such that the projection onto the polar cone Q? is equal to projecting onto either
£L(V,,,,) or £V, ,,). However, independently of which set is chosen, the projection p, is unique.

To illustrate the above point, consider the following restrictions when there are only 3 domains: the
first domain mean is expected to be at the most equal to the second domain mean, and the third domain
mean is expected to be at least equal to the average of the first two domain means. Hence, the constraint
matrix A can be expressed as

-1 10
A = :
-1-12

Suppose it is observed that §, = ¥, < ¥, . The transformed vector Z, has elements of the form

S2

el

N N
— 1 —_ 2 & — 3 &
251 - I\’] ;! Zs2 - ~ ys2 ' Zs3 - I\'] y53 '

y

In this setting, it is straightforward to see that T1(Z, |Q?) = 0. In the process of computing it using the

general algorithm, we project Z. onto each of the 22 = 4 linear spaces generated by the polar cone

S

(N N OT ([N [ N )
Ysl Nll N’\Zl ’YSZ Nll NZY NS .

Hence, it can be seen that the conditions I1(Z, Q) = 0 = I (z,|£(V,,)) € A, are satisfied only
for J = @ and J = {1}, whichimpliesthat G, = {&J, {1}}. Moreover, note that V ,, and V_ ,, do
not span the same linear spaces, which is what complicates the variance estimation of ésd . In the model-
based case with continuous variables, the set of sample vectors where these scenarios occur has measure
zero. However, they cannot be excluded in the design-based setting.

edges

We propose a variance estimator for 9sd that relies on the sets in &, and is based on linearization
methods. Consider any fixed set J € G, and let P, , be the projection matrix corresponding to the
linear space £'(V, ,), where P, is the matrix of zeros by convention. By the selection of J, then p,
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152 Oliva-Aviles et al.: Estimation and inference of domain means subject to qualitative constraints

can be expressed as P, ;Z, which implies that 8, can be written as 0., = y, — W, ¥?P_ , WX§
where we add the subscript J in @, to be aware that the expression depends on the chosen J.

Now, observe that @, , is a smooth non-linear function of the f,’s and the N,’s, where f, is the
Horvitz-Thompson estimator of t, = Zkeu Y. Therefore, treating J as fixed, we obtain the
asymptotic variance of ésd, ; via Taylor linearization (Sarndal et al., 1992, page 175) as

AV(D, ) = I3 a, 2 (2.10)

keU leU ﬂ-k ﬂ-|

where A, = 7, — =7, and
D D
U = YVl + 2. 6L, for k=12 ..N,
i=1 i=1

with 1, being the indicator variable for the event A, and

aésdvj agsd,J
a. =

i afi (. fo, Npyoow Kp) = (4, oot Np, oo Np)? ﬂi - aNi (61 to, Npyoow Np) = (4, oot Ny, oo Np)'

In addition, a consistent estimator of the asymptotic variance in (2.10) is given by

o a. u
V@)= Yy oedd 2.11)

kesles Ty 7T, TT,

where
D D .
0 = > &Yl + 2B, for k=12 .,N,
i=1 i=1

with &, Bi obtained from «;, p, by substituting the appropriate Horvitz-Thompson estimators for each
population total. We propose the estimator in (2.11), computed at the J obtained in the sample, as a
variance estimator of &, .

To provide a clear example of the proposed variance estimator for @, , consider the setting presented

Sq !
at the beginning of this subsection. Since &, = {<J, {1}}, it might be of interest to compute the
estimated variance of ésw for J = {1} and certain d. The matrix P, is the projection matrix

corresponding to the linear space generated by v, , given by

sl
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Note that P, ,,, is a function of (N,, N,, N) because v, is. Using the above equation, @, ,,, can be
simplified to the following expression,

0

~ T
9521 {1} esav {1})

s (esl, 11}

11
7\
2|
+ | +
=85
N
= [
+ | +
2|85
N
wZ) N
~—

Therefore, given a domain d, the &’s and £’s can be derived by taking the partial derivatives of éwl}
with respect to the f’s and N’s, and evaluating such derivatives at the t’s and N’s. For d = 2, thatis,

1
a, = a, = —, a, = 0,
! 2 N, + N, 3
po=p=-—atl 5o
R (RS VIS E

The &’s and f’s are computed by substituting Horvitz-Thompson estimators in the above equations,
which are then used to evaluate G, for each k in the sample s. Finally, the proposed variance estimator
in (2.11) can be computed.

3 Properties of the constrained estimator

3.1 Assumptions

To derive our theoretical results, we make assumptions on the asymptotic behavior of the population
U, and the sampling design p,:

Al. The number of domains D is fixed.
A2, limsupy ., N> |y, |" < oo forr =1, 2

A3. For d =1,..., D, there exist constants x, and r, >0 such that ¥, — s, = O(N?)
and N, /N —r, =0(N?), forall d.

A4. The sample size n, is non-random and satisfies 0 < limy_.Ny /N < 1. In addition, there
exists £,0 < & < 1, suchthat n,, > &n /D forall d andall N.

Ab. For a" N, minkeUN Ty > A > 0, mink,leUN m > /1* > O, and

limsupny, max [|Ay| < o
N — oo k,\leUy: k=1
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A6. The Horvitz-Thompson estimator %, of the 2D -dimensional vector of population means
)_(UN = N_l(tl’ ceey tDv Nl, ceey ND)T satisfies

VarPN (RSN )71/2 (52 - YUN) i) W(O’ IZD)’
and

Var (R, ) — var, (%, ) = 0, (ny);

SN

where I, denotes the identity matrix of dimension q, the design variance-covariance
matrix var, (X ) is positive definite, and Var (X, ) is the Horvitz-Thompson estimator
of var, .

Assumption Al establishes that the number of domains remains constant as the population size
changes. The condition in Assumption A2 is made to ensure design consistency of Horvitz-Thompson
estimators at the population and domain levels. In particular, note that this condition is satisfied when the
variable y is bounded, which can be naturally assumed for many types of survey variables. Assumption
A3 guarantees that the population domain means and sizes converge to the limiting values x, and r,,
respectively. Alternatively, the x4 values can be thought as superpopulation expectations for a distribution
that generates the population elements y, as independent draws. In fact, our theoretical results depend on
whether the assumed constraints hold for these superpopulation expectations and not for the population
domain means. Although this might seem to be inappropriate given our interest on using constraints at the
population level, Assumption A3 ensures that the shape of the domain means would be reasonably close to
the shape of the superpopulation means. Assumption A4 states that the sample size in each domain cannot
be smaller than a fraction of the ratio n/D, which would be obtained by dividing equally the sample size
over all domains. This assumption aims to ensure that the moments of smooth functions of the N *f, and
the N *1Nd are bounded. Also, it assumes that the sample size is non-random. This can be adapted to a
random sample size by imposing certain conditions on the expected sample size E  (n). Assumption A5
establishes non-zero lower bounds for both first and second order inclusion probabilities, and states that
the design covariances A, must converge to zero at least as fast as n~'. Assumption A6 ensures

asymptotic normality for X, , which is needed to maintain normality properties on non-linear estimators

5!
that are expressed as smooth functions of X, . It is also used to establish consistency conditions on the
variance-covariance estimator. For specific designs, asymptotic normality results are available in the
literature, including the classical result by Hajek (1960) for Poisson sampling and simple random
sampling without replacement. Additional central limit theorems for stratified sampling include Krewski
and Rao (1981), who considered stratified unequal probability samples with replacement, Bickel and
Freedman (1984), who considered stratified simple random sampling without replacement, and Breidt,
Opsomer and Sanchez-Borrego (2016), who considered general unequal probability designs, with or

without replacement.
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3.2 Main results

We derive the theoretical properties of the constrained estimator by focusing on the projection onto
Q? instead of Q.. Recall that the edges of the polar cone Q? are simply the m rows of —A, denoted
by Vs, and that p,, the projection onto Q2, can be described by the sets J e &;. Being able to
characterize the property that J € &, in terms of the vectors in V_ ; allow us to obtain theoretical
convergence rates, which are used to develop inference properties of the constrained estimator. When the
set J e G, produces a set of linear independent vectors V, ;, then it is straightforward that §, can be
written as P, ; Z, = A(, (ASJA;J)fl A, ,;Z,, where A, denotes the matrix formed by the rows of
A, in positions J. Hence, based on the conditions in (2.8), J € &, if and only if

s

S

(z, = P,2,v,) <0 for jeJ, and (A, ,Al,) A, % >0 (3.1)

in this case, where the latter condition assures that T1(z, | £'(V, ,)) € _*.,. However, it is possible that
the set J e G, produces a set of linearly dependent vectors V. In that case, Theorem 1 below
guarantees that it is always possible to find a subset J° < J such that V. ,- isalinearly independent set
that spans the same linear space as V, , and that satisfies J° e &,. Thus, analogous conditions as in
(3.1) can be established using J "~ instead of J.

Theorem 1. Let A be a m x D irreducible matrix with rows —y ;. Let Q° be its corresponding polar
cone. For any set J < {1, 2, ..., m}, define V, = {y; j e J}. Further, denote 7, to be the
subcone of Q° generated by the edges given by the set J. For a vector z, define its set &' to be formed
by all sets J < {1, 2, ..., m} such that TI(z|Q°) = TI(z|£(V,)) € _7 . Suppose J is a non-
empty set such that V, is a linearly dependent set and J € &'. Then, there exists J° < J such that
V.. isalinearly independent set, £/ (V,.) = £(V,), and J" € &

J

All above concepts that have been defined at the sample level can be analogously defined at the
superpopulation level. In particular, let &, be the set of all subsets J < {1, ..., m} such that
M(z,|Q%) = N(z,|£(V,,)) € F,., where z,, Q%,V,, and 7, , are the analogous versions of
2,,QV,, and 7 , obtained by substituting y, and W, by p = (4, ..., 4,) and W, =
diag(r,, r,, ..., ry). Necessary and sufficient conditions as in (2.8) can be analogously established to
characterize the vector p , to be the projection onto Qi.

Recall the set & could vary for different samples. Also, note that highly variable small samples are
likely to choose sets J e & that are not chosen in the “asymptotically correct” & ,. However, as the
sample size increases, these incorrect choices are less likely to occur since the sample domain means get
closer to the limiting population domain means. This idea is made more precise in Theorem 2, which
states that sets that are not in &, have an asymptotically negligible probability of being chosen in the
sample.

Theorem 2. Consider any set J < {1, 2, ..., m} suchthat J ¢ &,. Then, P(J € &) = O(n™).
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Theorem 3 below shows the asymptotic normality of the constrained estimator and justifies the use of
the linearization-based variance estimator for the observed projection (or pooling, in the case of partial
ordering) for asymptotic inference for the finite population domain mean. This generalizes Theorem 2 of
Wu et al. (2016), where only monotone restrictions were considered. Note the presence of a bias term B
in the mean of the asymptotic distribution. This undesirable situation occurs when there is more than one
set J e G, such that their corresponding edges in V, ; span different linear spaces, or equivalently, that
the projection onto the polar cone Q° belongs to the intersection of those different linear spaces.
However, when the constraints hold strictly, i.e., Ap > 0, the vector z , is strictly inside the constraint
cone Q ,, and in this case there isno set J # & such that TI(z , | £'(V,.,)) = 0. Thus, in this case, the
bias term vanishes.

Theorem 3. Suppose that p satisfies Ap > 0. Consider any set J suchthat J € &, . Then
A Y2 /= = A
v, "6, -V, > MBI,

forany d = 1, 2, ..., D, where B = O(,/&) is a bias term that vanishes when Ap > 0.

Theorem 3 relies on the fact that the assumed shape constraints hold for the vector of limiting domain
means p instead of for the vector of population domain means Y. In the next section, we show through
simulations that the constrained estimator improves both estimation and variability when the population
domains are approximately close to the assumed shape, in comparison with unconstrained estimators.

4 Performance of constrained estimator

4.1 Simulations

We run simulation experiments to measure the performance of the proposed methodology to carry out
estimation and inference of population domain means. Given a pair of natural numbers D, and D,, we
generate the limiting domain means x, from the monotone bivariate function #(x,, x,) given by

4exp(0.5 + 2x,/D,)
1+exp(0.5 + 2x,/D,)

1(X, X)) = v1+ 4X1/D1 +

The u, are created by evaluating «(x,, X,) at every combinationof x, = 1, 2, ..., D, and x, = 1,
4.
Note that although the function u(X,, x,) produces a matrix rather than a vector of domain means, it can

2, ..., D,, producing a total number of domains equalto D = D, D,. Weset D, = 6 and D,
be vectorized in order to represent the limiting domain means as the vector p. For each domain d, we

generate its N, = N/D =400 elements by adding independent and normally distributed noise with
mean 0 and variance o2 to the x,. Once the elements of the population have been simulated, then the
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population domain means y, are computed. The population domain means used for simulations when
o = 1 are displayed in Figure 4.1. Observe that these domain means are reasonably (not strictly)
monotone with respect to x, and X,.

Figure 4.1 Population domain means for simulations when o = 1.

Samples are drawn from a stratified sampling design without replacement, with 4 strata that cut across
the D domains. Strata are constructed using an auxiliary variable v that is correlated with the variable of
interest y. The vector v is created by adding independent standard normally distributed noise to od/D,
for each element in domain d. Then, stratum membership is assigned by sorting the vector v and creating
4 blocks of N/4 =2,400 elements each based on the sorted v. To make the design informative, we
sample n =480 elements divided across strata in (60, 120, 120, 180). This probability sampling design is
similar to the one described in Wu et al. (2016).

We consider 4 different scenarios obtained from the combination of two possible types of shape
constraints and o = 1 or 2. The first type of constraints assumes the population domain means are
monotone increasing with respect to both x, and x, (double monotone), while the second type of
constraints assumes monotonicity only with respect to x, (only x, monotone). For a fixed o, the exact
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same population is considered for the two possible types of constraints. For each scenario, the
unconstrained ¢, and constrained @_ estimates are computed along with their linearization-based
variance estimates (see (2.11)). Constrained estimates are computed using the CPA, and their variance
estimates are computed by relying on the sample-selected set J € &.. In addition, 95% Wald confidence
intervals based on the normal distribution are constructed for both estimators.

To measure the precision of ¥, and . as estimators of the population domain means y,, we
consider the Weighted Mean Squared Error (WMSE) given by

WMSE (,) = E[(§, - Tu)' W, (d, — V)],

where ¢ could be either the unconstrained or constrained estimator and W,, is the diagonal matrix with

elements N, /N,d = 1, ..., D. The WMSE values are approximated by simulations as
13 = (b) = \' = (b) =
E;(‘Ps - YU) Wy ((Ps - YU)’

where B is the number of simulations, and " is the estimator for the b™ sample.

Simulation results are summarized in Figures 4.2 - 4.5, and are based on R =10,000 replications.
These display the 24 domains divided in groups of 6, where each group is assumed to be monotone. For
the double monotone scenario, similar plots with groups of 4 monotone domains each can be also
pictured. As illustrated in the fits of a single sample in these figures, it can be seen that the constrained
estimates can be exactly equal to the unconstrained estimates for some domains. In those cases, their
variance estimates are also equal. Overall, confidence intervals for the constrained estimator tend to be
tighter in comparison with those for the unconstrained estimator. On average, the constrained estimator
behaves slightly differently than the population domain means, due to the latter’s non-strict monotonicity.
As an advantage, the percentiles for the constrained estimator are narrower, demonstrating that the
distribution of the proposed estimator is tighter than the distribution of the unconstrained estimator. For
small values of o, the unconstrained estimates are more likely to satisfy the assumed restrictions, which
leads to small improvements on the constrained estimator over the unconstrained. In contrast, shape
assumptions tend to be more severely violated in unconstrained estimates for larger values of o, allowing
the proposed estimator to gain much more efficiency on these cases. This latter property can be noted by
observing that the constrained estimator percentile band gets farther away from the unconstrained
estimator band as o increases.

In terms of variability, the constrained estimator has the smaller variance of the two estimators.
Interestingly, it gets overestimated by its corresponding linearization-based variance estimate. In contrast,
the variance estimate of the unconstrained estimator underestimates the true variance, which is a known
and often observed drawback of linearization variances. Despite this difference, confidence intervals for
both estimators demonstrate a similar good coverage rate when o = 1, meanwhile such coverage gets
slightly improved by the constrained estimator when o = 2.
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Figure 4.2 Plots of simulation results for the unconstrained and constrained estimators under the double
monotone scenario with o = 1. In the “Mean and percentiles” plot, ¥, is hiddenby ¥, .
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Figure 4.3 Plots of simulation results for the unconstrained and constrained estimators under the only X,
monotone scenario with o = 1. In the “Mean and percentiles” plot, ¥, is hiddenby ¥, .
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Figure 4.4 Plots of simulation results for the unconstrained and constrained estimators under the double
monotone scenario with o = 2. In the “Mean and percentiles” plot, y,, is hiddenby ¥, .
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Table 4.1 shows that the constrained estimator is more precise on average than the unconstrained
estimator. The precision of the constrained estimator improves when the monotonicity with respect to the
two variables is assumed, instead of only with respect to x,. This is expected here, because the underlying
surface is indeed doubly monotone, so that the estimator benefits from imposing the stronger constraint.

Table 4.1
Empirical WMSE values
Unconstrained Only x, monotone Double monotone
o=1 0.0593 0.0362 0.0298
og=2 0.2384 0.1175 0.0832

4.2 Replication methods for variance estimation

In practice, it is common for large-scale surveys to use replication-based methods for variance
estimation. Examples of such surveys are the last editions of the NHANES and the National Survey of
College Graduates (NSCG). To study the performance of replication-based variance estimators under the
proposed constrained methodology, we carry out simulation studies based on the delete-a-group Jackknife
(DAGJK) variance estimator proposed by Kott (2001).

We perform replication-based simulation experiments using the setting described in Section 4.1. To
compute the DAGJK variance estimator, we first randomly create G equal-sized groups within each of
the 4 strata. Then, for each replicate g = 1, ..., G, we delete the g™ group in each of the strata, adjust
the remaining weights by w® = (ﬁ) w,, where w, = x,.*; and compute the replicate constrained
estimate 0% using the adjusted weights. The DAGJK variance estimate of 4, , V,, (0, ), is obtained by
calculating
G -1

S, ~ \2
Z(es(dg) - asd).

g=1

VJK (~Sd) =

A replication-based variance estimator of §, is obtained by substituting 0, by vy,

Our simulations consider only the double monotone scenario, with & =1 or 2, and G =10, 20 or 30.
The sample size is set to either n =480 or n =960, where the latter case is obtained by doubling the
original sample size in each strata. Figures4.6 - 4.9 contain simulation results based on 10,000
replications. In contrast to the behavior of the linearization-based variance estimates, it can be seen that
the DAGJK estimates tend to overestimate the variance of the unconstrained estimator, as is often
observed in practice. Both replication-based and linearization-based variance estimates of the constrained
estimator overestimate the true variance, so that the results are more consistent across variance estimation
methods. As the number of groups G increases, DAGJK estimates tend to be greater, especially for small
values of o. Such increments on DAGJK estimates have the direct consequence of increasing the
coverage rate as G gets larger. In addition, the coverage rate for both estimators is improved (closer to
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0.95) when the sample size is increased. Overall, it appears that replication variance estimation is a

practical alternative to linearization.
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Figure 4.6 Variance estimation (top) and coverage rate (bottom) simulation results based on linearization
and DAGJK methods for the unconstrained (left) and constrained (right) estimators, under the

double monotone scenario with n, =480 and o =1.

Statistics Canada, Catalogue No. 12-001-X




Survey Methodology, December 2020 165

Unconstrained Constrained
-®#-G=30 8 q -=-G =30
-3%-G=20 o -%-G=20
o -+-G=10 -+-G=10
el = True —a— Linearization
o —a— | inearization —e—True
[Te}
o a3 4
2 A =]
© [0}
(0] o
o c
= K
— L0 S
- O\ - fﬁ
° \ ,ff
g - (24
o
[Te)
o
0 =)
\—! |
© T T T T T T T T
5 10 15 20 5 10 15 20
Domain Domain
Unconstrained Constrained
& © |
°© o
;‘ n y
’ AR 7R\
< < \ i\ RN
o R ’F A p-Eow %1 /r\ - / W f \‘{'f
JCRS) " //x\ A x . e x =° .:.‘\\ < \\ /4 \ ﬁ*_‘\‘\/’/ // /./‘\:/
o PN AN 2 N © /o (W R Y SLNTA B
= [ W A XS W pama x Ay A% oo P
R At N X p A TR ) +\ el e WV e TR
) N Twie” RN N o LA wy A% A g cor
D E RN * " a A/ P & PRIRAT] " + 5w . S S .
TS ¥ e PN > AT S 44 R R PR IR S #
B o A « £ R ‘,+_4\~ #+ ¥o + + L o + "\| b ‘§ L .‘k\‘ +, lli, ¥ p
> +\ P 3 W4 “ A ¥
S | aaiwes T 3 i NS
@) oA Rt ﬂ,:',\: L
S 3 | oY H
o °© ¥r (:
‘|A-
—0.95 ' —0.95
-#*:G=30 + -%-G =30
8 -%-G=20 Q -%-G=20
s | —4— Linearization S —a— Linearization
-+-G=10 -4-G=10
T T T T T T T T
5 10 15 20 5 10 15 20
Domain Domain

Figure 4.7 Variance estimation (top) and coverage rate (bottom) simulation results based on linearization
and DAGJK methods for the unconstrained (left) and constrained (right) estimators, under the
double monotone scenario with n =480 and o =2.
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Figure 4.8 Variance estimation (top) and coverage rate (bottom) simulation results based on linearization
and DAGJK methods for the unconstrained (left) and constrained (right) estimators, under the
double monotone scenario with n =960 and o =1.

Statistics Canada, Catalogue No. 12-001-X




Survey Methodology, December 2020 167

Unconstrained Constrained
-%- G=30 -= G=30
© -%-G=20 -%-G=20
g | -+-G=10 o “+:G=10
© ——True g b —a— Linearization
—a— Linearization —— True
3
S (o0}
S
© 8°
o~ c
c 4 ]
© = M
= © ©
3 >8] 3
= S a4
=N ERY g.!;‘
<t ¥
Q .
3 o
(=]
© N
S o |
o o
T T T T T T T T
5 10 15 20 5 10 15 20
Domain Domain
Unconstrained Constrained
8 | 3 |
o o
n A »
-t ek T | %
A A N TR N < | A AW 7
< | . /. /\Y - SEx A* A S | ») /. I’”\‘I /,\‘/ L a
S RN S X, TN e A, Na (=) Pt A 7 :.I‘\/ Xy
I .j:/ 7 ,’,\\\():-* 7\ - [ 24\‘ - i ,,?\;./ o A
g x },\’y’ AN e . R 5] W ,{"\.\ o x/'/ ‘\‘ AT, r, \(;-+
\ - . . Tt e . h AR W P
g‘!(\l ~* ‘/+ + ek gﬁN +'“%- r: ‘\ \:’&x\x /'j:. ‘\\"f: Al e
o . P T Ich=E Wy el \ 4
go PP SN S 5 an o fo e L F
2 LA, > Vs waa
S " Q W a o Rt V
O @) \\.///',"' I i
o Rl
& S 4 Wi
[=} < &)
— 095 ¥ 095
-#-G=30 -8-G=30
. -%-G=20 © -%-G =20
@ —4— Linearization g T —A— Linearization
S} -+-G=10 -+-G=10
T T T T T T T T
5 10 15 20 5 10 15 20
Domain Domain

Figure 4.9 Variance estimation (top) and coverage rate (bottom) simulation results based on linearization
and DAGJK methods for the unconstrained (left) and constrained (right) estimators, under the
double monotone scenario with n =960 and o =2.
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5 Application of constrained estimator to NSCG

To demonstrate the utility of the proposed constrained methodology in real survey data, we consider
the 2015 National Survey of College Graduates (NSCG), which is sponsored by the National Center for
Science and Engineering Statistics (NCSES) within the National Science Foundation, and is conducted by
the U.S. Census Bureau. The 2015 NSCG data and documentation are available on the NSF website
(www.nsf.gov/statistics/srvygrads). The purpose of the NSCG is to provide data on the characteristics of
U.S. college graduates, with particular focus on those in the science and engineering workforce.

We consider the total earned income before deductions in previous year (2014) to be the variable of
interest (denoted by EARN). To avoid the high skewness of this variable, a log transformation is
performed. Moreover, we take into account only those who reported a positive earning amount. A total of
76,389 observations was considered in our analysis. In addition, 252 domains are considered. These are
determined by the cross-classification of four predictor variables. These variables and their assumed
constraints are as follows:

» Time since highest degree. This variable defines the year of award of highest degree. The period
from 2015 to 1959 is divided into 9 categories, where the first 8 categories (denoted by 1-8) are
of 6 years each, and the last category (denoted by 9) is of 9 years. Constraint: given the other
predictors, the average total earned income increases with respect to the time since highest
degree from year category 1 to 7. No assumption is made with respect to categories 8 and 9, as
those people are likely to be retired (at least 42 years since their highest degree).

» Field of study. This nominal variable defines the field of study for highest degree, based on a
major group categorization provided within the 2015 NSCG. The 7 categories for this variable
are:

Computer and mathematical sciences,
Biological, agricultural and environmental life sciences,
Physical and related sciences,
Social and related sciences,
Engineering,
S&E-related fields,
7: Non-S&E fields.
Constraint: given the other predictors, the average total earned income for each of the fields 2

and 4 is less than for the fields 1, 3 and 5. No assumption is made with respect to categories 6
and 7, as they cover many fields for which a reasonable order restriction might be complicated
to impose.

» Postgrad. This binary variable defines whether the highest degree is at the postgraduate level
(YES) or at the Bachelor’s level (NO). Constraint: given the other predictors, the average total
earned income is higher for those with postgraduate studies.
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» Supervise. This binary variable defines whether supervising others is a responsibility in the
principal job (YES) or not (NO). Constraint: given the other predictors, the average total earned
income is higher for those who supervise others in their principal job.

Figures 5.1 and 5.2 show the unconstrained and constrained estimates for each of the four groups
obtained from the cross-classification of the Postgrad and Supervise binary variables. Note that since the
assumed constraints constitute a partial ordering, then the constrained estimates are obtained by pooling
domains. These figures show that the constrained estimator has a smoother behavior than the
unconstrained. Moreover, it tends to correct for the some of the “spikes” produced by the unconstrained
estimator, which are usually a consequence of a very small sample size.

12

1.7

log(EARN)
log(EARN)

10.7

(a) Supervise = YES (unconstrained).

11.4

log(EARN)
s B8 =
'-b- -~

°

(c) Supervise = NO (unconstrained). (d) Supervise = NO (constrained).

Figure 5.1 Unconstrained (left) and constrained (right) domain mean estimates for the 2015 NSCG data,
given that Postgrad = NO is fixed.
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-
o

log(EARN)
log(EARN)

(b) Supervise = YES (constrained).

log(EARN)
log(EARN)

(c) Supervise = NO (unconstrained). (d) Supervise = NO (constrained).

Figure 5.2 Unconstrained (left) and constrained (right) domain mean estimates for the 2015 NSCG data,
given that Postgrad = YES is fixed.

Standard errors for both unconstrained and constrained estimates are computed using the 2015 NSCG
replicate weights, which are based on successive difference replication method (Opsomer, Breidt, White
and Li, 2016). The replicate weights and adjustment factors were provided by the Program Director of the
Human Resources Statistics Program from the NCSES and are available upon request.

Figure 5.3 displays the ratio of these estimates for each of the 252 domains. In the vast majority of
cases, the standard error estimates of the proposed estimator are lower than those for the unconstrained
estimator, with improvements of as much as 7 times smaller. However, there are some cases where the
opposite behavior occurs. These are investigated in Figure 5.4, which shows plots of two different domain

Statistics Canada, Catalogue No. 12-001-X



Survey Methodology, December 2020 171

“slices”: one with respect to the Time since highest degree variable and other with respect to Field
category. These plots include unconstrained and constrained estimates, Wald confidence intervals and
sample sizes. Each of these two slices contain one of the two domains that can be easily identified in
Figure 5.3 to have the smallest ratios.

Ratio SD(J,,)/SD(3s,)

V Ratio<1 X
M~ - X Ratioz1

Ratio
4
|

XX

T T T T
0 50 100 150 200 250
Domain

Figure 5.3 Ratio of the estimated standard errors of unconstrained estimates over those for constrained
estimates for the 2015 NSCG data.

The first of these domains is displayed in Figure 5.4(a) and 5.4(c), indexed by 5. The unconstrained
estimates for the domains indexed by 5 and 6 violate the monotonicity assumption, and thus, are being
pooled to obtain the constrained estimates (additional pooling with domains in other “slices” is also
occurring, but not visible in this plot). As can be seen in Figure 5.4(a), the confidence interval is narrower
for the unconstrained estimates. However, the estimated standard error of the unconstrained estimator of
domain 6 is very large, and pooling with domain 5 greatly stabilizes both the estimator and the estimated
standard errors for that domain. Figure 5.4(c) shows that the samples sizes on these domains are
reasonably large at approximately 100 observations each, implying that the noticed monotonicity violation
might be in fact true in the population. The final decision on the balance between the improved stability of
some domains with the potential for bias due to incorrect constraints would need to be carefully evaluated.

The second domain where unconstrained estimates produce smaller standard deviation estimates is
displayed in Figure 5.4(b) and 5.4(d), indexed by 1. Here, this domain is being pooled with its neighboring
domain to obtain the constrained estimate. However, as these two domains have very low sample sizes,
the unconstrained estimates might be considered as unreliable, so that their estimated standard errors are
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not a good indication of their precision. The constrained estimator appears to be preferred here because of
the increase in the effective cell size.

Slice 1 Slice 2
_'.
[Te} S
o 3 S A
N
S o
Z z . A
o w ©
5 :I ﬁ ("_'\,l _
N—r N—r
5 S
o
= o —
:.' —
0 .‘ :‘
3 [ . 9
o - ¥ - =Cl bounds for ¥s, o | —-— ¥, - = Cl bounds for Vs,
9; 1 —- - &Cl bounds for 8, —a 0, - & Cl bounds for §,,
T T ‘ ‘ ‘ ‘ ‘ T ‘ . J : : : ‘ :
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7
Time since highest degree Field category
(a) Field category = 2. (b) Time since highest degree = 9.
Slice 1 Slice 2
wn |
N
o
[Tel
N
o
o N
o
N
g I
5 n
i PR
5" o
c IS
S ]
n 3 N o
- -
o
Yo}
o
o -
T T T T T T T T T T T T T T T T
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7
Time since highest degree Field category
(c) Field category = 2. (d) Time since highest degree = 9.

Figure 5.4 Unconstrained and constrained estimates with Wald confidence intervals (top) and sample sizes
(bottom) for the 2015 NSCG data, given that Postgrad = YES and Supervise = YES.
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6 Conclusions

We have proposed a general methodology to estimate domain means which makes it possible
incorporate natural restrictions between domains into design-based estimation. It was shown to improve
estimation and inference, especially on small domains. As this new methodology covers a broad range of
shape assumptions beyond univariate monotonicity, it aims to jointly take advantage of several types of
qualitative information that arises naturally for survey data. Additional shapes that may be imposed
include convexity or log-concavity; the latter might be imposed if the population domain means are
believed to be increasing and then decreasing over a set of domains. Future work by the authors will
include a “relaxed monotone” estimator to be used when the population domain means are “roughly”
monotone in some sequence of domains. For the relaxed monotone estimator, a type of moving average
over the domains is used to implement the constraints, allowing the estimator to have some departures
from monotonicity.

We also proposed a design-based variance estimation method of the estimator, which only requires
knowledge of the sample-specific constraint set. Replication-based methods are shown to behave
similarly. From the computational side, the estimator is based on the Cone Projection Algorithm which is
efficiently implemented in the package coneproj and freely available. In the important practical case of
partial ordering, the constrained estimator is equivalent to a pooling of neighboring domains, so that once
the constraint set is identified by CPA, subsequent computations of estimators and variance estimators can
be done directly using traditional design-based estimation for the relevant domains.

An important practical issue, as illustrated in the NSCG analysis in Section 5, is the determination of
when the imposed constraint might not be valid for a particular survey application. Recently, Oliva-
Aviles, Meyer and Opsomer (2019) proposed the sample-based Cone Information Criterion as a criterion
to choose between the constrained and unconstrained fits for the estimator of Wu etal. (2016). That
approach is generalizable to the setting considered here, and is currently under development.

Appendix

The first part of this appendix contains lemmas used to obtain the theoretical results discussed in this
paper. Proofs of the theorems are included at the end of this appendix.

Lemma 1. If a non-zero vector can be written as the positive linear combination of linearly dependent
non-zero vectors, then it can be expressed as the positive linear combination of a linearly independent
subset of these.

Proof. Let v be a non-zero vector such that it can be written as v = Zk al, where ¢,, £,, ..., £,

R
are non-zero vectors and a; > 0 for i = 1, 2, ..., k. If this set of vectors is not linearly independent,
then there exist constants b,, ..., b,, not all zero, such that Zik:l bl, = 0, andforany c € R, v =

Z:‘ﬂ(ai + cb) £;. Let ¢ = —miniy -08,/b;; then @ + cb, > 0 fori =1, ..., k but for at least
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one i, a; + cb, = 0. Then we have written v as a positive linear combination of a proper subset of the
vectors. If this subset is still linearly dependent, the process can be repeated.

Lemma2.If A isa m x D irreducible matrixand B isa D x D nonsingular matrix, then A = AB
is also irreducible.

Proof. Suppose A" ¢ = 0 forsome ¢ € R™, ¢ > 0. Then B'A"c = 0 implies that A'c = 0 by
the non-singularity of B. Because A is irreducible, we must have ¢ = 0, so the origin is not a positive
linear combination of rows of A. Next, suppose that one of the rows of A is a positive linear combination
of other rows of A. This means we can write A™b = 0, where b, = -1 forsome j € {1, ..., m}
and b, > 0,i = j. But A"b = 0 implies that B'A™b = 0 implies that AT = 0 by the non-
singularity of B. We can’t have A™b = 0 for this b, so we can’t have a row of A is a positive linear
combination of other rows of A. Therefore, A is irreducible.

Lemma 3. Let A bea m x D matrix. Also, let S, and S, be D x D diagonal matrices with nonzero
elements on the diagonal. For any set J < {1, 2, ..., m}, denote V, ; to be the set of vectors in rows
Jof A, = AS,,i =1, 2. Then,forany J* < J,

[(\/1,3*) = [(VLJ) A [(\/2,3*) = [(VZYJ)'

Proof. Let A, ; = A;S;,i =1, 2; where A, denotes the submatrix of A that contains the rows in
positions J. First, assume that [(\/“,) = £(V,,). Since J° < J, itis straightforward to see that
LV, ) € £(V,,)- Now, consider any v e £(V,,) so that v = A ,a = S,Aja for some
vector a. Then, we have S,S;'v = S, Ajae/ (V, ;). By assumption, there exists a vector b such
that S;S;'v =S, Al.b. Therefore, v =S,Al.b e £(V,.). Thus, L(V,,) = L(V,, )
Analogously, it follows that £'(V, \.) = £(V,,) implies £/(V, .) = £ (V,;).

Lemma 4. Under Assumptions A1-A5, the following statements hold:
(i)  The N7, are uniformly bounded.
(i)  The N*N, are uniformly bounded above and uniformly bounded away from zero.
(iiiy var(N7f,) = O(n!) andvar(N*N,) = O(n™).
v) E[(N7f, - rz)’] = 0(n?) and E[(NN, - r,)*] = 0(n?).

Proof.

(i)  Note that

|fd| - ‘Zkesd yk/ﬂ.k < Zkeu|yk|
N N B

AN

which does not depend on s, and is bounded independently of N by Assumption A2.
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(i)  From Assumptions A4 and A5, note that

en n
Z < d

N,
4o Jd - Nty < AININ, < A7
DN N N 2 Ym, ¢

kesy
where both lower and upper bounds do not depend on s, and are bounded for all N by
Assumptions Al and A4,

(iii)  Note that

) < Zkeud ykz(n

/IZN L max |Ak| |j

N k,leUg: k=1

nvar(N7f,) = nvar(N‘lz Vi /7

kesy

which is bounded by Assumptions A2, A4 and A5. Setting y, = 1 and following an
analogous argument, it can be shown that n var (N*N,) = O(1).

(iv) Since
. N i
E[(N‘lfd - rd,ud)J = var(N7'y) + (Wdyud - rd,udj :

Assumption A3 and (iii) lead to the desired conclusion. Analogously, we find

E[(N‘ll\]d - rd)z} = 0(n).

Proof of Theorem 1. First, suppose that IT(z|Q°) = I1(z|£(V,)) = 0. In that case, any subset
J* < J such that V, is linearly independent will satisfy I1(z|Z£ (V,.)) = 0 € _7,.. Hence, it is
enough to choose J* < J such that V,. is linearly independent and spans £ (V,). Now, suppose that
I(z|Q°) = 0. Since T1(z|Q°) = T1(z| £ (V,)) € A, 11(z|£(V,)) can be written as the positive
linear combination of vectors vy, j € J. Moreover, (z — T1(z| £ (V,)), v;) = 0 for j € J. From
Lemma 1, there exists J, < J such that V, is linearly independent and IT(z|Z£'(V,)) can be written
as a positive linear combination of the vectors in V, , which implies that TT(z[£(V,)) € f_%. In
addition, since (z-TI(z| £ (V,)),y;) =0 for jed,, 1(z| £(V,,))=T1(z| £(V,)). Thus, I1(z|Q°)=
(z| £(V,,))- If £(V,,) = £(V,) then J© = ] satifies all required conditions. Now, assume that
LV, )L (V,). The fact that TI(z|£(V,))=T1(z|£(V,)) implies that TI(z|Z£(V,))=
I(z| £ (V,,)) for any set J, such that J, < J, < J. Further, since TT1(z|£(V, )) € 7, then
I(z| £ (V,))) € /- Thus, it is enough to choose the set J™ suchthat J; < J° < J and V. isa
linearly independent set that spans £ (V,).

Proof of Theorem 2. To prove this theorem, we start withaset J ¢ &, and find necessary conditions for
such set to belong to &,. These necessary conditions, expressed as inequalities in terms of smooth and
continuous functions of the N, /N and the f, /N, are then used to bound the probability of interest.
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Finally, we use Theorem 5.4.3 in Fuller (1996) to show that this probability converges to zero with a rate
of O(n™?).

Let A,, A, , and y, be the analogous versions of A, A, and v, obtained by substituting ¥
and W, by p and W, respectively. Lemma 2 ensures that both A, and A , are irreducible since A is.

First, suppose & ¢ G, and let J = <. Then, from conditions in (2.8), & e &, if and only if
(ZS, Ysj> < 0 for j =1, 2, ..., m Incontrast, suppose that (z#, yﬂj> <O0forj=1,2 .., m
Hence, & € G,, which contradicts our choice of J. Therefore, there exists j, such that
<z#, Yﬂjo> > 0. Then, we have

P@ e G) < P02 (2,7, )= Pz, 7,,) = (20 7.} = (2.0 1,.)
P PZ”’ Vi) = (s YSio>]Z > 1

1)
1

<y Bl ) - )]

o 1o,

where the last inequality is obtained by an application of Markov’s inequality (see for example Casella
and Berger (2002), Section 3.6.1). We show now that the expected value in the last term is O(n™). Note
that the expression inside of the expected value in the above inequality is a function of vector
%, = (N7, ..., N7y, NN, ..., N*N,)". Let f,©) be sucha function (which does not depend
on N), and denote X, = (r 4, ..., fopp, 1, ..., Ip). To apply Theorem 5.4.3 in Fuller (1996) with
a =1,s = 2and a, = O(n?¥?), first we need to show that the following conditions are satisfied:

(a) E[(XS - xﬂ)z] = 0(n?).
(b) f, is uniformly bounded in a closed and bounded sphere §'.
(c) f")(x) iscontinuousin x over .5, where

_ _ 0"
fl(ll, e dp) (XO) - p p

Xil Uy

G P

(d) x, isaninterior point of ..
(e) There is a finite number K such that
| £ (x)] < K for all x e S,

[ ()] < K and [ fi(x,)] < K.

Condition (a) is directly met by Lemma 4 (iv). In addition, Lemma 4 (i)-(ii) guarantees that there exist a
constant M > 1 such that [N“,| < M and M < N"N, < M. Hence, there exists a closed and
bounded sphere §" that it is contained within these constant bounds. Moreover, from Assumption A3, we
can conclude that x,, € 5", so condition (d) is satisfied. To show that condition (b) is met, note that f, is

Statistics Canada, Catalogue No. 12-001-X



Survey Methodology, December 2020 177

a continuous function in $ since both W, and §_ exist for any x e 5. Therefore, the Extreme
Value Theorem (see Theorem 4.15 in Rudin (1976)) ensures that f, is uniformly bounded in .
Conditions (c) and (e) are satisfied since f, is a continuous rational function in .§", implying that f, is
infinitely differentiable and its derivatives are bounded in .§". Finally, all conditions (a)-(e) are fulfilled.
Therefore, from Theorem 5.4.3 in Fuller (1996), we can conclude that E [f,(x)] = O(n™), since f,
and its first derivative with respect to the N, and NN, evaluate to zero at x,.

Now, take any J # & suchthat J ¢ &, and assume that J € G;. Theorem 1 guarantees that we
can always choose a subset J° < J suchthat J* e G., V, - is linearly independent, and [(\/S’Jt) =
£(V,,)- Note that TT(2,|£(V, -)) = Al . (A, AL ) A 2, Let b .= (A AT )7A, .2,
Hence, from conditions in (2.8), we have that J e & impliesthat b_|. >0, and <ZS —A;J*BS,J*,YSQSO
forany j. Define b, .= (A A7 .)"A .z, andassumethat b .>0, and (z,-A] b, v, )<0
for j =1, 2, ..., m These conditions would imply that J° € &,, contradicting the original
assumption that J ¢ &G, since [(Vm") = £ (V,,) from Lemma 3. Therefore, either there is an

element of bﬂ‘ that is strictly negative or there exists j, such that <zﬂ - A;J*bw*, Yﬂ;o> > 0.

N
Hence, proving that P(J € &) = O(n™) in any of these two scenarios will conclude the proof.

< 0, where e i denotes the

Suppose the j,™ element of b . isstrictly negative. That is, e}ob# ”

indicator vector that is 1 for entry j and O otherwise. Then, we have

PJ e G)) < P(e]b

Jo S,J*

> O) = P(eTB —e'b . > —e}obw*)

io 5,37 Jo ,u,J*

) (e}obﬂvJ*)z

Denote f, (X,) to the expression inside the above expected value. An analogous argument to the one used
for the function f, can be applied to the rational continuous function f, over ', to conclude that
E [f,(%,)] = O(n™). Note that we also used the fact that A_ .A! . is an invertible matrix for any
X e S.

Lastly, suppose there exists j, such that Kiiy = <z# — A;J*bw*, Yum> > 0, and denote

K. = <Zs - Al.b_ ., Ysj0>‘ Then, we have

Zuv Jo

P(J € é;) < P(O = Kzsxjo) = P(KZ; o Kzs’jo 2 szz’jo)

Denote f,(X,) to the expression inside the above expected value. An analogous argument to the one used
for the functions f,, f, is applied to conclude that E[f, (%,)] = O(n™).

Proof of Theorem 3. Take any J € &, and any domain d. Note that the condition Ap > 0 implies that
@ € G,. Then, we canwrite 6, — ¥, as
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ésd - Vud = (ysd _Vud)1J=® + Z (ésd,.]G _yud)lJG=J + Z (ésd,.]e _yUd)lJG=J'

16 EG,\2 oo Gt

where we used that ésdvg = ¥,,- Now, an unfeasible variance estimator AV (5%, J) can be written as

Av(ésdx-]) = Av(ysd)lJ:® + Z Av(ésdeG)lJ:Je + Z Av(ésdeG)lJ:Je'

1o e e
Hence,
AV, )0, - Vu,) = AV(T,) (T, - Vo) b0
s AV(G,5) (0, ~ Ve b,

+ Z AV (ésax-]e )_1/2 (ésleG - VUd ) 13 =Jg

Jg Gy

= |:AV(YSd )71/2 (ys - VUd)lJ =g

+ Z Av(ésvaG )_1/2 (ésd"]G - eudee) 13 =Js

g € G,\D

+ z AV(éSdYJG)A/Z (ésdv‘]G - HUd,JG)1J:JG:|

Je € Gy

+|: Z Av(ésdx‘]e)illz(eud:% - 7Ud):]'.]=,](3:|
1o £G,\@

~ _/ _
’ |: Z AV(HSd'JG)lZ(HUd'JG - yUd)lJ:JG:|
Jeegy
= ClN + CZN + C?,Na

where 6, , is the population version of ésd'JG. A first order term Taylor expansion of ésdyJG and
Assumption A6 allow to conclude that each term of the form

Av(ésvaG )_1/2 (é - gudr‘le)

Sq- J6

converges in distribution to a standard normal distribution. Therefore, c,, also converges to a standard
normal distribution. Note that for each J, € g;,

AV (85) " (O, = B,) = DAV, 5 )] [0 (6, 5, = W,)] = O0Y),

while 1,_, = O,(n™) by Theorem2 (since J € G.). Thus, ¢;y = O, (n™/?). Now, note that
6y, 5. — Yo, = OIN?) when J; e G\ by Assumption A3. Hence, forany J, € G\ &,

Ug, Jg

~ _ ~ _ n
Av(gsvaG) ’ (eudw]e - yud) = [nAV(esdeG ):I 1/2|:n1/2 (eudw]e - 7Ud ):I - O[ W],
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which implies that c,, = O(\/_ﬁ) (bias term). Thus, by combining these properties of c,,, c,, and
C,y» We conclude that

AV (G, )0, - v,,) B V(B D,

where B = O(/%).

Now, write the feasible variance estimator V (4, ;) as

V(ésuxj) = VA(ySd)l‘]zg + z v(ésd'JG)1J=JG + ZVA(édeJG)lJzJG'

16 €6\ Joc Gt

By Assumption A6, we have that V (6, , ) — AV(d,, , ) = o,(n™) forany J, which implies that

\ (HSd 3 )1/2 /— AV (ésd 3 )1/2/ =0, (n72). Hence, an application of Slutsky’s theorem allows to replace
~ ~1/2 Ao~ -1/2
AV (6, ;) " byV (b, ,) .

To prove the last part of this theorem, just note that Ap > 0 implies &, = ;. Thus, the term c,,
does not exist and the bias term vanishes.
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Bayesian hierarchical weighting adjustment and survey
inference

Yajuan Si, Rob Trangucci, Jonah Sol Gabry and Andrew Gelman*

Abstract

We combine weighting and Bayesian prediction in a unified approach to survey inference. The general
principles of Bayesian analysis imply that models for survey outcomes should be conditional on all variables
that affect the probability of inclusion. We incorporate all the variables that are used in the weighting
adjustment under the framework of multilevel regression and poststratification, as a byproduct generating
model-based weights after smoothing. We improve small area estimation by dealing with different complex
issues caused by real-life applications to obtain robust inference at finer levels for subdomains of interest. We
investigate deep interactions and introduce structured prior distributions for smoothing and stability of
estimates. The computation is done via Stan and is implemented in the open-source R package rstanarm and
available for public use. We evaluate the design-based properties of the Bayesian procedure. Simulation studies
illustrate how the model-based prediction and weighting inference can outperform classical weighting. We
apply the method to the New York Longitudinal Study of Wellbeing. The new approach generates smoothed
weights and increases efficiency for robust finite population inference, especially for subsets of the population.

Key Words: Weighting; Prediction; Multilevel regression and poststratification; Structured prior.

1 Introduction
1.1 Background

Design-based and model-based approaches have long been contrasted in survey research (Little, 2004).
The former automatically takes into account survey design, while the latter can yield robust inference for
small sample estimation. Rao (2011) provides an appraisal of frequentist and Bayesian methods on survey
sampling practice. Classical design-based approaches use weights to adjust the sample to the population;
see Chen, Elliott, Haziza, Yang, Ghosh, Little, Sedransk and Thompson (2017) for a review of various
weighted estimators for a population mean. However, classical survey weighting usually relies on many
user-defined choices so that the process of weighting can be difficult to codify in real-world surveys
(Gelman, 2007). The Bayesian approach for finite population inference (Ghosh and Meeden, 1997) allows
prior information to be incorporated, when appropriate, but is subject to model misspecification.

In the present paper we combine Bayesian prediction and weighting in a unified approach to survey
inference, applying scalable and robust Bayesian regression models to account for complex design features
under the framework of multilevel regression and poststratification (MRP, Gelman and Little (1997); Park,
Gelman and Bafumi (2005); Ghitza and Gelman (2013); Si, Pillai and Gelman (2015)). MRP adjusts for
complex design and response mechanisms and improves small area estimation (Fay and Herriot, 1979; Rao
and Molina, 2015). We deal with different complex issues caused by real-life applications and much finer
levels for subdomain inference of interest. Our method yields efficient and valid finite population inference,
especially for subgroups, and constructs model-based weights after smoothing.

1. Yajuan Si, Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor. E-mail: yajuan@umich.edu; Rob
Trangucci, Department of Statistics, University of Michigan; Jonah Sol Gabry, Department of Statistics, Columbia University; Andrew
Gelman, Departments of Statistics and Political Science, Columbia University.
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The contributions of this paper are two folded: 1) as innovative Bayesian methodology developments we
develop a new structured prior setting to handle high-order interaction terms; and 2) to improve survey
research and operation, we combine Bayesian prediction and weighting as a unified approach to survey
inference, accounting for design features in the Bayesian modeling. We generalize MRP for finite population
inferences and construct stable and calibrated model-based weights to solve the problems of classical
weights. We disseminate the R package rstanarm implementing the proposed methods for public use,
promoting the model-based approaches in survey research and operational practice. More importantly, the
paper builds the groundwork to use MRP in the survey weighting adjustment and data integration, for
example, to make inferences with nonprobability surveys. Our proposed methods offer one important and
practical tool for designing and weighting survey samples (Valliant, Dever and Kreuter, 2018).

1.2 Framework

For a finite population of N units, we denote the variable of interestas y = (y,, ..., y,) and the
inclusion indicator variable as I = (I, ..., Iy), where 1, = 1 if unit i is included in the sample and
I, = 0 otherwise. Here, inclusion refers to selection and response. The general inference framework
considers the joint distribution for 1 and y. Design-based inference considers the distribution of | and
treats y as fixed. Under probability sampling, model-based inferences can be based on the distribution of
y alone given the variables that affect the inclusion mechanisms are included in the model (Royall, 1968),
that is, under the ignorable inclusion mechanism when the distribution of | given y is independent of the

distribution of y (Rubin, 1976, 1983).

To account for the factors that affect inclusion, classical design weights adjust for unequal probabilities
of sampling, with subsequent weighting adjustments accounting for coverage problems and nonresponse
during data collection or data cleaning. Classical weights are thus generated as a product of multiple
adjustment factors: inverse probability of selection, inverse propensity score of response, and
poststratification (also called calibration or benchmarking; Holt and Smith (1979)). Each of these
adjustments can be approximate when the probability of selection, the probability of response, or population
totals are estimated from data. Beyond any approximation issues, even if the inclusion model is known
exactly, extreme values of weights will cause high variability and then inferential problems, especially when
the weights are weakly correlated with the survey outcome variable (Rao, 1966a, b; Hajek, 1971; Sarndal,
Swensson and Wretman, 1992). When the weighting process involves poststratification or nonresponse
adjustment — where the weights themselves are random variables — the variance estimation will be different
from the cases only with fixed design weights. It is nontrivial to analytically derive a variance estimator
under the multi-stage weighting adjustment or complex sampling design.

In practice, the construction of survey weights requires somewhat arbitrary decisions of the selection of
variables and interactions, pooling of weighting cells, and weight trimming. It can be unclear whether and
how to incorporate auxiliary information (Groves and Couper, 1995). Discussion of smoothing and
trimming in the survey weighting literature (e.g., Potter, 1988, 1990; Elliott and Little, 2000; Elliott, 2007;
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Xia and Elliott, 2016) has focused on estimating the finite population total or mean, with less attention to
subdomain estimates. Beaumont (2008) proposes to regress weights on the survey variables and use the
predicted values as smoothed weights, where the direction is inspiring but tangential to the inference
objective where good inference properties are desired for the survey variable of interest rather than the
weights. Borrowing information on survey outcomes potentially increases efficiency and calls for a
general framework.

Gelman (2007) recommends regression models including as covariates any variables that affect
selection and response, including stratification variables, clusters, and auxiliary information. Any of these
approaches can be sensitive to the prior specification for stable estimation; this is the model-based
counterpart to the decisions required for smoothing or trimming classical survey weights. Flexible
prediction techniques, such as spline functions, penalized regression and tree-based models, have been
proposed to accommodate model-assisted survey estimation (Sarndal et al., 1992; Wu and Sitter, 2001,
Breidt and Opsomer, 2017; McConville and Toth, 2018).

Model-based and model-assisted weighting adjustment methods for finite population total estimation
have been compared by Henry and Valliant (2012). The model-based weighting methods in the
superpopulation perspective (Valliant, Dorfman and Royall, 2000) use predictions from regression models
to derive case weights, where the predictions are based on hierarchical linear regression models with
various bias corrections (Chambers, Dorfman and Wehrly, 1993; Firth and Bennett, 1998). Based on the
finite population total estimation, model-assisted methods derive case weights mainly from calibration on
benchmark variables (Kott, 2009) via the generalized regression estimator (GREG, Deville and Sérndal
(1992)). However, the case weights derived from regression predictions can be highly variable and even
negative and may damage some domain estimates. Model-based approaches play a vital role in small area
estimation but are subject to misspecification and need new developments when the number of domains is
large and the inclusion mechanism is not simply random.

To protect against model misspecification, Little (1983) recommends modeling differences in the
distribution of outcomes across classes defined by differential probabilities of inclusion. Si et al. (2015)
construct poststratification cells based on the unique values of inclusion probabilities and build
hierarchical models to smooth cell estimates as advocated by Little (1991, 1993).

We propose to use Bayesian hierarchical models accounting for survey design to generate weights that
can be used in design-based inference. The inference is well calibrated and valid with good frequentist
properties (Little, 2011). For large samples, the inference will parallel with design-based inference. For
small samples, the hierarchical model smoothing will stabilize domain estimation and generate robust
weighting adjustment.

We use the intrinsic variables that are used for design weight construction, nonresponse adjustment
and calibration, assume they are discretized, and construct poststratification cells based on the cross-
tabulation. Weights are derived through the regressing survey outcome on variables used for weighting
given the poststratification. The inclusion of the outcome variable into weighting and poststratification can
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avoid model misspecification and potentially increase efficiency (Fuller, 2009). Multilevel model
estimates shrink the cell estimates towards the prediction from the regression model. The MRP framework
combines multilevel regression and poststratification, accounts for design features in the Bayesian
paradigm, and is then well equipped to handle complex design features. Our proposal distinguishes from
the model-based weights in the literature by using the poststratification cell structure and improves by
smoothing, thus avoiding negative weight values.

Si et al. (2015) incorporate weights into MRP, increasing flexibility and efficiency comparing to the
pseudo-likelihood approach (Pfeffermann, 1993). In the present paper we go further, starting from the
variables that are used for weighting and constructing model-based weights as byproducts under MRP. We
develop a novel prior specification for the regularization to handle potentially large numbers of
poststratification cells. The prior setting allows for variable selection and keeps the hierarchical structure
among main effects and high-order interaction terms for categorical variables. That is, if one variable is
not predictive, then the high-order interactions involved with this variable are also likely to be not
predictive, to facilitate model interpretation. McConville and Toth (2018) use tree-based methods to
automatically select poststrata based on auxiliary variables that are potentially correlated with the survey
outcome. Our proposed structured prior plays a similar role with the recursive partitioning algorithm to
facilitate poststrata selection but improves efficiency by partial pooling. We use the smoothed weights and
estimates that are more stable than the regression tree estimator, and the Bayesian framework propagates
all sources of uncertainty while McConville and Toth (2019) ignore the variance for tree growing and use
mean squared error to approximate the variance.

We have implemented the computation in the R package rstanarm (Goodrich and Gabry, 2017). The
fully Bayesian inference is realized via Stan (Stan Development Team, 2018, 2017), which uses
Hamiltonian Monte Carlo sampling with adaptive path lengths (Hoffman and Gelman, 2014). Stan
promotes robust model-based approaches by reducing the computational burden of building and testing
new models. The rstanarm package allows for efficient Bayesian hierarchical modeling and weighting
inference. The codes are publicly available and reproducible. Our developed computation software
provides the accessible platform and has the potential to support the unified framework for survey
inference.

Section 2 introduces the motivating problem of weighting for an ongoing social science survey. We
discuss the method in detail Section 3. Section 4 describes the statistical evaluation of model-based
prediction and weighting inference, and demonstrate the efficiency gains in comparison with classical
weighting. We apply the proposal to the real-life survey in Section 5. Section 6 summarizes the
improvement and discusses further extension.

2 Motivating application

Our methodological research is motivated by operational weighting practice for ongoing surveys. Our
immediate goal is to construct weights for the New York City (NYC) Longitudinal Study of Wellbeing
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(LSW; Si and Gelman (2014); Wimer, Garfinkel, Gelblum, Lasala, Phillips, Si, Teitler and Waldfogel
(2014)), a survey organized by the Columbia University Population Research Center, aiming to provide
assessments of income poverty, material hardship, and child and family wellbeing of city residents.

We use the LSW as an example to illustrate practical weighting issues and our proposed improvement,
with the understanding that similar concerns arise in other surveys. The survey includes a phone sample
based on random digit dialing and an in-person respondent-driven sample of beneficiaries from Robin
Hood philanthropic services and their acquaintances. We focus on the phone survey here as an illustration.
The LSW phone survey interviews 2,002 NYC adult residents, including 500 cell phone calls and 1,502
landline telephone calls, where half of the landline samples are from low-income areas defined by zipcode
information. The collected baseline samples are followed up every three months. We match the samples to
the 2011 American Community Survey (ACS) records for NYC. The discrepancies are mainly caused by
the oversampling of the low-income neighborhoods and nonresponse.

The baseline weighting process (Si and Gelman, 2014) adjusts for unequal probability of selection,
coverage bias, and nonresponse. Classical weights are products of estimated inverse probability of
inclusion and raking ratios (Deville, Sarndal and Sautory, 1993). However, practitioners have to make
arbitrary or subjective choices on the selection and values of weighting factors. For example, to construct
weights for individual adults, we have to weight up respondents from large households, as just one adult
per sampled household is included in the sample. Gelman and Little (1998) recommend the square root of
the ratio of household sizes to family sizes for this weighting adjustment because using household sizes as
weights (for example, ACS Weighting Method, 2014) tend to overcorrect in telephone surveys. The raking
operation procedure in practice adjusts for socio-demographic factors without tailoring for particular
surveys.

The survey organizers are interested in the aspects of life quality of city residents, such as the
percentage of children who live under poverty and material hardship. Thus, it is important to get accurate
estimates for subpopulations. We would like to develop an objective procedure and let the collected
survey data determine the weighting process. The basic principle is to adjust for all variables that could
affect the selection and response into weighting. ldeally, we expect that variables used for weighting
should include phone availability (number of landline/cell phones and duration with interrupted service),
family structure, household structure, socio-demographics and potentially their high-order interaction
terms. However, the ACS records only provide information on family size, age, ethnicity, sex, education
and poverty gap (a family poverty measure). Meanwhile, considering the substantive analysis goal, the
variables describing the number of elder people in the family, the number of children in the family, and
the family size, as well as their interactions with poverty gap are recommended by the survey organizers
to be included into the weighting process to balance the distribution discrepancy with the population.

To generate classical weights, we select the raking factors that could affect the selection and response,
including sex, age, education, ethnicity, poverty gap, the number of children in the family, the number of
elder people in the family, the number of working aged people in the family, the two-way interaction
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between age and poverty gap, the two-way interaction between the number of persons in the family and
poverty gap, the two-way interaction between the number of children in the family and poverty gap, and
the two-way interaction between the number of elder people in the family and poverty gap. We collect the
marginal distributions from ACS and implement raking adjustment. The generated weights have to be
trimmed due to some extreme values.

However, it is possible that the subjective weighting adjustment includes some variables or interactions
that are not essentially predictive or does not take account for all the important factors that could be of
substantive interest later. The raking adjustment assumes that these factors are independent. This will
cause biased domain inference bases on the cross-tabulation if the correlation structure in the sample is
different from that in the population. Ideally, we should match based on the joint distribution of these
weighting related variables. However, small cell sizes or empty under the deep interactions will lead to
extremely large weights that need cell collapsing.

The problems we face with classical weighting for the LSW baseline survey are reflective of problems
for most operational weighting practice in real-life surveys, which are often complicated with complex
designs, longitudinal structure or multi-stage response mechanisms. The ad-hoc decisions that often go
into classical weighting schemes can result in different practitioners generating different sets of weights
for the same survey. In order to avoid the need for subjectivity, it is important to propose a model-based
weighting procedure that allows the data to select weighting factors. We would like to incorporate these
variables used for weighting into the model for survey outcomes for efficiency gains, model their high-
order interaction terms under regularized prior setting and generate the weights that can be equally treated
as classical weights. A large number of variables used for weighting and deep interactions will cause small
weighting cells based on the cross-tabulation. The small weighting cells call for statistical adjustment for
smoothness and stability.

MRP have achieved success for domain estimation at much finer levels. Borrowing the strength of
hierarchical modeling framework with an informative prior distribution, we should be able to obtain the
estimate after smoothing the sparse cells. Poststratification via census information will match the estimate
from the sample to the population. The combination of regression and poststratification is similar to the
endogenous poststratification concept (Breidt, 2008; Dahlke, Breidt, Opsomer and Keilegom, 2013). We
introduce the MRP framework in detail.

3 Method
3.1 Multilevel regression and poststratification

In the basic setting, we are interested in estimating the population distribution of the survey outcome
y. When the weighting process is transparent, we can directly include the auxiliary variable X into
regression modeling for the survey outcome y. Here X is a q-dimensional vector of variables that affect
the sampling design, nonresponse and coverage. Conditional on X, the distribution of inclusion indicator
| isignorable.
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The selection of the auxiliary variables and the availability of their joint distributions in the population
are the key to success for MRP, and also for all other methods to adjust for the sampling selection and
nonresponse bias and yield valid population inferences. We recommend including all variables that
potentially affect the sample inclusion, such as design information, paradata, and socio-demographics.
One advantage of MRP is to perform variable selection and stabilize weights in contrast to noisy classical
weights.

Another practical challenge is that the population distribution of the calibration variables may be
unknown. We obtain the joint population control distribution from ACS in our application study. Wang,
Rothschild, Goel and Gelman (2015) used the aggregated exit polls, Zhang, Holt, Yun, Lu, Greenlund and
Croft (2015) used the census tract-level information and Yougov (Yougov, 2017) used the Current
Population Survey to directly obtain such information for the poststratification adjustment. In practice, we
recommend to obtain the population information either directly from census or large studies with minimal
errors or estimated based on available information in related studies. Some auxiliary variables’ population
distribution may not be available in the census database, such as the number of phones, and we can
estimate from other surveys as reference samples. Reilly, Gelman and Katz (2001) applied models to
predict the unknown population poststratification information. When marginal distributions are available,
Little and Wu (1991) discuss an equivalent model approach for raking and Si and Zhou (2020) develop a
Bayes raking estimation in the population cell size estimation. We discuss extensions to develop an
integrative framework accounting for the estimation uncertainty of unknown control information in
Section 6. The availability of population control information with high quality and predictive power
directly affects inferential validity, either for model-based or design-based approaches.

Under MRP, the auxiliary variables X are discretized, and their cross-tabulation constructs the
poststratification cells j, with population cell sizes N; and sample cell sizes n, for j =1, ..., J, where
J is the total number of poststratification cells (Little, 1991, 1993; Gelman and Little, 1997; Gelman and
Carlin, 2001). Then the total population size is N = ZLIN], and the sample sizeis n = ijlnj.

Poststratification inference is different from design-based inference under stratified sampling by the
fact that n;’s are now random functions of the sampling distribution 1. In the repeated sampling of I,
there is a nonzero probability that n; = 0 for some j. The usual resolution of this problem is to
condition on n;’s observed in the realized sample, however, the sample inference is not design-unbiased

conditionally on n;’s. The MRP framework assumes a model for n,’s to account for the design feature.

The poststratification implicitly assumes that the units in each cell are included with equal probability.
Suppose & is the population estimand of interest, such as the overall or domain means, and it can be
expressed as a weighted sum over any subset or domain D of the poststrata,

ZjeDNjgj
ZjeDNj

where 6, is the corresponding estimand in cell j. The proposed poststratified estimator will be of the
general form,

0 = (3.1)
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ZjeD Niéi
ZjeDNj

where éj is the corresponding estimate in cell j. Various modeling approaches can be used to estimate
the cell estimates, such as the flexible nonparametric Bayesian models and machine learning algorithms
(Rasmussen and Williams (2006); Hastie, Tibshirani and Friedman (2009)). Here, we illustrate using a
hierarchical regression model.

g7 = (3.2)

In practice, survey weights are attached to each unit, even though they are not attributes of individual
units. It is natural to generate unit-level weights based on the entire survey design, and use the weighted
averages of the form, suchas 6 = > " wy, / > w;,. Our goal here is to obtain an equivalent set of
unit-level weights w, through a model-based procedure for the estimation of 8 to connect weighting
and poststratification. Therefore, regression models can be used to obtain & ;» poststratification accounts

for the population information, and model-based weights are re-derived via the expression (3.2).

In classical regression models, full poststratification is a special case, where the cell estimates are
computed separately for each cell without any pooling effect, i.e., no pooling. For example, if we are
interested in the population mean, then the cell means will be used as the cell estimates. Generally,
classical regression models are conducted on cell characteristics without going to the extreme fitting
separately for each cell. If more interactions among the characteristics are included, the resulted weights
become more variable. On the other side, complete pooling ignores the heterogeneity among cells.
Hierarchical regression models will smooth the variable estimates under partial pooling.

Gelman (2007) uses the exchangeable normal model as an illustration and shows that the
poststratification estimate @”° for population mean can be expressed as a weighted average between the
cell means and the global mean, which yields the unit weights, also as a weighted average between the
completely smoothed weights, w; =1, and the weights from full poststratification, w; =
(N;/N)/(n; /n). Hierarchical poststratification is approximately equivalent to shrinkage of weights
through the shrinkage of the parameter estimates. The degree of shrinkage goes to zero as the sample size
increases, which implies that estimates from the model are close to the truth under the sampling design.
However, further developments are necessary to handle a large number of cells and deep interactions, and

rigorously evaluate the performance of model-based weights.

In our application to the LSW study, the variables used for weighting include age (5 categories),
ethnicity/race (5 categories), education (4 categories), sex (2 categories), poverty measure (5 categories),
family size (4 categories), the number of elder people (3 categories) and the number of children (4
categories), in the family, and this results in J = 5x5x4x2x5x3x4x4 = 48,000 poststrata.
The majority of the poststratification cells will be empty or sparse due to the limited sample size (2,002).
The sample cell sizes are unbalanced. Often cells are arbitrarily collapsed or combined (Little, 1993)
without theoretical justification. Recent model-based weighting smoothing procedures across cells could
not handle such sparse cases (Elliott and Little, 2000). Xia and Elliott (2016) introduced a Laplace prior
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for weight smoothing across a modest number of poststrata based on inclusion probabilities but ignored
the variables used for weighting and their hierarchy structure. Using the MRP framework, we account for
the variable hierarchy structure to smooth and pool the estimates across the sparse and unbalanced cell
sizes with a novel set of prior distributions.

3.2 Structured prior distribution

We introduce a structured prior distribution to improve MRP under the sparse and unbalanced cell
structures, thus yielding stable model-based survey weights that account for design information. Suppose
the population distribution of X is known, that is, we can obtain N ;s from the external data to describe
a joint distribution of the variables used for weighting. Extension to unknown N;’s is discussed in
Section 6. In practice, the number of poststratification cells J can be large, even much larger than the
sample size n. The variables used for weighting could affect the inclusion through a complex relationship
or a differential response mechanism. Deep interactions are essential for complex relationship structure,
but we cannot include all and have to select the predictive main effects and interactions.

Suppose the collected survey response is continuous, y,, for i = 1,..., n, and we are interested in
the population mean Y estimation. We use (X", ..., X’7)" to representthe J x g predictor matrix in
the population under the poststratification framework. For illustration, assume a normal distribution,

Yi ~ N(0yy, 07), (33)

where j[i] denotes the cell j that unit i belongs to. We can also consider unequal variances, allowing
the cell scale o, to vary across cells, indexed as o ;. For the prior specification of &, one choice can be
0, = X 1B, and S is assigned with some prior distribution. In the hierarchical regression example of
Gelman (2007), a multivariate normal distribution is considered, y; ~ N (X;5, Z,) and g ~ N(0, Z,),
where the covariates include all main effects and a few selected two-way interactions in X and the
covariance matrix X , is diagonal with different scales. However, the model is subject to misspecification,

and the generated weights could be negative.

Since X! consists different level indicators of the q discrete auxiliary variables, we can express the
population cell mean &, as
0, = a, + Yo+ D a®+. .+ > al¥, (3.4)
kes® kes(? kes(®
where S is the set of all possible | -way interaction terms, and «{') represents the k™ of the |-way
interaction terms in the set S for cell j. For example, a!")’s with k € S™ refer to the main effects,
a{?’s with k e S® being the two-way interaction terms, for cell j. This decomposition covers all
possible interactions among the g variables. When the cell structure is sparse, variable selection is
necessary. In practical applications, we recommend the initial inclusion of covariates and interactions with
substantive importance and scientific interest in Model (3.4) and perform Bayesian variable selection
under the proposed structured prior setting.
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We induce structured prior distributions to be able to handle deep interactions and account for their
hierarchy structure, where the high-order interaction terms will be excluded if one of the corresponding
main effects is not selected. Larger main effects often lead to larger effects of the involved interaction
terms. Ideally, more shrinkage should be put on the high-order interactions than that on the main effects,
and the prior setting should reflect the nested structure. The challenge embodies the problem in Bayesian
inference for group-level variance parameters in an ANOVA structure (Gelman, 2005, 2006). Volfovsky
and Hoff (2014) introduce a class of hierarchical prior distributions for interaction arrays that can adapt to
the potential similarity between adjacent levels, where the covariance matrix for the high-order
interactions is assumed as a Kronecker product of the covariance matrices of main effects after adjusting
relative magnitudes. Our proposal extends by inducing more structure among the variance parameters,
more shrinkage and smoothing effect to handle an extremely large number of cells with unbalanced sizes
than the generally balanced setting in Volfovsky and Hoff (2014), and improves the computation
performance.

We start with independent prior distributions on the regression parameters «:

af) ~ N (0, (3"0)),

N

where A" represents the local scale and o is the global error scale, for k € S and | = 1,..., g. The
error scale is the same across the main effects and high-order interactions, while the local scales are
different. The shrinkage effect is induced through the specification of local scales. We assume the local
scale of high-order interactions is the product of those for the corresponding main effects after adjusting
relative magnitudes.

) — | ()
ﬂé) =50 H ﬂ"o ,
|OEM(k)

where 5" is the relative magnitude adjustment and M %) is the collection of corresponding main effects
that construct the k™ |-way interaction in the set S". For example, the local scale of the three-way
interaction among age, sex, and education, middle-aged men with college education, will be the product of
those for the main effects on age, sex, and education, that is, the product of the local scale parameters for
middle-aged, men, and college educated, respectively.

We use the following hyperpriors on the scale parameters:
error scale: o ~ Cauchy: (0, 1)
local scale for main effects: 4® ~ N, (0, 1)

local scale for high-order interactions: 4" = T, w4 (3.5)

loeM &k

relative magnitude for high-order interactions: 6"’ ~ N, (0,1), for I = 2,..., q.
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Here Cauchy. and N, denotes the positive part of the Cauchy and normal distributions, respectively.
Gelman (2006) proposes the half-Cauchy prior for the scale parameter in hierarchical models, which has
the appealing property that it allows scale values arbitrarily close to 0, with heavy tails allowing large
values when supported by the data. When A" is close to 0, the posterior samples of «|') are shrunk
towards 0. The scale parameter for the high-order interaction terms will be O if any of the related scale
parameters for the main effects is 0. The overall regularization effect is determined by the error scale and
the multiplicative scale parameters of the corresponding main effects. We assign a noninformative prior
distribution to the intercept term and weakly informative prior distributions to the two global error scale
parameters (o, o), where o, ~ Cauchy- (0, 5).

The global-local shrinkage prior can stabilize random effects modeling in small area estimation (Tang,
Ghosh, Ha and Sedransk, 2018). Our proposed prior specification features the global-local shrinkage and
group selection of all possible level indicators for the same variable, similar to the group lasso (Yuan and
Lin, 2006). We achieve the goal of variable selection under the similar specification with the Horseshoe
prior distribution (Carvalho, Polson and Scott, 2010) and improve by setting up the group selection and
multiplicative scales for high-order interactions for sparsity gains. We introduce weakly informative half-
Cauchy prior distributions to error scales and informative half-normal prior distributions to the local scale
parameters to improve parameter shrinkage estimation and computation efficiency. When the posterior
estimation of the scale parameter is close to 0, indicating the variable is not predictive; post-processing
can be done to exclude the variable from poststratification cell construction for dimension reduction. This
class of priors allows for variable selection in high dimension and keeps the hierarchical structure among
main effects and interactions.

Piironen and Vehtari (2016) recommend the prior choice for the global shrinkage hyperparameters
based on prior beliefs about the number of nonzero coefficients in the model. The hierarchy setting with
correlated variables requires further investigation. We use the default choice Cauchy: (0, 1) and conduct
an extensive sensitivity analysis of the hyperparameter specification, where the results do not change.

3.3 Model-based weights

We can re-express (3.4) and (3.5) as the exchangeable normal model:

q
2
0, ~ N(ay, 02), o2 = X 3 (A"0). (3.6)

I:lkes(l)
Conditional on the variance parameters, the posterior mean in the normal model with normal prior
distribution is a linear function of data; thus we can determine equivalent weights w;’s so that one can re-

. J ~ . . n * n *

express the smoothed estimate zjlej/NHj as a classical weighted average, mei yi/zizlwi :
Combining the posterior mean estimates for 6; and the model-based estimate given in Model (3.2),
Gelman (2007) derives the equivalent unit weights in cell j that can be used classically.

Statistics Canada, Catalogue No. 12-001-X



192 Si et al.: Bayesian hierarchical weighting adjustment and survey inference

W~ n;/o; ~N;/N 1o}

~ -1, 3.7
" nj/ol + 1) nj/n n /ol + 1o} 3.7

where the model-based weight is a weighted average between full poststratification without pooling
(weights of (N;/N)/(n;/n)) and complete pooling (weights equal to 1). The pooling or shrinkage
factoris 1 /(1 + n,o; /aj), which depends on the group and individual variances as well as sample size
in the cell. The model-based weights are random variables, and fully Bayesian inference will propagate
the corresponding variability. We collect the posterior mean values and treat as the weights that can be
used the same as classical weights.

3.4 Computation

The Bayesian hierarchical prediction and weighting inference procedure is reproducible and scalable.
We implement the proposed structured prior distributions in the open source R package rstanarm
(Goodrich and Gabry, 2017). The computation codes are available online (Si, Trangucci and Gabry, 2020)
for public use. We present the example code for the real data application in Appendix A to demonstrate
the user-friendly and efficient computation interface, where survey practitioners can straightforwardly use
and adapt. The fully Bayesian inference is realized via Stan. As open source and user-friendly software,
Stan contributes to the wide application of Bayesian modeling. Survey practitioners resist model-based
approaches mainly due to computation burden. However, model-based methods are ready to face the new
challenges on big survey data, such as unbalanced cell structure, combining multiple surveys and
analyzing streaming data. The development of Stan can improve the generalization of the model-based
approach and provide the computational platform for the unified survey inference framework.

In our implementation, the Markov chain Monte Carlo samples mix well and the chains converge
quickly. The fast computation speed widens the usability of model-based survey inference approaches.
The proposed prior specification improves the stability for smoothed weights under partial pooling. We
compare the model-based weights with classical weights in Section 4 and 5 to demonstrate the calibration
for design-based properties (Little, 2011). Furthermore, we illustrate the proposed improvement for
domain estimation under unbalanced and sparse sample cell structure.

4 Simulation studies

We evaluate the Bayesian procedure by the design-based properties and demonstrate the validity. We
consider two main simulation scenarios: a slightly unbalanced structure with a moderate number of
poststratification cells and a very unbalanced structure with a large number of poststratification cells. We
evaluate the statistical validity of the model-based and weighted estimation for the finite population and
domain inference to demonstrate the improved capability to solve the classical weighting problems. To
illustrate the capability of variable selection and hierarchy maintenance and the resulting efficiency gains,
we compare the posterior estimation with that under independent prior setting but without the
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multiplicative scale constraint, which is similar with Horseshoe prior under group specification, called as
independent prior distributions in the paper: (" ~ N (0, (¢(")?).

We consider model-based predictions under the structured prior (Str-P) and the independent prior (Ind-
P) distributions. For weighted inference, we evaluate the estimation after applying the model-based
weights under structured prior (Str-W) setting, model-based weights under independent prior (Ind-W)
distributions, weights obtained via raking adjustment (Rake-W), classical poststratification weights (PS-
W), and inverse probability of selection weighting (IP-W). We present the graphical diagnosis tools to
compare the weights and weighted inference.

We borrow 2011 ACS survey of NYC adult residents treating it as the “population”, and randomly
draw samples out of it according to a pre-specified selection model without nonresponse. We collect
covariates from ACS and simulate the outcome variable to obtain the true distribution as a benchmark.
The details of model specifications for the following scenarios are presented in Appendix B. We
implement the raking procedure by balancing the marginal distributions of the calibration variables in the
selection model and generate the raking weights. The classical poststratification weights N; /n;’s are
obtained by matching the selected sample cell indices with those of the population cells. The selection
model can provide the inverse probability of selection weights by matching the sampled unit indices. We
also generate model-based weights under independent prior distributions for the main effects and high-
order interaction terms of the ACS variables. The generated weights are normalized to average 1 for
comparison convenience.

4.1 Slightly unbalanced structure

We first handle slightly unbalanced structure when the number of poststratification cells and the
sample cell sizes are moderate. We implement repeated sampling process to investigate the frequentist
properties of model-based predictions and weighted inferences. With little shrinkage effect on high-order
interactions, the model-based prediction and weighting with structured prior distributions have similar
performance with that under independent prior distributions, while outperforming the classical weighting
approaches.

Assume three variables are included in the selection and outcome models: age, ethnicity, and
education. We discretize the three variables in ACS as age (18-34, 35-44, 45-54, 55-64, 65+), eth (non-
Hispanic white, non-Hispanic black, Asian, Hispanic, other), and edu (less than high school, high school,
some college, bachelor degree or above). The number of poststratification cells is 5 x 5 x 4 =100. We
assume the outcome depends on deep interactions, including all the main effects, two-way and three-way
interaction terms among the three variables; and the selection indicator depends on the three main effects.
The specific values of the coefficients are given in Tables B.2-B.3 in Appendix B. The values are set to
reflect the strong correlations between the covariate and dependent variables. And the effects are not
necessarily similar across the adjacent factor levels, different from the scenarios in Volfovsky and Hoff
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(2014). The error scale in the outcome model is set as 1, where the true value is always fully recovered
from the posterior estimation. The data generation model is different from the estimation model, but the
latter is flexible enough to cover the former since the dependency structure will be recovered by the
estimation. The proposal is robust against model misspecification.

We repeat the sampling 500 times. The sample sizes vary between 2,141 and 2,393 with median 2,288.
Empty sample cells occur with spread-out selection probabilities (ranging from 0.001 to 0.269) over the
repeated sampling process. The number of occupied cells in the sample is between 80 and 93 with median
87. The slightly unbalanced cell structure is common in practical surveys with simple and clean sampling
design. The population quantities of interest include the overall mean, domain means across the
13 (=5 + 4 + 4) marginal levels of three variables and domain mean for nonwhite youths (an example of
interaction between age and race/ethnicity). We examine the absolute value of estimation bias, root mean
squared error (RMSE), standard error (SE) approximated by the average value of standard deviations
(Ave. SD) and nominal coverage rate of the 95% confidence intervals.

The outputs in Figure 4.1 show that the model predictions have the smallest RMSE, the smallest SE
with reasonable coverage rates, and comparable bias among all the methods. All variables affecting the
outcome and selection mechanism are included in the modeling to satisfy the Bayesian principle for
ignorable sampling mechanism. The model will predict all the cell estimates including the empty cells in
the sample, fully using the population information and poststratification cell structure. The weighting
inference is conditional on the observed units within occupied cells, and thus less efficient than the model
predictions. Generally, the model-based weighting inference has smaller RMSE and SE but more
reasonable coverage rates than that with classical weighting. Raking adjustment is not valid for the
domain estimation with large bias, large RMSE, and poor coverage, even though the selection mechanism
depends on only the main effects. The inverse probability of selection weighting inference tends to have
large SE but low coverage rates, especially for domain estimation. The poststratification weighting
inference is close to the model-based weighting estimation since the domain sizes are modestly large. The
cell shrinkage effect towards no weighting is small (between 0 and 0.19 with mean 0.05) under slightly
unbalanced design. The number of cases who are less than high school educated is small (around 80),
resulting in large estimation bias and SE for the weighting inferences, but not in model-based predictions.
The model-based predictions stabilize the small area estimation by smoothing, as shown in Table 4.1 that
displays the numerical comparison for the subdomain inference.

Model prediction performs well and similarly under the structured prior distribution or independent
prior distribution. This is expected due to the small shrinkage effect. The cell structure is slightly
unbalanced, and the outcome and selection models depend on all the main effects and high-order
interaction terms. But the structured prior setting yields more efficient inference than the independent
prior setting with smaller SE. This improvement is obvious in the very unbalanced design as shown in the
following simulation of Section 4.2.
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Figure 4.1 Comparison of prediction and weighting performances on the validity of finite population
inference under slightly unbalanced design. The y-axis denotes different groups for the mean
estimation. The x-axis includes two model-base prediction methods (Str-P, Ind-P), two model-
based weighting methods (Str-W, Ind-W), and three classical weighting methods (PS-W, Rake-W,
IP-W). Str-P: model-based prediction under the structured prior; Ind-P: model-based prediction
under the independent prior distribution; Str-W: model-based weighting under structured prior;
Ind-W: model-based weighting under independent prior distribution; Rake-W: weighting via
raking adjustment; PS-W: poststratification weighting; and IP-W: the inverse probability of
selection weighting. The plots show that the model-based predictions outperform weighting with
the smallest RMSE, the smallest SE, reasonable coverage rates, and comparable bias among all
the methods. Model-based weighting inference has smaller RMSE and SE but more reasonable
coverage rates than that with classical weighting.

Table 4.1

Comparison of prediction and weighting performances on the subgroup mean for non-white youth under
slightly unbalanced design

Str-P Ind-P Str-w Ind-W PS-W Rake-W IP-W

Abs.Bias 0.02 0.02 0.05 0.05 0.04 0.03 0.02
RMSE 0.07 0.07 0.11 0.11 0.10 0.17 0.17
Ave.SD 0.08 0.08 0.13 0.13 0.13 0.13 0.13
Coverage 0.97 0.98 0.94 0.94 0.94 0.88 0.86
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Additionally, we considered nine cases with different survey outcome models and sample selection
models depending on various predictors as in Table B.1 in Appendix B. The specific values of the
coefficients are given in Tables B.2-B.3. The conclusions are consistent that the model-based prediction
and weighting yield more efficient and precise inference than that under classical weighting, in particular
for domain estimation.

4.2 Very unbalanced structure

Complex sampling design and response mechanisms tend to create very unbalanced data structures
where most poststratification cells are sparse and empty. The proposed structured prior setting brings in
strong regularization effect to stabilize the model prediction and improves the estimation efficiency,
especially for domain estimation, outperforming the independent prior distributions. The posterior
inference on scale parameters can inform variable selection to improve model interpretation. When the
main effects are not predictive, neither are the related high-order interactions. However, the posterior
inference with independent prior distributions distorts the hierarchical structure between main effects and
high-order interactions and hardly informs variable selection. The classical weighting inferences are
highly variable in the sparse scenario.

Following the LSW, we collect eight variables in the 2011 ACS-NYC data that affect sample
inclusion: age (18-34, 3544, 45-54, 55-64, 65+), eth (non-Hispanic white, non-Hispanic black, Asian,
Hispanic, other), edu (less than high school, high school, some college, bachelor degree or above), sex
(male, female), pov (one household income or poverty measure, poverty gap under 50%, 50-100%, 100-
200%, 200-300%, more than 300%), cld (0, 1, 2, 3+ young children in the family), eld (0, 1, 2+ elders in
the family), and fam (1, 2, 3, 4+ individuals in the family). The number of unique cells occupied by this
classification is 8,874, while the number of poststratification cells constructed by the full cross-tabulation
is 48,000.

In the simulation described in Table B.4 and Table B.5, the selection probability depends on the main
effects of all variables, while the outcome depends on the main effects of five variables. The cell selection
probabilities will be clustered, where some cells have the same selection probabilities. The error scale in
the outcome model is set as 1. The selection probabilities fall between 0 and 0.90 with average 0.12, and
we select 6,374 units. Even though the sample sizes are large, the simulation creates a very unbalanced
structure. The majority of the cells are empty, and 1,096 of 1,925 selected cells have one unit. Starting
from an estimation model with sparsity, we assume the Model (3.4) for the cell estimations includes the
main effects of the eight variables, eight two-way interactions, and two three-way interactions. These
terms are potentially important factors for weighting from the survey organizer’s view. Our proposal can
provide the insight of variable selection and then facilitate dimension reduction.

When only the main effects are predictive, the posterior median values under the structured prior
setting for the scales of the cld, eld, and fam are small (0.002, 0.003, 0.000), and the posterior median
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values for the scales of all high-order interactions are close to 0 (with magnitude smaller than or around
0.0001). The posterior mean of the error scale is 0.99 with SE 0.008, close to the true value 1. This is
consistent with the simulation design. With independent prior distributions, however, the hierarchical
structure between the main effects and high-order interaction terms is ignored. The posterior samples of
scale parameters of the high-order interactions can be larger than that of the main effects. It is unclear
about their predictive power and then hard to decide which terms to be selected. The posterior samples of
the variance parameters under the independent prior distributions tend to be highly variable with heavy
tails. For example, the variances of the main effects of age and sex have extremely large sampled values
(14,496 and 390,000) and skewed distributions. For variables with a small number of levels, such as sex,
the group-level variance estimation is sensitive to the prior distribution, and the independent prior
distribution cannot regularize well. The structured prior distribution performs better by assuming the prior
distributions share some common parameter and using more information for estimation and then is able to
stabilize the variance estimation. The structured prior setting yields more stable inference than the
independent prior, and moreover can facilitate variable selection.

The proposed structured prior setting suggests that we exclude the nonpredictive main effects and
high-order interactions from the regression model for cell estimates, by either post-processing the
posterior samples of the corresponding scales and coefficients to be O or refitting the updated model. In
the simulation design, three variables affect the selection probability but are not related to the outcome.
The inclusion of these variables into the regression model will increase the inference variability. The
poststratification cell structure accounts for the eight variables to meet the ignorable sampling assumption.
A further modification could be the exclusion of the three variables from the poststratification, which
could make the assumption of ignorable sampling vulnerable but have efficiency gains. This is a tradeoff
between efficiency and robustness that needs balance based on substantive interest. The selection of
survey outcome variables in the weighting process needs further investigation, which we will elaborate in
Session 6. We compared the inference with that after excluding the nonpredictive terms and obtained
similar outputs for the finite population and domain estimation since the parameter estimates are close to 0
for the nonpredictive terms. Here we present the outputs keeping such variables in the poststratification
cell construction and the regression model.

First, we compare the generated weights by the model-based and classical methods. We collect the
posterior samples of generated weights and present the posterior mean as the model-based weights. The
model-based weights have smaller variability and narrower range than the classical weights, as shown in
Figure 4.2. The iterative proportional fitting procedure does not converge after the default 10 iterations
that need increasing. We examine the distribution of the outcome after accounting for the weights and
compare with the population and sample distribution in the right plot of Figure 4.2. The sample
distribution differs from the population distribution by underestimating the outcome values. The weighted
distribution shifts towards the true population. The outcome distributions after weighting are similar
among the model-based and classical methods, and the model-weights generate a smooth distribution of
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outcomes. This is reasonable as we expect the model-based weights perform similarly with classical
weights on point estimation but improve efficiency by reducing the variability. The shrinkage effect under
the structured prior distribution is large, between 0.86 and 1.00 with mean 0.90. The very unbalanced cell
structure needs a strong smoothing effect across cells. The model-based weights under the structured prior
and independent distributions have similar distributions with the poststratification weights, so the latter
two sets of weights are omitted in Figure 4.2.

Str-w
1P-W-
Sample. POP

Rake-W

74

e ~

25 0.0 25 ) 5.0 5 0 5 10
Distributions of log(weights) Weighted distribution of outcome

Figure 4.2 Comparison of generated weights after logarithmic transformation and weighted outcome
distributions under a very unbalanced design. Str-W: model-based weighting under structured
prior; Rake-W: weighting via raking adjustment; and IP-W: inverse probability of selection
weighting. Sample: sample distribution of the outcome; and POP: population distribution of the
outcome. The model-based weights are more stable and generate a more smoothed outcome
distribution after weighting than the raking weights and the inverse probability of selection
weights.

We examine the inference for the overall mean and domain means across the marginal levels and for
nonwhite young adults. The conclusions are the same as that in Section 4.1. Model-based prediction
outperforms weighting inference with smallest bias and SE. The benefit can be explained by that the
model uses the population information for empty cell prediction under regularization. Model-based
weighting inference has smaller SE than that with classical weighting. Even when the selection
probabilities depend on only main effects, raking yields small bias but performs badly with large SE.

Under the very unbalanced design, the model-based weighting inference under structured prior setting
is more efficient than that under independent prior setting or with poststratification weights. We compare
the SE of the marginal mean estimates of the eight variables from the three weighting methods and plot
the relative ratios in the left plot of Figure 4.3. The model-based weighting inference has smaller SE than
the poststratification weighting, and the weighting under structured prior setting has the smallest SE.
Because the sample sizes and the domain sizes are large and the data generation model is sparse, the
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model-based weighting inference has a little but not much improvement over the poststratification
weighting inference due to small smoothing effect.

The model-based prediction and inference under the structured prior setting are more efficient than that
under the independent prior setting. The SEs are smaller with the structured prior than those with the
independent prior in the right plot of Figure 4.3. To demonstrate the efficiency gain, we look at the SEs
for the population cell estimates. The Bayesian structural inference generally has smaller variability than
that with independent prior, especially in the sparse scenarios.
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Figure 4.3 Efficiency comparison of prediction and weighting performances on finite population domain
inference under a very unbalanced design. The left plot examines the mean estimation across the
margins defined by the eight variables. The right plot presents the population cell mean
estimation. The model-based weighting and prediction under the structured prior distribution
yield smaller SE than those under independent prior. Model-based weighting yields smaller SE
than poststratification weighting.

We assume different outcome and selection models with different covariates with scenarios
summarized in Table B.4 and achieve the same evaluation conclusions.

5 Application to longitudinal study of wellbeing

With the background introduced in Section 2, we apply the prediction and weighting inference to the
NYC Longitudinal Study of Wellbeing. We match the LSW to the adult population via the ACS. We
would like to conduct finite population and domain inference and generate weights allowing for general
analysis use. The outcome of interest is the self-reported score of life satisfaction on a 1-10 scale. We
model the outcome as normally distributed, which is not quite correct given that the responses are discrete,
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but should be fine in practice for the goal of estimating averages. We first include the same eight variables
to construct the poststratification cells and use the same estimation model as those in Section 4.2 under the
structured prior setting. The posterior inference shows that the variables sex, cldx, eldx, and psx are not
predictive, and neither are the related high-order interactions. The scale estimates of such terms have
posterior median values close to 0 and several large values as long tails. The posterior samples of scales
for several high-order interactions among the remaining four variables concentrate around 0, showing
these quantities are not predictive. Another complexity is that, for the sample cells of the LSW, the
corresponding population cells are not available in the ACS data. This could happen because the sampling
frame is not the ACS survey. The population information is unknown for such cells, and untestable
assumptions have to be made. The model fitting improves after variable selection when we check the
prediction errors for cell estimates.

Hence, we use four variables after selection, age, eth, edu and pov, which constructs 500
poststratification cells. The 2,002 units in the LSW spread out in 359 cells. The largest sample cell has 86
units, while 92 cells have only one unit. The covariates in the model (3.4) for cell estimates include the
main effects of the four variables, five two-way interactions (age * eth, age * edu, eth * edu, age * inc and
eth * inc), and two three-way interactions (age * eth * edu and age * eth * inc). We implement the fully
Bayesian inference with the structured prior distributions. We are interested in estimating the average
score of life satisfaction for overall and several subgroups of NYC adults and construct weights for
general analysis purposes using the LSW.

The posterior median of the unit scale inside cells o, is 1.93 with 95% credible interval [1.87, 1.99].
The posterior median of the group scale o, is 0.79 with 95% credible interval [0.65, 1.02]. These lead to
moderately large shrinkage effects between 0.11 and 0.90 with mean 0.30 across cells. The moderate
shrinkage effect makes sense based on the four variables and up to three-way interactions being included.
The posterior mean values of the model-based weights are presented in the left plot of Figure 5.1. We can
generate the raking weights after adjustment for the marginal distributions of the four variables and
poststratification weights based on the ACS data. The population information is obtained after applying
the ACS personal weights.

Comparing with the classical weights, our model-based weights have smaller variability with standard
deviation 0.32 and the ratio of the maximum and minimum value 3.87, and these values are much smaller
than those for the raking and poststratification weights, as shown in Table 5.1. The right plot in Figure 5.1
shows the distribution of the lift satisfaction score after weighting. The model-based weighted
distributions and classically weighted distributions are similar as expected, which is consistent with the
results in Section 4.2. The weighting process adjusts for the sample distribution by upweighting the high
scores and downweighting the low scores. The LSW oversamples poor residents who tend not be satisfied
with life, and the weighting adjustment balances the discrepancy.
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Figure 5.1 Comparison of generated weights after logarithmic transformation and weighted distributions of
life satisfaction score in the LSW. Str-W: model-based weighting under structured prior; Rake-
W: weighting via raking adjustment; IP-W: inverse probability of selection weighting, and
Sample: sample distribution of the outcome. The weighted distributions are similar between
model-based weights and classical weights, but model-based weights are more stable than classical
weights.

Table 5.1 and Figure 5.2 present the finite population and domain inference. The average score of life
satisfaction for NYC adults is 7.24 with standard error 0.05, predicted by the structural model. The
estimate is similar to that under model-based weighting and raking inferences, but lower than the
poststratification weighting inference. However, the difference is not significant. For example, the
structural model predicts the average score of life satisfaction for middle-aged, college-educated whites
with income more than three times the poverty level as 7.40 with standard error 0.10, higher than that
under weighting inferences. Nevertheless, the predicted scores for the elder with relatively low income
(7.37 with SE 0.15) and low-income black New Yorkers (7.01 with SE 0.18) are lower than those under
weighting inferences. The discrepancy could be explained by the nonrepresentativeness of the LSW and
the deep interactions included by the model. The subgroup of individuals who are middle-aged, college-
educated whites may be undercovered in the LSW —as empty poststratification cells occurring — with
overcoverage among elderly poor blacks. Weighting the collected samples cannot infer or extrapolate
inference on those who are not present in the survey. Though the differences are not significant, inferences
conditioning on the collected samples cannot recover the truth, especially for the empty cell estimates.
Figure 5.2 shows the model-based prediction yields a higher score for young, highly educated and
Hispanic NYC adults, but a lower score for those with poverty gap <50%, comparing with the weighted
inference.
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Table 5.1
Comparison of prediction and weighting performances on estimating various domain averages for life
satisfaction in the LSW. Str-P: model-based prediction under the structured prior; Str-W: model-based
weighting under structured prior; Rake-W: weighting via raking adjustment; and PS-W: poststratification
weighting

Str-P Str-W Rake-W PS-W
SD of weights / mean of weights 0.32 0.66 0.80
Max weight / min weight 3.87 81.28 274.65
Overall average for NYC adults (n = 2,002)
Est 7.24 7.23 7.24 7.30
SE 0.05 0.05 0.05 0.06
Average for middle-aged, college-educated whites with poverty gap > 300% (n = 222)
Est 7.40 7.34 7.34 7.34
SE 0.10 0.11 0.11 0.11
Average for elders with poverty gap < 200% (n =154)
Est 7.37 7.52 7.49 7.53
SE 0.15 0.18 0.19 0.22
Average for blacks with poverty gap < 50% (n = 57)
Est 7.01 7.16 7.30 7.16
SE 0.18 0.26 0.28 0.29

The SEs are similar for the overall mean estimation between predictions and various weighting
inferences because of the large sample size. For domain estimation, the model-based prediction and
weighting are more efficient than that with raking and poststratification weighting, and the model-based
prediction has the smallest standard error. The efficiency gains of model-based prediction and weighting
are further demonstrated by domain mean estimation for life satisfaction scores across the marginal levels
of four variables, shown in Figure 5.2. The model-based prediction and weighting particularly improve
small domain estimation and increase the efficiency.

Survey practitioners often compare the weighted distribution of socio-demographics with the
population distribution to check the weighting. While weighting diagnostics need further research and
management, we follow this routine to compare the model-based and classical weights. We calculate the
Euclidean distances between the weighted distributions and the population distribution for the main effects
and high-order interactions among the four variables in the LSW, shown in Table B.6 in Appendix B. The
weighted distributions are generally close to the true distributions. Raking focuses on adjusting for the
marginal distributions of calibration variables but distorts the joint distributions, where the dependency
structure is determined only by the sample without calibration. The poststratification weighting adjusts for
the joint distribution, but empty cells in the sample present from the exact matching. The unbalanced cell
structure yields unstable inference. The model-based weighting smooths the poststratification weightings
and outperforms raking to match the distributions of three-way and four-way interaction terms.
Practitioners often rely upon the marginal distributions to evaluate weighting performances, thus in favor
of raking. However, raking yields high variable and potentially biased inferences, shown in the Section 4,
even in the cases when raking adjustment is correct. Modification of model-based weighting to satisfy
such desire on matching marginal distributions will be a future extension to incorporate constraints.
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Figure 5.2 Comparison of predictions and weighting performances on estimating life satisfaction score across
the margins of four variables in the LSW. Str-P: model-based prediction under the structured
prior; Str-W: model-based weighting under structured prior; Rake-W: weighting via raking
adjustment; and PS-W: poststratification weighting. Model-based predictions and weighting
generate different estimates for several subsets and are generally more efficient comparing with
classical weighting.

6 Discussion

We combine Bayesian prediction and weighting as a unified approach to survey inference. Multilevel
regression with structured prior distributions and poststratification on the population inference yield
efficient estimation when accounting for the design feature. The computation is implemented via Stan and
disseminated through the R package rstanarm for public use, and the software development promotes
the model-based approaches in survey research and operational practice. We construct stable and
calibrated model-based weights to solve the problems of classical weights. This article builds up the
model-based prediction and weighting framework and serves as the first contribution to evaluate the
statistical properties of model-based weights and compare the performances with classical weighting.
Model-based weights are smoothed across poststratification cells and improve small domain estimation.

The structured prior uses the hierarchical structure between the main effects and high-order interaction
terms to introduce multiplicative constraints on the corresponding scale parameters and informs variable
selection. Model improvement can be done after post-processing the posterior inferences. The Bayesian
structural model yields more stable inference than that with independent prior distributions. Such
hierarchy assumption may not be valid for special cases, such as the Exclusive-Or problem where two
variables show no main effects but a perfect interaction. However, we do not have strong evidence in the
application studies against the plausibility of hierarchy. Furthermore, the unified prediction and weighting
approach is well equipped to deal with complex survey designs and big data in surveys, such as streaming
data and combining multiple survey studies.

Statistics Canada, Catalogue No. 12-001-X



204 Si et al.: Bayesian hierarchical weighting adjustment and survey inference

The general MRP framework is open to flexible modeling strategies. In this article, we illustrate by a
regression model with all variables of interest and the high-order interactions and incorporate structured
prior distributions for regularization. Other approaches, such as nonparametric models and machine
learning tools, can be implemented under the MRP framework, being robust against model
misspecification. Si et al. (2015) use Gaussian process regression models to borrow information across
poststratification cells based on the distances between the inverse inclusion probability weights. Further
extensions include applying such flexible approaches to weight smoothing and deriving the model-based
weights.

The broad application opportunities come with various challenges that need further investigation. The
model-based weights are outcome dependent, which improves the efficiency but potentially reduces the
robustness. Survey organizers prefer a set of weights that can be used for general analysis purpose,
without being sensitive to outcome selection. We can compare different weights constructed by several
important outcomes and conduct sensitivity analysis. When the model-based weights give different
inference conclusions, we recommend choosing the set of weights that generate the most reasonable
results, with scientific reasoning and be consistent with the population inference.

The weighted marginal distributions of the calibration variables are a bit different from the population
inferences, as in Section 5, which does not meet the usual weighting diagnosis standard of survey
organizers. The model-weights tend to match the joint distribution to that in the population, but weight
smoothing may bring in bias. Tradeoff constraints can be induced to the model to match the marginal
distributions.

Another practical challenge is that the population distribution of the calibration variables may be
unknown, that is, the population poststratification cell sizes N,;’s are unknown. A supplemental model is
needed to allow estimation of this information from the sample and integrated with MRP to propagate all
sources of uncertainty as an extension, similar to the framework in Si and Zhou (2020) by incorporating
known margins. The model-based predictions and weighting inferences need further extensions to handle
discrete outcomes, inference on regression coefficients and non-probability or informative sampling
designs (Kim and Skinner, 2013). It will be useful to link these ideas on survey inference with the
biostatistical and econometrics literature on inverse propensity score and doubly robust weighting (Kang
and Schafer, 2007).
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Appendix
A. Example code

Here we present code for the application described in the data. We have written a function
model based cell weights to calculate the model-based weights from a fitted rstanarm model.

model based cell weights <- function(object, cell table) {
stopifnot (
is.data.frame (cell table),
colnames (cell table) == c("N", "n")
)
draws <- as.matrix (object)
Sigma <- draws[, grep(""Sigma\\[", colnames (draws)), drop = FALSE]
sigma theta sq <- rowSums (Sigma)
sigma y sq <- draws[, "sigma"]"2
Ns <- cell table[["N"]] # population cell counts
ns <- cell table[["n"]] # sample cell counts
J <- nrow(cell table)
N <- sum(Ns)
n <- sum(ns)
# implementing equation 7 in the paper (although i did some algebra first to
# simplify the expression a bit)
Nsy2 <= N * sigma y sq
ww <— matrix (NA, nrow = nrow (draws), ncol = J)
for (3 in 1:J) {
wwl, 3] <=
(Nsy2 + n * Ns[j] * sigma theta sq) / (Nsy2 + N * ns[j] * sigma theta sq)
}
return (ww)
}
# prepare population data: acs_ad has age, eth, edu and inc
acs_ad %>%
mutate (

cell id = paste0(age, eth, edu, inc)

) —> acs_ad
acs_design <- svydesign(id = ~1, weights = ~perwt, data = acs ad)
agg_pop <-

svytable( ~ age + eth + edu + inc, acs_design) %>%

as.data.frame () %$>%
rename (N = Freq) %>%

mutate (
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cell id = paste0(age, eth, edu, inc)

) $>%

filter(cell id %in% acs_adScell id)
# prepare data to pass to rstanarm
# SURVEYdata has 4 variables used for weighting: age, eth, edu and inc; and outcome Y
dat rstanarm <-

SURVEYdata %>%

mutate (

cell id = paste0(age, eth, edu, inc)

o°
o°

)
group by (age, eth, edu, inc) %>%

>

summarise (
sd cell = sd(Y),
n=n(,
Y = mean (Y),

cell id = first(cell id)

mutate (sd cell = if else(is.na(sd cell), O, sd cell)) %>%
left join(agg pop[, c("cell id", "N")], by = "cell id")
# Stan fitting under structured prior in rstanarm
fit <-
stan glmer (
formula =
Y~1+4+ (1| age) + (1 | eth) + (1L | edu) + (1 | inc) +
(1 | age:eth) + (1 | age:edu) + (1 | age:inc) +
(1 | eth:edu) + (1 | eth:inc) +
(1 | age:eth:edu) + (1 | age:eth:inc),
data = dat rstanarm, iter = 1000, chains = 4, cores = 4,
prior covariance =
rstanarm: :mrp structured (
cell size = dat rstanarmSn,
cell sd = dat rstanarm$sd cell,
group level scale = 1,
group level df =1
)y
seed = 123,
prior aux = cauchy (0, 5),
prior intercept = normal (0, 100, autoscale = FALSE),
adapt delta = 0.99
)
# model-based weighting
cell table <- fit$datal[,c("N","n")]
weights <- model based cell weights(fit, cell table)
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weights <- data.frame(w unit = colMeans (weights),
cell id = fitSdatal[["cell id"]],
Y = fit$datal["Y"]],
n = fitSdatal[["n"]]) %>%
mutate (
w = w unit / sum(n / sum(n) * w_unit), # model-based weights
Yw=Y%*w
)

with (weights, sum(n * ¥ w / sum(n)))# mean estimate

B. Simulation designs

Here we present the simulation designs, coefficient values, and comparison on the weighted
distributions of socio-demographics as a supplement to Sections 4 and 5.

Table B.1
Covariates in the outcome (O) and selection (S) models for slightly unbalanced design
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7
0] S O S O S 0] S @] S @] S 0] S
age| V v v v v v v v v R v v R v
1 A A I A A (R A A v v
edul vV | N | VoA A
age*eth | \/ Y S \/ S
age*edu | \ \ y \
eth*edu | v \ y
age*eth*edu | v \ \
Table B.2
Assumed regression coefficients in the outcome model for the simulation using a slightly unbalanced design
All Main effects Two variables
age| (0.5, 1.375, 2.25, 3.125, 4) (0.5,1.375,2.25,] (0.5, 1.375, 2.25, 3.125, 4)
3.125, 4)
eth| (-2,-1,0,1,2) (2,-1,0,1,2) 0
edu| (3,2,1,0) (3.2,1,0) (3.2,1,0)
age*eth| (4,2,1,1,3,3,2,1,1,1,2,3,2,2,1,4,4,3,2,3,2,4, | 0 0
1,4,1)
age*edu | (-2,-1,2,2,1,-2,2,1,0,-2,1,-2,-1,2,1,-1,-1, 2,0, 0 (2,0,-2,-2,1,1,-1,-2,-2,-1, -1,
2) ] 1,0,-1,-1,2,2,1,-1,0)
eth*edu| (1,-2,0,-3,-1,0,-1,-2,0,-1,-3,-3,0,-1,-1,0,0,-1,0,| O 0
_1)
age*eth*edu | (-1,-0.5,05,-1,-1,-05,-1,0,-1,0,-1,0,1,1,05,1,1,| O 0
-1,-1,0,-1,-05,-05,-1,1,-1,-05,-1,1,0,0.5,0.5, 1,
05/1,1,105,1,0,0,-05,0,1,-1,-1,0, -1, -1, -1,
-0.5,-05,0,1,-1,0,0,-05,1,-0.5,05,-1,1,0, 1, O,
-1,0,-05,1,-0.5,-1,-05,0,0.5,-05, 1, 0.5, -0.5, 0.5,
0,10,1,05,05,05,0,0,-05,1,-1,0,1,1,1,1,-0.5,
-1, -1)
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Table B.3
Assumed regression coefficients in the selection model for the simulation using a slightly unbalanced design
All Main effects Two variables
Intercept | -2 -2 -2
age | (-2, -1.75, -1.5, -1.25, -1) (0,05,1,152) | (-2,-1.5,-1,-0.5, 0)
eth | (-1, -0.25, 0.5, 1.25, 2) (-2,-15,-1,-0.5,0)| (-1,-0.5,0,0.5, 1)
edu | (0, 0.67, 1.33, 2) (0,1,2,3) 0
agexeth|(1,1,-1,1,-1,1,-1,0,0,-1,0,0,-1,1,0,0,-1,1, 1, 0 (-1,1,1,1,-1,-1,-1,0,-1, -1, -1,
-1,-1,0,1,-1,1) -1,1,-1,-1,0,1,1,-1,1,-1, -1, 1,
0,0)
agexedu|(0,1,-1,-1,0,1,1,0,1,0,1,-1,-1,1,1,-1,0,-1,1,1)| 0 0
ethx edu (-%, -1,0,-1,-1,1,1,1,1,0,-1,0,-1,0,-1,1,0,-1,-1,| 0 0
-1
age x ethx edu | (0.8, -0.4, 0.6, -0.2, 0.8, 0.2, 0.4, 0.8, 0.4, -0.6, -0.8, 0 0
-0.4,-0.8,-0.4,04,-1,0.6,-0.8,-0.6, 0.6, -0.2, 0.2, 0.6,
-0.6,0,0,-1,-0.2,0.6,0.8,-0.4,0.2, -0.8, 0.4, 0.6, -0.6,
0.8,0,02,-1,1,04,0,08,-0.2,0,0,0.6,-0.8,-0.8,
-0.2,04,-1,-08,1,-0.2,0,0.8,0.6,0.8,-0.2, -0.2,
-0.8,1,0.8,0.8,-04,-0.8,0.4,-04, 1, -0.6, -1, -0.6,
-0.2,1,1,-0.2,1,0.6,0.4,0.8,0.2,-0.2, -0.6, 0, 0.8,
-0.4,04,04,0.6,-1,-0.8,-0.8,1,1,0.4,0.6,0.4,0.8)
Table B.4
Covariates in the outcome (O) and selection (S) models for a very unbalanced design
Case 1 Case 2 Case 3 Case 4
O S 0] S 0] S 0] S
age v v V v v v v v
eth V V v V x/ V V V
edu V V \ V V V V \
sex| v v v v v v v
pov| v v v v v v v
cld v v v v v
eld| v v v v v v
fam \/ v Y Y y y \
age*eth \/ v Y \/
age*edu \/ v \ \
eth*edu \ \ \ \
eth*pov \/ v Y \/
age*pov \ \ \ \
pov*fam \/ v \ \
pov=*eld S v Y \/
pov*cld v \
age*eth*edu \/ v Y \
age*eth*pov S v Y \
Table B.5
Assumed regression coefficients in the outcome (O) and selection (S) models for a very unbalanced design
0] S
age (2,0,-2,-2,1) (0,0.75, 1.5, 2.25, 3)
eth (1,-1,-2,-2,-1) (-1,-05,0,0.5, 1)
edu (-1,1,0,-1) (0,0.67,1.33,2)
sex (-1,2) (-1,0)
pov 2,1,-1,0,-1) 0,1,2,3,4)
cld 0 (-1,-0.33,0.33, 1)
eld 0 (-2,-1,0)
fam 0 (-1, -0.67, -0.33, 0)
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Table B.6

Euclidean distances between the weighted distributions and the population distribution. Str-W: model-based
weighting under structured prior; Rake-W: weighting via raking adjustment; and PS-W: poststratification
weighting

Str-W PS-W Rake-W
age 0.04 0.02 0.00
eth 0.08 0.06 0.00
edu 0.08 0.03 0.00
inc 0.02 0.02 0.00
age * eth 0.05 0.03 0.05
age * edu 0.05 0.02 0.05
age *inc 0.03 0.01 0.03
eth * edu 0.06 0.04 0.05
eth * inc 0.04 0.04 0.03
edu * inc 0.06 0.03 0.04
age * eth * edu 0.03 0.02 0.05
age * eth *inc 0.03 0.02 0.04
age * edu * inc 0.03 0.01 0.04
eth * edu * inc 0.04 0.02 0.04
age * eth * edu * inc 0.02 0.01 0.04
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Firth’s penalized likelihood for proportional hazards
regressions for complex surveys

Pushpal K. Mukhopadhyay?

Abstract

This article proposes a weight scaling method for Firth’s penalized likelihood for proportional hazards
regression models. The method derives a relationship between the penalized likelihood that uses scaled weights
and the penalized likelihood that uses unscaled weights, and it shows that the penalized likelihood that uses
scaled weights have some desirable properties. A simulation study indicates that the penalized likelihood using
scaled weights produces smaller biases in point estimates and standard errors than the biases produced by the
penalized likelihood using unscaled weights. The weighted penalized likelihood is applied to estimate hazard
rates for heart attacks by using a public-use data set from the National Health and Epidemiology Followup
Study (NHEFS). SAS® statements to estimate hazard rates using data from complex surveys are given in the
appendix.

Key Words:  Monotone likelihood; Delete-one jackknife; Weight scaling.

1 Introduction

The Cox proportional hazards regression model (Cox, 1972) is widely used to analyze survival data. It
is a semiparametric model that explains the effect of explanatory variables on hazard rates. The model
assumes a linear form for the effect of the explanatory variables but allows an unspecified form for the
underlying survivor function. The parameters of the model are estimated by maximizing a partial
likelihood (Cox, 1972, 1975).

For estimating canonical parameters in the exponential family distributions, Firth (1993) suggested
multiplying the likelihood by the Jeffreys prior to obtain a maximum likelihood estimate that is first-order
unbiased. The penalized likelihood is of the form

L,(B) = L)1 (B)*

where L (B) is the unpenalized likelihood, | is the information matrix, and f is a vector of regression
parameters. Firth’s penalized likelihood is a very useful technique in practice, not only to reduce bias but
also to correct for monotone likelihoods.

Proportional hazards regression models often suffer from monotone likelihoods, in which the
likelihood converges to a finite value but at least one parameter diverges (Heinze, 1999). Firth’s penalized
likelihood is also used to correct monotone likelihoods and to obtain parameter estimates that converge
(Heinze, 1999; Heinze and Schemper, 2001; Heinzel, Rudiger and Schilling, 2002).

Although Firth’s penalized likelihood is useful for reducing biases and for obtaining estimates from
monotone likelihoods, the penalized likelihood is not studied for complex surveys involving unequal
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weights. It is reasonable to use a weighted likelihood for complex surveys to compensate for unequal
weighting (Fuller, 1975; Binder and Patak, 1994). Survey data sets commonly include design weights or
analysis weights for which the sum of the weights is an estimator of the population size. However, these
unscaled weights will not appropriately scale the information matrix that is used in the penalty term. It is
desirable for proportional hazards regression parameters for survey data to have the following two
properties:

e Invariance: The point estimates and standard errors for the regression parameters should be
invariant to the scale of the weights.

e Closeness: The Taylor linearized variance for the estimated regression parameters should
be close to the delete-one jackknife variance.

In this article, we first show that if the Firth correction is not used, then both the invariance and
closeness are satisfied; but if the Firth correction is used with the unscaled weights, then the point
estimates and the standard errors are not invariant to the scale of the weights. That is, if the weights are
multiplied by a constant and the Firth correction is used, then the point estimates and standard errors will
be different. We then propose a commonsense weight scaling method and demonstrate that the Firth
correction using the scaled weights has both properties. The only difference between the scaled and
unscaled weights is that the sum of the scaled weights is equal to the sample size, but the sum of the
unscaled weights is an estimator of the population size.

1.1 Example that uses unscaled weights

We used a data set from a study of 65 myeloma patients who were treated with alkylating agents (Lee,
Wei and Amato, 1992) to demonstrate the properties of Firth’s penalized likelihood that uses unscaled
weights. Survival times in months were recorded for each patient. Patients who were alive after the study
period were considered to be censored. The following variables were available for each patient:

e Time: Survival time in months,

e Vstatus: Patient status, zero or one, indicating whether the patient was alive or dead,
respectively,

e LogBUN: Log of blood urea nitrogen level,
e HGB: Blood hemoglobin level.

To create a monotone likelihood, we added a new explanatory variable, Contrived, such that its value
at all event times is the largest of all values in the risk set (see the example “Firth’s Correction for
Monotone Likelihood” in “The PHREG Procedure” in SAS Institute Inc. (2018)). The variable Contrived
has the value 1 if the observed survival time is less than or equal to 65; otherwise it has the value 0.

To demonstrate the effect of weights in Firth’s penalized likelihood, we created three weight variables,
w1, w3, and w5, with the values of 1, 1,000, and 100,000 for each observation, respectively. Proportional
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hazards regression parameters are estimated by maximizing a weighted likelihood as described in
Section 1.2. Because wl has the value 1 for all observations, using wl in the analysis is equivalent to
performing the unweighted analysis.

We fitted the following two proportional hazards models using the PHREG procedure in SAS/STAT®
(see “The PHREG Procedure” in SAS Institute Inc. (2018)):

At, Z) = A,(t)exp(B,LogBUN + S,HGB)
A(t, Z) = A,(t)exp(BLogBUN + B,HGB + p,Contrived)

where A(t) and A, (t) are the hazard function and the baseline hazard function, respectively. Firth’s
penalized likelihood is not required in order to fit the first model without Contrived (the likelihood
converged in three iteration steps), but the second model containing the variable Contrived does not
converge without the Firth penalty in the likelihood. Table 1.1 displays the value of the likelihood and the
three regression coefficients for 14 iterations. Although the objective function and the coefficients for
LogBun and HGB converge to a finite value after the fourth iteration, the coefficients for Contrived
diverges. This is an example of a monotone likelihood for the variable Contrived. Because of this
monotonicity, Firth’s penalized likelihood must be used to fit the second model containing Contrived.

Table 1.1
Maximum likelihood iteration history showing a monotone likelihood for the variable Contrived
Iteration Number Likelihood Value LogBUN HGB Contrived
1 -140.693405 1.994882 -0.084319 1.466331
2 -137.784163 1.679468 -0.109068 2.778361
3 -136.971190 1.714061 -0.111564 3.938095
4 -136.707893 1.718174 -0.112273 5.003054
5 -136.616426 1.718755 -0.112370 6.027436
6 -136.583520 1.718829 -0.112382 7.036445
7 -136.571515 1.718839 -0.112384 8.039764
8 -136.567113 1.718841 -0.112384 9.040985
9 -136.565495 1.718841 -0.112384 10.041434
10 -136.564900 1.718841 -0.112384 11.041600
11 -136.564681 1.718841 -0.112384 12.041660
12 -136.564601 1.718841 -0.112384 13.041683
13 -136.564571 1.718841 -0.112384 14.041691
14 -136.564560 1.718841 -0.112384 15.041694

If Contrived is not used as an explanatory variable, then all three sets of weights produce the same
point estimates and Taylor linearized variance estimates (Table 1.2). The delete-one jackknife variance
estimates are also the same for all three sets of weights. Thus, the point estimates and the standard errors
are invariant to the scale of the weights when the Firth correction is not used.

Table 1.2

Parameter estimates and standard errors without the Firth correction for all three sets of weights
Estimate Std. Err.

LogBUN 1.674 0.583

HGB -0.119 0.060
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However, if the unscaled weights are used, then the point estimates for Contrived are not invariant to
the scale of the weights. Table 1.3 displays the parameter estimates for three sets of weights when
Contrived is used as an explanatory variable (and Firth’s penalized likelihood is applied). Because the
likelihood is not monotone (Table 1.1) for LogBun and HGB, the point estimates for these two
coefficients are not affected by the scale of the weights.

Table 1.3
Parameter estimates with the Firth correction and unscaled weights
Weight wil Weight w3 Weight w5
Estimate Std. Err. Estimate Std. Err. Estimate Std. Err.
LogBUN 1.722 0.584 1.719 1.85E-2 1.719 1.85E-3
HGB -0.112 0.061 -0.112 1.93E-3 -0.112 1.93E-4
Contrived 3.815 1.558 10.629 1.38 14.633 1.02

If Contrived is not used as an explanatory variable, then the ratio of jackknife standard errors to Taylor
linearized standard errors is 1.13 and 1.10 for all three sets of weights for the variables LogBUN and
HGB, respectively. Thus the ratio of the jackknife variance to the Taylor linearized variance for the
unpenalized likelihood is invariant to the scale of weights, and it is reasonable to expect the ratio to be
invariant when the penalized likelihood is used.

1.2 A brief review of point and variance estimates for regression parameters
for finite populations

Before we discuss the weight scaling method, we briefly review point and variance estimates for
regression parameters for proportional hazards regression of complex surveys involving unequal weights.
Lin and Wei (1989); Binder (1990, 1992); Lin (2000); and Boudreau and Lawless (2006) discussed
pseudo-maximum likelihood estimation of proportional hazard regression parameters for survey data. For
a more general description for estimating regression parameters for complex surveys, see Kish and
Frankel (1974); Godambe and Thompson (1986); Pfeffermann (1993), Korn and Graubard (1999,
Chapter 3), Chambers and Skinner (2003, Chapter 2), and Fuller (2009, Section 6.5). Wolter (2007)
described different variance estimation techniques for survey data.

Let 7/, = {1, 2,..., N} be the set of indices and let _#, be the set of values for a finite population
of size N. The survival time of each member of the finite population is assumed to follow its own hazard
function, 4, (t), expressed as

2(1) = A6 Z,(1) = 4 (1) exp(Z; (1) B)
where A, (t) is an arbitrary and unspecified baseline hazard function, Z, (t) is a vector of size P of

explanatory variables for the i™ unit at time t, and B is a vector of unknown regression parameters.

The partial likelihood function introduced by Cox (1972, 1975) eliminates the unknown baseline
hazard A, (t) and accounts for censored survival times. If the entire population is observed, then this
partial likelihood function can be used to estimate B. Let B, be the desired estimator.
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Assuming a working model with uncorrelated responses, B, is obtained by maximizing the partial log
likelihood,

LB = > log{L(B: Z, (1), 1)}

i€l

with respect to B, where L (B; Z, (t), t;) is Cox’s partial likelihood function.

Assume that a probability sample A, is selected from the finite population 7/,. Let =, be the
selection probability and w, (= z;*) be the sampling weight for unit i. Further assume that explanatory
variables Z, (t) and survival time t, are available for every unit in sample A,. A design unbiased
estimator for the finite population log likelihood is

L) = D>zt log{L(B; Z; (1), t,)} = > w log{L(B; Z; (1), t,)}.

ieAy ieAy

A sample-based estimator ﬁN for the finite population quantity B, can be obtained by maximizing
the partial pseudo-log likelihood | (B; Z, (t), t;) with respect to B. The design-based variance for ﬁN is
obtained by assuming that the set of finite population values _#, is fixed.

The weighted Breslow likelihood can be expressed as

K exp (B,Zﬂk W,Z; (t))

= ' Z:/ Wi
X wexp (BZ, (1)

L(B) =

where %, is the risk set just before the k™ ordered event time t,,, 2, is the set of individuals who fail
atthe t,,, and K is the number of distinct event times.

The point estimates for B are obtained by maximizing I () = log[L (B)].

Although the weights are sufficient for estimating regression coefficients for the finite population,
stratification and clustering information must also be used to estimate sampling variability. In order to
estimate sampling variability, you can use either the Taylor series linearization method or a replication
method.

1.2.1 Analytic variance estimator using the Taylor series linearization method

The Taylor series linearization method uses a sum of squares of the weighted score residuals to
estimate the sampling variability.

Define Z(B, t) = %’;3 where
SOM 1 = D wl(t > t)exp(BZ (1))
AN

and

SY (B, 1) = Swl (t; > t)exp(BZ,(1)Z ().
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The score residual for the i™ subject is

u; (B) = A{Z, (1) - Z(B, t,)}
-3 [, et B bl iz ) - 20,

= SO (B, t))

where A, is the event indicator.

Then the Taylor linearized variance estimator is
v(p) = 7 (B)c7(p)

where 7 () is the observed information matrix and the p x p matrix G is defined as

G = Z ”i”i‘”ij&_& &_&
i jeAi<i T T 7T 7T 7T

where 7;; are the joint inclusion probabilities for units i and j.

In particular, for stratified cluster designs in which the PSUs are selected by using a simple random
sample without replacement, the p x p matrix G reduces to

in (1

h=1

D3 - B (e - &)

where e, is the weighted sum of the score residuals, 0, in stratum h and PSU i; €&, is the mean of
e.:.; N, isthe number of PSUs; and f, is the sampling fraction in stratum h.

These estimators are well studied in the sample survey literature. For example, Binder (1992) and Lin
(2000) provide conditions under which B and V() are consistent. Chambless and Boyle (1985) derived
the design-based variance and asymptotic normality for discrete proportional hazards models.

1.2.2 Replication variance estimator using the delete-one jackknife method

The jackknife method is a commonly used replication variance estimation method for complex
surveys. To create replicates, it deletes (assigns a zero weight to) one PSU at a time from the full sample.
In each replicate, the sampling weights of the remaining PSUs are modified by the jackknife coefficient
a,. The modified weights are called replicate weights.

Let PSU i, in stratum h, be omitted from the r™ replicate; then the replicate weights and jackknife
coefficients are given by

0 i=1i, and h=h,
wi) = <wy /e, i#i, and h=h,
Wi h=h,

nhr

nhfl, respectively, for all observation units j in stratum h and PSU i. The number of PSUs
in stratum h, is n, .

and o, =
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The jackknife method can be applied to estimate variances for the estimated regression parameters for
Cox’s model because the model parameters are solutions of a set of estimating equations that are smooth
functions of totals (the corresponding score functions are given in Section 2). Properties of jackknife
variance estimators for proportional hazard regression models are discussed in Shao and Tu (1995,
Section 8.3).

To apply the jackknife method, model parameters are estimated by using the full sample and by using
every replicate sample. Let p be the estimated proportional hazards regression coefficients from the full
sample, and let ﬁ, be the estimated regression coefficients from the r'™ replicate. Then the covariance
matrix of B is estimated by

V) = Sa B DG B

r=1

If the sampling fractions are not ignorable, then the covariance matrix of B is estimated by

~ A R A A A AN
V(B) = Xa @-1)B, -B)B -p)
r=1
where f, = ;Lh is the sampling fraction in stratum h,.

In practice, both Taylor linearized variance and jackknife variance estimates are used to construct
Wald t confidence intervals with R — H degrees of freedom, where R is the number of PSUs (or the
number of replicates) and H is the number of strata.

It is straightforward to show that the jackknife variance estimator is algebraically equivalent to the
Taylor linearized estimator for design linear estimators. But for design nonlinear estimators, such as the
regression coefficients for proportional hazards regression models, the jackknife method tends to produce
slightly higher variance estimates than the Taylor linearized method (Fuller, 2009).

Note that if the full sample estimate suffers from a monotone likelihood, then it is very likely that most
replicate samples will also suffer from monotone likelihoods. This will results in many ‘“unusable”
replicate estimates.

Survey data analysis procedures in SAS/STAT support both Taylor linearized and replication variance
estimation methods (Mukhopadhyay, An, Tobias and Watts, 2008).

2 Weight scaling

Let w, be the weight for unit i. We propose to use W, = (ZA 1/2A wi) w, = (n/ZA wi) w, as the
scaled weight. By construction, the scaled weights are invariant to the scale of the weight. That is,

W= (”/ZA YW ) yw, = (n/zA w;) w, =W, forall y = 0.
Firth’s penalized likelihood is given by L, ()= L(B)|Z (B)|**, where L(B) and 7 (B) are the
unpenalized likelihood and information matrix, respectively. The penalized log likelihood is

I, (B) = 1(B) + 0.5log (|7 (B)]).
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In particular, when the scaled weights are used, the Breslow unpenalized log partial likelihood
(Breslow, 1974) is

1) = 9 T 0, ()~ (20 log 3 @ exp (b7, (1)

k=1 ieZ) e/

where w;, is the unscaled weight for unit i.

Denote
S\ (B) = z W, exp (B'Z; (t,))[Z, (tk)]®a
ie &,
where k isthe k™ -ordered event time, a = 0, 1, 2, [Z, (t,)]*° is 1, [Z, (t,)]®" is the vector Z, (t,), and

[Z, (£)]%* s the matrix [Z, (£)][Z, (t)] -

Then the score function is given by

UB) =U (L), ....U(8,))

4

Sz -zu il

ieZ) ieZ} SI? (B)

& JSPB) [sPE T sEe) T
= L2 {sw B {sw (B)HSF’) (ﬁ)} } |

QX (B) = D W exp(BZ; (t))Z; , (t)IZ; ()]

e/

Denote

where a=10,1,2, p=1,...,P; and Z;(t) = (Z;, (1), ..., Z; ,(1)). Then

o )| Qe (B Qi'(B) S (B)
;Zz; " {[S(O’ B) S () S (B)}

{ L(B) QY (B) SH(B) st (m]
SO®)  SVB) S P) ]SO

{ “(mﬂ QL) QY () sﬂ)(s)”
SOB) | SOB) SO SO (P)

o/ (B)

where p =1, ..., P.
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Point estimates and Taylor linearized standard errors for the penalized likelihood are obtained from the
score functions and the Hessian as described in Section 1.2. The jackknife standard errors are obtained by
maximizing the penalized likelihood in every replicate sample.

Appendix 1 shows that under certain regularity conditions, the point estimators obtained by
maximizing Firth’s penalized likelihood are design-consistent.

2.1 Penalized likelihoods and the scale of weights

In this section, we derive a relationship between the penalized log likelihood that uses scaled weights
and the penalized log likelihood that uses unscaled weights, and we demonstrate that Firth’s penalized
likelihood using unscaled weights does not have the invariance property.

Let 1(B,; W) be the log likelihood using weights W, and let I (B,; w) be the log likelihood using
weights w, where W, = aw, forall i and « = 0. The Breslow log likelihood can be written as

|(B..; W) ZK:{B;VZ WE, () - (2 )10y 3 s exp (B2 1)

1 ieZ)

e,

{B:Naz WZ; (t,) - (a Z Wi) log Z aWw; exp (ﬁ:NZi (tk))}

K
k= i€, i€, ie R

=2
- QZ{B;VZ wZ, (t) - (3 w)log 3" w exp (B, Z, (tk))}

ieZ ie?, ie &
- ZK:(aZ wi)loga
k

=1 ieZ)
K
= al (B, W) — Z(az Wi)log a.
k=1 \ ieZ),
Because the second term on the right-hand side does not contain B, the derivative and the Hessian of
the log likelihood are only a multiplier of « and the parameter estimates and standard errors are invariant

to the scale of the weights.

However, the following relation shows that the point estimates that are obtained by maximizing the
penalized log likelihood are not invariant to the scale of the weights:

Ly (Ba; W) = 1(By; W) + 0.5log|l (By; W)l
= al (B,; w) + 0.5log|al (B,; W)| - ZK:(aZ Wi)loga

=1\ ieD),

= al (B,; w) + 0.5{log|l (B, w)| + ploga} - ZK:(aZ wi)loga

= a{l(B,; W)+ 0.5log|l (B,; W)} — ki(a; Wi)loga

+0.5{ploga + (1 - a)log|l (B,; w)|}

= al, (By; W) - ZK:(aZ wi)loga

=1\ D),

+0.5{ploga + (1 — a)log|l (B,; w)|}.
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The additional term in the right hand side of the preceding equation involves the regression parameters.
Thus the point estimates and the standard errors are not invariant to the scale of the weights.

By construction, point estimates that use the penalized log likelihood and the scaled weights are
invariant to the scale of the weights.

2.2 Example that uses scaled weights

Consider the myeloma study described in Section 1.1. We refit the same proportional hazards
regression model using LogBUN, HGB, and Contrived as explanatory variables, but now we use scaled
weights in constructing Firth’s penalized likelihood.

Table 2.1 displays point estimates and standard errors from Firth’s penalized likelihood using scaled
weights and the Taylor linearized variance estimator. These statistics are invariant to the scale of the
weights.

Table 2.1
Parameter estimates and their standard errors using the Taylor linearized method with the Firth correction
and scaled weights

Weight wl Weight w3 Weight w5
Estimate Std. Err. Estimate Std. Err. Estimate Std. Err.
LogBUN 1.722 0.564 1.722 0.564 1.722 0.564
HGB -0.112 0.064 -0.112 0.064 -0.112 0.064
Contrived 3.815 0.458 3.815 0.458 3.815 0.458

Standard errors using jackknife replicates are also invariant to the scale of the weights. For replicate
variance estimation methods, every set of replicate weights must be scaled using the same scaling factor
that is used to scale the full sample weights. Table 2.2 displays point estimates and standard errors from
Firth’s penalized likelihood using scaled weights and the jackknife replicate variance estimator.

Table 2.2
Parameter estimates and their standard errors using jackknife replicates with the Firth correction and scaled
weights

Weight wl Weight w3 Weight w5
Estimate Std. Err. Estimate Std. Err. Estimate Std. Err.
LogBUN 1.722 0.653 1.722 0.653 1.722 0.653
HGB -0.112 0.074 -0.112 0.074 -0.112 0.074
Contrived 3.815 0.642 3.815 0.642 3.815 0.642

Estimates from the penalized log likelihood using the scaled weights also have the closeness property.
The ratios of jackknife standard errors to Taylor linearized standard errors are 1.16, 1.17, and 1.40 for all
three sets of weights for the variables LogBUN, HGB, and Contrived, respectively (Tables 2.1 and 2.2).
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3 Applications in complex surveys

Data from complex surveys frequently contain unequal weights, strata, and clusters. It is recommended
that the weights and other design features be used in the analysis stage. Weighted data provide a better
representation of the study population than unweighted data. In this section, we compare the scaled and
unscaled weights to estimate proportional hazards regression coefficients through a simulation study and
apply the Firth penalized likelihood using the scaled weights to estimate survival times from a data set
from NHEFS.

3.1 A simulation study

We performed a small simulation study to compare biases in parameter estimates and standard errors
for scaled and unscaled weights using Firth’s penalized likelihood. We used two sampling methods to
select samples from a fixed finite population: a simple random sample without replacement (SRS) in
which each observation unit gets an equal weight; and a probability proportional to size (PPS) without
replacement sample in which the sampling weight for an observation unit depends on the value of a size
measure associated with the hazard function for the unit. For the purpose of finite population inference,
we treat the estimated proportional hazards regression parameters in the finite population as the “true”
parameter values. Biases are measured from these true values.

Finite populations of size 10,000 are generated as follows:
e Z72,27Z,,...,Z, ~ Bernoulli(0.75),
e h=exp(-0.69Z, —0.69Z, — --- — 0.69Z,,),
e u ~ uniform(0, 1),
e t=log(u)/h,
e ¢~ Bernoulli(v),

e m ~ uniform(10h, 10h + 0.1)

where h is the hazard function, t is the survival time, ¢ is a censoring indicator, and m is a size measure
for each unit. Six finite populations are generated by using different censoring values (v =0.1, 0.3, 0.5,
0.7, 0.8, 0.9). See Bender, Augustin and Blettner (2005) for methods of generating survival times. Ten
regressors (Z,, Z,, ..., Z,,) are generated using Bernoulli distributions to create monotone likelihoods,
especially when the sample size is small and the censoring rate is high.

Samples are selected from each finite population by using two sampling methods: simple random
samples without replacement; and probability proportional to size samples without replacement, where the
variable m is used as the size measure. Four sample sizes are used for each sampling method: 50, 100,
500, and 1,000. Sampling weights for all units for SRS depend only on the sample size, but the sampling
weight for a unit for PPS depends on both the sample size and the observed value of the variable m for
that corresponding unit. To ensure the same distribution of the censored observations in the sampled data
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as in the population, samples are selected independently from censored and uncensored units in the
population.

Finally, the regression parameters from the proportional hazards regression model
AL, Z2) = Ay (V) exp(BZy + BoZ, + - + PiZyy)

are estimated from each sampled data set, where A, (t) is the baseline hazard, t is the survival time, and
c is the censored indicator. The regression parameters are estimated by maximizing the weighted Firth
penalized likelihood. Note that the unpenalized likelihood does not converge in most cases because of the
monotonicity of the likelihood in the simulated data. When the likelihood is not monotone, we found that
the point estimates obtained by using the penalized likelihood are very close to the point estimates
obtained by using the unpenalized likelihood. Heinze and Schemper (2001) reported similar findings for
unweighted data.

We compare relative biases in point estimates and standard errors using the jackknife method for
scaled and unscaled weights. The relative biases (RBs) are defined below (Sitter, 1992).

Let A, be the point estimate and ¥, be the variance estimate for one component of § from data set s.
Define the following:

Relative bias for point estimates, ﬁ

p S Bs - ﬂ
RB (ﬂ) — _12 ( T)|
s=1 |ﬂT|
Relative bias for variance estimates, ¥
v, MSE

T

where the true MSE is
A A 2
MSE, (ﬁ) = SilZ(ﬁs - ﬁT)

and g, is the “true” parameter value obtained by fitting the proportional hazards regression model using
all units in the finite population. The ratio of RBs is defined as the ratio of the RB using the unscaled
weights to the RB using the scaled weights.

The median of ratios of RBs over 5,000 repetitions is displayed in this section. We report the median
because there are some “bad” samples in which convergences are questionable even with the Firth
correction. These “bad” samples produce few estimates with very large biases. Because of these large
biases, the mean of the ratio of RBs is a more unstable statistic than the median. Without the “bad”
replicates, the mean and medians are very close. We also noticed that the penalized log likelihood using
the unscaled weights produces more of these “false” convergences.

Results for all regressors Z,, Z,, ..., Z,, are similar. For simplicity, we display results for only two
regressors, Z, and Z,.
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Ratios of RBs in parameter estimates for unscaled and scaled weights for the variables Z, and Z, are
displayed in Figures 3.1, 3.2, 3.3, and 3.4. For small sample sizes and a large number of censored
observations, RBs using scaled weights are much smaller than RBs using unscaled weights. For large
sample sizes, RBs from both weights are similar primarily because the Firth option is not necessary, since
the convergence is not an issue with large data sets.
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Figure 3.1 Ratio of relative biases in parameter estimates for SRS samples for Z3.
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Figure 3.2 Ratio of relative biases in parameter estimates for SRS samples for Z8.
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Figure 3.3 Ratio of relative biases in parameter estimates for PPS samples for Z3.
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Figure 3.4 Ratio of relative biases in parameter estimates for PPS samples for Z8.

Ratios of RBs in standard errors for unscaled and scaled weights for the variables Z, and Z, are
displayed in Figures 3.5, 3.6, 3.7, and 3.8. RBs for standard errors follow the same trend as RBs for point
estimates. However, RBs for standard errors are higher than RBs for point estimates. For small sample
sizes and a large number of censored observations, RBs using scaled weights are much smaller than RBs
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using unscaled weights. For large sample sizes, RBs from both scaled and unscaled weights are similar

primarily because the Firth option is not necessary, since the convergence is not an issue with large data
sets.
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Figure 3.5 Ratio of relative biases in standard errors for SRS samples for Z3.
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Figure 3.6 Ratio of relative biases in standard errors for SRS samples for Z8.
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