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Letter to the Editor

Extracting Statistical Offices from Policy-Making Bodies to Buttress Official

Statistical Production

The importance of official statistics is increasing not only for effective and rational

government operations and policies – its original use – but also for the efficient

functioning of domestic and international markets, international collaboration and

cooperation, scientific and technological progress, and for the functioning of the

democratic system. Official statistics is a public good (Georgiou 2017) whose reliability

and overall quality should be safeguarded and buttressed.

In a number of countries, statistical offices or bureaus that are entrusted with the

production of the official statistics of the country, are part of policy-making institutions.

Thus, as the United Nations Statistics Division notes on the basis of its latest global survey

on the implementation of UN Fundamental Principles of Statistics (UNFP): “Some national

statistical offices have a high degree of administrative independence, others are actually

part of a ministry” (UNSD 2013). It should give us pause that the work and performance of

these policy institutions and the politicians heading them are assessed, to a large extent, on

the basis of the statistics produced by the statistical offices embedded in these institutions.

This institutional setup increases risks to the implementation of statistical principles,

including the principles of professional independence, impartiality and objectivity, and

statistical confidentiality. Dependencies and conflicts of interest are inherent in this setup.

Creating an administrative distance between policy-making institutions and statistical

producers, by extracting statistical offices from policy-making bodies, is one of the

necessary means of buttressing the professional independence and other critical aspects of

the quality of official statistics for the long run. This is in the best interest of official statistical

producers, but also – most importantly – in the best interest of the very wide variety of users

of official statistics in modern society, including policy makers and political leaders.

1. Increase in Risks when Statistical Offices are Part of Policy-Making Bodies

The system of statistical offices or bureaus being part of policy-making bodies implies

significant risks for the implementation of international statistical principles during the

production of official statistics by such offices. There are risks to the statistical principles,

including professional independence, impartiality and objectivity, and statistical

confidentiality.

Risks are of different types and originate from various situations. There are two broad

types of risks we are concerned with here: “pressure risk” and “political attack risk”.

(i) “Pressure risk” is the risk that pressures will occur to circumvent statistical

principles, either from outside the statistical perimeter (i.e., from persons/entities
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that are users of official statistics such as policy makers, legislators, politicians, civil

servants/administrators, market participants, academic researchers and the general

public, or from upstream data providers (Georgiou 2018) or in the form of self-

censorship.

a. “External pressure risk” is the risk of pressure from persons/entities outside

the statistical perimeter on official statisticians to make decisions on the basis

of nonstatistical considerations,

b. “Self-censorship risk” is the risk of pressure official statisticians may feel to

engage in self-censorship and modify their statistical behavior without having

received overt external pressure. They engage in self-censorship anticipating

the sensibilities (perceived or actual) of policy makers or of others outside the

statistical perimeter and, thus, allow nonstatistical considerations to affect

their statistical decisions.

(ii) “Political attack risk” is the risk that official statisticians will be attacked by

persons/entities in the political environment of official statistics production. The

attack is usually justified by those that carry it out on the basis of allegations that

official statisticians have succumbed to external pressure risk and self-censorship

risk, or more generally that statisticians did not produce reliable and high quality

statistics with independence, impartiality and objectivity.

All other things being equal, the above risks increase when statistical offices or bureaus

are part of policy-making bodies and the official statistics producers report to the policy-

making hierarchy.

The general argument is that a basic condition of existence for the long term robustness

and sustainability of professional independence and of other fundamental statistical

principles is the institutional independence of official statistics production (Georgiou

2018). Institutional independence is, by definition, incompatible with statistical offices and

bureaus being part of policy-making bodies.

It should be noted that there is a fundamental distinction between the concept of

institutional independence of official statistics production and the concept of professional

independence of official statisticians.

Professional independence is when official statisticians (i) have the sole

responsibility for deciding on statistical methods, standards and procedures, and on the

content and timing of statistical releases; (ii) have responsibility for ensuring that

statistics are developed, produced and disseminated in an independent manner; (iii) are

free from political and other external interference in developing, producing and

disseminating statistics; and (iv) carry out their compilation of statistics solely based on

statistical principles and statistical legislation in force, without letting any other concerns

sway their statistical decisions and without fear or favor in making their decisions. The

definition of professional independence of official statistics offered here is informed by

formulations of professionally independent behavior found in the European Statistics

Code of Practice (Eurostat 2011) and in the ISI Declaration on Professional Ethics

(International Statistical Institute 2010). Institutional independence of official statistics

production is when the latter is independent from the executive, legislative or judicial

branches of government.
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The distinction between institutional independence and professional independence

in official statistics is akin to the distinction between institutional independence and

decisional independence in the case of the judiciary (Georgiou 2018). The judiciary’s

institutional independence (Lord Phillips 2011) is widely perceived to be a fundamental

condition for its decisional independence. Similarly, the institutional independence of

official statistics production should be seen as a fundamental condition of professional

independence in official statistics production.

The specific argument underlying the thesis presented here is that the above noted

“pressure risk” and “political attack risk” are mediated and amplified by hierarchical,

administrative and resource dependencies of official statistics production on the policy-

making body (and more broadly the executive branch of government) that the statistical

office is part of. Some of the aspects of such dependencies are listed below:

. Hierarchical/authority/accountability relationships of officials in the statistical office

with officials in the policy-making body,

. Conflation or amalgamation of any of the individual administrative and budgetary

functions of the statistical office with those of the policy-making body,

. Control by the policy-making body and its policy (nonstatistical) officials of human

resource issues (e.g., staff hiring, promotion, remuneration, terms and conditions of

work), financial resource issues (e.g., access to approved budget funds, distribution of

approved budget to expenditure lines, making expenditure commitments, financial

administration, auditing and settling expenditures) and other resource issues (e.g.,

access to foreign aid, provision of information technology and related security) of the

statistical office,

. Physical proximity/cohabitation of the statistical office with the policy-making body,

. Control of the selection, appointment, reappointment, remuneration and termination

of the incumbency of the head of the statistical office by the policy-making body,

. Officials of the statistical office carrying out nonstatistical work/functions/tasks of the

policy-making body they are part of along with their statistical ones,

. Assignment of parts of the statistical operations of the statistical office to the

nonstatistical parts of policy-making institutions.

A number of these dependencies create or amplify conflicts of interest. The troubling role

that conflicts of interest play in creating deep ethical dilemmas for various professions

(e.g., accountants) has been recognized in behavioral economics (Ariely 2010).

2. Costs and Benefits of Statistical Offices as Part of Policy-Making Bodies

It is often argued that there are significant benefits of statistical offices being part of policy-

making institutions. To make a rational choice on whether to extract statistical offices from

policy-making bodies or leave them as they are, one would have to consider the costs and

benefits of the two alternatives (Georgiou 2018).

The costs to statistics being part of a policy-making body are the costs of (i) the above

listed risks materializing, (ii) the perception that the risks exist, and (iii) mitigating and

managing the real and perceived risks. The economic and social, as well as political, costs

that arise can be very large because the resultant official statistics actually impede, or are
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perceived by a material share of the (domestic and international) public to impede, one or

more of the following:

. the operation of the democratic system,

. the rationality and effectiveness of policy-making,

. international cooperation and the production of global public goods,

. the markets in operating effectively, adjusting in an orderly manner and leading to

welfare maximization,

. scientific research and progress.

In addition, the costs to statistical offices (and the policy-making bodies to which they

belong) of managing and mitigating the risks and the perception of these risks, all other

things being equal, would be higher than when the statistical office is independent. The

costs of effective supervision/checking of official statistics would also be higher.

Furthermore, the costs (to the economy/society) of developing sources of information as

an alternative to the official statistics (to address the above noted risks) would also tend to

be higher than in a system where official statistics production takes place outside policy-

making bodies.

Arguments for the benefits of statistical offices being part of policy-making institutions

could include the following:

1. There is “access” to policy/decision makers that the head of the statistical office gets

by being part of the hierarchy of a policy-making body. This is supposed to help the

views of official statistics production be heard and serve the interests of statistics

production (e.g., by protecting statistics production from various adverse legislative,

budgetary and other policy developments).

2. There is greater access to other parts of the policy-making body, its human resources

and its administrative data sources. Access to various parts of the civil service in the

policy-making body is thought to help protect official statistics production from the

various adverse developments mentioned above, as well as provide for human capital

support in areas within statistics production.

3. Close relations with various levels of the administration of the policy-making body

are also thought to facilitate administrative processing of various kinds of requests of

statistics producers.

4. Access to administrative data sources is an important part of modern official statistics

production and administrative proximity is supposed to facilitate such access.

5. Statistics production being part of a policy-making body that is a major user of these

statistics is seen as a necessary condition for producing statistics relevant to the work

of government.

To the above propositions regarding the benefits of statistical offices being part of

policy-making institutions, one may juxtapose the following:

1. The head of the statistical office does not need to be part of the hierarchy of a policy-

making institution to have access to policy/decision makers. Such access can be

possible and can take place in an appropriate manner by providing for it in the law.

Access is more likely to take place at the appropriate level of propriety and respect
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for statistical independence when the statistical interlocutor is institutionally

independent than when she/he is a subordinate and “reports” in the hierarchy of the

policy-making institution that the statistics office is part of and is thus subject to clear

conflicts of interest.

2. Accommodation of the appropriate interests and needs of official statistics production

and protection from adverse legislative, budgetary and other policy developments

would be best served with little risk of “quid pro quo”, if it was provided for in law

(for example, by providing in law for the role of statistics producers in the preparation

of laws, including budgetary appropriations, with implications for statistical

production) and the statistical office was not part of a policy-making institution. The

closeness and collegiality of civil servants within the policy-making institution does

not offer protection to statistical production from adverse legal/budgetary

developments and administrative friction without also increasing – through, for

instance, real and perceived conflicts of interest – “pressure risk” and “political attack

risk”, which undermine independence and other statistical principles.

3. Appropriate access to expertise and information existing in the policy-making

institution does not have to go hand in hand with statistics being part of that

institution. In any event, provision of expertise and information by a policy-making

body is more likely to increase the risk of the policy-making/administrative

perspective contaminating (again via conflicts of interest) the statistical approach

when the statistical office is part of a policy-making institution. Official statistics

production should and could have its own expertise in areas where it traditionally

needs it and not be dependent on expertise existing in policy-making bodies.

4. Effective access to administrative data sources does not have to be mediated by the

statistical office being part of a policy-making body. Access to administrative data

sources is best achieved and, actually, statistical confidentiality best preserved when

access to such data sources is provided for in law and the statistical office is not part

of a policy-making body.

5. It is not necessary for official statistics production to be part of policy-making bodies

in order to have a very attentive and responsive attitude by official statisticians

towards the statistical needs of these policy-making bodies. Policy makers and their

administrations do not need to have immediate physical and institutional access to

official statisticians in order for the latter to be fully aware of and attentive to these

important users’ needs; the proper catering for such needs through appropriate

arrangements (e.g., advisory user committees, user conferences, specialized user

groups, and periodic, as well as ad hoc consultations with users) can be provided for

in law. The risks are greater that user requests for “what” statistics are produced will

get mixed up with conversations about “how” the statistics should be produced and

“what outcome” the statistics should record when the statistical office is part of a

policy-making body rather than outside it.

An argument that the cost of statistical offices being part of policy-making bodies is

minimal is that the professional independence of official statistics production, even in this

institutional setup, is secured through safeguards. Such safeguards may include: (i)

provisions in law for the implementation of statistical principles in the national statistical
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system; (ii) publicized policy commitments of governments to support confidence

in official statistics; (iii) national institutions with the mandate to report on the

implementation of statistical principles; (iv) provisions in law for the selection, fixed term,

and termination of the incumbency of the head of the statistical office; (v) quality

assurance of statistical output by supranational entities; and (vi) review of the

implementation of statistical principles by supranational entities and processes.

First, it should be noted that such a set of safeguards is actually far from being in place

in all countries and for all official statistics producers in national statistical systems.

Second, any safeguards actually in place are often not in an appropriate, strong and

effective form. This much can be gleaned even from the fragmentary information provided

in the survey of the UNSD regarding the implementation of the UNFP (UNSD 2013).

Moreover, a number of these safeguards are still, by and large, confined to and enabled in

uncommonly strong regional partnerships of national statistical systems, such as in the

European Union. Finally, there is evidence that very serious problems in the production of

official statistics have occurred, even when such safeguards have been in place in some

form. Greece’s official statistics production leading up to the statistical crisis of 2009

(European Commission 2010) is just one example demonstrating the problems of the

effectiveness of safeguards, even when such safeguards are actually in place.

Very importantly, while the above noted safeguards can help reduce the risks, the risks

are not reduced to the degree that they would be if statistical offices were not part of

policy-making institutions.

Another argument (in the case of certain countries or institutions) that the cost

of statistical offices being part of policy-making bodies is minimal is that there has been

a benign and benevolent environment in which official statistics production has taken

place and risks such as “pressure risk” and “political attack risk” do not and cannot

materialize.

Surely, having a benign environment and a benevolent approach towards official

statistics by policy makers and politicians across the spectrum is desirable and gratifying

when it happens. However, it is not the solid foundation on which to build statistical

independence for the long run. In some way, the argument of the previous paragraph is

akin to the argument that “there is no need for a judiciary separate from the sovereign

because this king has traditionally been a benevolent and fair king in administering

justice.” In addition, history shows that even in countries with well-developed institutions

(checks and balances) and a generally good statistical culture inside and outside the

statistical perimeter, challenges to official statistics production and problems with

adherence to statistical principles have occurred from time to time (Seltzer 1994), and

there is no reason to believe that at some point they will not re-emerge. Thus a society

needs to be ready for these moments and has to take steps to decrease the probability that

the challenges and problems (i) will arise in any given period; and (ii) will be severe when

they inevitably arise. These steps must include putting in place a proper and robust

institutional environment/basis of official statistics production.

“Preparing for the worst, while hoping for the best” should be the general principle

behind all choices regarding the appropriate institutional setting for official statistics

production. In accordance with this principle, the specific institutional issue of statistical

offices as part of policy-making institutions should be decided upon with a view to
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preparing for all eventualities, even if the environment appears to be benign and has been

benign for a while, because the environment can change and do so rapidly.

Official statistics production as part of policy-making bodies is a “legacy” institutional

setup, with many risks and costs, and at best ambivalent benefits. What’s more, the idea

that statistical offices should be part of policy-making bodies is an anachronism; it belongs

to another era, as does the idea that the exercise of judicial powers can be appropriately

and sustainably carried out by the sovereign himself or by a judge in the court of the

sovereign.

In conclusion, in a comparison of costs and benefits, we believe that the costs of

statistical offices being part of policy-making bodies outweigh any benefits, and it is more

effective and appropriate to extract statistical offices from policy-making bodies. However,

extracting statistical offices from policy-making institutions does not mean that risks or a

perception of risks will disappear, but only that they would materialize with a lower

probability. Additional steps would need to be taken to decrease this probability further ––

full institutional independence of official statistics production along with other safeguards.

Such steps would minimize dependencies and conflicts of interest and mitigate to the

largest extent the effects of any remaining dependencies and conflicts of interest. This, in

turn, would minimize the probability of risks materializing for statistics production.

Meanwhile, extracting statistical offices from policy-making institutions is one first

necessary step that has to be taken on the road to buttressing the long-term robustness and

sustainability of professional independence and other fundamental statistical principles.
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Consistent Multivariate Seasonal Adjustment for Gross
Domestic Product and its Breakdown in Expenditures

Reinier Bikker1, Jan van den Brakel1, Sabine Krieg1, Pim Ouwehand1,

and Ronald van der Stegen1

Seasonally adjusted series of Gross Domestic Product (GDP) and its breakdown in underlying
categories or domains are generally not consistent with each other. Statistical differences
between the total GDP and the sum of the underlying domains arise for two reasons. If series
are expressed in constant prices, differences arise due to the process of chain linking. These
differences increase if, in addition, a univariate seasonal adjustment, with for instance
X-13ARIMA-SEATS, is applied to each series separately. In this article, we propose to model
the series for total GDP and its breakdown in underlying domains in a multivariate structural
time series model, with the restriction that the sum over the different time series components
for the domains are equal to the corresponding values for the total GDP. In the proposed
procedure, this approach is applied as a pretreatment to remove outliers, level shifts, seasonal
breaks and calendar effects, while obeying the aforementioned consistency restrictions.
Subsequently, X-13ARIMA-SEATS is used for seasonal adjustment. This reduces
inconsistencies remarkably. Remaining inconsistencies due to seasonal adjustment are
removed with a benchmarking procedure.

Key words: Seasonal adjustment; discrepancies; Kalman filter; multivariate structural time
series models; X-13ARIMA-SEATS; benchmarking.

1. Introduction

Most national statistical institutes (NSIs) publish time series at an aggregated level and

breakdowns in K $ 2 domains, for instance the Gross Domestic Product (GDP) divided

over industries or over expenditures.

It is common practice to adjust for seasonal and calendar effects. The latter are

variations in time series that can be explained from variations in the calendar, such as

working day patterns and national holidays. The aim of these adjustments is to make

different reporting periods comparable. Seasonal and calendar adjustment procedures are

generally based on univariate methods applied to the series of each publication domain

separately. A consequence of such approaches is that adjusted figures at the aggregated

level are not consistent with the sum of the adjusted figures of the underlying breakdown

in K publication domains. This is a well-known problem and the status quo is that no
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adequate solution exists. Eurostat’s ESS guidelines on seasonal adjustment (Eurostat

2015) suggest computing the adjusted series at the aggregated level as a sum of the

adjusted underlying domains, which is often referred to as the indirect approach. A

drawback of this approach is that the most reliable estimates at the aggregated level are

disregarded. Alternatively, if the discrepancies are small enough, they can be distributed

by means of multivariate benchmarking techniques. These can be two-step procedures of

benchmarking and reconciliation (Quenneville and Fortier 2006), or simultaneous

methods as described in Di Fonzo and Marini (2011). In the Netherlands, however, the

quarter-to-quarter changes in the discrepancies between the directly adjusted GDP and

the sum of the adjusted series of its expenditures are often larger than the growth rate of

GDP itself. This fact alone renders both remedies suggested by Eurostat unsuitable. For

instance, in the first quarter after the 2013 recession, GDP grew by 0.1% if calculated

directly, and by 20.9% if calculated indirectly.

The purpose of this article is to develop a method that attempts to make consistent

seasonal adjusted series using a multivariate structural time series modelling approach.

We focus on GDP and a breakdown in different expenditures. However, the proposed

method is general and can be applied in any situation where consistent seasonal and

calendar adjustment is required.

Another discrepancy is introduced by chain linking (see Bloem et al. 2001), in which

GDP and its expenditures are calculated as chain volumes. In chain linking, series of a

constant price level are constructed by “chaining” volume growth rates. These volume

growth rates are calculated by dividing the nominal growth rate by a price factor. As each

of the series in the breakdown of GDP has its own price factor, discrepancies arise between

the sum of the expenditures and GDP itself.

In the Dutch case, the discrepancies from chain linking are typically smaller than the

discrepancies introduced by the adjustments for seasonal and calendar effects.

Moreover, we noted that the size of the discrepancies due to seasonal and calendar

adjustment grew larger in the period 2009–2013. This period is characterized by

rapid changes in seasonal patterns following the financial crisis in 2008/2009. The

increasing size of the discrepancies eventually lead to complaints from users. The

discrepancies were noted in the press, and professional users also asked how to interpret

our published results.

Besides discrepancies, there are more quality aspects related to seasonal adjustment.

When new data points become available and are added to the series, better estimates of the

trend, the seasonal and calendar effect of all previous quarters, can be made. Therefore,

revisions are inherent to seasonal and calendar adjustment, which are acceptable, as long

as their size is not excessive.

Traditionally, the quality of seasonal and calendar adjustment is assessed using a well-

defined set of criteria. In the case of X-13ARIMA-SEATS (U.S. Census Bureau 2015),

the method used at Statistics Netherlands, these are the Q- and M-diagnostics. They are

numerical scores given to properties, such as the amount of seasonality compared to noise

and the rate at which the seasonal component changes over time. These criteria are

optimised for each time series individually. After performing seasonal and calendar

adjustment, the resulting discrepancies are calculated and only when these are very

large, the seasonal and calendar adjustment may be changed. Revisions are monitored, but
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never lead to changes in the setup of seasonal and calendar adjustment. So, the quality

criteria that Statistics Netherlands traditionally applies, are (in order of decreasing

importance):

1. Optimal quality diagnostics (specifically X-13ARIMA-SEATS’s Q- and M-values).

2. Minimal statistical discrepancies between GDP and the sum of expenditures.

3. Minimal revision of the seasonal effect after adding new data points.

This is under the assumption that all criteria are within acceptable boundaries. As this

was not the case in the Netherlands after the crisis in 2008/2009, the primary objective of

the current research is to reduce the statistical discrepancy. This is achieved by introducing

a multivariate approach. The consequence of the shift from an optimal univariate solution

to a multivariate solution is that the seasonal and calendar adjustment of one series is

influenced by another. Therefore, some aspects of the multivariate adjustment can be less

optimal, when compared to the univariate case. However, a slightly lower quality

(according to the Q- and M-diagnostics) can be equally acceptable for the users, as long as

no residual seasonal effect can be found in a corrected series. Therefore, our goal is that,

on average, the revisions and quality diagnostics should not deteriorate.

In this article, we describe two alternative approaches to adjustment for seasonal and

calendar effects. The first approach applies a multivariate structural time series model

to an aggregated series and its breakdown in K subseries. The model estimates all

components subject to the constraint that the sum of the subseries is equal to the

components of the aggregated series. Unfortunately, the results of this approach are not

satisfactory due to numerical problems. Furthermore, the estimates for the seasonal

components are considered to be too volatile. Therefore, a second approach is developed,

which is based on a combination of a multivariate structural time series model and routines

of X-13ARIMA-SEATS. Under this approach, the discrepancies are sufficiently reduced,

while the size of the revisions is in the same order as before.

In Section 2 we will first define the problem in a more precise way. In Section 3, we

present the multivariate state-space method for consistent seasonal adjustment. Section 4

discusses the results and finally, the article closes with a conclusion in Section 5.

2. Problem Definition

Statistics Netherlands publishes quarterly figures for GDP with both the final expenditures

and the value added by industry as domains. These breakdowns are called the expenditure

approach and the production approach. Both breakdowns are computed in constant prices

(chain linked volumes) and in current prices. In this article, we will focus on the

expenditure approach in constant prices.

In this article the aggregate B1G, the GDP, is itemized in the subseries P7 (imports),

P3S1A (consumption households), P3S13 (consumption government), P51G (gross fixed

capital formation), P5M (changes in stocks and inventories), P6 (exports) and SD

(statistical discrepancy due to chain linking), that is,

B1G ¼ 2P7þ P3S1A þ P3S13 þ P51Gþ P5M þ P6þ SD: ð1Þ

Bikker et al.: Consistent Multivariate Seasonal Adjustment 11



Statistics Netherlands publishes a very detailed tree-structured breakdown into

expenditures, as explained in the Appendix (Section 6) on the breakdown in expenditures.

The production approach is not considered in this article. Any breakdown of GDP has

the same problems with additivity, so for brevity, we only use the above breakdown in

this article.

The way we will handle the discrepancies arising from chain linking is by considering

them as an extra subseries of the aggregate. It is a series that must be adjusted for

seasonal and calendar effects, together with the other subseries of the aggregate.

Therefore, the method we developed is also suitable for series where no chain linking

takes place, such as current price data and any other set of series where preserving

additivity, or at least reducing discrepancies due to adjustments for seasonal and calendar

effects, is required.

As we will apply our model to chain volumes of GDP and its expenditures, the total

statistical discrepancy after adjustments for seasonal and calendar effects can be divided

in two parts, each with its own origin.

2.1. Discrepancies Arising from Chain Linking

The statistical discrepancies due to chain linking can be interpreted as the consequence

of changes in relative prices of subseries of the aggregate. One can show that the sum of

the chain linked expenditures is chain volume with different weights. In each link step,

the chain volume of GDP is weighted with the relative values of its expenditures in the

previous year, valued at prices of the previous year, whereas the sum of expenditures is

weighted with the relative values of the previous year, in reference year prices. So, the

statistical discrepancy due to chain linking is the difference between the value of the

aggregate valued in previous year prices and the value of the aggregate valued in

reference year prices. The discrepancies due to chain linking are therefore zero in the

first year after the reference year and tend to be larger the further away they are from the

reference year.

The statistical discrepancies due to chain linking typically have a slow moving

long-term trendcycle, combined with a strong short-term pattern. The short-term

pattern has a seasonal and an irregular component. Figure 1 shows a typical example for

total GDP.

The statistical discrepancies due to chain linking are inherent to the way they are defined

and should not be corrected, as this would harm the essence of a chain linked volume. The

seasonal pattern of the discrepancies can be removed. In theory, the discrepancies due to

chain linking could also show calendar effects. However, in the case of the Dutch

economic series, they are negligibly small and we choose to ignore them.

The quarter-to-quarter changes of the seasonal adjusted GDP (GDP-SA) are very

important results from the economic analysis. Therefore, it makes sense to also calculate

the quarter-to-quarter changes of the statistical discrepancy and compare them to GDP-SA

as follows:

%SDt ¼ ðSDt 2 SDt21Þ=B1Gt21*100%: ð2Þ
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When these quarter-to-quarter changes are of similar magnitude or larger than the

changes of GDP-SA itself, the analysis of the latter, by breaking it down into components,

is severely hampered.

Especially when looking at quarter-to-quarter changes, removing the seasonal pattern

can lead to a large reduction in the size of the discrepancies from chain linking. This

is shown in Figure 2, where the quarter-to-quarter changes of the discrepancies in

percentages of GDP-SA have been adjusted for seasonal effects (i.e., the remaining series

represents trend-cycleþ irregular). The value of this series is mainly between 20.1% and

0.1%. To put this into perspective, the majority of GDP-SA growth rates are between

20.5% and 0.5%. As can be seen, the seasonal component is by far the largest component

of the statistical discrepancy arising from chain linking. Therefore, with ideal seasonal and

calendar adjustment, the adjusted statistical discrepancy should have a small influence on

the interpretation of the economic growth and its components.
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Fig. 1. Statistical discrepancies due to chain linking between Dutch GDP and the sum of the final expenditures

(before adjustments for seasonal and calendar effects), reference year ¼ 2010.
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Fig. 2. Univariate seasonal correction of the discrepancies arising from chain linking.
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2.2. Discrepancies from Adjustments for Seasonal and Calendar Effects

The second part of the total statistical discrepancies is introduced by the estimation of

seasonal and calendar effects. Seasonal and calendar adjustment assumes the following

decomposition:

yt ¼ Lt þ St þ bxt þ OLt þ SBt þ It: ð3Þ

Here yt stands for any of the series appearing in Equation (1), L denotes the trend-cycle,

S denotes the seasonal component, bx denotes the regression component with x as an

auxiliary variable and b as the regression coefficient, OL denotes additive outliers and

level shifts and SB denotes seasonal breaks. Finally, I is an irregular component for the

unexplained variation. In this application, the regression component is used to adjust for

calendar effects. In general, other regression effects can also be included, but this is not

applied here. In a fully consistent adjustment, Equation (1) holds for each of the

components in Equation (3). However, when these relations are not explicitly enforced,

discrepancies will arise.

The process of seasonal and calendar adjustment consists of a pretreatment phase and

the actual seasonal adjustment. In the pretreatment phase, we choose between

multiplicative or additive adjustment. In the first case, the original series are

logarithmically transformed before decomposition according to Equation (3) is computed.

The other parts of the pretreatment phase are adjustments for calendar effects and other

regression effects, removal of additive outliers, level shifts and seasonal breaks, and

extrapolation of the series in order to apply symmetric filters. The actual seasonal

adjustment consists in the application of seasonal and trend filters. In this phase, outlier

detection takes place again. After seasonal and calendar adjustment, additive outliers and

level shifts are reintroduced into the series. The final adjusted series is therefore equal to:

ySA
t ¼ yt 2 St 2 bxt 2 SBt ¼ Lt þ OLt þ It: ð4Þ

All steps of the process may cause discrepancies:

Logarithmic transformation: Usually, this is done when this yields a better model fit, as,

for instance, is current practice in X-13ARIMA-SEATS, see U.S. Census Bureau (2015).

For some of our series, this would indeed be the preferred option. However, when

multiplicative adjustment is chosen in at least one series, the logarithmic transformation

can cause additional discrepancies.

Outlier detection: when each time series is analysed separately for significant outliers,

discrepancies may arise when an outlier is significant in one series but not significant or

even detectable in another. These may lead to relatively large incidental discrepancies.

The outlier detection in both the pretreatment phase and the filtering phase can generate

discrepancies. Here, the general term outlier is used for the combination of additive

outliers, level shifts and seasonal breaks. A special case is the situation where the seasonal

patterns change rapidly. In this case, discrepancies may arise around the period where the

rapid change occurs, because these periods are considered to be outliers.

Calendar effects: Estimating the regression coefficients for the calendar effects for each

series separately contributes to the discrepancies. The calendar effects in some series are

not significantly different from zero (at a 5% significance level). Therefore, it is not
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incorporated in the model of these series. This leads to relatively small discrepancies,

evenly distributed along the length of the time series.

Extrapolations: The extrapolations are very sensitive to the model choice in

X-13ARIMA-SEATS and to outliers at the beginning and end of the time series.

This may lead to relatively large discrepancies at the beginning and end of the time series,

and is a source of revisions.

Seasonal and trend filters: when different time series are treated with filters of a

different length, which is usually the case, some discrepancies will arise in the seasonal

components along the full length of the series.

The statistical discrepancy can be calculated by rewriting Equation (1):

SD ¼ B1G 2 ð2P7þ P3S1A þ P3S13 þ P51Gþ P5M þ P6Þ: ð5Þ

The right-hand side of this equation is called the indirect discrepancy, and the left hand

side is called the direct discrepancy. This equation holds not only for the series itself, but

in an ideal world, also for each of the components of Equation (3). However, due to the

arguments mentioned above, this is not the case for the seasonal component, as is shown in

Figure 3 for the period 1996–2014. The solid line is the indirect seasonal component from

the chain linked index, calculated as the seasonal component of GDP minus the seasonal

components of all other expenditures (right-hand side of Equation 5). The solid line

is very different from the seasonal component of the SD (left-hand side of Equation 5).

The result is an increase in the quarter-to-quarter change of the discrepancy instead of a

significant decrease. Therefore, the analysis of the economic growth and its components is

severely hampered.

In a preliminary study, we tried to reduce the inconsistencies by improving the settings

in X-13ARIMA-SEATS. We found that a reduction is possible, but reducing them to an
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acceptable level or even eliminating them completely and at the same time maintaining

sufficient quality of the seasonal and calendar correction does not seem to be possible

in this application. The lessons we learned in this study are nevertheless useful for the

solution we found, described below. The most important lessons are:

. The largest part of the discrepancies is caused by the pretreatment, especially the

treatment of outliers.

. An additive adjustment approach for all series helps to reduce the discrepancies

compared to a multiplicative adjustment. Although a multiplicative adjustment is

preferred for the series of export, GDP and consumption of households, an additive

adjustment is applied. The quality under additive correction is acceptable also for the

series where multiplicative correction is preferred. The differences between these

approaches are small in practice, at least for the GDP in the Dutch situation.

. The best results could be obtained by an equivalent approach, that is, using the same

settings (ARIMA models, filters), modelling outliers in the same periods, additive

adjustment for all series, and using the same set of auxiliary variables for all series.

This results in a less optimal adjustment according to the Q- and M-diagnostics of

X-13ARIMA-SEATS.

The discrepancies are still unacceptably large, even under an optimally chosen

equivalent approach and therefore not further implemented in the production of official

releases. These findings have led to the conclusion that a multivariate approach is needed

in order to reach all three objectives, that is, reducing discrepancies while maintaining

univariate quality and avoiding large revisions. This approach is presented in the next section.

3. Multivariate Structural Time Series Model

In this section, a multivariate structural time series modelling approach is developed for

the purpose of estimating seasonal effects for an aggregated series and its breakdown

in K series in a consistent way. With a structural time series model (STM), a series is

decomposed in a trend component, seasonal component, regression components and an

irregular component. The model can be extended with other components as cyclic

components, or with ARMA components to model autocorrelation beyond these structural

components, but this is not applied in the present article. For each component, an

appropriate stochastic model is assumed which allows the trend, seasonal, and regression

coefficients to be time-dependent. See Harvey (1989) and Durbin and Koopman (2012)

for an extensive treatment of structural time series modelling. In multivariate STMs,

two or more series are modelled simultaneously, which allows modelling cross-sectional

dependency between these series.

3.1. Consistent Seasonal Adjustment with a Multivariate STM

We developed a multivariate STM for quarterly GDP, broken down into a hierarchy

according to either the expenditure approach or production approach. Either hierarchy

contains multiple levels (see Appendix (Section 6) for the breakdown of expenditures). At

every level, there is a statistical discrepancy before seasonal and calendar adjustment (but

only if measured in constant prices). The breakdown of GDP into seven subseries
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(including the statistical discrepancy) is defined in Equation (1). The time series modelling

approach outlined in this section can be applied to each hierarchy of GDP (see Appendix

(Section 6) for details). It is important that the consistency between all hierarchical levels

of GDP is maintained. This is done repeatedly in a top-down approach. In each hierarchy,

restrictions are imposed that ensure that for every subsequent level, all time series

components are benchmarked to estimates of the aggregate at the higher level.

Let ytþ be the GDP as measured on a quarterly basis. In the first step, the following

univariate STM is estimated:

ytþ ¼ Lt þ St þ aDO
t þ btxt þ lDL

t þ gtD
S
t þ et: ð6Þ

The trend-cycle Lt is modelled according to the smooth trend model and the seasonal

pattern St is modelled using a trigonometric model (Durbin and Koopman, 2012, chap. 3;

and supplemental file of this article). Furthermore DO
t is a dummy variable, indicating the

period in which an additive outlier occurs, that is,

DO
t ¼

1 for the period t where an outlier occurs

0 for all other periods

(
ð7Þ

and a denotes the corresponding time-invariant regression coefficient measuring the

magnitude of the outlier. In (6), DL
t is a dummy variable indicating the period in which a

level shift occurs, that is,

DL
t ¼

0 for all t before the period in which a level shift occurs

1 for all t from ðand includingÞ the period in which a level shift occurs

(
ð8Þ

and l denotes a time-invariant regression coefficient measuring the size of the level shift.

A break in the seasonal pattern is modelled with a similar intervention variable:

DS
t ¼

0 for all t before the period in which a seasonal break occurs

1 for all t from ðand includingÞ the period of the seasonal break

(
ð9Þ

The magnitude of the seasonal break is measured by gt, which is defined as a time-

invariant trigonometric seasonal model. This implies that all four quarters have their own

break (adding up to zero) which are time invariant. Furthermore xt denotes the number of

working days that is used to model calendar effects in period t, and bt denotes the

corresponding time-dependent regression coefficient modelled as a random walk (Durbin

and Koopman 2012, chap. 6). The regression coefficient is allowed to vary over time, since

GDP generally increases over time and therefore, also, the size of the working day effect.

Finally et is a disturbance term for any unexplained variations.

In the general case, multiple additive outliers, level shifts and seasonal breaks are

possible, and multiple auxiliary variables may be useful. Then, Equation (6) can be

adapted in a straightforward way.

Based on (6), smoothed estimates for total GDP (or the aggregated series of another

hierarchy) are obtained. In a second step, the K subseries (without the aggregated series),
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represented by a K-dimensional vector ð yt1; : : : ; ytk; : : : ; ytKÞ
0, are modelled by a

K-dimensional multivariate STM:

ytk ¼ Ltk þ Stk þ akD
O
t þ btkxt þ lkD

L
t þ gtkD

S
t þ etk; k ¼ 1: : :K: ð10Þ

The various components in (10) are defined similarly as in Equation (6), but now, for

each series k ¼ 1, : : : K, separately. Outliers, level shifts and seasonal breaks may be zero

for some series if the analysis shows that they do not occur in a particular series.

To avoid an increase of discrepancies due to seasonal and calendar adjustment, several

constraints are imposed on the time series components. These constraints ensure that, for

each of these components at each point in time, the value for the aggregate series is exactly

equal to the sum of the values of the underlying subseries. Therefore, Equation (10) is

applied with the restriction that the sum of the various state variables equals the smoothed

values obtained in (6). This is done using the benchmark procedure proposed by Doran

(1992). We have constraints for the following components:

- The trend components:

Ltþ ¼
XK

k¼1

Ltk ð11Þ

- The regression coefficients for the working day effects:

btþ ¼
XK

k¼1

btk ð12Þ

- The seasonal components:

Stþ ¼
XK

k¼1

Stk ð13Þ

- Outliers:

aþ ¼
XK

k¼1

atk ð14Þ

- Level shifts:

lþ ¼
XK

k¼1

ltk ð15Þ

- Seasonal breaks:

gtþ ¼
XK

k¼1

gtk ð16Þ

With the initially intended seasonal adjustment method, the consistent estimates for the

seasonal components Stk, seasonal breaks gtk, and calendar effects btkxt are used for
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seasonal and calendar adjustment. Since these estimates obey restrictions in Equations

(13), (16), and (12), the adjustment procedure does not increase discrepancies.

In order to estimate the multivariate STM described above, it is written in state space

form. The state space representation of Equations (6) and (10) is given in the supplement

of this article. Next, the Kalman filter is used to obtain optimal estimates for all state

variables (see Durbin and Koopman 2012; Harvey 1989). The Kalman filter is a recursive

procedure to obtain optimal estimates for the state vector at time t based on the data up to

and including time period t. These estimates are referred to as the filtered estimates. The

filtered estimates of past state vectors can be updated, if new data become available. This

procedure is referred to as smoothing. Several smoothing algorithms are available in the

literature. In this article, the fixed interval smoother is applied, which is a broadly applied

smoothing algorithm, and these estimates are referred to as the smoothed estimates. The

Kalman filter assumes that the hyperparameters are known, which is generally not the

case. Therefore, they are estimated with a maximum likelihood procedure. Finally, we

apply diffuse initialization of the Kalman filter for all the state variables.

These models are analyzed with a program that was developed in Oxmetrics (Doornik

2009), using the procedures of Ssfpack 3.0 (Koopman et al. 1999, 2008). Ssfpack is

a library of subroutines developed for analyzing (multivariate) STMs. Standard model

diagnostics summarized in Durbin and Koopman (2012, chap. 2) are applied to evaluate

whether the innovations meet the assumption that they are normally and independently

distributed.

Several forms of Model (10) are applied to total GDP and its breakdown in seven series

defined by (1). The main differences are in the covariance structures assumed for the

disturbance terms of the trend, seasonal component and regression coefficients, varying

from full covariance matrices, diagonal matrices and diagonal covariance matrices with

equal variances for several series. A general result obtained with these models is that the

estimated components, especially the seasonal component, were volatile, and subject to

large revisions when data points were added to the time series. From a practical

perspective, this is not desirable. In many cases, there are problems with the numerical

optimization procedure applied to find a maximum of the likelihood function. To

circumvent these issues, an alternative three-step approach is developed to solve problems

with large discrepancies. This new approach consists of pretreatment based on a

multivariate STM that ensures that the components that contributed most to the

discrepancies are consistent. The seasonal adjustment itself is carried out with

X-13ARIMA-SEATS. A seasonal adjustment approach based on a multivariate STM is

left as a topic for further research.

3.2. Multivariate STM for Pretreatment

The following procedure, which combines the advantages of a multivariate approach

and the robustness of conventional univariate seasonal adjustment with X-13ARIMA-

SEATS, is proposed as a practical solution for handling discrepancies. In a first step, the

univariate STM (6) is applied to the aggregated series. Then, the multivariate STM (10)

is applied to the K subseries with restrictions (12), (14), (15), (16), and diagonal

covariance matrices for the disturbances of the trends and the seasonal components.
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These results are used to remove additive outliers, level shifts, seasonal breaks, and

calendar effects from the series. In a second step, X-13ARIMA-SEATS via JDemetraþ

(Grudkowska 2015) is used for the extrapolation of the series and to obtain seasonally

adjusted series by applying trend and seasonal filters. After that, the additive outliers,

level shifts, and calendar effects removed in the first step are reintroduced in the

series. In a third step, multivariate benchmarking is applied to eliminate any remaining

discrepancies.

The final seasonally adjusted series are the seasonally adjusted series plus the level

shifts and additive outliers removed in the pretreatment. Seasonal breaks are not added

back to the series, because the purpose of seasonal adjustment is to remove seasonal

patterns.

Effectively, this means that the multivariate model is only used for pretreatment,

comparable to this step in X-13ARIMA-SEATS (except for the extrapolation, which is

done by X-13ARIMA-SEATS in our approach). The advantage of carrying out this

pretreatment with a multivariate STM is that calendar effects, additive outliers, level shifts

and seasonal breaks are fully consistent between the subseries and the aggregate. To this

end, we used the same regressors for all series, and outliers were modelled consistently, as

described in the next subsection. Since these components obey restrictions (12), (14), (15)

and (16), we obtained a close-to-optimal result, which is more stable than the approach

based on estimating consistent seasonal effects with the multivariate STM. An empirical

result of this approach is that if pretreatment yields small discrepancies, then most likely

the final seasonal adjustment will not increase these discrepancies by much, see

Subsection 2.2.

The increase in discrepancies due to univariate seasonal adjustment with X-13ARIMA-

SEATS is minimized if the same filter length is used for all series. We chose a short

seasonal filter, since the seasonal pattern changes quite rapidly. This had only a slight

effect on the quality of univariate seasonal adjustment. The ARIMA model used for

extrapolation was determined for the aggregate and applied for each series in the

breakdown. This procedure results in seasonally adjusted series that have only very small

discrepancies. In order to remove these, a multivariate benchmarking procedure was

applied.

3.3. Consistent Outlier Detection

Three types of outliers are distinguished: additive outliers, level shifts and seasonal breaks.

As outliers can be much larger than the seasonal and calendar effects, their influence can

be very large. Detecting and modelling them is crucial for achieving good seasonal

adjustment. In some cases, more than one outlier is needed to model the economic events

in a short period of time. On the other hand, it is difficult to find the optimal combination

of outliers and avoid overfitting of the series. An observation is that not using the right

combination of outliers results in a serious deterioration of quality diagnostics of

X-13ARIMA-SEATS. Another consequence is that the estimates of all state variables can

become unstable.

For every significant outlier in one of the series, there must be a counterpart in one or

more of the other series to achieve consistency. These counterparts are not necessarily
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significant, and therefore difficult to detect. Sometimes there are substantive economic

explanations for the occurrence of outliers that are helpful in choosing the type of outlier,

timing, the counterparts and in some cases, even the size of the outliers. When the size

of an outlier can be determined from statistical/economic analysis, the outlier can be

manually removed from the series and does not need to be modelled in the multivariate

STM. This results in a more parsimonious model, which is therefore preferred. When the

size of the outliers cannot be determined, we model the outliers in the STM.

For around 50% of the outliers, this additional information is not available and outliers

are detected in a model selection process. Outliers are detected using the automatic

detection in the pretreatment phase of X-13ARIMA-SEATS. This method is based on a

RegARIMA model. These outliers are modelled in the multivariate STM. Additional

outliers are detected by considering the residuals of the STM using a disturbance smoother

(Harvey and Koopman 1992). For all residuals with a t-value larger than 2.5, an outlier and

its counterparts are added to the set.

The set of outliers that is modelled explicitly in the pretreatment phase is removed from

the series. The pretreated series become the input for the seasonal adjustment phase.

Nevertheless, the seasonal adjustment phase in X-13ARIMA-SEATS can detect additional

outliers. As these decisions are made for each series separately, they will again lead to

statistical discrepancies. Therefore, we must model these events with additional outliers in

the pretreatment phase. In order to reduce the number of outliers detected in the seasonal

adjustment phase, we increased the critical value that controls whether an observation is

classified as an outlier. All outliers that were detected above this level were added to the

set of outliers modelled in the pretreatment phase. This process is iterated until no new

outliers are detected.

4. Results

In this section, we apply the seasonal and calendar adjustment approach obtained with

standard X-13ARIMA-SEATS (old method) and the improved method proposed in

Section 3 to the cycle of releases of the quarterly GDP and its breakdown in components

according to (1) in an annual estimation cycle and compare the results obtained under both

approaches. The old method refers to the application of X-13ARIMA-SEATS with

settings that conform to Eurostat guidelines (Eurostat 2015), as applied in the production

process. This means that for part of the series the logarithmic transformation is applied.

The set of outliers under the old method is different from the set under the improved

methods.

The quarterly GDP figures are produced twice: 45 days after the end of a quarter, a flash

estimate is published. Then, 85 days after the end of the quarter a new regular estimate is

published, based on more complete data sources. When the regular estimate of the fourth

quarter is published in March, the figures for the first three quarters are revised again.

The quarterly figures are revised three more times after that: for each new annual

estimate, the quarterly figures are adapted such that the four quarters add up to the new

annual figure. This happens for the first time in June and for the second time one year later,

when the final annual figures are published. Finally, one year after this, the quarterly

figures are revised one more time without changing the annual results. Furthermore, every
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time a new quarter is added, the seasonal adjustment procedure is applied to the entire time

series, potentially affecting all quarters. However, normally, revisions of seasonal

adjustments to earlier figures are small. Since 2016, the figures are revised twice because

the process has been accelerated. This implies that the second revision is the final one,

where only quarterly figures are adjusted.

This means that once a year, at the time that the regular estimate for the first quarter (1r)

is made, large changes are made to the (unadjusted) time series. Therefore, it is necessary

to derive new settings for the seasonal and calendar adjustment at this point in time every

year. The annual estimation cycle starts with the regular estimate for the first quarter, and

the derived settings are then used for all subsequent estimates of the annual estimation

cycle. The 1r estimate is followed by the first (flash) estimate of the second quarter (2f) and

the second estimate of the second quarter (2r). This scheme is continued until the second

estimate of the fourth quarter (4r). The first estimate of the first quarter of the current year

comes before the large updates of 1r and therefore, is also part of the same cycle. It is

called 5f, to emphasize that the settings of the previous year are applied.

Below, the old method and the improved method (without the final benchmarking step)

are compared according to the three quality criteria described in Section 1:

. The statistical discrepancy between the seasonally adjusted GDP and its components.

. The standard quality diagnostics of X-13ARIMA-SEATS: M1 to M11 and Q.

. The revisions of the published results between the subsequent estimations.

We use data from the time period 1996–2014 for the computations in this section.

4.1. The Statistical Discrepancy due to Seasonal and Calendar Adjustment

In this subsection, we discuss the discrepancies added by the seasonal and calendar

adjustment process. This process estimates the seasonal components of each of the series.

In both the old approach and the improved approach, the estimated seasonal components

of all subseries do not add up to the seasonal component of GDP, and result in a residual:

D ¼ SB1G þ SP7 2 SP6 2 SP3S1A
2 SP3S13

2 SP51G 2 SP5M 2 SSD

In Table 1, we compare the added statistical discrepancy of the old method and the

improved method, by taking the relative added statistical discrepancy computed as a

Table 1. Average and maximum absolute discrepancies due to seasonal adjustment for the year 2014.

Old method Improved method

Avg % Max % Avg % Max %

1r 0.331 1.01 0.001 0.01
2f 0.329 1.00 0.001 0.01
2r 0.321 1.00 0.001 0.01
3f 0.321 0.99 0.001 0.01
3r 0.320 0.99 0.001 0.01
4f 0.322 0.98 0.001 0.01
4r 0.330 0.99 0.001 0.01
5f 0.313 0.99 0.000 0.01
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percentage change from seasonally adjusted GDP:

D

B1GSA

����
����*100%

Table 1 presents the average and maximum of this difference over the entire time series.

Table 1 shows that a significant reduction in statistical discrepancy due to seasonal and

calendar adjustment can be achieved by using the improved method. With the old method,

interpretation of GDP growth was, on average, hampered by the discrepancy by 0.3%,

with a maximum of 1%, while, with the new method, the disturbance is negligible.

4.2. The Standard Diagnostics of X-13ARIMA-SEATS

Software of the X-11-family summarizes the quality of the seasonal and calendar

adjustment with M1 to M11 and a Q-diagnostics. These diagnostics value different

aspects of the seasonally adjusted series. For the meaning of the values, see the

supplemental file or Ladiray and Quennville (2001). These statistics vary between 0 and

3. Values smaller than 1 are to be preferred, however are not always achievable due to

characteristics of the series. The lower the value, the better. Tables 2 and 3 present the

diagnostics of the seasonal adjustment with the old method and the improved method of

estimate 1r.

In Table 2, eight diagnostics are between 1 and 2 and two of them are above 2. This

shows that the quality of the seasonal and calendar adjustment is not always satisfactory,

but further substantial improvements are not possible using traditional methods. With the

new method, the results have improved to six diagnostics above 1 and none above 2. On

the other hand, the new method has fewer quality diagnostics with very small values. On

average, the quality improves slightly. This is due to the improved analysis of the outliers.

The multivariate pretreatment of the new method results in fewer quality diagnostics with

very high and very low values.

Table 2. Quality of seasonally adjusted estimate 1r (for the year 2014) with old method (values .1 are bold).

Import
(P7)

Consumption
HH

(P3S1A)

Consumption
govern
(P3S13)

Cap. form.
(P51G)

Stocks
(P5M)

Export
(P6)

GDP
(B1G)

M1 0.49 0.42 0.00 0.09 0.33 0.10 0.05
M2 0.64 0.00 0.00 0.06 0.19 0.05 0.02
M3 0.13 0.00 0.00 0.31 0.39 0.00 0.00
M4 0.18 1.16 0.95 1.05 0.84 0.84 0.84
M5 0.24 0.20 0.20 0.20 0.41 0.20 0.20
M6 0.12 0.44 1.00 0.16 0.64 0.52 0.22
M7 0.38 0.39 0.16 0.13 0.32 0.24 0.06
M8 0.91 0.71 0.51 0.53 1.12 0.60 0.17
M9 0.54 0.64 0.26 0.14 0.67 0.34 0.06
M10 1.33 1.04 0.38 0.54 2.30 0.98 0.17
M11 1.30 1.02 0.22 0.44 2.30 0.97 0.17
Q 0.46 0.45 0.22 0.29 0.64 0.34 0.16
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The quality of GDP is almost the same as before, despite the fact that in the

multivariate approach the excellent univariate seasonal and calendar adjustment is

slightly disturbed by the other series. The quality of the gross fixed capital formation

(P51G) deteriorates because M5 worsens due to the larger level shift in 2009-Q1

(resulting in less trend) in the multivariate case compared to the univariate case. M1 and

M2 deteriorate under the new method because this series contains a larger irregular

component. This is the result of using larger critical values for detecting outliers in

X-13ARIMA-SEATS in the seasonal adjustment phase. This also affects M6 and M8,

resulting in larger arbitrary changes of the seasonal component. The results for M9 to

M11 are greatly improved. This is caused by the modelling of the seasonal outliers. In

both methods, the sum of the four quarters of a seasonal outlier adds up to zero.

However, with the improved method, a seasonal outlier has a different magnitude in

every quarter, while with the old method, the outlier is determined in one quarter and the

three other quarters have a third of its opposite magnitude. A disadvantage of the

improved method is that it uses three quarters in the time series to determine the outlier,

while the old method only uses one degree of freedom.

Remarkably large differences in diagnostics are found for M4 for the import (P7)

and the export (P6): both deteriorate. Further analysis showed that M4 could be

improved by adding an extra seasonal break in 2003, which becomes more pronounced

due to the seasonal break of 2008. However, this was unknown during the

implementation of the new method for the seasonal adjustment of the Dutch quarterly

national accounts.

Table 4 presents the difference in overall quality (as measured by the Q-diagnostic)

between the two methods for all eight estimates. Negative values (in bold)

relate to an improvement by using the new method, positive values relate to a

deterioration. Both methods display an almost constant difference in quality during the

annual cycle.

Table 3. Quality of seasonally adjusted estimate 1r (for the year 2014) with improved method.

Import
(P7)

Consumption
HH

(P3S1A)

Consumption
govern
(P3S13)

Cap. form.
(P51G)

Stocks
(P5M)

Export
(P6)

GDP
(B1G)

M1 0.33 0.61 0.02 0.27 0.73 0.18 0.04
M2 0.17 0.02 0.03 0.18 0.55 0.08 0.02
M3 0.30 0.17 0.27 0.86 1.10 0.03 0.00
M4 0.95 0.51 0.51 0.40 0.18 1.05 0.40
M5 0.20 0.20 0.20 0.60 0.95 0.20 0.20
M6 0.08 1.32 0.74 1.41 0.81 0.31 0.16
M7 0.30 0.19 0.24 0.14 0.19 0.18 0.10
M8 0.82 0.72 0.51 0.68 1.02 0.60 0.33
M9 0.45 0.13 0.26 0.19 0.21 0.25 0.22
M10 0.64 0.52 0.36 0.78 1.23 0.38 0.22
M11 0.32 0.40 0.24 0.17 0.48 0.16 0.12
Q 0.40 0.30 0.24 0.39 0.61 0.28 0.14
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4.3. Revisions

In this section, revisions of the quarter-to-quarter growth in %-point are investigated under

the old method and the improved method.

The quarter-to-quarter growth is defined as

ût ¼
ySA

t 2 ySA
t21

ySA
t21

�100%; ð17Þ

where ySA
t denotes the seasonally adjusted figures. This is computed for the GDP and the

variables of the breakdown.

The revisions are split into two types; the first are due to the updates from flash to

regular estimate:

R1 ¼
X4

t¼2

û
f

tjt 2 û
r

tjt

��� ���
 !

: ð18Þ

with û
f

tjT and û
r

tjT the flash and regular estimates of the growth rates, see formula (17), for

quarter t based on the time series up to and including quarter T.

Note that the first quarter (t ¼ 1) is excluded in R1 since in the regular estimate of this

quarter, the information on an annual basis is added, which causes large revisions.

The second type of revisions is due to adding the flash estimate of a new quarter:

R2 ¼
X4

t¼1

û
r

tjt 2 û
f

tjtþ1

��� ���
 !

:

The average revision of the last quarter is therefore:

1

7
ðR1 þ R2Þ ð19Þ

which is presented in Figure 4.

Similarly, Figure 5 presents the average absolute revisions of the quarter-to-quarter

growth in %-point over eight estimates (i.e., seven differences) over the last year

Table 4. Difference in Q-diagnostic between old and new method for seasonal adjustment, for the year 2014.

Import
(P7)

Consumption
HH

(P3S1A)

Consumption
govern
(P3S13)

Stocks
(P5M)

Cap. form.
(P51G)

Export
(P6)

GDP
(B1G)

1r 20.06 20.15 0.02 0.10 20.02 20.07 20.01
2f 20.08 20.10 0.03 0.10 20.07 20.07 20.02
2r 20.07 20.10 0.03 0.10 20.07 20.06 20.01
3f 20.08 20.11 0.02 0.13 20.06 20.07 20.01
3r 20.08 20.11 0.02 0.13 20.06 20.07 20.01
4f 20.07 20.12 0.00 0.16 20.04 20.08 20.01
4r 20.06 20.16 0.00 0.09 20.03 20.08 20.02
5f 20.05 20.14 0.01 0.12 20.03 20.06 20.02
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averaged per quarter:

1

28

X3

j¼0

ðR1j þ R2jÞ ð20Þ

with R1j ¼
X4

t¼2

û
f

t2jjt 2 û
r

t2jjt

��� ���
 !

; j ¼ 0; 1; 2; 3

and R2j ¼
X4

t¼1

û
r

t2jjt 2 û
f

t2jjtþ1

��� ���
 !

; j ¼ 0; 1; 2; 3
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Fig. 5. Average revision of annual growth in 2014 defined by equation (20).
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Fig. 4. Average revision of quarter-to-quarter growth in 2014 defined by equation (19).
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Series SD (statistical discrepancy due to chain linking) and P5M (changes in stocks) are

both fluctuating around zero. Therefore, both can have huge growths in %-points because

of small absolute values, resulting in huge revisions of the growth. As a consequence, they

are left out of the analysis. The figures show that the size of the revisions of the old method

and the improved method are almost equal. For consumption government a small

deterioration is observed, but the revisions are still very small. The deterioration is caused

by the time-varying seasonal pattern, which is picked up faster under the improved method

due to the use of shorter seasonal filters. A reduction of the revisions was not expected in

advance, as adding or changing observations at the end of the series gives new information

about trend-cycle and seasonal component. Revisions are therefore inherent to seasonal

and calendar adjustment.

5. Conclusion

Quarterly figures about GDP with a breakdown in K underlying subseries for, for example,

expenditures or industries, are produced by national statistical institutes to measure and

analyze economic growth. Two factors are responsible for discrepancies between the sum

of the underlying K subseries and the total GDP. The first factor arises due to the process of

chain linking, which means that series of volume growth rates are expressed in constant

price levels. Since the annual changes of these price levels differ between the series,

statistical discrepancies between the sum of the underlying series and total GDP arise.

The first factor does not arise if the estimate is in current values. The second factor arises

after adjusting for seasonal and calendar effects using the standard approach based on

X-13ARIMA-SEATS. In the Netherlands, since 2009, the size of these discrepancies has

often been larger than the growth rates of GDP itself and hampers the interpretation of

these figures.

Several intuitive approaches to avoid discrepancies are available in the literature, such

as the indirect approach and multivariate benchmarking. A major drawback of the first

approach is that official figures about GDP are derived from the most detailed breakdown,

which contains the largest fluctuations, while the most reliable estimates at the aggregated

level are not used. Benchmarking is appropriate if the discrepancies are modest. In the

Dutch application, the discrepancies are large, and benchmarking introduces a residual

seasonal effect in the adjusted series.

In this article, an alternative approach based on a multivariate structural time series

model is considered. The most intuitive approach is to construct a K þ 1 dimensional

structural time series model for GDP and its breakdown in K subseries. The model

contains explicit constraints on the state variables to ensure that trend, seasonal effects,

calendar effects and outliers in GDP are equal to the sum of the K subseries of these

components. In this way, available series are consistently modelled and a two-stage

approach is avoided. Nevertheless, the results obtained with this approach are not

satisfactory since the estimated seasonal effects are too volatile. Furthermore, we

observed numerical problems with the maximum likelihood procedure for the

hyperparameters and the revisions were too large. Solving these problems is left as a

topic for further research.
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As an alternative, a multivariate structural time series model with consistency

restrictions on the additive outliers, level breaks, seasonal breaks and calendar effects

(derived from a univariate model applied to the aggregated series) is only used to

eliminate these effects from the observed series. Subsequently, X-13ARIMA-SEATS is

used for seasonal adjustment of all series. This reduces the inconsistencies remarkably.

Finally, a multivariate benchmarking is applied to restore consistency in the adjusted

series, and the additive outliers, level breaks, and calendar effects are added to the

adjusted series. With this pretreatment approach, a significant reduction of the statistical

discrepancies is achieved, whereas the quality of the adjustment in terms of the standard

X-13ARIMA-SEATS quality measures is maintained or even improved for some series.

In June 2015, this approach was implemented in the production of Dutch official statistics

on economic growth.

When the numerical problems with the complete multivariate approach can be solved,

comparing results of both approaches can give some insights into the influence of the

approaches on the estimates.

The approach considered in this article is generic and applies to many other applications

at national statistical institutes. Therefore, it is worthwhile to further improve the K þ 1

dimensional structural time series model, where consistent seasonal effects are directly

estimated with the structural time series model.

6. Appendix: Detailed breakdown of GDP

Figure 6 summarizes the breakdown of GDP according to the expenditure approach. The

official tables published by Statistics Netherlands are actually more detailed. Not

presented here is the further breakdown of gross fixed capital formation. Each hierarchy

of this breakdown is consistently corrected for seasonal and calendar effect using the

top-down approach described in Subsection 3.2.

In each branch, there is a time series marked SDx. These are the discrepancies

arising from chain linking. They only occur in constant price data. The figure

illustrates that the breakdown comprises GDP itself and 20 subseries, complemented

by nine different series for the discrepancies arising from chain linking (one for each

branch of the tree). A similar breakdown tree of GDP is used for value added by

industry (the production approach). This tree consists of six branches, and comprises

20 subseries for branches of industry and, of course, six series for discrepancies arising

from chain linking.
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Is the Top Tail of the Wealth Distribution the Missing Link
between the Household Finance and Consumption Survey

and National Accounts?

Robin Chakraborty1, Ilja Kristian Kavonius2, Sébastien Pérez-Duarte3, and

Philip Vermeulen3

The financial accounts of the household sector within the system of national accounts report the
aggregate asset holdings and liabilities of all households within a country. In principle, when
household wealth surveys are explicitly designed to be representative of all households,
aggregating these microdata should correspond to the macro-aggregates. In practice, however,
differences are large. We first discuss conceptual and generic differences between those two
sources of data. Thereafter, we investigate missing top tail observation from wealth surveys as
a source of discrepancy. By fitting a Pareto distribution to the upper tail, we provide an estimate
of how much of the gap between the micro- and macrodata is caused by the underestimation of
the top tail of the wealth distribution. Conceptual and generic differences, as well as missing
top tail observations, explain part of the gap between financial accounts and survey aggregates.

Key words: Financial accounts; HFCS; wealth inequality; Pareto distribution; households.

1. Introduction

Household wealth surveys provide detailed information on the value of assets and liabilities

held by individual households within a country. The financial accounts (FA) of the

household sector within the system of national accounts (SNA) report the value of

aggregate asset holdings and liabilities of all the resident households. In principle, when

household wealth surveys are explicitly designed to be representative of all resident

households in the country, aggregating these microdata should correspond to the macro-

aggregates. In practice, however, differences are large, where usually the value of the

aggregated microdata is below the macro-aggregates. This fact has given birth to a new

literature (Antoniewicz 2000; Kavonius and Törmälehto 2010; Henriques and Hsu 2014;
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Kavonius and Honkkila 2013; Andreasch et al. 2013; and Dettling et al. 2015), which

attempts to understand the striking differences observed between aggregates produced

by household wealth surveys and those reported in the financial accounts. This article

contributes to this emerging literature.

The reconciliation of household wealth surveys with FA data is an important issue for a

number of reasons. First, household wealth surveys have been combined with FA data (and

with other administrative data) to analyse the evolution of wealth inequality. In a recent

paper, Bricker et al. (2016a) show that calibrating the US Survey of Consumer Finances

data to the FA substantially affects the top shares of the wealth distribution. This helps

to explain why Saez and Zucman (2016), who also use the FA and combine it with tax

records, obtain higher and faster rising shares.

Inequality is high on the political and economic research agenda. Stiglitz et al. (2009)

and Piketty (2014) illustrate the importance of distributional information of wealth in

analysing economic progress. Central banks are also increasingly interested in the

distributional issues, as these have been recognised to interact with monetary policy.

For instance, the IMF/FSB report to the G20 Finance Ministers and Central Bank

Governors’ data gap initiative emphasised, in particular, a need for including distributional

information in macrodata. Tissot (2015) discusses the G20 Data Gap Initiative, the benefits

of collecting microdata and its interest for macroprudential and monetary policies. When

aggregate wealth from wealth surveys differs substantially from macro-aggregates, the

inequality measured using such surveys can become questionable.

Second, several European and international groups have been established with the

underlying motivation to include distributional measures in the SNA, as well as having timely

distributional data. Survey information is likely to be used as one input. However, before such

survey information can be used satisfactorily, the observed differences with the FA have to be

understood. Our work can be seen in light of the following initiatives. In the beginning of

2016, the European Central Bank (ECB) established an Expert Group on Linking Micro and

Macro Household Data (EG-LMM). The focus is on linking FA balance sheet data with the

HFCS. The results in Section 2 of this article benefit from the discussions of that group.

Similar kind of work has been done in the United States (see e.g., Dettling et al. 2015;

Henriques and Hsu 2014 and Antoniewich 2000 for comparisons between the Flows of Funds

and the Survey of Consumer Finances). While the scientific discussion about Distributional

National Accounts in a sense of national income (see for example, the work by Piketty et al.

2018), is more advanced, work about Distributional National Accounts in the sense of wealth

is very limited so far (see e.g., Alvaredo et al. 2016 and Alvaredo et al. 2017).

While wealth surveys are one distinct source for analysing wealth inequality, research

has shown that the upper parts of the wealth distribution are often missing in household

wealth surveys (see, e.g., Bach et al. 2015; Eckerstorfer et al. 2016, and Vermeulen 2016,

2018). As the wealth distribution is highly skewed and these upper parts own significant

shares of total wealth, this leads to an underestimation of aggregate wealth compared to

the FA. The main contribution of this article is to provide estimates on how much of the

gap between household wealth surveys and the FA is caused by the underrepresentation of

the top tail of the wealth distribution in surveys.

We use the first wave of the Household Finance and Consumption Survey (HFCS) and

FA data from Austria, Germany, France, Spain and Finland. This choice of countries is
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determined by the need to combine three sources of data: the HFCS data, the FA data and

extraneous data that allow us to estimate the top. We use the Forbes billionaires list as such

extraneous data.

We first discuss the conceptual linkages and generic statistical differences between the

HFCS and the FA. Although both are designed to capture the components of wealth of

households, conceptual and statistical differences imply that any comparison has its

limitations. We focus on how financial assets are captured in both sources (and leave real

assets for future study). First, we do a naı̈ve comparison, where we ignore these conceptual

and statistical differences, of total financial assets in the HFCS and the FA. Such a naı̈ve

comparison indicates serious differences in the magnitudes between the micro- and the

macro-aggregates. Second, we attempt to reconcile the data from HFCS and FA by

developing what we call “adjusted concepts of financial assets”, which have more

comparability between the two data sources. Here we follow the line of work by Kavonius

and Törmälehto (2010). We find that gaps become smaller, but are still substantial using

these adjusted concepts. Finally, we focus on the wealthiest households and add a Pareto

tail to the household wealth surveys to allow for the missing wealthy. We estimate how

much of the gap can be attributed to this group. We find that, especially for countries doing

no oversampling or having a less effective oversampling strategy, adding a Pareto tail can

explain a significant part of the micro-macro gap, while for countries having a more

effective oversampling strategy, for example based on taxable wealth, adding a Pareto tail

explains less of the gap.

To estimate a Pareto tail, we follow the procedures in Vermeulen (2018) and use three

different methods. The estimation method of the Pareto tail is of importance. Using the

regression method, including the Forbes data, yields the highest estimates for the tail and

can explain more of the micro-macro gap, while using other methods (pseudo maximum

likelihood method and the regression method without the Forbes) explains much less.

Although including the Forbes data increases the tail significantly, in the cases where

countries used an effective oversampling strategy (Spain and France) the micro-macro gap

is affected much less. This crucially depends on the weight allocated to the tail in the

survey, which is much less in these countries.

The rest of the article is organised as follows: Section 2 analyses the generic statistical and

conceptual differences between the two sources. Based on this analysis, we develop two

different adjusted concepts for financial assets with the intention on basing the comparison

only on those financial instruments that are included in both sources and that are conceptually

comparable. For the two adjusted concepts, we indicate the differences between the HFCS

and the financial accounts. The third section focuses on the methodology used to estimate the

tail of the wealth distribution based on Vermeulen (2018). Finally, in Section 4 we analyse

how the estimated tail based on the Pareto distribution changes the remaining gaps for one of

the adjusted concepts developed in Section 2. The final section concludes.

2. The Household Finance and Consumption Survey and the Financial Accounts:

How Are They Related?

We use survey data from the first wave of the HFCS for Austria, Germany, France, Spain

and Finland. The HFCS is a triennial survey that provides individual household data on the
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components of wealth and some income items. It is collected in a harmonised way in 15

euro area countries for a sample of more than 62,000 households. The five countries used

in our study account for more than 38,000 of these households. We use macroeconomic

data from the FA which are part of the SNA. They provide aggregated macro-level balance

sheet data for institutional sectors, including the household sector.

This section is divided into three parts. The first part discusses the conceptual linkages,

that is, the linkage between the different assets and liabilities items as they are reported in

the HFCS and the FA. To facilitate the discussion, we refer to the items with their exact

name labels as they are coded in those two sources. Financial asset items in the FA are

coded combining the letter F with a number whereas, in the HFCS they are coded with the

letter HD with a number (collected on the household level), PF with a number (collected

for each person of the household aged 16 and older) and D for derived items (e.g.,

aggregated). We use the current national accounts system of the European Union

(ESA2010). For the complete list of codes, see System of National Accounts 2008

(SNA2008) and ECB (2012).

The second part focuses on generic differences that have a potential effect on how well

the aggregates derived from the survey are able to match the aggregates of FA. Finally, in

the third part we derive different adjusted concepts of financial assets that aim to provide a

more comparable picture of financial assets than a purely naı̈ve comparison can provide.

The purpose of this section is to quantify generic conceptual and statistical differences (see

also a similar discussion in Kavonius and Törmälehto 2010 based on ESA95).

2.1. Conceptual Linkages

Although the HFCS uses concepts that are aligned to the FA where possible, the exact

definitions sometimes differ to fit the purpose of the questionnaire, as data have to be

collected so that households can understand the questions and provide the appropriate

information. This might involve asking households about assets or liabilities that do not fit

the FA breakdowns, or skipping some items entirely, for concerns that have to do with the

interviewing process. This is, for example, the case with currency that is only reported in

the FA under item F.21 Currency but is not collected in the HFCS. Asking in a survey

about currency at home is generally seen as too sensitive or intrusive.

Table 1 provides an overview of the balance sheet of the FA and the HFCS, only

including the items that are relevant for households. The table also indicates items that are

not collected in either of the two sources (e.g., currency). Furthermore, Table A1 in

Section 6 Appendix shows the linkages on a more detailed financial instrument level. This

represents an updated table as shown in Kavonius and Törmälehto (2010), with some

refinements of their linkages and changes that came to light through the change from

ESA95 to ESA2010.

To compare coverage of both sources, we will define below an “adjusted concept of

financial assets.” Especially those assets and liabilities that are not covered in either of the

two sources have to be first eliminated in defining such a concept to make both sources as

comparable as possible. But also assets and liabilities that are hard to compare would have

to be excluded to not distort the comparability on an aggregated level. Table A1 in

Section 6 Appendix also gives more detail on the financial instruments that we excluded
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from the adjusted concept of financial assets (which we define in Subsection 2.3) and

provides a comment for each instrument as regards the comparability. As Kavonius and

Törmälehto (2010) have already examined and discussed the linkages between the HFCS

and FA, we refrain from a discussion on the linkages on a financial instrument level here.

Table 1. Overview of the balance sheets in the financial accounts and the HFCS.

FA (ESA 2010) HFCS

Financial assets (1 )

F.21 Currency N/A

F.22 þ F.29 Deposits HD1110 þ HD1210 Deposits

F.3 Debt Securities HD1420 Bonds and other debt securities

F.4 Loans HD1710 Money owed to household

F.5 Equity and investment fund shares

HD1510 Shares, publicly traded

HD1010 Investment in
non-self-employed business

HD0200 Investment in self-employed
business1

HD1320x Mutual Funds

F.6 Insurance, pension and
standardised guarantee schemes

PF0920 Voluntary pension/whole life
insurance schemes

PF0700 Occupational Pension Plans2

F.7 Financial derivatives and
employee stock options HD1920 Other financial assets

F.8 Other accounts receivable

N/A HD1620 Managed Accounts

Liabilities (2 )

F.4 Loans

DL1100 Mortgages and loans

DL1200 Other, nonmortgage debt
(Outstanding debts on credit cards,
credit lines and overdraft balances,
Noncollateralised loans)

F.8 Other accounts payable N/A

Financial net worth

Nonfinancial assets (1 )

N.111 Dwellings HB0900 Household main residence

N.112 Other buildings/structures HB28$x þ HB2900 Other properties

N.113 Machinery and equipment N/A

N.13 Valuables HB4710 Valuables

N/A HB4400 þ HB4600 Vehicles

N.211 Land N/A (included in entries above)

Net worth
1HD0200 is classified as real wealth in the survey. 2Usually excluded in the survey definition of financial wealth

in the HFCS, but collected in most countries.
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There are two important differences in the classification to their approach which are worth

noting:

First, in the FA the item ‘F.51 Equity’ consists of the sum of the following three items:

‘F.511 Listed shares’, ‘F.512 Unlisted shares’ and ‘F.519 Other equity’. Listed shares are

equity securities listed on a stock exchange, whereas unlisted shares are equity securities not

listed on a stock exchange. Other equity comprises all forms of equity other than listed shares

and unlisted shares, e.g., equity in limited liability companies whose owners are partners and

not shareholders. For further explanations, see ESA2010, 142–144. The HFCS also collects

the value of publicly traded shares (HD1510) that can be linked to F.511 Listed shares’. But

contrary to the classification in FA (‘Unlisted shares’ and ‘Other equity’), the classification

in the HFCS is based on the household’s activity in the enterprise. If the household is self-

employed or has an active role in running the business, any unlisted shares or other equity the

household would own in the business would be classified in the HFCS as ‘HD02000

Investment in self-employed business’. If the household is just invested in the business, for

example as a silent partner without having an active role in running the business, and there

are no publicly traded shares, then it is classified as a “HD1010 Non-self-employment not

publicly traded business”. In the HFCS, the value of self-employed businesses is regarded as

real wealth, whereas any investments in non-self-employed businesses are regarded as

financial assets in the survey classification. To match the categorisation of financial assets in

FA we reclassify the value of self-employed businesses to financial assets (other equity).

Second, the SNA2008 introduced new breakdowns for F.6 insurance, pensions and

standardised guaranteed schemes, which allows for better linking of the concepts between

the HFCS and FA. F.61 Non-life insurance technical reserves are not covered by the HFCS

wealth concept. F.62 Life insurance and annuity entitlements correspond with the HFCS

item voluntary pensions/whole life insurance schemes. The data in FA is typically based

on actuary information on technical reserves reported by insurance corporations. F.63

Pension entitlement corresponds with the HFCS item “current value of all occupational

pension plans that have an account” which could be either an amount similar to the present

value, or a current (and lower) early liquidation value of the insurance contract (deducting

a surrender charge)”. However, as the concept in FA does not only cover pensions that

have an account balance and as the stock of occupational pensions of households that are

already retired is not included in the survey (and in the FA they are), we exclude the

pension entitlements in the adjusted concept of financial assets. F.64 Claims of pension

funds on pension managers, F.65 Entitlement to non-pension benefits and F.66 Provision

for calls under standardised guarantees are not included as it is not considered to be

relevant for the comparison.

While we would like to include nonfinancial assets in our analysis, the ESA

Transmission Programme requires the transmission of annual data on land only by end-

2017. Therefore, this gap in the national accounts data transmission makes it impossible

for us to include these in our analysis.

2.2. Generic Differences

This section focuses on the generic differences between the HFCS and FA. While the

conceptual linkage is important for pointing out differences in definition and for excluding
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asset classes that are not comparable, by generic differences we refer to differences that

potentially affect all assets and liabilities, though to a different extent. We briefly go

through the following differences: (1) population differences; (2) timing; (3) potential

measurement errors in the FA; (4) underreporting and item nonresponse in the HFCS;

and (5) differences caused by the treatment of sole-proprietors/partnerships and

quasi-corporations.

2.2.1. Population

In the comparisons of FA and the HFCS, there are potentially two generic differences with

regard to the population: (1) The difference caused by the fact that nonprofit institutions

serving households (NPISH) are reported in FA in the same aggregate with households.

However, in the euro area countries this is less of an issue as most of the countries transmit

the households separately from the NPISH. This is also the case in the countries that are

discussed in this article. (2) Differences in the definition of the household sector and the

HFCS population. FA have a resident approach, covering all households that plan to stay

for at least one year, and irrespective of periods spent abroad of less than one year. In the

HFCS, nonresident citizens are not excluded in all countries. In the HFCS, persons living

in institutions, for example in prisons or retirement homes, are excluded in most countries;

persons with the intention of staying less than six months in the country are also excluded

from the target population. Therefore, the household weights, which are designed to

represent the target population, do not include these specific excluded groups in most

countries. Any comparison has to take this into account and the country totals of the survey

or FA have to be adjusted. As an estimate using per capita amounts seems reasonable, with

the caveat that this assumes that the excluded groups have the same average wealth as the

rest of the population, which may not be the case. For instance, people living in retirement

homes may have a per capita wealth that differs from the average.

Table 2 compares the population numbers between FA and the HFCS. The number for

FA is based on the last available vintage that corresponds to the reference year of the

fieldwork period and is based on the European Commission’s ESA95 Transmission

Programme population data. Because of the above mentioned excluded groups, the

population in the HFCS should generally be lower than the one for the whole population.

This is the case for all countries except for Spain. The reason for the “negative” difference

is that the Spanish census results have been revised after the first wave results.

Table 2. Comparison of population between FA (ESA95 population data) and HFCS.

Country
Population FA

(historical vintage)
Target population

HFCS
Difference

total
Difference

in %

Austria 8,388,130 8,021,945 366,185 4

Germany 81,629,370 81,085,984 543,386 1

Spain 45,456,960 45,632,180 2175,220 0

Finland 5,336,910 5,271,534 65,376 1

France 64,444,5201 62,464,244 1,980,276 3
1French overseas territories are included in the FA, whereas the HFCS only includes metropolitan France.
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2.2.2. Timing and Frequency

The primary drawbacks of the HFCS are the biennial to triennial frequency and the lag

between data collection and data release. Furthermore, the different fieldwork periods may

raise concerns about comparability on an aggregated level. The first wave of the HFCS

was carried out from 2008/2009 to 2011. For the comparison of the FA with the HFCS, FA

data that are closest to the mean of the fieldwork period for each country are used. This is

based on annual (year-end) figures as some EU countries do not yet provide quarterly FA

backdata for ESA2010, which would better match the fieldwork period of the first wave.

Table 3 gives an overview of the different fieldwork periods and the annual end date for

FA which is taken for the comparison. The timing can contribute to any observed

difference, as the value of assets and liabilities may change between the time the survey

was conducted and the period taken for FA.

2.2.3. Potential Measurement Errors in the FA Data

As the FA is based on other statistical sources and the validation of primary statistics, it is

possible that errors are inherited from source statistics. Additionally, as the FA is a closed

and balanced system, it is possible that some of the household aggregates are adjusted by

adding balancing adjustments. In some cases, balance sheet items can even be based on

residual estimations. However, in the euro area countries, and in particular in countries

that we analyse in this article, the FA balance sheets are mostly based on counterpart

information. Although such data might usually be thought of as being relatively accurate,

even counterpart information can contain errors. Also, one might not be able to identify the

right sector to classify data for all counterpart data (e.g., between S.11 Nonfinancial

corporations and S.14 Households). Potential measurement errors in the FA are also

discussed in Kavonius and Törmälehto (2010) and Kavonius and Honkkila (2013).

2.2.4. Underreporting and Item Nonresponse in the HFCS

Item nonresponse refers to the problem that for some assets and liabilities the household

may not report any value. There are several approaches to alleviate this issue. In the HFCS,

the problem of item nonresponse is tackled by multiple imputation, which is the leading

method (Rubin 2004). This means that the HFCS, instead of providing one imputed value

for each missing one, is providing a set of values drawn from the distribution of values,

conditional on the characteristics of the household and the other variables. A full data set

Table 3. Fieldwork period and time periods for comparison.

Country Fieldwork Assets and liabilities FA (annual end)

Austria Sept. 2010 – May 2011 Time of interview Q4/2010

Germany Sept. 2010 – July 2011 Time of interview Q4/2010

Spain Nov. 2008 – July 2009 Time of interview Q4/2008

Finland Jan. 2010 – May 2010 2009-12-31 Q4/2009

France Oct. 2009 – Feb. 2010 Time of interview Q4/2009

Note: Source of fieldwork period, Assets & Liabilities is ECB (2013).
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for the main financial instruments without missing values is provided (ECB 2013). This

reduces the overall coverage problem between the survey and FA for these items, as the

imputed values increase the total amounts of the survey accordingly. One measurement

problem that remains apart from item nonresponse is that the household still may not

accurately estimate the value of some assets or liabilities, or denies that it possesses the

financial instrument. This might also be one reason for discrepancies between the HFCS

and FA.

2.2.5. Differences Caused by the Treatment of Sole-Proprietors/Partnerships and

Quasi-Corporations

FA distinguishes between producer households (to be classified within the household

sector/S.14) and quasi-corporations (to be classified within the nonfinancial corporations

sector S.11). This distinction is relevant because it affects the gross wealth of the

household sector and the composition of the household balance sheet. In the FA

framework it depends whether the business is a separate institutional unit or not: “Quasi-

corporations are unincorporated enterprises that function as if they were corporations.

Quasi-corporations are treated as corporations: that is, as separate institutional units

from the units to which they belong in recognition of their distinct economic and financial

behaviour.” (ESA2010, 422). Unincorporated enterprises are part of the household sector

(S.14) and are classified as producer households if they are not considered as a separate

institutional unit as described above.

Financial and nonfinancial assets, as well as financial liabilities of these unincorporated

enterprises, are spread over the various items of the household balance sheets and it is not

possible to distinguish between wealth of the unincorporated enterprise and wealth of the

household. In this case, there is no value of net equity recorded in ‘F.519 Other Equity’.

However, it the economic activity is considered to be a separate unit, any property rights

are classified in FA as equity participation held by the household (other equity) and this

separate institutional unit is then classified in S.11 or S.12.

The survey definition of self-employed businesses (including sole-proprietorships and

partnerships) ideally enables identifying values for the net value of the business separately

from other nonbusiness related positions of the household. This conceptual difference

implies that for producer households, there is a net value collected in the survey, whereas

in FA the assets and liabilities of these producer households are spread over the different

instruments. The question is which instruments are affected by this difference and to what

extent. Real assets and liabilities may as well be affected as financial assets. To have a

measure on the size of this difference for each of the instruments would require separate

accounts for sole-proprietorships and partnerships. This might account for part of the

difference in the coverage ratios of many instruments, as well as on an aggregated level for

each component of net wealth (financial assets, real assets and liabilities). For legal forms

other than sole-proprietorships and partnerships (e.g., limited liability companies) the

household holds a net equity position in the business both in the FA and in the HFCS.

Table 4 provides an overview of the different types of businesses and how they are

recorded in the HFCS and FA. As can be seen, the main comparability issue arises only for

those sole-proprietors and partnerships which are not classified as quasi-corporations and

hence are recorded in the household sector in FA indistinguishable from the “private part
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of the household” (case 1). For these, there is a net value for the business provided in the

HFCS, whereas in the FA the assets and liabilities of the business are spread across the

balance sheet of the household sector including real assets and liabilities. Hence, for this

part of the sole proprietors and partnerships it is not known if the net value of the business

provided in the HFCS should be allocated to financial assets, real assets or liabilities in FA.

For quasi-corporations (case 2), there is a net value provided in the HFCS and also a net

value recorded in the FA. The same applies to the other incorporated businesses: there is,

in principle, no difference in the recording, as there is a net value provided in both the

HFCS and the FA, although differences in the valuation might still occur.

Furthermore, Table 4 provides an overview of whether the described cases are included

or excluded in the HFCS in each of the concepts described in the next section. For the other

instruments, Table A1 in Section 6 provides an overview of which instruments are

excluded from both sources in the adjusted concepts.

2.3. Adjusted Concepts of Financial Assets

The aim of this section is to derive two adjusted concepts of financial assets. The intention

to go from a naı̈ve comparison to an adjusted concept is done by basing the comparison

on those financial instruments which are included in both sources and are conceptually

comparable. The adjusted concepts allow providing a more reliable indication of those

financial assets that are covered in both the HFCS and the FA. We define the ‘coverage

ratio’ as measuring the per capita amount of financial assets covered by the survey, for

example a value of 98% would imply that the per capita amount of the HFCS is only 2%

below the per capita amount in FA.

Coverage Ratio ¼
DA2100

AF
ð1Þ

where AF refers to the total financial assets in the FA and DA2100 refers to the total

financial assets in the HFCS.

2.3.1. Naı̈ve Comparison

The naı̈ve comparison takes the concepts of financial assets as they are in the HFCS and

in the FA. This serves a benchmark, but this concept also includes noncomparable

instruments (e.g., F.21 Currency, which is not covered by the HFCS) and uses different

classifications (e.g., the value of self-employed) that distort the picture of the actual

coverage ratios. The HFCS concept of financial assets does not include the value of self-

employed businesses, as well as the value of occupational pension plans that are

accordingly also not included in the naı̈ve comparison. Therefore, it is not surprising that

the naı̈ve comparison shows relatively low coverage ratios of 34% to 43% for financial

assets (results are presented in Table 5).

FA:

AFNa€ıve ¼ F:21þ F:22þ F:29þ F:3þ F:4þ F:5þ F:6þ F:7þ F:8 ð2Þ
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HFCS:

DA2100Na€ıve ¼ HD1110þ HD1210þ HD1320xþ HD1420þ HD1010

þ HD1510þ HD1620þ HD1710þ HD1920þ DA2109 ð3Þ

2.3.2. Adjusted Concept 1

For the adjusted Concept 1 we include on the survey side the value of self-employed

businesses (DA1140 (which is the sum of (HD080x) þ HD0900)) in the comparison

(reclassification from real assets to financial assets) and we exclude the amount owed to

the household (HD1710), as well as the other financial assets (HD1920). In the FA, we

exclude F.21 Currency, F.4 Loans (Assets), F.7 Financial derivatives, and F.8 Other

accounts receivable. For pensions, we only include F.62 Life insurance and annuity

entitlements and exclude the other subcategories (F.61, F.63-F.66) as these are not

comparable to the survey (see discussion above). As can be seen in Table 5, going from a

naı̈ve comparison to the adjusted Concept 1 significantly increases the coverage ratio for

financial assets (to 55% in Finland and even 98% in Austria). Putting these numbers in

perspective, it is worth noting that in their comparison of the Flow of funds Accounts

(FFA) and the Survey of Consumer Finances (SCF) in the US, Henriques and Hsu (2014)

conclude that the net worth of the SCF in comparable terms is above the net worth of the

FFA. More recently, Bricker et al. (2016b) show that much of the wealth gap between the

SCF net wealth and FA wealth seems to be for assets where market prices are not easily

observed. For example Bricker et al. (2016b) show that in 2013, SCF housing was 36%

above the FA estimate, but SCF nonhousing assets were only 6% above the FA.

The adjusted Concept 1, as it includes all self-employed businesses, most likely

overstates the coverage ratio, as the value for sole proprietors and partnerships may also

include real assets (see discussion above about the delineation between sole-proprietors

and quasi-corporations).

Table 5. Coverage ratios of financial assets for the household sector (S.14) – Naı̈ve comparison vs. adjusted

concepts.

Country

Coverage ratio (%) Share of total financial

assets in the FA covered

in the adjusted concepts

(same in both concepts) (%)

Naı̈ve

comparison

Adjusted

concept 1

Adjusted

concept 2

Austria 35 98 46 87

Germany 43 86 67 77

Spain 34 75 59 82

Finland 37 55 45 83

France 38 59 51 90

Notes: The coverage ratio of the different concepts is reported. The naı̈ve comparison includes all assets as given

in the two sources, without taking into account the conceptual comparability. For the adjusted Concepts 1 and 2,

we make adjustments to increase the conceptual comparability. The share of total FA shows the assets covered in

the adjusted Concepts 1 and 2 as a percentage of total financial assets in the financial accounts (same for both

concepts). Sources: HFCS and Financial Accounts.
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FA:

AFadj1 ¼ FNa€ıve 2 F:21 2 F:4 2 F:61 2 F:63 2 F:64 2 F:65 2 F:66 2 F:7 2 F:8 ð4Þ

HFCS:

DA2100adj1 ¼ DA2100Na€ıve 2 HD1710 2 HD1920þ DA1140 ð5Þ

2.3.3. Adjusted Concept 2

In the HFCS, the value for self-employed businesses can be broken down by legal status

(see Table A1 in the Section 6). Therefore, the distinction between sole-proprietorships,

partnerships and other incorporated businesses is possible. While the adjusted Concept 1

includes the net values of all legal forms of self-employed businesses in the HFCS

(including sole proprietors and partnerships), the adjusted Concept 2 excludes sole

proprietors and partnerships from the value of self-employed businesses in the survey. For

FA, we keep the corresponding instrument F.5 Equity the same in both concepts. The

intention of this adjusted concept is that it serves as a lower benchmark, as it only

comprises the net value of those legal forms in the survey that are recorded in the

nonfinancial corporations’ sector in the FA and, consequently, the household only holds a

net equity position in the business (other equity). Thus, for the legal forms included in this

concept both in the FA and in the HFCS, the household holds a net equity position.

As can be seen in Table 5, the coverage ratios for the adjusted Concept 2 are higher

compared to the naı̈ve comparison, but significantly lower compared to the adjusted

Concept 1, where all legal forms of self-employed businesses are included. Certainly,

adjusted Concept 2 underestimates the coverage ratios, as it excludes all financial assets of

sole-proprietorships and partnerships from the survey.

To further improve the comparability between the HFCS and the FA, the following

information would be needed: first, an estimate of sole proprietorships and partnerships

included in the HFCS that are classified as quasi-corporations in the FA (case 2 in Table 4).

Second, for the sole-proprietors and partnerships that are recorded in the household

sector, one would need the breakdown to financial assets, real assets and liabilities (case 1

in Table 4).

FA:

AFadj2 ¼ FNa€ıve ¼ F:21 2 F:4 2 F:61 2 F:63 2 F:64 2 F:65 2 F:66 2 F:7 2 F:8 ð6Þ

HFCS:

DA2100adj2 ¼ DA2100Na€ıve 2 HD1710 2 HD1920þ DA1140

2 DA1140Sole proprietorships=independent professionalsþpartnerships ð7Þ

3. The Wealth Distribution and Methodology to Estimate the Tail

In this section, we first discuss the general problem of wealth surveys, that is, the fact that

top tail observations are missing, which is often caused by differential unit nonresponse.

We also discuss which oversampling strategies are used by countries to mitigate this issue

in the HFCS. In the second parts, we explain the methodology to estimate the top tail of the
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wealth distribution by a Pareto distribution. Our approach and discussion builds on

Vermeulen (2018). The third part discusses the Forbes list and its consistency with the

statistical data. These data are used for the estimations of the Pareto tail.

3.1. Oversampling Wealth Distribution and Differential Unit Nonresponse in the HFCS

In general, the bias in the HFCS caused by unit nonresponse is reduced by weight

adjustments (Pérez-Duarte et al. 2010). But as the wealth distribution is often skewed, unit

nonresponse of the wealthiest households, or the fact that the extremely wealthy

households are rarely included in the survey sample, is still usually a problem. Income and

wealth concentrations are likely to be underestimated using survey data, as there is a high

concentration of wealth in the top quintile and the response rates of this quintile, in

particular, is usually lower. For the top tail of the wealth distribution, there is some

evidence on how response rates correlate with the amount of wealth owed by a household.

Based on the Survey of Consumer Finance from the United States, Kennickell and

Woodburn (1999) have documented the following response rates based on different strata

(differential unit nonresponse): 34% for USD 1 million to USD 2.5 million and 14% for

USD 100 million to USD 250 million. For the stratum that likely includes the wealthiest

households, Kennickell (2008) observes an overall response rate of 10%. Bricker et al.

(2016b) report response rates for more recent SCF waves in the wealthiest SCF stratum of

around 12%, around 25% in the second stratum, rising to around 50% in the last two least-

wealthy strata. This is still lower than the response rate of around 70% in the SCF area

probability sample. However, Bricker et al. (2016a) nicely demonstrate that even though

response rates are low at the top of the wealth distribution, the survey participants are

observationally equivalent to the nonrespondents. This demonstrates the usefulness and

effectiveness of oversampling.

For the HFCS, the amount of wealth owned by the top tail varies from country to

country and available evidence suggests that the response rates declined to a different

extent in different countries. For the 2011 wave, the Spanish survey of household finances

documented the following response rates by wealth strata: Stratum 5 (0.9 to 2 million)

31%, Stratum 6 (2 to 6 million) 26%, Stratum 7 (6 to 25 million) 21% and Stratum 8

(wealth above EUR 25 million) 21%. The survey also has a panel component, for which

the response rate drops from 74% to 62% for these wealth strata (Bover et al. 2014). On the

other hand, in Finland – although response rates varied across different strata, age groups,

regions and education level, nonresponse rates did not increase along the level of taxable

wealth for the Finnish Household Wealth Survey of 2004 (Pérez-Duarte et al. 2010).

Some countries have oversampled wealthy households in the HFCS to increase the

precision at the top. Table 6 gives an overview of the oversampling strategy for the

countries included in our analysis. Germany used an oversampling strategy based on

geographical areas that resulted in a less effective oversampling than in France and Spain,

which used net wealth or taxable wealth. One should expect that oversampling increases

the precision of the aggregated survey values and therefore make them potentially closer

to the FA for a single survey.

Even with oversampling, it remains uncertain how much of the wealth of the wealthiest

households is actually covered by the survey. This in turn, is one reason for part of the gap
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between the amounts of FA and aggregated amounts from the survey. The methodology

presented in the next section addresses exactly this issue. The idea is to replace the

observations above a certain threshold of net wealth per household by an estimated Pareto

distribution and see which impact this has on the coverage ratio of the HFCS in

comparison to FA. In terms of the coverage ratio, capturing the value of assets from these

wealthiest households might be even more relevant for specific instruments, as there are

particular financial assets that are largely owned by a small fraction of the wealthier

households. Here, we concentrate on net wealth figures, as well as on the adjusted concept

of financial assets and leave the breakdown on particular instruments for future research

(see Chakraborty and Waltl 2018). The methodology used to estimate the Pareto tail is the

same approach as in Vermeulen (2018). Therefore, we keep the explanation here short.

3.2. Methodology

Wealth is heavily skewed at the top and the literature has reached a consensus that the top

of the wealth distribution is well approximated by a Pareto distribution (Davies and

Shorrocks 1999). The Pareto distribution has two parameters, the tail exponent a and

the threshold parameter T. The distribution is given by the following complementary

cumulative distribution function (ccdf):

PðW . wÞ ¼
T

w

� �
a ð8Þ

The Pareto distribution is defined on the interval [T,1) and a . 0. The threshold T is the

lower bound of the distribution. Estimating a Pareto distribution on a simple random

sample is fairly straightforward. The maximum likelihood estimator of a from a random

sample of n observations drawn from a Pareto distribution with a given threshold T is

given by:

aml ¼
X

i

1

n
ln

wi

T

" #ð21Þ

ð9Þ

Table 6. Oversampling in the first wave of the HFCS by country.

Country

Oversampling
wealthy

households Basis for oversampling
Effective oversampling

rate of the top 5%

Austria No N/A 4

Germany Yes Geographical areas 148

Spain Yes Taxable wealth 314

Finland Yes High-income employees,
self-employed and farmers

85

France Yes Net wealth 208

Notes: The source is HFCS. Effective oversampling rate of the top 5%, (S95 – 0.05)/0.05, where S95 is the share

of sample households in the wealthiest 5%. Wealthiest households are defined as having higher net wealth than

95% of all households, calculated from weighted data (ECB 2013).
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Alternatively, the tail exponent has been estimated in the literature using linear regression

on ranked data. Let i be the rank of the observation (with rank 1 being the highest

observation). The Pareto tail exponent a can be estimated by:

ln ði 2 0:5Þ ¼ C 2 a� ln ðwiÞ ð10Þ

Where the “subtract 0.5 from the rank” is suggested in Gabaix and Ibragimov (2011).

However, wealth survey data generally does not consist of a simple random sample. In

particular, sample observations have weights. Vermeulen (2018) shows that taking into

account the weights can be done in the regression method above, using the ranked n

highest observations:

ln ði 2 0:5Þ ¼
Nfi

�N
C 2 a� ln ðwiÞ ð11Þ

where Nfi is the average weight of the highest i sample points and �N is the average weight

of all n highest sample points. This regression method can be used in two ways. First,

estimate a using only the survey data (i.e., the highest n observations). Alternatively, these

observations can be pooled with data of rich lists that contain datapoints that are higher

than the highest observation in the survey (this joint data set is then ordered first). Using

this regression method works particularly well when combining the survey data with such

extraneous data points.

A particular problem is the choice of the threshold T. There is no clear-cut way in

finding a “correct” threshold. However, the Pareto distribution has the interesting property

that a distribution with tail exponent a and threshold T, when restricted above T* . T

remains a Pareto with the same tail exponent. Therefore, it seems prudent with survey data

to use a high threshold. This way, lower observations that are not Pareto distributed are

avoided. However, there is a trade-off: a higher threshold T* implies using less data to

estimate a. It is probably best to estimate a using different thresholds of the data and check

for sensitivity.

After estimating the a for a given threshold T, the n observations can be replaced by the

estimated Pareto distribution. The mean of a Pareto distribution is given by a
a21

T , so that

we can say that the total wealth in the Pareto tail is given by n �N a
a21

T , where n �N is the total

sum of weights of the highest n observations in the survey sample.

We use the thresholds EUR 500,000, EUR 1 million, and EUR 2 million to estimate a

and we use the same thresholds to replace the survey observations by the estimated Pareto

tail. The Pareto distribution is estimated using the above described methods: (1) the

pseudo maximum likelihood. Specifically, we use the pseudo-maximum likelihood

estimator which has the same form as the maximum likelihood estimator, but takes into

account the weights of the sample observations in the survey (see Vermeulen 2018);

(2) the regression method excluding data from the Forbes; and (3) the regression method

including data from the Forbes.

3.3. Forbes Data

The wealth concept of the Forbes list does not strictly follow any defined concept and

therefore, it should be interpreted as a proxy. The wealth concept typically covers the net
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wealth and thus, the split between assets and liabilities is not available. Four conceptual

issues related to the use of these estimates in statistical estimations can be identified.

First, the estimations are based either on interviews of billionaires themselves or their

handlers, employees, rivals, or others. This implies that it is impossible to cover all the

asset types or to have types of market valuation that are similar to FA or household

surveys. On the methodology used by Forbes, Dolan (2016) states that “not that we

pretend to know what is listed on everyone’s private balance sheet, though some folks do

provide that information. We do attempt to vet these numbers with all billionaires. Some

cooperate, others don’t.” Almost all the families on the Forbes list from the countries

analysed in this article have earned their money in businesses and therefore, it can be

assumed that the majority of their net wealth is in equity. For the Forbes list, the

privately-owned businesses have been valued by coupling estimates of revenues or

profits with prevailing price-to-revenues or price-to-earnings ratios for similar companies

(Dolan 2016). This method can be considered similar to the methods used in the

valuation of the unlisted equity in the FA.

Second, the wealth concept does not cover all asset types, as these are partly based on

external estimations. Additionally, the wealth concept also covers items that are defined as

durable goods in the NA (such as yachts). Third, sometimes the fortune is distributed to the

different family members and sometimes it is not, and a large number of family members

is aggregated (Dolan 2016). The starting point in statistics and in particular in the HFCS is

that the applied unit is the household. In the case of the Forbes list, it is very possible that

the applied family concept covers several households or reversely, one person, for

example, the head of the household.

Fourth, the Forbes list covers families by nationality and it does not correspond with the

residence concept applied in the HFCN and the SNA. The families living outside of the

country of their citizenship should not be included in the HFCN population, but they are

included in the Forbes list. A brief analysis proved that the majority of these families are

actually resident in the countries of their citizenship. For instance, in the case of Finland,

all six persons who are on the list are also residents in Finland. In larger countries, where

the number of billionaires is also higher, there are some families that live outside the

country of their citizenship. In future work, allocating these types of families to their

resident countries can be considered. Even though there are these drawbacks in using the

Forbes list, the data are one of the best proxies for the very top tail of the wealthiest

households (alternatives being national rich lists).

4. Results

4.1. Estimates of the Pareto Compared with the HFCS

We estimate the Pareto tail exponent using the three methods described above, for the

three thresholds. The results for the Pareto tail exponent (alpha) are provided in Table 7.

The Pareto tail index estimates coincide with those found by Vermeulen (2018). In

general, a lower a implies higher tail net wealth and higher total net wealth. As described

earlier, we replace the tail net wealth of the survey observations above each of the
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thresholds by the estimated net wealth from the Pareto distribution. Thus, we assume that

the weights in the HFCS allocated to those households having net wealth above these

thresholds are correct.

Table 8 gives an overview of the weights in % of the population. Obviously, increasing

the threshold decreases the weights allocated to these households. Nevertheless, the

weights allocated to households above each of the threshold varies from country to

country, for example, the weight of households in Austria with a net wealth above EUR 2

million is 1.9% compared to Finland with only 0.3%.

Table 9 shows the net wealth below and above the thresholds as measured in the HFCS.

Table 10 to Table 12 provide the estimates of tail net wealth using the different methods

to estimate the tail. They also provide a comparison in terms of the HFCS tail for each

estimate (Pareto tail divided by the HFCS tail). Furthermore, the tables provide an

estimate in terms of actual net wealth of the HFCS when the tail is replaced by the Pareto

estimate (estimated net wealth when tail is replaced by the Pareto divided by the actual net

wealth of the HFCS).

Table 10 shows the tail net wealth using the pseudo maximum likelihood method

without the Forbes list. The tail does not significantly increase for those countries that used

an effective oversampling strategy (Spain and France). However, especially in Austria and

Germany, with less effective oversampling strategies, the estimated Pareto tail increase

Table 8. Weights below and above threshold.

Country

$2M $1M $500T

Below Above Below Above Below Above

Austria 0.981 0.019 0.954 0.046 0.887 0.113

Germany 0.991 0.009 0.974 0.026 0.918 0.082

Spain 0.992 0.008 0.964 0.036 0.865 0.135

Finland 0.997 0.003 0.986 0.014 0.937 0.063

France 0.992 0.008 0.970 0.030 0.896 0.104

Notes: The table shows the weights allocated in the HFCS above and below three different thresholds for the

given countries. The thresholds refer to net wealth. The sum of the weights corresponds to the size of the target

population (see Table 2). Source: HFCS.

Table 9. Net wealth below and above threshold HFCS (EUR billions).

Country

$2M $1M $500T

TotalBelow Above Below Above Below Above

Austria 673 327 528 472 357 643 1,000

Germany 5,907 1,836 4,945 2,798 3,489 4,254 7,743

Spain 4,273 685 3,637 1,321 2,475 2,483 4,958

Finland 384 25 349 60 267 142 409

France 5,466 1,036 4,620 1,883 3,200 3,303 6,503

Notes: The table shows the net wealth, aggregated over households below and above the threshold as it is given in

the HFCS. The thresholds refer to net wealth. The total shows the aggregated net wealth in the HFCS for each

country. Source: HFCS.
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the tail compared to the HFCS, as well as total net wealth. The total effect on net wealth is

lower compared to the effect on the tail, as the weight of the households with net wealth

above each of the thresholds is taken into account.

Table 11 shows the tail net wealth using the regression method excluding the Forbes

list. Similarly, not much is added to the HFCS tail using either of the thresholds for the

countries with an effective oversampling strategy. Generally, the estimates get more

imprecise the higher the threshold is, as fewer sample observations from the survey can be

used for the analysis. This seems to be especially prevalent for the countries using a less

effective oversampling strategy. The lower estimated tail for Austria and Germany with a

threshold of EUR 2 million is most likely based on this fact, and the results need to be

interpreted with caution. However, using a lower threshold generally brings the risk of

including observations in the estimate that may not be Pareto distributed. Finally, Table 11

shows the results including the Forbes data into the regression method. This yields the

highest estimates for the tail, as well as for net wealth, in line with the results from

Vermeulen (2018). It even adds net wealth for the countries that used an effective

oversampling strategy, although to a minor extent compared to the countries with a less

effective oversampling strategy.

In the next section, we analyse how replacing the tail by the Pareto distribution changes

the coverage ratios of the adjusted concepts discussed above. We limit the analysis to the

last estimation method, including the Forbes list and the adjusted concept 1. For the

calculations, we take the mean over the results computed in each of the five implicates

provided in the HFCS.

4.2. Comparison with the Adjusted Concept of Financial Assets

In the previous section the tail of the wealth distribution was estimated by taking net

wealth as the underlying concept. But so far, we have not broken down the net wealth into

its components – financial assets, real assets and liabilities. To make these estimates

comparable to the adjusted concept of financial assets discussed in Subsection 2.3, we

need to allocate the estimated tail net wealth to financial assets, real assets and liabilities.

To obtain a first estimate, we use the HFCS to calculate the aggregate shares of financial

assets, real assets and liabilities for those households that have net wealth above each of

the thresholds. Using those shares, we can allocate the Pareto tail net wealth. To give an

indication how this allocation changes with net wealth, Table 12 shows the shares above

each of the thresholds constructed using the HFCS. The share of financial assets increases,

while the share of real assets decreases with a higher threshold of net wealth for all

countries included in the study. For these households, liabilities play a minor role (1% –

6%). For the breakdowns provided in Table 13, we have already reclassified self-employed

businesses to financial assets.

In Table 14, we show a finer breakdown of financial assets for the households in the

survey with net wealth above the threshold of EUR 2 million. One sees that the large part

of net wealth for these households consists of the value of self-employed businesses

(representing 28% of net wealth in France versus 51% in Austria).

We suspect that the share of financial assets and, in particular, equity increases further

for the wealthier households that are not included in the survey. We base this conjecture on
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the fact that it is often owners of large businesses that can be found on rich lists. After

allocating net wealth to an instrument level, we apply the same procedure to derive the

adjusted Concept 1 – reallocate self-employed businesses to financial assets and, again,

exclude the instruments from the adjusted concept that are not comparable or hardly

comparable. The effect of this procedure on the coverage ratios is shown in Table 15. The

table also shows the change in the coverage ratio compared to Table 5. This can be

interpreted as the change in the coverage ratio that is based on replacing the tail by the

Pareto estimate.

Table 14. Total share of financial assets for households with net wealth above 2M (in % of net wealth).

Austria Germany Spain Finland France

DA2101 Deposits 3 2 5 3 2

DA2102 Mutual Funds 2 2 2 7 2

DA2103 Bonds 2 2 0 1 1

DA1140 Value of
Self-Employment Businesses

51 46 33 33 28

DA2104 Value of Non
Self-Employment
Private Business

0 0 5 0 4

DA2105 Shares, Publicly Traded 0 2 2 22 6

DA2106 Managed Accounts 0 0 0 0 0

DA2107 Money Owed
To Households

1 0 1 0 0

DA2108 Other Assets 0 1 0 0 1

DA2109 Voluntary Pension/
Whole Life Insurance

0 2 1 1 13

Total Financial Assets 59 57 49 67 57

Notes: The table shows, in percentages, the asset allocation for households with net wealth above EUR 2 million

for financial assets (% in terms of net wealth). Source: HFCS.

Table 15. Coverage ratio of adjusted Concept 1 (financial assets) if tail wealth is replaced using regression

method including Forbes.

Country

Coverage
ratio (%)
adjusted

concept 1
($2M)

Increase
in %

Coverage
ratio (%)
adjusted

concept 1
($1M)

Increase
in %

Coverage
ratio (%)
adjusted

concept 1
($500T)

Increase
in %

Austria 110 (þ12) 105 (þ7) 103 (þ5)

Germany 100 (þ14) 100 (þ14) 104 (þ18)

Spain 78 (þ3) 81 (þ6) 78 (þ3)

Finland 59 (þ4) 59 (þ4) 56 (þ1)

France 63 (þ4) 63 (þ4) 60 (þ1)

Notes: The brackets show the change in the coverage ratio to the adjusted Concept 1 for the household sector

(S.14) when the tail is replaced with the Pareto estimate. Sources: HFCS, FA and Forbes.

Chakraborty et al.: The Missing Link 55



We only apply this procedure using the regression method, including the Forbes and the

adjusted Concept 1. We take the aggregated portfolio structure above each threshold of the

households included in the survey. Thus, a lower threshold also implies a lower percentage

of net wealth allocated to financial assets, as can be seen in Table 13. The intention is to

point out one further measurement problem that arises when breaking down the estimated

tail net wealth to financial assets and real assets. As the net wealth of the Forbes almost

always originates from listed or unlisted corporations, most likely the large bulk of their

net wealth is invested in equity. So, the estimates gained here can only be understood as an

indication of the portfolio allocation of the top tail, but most likely the net wealth

estimated by the Pareto could be allocated even more to financial assets/equity, reducing

the gap for financial assets even further.

As can be seen, adding the estimated tail increases the coverage ratio for all

countries, but to a larger extent for countries with a less effective oversampling

strategy. For Spain, Finland and France, the increase created by adding the Pareto tail

including the Forbes is not sufficient to reduce the gap to FA. For Austria and

Germany, applying a threshold of EUR 2 million increased the coverage ratio

significantly. To see why this is the case: first, the two countries have lower estimated

alphas (for the regression method including Forbes), hence a larger estimated tail.

Second, the weights allocated to households above the EUR 2 million threshold are

highest in Austria and Germany. Third, the share of financial assets in Austria is

relatively high. Apart from using different estimated alphas and weights, using a lower

threshold here also means using a lower portfolio share for financial assets. The share

of financial assets for households with a net wealth above EUR 500,000 most likely

underestimates the share of financial assets of the Pareto tail and thus, also,

underestimates the coverage ratios. The adjusted Concept 1 seems to work particular

well for Austria and Germany, but one has to keep in mind that two opposing

influences still have an impact which have not been estimated here. On the one hand,

the value of real assets of sole-proprietors may be included in the adjusted Concept 1 in

financial assets. Excluding these real assets would lead to a lower coverage ratio for

financial assets. On the other hand, taking a higher portfolio share of financial assets

would lead to an even higher coverage ratio for financial assets. This higher portfolio

share can be assumed from the discussion on the Forbes and when taking into account

the development of the share in financial assets when increasing the threshold.

5. Conclusion

Using data from the HFCS and the FA, we have made a thorough comparison between both

sources for financial assets for Austria, Germany, France, Spain and Finland. We have

briefly reviewed the linkages between both sources on an instrument level. Furthermore,

we have pointed out and partly estimated basic statistical differences between both sources

that have a potential effect on the comparability between both sources.

By developing an adjusted concept of financial assets, we have shown that a large part

of the gap in comparison to a naı̈ve comparison can already be explained by conceptual

differences and by a reclassification of self-employed businesses from real assets to

financial assets aligning the concepts of financial and real assets across both sources.
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Identifying comparable items is essential for being able to actually calculate more reliable

coverage ratios.

One challenge in deriving adjusted concepts for financial assets is the treatment of self-

employed businesses. Here, the issue is which part of sole-proprietors and partnerships

included in the survey are assigned in FA to the household sector and which ones are

classified as quasi-corporations, and hence are recorded in the nonfinancial corporations’

sector. In the latter case, the household only holds a net equity position in the business

(other equity). On the other hand, if the sole-proprietors and partnerships are recorded in

the household sector, the assets and liabilities may be spread over the balance sheet of the

household sector and the net value recorded in the survey may very well include real assets

and liabilities. Even though this does not have an effect on the coverage ratios in terms of

net wealth, it has a significant effect on the coverage ratio of financial assets on an

aggregated level, as well as on an instrument level.

Focusing on the wealthiest households, we have used the estimation procedure from

Vermeulen (2018) and replaced those observations in the survey (households) above three

different thresholds (EUR 500,000, EUR 1 million, and EUR 2 million) by an estimated

Pareto tail. Thus, we allocate the same weights to the estimated tail as are allocated to

households above these thresholds in the HFCS. Using the estimates from the Pareto, we

have shown the effect on the tail itself and the effect on net wealth. For the countries that

already use an effective oversampling strategy, the estimates without the Forbes list do not

seem to add much to net wealth and to the coverage ratio. For countries with a less

effective/no oversampling strategy, the Pareto estimates seem to increase the tail, net

wealth and eventually the coverage ratio. This is one of the main contributions of this

article: we analyse how the coverage ratios for comparable financial assets (adjusted

concept) change when the top tail is replaced by a Pareto distribution including the Forbes

list and which factors are of importance for the final results.

It seems that for countries with an effective oversampling strategy, the increase in the

coverage ratio is lower than for countries with a less effective oversampling strategy.

Apart from oversampling, three factors are relevant for the final results: first, the

estimated alpha is crucial, as a lower estimated alpha leads to a larger estimated tail.

Second, the weight allocated to households with wealth above the thresholds is different

from country to country and hence, leads to a different effect on net wealth. Third, the

portfolio allocation to financial assets is relevant when net wealth is broken down to its

components (financial assets, real assets and liabilities). Households with higher net

wealth seem to be more invested in financial assets. The analysis shows that it is

reasonable to assume that the largest part of financial assets of the wealthiest households

is equity. This matters for the estimated coverage ratios for financial assets, as a higher

portfolio share in financial assets implies that a larger part of the estimated tail wealth

is allocated to financial assets.

In the future, we need to continue to work on adjusting the concept of net wealth

including real assets and liabilities. For the estimation of the coverage ratio of the different

components, it would be valuable to have an estimate on the share of financial assets, real

assets and liabilities held by sole-proprietors and partnerships, as this would give an

estimate of how much the adjusted concept for financial assets (adjusted Concept 1)

overestimates the coverage ratio.
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The analysis shows that the threshold for estimating the alpha might be of importance,

as the outcome of the Pareto index might be quite different when taking different

thresholds. Generally, there is a trade-off, as increasing the threshold decreases the number

of households on which the estimates are based. However, taking a lower threshold brings

the risk of including observations (households) that are not Pareto distributed. The

threshold is of equal importance for taking the portfolio shares of net wealth allocated to

financial assets, real assets and liabilities, as this has an impact on the coverage ratio for

each component of net wealth. In the analysis of this article, we have kept the thresholds

for estimating the alpha and the portfolio shares the same. A sensitivity analysis varying

the thresholds and the portfolio shares, for example estimating the alpha based on the EUR

500,000 threshold but varying the share of financial assets held by these households, would

be one way to further analyse the effect on the coverage ratios. Although the regression

method including the Forbes shows, on average, lower alphas and hence a bigger tail, the

coverage ratios crucially depend on the weight allocated to the tail in the survey. This, in

turn, is based on the sampling procedure applied by each country. Thus, varying the weight

and observing the effect on the coverage ratio would be worth examining, as the weight

differs quite a bit between the countries.

Finally, returning back to our initial question stated in the title ‘Is the Top Tail of the

Wealth Distribution the Missing Link between the Household Finance and Consumption

Survey and National Accounts?’ The answer is a qualified “yes but partially”. We have

shown that the estimated Pareto tail might explain part of the coverage ratio for financial

assets, but to a lesser extent than we initially expected. For the countries that have a less

effective oversampling strategy, a larger part of the gap to FA seems to be explained by the

estimated top tail. But apart from the applied oversampling strategy, the change in the

coverage ratio depends on the distribution of wealth in each country (leading to different

alphas), the weight allocated to households in the top of the distribution, and the portfolio

allocation of the wealthy households. Finding the ‘correct’ estimates for each

measurement problem is a difficult task. The question remains, for some countries in

our analysis, why the coverage ratios using the adjusted concepts are still relatively low,

and further explanations have to be found. One such explanation is underreporting. We

leave this for future research.
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6. Appendix

Table A1. Correspondence table: financial wealth in HFCS and FA.

ESA

2010

code

FA/Instrument

name

HFCS

variable

code(s) HFCS variable

Adjusted

concept Remarks

Assets

F.2 Currency and

deposits

F.21 Currency N/A N/A Excluded FA: holdings by

households

included but

estimated due to

the lack of direct

sources.

HFCS: Not

collected.

F.22

F.29

Transferable

deposits

Other deposits

HD1110

HD1210

Sight accounts

Savings accounts

Included

Included

Specific conceptual

differences exist but

are unlikely to be

significant.

HFCS includes

deposit-like

instruments

with non-deposit-

taking corporations.

These are classified as

short term loans in FA.

F.3 Debt securities HD1420 Bonds Included Conceptual

differences

are not known.

F.4 Loans HD1710 Amount owed to

household

Excluded Not fully comparable,

loans between

households missing

from FA in practice

for most countries.

F.5 Equity and

investment

fund shares

Included

F.511 Listed shares HD1510 Publicly traded shares Included

F.512 Unlisted shares HD1010 Investment in non-

self-employment

not publicly traded

shares (ownership

only as an investor

or silent partner)

(Partly)

Included

dependent

on adjusted

concept

- In the HFCS,

classification is

based on the

household’s activity

in the enterprise.
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F.519 Other equity DA1140

(Sum of

(HD080x)

þ HD0900

Investments in

Self-Employment

Businesses

1 – Sole proprietorship/

independent

professional

2 – Partnership

3 – Limited liability

companies

4 – Co-operative

societies

5 – Nonprofit making

bodies

6 – All other Forms

(Spain)

7 – Unknown

(not imputed)

- FA value includes

assets that are

classified as real

wealth in the HFCS

(value of

self-employment

businesses) and has

to be reallocated to

financial wealth.

- The split between

‘Unlisted shares’ and

‘Other equity’ cannot

be made in the

survey. Investments

in self-employed

businesses could be

included in ‘Unlisted

shares’ or ‘Other

Equity’.

- The value of sole

proprietorships or

partnerships are

spread over the

different instruments

in FA if it is not

considered as a

separate legal entity

(quasi-corporation).

- In the HFCS, the value

can be provided for

the different legal

status, although the

legal status is not

imputed in all

countries.

(“Unknown”

category).

F.521 Money Market

Fund shares/

units

HD1320c Investments in mutual

funds c – Funds

predominantly

investing in money

market instruments

Included Value dependent on

fund type not

imputed in every

country. The

breakdown by type of

fund may not be

available and only

the total HD1330 is

imputed in all

countries. Hence the

distinction between

MMF and non-MMF

funds may not be

made in these

countries.

Table A1. Continued.

ESA

2010

code

FA/Instrument

name

HFCS

variable

code(s) HFCS variable

Adjusted

concept Remarks
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F.529 Non-MMF

Fund shares/

units

HD1320x a – Funds

predominantly

investing in equity

b – Funds

predominantly

investing in bonds

d – Funds

predominantly

investing in real

estate

e – Hedge funds

f – Other fund

types (specify)

Included

F.6

F.61

F.62

F.63

F.64

F.65

F.66

Insurance,

pension and

standardised

guaranteed

schemes

Nonlife

insurance

technical

reserves

Life insurance

and annuity

entitlements

Pension

entitlements

Claims of

pension

funds on

pension

managers

Entitlements to

nonpension

benefits

Provision

for calls

under

standardised

guarantees

N/A

DA2109

(Sum of

PF0920

over

household

members)

Sum of

PF0700

over

household

members

N/A

N/A

N/A

N/A

Voluntary

pension/whole life

insurance schemes

Current value of all

occupational

pension plans that

have an account

N/A

N/A

N/A

Excluded

Included

Excluded

Excluded

Excluded

Excluded

Non-life included in N/A.

Assets in nonlife

(e.g., health insurance,

term insurance) can be

significant.

It is not clear if defined

benefit plans are

included in this

variable in the HFCS.

Furthermore, pensions

are prone to

measurement

problems

in surveys.

F.64–F.66 likely to be

irrelevant for

households.

Table A1. Continued.

ESA

2010

code

FA/Instrument

name

HFCS

variable

code(s) HFCS variable

Adjusted

concept Remarks
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Using Administrative Data to Evaluate Sampling
Bias in a Business Panel Survey

Leandro D’Aurizio1 and Giuseppina Papadia2

We examine two sources of bias for the Bank of Italy’s panel business survey of Industrial and
Services Firms:

1) the bias caused by panel attrition; and
2) the bias created by delays in the distributional data on the reference population, needed

for computing the survey weights.
As for the first source of bias, the estimates strongly dependent on big firms’ values are less

affected by panel attrition than those representing firms’ average behavior, independent of their
sizes. Positive economic results make it easier to enroll new firms in the survey, in order to replace
firms dropping out because of bad economic performances. However, the economic results of
new entrances become more aligned to those of the population, once they enter the sample.

A very different result emerges for the second source of bias, since, when the population size
is highly variable, the information delays produce a bias for the estimates influenced by the
contribution of great firms, but the effect is negligible for the estimates not dependent on firm size.

Key words: Business surveys; panel samples; panel attrition; administrative data; auxiliary
information.

1. Introduction

Business surveys are often conducted by using a panel sample, with estimates that can be

affected by panel attrition. Since these estimates are representative of a reference

population by means of survey weights, they can be biased because the weights do not

fully take into account the evolution of the reference population. Our article aims to

evaluate these two sources of bias by relying on auxiliary information from administrative

sources. We will understand the effects of panel attrition by using an integrated archive,

matching survey data with financial-statements indicators, available also for the years

when the panel units are absent from the sample. We will assess the effects of the second

source of bias by fully exploiting the population information.

Measuring ratios is a typical utilization of business surveys. They can be either ratios

between a variable at time t and the same variable at time t 2 1, in order to measure its

relative change over time, or they can be ratios between two different variables. For them,
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two classes of estimators can be computed: the first one comprises what we define as

simple estimates, representative of firms’ average behavior, not influenced by the largest

units in the sample. The second class includes what we define as aggregate estimates,

which tend to be heavily influenced by the big enterprises belonging to the sample,

especially if they are over-represented, as in the case of Neyman’s samples.

We focus on the Bank of Italy’s Survey of Industrial and Service-sector firms (Invind,

from now on) conducted every year with a panel of around 4,000 enterprises (Bank of Italy

2014), representative of the population of industrial and nonfinancial service-sector firms

with at least 20 employees.

The first source of bias we examine arises from firms participating in a survey edition

and dropping out from the following one, without that being planned in advance. The term

normally used for this phenomenon is panel attrition (Martin et al. 2001). We analyze the

attrition effects by using an archive of financial-statement data for the whole reference

population. It provides indicators for all the panel units for every survey year, even if they

are missing from the sample in several survey editions. We can therefore measure whether,

for each survey edition, new entrants and dropouts are different and the main determinants

of the propensity to enter and leave the sample.

The second source of bias we assess is caused by the delays of the distributional data on

the reference population, required to compute the survey weights. The effect of this lag can

be measured for the least recent survey editions, for which complete information on the

population is available. We can therefore assess how much the bias of the usual estimates

derives from out-of-date population information.

We briefly anticipate the main results of our article. The effects of panel attrition on

the aggregate estimates are small, since their values depend on the data of the largest

companies, which tend to participate in the survey more regularly than smaller firms. The

official estimates, regularly analyzed in the Bank of Italy’s reports are of this kind. On the

other hand, the smaller firms tend to participate in the survey more erratically and

accordingly this fact makes it necessary to carefully interpret the simple estimates. On the

contrary, the delays in the updating of the reference population are a source of bias for the

aggregate estimates, when they are weighted to be representative of the whole reference

population. More precisely, they tend to be biased when the population size is highly

unstable, with the bias virtually disappearing for the simple estimates.

The article is organized as follows. Section 2 introduces panel attrition. Section 3

describes the specific features of the panel attrition found in Invind. Section 4 describes the

indexes we use to assess the effect of panel attrition. Section 5 explains the data integration

process. Section 6 evaluates the effects of panel attrition effects on Invind and Section 7

analyzes the consequences of the delayed updating of the distribution of the reference

population. Section 8 sums up the main results and proposes some solutions to manage the

problems highlighted in the article.

2. Panel Attrition: An Overview

Panel surveys use the same sample units for repeated survey occasions. This choice

enables researchers to understand transition patterns (Fabbris 1989). An obvious

operational advantage of panels over repeated independent samples is that the sample is
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selected once before the first survey edition. In most cases, the original panel undergoes

an attrition process after the first survey occasion and its composition accordingly

changes over time. The statistical literature has widely explored the cases of panel

attrition created by some sample units either refusing to participate in the following

occasions or exiting the reference population. The units that leave the panel after a given

survey occasion are routinely replaced by other ones, that either have been in the panel in

previous waves and reenter in this occasion, as replacements of other units, or they are

enrolled in the panel for the first time (some of them may even be new entries into the

reference population).

If the attrition process decreases the sample size, the standard error of the survey

estimates automatically increases. The estimates remain unbiased if the attrition is

completely random (Little and Rubin 2002). On the contrary, if the attrition depends on

some of the variables of interest for the survey, it becomes a source of bias.

There are some solutions to attenuate these drawbacks. Typically, the units leaving the

sample are replaced by others, with observable characteristics (the same used in the survey

design) quite similar to those of the replaced units. A more complex solution is to set up

panel rotations that periodically discard a part of the panel and make place for new units,

that can also realign the sample to the changes in the reference population occurred since

the creation of the panel (Trivellato 1999). Rotating panels also spread the response

burden and therefore indirectly reduce the attrition caused by it (Ardilly and Lavallée

2007). The method is widely applied in surveys of individuals and households.

These measures maintain the initial sample size and keep the precision of the estimates

close to the planned levels. If the hypothesis of attrition totally at random is violated, the

replacements of the units leaving the panel cannot totally eliminate the bias, since the units

leaving and entering the panel may differ according to characteristics not included in the

survey design. The bias arises when such characteristics are correlated with the variables

of interest.

Among the recent contributions to the statistical literature on panel attrition, the

utilization of many techniques for imputing data, missing because of attrition, can provide

useful clues regarding the direction of the bias. For instance, Black et al. (2007) use an

array of imputation methods, ranging from simple mean imputation to more complex

Bayesian resampling techniques, to reconstruct the missing values for a sample of UK data

on car traffic. They measure the variability of the results obtained, in order to assess the

bias from missing data and its influence on the estimates.

Deng et al. (2013) use the waves of the Survey on Income and Program Participation,

regularly conducted on a representative panel sample of US households, and propose to

use a series of refreshment samples, composed by new, randomly selected, respondents, as

an auxiliary external source. The new respondents answer the same questionnaire used for

the main sample. The differences between the answers of the two respondent sets are used

to correct for the bias.

Auxiliary information can also be used as a correction factor of the original weighting

system, in order to offset the effects of panel attrition. For example, Afonso (2015)

corrects the weights to compensate for the missing data created by attrition in a panel of

bank microdata that follows the latest trends of the net interest margin of the banking

systems of the 15 major countries of the euro area. The revised weights are used in the
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context of Generalized Methods of Moments estimation procedures to produce consistent

estimates better aligned to the predictions of economic theory.

3. Panel Attrition in the Invind Survey

We concentrate on the attrition observed between two consecutive waves of the Invind

survey relative to the years t 2 1 and t, that we indicate with It21 and It (we do not study

the effects of attrition on the longitudinal estimates based on the panel). Some firms

participate in It21, but not in It (we refer to them as “dropouts”) and are accordingly

replaced by other firms that did not participate in It21 (we call them “new entrants”). We

use the term “stayers” to indicate the firms participating in both It21, and It. We use these

three terms looking at just two consecutive panel waves, without taking into account what

happens in the other ones. We differ here from the standard utilization of these three terms

in the literature, indicating the units that respectively drop out of the panel definitively,

enter it for the first time, or regularly participate in all the survey editions.

In the single cross-sections, the sample is representative of the cross-sectional

population with the help of replacement rules that substitute every dropout with a new

entrant, having its head office in the same Italian region, together with economic activity

and number of employees as close as possible to those of the dropout.

We consider all the waves available from 2002 until 2013. The wave relative to 2002

was the first with the current reference population (composed by the firms with at least 20

employees belonging to the sectors of nonconstruction industry and nonfinancial private

services) and the current sample size of 4,000–4,200 firms (Bank of Italy 2005).

The interviews relative to the wave for year t take place in the first four to five months of

the following year t þ 1. The survey collects the values for the main variables of interest

(employment, turnover and investment) for the years t 2 1, t and t þ 1 (this last value is a

forecast for the current year). The changes for the year t relative to t 2 1 and for the year

t þ 1 relative to t are accordingly computed by using only one survey wave. If

extraordinary events (such as mergers, acquisitions or splits) modify the structure of a

panel firm between t 2 1 and t þ 1, its data cannot be directly used to compute the

average variations and require a special treatment. The data are included in the estimates

only if they refer to a set of plants and workers fully comparable over the three years t 2 1,

t and t þ 1. The comparability is obtained either by anticipating the extraordinary events

at the beginning of t 2 1, or by postponing them at the end of t þ 1.

Invind weights are cross-sectional. For every survey edition, they make the sample

representative of the reference population within strata formed by the combinations of six

class sizes (in terms of average number of employees: 20–49, 50–99, 100–199, 200–499,

500–999, 1000–4999, 5000 and over) and eleven sectors of economic activity. A

successive post-stratification makes the sample representative of the population also at the

geographical level: there are 48 post-strata: north-west, north-east, center, south and

islands, referred to the firm headquarters’ location, combined with size classes and

aggregate economic sectors (Table S1 in Supplementary material). A unique set of survey

weights is used for each survey edition, relative to the year t.

Many firms are dropouts or new entrants during the years 2002–2013 (Table 1). On

average, 20% of the units in a wave drop out from the following one and are replaced
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by a slightly higher number of units (the sample size increased by 6.5% in the time

span examined). An average 75% of the dropouts still belong to the reference

population of firms with at least 20 employees, 14% are no longer operational and

10% become not eligible for further participation, either because their workforce drops

below the 20-employee threshold or, more rarely, because of events such as mergers,

acquisitions, and so on. The stayers’ average size is 390 employees, higher than that

of the new entrants (303), that is in turn higher than dropouts’ average size (222). The

last two columns of Table 1 show that, on average, a third of the new entrants

participated in past waves before It21. The shares of dropouts and new entrants are

quite stable throughout the period examined. The economic crisis that began in 2009

and a revision of the survey operations in the years 2006–2008 did not significantly

alter this pattern.

Looking at the firms’ economic sectors, the attrition is stronger for firms of the

nonfinancial private services (Table 1, last row) that became a part of the reference

population only since 2002. The interplay of three factors explains this result:

1. it takes time to create a stable panel participation, because the questionnaire is

difficult to complete,

2. service-sector firms tend to outsource most of the budgeting and accounting tasks

needed to complete essential parts of the questionnaire and this discourages their

regular participation in the survey,

3. firms’ transformations (by mergers, acquisitions, contributions, transfers and splits)

naturally decrease the propensity to participate in business surveys and tend to affect

service-sector firms more frequently (Bank of Italy 2015).

4. Simple and Aggregate Indexes

An array of variables can be measured over a firm, either dimensional (such as profits,

turnover, investment and number of employees) or dimensionless (e.g., ratios like Return

on Assets and Return on Equity, indicated with the acronyms ROA and ROE from now on,

extensively used to evaluate firms’ performances) and both can be summarized through

indexes.

For both kinds of variables, we can follow how their averages vary over the years. Let us

indicate with i a unit of the sample of size nt. The indicators can take two different forms,

which we define as simple and aggregate indexes. For both forms, they can be either

weighted with the cross-sectional survey weights or can be left unweighted.

The units contribute equally to the simple indexes (Table 2, lower part), regardless of

their different sizes, while their contribution to the aggregate indexes (Table 2, upper part)

takes place according to their relative sizes. It can be easily shown that the relative size is

the value of the variable at t 2 1 divided by its total (we report below the expression for

the unweighted aggregate index):

Xnt

i¼1
yi;tXnt

i¼1
yi;t21

¼
Xnt

i¼1

yi;t

yi;t21

yi;t21Xnt

i¼1
yi;t21

ð1aÞ
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Equation (1a) can be easily generalized to the weighted aggregate index in the following

way: Xnt

i¼1
yi;twi;tXnt

i¼1
yi;t21wi;t

¼
Xnt

i¼1

yi;t

yi;t21

yi;t21wi;tXnt

i¼1
yi;t21wi;t

ð1bÞ

For a dimensionless ratio xi,t the scale factor is a variable zi,t positively correlated with firm

size (generally number of employees or turnover), divided by its total. We will use the

turnover for our computations.

5. Using External Sources to Measure Invind Panel Attrition

5.1. The Main Issues

The high attrition levels shown in Section 3 require to assess whether, for every cross-

section, the economic performances of the firms entering the cross-section, but not present

in the previous one (new entrants) and those of the firms absent in the following cross-

section (dropouts) are different. We measure the economic performances in terms of

turnover changes, profits changes, ROA and ROE, using the indexes defined in Section 4.

It is also relevant to study the propensity to enter or leave a cross-section, with the first

propensity requiring firm-level data for new entrants also for the year prior to their

entrance, not directly available from the survey.

We therefore face two problems requiring a data integration process:

1) only turnover is collected in the survey, but not profits, ROA and ROE;

2) data should also be available for the years when the units are absent from the sample.

Table 2. Key performance indicators of firms.

Aggregate indexes

Dimensional variables(a) Dimensionless ratios(b)

Unweighted
Pnt

i¼1
yi;tPnt

i¼1
yi;t21

1Pnt

i¼1
zi;t

Xnt

i¼1

xi;tzi;t

Weighted

Pnt

i¼1
yi;twi;tPnt

i¼1
yi;t21wi;t

1Pnt

i¼1
zi;twi;t

Xnt

i¼1

xi;tzi;twi;t

Simple indexes

Dimensional variables(a) Dimensionless ratios(b)

Unweighted 1
nt

Xnt

i¼1

yi;t

yi;t21

1
nt

Xnt

i¼1

xi;t

Weighted 1Pnt

i¼1
wi;t

Xnt

i¼1

yi;t

yi;t21

wi;t
1Pnt

i¼1
wi;t

Xnt

i¼1

xi;twi;t

(a) E.g.: turnover and profit. – (b) E.g.: ROA and ROE.
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5.2. The Data Integration Process

5.2.1. The New Archive

Since all the panel firms are limited companies, apart from a negligible number of

partnerships (less than 0.1% on average), we integrate the Invind data with the Cerved

archive, a data warehouse for all the Italian limited companies’ financial statements filed

since 1993. We use the firm VAT number, available on both sources, to exactly match the

survey data with the corresponding financial figures. The matching fails whenever the

VAT number is missing in Invind or it does not find, when it is present, a corresponding

VAT in Cerved because of errors in one or both sources.

5.2.2. The Matching Quality

A first clue of the quality of the matching is the high percentage of matched units (on

average higher than 90%, Table 3), that remains stable (as shown in Figure 1) within the

categories of the variables used in the stratification and post-stratification steps. This latter

result implies that the survey design also keeps under control the bias caused by using a

sample smaller than the original one.

For the average number of employees and the turnover levels, found in both sources, we

also examine the individual differences between the two corresponding values from the

two sources. If we indicate with invj;i;t and cerj;i;t the values derived respectively from

Invind and Cerved, relative to the j-th variable for the i-th matched unit in the year t, the

size of the absolute difference invj;i;t 2 cerj;i;t

�� �� would depend too much on the unit of

measure. We eliminate this effect by using a standardized absolute difference sadj;i;t,

expressed as:

sadj;i;t ¼
invj;i;t 2 cerj;i;t

�� ��
invj;i;t þ cerj;i;t

2

100 ð2Þ

Table 3. Percentage of firms in Invind annual surveys matched with financial-statement archives (2002–2013).

Nonconstruction
industry firms

Nonfinancial private
services firms

Yearly
total

2002 87.8 89.6 88.2
2003 87.6 89.1 88.0
2004 88.6 91.8 89.4
2005 92.4 93.0 92.5
2006 93.3 92.6 93.1
2007 93.1 93.4 93.2
2008 92.1 94.2 92.7
2009 93.2 93.5 93.2
2010 93.4 94.8 93.8
2011 93.8 95.1 94.2
2012 94.3 94.6 94.4
2013 90.3 88.9 89.9

Total 91.6 92.6 91.9

Source: Bank of Italy’s Invind business survey and Cerved archive.
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We discard from the analysis the firms affected by structural changes (5.4% for the years

2002–2013), for which the indicator is naturally big, because in such cases the Invind

figures are adjusted and not comparable with the corresponding ones from Cerved (see

Section 3 for details on the adjustment method).

The percentage of observations with same values in the two sources are 23.8% (Table 4) for

the average number of employees and 11.0% respectively for the turnover levels. The size of

the differences is limited for turnover levels, since the median value of the sad is 1.07% for

all the matched observations (including those for which the turnover values from Invind and

Cerved are identical) and the indicator is negatively correlated with the number of employees.

For the average number of employees the indicator is higher, with its median value equal to

3.08% for all the matched observations, but it still decreases with firm size. Since we will use

only a categorization of this variable in our developments, the risk generated from having

different employment values in Invind and Cerved for the same unit is contained.

A remaining concern is that the signs of the differences might follow systematic

patterns. Leaving aside the cases where invj;i;t ¼ cerj;i;t, we probe into the issue by looking

at the successions of cases for which invj;i;t . cerj;i;t, or invj;i;t , cerj;i;t, in order to verify

whether they are random or follow systematic patterns. First we create a binary variable:

dj;i;t¼

0; if invj;i;t , cerj;i;t

1; if invj;i;t . cerj;i;t

(

We then randomly sort the observations and finally we measure the nonparametric

Wald-Wolfowitz test (Hollander and Wolfe 1973) separately for the average number of

employees and the turnover each year from 2002 to 2013. The high sample size allows us

to use the asymptotic normal distribution to compute the test. With a significance level of

1%, we cannot reject the null hypothesis of randomness of the successions of 0 and 1 for

(percent) 
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Fig. 1. Minimum, mean and maximum of the average percentage of matched Invind units for all the categories

of class size, economic activity and headquarters’ location. Source: Bank of Italy’s Invind business survey and

Cerved archive.
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dj;i;t respectively in nine and eleven of all the 12 years considered for the turnover and for

the average number of employees (results of the test are available on request).

We therefore conclude that the quality of the matching is acceptable.

5.2.3. The Imputation of the Employment Levels

A necessary step is the imputation of the average number of employees for the firms of

the Cerved archive without this figure. We need the workforce levels for all the firms

belonging to the Invind reference population (formed by the firms with at least 20 employees

operating in the economic sectors of interest) in order to model the probability to enter the

cross-sectional sample, since a categorization of this figure is a control variable in the model.

We use the predicted values of a linear model estimated by Ordinary Least Squares

(OLS) to impute the missing data. We estimate the model only for the firms with turnover

greater than a threshold represented by the lowest turnover found in the survey minus 20%.

Table 4. Standardized absolute difference (sad) between Invind and Cerved figures for the matched

observations (2002–2013).

Average number of employees

Percentiles

25% 50% 75% 90%

Class size
20–49 2.30 7.69 210.26 216.00
50–99 1.05 2.99 9.27 88.66
100–199 0.00 1.72 5.94 20.62
200–499 0.00 0.98 3.83 13.17
500–999 0.00 0.70 3.33 11.73
1,000 and over 0.00 0.57 3.29 14.80

Total 0.22 3.08 13.08 210.00

Number of matched observations 42,940
% of matched observations with sad ¼ 0 23.8

Turnover

Percentiles

25% 50% 75% 90%

Class size
20–49 0.18 1.24 4.78 14.20
50–99 0.18 1.12 4.20 12.70
100–199 0.10 0.95 3.90 11.45
200–499 0.06 0.81 3.56 11.55
500–999 0.03 0.76 3.89 12.90
1,000 and over 0.02 1.06 5.32 15.76

Total 0.13 1.07 4.27 13.07

Number of matched observations 42,846
% of matched observations with sad ¼ 0 11.0

Source: Bank of Italy’s Invind business survey and Cerved archive.
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This restriction has two aims: 1) preventing the model from being excessively influenced by

smaller firms; 2) using units with similar probabilities of having missing number of

employees, since firms below the threshold tend to be more affected by the problem. The

dependent variable in the model is the average workforce level for the year, the covariates

include some economic indicators (ROA, ROE, turnover), together with economic sector of

activity and geographical location of firm’s head office.

We select the best model within a set of possible specifications according to the

following criteria:

. the covariates should not have a high frequency of missing values;

. the specification should be reasonable according to basic economic theory, even

though no causal modeling is attempted;

. the fit to the data should be good (in terms of R-square);

. estimated totals of firms and employees for the most relevant classification cells

should be close to those of the official aggregate evidence available from the

Statistical Archive of Active Enterprises (ASIA), provided by the Italian National

Statistical Institute (Istat 2014).

We estimate the selected model separately within cells (Table S2 in Supplementary

material) formed by the combination of 20 analytical economic activities (instead of

eleven ones used in the stratification) and geographical locations of the firm’s headquarters

(with the same level of detail as in the post-stratification). Using separate models with the

same specification substantially improves the values of the adjusted R-square (it ranges

between 0.7 and 0.9 for the various cells), with respect to the alternative of using the

economic activity and the geographical location as covariates in a unique regression, with

common parameters for the quantitative regressors. We report the model equation below:

Employeest; j;i ¼ b0t; j þ b1t; jturnt; j;i þ b2t; jturn2
t; j;i þ b3t; jroat; j;i þ b4t; jroet; j;i þ 1t; j;i ð3Þ

where t, j, i and turn respectively indicate year, cell, individual firm and turnover.

According to economic theory, labor cost is a better predictor than turnover for the number

of employees in specifications like those shown in Equation (3). Unfortunately, we cannot

use them because they are missing in 29% of cases. Firms’ turnover is however a reasonable

proxy, because it is highly correlated with labor costs within the cells where we estimate

the model (the correlation coefficient is 0.85 on average). By using this estimate to impute

the missing values for the number of employees, we obtain distributions of enterprises and

employees (for the firms with at least 20 employees) similar to those of the official sources

for this population (Table S3 in Supplementary material).

We use multiple imputation to estimate the variability of the imputation process by

creating ten independent replications of the model predictions, each obtained by adding to

the model prediction a random drawing from the residual distribution.

6. Enterprises’ Performances and Panel Attrition in the Invind Survey

6.1. First Evidence of the Attrition Effects

For every survey edition, we calculate the simple and aggregate indexes presented in

Table 2, weighted with the survey weights, for turnover and profit changes, ROA and
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ROE, over three groups: new entrants (absent in the previous edition), future dropouts

(absent in the next edition) and the rest of the sample. We express them as percent relative

changes by subtracting one and multiplying the result by one hundred.

The effect of panel attrition is clearly visible for the simple indexes that are greater for

new entrants than for future dropouts (Figure 2). This is true on average over the whole

period, as well as for all the single years, with the exception of 2006, 2010, and 2012 for

profit changes. For the aggregate index, the distinction between new entrants and future

dropouts is less clear-cut, since the indexes relative to the latter ones are higher than those for

the former ones for four years of the turnover changes series, five years of the ROA series

and again for four years of the series of profit changes. Only for ROE is the index for new

entrants always greater than that for future dropouts, even if, on average, the two are slightly

closer than in the case of the simple index (the average distance is 4.8 points against 5.0).

It is now relevant to determine whether the differences discussed above are statistically

significant. With this aim, for every survey edition, we separately regress each of the four

indicators considered on a binary dummy identifying the two groups of interest,

controlling at the same time for the survey design variables.

For every year t, we estimate the following linear model:

yt;i ¼ b0t þ b1tdt:i þ b
t
Xt;i þ 1t;i ð4Þ

where yt,i is one of the four indicators considered, dt,i is the binary dummy indicating

whether the unit is a new entrant or a future dropout and Xt,i is an array of firm-level

characteristics (firm size, economic sector of activity, headquarters’ geographical

location). We also estimate a synthetic version of the model (4) on the pooled data set and

we finally replicate the regressions separately on the firms with 20–99 employees and on

those with 100 employees and over.

In the year-by year regressions over the firms with 20 employees and over, the coefficients

relative to the dummy are almost always positive and significant for turnover changes, ROE

and ROA (Table 5). For profit changes, the effect of the dummy is always positive, but is

statistically significant only for one year. The dummy coefficient is always positive and

highly significant also in the corresponding regressions over the pooled data. The regressions

on the two separate groups of firms with 20–99 employees and 100 employees and over

reveal that, for the group of bigger firms, the differences between new entrants and future

dropouts attenuate and the shares of new entrants and future dropouts decrease.

These results are consistent with the descriptive evidence of Figure 2, since they show

that the economic performances of the firms not regularly participating in the survey tend

to be more similar when firm size increases, even after conditioning with other observable

characteristics.

6.2. Modeling Panel Attrition

Modeling the propensities to enter a given survey wave and to drop out of it helps us

explain what drives this behavior. For this aim, we estimate a logit model over a pooling of

all the observations. We use the waves for the years from 2003 to 2013 to analyze the new

entrants, those from 2002 to 2012 for the dropouts. ROE, ROA, turnover and profit

changes are our main covariates, to which we add dummies for the years, to take into
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(a) Weighted simple indexes (b) Weighted aggregate indexes
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Fig. 2. Weighted indexes (percent relative changes) for new entrants in each survey edition, dropouts in the

following edition and rest of the sample. Extreme values for individual values trimmed at the 1st and 99th

percentiles. Firms affected by mergers, acquisitions and splits not considered. Source: Bank of Italy’s Invind

business survey and Cerved archive.
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account the time effect, as well as dummies for the survey design variables, that also

control for the possible nonignorability of the survey design.

6.2.1. Modeling the Propensity to Enter a Wave

We estimate the probability to enter a wave relative to the year t. The firms modeled are

those with at least 20 employees in the year t 2 1 in the Cerved archive, provided they did

not participate in the wave t 2 1. Our dependent is a binary variable, indicating whether a

firm will be in the wave relative to year t. The economic indicators used as covariates (we

also use per capita turnover and profits) are modeled one at a time. Since each indicator is

relative to the year t 2 1, before an eligible unit enters the sample or still remains outside,

it contributes to causally explain the propensity to enter the wave.

The standard error of the coefficients accounts both for the repeated observations

relative to the same firm in the pooled data set and for the variability generated by using

imputed values for the missing number of employees. The number of employees is

required because it is a model covariate and also because it is needed to identify whether

a firm belongs to the reference population of firms with 20 employees and over. The

standard error of each coefficient bk can therefore be written as:

SEðbkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VMðbkÞ þ VIðbkÞ

p
ð5Þ

where VM(bk) is the usual variance of the logit model coefficients, after correcting for the

clustering effect derived by repeatedly using the same firm (Rogers, 1993) and VI(bk) is

the variance of the coefficient estimates computed over ten independent replicates of the

imputation process.

The coefficients for ROA, ROE, profits change and per capita profits are positive and

significant (Table 6). For turnover, the evidence is mixed, since the coefficient for per

capita turnover is positive and not significant, whereas the one relative to turnover change

is negative but weakly significant.

The overall result is that favorable economic indicators tend to positively associate with

the propensity to enter a wave, with the strongest significance measured for ROA and

ROE. The sign and the significance of the coefficients relative to the dummies for firm size

(Table S4 in Supplementary material) indicate that, for the firms with less than 200

employees, the propensity to enter the sample is lower than for the firms with at least 500

employees. A geographical effect also emerges, because new entrances are more easily

found among firms with head office in the two macro-areas of Italy - Center and Italy -

South and isles, compared with those headquartered in the macro-area of Italy - North.

This effect is also due to the sampling rate for firms headquartered in the macro-area of

Italy - North structurally lower than that of the rest of the sample.

A relevant question is whether the performance gap between new entrants and rest of

the reference population persists, once the latter ones enter the sample. We evaluate the

issue by estimating the same logit, with the only difference that the economic indicators

refer to the year when the new entrants enter the sample, instead of the previous one

(Table 7). The positive relationship between the propensity to enter a wave and positive

economic performances weakens, since the sizes of the positive coefficients for ROE and

ROA decrease; those for profit change and per capita profit also decrease to the point of

D’Aurizio and Papadia: Administrative Data to Evaluate Sampling Bias 81



T
a

b
le

6
.

In
vi

n
d

su
rv

ey
:

lo
g

it
fo

r
th

e
p

ro
p
en

si
ty

o
f

fi
rm

’s
en

tr
a

n
ce

in
to

th
e

n
ex

t
w

a
ve

(2
0

0
2

–
2

0
1

2
)(a

) .

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

E
co

n
o

m
ic

in
d

ic
a

to
rs

ro
a

0
.0

1
0

6
0

*
*

*
ro

e
0

.0
0

1
8

5
*

*
*

ch
an

g
e

in
p

ro
fi

t
p

er
em

p
lo

y
ee

s
(%

)
0

.0
0

2
7

4
*

*

ch
an

g
e

in
p

ro
fi

t
(%

)
0

.0
0

3
0

5
*

ch
an

g
e

in
tu

rn
o

v
er

p
er

em
p

lo
y

ee
(%

)
0

.0
0

1
3

4

ch
an

g
e

in
tu

rn
o

v
er

(%
)

2
0

.0
3

6
8

0
*

N
u

m
b

er
o

f
o

b
se

rv
at

io
n

s
9

5
4

,7
9

2
9

2
4

,4
8

4
5

3
8

,8
3

6
6

6
9

,0
1

2
5

6
2

,6
4

5
6

9
3

,1
7

9

A
d

d
it

io
n

al
co

n
tr

o
ls

(c
o
ef

fi
ci

en
ts

n
o

t
in

cl
u

d
ed

in
th

e
ta

b
le

):
cl

as
s

si
ze

,
h

ea
d

q
u
ar

te
rs

’
lo

ca
ti

o
n

,
b

ra
n

ch
o

f
ac

iv
it

y
.

(a
) *

*
*
:

p
-v

al
u

e
le

ss
th

an
0

.0
1
,
*

*
:

p
-v

al
u
e

b
et

w
ee

n
0

.0
1

an
d

0
.0

5
,
*
¼

p
-v

al
u
e

b
et

w
ee

n
th

an
0

.0
5

an
d

0
.1

.
R

eg
re

ss
o

rs
v

al
u
es

le
ss

th
an

1
st

o
r

m
o

re
th

an
9

9
th

p
er

ce
n

ti
le

ar
e

se
t

eq
u

al
to

re
fe

re
n

ce
p

er
ce

n
ti

le
.

S
ta

n
d

ar
d

er
ro

rs
ar

e
co

m
p

u
te

d
b

y
co

n
si

d
er

in
g

th
e

sa
m

e
fi

rm
re

p
ea

te
d

o
v

er
ti

m
e

as
a

cl
u

st
er

an
d

b
y

ac
co

u
n

ti
n

g
fo

r
th

e
v

ar
ia

b
il

it
y

o
f

th
e

m
o

d
el

u
se

d
to

im
p

u
te

th
e

n
u

m
b

er
o

f
em

p
lo

y
ee

s
w

h
en

m
is

si
n

g
.

A
ll

es
ti

m
at

es
in

cl
u

d
e

d
u

m
m

ie
s

fo
r

th
e

y
ea

rs
.

S
o

u
rc

e:
B

an
k

o
f

It
al

y
’s

In
v

in
d

b
u

si
n

es
s

su
rv

ey
an

d
C

er
v

ed
ar

ch
iv

e.

Journal of Official Statistics82



T
a

b
le

7
.

In
vi

n
d

su
rv

ey
:

lo
g

it
fo

r
th

e
re

la
ti

o
n

sh
ip

b
et

w
ee

n
fi

rm
’s

en
tr

a
n

ce
in

to
a

w
a

ve
a

n
d

fi
rm

’s
ch

a
ra

ct
er

is
ti

cs
(2

0
0

3
–

2
0

1
3

)(a
) .

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

E
co

n
o

m
ic

in
d

ic
at

o
rs

ro
a

0
.0

0
7

2
9

*
*

*
ro

e
0

.0
0

0
7

5
*

*
*

ch
an

g
e

in
p

ro
fi

t
p

er
em

p
lo

y
ee

s
(%

)
0

.0
0

0
1

4
ch

an
g

e
in

p
ro

fi
t

(%
)

0
.0

0
1

0
2

ch
an

g
e

in
tu

rn
o

v
er

p
er

em
p

lo
y

ee
(%

)
2

0
.2

7
5

0
0

*
*

*
ch

an
g

e
in

tu
rn

o
v

er
(%

)
2

0
.1

1
9

8
0

*
*

*
N

u
m

b
er

o
f

o
b

se
rv

at
io

n
s

8
4

5
,0

1
3

7
8

4
,1

2
1

5
7

8
,3

6
0

8
2

1
,2

5
3

6
0

4
,4

2
0

8
4

9
,5

1
5

A
d

d
it

io
n

al
co

n
tr

o
ls

(c
o
ef

fi
ci

en
ts

n
o

t
in

cl
u

d
ed

in
th

e
ta

b
le

):
cl

as
s

si
ze

,
h

ea
d

q
u
ar

te
rs

’
lo

ca
ti

o
n

,
b

ra
n

ch
o

f
ac

iv
it

y
.

(a
) *

*
*
:

p
-v

al
u

e
le

ss
th

an
0

.0
1
,
*

*
:

p
-v

al
u
e

b
et

w
ee

n
0

.0
1

an
d

0
.0

5
,
*
¼

p
-v

al
u
e

b
et

w
ee

n
th

an
0

.0
5

an
d

0
.1

.
R

eg
re

ss
o

rs
v

al
u
es

le
ss

th
an

1
st

o
r

m
o

re
th

an
9

9
th

p
er

ce
n

ti
le

ar
e

se
t

eq
u

al
to

re
fe

re
n

ce
p

er
ce

n
ti

le
.
S

ta
n

d
ar

d
er

ro
rs

ar
e

co
m

p
u

te
d

b
y

co
n

si
d

er
in

g
th

e
sa

m
e

fi
rm

re
p

ea
te

d
o

v
er

ti
m

e
as

a
cl

u
st

er
an

d
b

y
ac

co
u

n
ti

n
g

fo
r

th
e

v
ar

ia
b

il
it

y
o
f

th
e

m
o
d

el
u

se
d

to
im

p
u

te
th

e

n
u

m
b

er
o

f
em

p
lo

y
ee

s
w

h
en

m
is

si
n

g
.

A
ll

es
ti

m
at

es
in

cl
u

d
e

d
u

m
m

ie
s

fo
r

th
e

y
ea

rs
.

S
o

u
rc

e:
B

an
k

o
f

It
al

y
’s

In
v

in
d

b
u

si
n

es
s

su
rv

ey
an

d
C

er
v

ed
ar

ch
iv

e.

D’Aurizio and Papadia: Administrative Data to Evaluate Sampling Bias 83



becoming not significant; as for turnover, the coefficient relative to the change goes

negative, whereas the one of per-employee turnover remains negative and increases in size

(Table S5 in Supplementary material reports the complete details).

How to explain this result? The quick search for firms that replace those unwilling to

further participate is a common need for all panel business surveys, since the interviewers

face strict time constraints. Invind is not an exception. The firms with above-average

economic performances in the most recent years are naturally easier to enrol, since their

managers can devote more time to fill the complex survey questionnaire, but they later

tend to be more similar to comparable firms, as sometimes measured in the economic

literature of firm behavior (Knapp et al. 2006).

6.2.2. Modeling the Propensity to Drop Out of a Wave

In order to model the propensity to drop out of a wave, we consider all its units. Following

the same steps as in the propensity to be a new entrant, the dependent for the logit is a

binary variable indicating whether a firm in wave t also participates in the following wave

t þ 1. The economic indicators used as covariates are relative to the year t, so that they

can explain firm behavior at time t þ 1. In the analysis, the number of employees is never

missing, since it is collected in the survey, therefore the standard errors of the coefficients

must only be corrected for the repeated observations of the same firm, derived from using

the pooled data set.

The results (Table 8) are a mirror of those relative to the propensity to enter the sample:

negative economic performances in a given year augment the propensity to leave the

sample in the following year. The coefficients with the greatest sizes are those of ROA and

ROE. Survey participation is more erratic for the firms with less than 200 employees (the

effect is even greater for those with less than 50 employees, as seen in Table S6 in

Supplementary material). A geographical effect is also present, since the enterprises

headquartered in the the macro-area of Italy - Northeast tend to exit the survey more

frequently than those belonging to the reference macro-area of Italy - South and isles. The

greater size of the subsample of the firms headquartered in the Northeast, compared to those

of the other areas, helps contain the risk of excessively reducing the sample size for this area.

7. The Effects of the Delays in Updating the Reference Population

The population distribution is required to compute the survey weights, which are

necessary for obtaining sample estimates representative for the reference population. The

official distribution of Italian enterprises is available with a two-year lag. This means that

the population of the year t 2 2 is used for the first estimates, released at the end of May

of the year t þ 1, relating to the survey for year t, carried out in the first months of t þ 1.

In the following years, the survey weights are re-computed as soon as the updated

population distributions become available.

The delay can have relevant effects on the estimates because of their structure. As

shown in Section 3, the survey relating to year t collects the values for the main interest

variables for the years t 2 1, t, and t þ 1, so that relative changes (t/t 2 1) and (t þ 1/t)

are computed by using data only from this wave. The procedure would require three

distinct reference populations for the three years, but the approach is not followed, since
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the survey weights would have to be repeatedly updated over the years. For practical

reasons, only one set of survey weights is used for each survey edition, relative to the year

t, which are updated as soon as the correct population information becomes available, with

a very limited change in the original estimates.

Looking at the trend in the survey reference population, its size remained stable until

2006 (Figure 3), but deep demographic changes took place in the following years, since

the population size increased in 2007–2008. A slow and steady decrease subsequently

occurred during the years 2009–2012 of the economic crisis. The downsizing of

the nonconstruction industrial sector in the years 2001–2012 was partially offset by the

growing number of nonfinancial service-sector firms. This fact is largely due to the

structural changes of the Italian economy, which led to a decrease in the share of GDP

produced by the industrial sector. To a lesser degree, it also led to the changes of the

classification criteria of economic activities, which shifted a range of activity (such as

product maintenance and customer support) previously classified as industrial to the

services sectors (Istat 2010).

Given these population changes, it is important to measure the error caused by using

a unique set of weights. Our analysis focuses on turnover, employment levels and

investment collected in the survey and most widely used. First of all, we assess the

aggregate indexes of change, since they are extensively commented in the form of percent

variation (Bank of Italy 2017, 66).

We express the indexes as percent changes. If we use a single weighting system, the

weighted aggregate index can be written as:

Pnt

i¼1
yi;twi;tPnt

i¼1
yi;t21wi;t

2 1

� �
100, if two separate

weighting sets for the two periods t 2 1 and t are available, it becomes:Pnt

i¼1
yi;twi;tPnt

i¼1
yi;t21wi;t21

2 1

� �
100.

(Nonconstruction industry and nonfinancial private services) 

60,000

62,500

65,000

67,500

70,000

72,500

75,000

20,000

22,500

25,000

27,500

30,000

32,500

35,000

37,500

40,000

42,500

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 20122011

Industry (left scale)
Services ( left scale)
Total of industry and services (right scale)

Fig. 3. Number of Italian firms with 20 employees and over, 2001–2012. Source: Istat, Italian Statistical

Business Register (ASIA).
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It is quite easy to verify that the weighted aggregate index with the single set of weights

is smaller than the one with two sets of weights whenever the population size increases,

whereas it is bigger if the population becomes smaller (see last page of Supplementary

material for details).

Looking at the population trends (Figure 3) and their effects on these estimates

(Figure 4, upper panel), the downward bias caused by the single weighting system was

strong for the years 2007–2009 (especially for investment change in 2008), when the

biggest population increase occurred. In the following years, the upward bias was small,

because the decrease rate of the population size was steady, but rather limited. The greatest

bias shows up for the relative change of employment, as expected, since it is the estimate

most affected by repeated updates of the population distribution.

We finally deal with the effect of a unique weighting system on the simple indexes,

since applied econometricians use individual changes derived from the survey in their

microeconometric models. These models can also be estimated in a weighted version

(Cameron and Trivedi 2005, 817), in order to produce estimates valid for the whole

reference population. In such a case, it is relevant to assess the effect produced on the

average of these individual changes by a weighting system not adequately representative

of such a population. We focus our attention on the simple indexes of the changes of

turnover and employment and we disregard investment changes, which are very erratic

and unsuitable for microeconometric modeling (Doms and Dunne 1998).

We again express the indexes as percent changes. If we use a single weighting system,

the weighted simple index can be written as: 1Pnt

i¼1
wi;t

Pnt

i¼1
yi;t

yi;t21
wi;t 2 1

� �
100: With two

distinct weighting sets for t 2 1 and t, it can be expressed as:

1Xnt

i¼1
wi;t21>t

Xnt

i¼1

yi;t

yi;t21

wi;t21>tÞ 2 1

 !
100 ð6Þ

Here, wi;t21>t is the weight referred to the firms belonging to the reference population both

at time t 2 1 and at time t. We compute these weights by considering the population size

Nh;t21>t of every stratum h as the minimum between those of the periods:

Nh;t21>t ¼ min{Ni;t21;Ni;t} ð7Þ

This expression is an upper bound of the true value, with a negligible approximation error

if the number of entrances and exits in the population are small relative to the population

size in the two periods. For the reference population of Invind, the yearly balances of

entrances and exits over the population are worth, on average, 4% for the strata and 5% for

the poststrata considered in the survey design (the corresponding median values are 1.1%

and 1.7%).

For turnover and employment changes, the double weighting system has a negligible

effect on the simple indexes (Figure 4, lower panel).

An explanation of this result can be found by writing the difference between the same

index computed respectively with the single and the double weighting system. For the
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weighted simple index, this expression is:

Xnt

i¼1

yi;t

yi;t21

wi;tXnt

i¼1
wi;t

2
wi;t21>tXnt

i¼1
wi;t21>t

 !
ð8Þ

It is a sum of nt terms, each formed by the product of two parts: the first one
yi;t

yi;t21
is always

positive, the second part is small, since it is the difference between the ratios of the shares

of single weights over corresponding weight totals, which tends to produce very low

values for Equation 8.

Looking at the weighted aggregate index, the difference becomes:

Xnt

i¼1

yi;t

yi;t21

yi;t21wi;tXnt

i¼1
wi;tyi;t21

2
yi;t21wi;tXnt

i¼1
wi;t21yi;t21

 !
ð9Þ

The structures of (8) and (9) are similar: they sum nt terms, each formed by the product of

two parts. The first one is
yi;t

yi;t21
, always positive, the same in both expressions. The second

part within round brackets is not necessarily limited to small values in (9) and the size of

the expression accordingly tends to be greater than that of Equation 8.

8. Conclusions

Our article evaluates the sampling bias of a panel business survey by using auxiliary

information derived from administrative data. We consider the Bank of Italy’s Invind

survey, for which two external sources are available:

. an archive of firms’ financial statements, providing complete information for all the

years 2002–2013 considered for every unit participating in the survey, regardless of

the continuity of its participation;

. aggregate data on the sample reference population, available for the years between

2002 and 2012.

We use the first source to evaluate the bias caused by panel attrition on the indexes of

yearly changes of variables such as turnover and profits and on averages of composite

indicators like ROA and ROE. We focus on the attrition caused by firms leaving the panel

in a given survey edition, replaced by others in the following one.

We find the estimates that are strongly dependent on big firms’ values are less affected

by panel attrition than the estimates representing the average behavior of firms that do not

take firm size into account.

Looking more closely at the attrition determinants, positive economic performances

make it easier to enroll new firms in the survey, in order to replace firms dropping out

because of negative economic performances. However, the economic results of new

entrances become more aligned to those of the population, once they enter the sample.

The statistical literature (Deville et al. 1993; Särndal and Lundström 2005) proposes

many adjustments to the survey weights, some of them specifically designed for business

surveys (Lavallée and Labelle-Blanchet 2013). In the form of generalized post-

stratification procedures, these adjustments could be useful in compensating for the bias

caused by panel attrition (see also Faiella 2010 and Solon et al. 2015, for a comprehensive
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review of the cases when the utilization of survey weights is advisable). For example,

these techniques could be studied in future research to produce new survey weights that

incorporate the information on sample firms’ past economic performances.

Our analysis also suggests some possible revisions of the survey management First

of all, more efforts could be devoted to prevent firms with negative economic results

from dropping out of the sample at the current rate. With this aim, better interviewer

training could highlight the importance of maintaining the most difficult units in the

sample.

We finally analyze the effects of using survey weigths computed with a population

distribution that is not up-to-date. The issue is relevant, since a single Invind edition

collects data on the values of the interest variables for three consecutive years t 2 1, t and

t þ 1 (t þ 1 is a forecast that refers to the year when the interviews are conducted). The

current solution is to use only the information relative to the reference population at time t,

which is subsequently updated. We show how this solution entails the risk of bias for the

weighted aggregate indexes of relative changes of turnover, investment and employment

levels. This bias tends to be negative when the population size increases, but it becomes

positive when the population size decreases, without substantial effects on the simple

indexes, which do not depend on firm size. This risk can be avoided by computing, for

every survey editions relative to the year t, separate sets of weights for the different years

considered. This is feasible for older survey editions, while, for the most recent ones,

external evidence on the population trends should be carefully used to assess the quality of

the estimates.
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The Effect of Survey Mode on Data Quality: Disentangling
Nonresponse and Measurement Error Bias

Barbara Felderer1, Antje Kirchner2, and Frauke Kreuter3

More and more surveys are conducted online. While web surveys are generally cheaper and
tend to have lower measurement error in comparison to other survey modes, especially for
sensitive questions, potential advantages might be offset by larger nonresponse bias. This
article compares the data quality in a web survey administration to another common mode of
survey administration, the telephone.

The unique feature of this study is the availability of administrative records for all sampled
individuals in combination with a random assignment of survey mode. This specific design
allows us to investigate and compare potential bias in survey statistics due to 1) nonresponse
error, 2) measurement error, and 3) combined bias of these two error sources and hence, an
overall assessment of data quality for two common modes of survey administration, telephone
and web.

Our results show that overall mean estimates on the web are more biased compared to the
telephone mode. Nonresponse and measurement bias tend to reinforce each other in both
modes, with nonresponse bias being somewhat more pronounced in the web mode. While
measurement error bias tends to be smaller in the web survey implementation, interestingly,
our results also show that the web does not consistently outperform the telephone mode for
sensitive questions.

Key words: Mode effects; telephone survey; web survey; combined bias.

1. Introduction

Researchers often use evidence of bias in survey estimates to assess and compare data

quality among different modes of survey administration. There are two major problems

with this approach. First, by assessing combined bias as a measure of data quality,

researchers mix different sources of bias, for example, bias due to differential coverage,

nonresponse or measurement error which might each differ in magnitude and direction,

and do so differently for different survey modes. In the worst case, seemingly unbiased

estimates in one survey mode might actually be more biased compared to another survey

mode, when each source of bias is investigated individually. Hence, investigating

combined bias leaves researchers guessing about the sources of bias and makes it hard to
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derive practical implications and inform survey designs. Understanding the individual

contributions of, for example, nonresponse and measurement error bias to the total survey

error and potential bias, and how these differ by survey mode is of utmost importance

(Biemer 2010). Another common challenge that researchers face is how to actually

measure bias. Often, researchers compare sample estimates to other aggregate population

estimates, or they rely on assumptions, such as the “more-is-better assumption” for

undesirable behaviors, to assess which survey mode performs better. This approach does

not necessarily inform researchers about which mode is the least biased and comes closest

to the “truth.” Ideally, bias is assessed by comparing survey estimates with auxiliary and

gold standard data for the same sampled individuals. This measure can then be used to

inform the research community about the overall effects of survey mode on data quality.

However, often researchers do not have access to this kind of information; either because

the data are nonexistent, for example when investigating attitudes, or, the data are

unavailable for reasons of data confidentiality.

The key features of this study that allow us to address both challenges are its

experimental design and the use of a unique combination of large scale survey data and

administrative records from German social security records – containing rich information

on a variety of labor market related and demographic characteristics. The specific design

of our study enables us not only to measure bias directly but also to disentangle different

sources of error contributing to bias among two commonly used survey modes, telephone

and web. More specifically, we separate bias due to nonresponse and measurement error,

which ultimately helps researchers to understand the nature and relative contribution of

each bias source to combined bias. These results are particularly relevant for researchers

planning to use a mixedmode design, in which it is generally assumed that the strengths of

one mode will compensate the weaknesses of another, and thus enhance data quality, while

at the same time potentially reducing costs.

The following section will provide a brief overview of why differences in bias between

survey modes are to be expected, how bias has been assessed in past studies, and the

research questions of our article. Section 2 will introduce the design, data and methods

used in our analyses. The results are described in Section 3. The article concludes with a

summary and discussion of the main results in Section 4.

1.1. Why Do We Expect Differences in Bias Across Survey Modes?

Both data collection modes, telephone and web, have their particular strengths and

weaknesses with respect to achieving survey participation and response accuracy.

Survey mode can affect the sample composition, as different modes have different

coverage error. In order to participate in a telephone survey, sample members have to

have access to a telephone, whereas for web surveys, access to the Internet is a

prerequisite. In list-assisted sampling designs this might lead to differential coverage

error if for example, more sample members have access to a telephone than the Internet.

To the extent that coverage error is systematic and differs by mode, this might introduce

differential bias. Sample composition may also differ, as the ability to establish contact

with the target person and respondents’ willingness and capacity to complete the survey

differs across survey modes (Dillman et al. 2002, 6). Self-administered surveys, for
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example, tend to have lower response rates compared to interviewer-administered

surveys (De Leeuw 2005). Additionally, if relevant subgroups self-select depending on

the survey mode, this can introduce differential nonresponse bias, should the selection

mechanism be related to survey variables of interest (Groves and Couper 1998; De

Leeuw et al. 2008; Biemer 2010; Kreuter et al. 2010). Measurement error results from

a difference in the respondents’ survey report and the (unobserved) true value, for

example, due to misunderstanding a question, failure to retrieve the correct information

or incorrect reporting (for a review, see, for example Biemer and Lyberg 2003). If

the misreporting mechanism is related to the survey outcome of interest and

systematically differs between survey modes, this again will result in differentially

biased estimates.

In addition to coverage, nonresponse and measurement error, there are other potential

sources of error that may bias survey estimates, including specification or adjustment

errors (Biemer 2010). In line with existing research, we will focus on bias due to

nonresponse and measurement error when investigating mode differences, as those can

be expected to be the main drivers of differential bias. Previous empirical research on

mode differences shows that response rates tend to be generally lower in web surveys

(Lozar Manfreda et al. 2008). This increases the potential for selectivity and nonresponse

bias in the web survey compared to the telephone survey (Fricker et al. 2005; O’Neill and

Dixon 2005; Abraham et al. 2006; Groves 2006; Letourneau and Zbikowski 2008).

Although response rates are known to be lower in web surveys, web surveys have several

benefits over more traditional surveying methods. Web surveys are generally less cost

intensive, the data are available almost immediately, respondents can take the survey at

their own pace and convenience, and it provides a more private survey setting (Callegaro

et al. 2014). Due to this latter fact, measurement error bias might be less pronounced for

certain types of questions in the self-administered web mode compared to interviewer-

administered modes (Kreuter et al. 2008; Chang and Krosnick 2009, 2010; Sakshaug et al.

2010). While we would expect to see little difference between web and telephone for

factual items that are less prone to misreporting (Atkeson et al. 2014), survey mode might

influence response accuracy for items that are sensitive in nature or those that evoke

concerns of social (un)desirability (Kreuter et al. 2008; Chang and Krosnick 2009, 2010;

Sakshaug et al. 2010; Atkeson et al. 2014).

In line with the literature on sensitive questions (Lee 1993; Groves 2004; Bradburn et al.

2004), traits that are positively valued – such as regular employment – should be

overreported, while undesirable traits – such as welfare receipt or marginal employment –

should be underreported. While a respondent might choose to give a correct answer to a

sensitive question in the web mode due to the increased privacy, they might respond

differently to the same question in a telephone interview with an interviewer present

(Kreuter et al. 2008; Chang and Krosnick 2009, 2010; Malhotra et al. 2014; Roberts et al.

2014). Hence overall, the combined bias due to nonresponse and measurement error might

actually be smaller in the web administration compared to the telephone mode. Again, if

one were to investigate combined bias only, researchers would never know how the bias

terms interact. The main focus in our article will be the interaction of nonresponse and

measurement error and how each contributes to bias. We will discuss other potential

sources of bias as appropriate.

Felderer et al.: Survey Mode on Nonresponse and Measurement Error 95



1.2. How has Bias been Assessed in the Past?

Mode effects studies are usually not able to directly differentiate nonresponse bias and

measurement error bias in a survey estimate, but instead rely on indirect indicators,

benchmarks or assumptions (such as “more-is-better” for sensitive questions) for a

comparison of data quality in the absence of gold standard validation data. External

population benchmarks for some variables are often used to assess nonresponse bias

(Fricker et al. 2005; Yeager et al. 2011; Malhotra et al. 2014). Bias due to measurement

error is often assessed using indirect indicators of survey satisficing, including

non-differentiation, item missingness, the use of extreme values, acquiescence or socially

desirable responses (McCabe et al. 2002; Duffy et al. 2005; Chang and Krosnick 2009,

2010; Atkeson et al. 2011, 2014; Hope et al. 2014; Malhotra et al. 2014). Other mode

effects studies use panel information from previous waves to assess bias due to

nonresponse and measurement error (Sax et al. 2003; Duffy et al. 2005; Braunsberger et al.

2007; Chang and Krosnick 2009; Vannieuwenhuyze et al. 2010; Roberts et al. 2014). The

results of these studies are not comparable with cross-sectional studies, since nonresponse

or measurement error bias for the initial wave is usually not assessed and data provided in

the initial wave need not necessarily be more accurate. Also, typically none of these studies

analyze the combined effect of nonresponse and measurement error on survey estimates.

The most powerful designs to study differential effects of survey mode on nonresponse

bias and measurement error bias are those that, in addition to random assignment of survey

mode, have auxiliary data with extraordinary data quality available for all sample cases

for the characteristics under study. Few studies allow for a validation study comparing

web surveys to other forms of survey administration (e.g., McCabe et al. 2002; Sax et al.

2003; Sanders et al. 2007; Kreuter et al. 2008; Dillman et al. 2009; Sakshaug et al. 2010;

Atkeson et al. 2011; Stephenson and Crête 2011; Atkeson et al. 2014). Particularly

relevant for our study are the results of the validation studies by Kreuter et al. (2008) and

Sakshaug et al. (2010), as they focus on the interaction of both sources of bias for a variety

of variables and question types. Kreuter et al. (2008) find significant differences in

completion rates comparing telephone, interactive voice recording, and web. The initial

screening interview was conducted by phone, and screener respondents assigned to the

web had the lowest completion rates. However, the results do suggest that sensitive items

are reported more accurately in the web mode. Regarding the interaction of both error

sources, both studies find that bias due to measurement error dominates nonresponse error

for sensitive items, while nonresponse error tends to be larger for neutral and socially

desirable items (Kreuter et al. 2008; Sakshaug et al. 2010). For the most part, Sakshaug

et al. (2010) find that the different error sources reinforce each other and do not cancel

each other out.

The main contribution of our article is a systematic assessment of the relative

contribution of nonresponse and measurement error to the combined bias in survey

estimates in each survey mode using large scale validation data that is known to be of very

good data quality and can serve as a gold standard. Building on past validation studies by

Kreuter et al. (2008) and Sakshaug et al. (2010), we analyze the interaction of nonresponse

and measurement error for demographic and sensitive questions. Whereas these studies

focus on a very specific subpopulation of student alumni, the scope of our analyses is
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broader. Our analyses rely on a stratified random sample of the adult labor-force in

Germany. As such, more generalizable inferences can be drawn regarding the implications

of the choice of a particular survey mode. Existing validation studies also typically analyze

nonresponse or measurement error bias for mean statistics of certain survey items, but

do not assess bias in distributions. Our analysis also investigates and compares bias in

distributions for two metric items – age and income.

2. Data and Methods

2.1. Study Design and Administrative Data

The Integrated Employment Biographies (IAB 2011) maintained by the German Federal

Employment Agency (FEA) serve as the sampling frame for our study. This administrative

register combines information on individuals’ times of (un)employment in Germany and

welfare, also called basic income support (“Unemployment Benefit II”, abbreviated UB

II). These registers cover approximately 86% of the German labor force, starting from

1975, including all employees who are subject to social security contributions, individuals

seeking employment, and those on welfare, excluding only self-employed and civil

servants. This sampling frame is comprehensive, up to date (with only a short time lag) and

accurate, since it contains payment-relevant information, as their main use is by the

German statutory pension insurance to administer and calculate pension claims, benefit

claims, and payments. For the analysis, we use updated versions of the data sets that are

used to generate the IEB (IAB 2012, 2013).

Sampling from the FEA registers provides us with detailed information on

(un)employment and welfare benefit receipt for all sampled cases, that is, respondents

and nonrespondents to the survey. Sampled individuals were randomly assigned to one of

the two modes. We specifically designed and worded both surveys such that survey

responses can be validated given the information in the administrative data, including

socio-demographic (e.g., gender and age) and sensitive information (e.g., income and

welfare benefit receipt). Furthermore, we only use data that are known to be accurate and

complete, and can thus serve as gold standard (Jacobebbinghaus and Seth 2007).

More specifically, we investigate nonresponse bias, measurement error bias, and

combined bias in gender (0 male, 1 female), mean age (and categories: 18–29, 30–39,

40–49, 50–59, 60þ years), currently employed (0 no, 1 yes), type of employment

(marginal employment with an income of EUR 400 and less, regular employment with an

income of EUR 401 and more), past receipt of UB II (past 12 months), and mean monthly

labor income (and income terciles) in euros, if currently employed. In Germany,

respondents think in terms of monthly income and not annual income. Thus, the survey

items ask for monthly income. However, labor income in the administrative records is

captured only as the total gross income in a given employment spell (typically one year).

Thus, monthly income has to be derived from this measure. The basic assumption is that

all income is equally distributed over the months of a certain spell. Also, income is

top coded in the administrative data, the limit being a yearly income of approximately

EUR 57,000 in the states of former East Germany and EUR 66,000 in the states of former

West Germany, depending on the type of pension insurance. Since this affects all
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administrative data equally and survey mode was randomly assigned, inferences with

respect to the relative comparison across modes are still valid.

Administrative data used for the analyses were extracted from either the last valid

(employment) period or, in the case of an ongoing period, from the respective interview

month for respondents. The date of the last interview in either mode is taken as the

reference date for nonrespondents.

2.2. Survey Data

Overall, a sample of 24,236 eligible adults was drawn in June 2011 from the FEA registers

and randomly assigned to one of two survey modes: 12,400 individuals were randomly

assigned to the telephone mode, while 11,836 individuals were assigned to complete the

survey online. Addresses, and in part telephone numbers, were available for all sampled

individuals in the frame.

Only 9,332 of the individuals assigned to the telephone mode turned out to have valid

phone numbers. 2,400 individuals completed the telephone survey, corresponding to an

overall response rate of 19.35% among sample members in the telephone mode of the

experiment (RR1 according to AAPOR 2011). In the web mode, 1,311 letters were

returned to sender due to an incorrect address, leaving 10,525 individuals who received the

invitation to the survey. Of those, 1,082 individuals completed the web survey. The overall

response rate among sample members in the web survey was 9.14%. Table 1 provides an

overview of the sample sizes and response rates.

The telephone survey was fielded during the months of August to October 2011 and the

web survey from February to mid-April 2012. Prior to fieldwork, all sampled individuals

received an advance/invitation letter inviting them to participate in the government survey

“Work and Consumption in Germany”, commissioned by the Institute for Employment

Research (IAB), and carried out by the LINK Institute. The invitation letter for the web

mode also contained all relevant login information and a conditional incentive of EUR 3.

Two weeks after the start of fieldwork, a reminder was sent to all sampled cases of the web

survey component.

Both questionnaires contained questions relating to employment biographies that are

conceptually equivalent to the administrative data described above. We only analyze

questions that were fielded in exactly the same way in both surveys, except for one

question about past receipt of unemployment benefit and will provide more information

below. Both surveys were kept as similar as possible and only differed in some of the

Table 1. Response rates across modes of data collection.

Telephone survey Web survey

Sampled 12,400 11,836
Valid contact information 9,332 10,525
Completed 2,400 1,082

Response rate (ref. sampled) 19.35% 9.14%

Journal of Official Statistics98



questions in other parts of the questionnaire. The average survey completion time was

21 minutes for the telephone interview and 15 minutes in the web mode.

2.3. Methods

In order to assess nonresponse bias, we only include individuals for whom we have valid

contact information (see Table 1) as all other individuals never received the invitation

to participate in the survey. For the telephone, this means that we include individuals

for whom we have a valid telephone number. Given that we do not have this kind of

information for individuals assigned to the web mode, we include those who actually

received our invitation to participate in the survey, that is, individuals whose invitation

letter was not returned to sender. This approach implies that while we can clearly separate

bias due to coverage error and nonresponse for individuals assigned to the telephone; the

same does not hold for those individuals assigned to the web mode. A small portion of the

nonresponse bias that we investigate will actually be coverage bias, although we expect

this to be minimal as the internet penetration in Germany is quite high. Approximately

79% of the German households had internet at the time of the survey, with an additional

14% of the noninternet households having internet access outside home, for example, at

work (Statistisches Bundesamt 2013). Furthermore, as we are comparing survey packages,

our results give a realistic assessment of relative biases in these two survey modes. For

simplicity we will refer to this as nonresponse bias in both survey modes. In a sensitivity

analysis, we replicated our analysis including all sample cases, for example, all individuals

assigned to the telephone mode including those without valid telephone numbers and all

individuals assigned to the web mode including those whose invitation letter was returned

to sender. Results can be found in Subsection 5.2. Appendix B.

Respondents to both modes are part of the measurement error analysis. Due to

data protection regulations we are not able to match the data on an individual level, but

rather compare the proportion of respondents reporting a certain characteristic in the

survey with the proportion of respondents who have this same characteristic in the

administrative data. Because we analyze survey and administrative data separately and

do not combine data sources, we are not restricted to those respondents who consented

to data linkage, and can include all survey respondents. While this has the advantage

that our study is not subject to potential linkage nonconsent bias (Sakshaug and Kreuter

2012), it has the disadvantage that we cannot examine measurement error at an

individual level.

We compare bias in mean statistics (and distributions) for the variables introduced

above across both modes using the:

a) full sample administrative data (fs): 1
N

PN
i¼1yi;admin with N being the sample size;

b) respondent sample administrative data (resp): 1
n

Pn
i¼1yi;admin with n being the number

of completed interviews; and

c) respondent sample survey data (svy): 1
n

Pn
i¼1yi;survey.

For an assessment of the combined bias we will compare a) the true value from the full

sample administrative data to c) the respondent sample survey data. We will then break

this combined bias into its components: nonresponse bias is assessed by comparing
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estimates from the full sample administrative data (a) to estimates from respondent sample

administrative data (b). Bias due to measurement error is assessed by comparing estimates

based on the respondent sample administrative data (b) to estimates based on respondent

sample survey data (c).

As information is available for all sample cases, the estimation of nonresponse bias is

straightforward. Nonresponse bias (nr) is the difference of the true nonrandom sample

value according to administrative records (adm) for the full sample (fs) and the mean

computed using the respondents (resp) only. In order to compare nonresponse bias

between variables and modes, nonresponse bias is standardized by the full sample mean of

each variable of interest multiplied by 100 to obtain the relative nonresponse bias in

percent:

drel:biasrel:biasð�ŷnrÞ ¼
�ŷadm;resp 2 �yadm; fs

�yadm; fs
*100: ð1Þ

As our analysis focuses on relative biases in mean statistics and not on the mean

statistics themselves, we need to estimate the variances of the relative biases and adapt

significance tests accordingly.

More specifically, the variance of drel:biasrel:biasð�ŷnrÞ is given by:

Varð drel:biasrel:biasð�ŷnrÞÞ ¼ Var
�ŷadm;resp 2 �yadm; fs

�yadm; fs
*100

� �
: ð2Þ

As �yadm; fs is nonrandom, we can write:

Varð drel:biasrel:biasð�ŷnrÞÞ ¼
1002

�y2
adm; fs

ðVarð�ŷadm;respÞ þ Varð�yadm; fsÞ

þ 2Covð�yadm; fs; �ŷadm;respÞÞ: ð3Þ

From �yadm; fs being nonrandom, it also follows that Varð�yadm; fsÞ ¼ 0 and

Covð�yadm; fs; �ŷadm;respÞ ¼ 0. Thus, the variance reduces to:

Varð drel:biasrel:biasð�ŷnrÞÞ ¼
1002

�y2
adm; fs

Varð�ŷadm;respÞ: ð4Þ

This leads to the test statistic for a one-sample Z-Test for evaluating the significance of

individual relative biases:

z ¼

�ŷadm;resp 2 �yadm; fs

�yadm; fs
*100ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1002

�y2
adm; fs

Varð�ŷadm;respÞ

s : ð5Þ
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Under the null hypothesis Var( yadm,resp) equals Var( yadm, fs) so we can substitute

Varð�ŷadm;respÞ by Varð yadm; fsÞ=n with n denoting the respondent sample size:

z ¼

�ŷadm;resp 2 �yadm; fs

�yadm; fsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varð yadm; fsÞ

�y2
adm; fsn

s ð6Þ

The two-sample Z-Test for comparing the relative biases in the telephone and web mode

is then given as:

z ¼

�ŷadm;resp;web 2 �yadm; fs;web

�yadm; fs;web

� �
*100 2

�ŷadm;resp;cati 2 �yadm; fs;cati

�yadm; fs;cati

� �
*100ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1002

�y2
adm; fs;web

Varð�ŷadm;resp;webÞ þ
1002

�y2
adm; fs;cati

Varð�ŷadm;resp;catiÞ

s : ð7Þ

Transforming the counter and substituting Varð�ŷadm;resp;catiÞ by Varð yadm; fs;webÞ=nweb and

Varð�ŷadm;resp;catiÞ by Varð yadm; fs;catiÞ=ncati we derive:

z ¼

�ŷadm;resp;web

�yadm; fs;web

2
�ŷadm;resp;cati

�yadm; fs;cati

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varð yadm;resp;webÞ

�y2
adm; fs;webnweb

þ
Varð yadm;resp;catiÞ

�y2
adm; fs;catincati

s : ð8Þ

Similar to the estimation of nonresponse bias, bias due to measurement error (me) is

straightforward to calculate, as the true values are known from the administrative records.

Bias due to measurement error is given as the difference of the mean estimate in the survey

data (svy) and the true statistic according to administrative records for all respondents.

Standardizing measurement error bias with the mean of the respondents based on the

administrative data multiplied by 100 gives us an estimate of the relative bias in percent:

drel:biasrel:biasð�ŷmeÞ ¼
�ŷsvy;resp 2 �yadm;resp

�yadm;resp
*100: ð9Þ

In the comparison of respondent sample survey data and respondent sample

administrative data, the respondent sample administrative data are taken as the nonrandom

gold standard, as they contain the true information of the full sample of respondents. This

implies that for this analysis we assume Varð�yadm;resp ¼ 0Þ and Covð�ŷsvy;resp; �ŷadmin ;respÞ ¼ 0

leading to:

Varð drel:biasrel:biasð�ŷmeÞÞ ¼
1002

�y2
adm;resp

Varð�ŷsvy;respÞ: ð10Þ

Like all survey data, some of the survey items are subject to item nonresponse. Very few

respondents do not report an employment status (telephone 0.2%; web 3.3%) and past

receipt of UB II (telephone 0.2%; web 2.8%). Since we are estimating the proportion of

respondents belonging to a certain employment or past UB II status (yes/no), missing

information is implicitly treated as a “no” response (e.g., not employed, no UB II receipt)

in the assessment of measurement bias. The proportion of item nonresponse is highest in

the income information (telephone 13.8%; web 15.7%) which results in a reduction of the
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case base for the survey estimates which is used in the measurement error analysis. There

is no item nonresponse in the reports of gender or age. In a sensitivity analysis, we drop

cases with missing information in employment and past UB II status for the corresponding

analysis. Neither of our results reported below change substantively.

The combined bias (combined) due to nonresponse and measurement error for a survey

statistic is simply the difference between the estimate derived from the full sample

administrative data and the respondent sample survey data. The combined bias estimate

can be standardized similarly to the other biases to obtain the relative combined bias in

percent.

drel:biasrel:biasð�ŷcombÞ ¼
�ŷsvy;resp 2 �yadm; f s

�yadm; f s
*100: ð11Þ

Comparing respondent sample survey data and full sample administrative data, the full

sample administrative data means are nonrandom, implying Varð�yadm; f s ¼ 0Þ and

Covð�ŷsvy;resp; �yadmin; f sÞ ¼ 0 leading to:

Varð drel:biasrel:biasð�ŷcombÞÞ ¼
1002

�y2
adm; f s

Varð�ŷsvy;respÞ: ð12Þ

Test statistics for relative measurement error bias and combined bias can be derived in

an identical manner as for relative nonresponse bias in Equation 5 and Equation 8.

For the subsequent analyses, we distinguish demographic information (such as gender

and age), from potentially sensitive information (type of employment, past receipt of UB II

and mean labor income from current employment) and report the results in that order.

To reiterate our expectations: irrespective of question type, we would expect there to be a

generally lower nonresponse bias in the telephone mode compared to the web. We expect

little to no measurement error bias for demographic items in either mode, whereas sensitive

questions should be reported more accurately in the web mode. The prediction for

combined bias depends on whether both sources of bias enforce or compensate each other.

3. Results

We report the results for each error source by indicator and only report differences in the

text that are statistically significant at an alpha level of 0.05 (p , 0.05), based on the

adapted Z-Tests. Figures 1 to 4 display the relative bias in mean estimates for different

variables separated by horizontal lines, by survey mode each due to nonresponse (nr),

measurement error (me) and combined bias (combined), including 95%-confidence

intervals. Solid triangles indicate bias for the telephone mode and hollow squares indicate

bias for the web mode. The dashed vertical line indicates zero percent relative bias.

Relative bias estimates, including confidence intervals and test statistics can be found in

Subsection 5.1. Appendix A.

Females are significantly overrepresented in both survey modes with biases

significantly differing between the two modes (see Figure 1). Not surprisingly, there is

virtually no measurement error bias for gender in either mode. The very small

discrepancies might be due to the fact that some individuals might identify with a gender

other than the sex originally recorded in the administrative data. An overrepresentation of
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females together with a very small measurement error bias leads to a relative combined

bias that is dominated by nonresponse bias, that is, a significant overestimation of the

proportion of women in both survey modes. The relative combined bias is significantly

higher in the telephone mode than the web mode.

Our results also show a significant negative nonresponse bias for mean age in the web

mode and a significant positive nonresponse bias in the telephone mode, although smaller

in magnitude. Substantively, this means that younger individuals are overrepresented in

the web mode, whereas older individuals are overrepresented in the telephone mode. The

difference in biases between the two modes is statistically significant. As expected, there is

virtually no relative measurement error bias in mean age for either mode. Combined bias is

therefore almost identical to nonresponse bias and implies a significant overestimation

of mean age in the telephone mode and significant underestimation in the web mode

compared to the population. Relative combined bias differs significantly between the two

survey modes.

To study bias in age in more detail, we investigate biases in several age categories (see

Figure 2). In line with our expectations, younger individuals are overrepresented in the

web mode while middle-aged and older individuals are overrepresented in the telephone

mode, although relative nonresponse bias is not always significantly different from

zero. Except for the middle-aged category “aged 40–49 years” biases differ significantly

between both modes. Similarly to mean age, there is no evidence for significant

measurement error in any of the age categories, with relative measurement error biases

being very close to zero. Again, this results in a combined bias that is almost identical

in magnitude to that of nonresponse bias: the proportion of younger individuals is

overestimated in the web survey, whereas the proportion of individuals in the middle-aged

and older age categories are overestimated relying on telephone survey estimates.

nr

me

combined

nr

me

combined

Female

Mean age (Years)

-5 0 5 10 15

Demographic items: Relative bias (in %)

CATI Web

Fig. 1. Relative combined bias for socio-demographic variables, including 95%-confidence intervals.
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Although combined bias is not significantly different from zero for every mode and age

category, relative combined bias differs significantly between survey modes for all age

categories except “age 40–49.”

We now turn to those items potentially subject to social desirability concerns and

sensitivity displayed in Figure 3. Our results suggest that relative nonresponse bias in

employment status points in the same direction for both modes such that employed

nr
me

combined

nr
me

combined

nr
me

combined

nr
me

combined

nr
me

combined

Employed:

Regular empl.

Marginal empl.

Past UB II

Mean Inc. (Euro)

-40 -20 0 20 40

Substantive items: Relative bias (in %)

CATI Web

Fig. 3. Relative combined bias for substantive variables, including 95%-confidence intervals.

nr
me

combined

nr
me

combined

nr
me

combined

nr
me

combined

nr
me

combined

<=29

30-39

40-49

50-59

>=60

-40 -20 0 20 40
Age: Relative bias (in %)

CATI Web

Fig. 2. Relative combined bias for age distribution, including 95%-confidence intervals.
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individuals are significantly overrepresented. This overrepresentation is significant for

both survey modes and is significantly higher in the web mode than in the telephone mode.

Investigating the different types of employment, we see that individuals in a regular form

of employment are significantly overrepresented in both modes. This overrepresentation

is, again, significantly higher for web mode than the telephone mode. There is no evidence

of significant nonresponse bias among marginally employed individuals. Relative

nonresponse bias in the employment variables tends to be larger in the web mode

compared to the telephone mode.

Turning to bias due to measurement error, in line with our theoretical expectations, the

socially more desirable characteristic of regular employment is significantly overreported

in the telephone mode, but does not show significant measurement error bias in the self-

administered web mode. However, regular employment is only slightly more accurately

estimated in the web mode than in the telephone mode, with the difference in biases

not being statistically significant. The potentially more stigmatizing form of marginal

employment is significantly underreported in both modes, although to a somewhat lesser

extent in the web mode. Like for regular employment, biases do not differ significantly

between the modes. Again, we attribute these results to social desirability: telling an

interviewer that one has a regular job is more desirable and less of a norm violation than

admitting to being “only” marginally employed. Hence, not surprisingly, relative bias due

to measurement error is always slightly higher in the telephone mode compared to the web

mode although these differences are not significant for any employment type across

modes. With the exception of marginal employment in the telephone mode, relative

nonresponse and relative measurement bias reinforce each other, leading to an even larger

relative combined bias. Despite a marginally smaller measurement error bias, the web

mode exhibits a consistently larger combined bias compared to the telephone mode

(differences are not statistically significant for marginal employment).

Relative nonresponse bias in past benefit receipt is negative for both modes. This leads

to a significant underestimation of the proportion of individuals who received welfare in

the past year and this underestimation is significantly more pronounced in the web mode

than in the telephone mode. Relative measurement error bias points in different directions

for both modes such that the proportion of past benefit recipients is overestimated in the

web mode and underestimated in the telephone mode (with differences being statistically

significant). Surprisingly, the magnitude of measurement bias is strikingly similar across

both modes. Relative nonresponse and measurement bias reinforce each other in the

telephone mode and point in opposite directions in the web mode. Despite this

compensation of both sources of bias in the web mode, relative combined bias is still

significantly larger compared to the telephone mode.

Mean income is significantly biased due to nonresponse in the web mode, whereas there

is no significant relative nonresponse bias in mean income in the telephone mode. The

difference in relative nonresponse bias is significant. There is no significant relative

measurement bias for mean income in either mode. Relative combined bias is statistically

significant for both modes and is mostly driven by nonresponse bias. Whereas there is only

a small negative combined bias in the telephone mode, this bias is much larger in the

web mode, which results in an overestimation of mean income. We find that relative

nonresponse and combined bias differ significantly between the two survey modes.
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There is no significant bias due to nonresponse in the telephone mode in the income

categories except for a slight overestimation of the lower income category. This differs in

the web mode: individuals with a low income are significantly underrepresented, whereas

those with a high income are significantly overrepresented. Relative nonresponse biases

differ significantly between the modes. Although measurement error bias for mean income

is statistically nonsignificant, both modes show considerable measurement error bias in the

different income categories (Figure 4). While significantly more respondents claim to

belong to the low income group (telephone) or the middle income group (web), in both

modes too few respondents report that they belong to the highest income category.

Measurement error bias does not differ significantly between both modes for any of the

income categories. All income categories show significant combined bias for both modes

pointing in opposite directions (and being significantly different between the modes) in the

lowest and the highest income category. Combined bias is mostly driven by nonresponse

bias in the web mode and measurement error bias in the telephone mode.

To summarize our results, the individual contributions of nonresponse and measurement

error bias for those variables that show significant relative combined bias indicate that

nonresponse bias exceeds measurement error bias in magnitude for gender in both modes, for

mean age in both modes (and all categories except for 40–49 years in the web mode and ages

older than 60 in the telephone mode), and mean income (as well as low and high income)

in the web mode. On the other hand, measurement error bias is larger than nonresponse bias

for employment, “marginal” employment in both modes and income (as well as income

categories) in the telephone mode. Relative combined bias in regular employment and past

unemployment benefit receipt differs in its composition across the modes: nonresponse bias

is larger than measurement error bias for both characteristics in the web mode, whereas

measurement error bias exceeds nonresponse bias in the telephone mode.

nr

me

combined

nr

me

combined

nr

me

combined

Low Inc.

Middle Inc.

High Inc.

-40 -20 0 20 40

Income: Relative bias (in %)

CATI Web

Fig. 4. Relative combined bias for income distribution, including 95%-confidence intervals.
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With respect to the interaction of the two sources of bias, the results show that bias due

to nonresponse and measurement error tend to reinforce each other, with the exception of

past benefit receipt and the income categories in the web survey. Our results suggest that

the relative combined bias is larger for the web mode compared to the telephone mode

for mean age, employment status and employment type, past UB II receipt, mean labor

income and the income categories. The combined relative bias is larger in the telephone

mode than in the web mode for gender, whereas there is no consistent pattern across age

groups. These results suggest that the data obtained via the web survey administration are,

overall, more biased compared to the telephone mode.

4. Summary and Discussion

Our results show that the estimates obtained from the web survey are biased to a larger

extent compared to the telephone survey when considering combined bias. In line with

previous research, these results are mostly driven by a larger nonresponse bias in both

modes for demographic items and by larger measurement error bias for sensitive items.

Our results further suggest that potential social desirability concerns from respondents are

somewhat alleviated in the web mode. However, the potential benefits of a smaller

measurement error bias in the web mode are inconsistent across estimates and do not

outweigh the comparatively larger nonresponse bias compared to the telephone mode.

The result for overreporting of past welfare benefit, UB II, receipt in the web mode is

also somewhat puzzling. One potential explanation for the overreporting of welfare receipt

could be slight differences in the question wording between the modes. The telephone

survey asked for “welfare receipt in 2010”, that is, the previous year, while the web survey

asked for “welfare receipt in the past 12 months”. The data collection period of the web

survey was in the beginning of 2012, so we expect that some respondents did not refer to

the last 12 months in their retrieval, but instead included the period since January 2011,

thus leading to an overestimate. The administrative data can exactly differentiate these

differing periods. Also, web survey respondents might have skipped reading the

information regarding the reference period altogether (about 7% of those respondents who

did not receive UB II in the reference period actually received benefits at some earlier

point). Because respondents in the telephone component of the study received a series of

filter questions about different earnings in 2011 and the respondents in the web mode only

saw this one question, respondents in the web mode might be more prone to suffer from

referring to the wrong reference period. Both kinds of error would result in web survey

respondents reporting receipt prior to the 12-month reference period – since February

2011 – and thus explain the significant amount of overreporting. Another explanation for

the underreporting in the telephone mode could also be due to a strategy to avoid follow-

up questions. However, Eckman et al. (2014) find no significant filter effect for the income

questions in this survey. These potential errors confound our results with respect to mode

differences in UB II receipt. Nonetheless, web seems to outperform telephone for this

item, in the sense that it is able to alleviate social desirability concerns.

We find substantial misreporting of income across different income categories, although

this does not differ across modes. This is surprising in that we would have expected more

accurate reporting in the web mode due to increased privacy and the fact that an individual
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can take the survey at their own pace, potentially spending more time to retrieve accurate

information. In line with results reported in previous studies (e.g., Duncan and Hill 1985;

Bound and Krueger 1991; Rodgers et al. 1993), measurement error seems to be correlated

with true income; more specifically, that it is mean-reverting, which is a tendency for those

with lower earnings to overstate these and those with higher earnings to understate. The

tendency to overreport the middle category to the disadvantage of the extreme categories

can clearly be seen for the web mode.

Our results are subject to some limitations. First of all, the question arises as to whether

nonresponse adjustment techniques would alleviate bias in an identical manner in both

modes and how this would affect the combined bias. Since nonresponse bias tends to point

in opposite directions for both modes, the most obvious solution might be to pool the

samples (De Rada and del Amo 2014). Another option is to rely on different weighting

techniques (Bethlehem 2010). However, such techniques are only reducing bias if

weighting variables are correlated with both nonresponse and survey variables of interest

(Kreuter and Olson 2011). Studying nonresponse bias before adjustment is a topic in its

own right, as Schouten et al. (2016) conclude that balanced samples are always

advantageous, regardless of adjustment techniques that might be applied in retrospect.

However, if the same mechanisms that lead to nonresponse bias are related to

measurement error bias (Olson 2013; Malhotra et al. 2014; Roberts et al. 2014), combined

bias might actually be inflated. The comparison of both modes after these adjustments are

particularly interesting, that is, whether bias estimates are affected in a similar manner.

While that is an interesting research question, these analyses are beyond the scope of this

article. The second limitation is that we are comparing respondents across mode

“packages” and cannot directly attribute measurement differences to mode effects. For

example, differences in responses might not be causally attributed to different reporting

schemes evoked by different modes, but can also be driven by different individuals (with

differential reporting behavior) responding to different modes (and hence be due to sample

composition). Third, data collection periods in both modes differed slightly and there is

a potential time effect that we cannot rule out. However, with the exception of one

characteristic – past receipt of welfare – we are confident that this does not jeopardize our

results.

To reiterate, our results are in line with previous research: while younger, employed and

more educated individuals participate in the web survey, there is less bias in the telephone

mode and nonresponse bias tends to point in opposite directions in both modes. At the

same time, measurement error bias tends to be equivalent or smaller in the web mode.

Given that the web mode has several advantages over the telephone mode with respect to

survey costs and immediate data availability, one implication that follows from our results

could be to implement a sequential mixed mode design, especially since nonresponse

biases in both modes tend to be in opposing directions. Thus, approaching respondents

first by web and then following up on nonrespondents by the telephone seems to be a

promising approach to reach different subgroups in the population and balance the

respondent sample. Another promising strategy to reduce measurement error bias in the

telephone could be to supplement the telephone component with a self-administration

mode, either using IVR, T-ACASI or a web add-on, each with its own advantages and

disadvantages.
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5. Appendix

5.1. Appendix A – Biases
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5.2. Appendix B – Biases when Using All Sample Cases

In a sensitivity analysis, we replicated the bias estimation, including all sample cases, for

example, all individuals assigned to the telephone mode, including those without valid

telephone numbers and all individuals assigned to the web mode, including those whose

invitation letter was returned to sender (see Table 3). In this second analysis, bias due to

deployability and coverage cannot be separated from nonresponse bias. For simplicity, we

will continue to refer to this as nonresponse bias. While relative nonresponse and relative

combined biases might be affected, relative measurement error biases stay the same as

they only refer to the survey respondents.

Although relative nonresponse biases change in magnitude, the relative difference in a

comparison of the survey modes does not change for any of the variables compared to the

analysis excluding the individuals for whom we do not have valid contact information. We

do find some significant differences: when including all cases, relative nonresponse bias

for mean income is now significantly different from zero for both modes as opposed to the

web mode only. Relative nonresponse bias in 29 years and younger is not significantly

different from zero in any mode and modes do not significantly differ from each other

when including individuals without valid contact information, whereas relative

nonresponse bias for this variable is significantly different from zero in the web and

biases significantly differ between the modes when excluding individuals without valid

contact information. Also, relative nonresponse bias in ages 50–59 years is not significant

in the web mode when including individuals without valid contact information. The age

group 60 years and older shows significant relative nonresponse biases in both modes,

with significantly different relative nonresponse biases between the modes when including

individuals without valid contact information, whereas the relative nonresponse bias for

the telephone survey loses significance when excluding those individuals. This results in

individuals aged 29 years and younger being overrepresented when including all cases,

but underrepresented when excluding individuals without valid contact information for the

telephone survey, although relative nonresponse bias is not significant for this age group in

any analysis of the telephone survey. Strikingly, the negative effect of past welfare receipt

turns from a negative to a larger positive effect in the telephone survey when including the

individuals without valid contact information, with differences between the modes being

significant in both kinds of analysis.

As for relative nonresponse bias, the magnitudes of the combined bias differ slightly for

the two kinds of analyses, but the directionality and relative differences comparing the

survey modes are not affected for most of the variables. Differences in the relative

magnitude of combined bias can only be found for age 29 years and younger and middle

income. The differences in relative combined bias between the survey modes are not

significant for middle income when the individuals without valid contact information are

excluded, but are significant if they are included. However, the relative bias in middle

income is significantly different from zero for both modes in both kinds of analyses. For

age 29 years and younger we find the difference in relative combined bias between the two

modes to be significant when excluding the individuals without valid contact information,

but to be not significant if including these individuals. This is mostly due to a change in

directionality for the telephone mode and a shift towards zero for the web mode. The
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effects of age 40–49 years in the web and 60 years and older in the telephone mode

increase and are significant in this second analysis. For age 40–49 years the relative

combined bias in the telephone survey is less pronounced and not significant when

including the individuals without valid contact information.

Even though we find some differences for relative nonresponse bias and relative

combined bias between the two analyses for some age and income categories, these

differences do not substantively change our findings and do not affect relative combined

bias in mean age or mean income. The only substantive difference between the two sets of

analysis is the change from underrepresentation to overrepresentation of past recipients of

welfare benefit in the telephone mode when including the individuals without valid contact

information. From this, we can conclude that more valid telephone numbers have been

available for past benefit recipients than for nonrecipients. This makes sense, as

individuals on UB II have to provide the German Federal Employment Agency with their

telephone numbers to manage benefit claims. Even though this affects the relative

combined bias in our survey, we do not expect this to be a general finding as this is very

specific to the sample drawn using the data from the German Federal Employment

Agency.
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Cross-National Comparison of Equivalence and
Measurement Quality of Response Scales in

Denmark and Taiwan

Pei-shan Liao1, Willem E. Saris2, and Diana Zavala-Rojas3

The split-ballot multitrait-multimethod (SB-MTMM) approach has been used to evaluate the
measurement quality of questions in survey research. It aims to reduce the response burden of
the classic MTMM design, which requires repeating alternative formulations of a survey
measure to the same respondent at least three times, by using combinations of two methods in
multiple groups. The SB-MTMM approach has been applied to the European Social Survey
(ESS) to examine the quality of questions across countries, including the differences in
response design and measurement errors. Despite wide application of the SB-MTMM design
in Europe, it is yet unknown whether the same quality of survey instruments can be achieved
in both a different cultural context and in a logographic writing system, like the one in Taiwan.

This study tests for measurement invariance and compares measurement quality in Taiwan
and Denmark, by estimating the reliability and validity of different response scales using the
SB-MTMM approach. By using the same questions as in the ESS, a cross-cultural comparison
is made, in order to understand whether the studied response scales perform equally well in
Taiwan, compared to a European country. Results show that quality estimates are comparable
across countries.

Key words: Split-ballot MTMM; reliability; validity; question quality.

1. Introduction

Survey measures take various forms, and studying their quality is an important issue, as

they result in measurement error biases. For example, questions about subjective concepts

can be measured by Likert-type response scales with different numbers and labels of

response categories, with a feeling thermometer or using rating scores, among others

(Alwin 1997; Schaeffer and Presser 2003). In comparative survey research, different

measurement designs influence the response distributions and may lead to comparability

problems across countries (see Bjørnskov 2010). Among the tools used to evaluate

measurement quality, two approaches have been rather popular: the split-ballot experiment
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and the multitrait-multimethod (MTMM) approach (Saris et al. 2010; Saris et al. 2004).

The basic principle of the split-ballot experiment approach is to randomly divide the

respondents into two or more equal-sized subsamples with equal representativeness of

the total sample (Schuman and Presser 1981; Petersen 2008). The respondents of each

subsample answer survey questions simultaneously and under the same conditions.

Variations in the questionnaire for each of the subsamples are treated as an experimental

stimulus to examine questionnaire effects.

Alternatively, Campbell and Fiske (1959) suggested the MTMM design to evaluate the

validity of social science concepts based on the correlations among measures of variables

(Alwin 1974). The classic MTMM approach requires a respondent to answer questions

about a minimum of three traits, that is, concepts or constructs measured using three

different methods, for example, response scales, leading to nine different observed

variables (Saris and Gallhofer 2014). Given the matrix, criteria for convergent and

discriminant validity of these variables are advanced in Campbell and Fiske (1959) to

assess validity. Structural equation modeling (SEM) can be applied to estimate the

reliability and validity of each method. A comparison of fit statistics indicates which

model best fits the data. Since the respondents need to repeatedly answer similar questions,

it becomes a burden for them and may cause memory bias or order effect of the questions.

Saris et al. (2004) developed an approach to reduce the response burden by means of

using different combinations of two methods in multiple groups. They combine the use of

multiple groups in a split-ballot design, while the MTMM approach allows estimating the

reliability and validity of the different questions. Such a split-ballot MTMM (SB-MTMM)

approach has been applied to the European Social Survey (ESS) to examine the

measurement quality of questions across countries, including the differences in response

design and measurement errors (Oberski et al. 2007, 2010; Saris and Gallhofer 2014; Saris

et al. 2008; Saris et al. 2010). Information about the quality of more than 2,700 questions

from different European countries and the United States are stored in an online database

in the Survey Quality Predictor (SQP) 2.1, which is an online system for survey quality

prediction (Saris and Gallhofer 2014; Saris et al. 2011). On the basis of the data collected

in all these countries using mainly English and European languages, a meta-analysis has

been performed to develop a procedure to predict the quality of survey questions. This

prediction tool is available in SQP 2.1. In the meta-analysis (Saris et al. 2011), it has been

found that not only question characteristics, such as question wordings, response scales

and labelling, but also the written and spoken language used in formulating the questions,

determine the reliability and validity of questions.

With respect to nonWestern languages, some studies have evaluated different designs

of response scales by the means of a split-ballot experiment (Lau 2016; Liao 2014).

Some, such as Chen (2005) and Hsiao and Tu (2012), have applied MTMM to evaluate

validity and reliability in Taiwan using Chinese-language content, but none had a focus

on the effect of the formulation of single questions. Because no MTMM experiments

have been done in Asia and specifically in Chinese, so far, the quality of survey

questions cannot be predicted with SQP. Therefore, we designed this research to start by

collecting quality estimates based on MTMM experiments in Taiwan. Previous studies

have indicated that respondents in East Asian countries, for example, tend to more

frequently choose responses in the middle of the scale than those in the West because of
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the influence of collectivism (Chen et al. 1995; Harzing 2006). It is unknown whether

the same quality of survey instruments can be achieved in both a different cultural

context and writing system. The cultural transportability of experimental and pretesting

techniques cannot be assumed; it has to be tested. For instance, Goerman and Caspar

(2010) and Pan et al. (2005) have found that cognitive interviewing does not work

equally well across cultures.

Using data from the SB-MTMM design in the Taiwan Social Change Survey (TSCS)

and corresponding data from the 2002 ESS Round 1 in Denmark, this study aims to

compare the measurement quality of different response designs across countries. It is of

interest to explore the similarity, as well as differences, when the same experimental

approach is applied. Therefore, we conduct a test for measurement invariance with the aim

of concluding whether relationships and means across countries can be compared. The

next section discusses the SB-MTMM approach that is used for this study and briefly

introduces the test for measurement invariance. We then present the research design and

results. Discussion on the findings are provided.

2. The SB-MTMM Design

A drawback of the classic MTMM design is the burden on each respondent of being asked

multiple questions that assess the same construct. In addition, early questions may

influence answers to later questions due to memory that is carried over. Consequently, the

data quality may be overestimated (Saris et al. 2004). In order to minimize the carry-over

effect from the previous answer, an interval of at least 20 minutes between the

administration of the related items (Van Meurs and Saris 1990) is suggested.

The SB-MTMM design reduces the cognitive burden on respondents by using two,

rather than three, methods in the MTMM design, while three traits are measured. Random

samples of the same population are also used, as in the split-ballot experiments, but each

respondent only needs to answer the questions concerning the same trait twice. This is seen

to combine the benefits of the split-ballot approach and the MTMM approach, in that it

enables researchers to evaluate measurement bias, reliability, and validity simultaneously,

while reducing response burden (Saris and Gallhofer 2014).

We assume that the estimation model for the SB-MTMM design is the same as in the

standard approach, given that the random samples are drawn from the same population.

In the standard MTMM design, a minimum of three traits are measured using three

different methods, leading to nine different observed variables. Therefore, a correlation

matrix of 9 £ 9 is obtained. However, this is not always the case when using the SB-

MTMM approach. Nevertheless, the same models can be used, as we will show later.

Various models have been suggested for analysis of the correlation matrices, and a true

score model proposed by Saris and Andrews (1991) is commonly applied. The advantage

of this model is that its standardization of the coefficients directly provides the estimates of

the reliability and validity coefficients (Saris and Gallhofer 2014). Recent applications

include those by Revilla and Saris (2013), Saris et al. (2010), Zavala-Rojas et al. (2018),

Revilla (2015), Revilla et al. (2015), and Oberski et al. (2007).

The use of a minimum of three traits to be repeated using at least three methods serves

the purpose of identification. With such a consideration, the model can be defined by the
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following Equations (Saris and Andrews 1991):

Yij ¼ rijTij þ eij ð1Þ

Tij ¼ vijFi þ mijMj ð2Þ

where Yij is the observed variable for the ith trait and the jth method; rij and vij are the

reliability and validity coefficients for the ith trait and the jth method, respectively; Tij is

the true score or systematic component of the response Yij; eij is the random error

associated with Yij; Fi is the ith trait (or factor); Mj is the variation in scores due to the jth

method; and mij is the method effect for the ith trait and the jth method. The model posits

that the observed variable is the sum of the systematic component plus a random error.

Also, the systematic component of a response is the sum of the trait and the effect of the

method used to assess it.

We make the assumption that the traits are correlated with one another. The random

errors are not correlated with one another, nor with the independent variables in the

different equations. The method factors are assumed to not be correlated with one another,

nor with the traits or the random errors. Figure 1 is a graphical presentation of the true

score model.

When all variables other than eij are standardized, vij, and mij correspond to the

reliability, validity, and method effect coefficients, respectively, of a measure, while the

squares of these coefficients present the reliability, validity and the method variance,

respectively. In this approach, the reliability and validity of single questions have been

evaluated, not complex concepts. As a result, the validity does not indicate how well the

measured indicator represents the concept of interest. The validity is only affected by the

method used, that is, v2
ij ¼ 1 2 m2

ij. The lack of reliability will decrease the correlations

between the variables, while the method effects will increase the correlations between the

variables measured by the same or similar methods. This effect is called “common method

variance”. The model specified in Equation 1 and Equation 2 assumes that the disturbance

term only contains a random error component, eij. Therefore, in this model, we make

M1

t11

f1 f2 f3

t12 t13
t21 t22 t23

t31 t32 t33

M2 M3

Fig. 1. MTMM model illustrating the true scores and their factor of interest.
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the assumption that there is no unique component (Saris and Andrews 1991, 579).

This assumption is plausible when the stem of the questions remains the same in the

multitrait-multimethod experiment, and the variation only comes from the variations in

the methods.

The total quality of a measure can then be computed as q2
ij ¼ r2

ij £ v2
ij, where q2

ij

represents the amount of the variance of the observed variable, which is explained by the

latent trait of interest. The quality indicators, reliability, and validity are typical measures

of quality, which vary between zero and one, like correlation coefficients. With respect to

the multiple groups in the SB-MTMM design, estimates for the parameters of the model

can be obtained using structural equation modeling for multiple-group analysis (Saris and

Gallhofer 2007, 2014).

3. Test for Measurement Invariance

With the SB-MTMM model, the variance-covariance matrix of the traits, Fi, is obtained.

This correlation matrix is corrected for measurement error and can be used to test whether

the same construct is measured across countries. The test for measurement invariance

is typically done using the variance-covariance matrix of observed variables, although a

criticism that has been referred to as susceptibility, that is, to what extent the procedure is

sensitive to artifacts in the response process, is commonly made (Butts et al. 2006; Marsh

and Byrne 1993; Byrne and Watkins 2003; Saris and Gallhofer 2014). Saris and Gallhofer

(2014 chap. 16) showed that in a test for measurement invariance, the response process

can be distinguished from the cognitive process. As we have said above, the variance-

covariance matrix corrected for measurement errors will be obtained in the MTMM

analysis, and this matrix can be used to test for the cognitive equivalence or comparability

of the concepts in the different countries.

Therefore, we used the variance-covariance matrix of the latent traits to test for

measurement invariance. The test is usually conducted in three steps, where each step is a

prerequisite of the next one. In the first step, a configural model is fitted to check whether

the pattern of fixed and free loadings and disturbance terms is the same across groups

(Horn and McArdle 1992). In the second step, metric invariance, the configural model is

restricted to one where the factor loadings of equivalent manifest variables are invariant

across countries. When the model is not rejected, comparisons of relationships across

groups can be made (Horn and McArdle 1992). The third step, scalar invariance, implies

that, in addition to invariance in the factor loadings, intercepts of equivalent manifest

variables are also restricted to be the same across groups. If the model is not rejected,

comparisons of means can also be made across groups.

Figure 2 shows the path diagram of the model to test for measurement invariance. The

model is specified in Equations (3) to (5).

f 1 ¼ t1 þ h1l1 þ d1 ð3Þ

f 2 ¼ t2 þ h1l2 þ d2 ð4Þ

f 3 ¼ t3 þ h1l3 þ d3 ð5Þ

Liao et al.: Equivalence and Quality of Response Scales 121



Where h1 is the concept of interest and F1 to F3 represent the indicators used in the

study corrected for measurement errors.

Standard restrictions were imposed to identify the model: the loading of the first trait

(l1) and its corresponding intercept (d1) were fixed to one and zero respectively. Secondly,

we make the assumption that the error terms are not correlated with each other or with the

latent variables. To test for metric invariance, we assume that the loadings (l) are equal

across groups, and for the scalar invariance we assume that the intercepts (d ) are also

equal across groups.

4. Research Design

Two data sources are used for this study, one from Taiwan and the other from Denmark,

and both are collected using the computer-assisted personal interview (CAPI) technique.

Taiwanese data are drawn from the 2015 Taiwan Social Change Survey (TSCS) (Fu et al.

2016), which included questions on globalization, work, family, and mental health, and

included the SB-MTMM experiment. Surveys were delivered to randomly selected adults

aged 18 years or older within each of the selected municipalities. A three-stage stratified

sampling design was adopted based on the urbanization level and geographic areas of the

townships and boroughs in Taiwan as the primary sampling unit (PSU). The probability

proportional to size (PPS) sampling method was used in the first two stages – township

and village or li under townships, respectively. Finally, household-registered residents

in each village or li, which are equivalent-sized neighborhoods in urban areas, are

systematically selected to obtain a representative sample of Taiwan’s population. A total

of 2,034 complete cases are obtained, with a response rate of 57%.

The experiment conducted in the 2015 TSCS adopted a two-group SB-MTMM design.

The sample was randomly divided into two subsamples based on the respondent’s number,

which was assigned beforehand, as odd or even. The odd-numbered subsample (Sample 1)

got Method 1 (M1) first and then Method 3 (M3), and the even-numbered subsample

(Sample 2) got Method 2 (M2) first, but Method 3 (M3) next. As shown in Table 1, the

combination of M1 and M2 was missing by design.

λ11

τ2

τ1

τ3

η1

f1 d1

d2

d3

f2

f3

λ21

λ31

Fig. 2. Model to test for measurement invariance.
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In other words, this set of correlations between the variables measured by M1 and the

variables measured by M2 is absent. Saris et al. (2004) have shown, based on the work of

Satorra (1993), that, in general, the parameters of this model evaluated with two groups are

identified and all quality indicators can be estimated using multiple group estimation,

except when the correlations between the traits are very similar or zero (Revilla and Saris

2013).

The measures for the SB-MTMM experiment include several questions. Each question

is measured with two sets of response scales (M1 and M2 in the case of 2015 TSCS) that

are answered by Sample 1 and Sample 2, respectively, and one other set (M3) answered

by all of the respondents. Both of the subsamples answer all other questions in the survey

as well.

The questions used are commonly used indicators of the latent concept “Political

satisfaction”. The following three indicators of political satisfaction are used for the

experimental design as follows:

1. On the whole, how satisfied are you with the present state of the economy in

[country]?

2. Now thinking about the [country] government, how satisfied are you with the way it

is doing its job?

3. And, on the whole, how satisfied are you with the way democracy works in

[country]?

Using the same indicators for the three methods, M1 is measured using a fully labeled

four-point scale, with labels very satisfied, satisfied, dissatisfied and very dissatisfied. M2

and M3 are measured from 0 to 5 and from 0 to 10, respectively, both using show cards

with only the endpoints labeled as “extremely dissatisfied” and “extremely satisfied”. For

all of the methods, a higher score indicates a higher level of satisfaction. The correlation

matrices were obtained for analysis using a structural equation model. The design of the

experiment has been summarized in Figure 3, where Tsi denotes the Taiwan sample i, Dsi

denotes the Danish sample i where i ¼ 1, 2, and c stands for the combination of the two

samples within each country.

In order to estimate the parameters, covariance matrices obtained for the nine measures

are used in the multi-group SEM in LISREL. The maximum likelihood (ML) approach is

adopted to deal with missing data, which occurs by design (Saris et al. 2004).

The same measures of satisfaction, use of show cards and a two-group SB-MTMM

experimental design can be found in the 2002 ESS Round 1. The data from Denmark

(ESS1_DK) are used for the comparison with the data in Taiwan due to the same data

collection mode of CAPI in both the main questionnaire and supplemental questions. The

Table 1. Two-group SB-MTMM design.

Method 1 Method 2 Method 3

Method 1 Sample 1

Method 2 NONE Sample 2

Method 3 Sample 1 Sample 2 Sample 1 þ 2
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sampling design for ESS1_DK is a simple random sample based on a register-based

sampling frame, with a lower age cut-off of 16 years. A total of 1,506 complete cases were

obtained, with a response rate of 67.56%. More details can be found in the ESS1 –

Documentation Report (European Social Survey 2014, 42–47). As in the case of Taiwan,

the SB-MTMM experiment was performed alongside other questions, among others, about

politics, work, family, well-being and immigration.

One difference in the experimental design between 2015 TSCS and ESS1_DK is that all

the respondents in the latter got M1 first, and then M2 and M3 for samples 1 and 2,

respectively. Therefore, the combination of M2 and M3 is missing by design in the Danish

data. The differences in the data structures are clearly observable in the correlation

matrices presented in Table 3 and Table 4. Nevertheless, the same model can be estimated

on the basis of these two different correlation matrices.

Another difference is that in Taiwan, an unfolding technique, in which interviewers first

asked about the direction and then about the degree of attitudes (Schaeffer and Presser

2003), was used for M1, with the scale coded reversely as 1 ¼ very satisfied to 4 ¼ very

dissatisfied. In the ESS, one direct question was used, in which all four categories were

presented immediately. Although the data have been recoded to have the same response

order as that in the Danish data, the difference in procedure means that we were not able to

determine the effect of the scale length, only because this effect is confounded with other

aspects. However, it is possible to determine which measure is better in each country and

across countries.

5. Results of the SB-MTMM Experiment

Socio-demographic variables were first compared between Denmark and Taiwan with

post-stratified weights. As shown in Table 2, the distributions of demographic

characteristics are similar in age and gender. The proportions of those aged 60 years or

older are lower when compared to other age groups. Also, there are similar proportions of

men and women in both samples. On the other hand, the proportions of married and

widowed respondents in Taiwan are higher, but those of single or divorced respondents are

higher in Denmark. It is noted that ESS used other variables to ask respondents whether

they live with a partner, but a category of “cohabitant” is included in TSCS for marital

Method

TS1/DSC TS2/DS1 TSC/DS2

Question

(01) Very dissatisfied
(02) Fairly dissatisfied
(03) Fairly satisfied
(04) Very satisfied

M2 (6-point scale)M1 (4-point scale)
(00) Extremely dissatisfied (00) Extremely dissatisfied

(10) Extremely satisfied(05) Extremely satisfied

M3 (11-point scale)

Q1. How satisfied with
present state of economy
in country

Q2. How satisfied with
the national government

Q3. How satisfied with
the way democracy
works in country

Fig. 3. Two-group SB-MTMM design for Denmark and Taiwan.
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Table 2. Description of Denmark and Taiwan samples.

Country Denmark Taiwan

Variable f/M %/SD f/M %/SD

Age

16–29 years 304 20.2% 401 19.8%

30–39 years 277 18.4% 359 17.7%

40–49 years 245 16.3% 382 18.8%

50–59 years 294 19.5% 378 18.6%

60–79 years 197 13.1% 263 13.0%

70 years or older 189 12.5% 247 12.2%

P ¼ .553 N ¼ 1506 100% N ¼ 2030 100%

Gender

Female 736 49% 1043 51.3%

Male 766 51% 991 48.7%

P ¼ .096 N ¼ 1502 100% N ¼ 2034 100%

Marital***

Single, never married 486 31.3% 594 29.3%

Married 800 53.6% 1141 56.2%

Divorced 119 8.0% 123 6.1%

Separate 15 1.0% 9 0.4%

Widowed 91 6.1% 149 7.3%

Cohabitant 0 0% 14 0.7%

P ¼ .000 N ¼ 1493 100% N ¼ 2030 100%

Educational level***

Elementary or less 26 1.7% 416 20.5%

Junior high schoold 392 26.2% 256 12.6%

Senior high school 733 49% 541 26.7%

Tertiary education or higher 344 23% 815 40.2%

P ¼ .000 N ¼ 1495 100% N ¼ 2028 100%

Health status***

Very good 648 43.2% 468 23.0%

Good 512 34.2% 619 30.5%

Fair 253 16.9% 630 31.0%

Bad 86 5.7% 314 15.5%

P ¼ .000 N ¼ 1499 100% N ¼ 2031 100%

Interested in Politics***

Very interested 202 13.4% 34 1.7%

Quite interested 723 48.1% 330 16.3%

Hardly interested 487 32.4% 654 32.4%

Not at all interested 90 6.0% 1003 49.6%

P ¼ .000 n ¼ 1502 100% n ¼ 2021 100%
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status. If “cohabitant” is dropped, the proportions of other categories in marital status

increase slightly, from 0.06% to 0.4%, in TSCS and the result of the Chi-square test

remains significant. Educational levels are recoded for both ESS1_DK and TSCS for

comparison. Almost half of the Danish sample have a senior high school degree (49%),

while 40% of the respondents in the Taiwanese data have a higher tertiary education

degree, including formal education at colleges, universities and higher degrees.

There are other variables that can be used to reveal the difference between Denmark and

Taiwan, such as health status and interest in politics. Both ESS1_DK and 2015 TSCS

employed five response categories for health status, but the former used a balanced scale,

from “very good” to “very bad” with “fair” as the middle response, while the latter used an

unbalanced one, from “excellent” to “bad.” The categories of “bad” and “very bad” in

ESS1_DK are combined and so are “excellent” and “very good” in 2015 TSCS, resulting

in four response categories (see Table 2).

With regard to interest in politics, both samples employed the same response categories

for measurement. It is noticeable that more than 60% of the Danish sample indicated

certain levels of interest in politics, while nearly half of the Taiwanese sample were not at

all interested in politics.

Table 2. Continued.

Country Denmark Taiwan

Variable f/M %/SD f/M %/SD

Method 1 (4-point scale)

Q1. How satisfied with present

state of economy in country***

2.91 0.577 2.12 0.771

Q2. How satisfied with the

national government***

2.72 0.656 2.04 0.767

Q3. How satisfied with the way

democracy works in country***

3.10 0.595 2.58 0.752

Method 2 (6-point scale)

Q1. How satisfied with present state

of economy in country***

3.46 0.917 1.96 1.241

Q2. How satisfied with the national

government***

3.06 1.091 1.82 1.254

Q3. How satisfied with the way

democracy works in country***

3.74 0.854 2.77 1.339

Method 3 (11-point scale)

Q1. How satisfied with present state

of economy in country***

6.92 1.938 3.94 2.036

Q2. How satisfied with the national

government***

5.86 2.268 3.58 2.089

Q3. How satisfied with the way

democracy works in country***

7.24 1.876 5.31 2.251

*p , .05.

**p , .01.

***p , .001.
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Table 3. Correlations, means, and standard deviations of Danish samples1.

Sample 1 M1 M2 M3

Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

M1

Q1 1

Q2 .410 1

Q3 .288 .288 1

M2

Q1 .414 .267 .179 1

Q2 .262 .677 .162 .410 1

Q3 .269 .261 .473 .407 .388 1

M3

Q1 .0 .0 .0 .0 .0 .0 1

Q2 .0 .0 .0 .0 .0 .0 .0 1

Q3 .0 .0 .0 .0 .0 .0 .0 .0 1

Mean 2.91 2.73 3.11 6.94 5.92 7.31 .0 .0 .0

S.D. .579 .652 .599 1.915 2.273 1.884 1.0 1.0 1.0

n 653 653 653 653 653 653

Sample 2 M1 M2 M3

Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

M1

Q1 1

Q2 .497 1

Q3 .411 .317 1

M2

Q1 .0 .0 .0 1

Q2 .0 .0 .0 .0 1

Q3 .0 .0 .0 .0 .0 1

M3

Q1 .554 .373 .300 .0 .0 .0 1

Q2 .388 .744 .196 .0 .0 .0 .466 1

Q3 .362 .309 .603 .0 .0 .0 .421 .372 1

Mean 3.46 3.08 3.74 .0 .0 .0 6.92 5.95 7.30

S.D. .911 1.069 .844 1.0 1.0 1.0 1.962 2.203 1.794

n 687 687 687 687 687 687

1All of the correlation coefficients are significant at the .000 level.
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Table 4. Correlations, means, and standard deviations of Taiwanese samples1.

Sample 1 M1 M2 M3

Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

M1

Q1 1

Q2 .678 1

Q3 .317 .388 1

M2

Q1 .0 .0 .0 1

Q2 .0 .0 .0 .0 1

Q3 .0 .0 .0 .0 .0 1

M3

Q1 .525 .518 .304 .0 .0 .0 1

Q2 .496 .628 .360 .0 .0 .0 .733 1

Q3 .252 .314 .532 .0 .0 .0 .428 .482 1

Mean 2.09 2.02 2.57 .0 .0 .0 4.07 3.68 5.41

S.D. .749 .755 .757 1.0 1.0 1.0 1.963 2.039 2.219

n 880 880 880 880 880 880

Sample 2 M1 M2 M3

Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

M1

Q1 .0 .0 .0

Q2 .0 .0 .0

Q3 .0 .0 .0

M2

Q1 .0 .0 .0 1

Q2 .0 .0 .0 .686 1

Q3 .0 .0 .0 .381 .475 1

M3

Q1 .0 .0 .0 .673 .637 .345 1

Q2 .0 .0 .0 .589 .748 .399 .781 1

Q3 .0 .0 .0 .293 .337 .651 .392 .419 1

Mean .0 .0 .0 1.97 1.80 2.77 3.77 3.44 5.21

S.D. 1.0 1.0 1.0 1.216 1.239 1.331 2.067 2.100 2.298

n 890 890 890 890 890 890

1All of the correlation coefficients are significant at the .000 level.
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As for the satisfaction measured by three response scales, significant differences are

found between countries, as well as among methods. Among different methods, the mean

scores of three satisfaction questions are higher in Denmark than in Taiwan. In particular,

the differences between Denmark and Taiwan are larger when satisfaction is measured by

M2 and M3, despite the consistently low levels of satisfaction in the Taiwanese sample.

The results of the satisfaction measures using a two-group SB-MTMM design are

reported in Table 3 and Table 4 for ESS1_DK and 2015 TSCS, respectively, indicating

incomplete data in each of the subsamples. Since both of the datasets employed

approximately the same SB-MTMM experimental design, the parameter estimation

followed the same procedure. The correlations for the unobserved variables are indicated

by zeros and the variances by ones, as required for the multiple-group analysis with

incomplete data in LISREL (Allison 1987). The correlation between the variables

measured by M1 and M2 is missing by design. Therefore, the parameters are estimated

based on the incomplete covariance matrix. In addition, in order to estimate the

coefficients of reliability, validity, and method effects for the two randomly selected

subsamples simultaneously, we make the assumption that the model is the same for both

groups, except for the specification of selecting the variables of the two groups.

The Taiwanese data had the peculiarity that the correlations between questions 1 and 2

were much higher than the correlation between these variables and question 3. The

program Jrule (Van der Veld et al. 2008), which was used to detect misspecifications in the

model, also detected this high correlation and suggested introduction of a correlated error

between questions 1 and 2 in the model for the Taiwanese data. Only in Method 2 was this

correlated error not significantly different from zero. In the other two methods, these

correlations were 0.14 for M1 and 0.28 for M3. The explanation is not so simple, but it is

clear that a deteriorating economy has been a serious issue in Taiwan in the past decade,

and this has been seen as the responsibility of the government. Research in political

science has indicated such consequences of economic performance on voting behavior and

named it “economic voting” (Wu and Lin 2013). One can therefore expect a much higher

correlation between satisfaction with the government and satisfaction with the economy

than between these two and the functioning of democracy, which does not depend so much

on the present government only. With this one correction, a proper solution is obtained

with a chi2 ¼ 32.20 and df ¼ 38 after we corrected for the zero cells in the correlation

matrices, the RMR ¼ .011. The Jrule approach to test for local misspecifications (Saris

et al. 2009) did not suggest improvements.

Table 5. Estimates of the parameters for the two-group SB-MTMM design1.

Reliability Validity

Method M1 M2 M3 M1 M2 M3

Country D T D T D T D T D T D T

Q1 .55 .55 .74 .72 .58 .72 .79 .86 .92 .98 .74 .81

Q2 .74 .69 .90 .87 .77 .79 .87 .90 .94 .98 .81 .83

Q3 .91 .62 .62 .85 .76 .62 .76 .88 .90 .98 .81 .81

Average .73 .62 .75 .81 .70 .71 .81 .88 .92 .98 .79 .82

1“D” denotes the ESS1_DK data and “T” denotes the 2015 TSCS.
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The estimated reliabilities and validities for ESS1_DK and 2015 TSCS are reported in

Table 5. As the total quality of a measure is defined as follows:

q2
ij ¼ r2

ij £ v2
ij, Table 6 has been derived from Table 5.

Table 6 shows that in both countries, the second method, the six-point scale has better

quality on average over the three questions. This is also true for three questions, except for

question 3, in Denmark. The quality of the measures using Method 1 (four-point scale) and

Method 3 (eleven-point scale) do not differ very much. However, when we look at the

estimated validities of the questions using Method 1 and Method 3 we see that they are

slightly better in Taiwan, while the reliability using Method 1 in Taiwan is lower.

5.1. Results of the Test for Measurement Invariance

Table 7 shows the variance-covariance matrix of the latent traits. As the baseline model

has only recently been identified, it is not possible to conduct a robustness test with the

configural model. When the loadings are restricted, Jrule shows that the loading of the

second trait is misspecified. As was mentioned above, the government is seen as

responsible for the economic situation. This seems to be stronger for the case in Taiwan

Table 6. The quality of the different questions for the different methods used1.

M1 M2 M3

Country D T D T D T

Q1 0.43 0.47 0.68 0.71 0.45 0.58

Q2 0.64 0.62 0.85 0.85 0.62 0.66

Q3 0.69 0.54 0.55 0.83 0.62 0.50

Average 0.59 0.54 0.69 0.8 0.56 0.58
1“D” denotes the ESS1_DK data and “T” denotes the 2015 TSCS.

Table 7. The variance-covariance matrix of the traits.

Denmark

n ¼ 1502 Q1 Q2 Q3

Q1 .17

Q2 .13 .34

Q3 .09 .09 .19

Mean 2.91 2.73 3.11

Taiwan

n ¼ 2020 Q1 Q2 Q3

Q1 .28

Q2 .28 .37

Q3 .15 .19 .29

Mean 2.09 2.02 2.57
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than in Denmark. This means that this measurement instrument has only partial metric

invariance, that is, only the first and the third items are comparable across countries.

Leaving this loading free, the concepts can be seen as comparable across the two countries.

As equality of loadings is a prerequisite for scalar invariance, the intercepts are

restricted to being equal in both countries, except in the second trait. The likelihood ratio

test (Table 8) indicates that the fit of the scalar model is not significantly different from the

one of the metric model, and Jrule did not show additional misspecifications. These results

imply that, at the cognitive level, partial scalar invariance is established. As the observed

data are corrected for measurement errors, this result means that the relationships between

these concepts and other variables and the latent means of the concepts can be compared

across countries.

6. Conclusion

The SB-MTMM approach has been widely applied in the ESS to evaluate the quality of

survey measures. It remains unclear whether this approach performs equally well in

logographic writing systems. In addition, it is of interest to explore possible similarity or

difference between ESS and Taiwanese data. Using a two-group experimental design,

Danish data from ESS Round 1 and the 2015 TSCS are compared. The results indicated

that questions measured by six-point scales with labels at endpoints (M2) have the best

quality, while the measures on either a four-point scale with full labels or an eleven-point

scale are equally acceptable. Although differences between Danish and Taiwanese data

can be observed, the findings are comparable, despite the fact that the order of applying

methods differed. These findings are contrary to previous research suggesting that fully

labeled response scales provide higher reliability than those with endpoints (Alwin and

Krosnick 1991; Holbrook et al. 2006; Weng 2004), while the results are consistent with

other studies (Saris and Gallhofer 2014; Saris et al. 2004). The designs of response scale

deserve further examination. However, these methods differed in more than just this one

aspect, which may explain these results.

One possible reason for the relatively poor quality of M1 in the 2015 TSCS may be the

different measurement procedures used for the different methods during the face-to-face

interview. An unfolding technique, in which interviewers first asked about the direction

and then about the degree of attitudes (Schaeffer and Presser 2003), is used for M1 to

minimize the tendency of choosing the middle category. On the other hand, show cards are

provided upon request for M2 and M3, so it is easier for the respondents to answer the

questions using Methods 2 and 3, rather than using Method 1. While the inquiry process

Table 8. Likelihood ratio test of the metric and scalar models.

Chi-square
Chi-square
difference

DF
difference Pr. (.Chi2)

Partially metric
invariant model

0.0766

Partially scalar
invariant model

0.8217 0.74511 1 0.388
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should be considered as part of the methods, researchers need to be cautious with its

influence on data quality.

One cannot draw general conclusions about the effect of different aspects of the

methods on the quality of questions, because often, like here, more aspects vary at the

same time. Also, findings on quality of measures may differ by the measured topics. For

general conclusions, we refer to the results of meta-analyses over large numbers of

MTMM experiments (Saris and Gallhofer 2014).

A second result is that the concept “political satisfaction” is only partially invariant

across the two countries. The results of the invariance test show that the understanding of

the indicators of satisfaction with the economy and with the way democracy works are

comparable in Denmark and Taiwan. However, this is not the case for satisfaction with the

government. For this last indicator, there seems to be a different interpretation in the two

countries. This signifies that means and relationships of the latent variable “political

satisfaction” can be compared across countries, but composite scores can only be

compared if one uses only the comparable indicators in computing the composite scores.
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An Evolutionary Schema for Using “it-is-what-it-is”
Data in Official Statistics

Jack Lothian1, Anders Holmberg2, and Allyson Seyb3

The linking of disparate data sets across time, space and sources is probably the foremost
current issue facing Central Statistical Agencies (CSA). If one reviews the current literature
looking for the prevalent challenges facing CSAs, three issues stand out: 1) using
administrative data effectively; 2) big data and what it means for CSAs; and 3) integrating
disparate data set (such as health, education and wealth) to provide measurable facts that can
guide policy makers. CSAs are being challenged to explore the same kind of challenges faced
by Google, Facebook, and Yahoo, which are using graphical/semantic web models for
organizing, searching and analysing data. Additionally, time and space (geography) are
becoming more important dimensions (domains) for CSAs as they start to explore new data
sources and ways to integrate those to study relationships. Central agency methodologists are
being pushed to include these new perspectives into their standard theories, practises and
policies. Like most methodologists, the authors see surveys and the publications of their
results as a process where estimation is the key tool to achieve the final goal of an accurate
statistical output. Randomness and sampling exists to support this goal, and early on it was
clear to us that the incoming “it-is-what-it-is” data sources were not randomly selected. These
sources were obviously biased and thus would produce biased estimates. So, we set out to
design a strategy to deal with this issue.

This article presents a schema for integrating and linking traditional and non-traditional
datasets. Like all survey methodologies, this schema addresses the fundamental issues of
representativeness, estimation and total survey error measurement.

Key words: Representativeness; timeline databases; statistical registers; Estimation;
administrative data.

1. Introduction

The linking of disparate data sets across time, space and sources is probably the foremost

current issue facing Central Statistical Agencies CSAs. If one reviews the current literature

looking for the prevalent challenges facing CSAs, three issues stand out: 1) using

administrative data effectively; 2) big data and what it means for CSAs; and 3) integrating

disparate data sets (such as health, education and wealth) to provide measurable facts that

can guide policymakers. CSAs are being challenged to explore the same kind of concerns

facing Google and Facebook, which are using graphical/semantic web models Ferrara

et al. 2011 for organizing, searching and analyzing data. Additionally, time and space
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(geography) are becoming more important dimensions (domains) for CSAs as they start to

explore causal models. Central agency methodologists are being pushed to include these

new perspectives into their standard theories, practises and policies. This article presents a

schema for integrating and linking traditional and nontraditional data sets. Like all survey

methodologies, this schema addresses the fundamental issues of representativeness,

estimation and total survey error measurement.

Over the past decade, a new design paradigm has emerged concerning strategies for

integrating disparate data sets to provide new understandings from the data. The

development of this paradigm is currently not focused and there are multiple paths of

advancement being pursued, such as big data, evolutionary databases (Fowler and

Sadalage 2003), semantic web models, graphical query databases and many others. In a

Graphical Queries Database (GQD), every element has a direct pointer to its adjacent

elements. The simplest GQD pointer is a first order tree of one-to-one links. Semantic web

links are first-order trees where the linkage function (the verb) becomes a generalized

function. All these areas of research have a core issue: combining/linking large disparate

data sets in a feasible and cost-effective manner. The complexity of the information, the

fuzziness of the data inside each data set, the fuzziness of the linkage strategies, the large

number of disparate data set, covering disjoint populations, the lack of control of the

content and quality of administrative data, and the size of the data sets preclude the use of

many straightforward classical solutions (Baker et al. 2013; Bakker and Daas 2012; Hand

2018; Holt 2000; Zhang 2012).

All the above-mentioned strategies appear to follow parallel paths to the same general

solution. All these approaches propose viewing disparate data set integration as an

evolutionary or ongoing process. The data and the database structure evolve as new

information is added; as more data sets are added and linked; as new relationships between

data sets are discovered and added; as new models of how different data sets interact are

discovered; as new editing rules and methodologies are found; as the questions that we want

answered change; as we become more knowledgeable of the data; and so on. The evolutionary

nature of the problem implies that no fixed solution can succeed over an extended period.

All the strategies cited above embrace evolution and make it part of the solution.

The core data design concept we are proposing is a simplified adaption of how many

online search companies structure and search data. The major point of departure of our

schema versus these online solutions is our inclusion of time. For these companies, the

point in time at which the measurements are made is not usually a relevant characteristic,

but for our schema, it will be a fundamental aspect of the data. Later in the document, we

will also see that “space” or geography will become a necessary dimension of our design

schema. Our schema will be underpinned and anchored by a space-time lattice, through

which our entities will travel. It is somewhat akin to the game called “Life”. We will call

the structured collection of common files (administrative, survey, register or census) an

evolutionary schema. The term “evolutionary” implies that the database constructs

entities’ event timelines and these timelines are updated with new current events. The

event timelines evolve. In the paradigm of database design and programming,

“evolutionary database” design has a different sense. It is the database design schema

and algorithms that are always evolving in an incremental fashion. Our proposed design

will be evolutionary in this sense as well.
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We present a conceptual schema for dealing with the integration of nontraditional and

traditional survey data sets. It is important to note that we will be presenting a strategy for

structuring, analyzing problems and answering questions, rather than a specific solution.

As in classical survey design, our final goal will be a strategy to provide the best possible

estimates. To achieve this, we convey the message that methodologists must understand

the whole process that will produce the estimates, not just focus on one phase of the

process.

We believe that the basis for understanding this process and creating interpretable

and meaningful estimates will be a system of statistical base registers, plus consistent

monitoring and maintenance strategies. These statistical registers serve as lighthouses for

illuminating ‘trusted’ estimation procedures and provide a benchmark for comparing and

investigating representativeness concerns. We believe that our schema provides a broad

and general framework for CSAs working with large collections of administrative data and

other conveniently available data sets/databases that we refer to as “it-is-what-it-is” data

sets. We offer a framework for: structuring the non-probabilistic data; making it useful

for cause and effect statistical inference; incrementally developing, designing and

maintaining the database system; and, inserting total survey error concepts into the

schema. Our schema does not provide detailed designs for these processes, instead we

provide a pseudo-scientific framework for addressing survey design questions when using

non-probabilistic data sets.

Section 2 presents the concept of “it-is-what-it-is” data sources. Section 3 discusses the

importance of registers to support estimation and eliminate potential biases within the

database schema. Section 4 presents an overview of our data model for structuring and

using the data in the evolutionary database. Section 5 discusses how estimation might take

place in the evolutionary schema. Section 6 discusses the place of metadata, and

measuring Total Survey Error (TSE) and controlling quality in this evolutionary schema.

Section 7 is a summary.

2. Structured Framework for Using “it-what-it-is” Data Sets

2.1. “It-is-what-it-is” Data Sets

In our evolutionary schema, we will assume that all data sources integrated into the

evolutionary database are provided by an outside agency that is beyond the control and

influence of the owners of the evolutionary database. These outside sources could be

administrative files, censuses, registers, client lists, commercial transactions, sensor

readings, survey files, sample files, and so on. Our source data sets will be what Sharon

Lohr (Lohr et al. 2015) recently referred to as “it-is-what-it-is” data sets. “It-is-what-it-is”

data sets are source files where the survey methodologist has no control over the selection

probabilities, nor the content of the files. It should be noted that the true sample selection

probabilities for the entities in these external sourced data sets may be non-probabilistic

and/or unknowable.

As expressed by Sharon Lohr, the term “it-is-what-it-is” has a wider sense. As survey

methodologists, we may be asked to answer questions where the sole source of

information concerning these questions are “it- is-what-it-is” data sets and thus we may be
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forced to use these data sets despite their limitations. In this case, methodologists must

resort to pseudo-scientific methods to address the questions. If this is the case, Sharon says

methodologists need to be aware of the data sets’ limitations or “what it is”. Sharon stated

that “it-is-what-it-is” data sets fundamentally change our analysis paradigm and we need

to understand this point. In the following discussions, the “it-is-what-it-is” nature of the

data sources will be an integral part of our schema.

In our case, both administrative data and big data fit the “it-is-what-it-is” concept. They

are not necessarily distinct from one another, and from a CSA’s perspective, using them

means reusing data that originated outside the agency. UNECE (2011) defines

administrative data as “data that is collected by sources external to statistical offices”

and “administrative sources are data holdings containing information that is not primarily

collected for statistical purposes”. This broad definition would also include almost all

big data, given the existing different definitions of the phenomena. However, an

administrative data source does not have to be “big” nor do big data sources normally have

administrative purposes. Usually, the administrative data delivered to the CSAs come

from and through the operations of another public organization. This is seldom the case

with big data sources; they stem from activities, events and operations within the whole of

society.

2.2. The “Elephant in the Room” – Representativeness

Unfortunately, there is an elephant in the room when we deal with “it-is-what-it-is” data

sets. The elephant is the fact that these source files may not be appropriate for making

statistical inferences concerning the general population because the selection probabilities

are non-probabilistic.. A recent American Association Public Opinion Research (AAPOR)

task force report on non-probability sampling (Baker et al. 2013) stated that “approaches

lacking a theoretical basis are not appropriate for making statistical inferences”. It was

pointed out in an earlier AAPOR report (Baker et al. 2010) that statistical estimates and

inferences drawn from “it-is-what-it-is” data sets cannot be trusted to be representative of

the general population. In reference to the two AAPOR reports, Langer (Langer 2013)

quotes a well-known classical reference (Kruskal and Mosteller 1979) stating that “[w]e

prefer to exclude non-probability sampling methods from the representative rubric.”

Langer is implying that one cannot ever claim that results derived from an “it-is-what-it-is”

data set are representative of the general population. This is a strong statement and raises

questions about the ultimate usefulness of “it-is-what-it-is” data sources.

As the 2013 AAPOR report states, the key is the risk associated with the source data set

not being representative of the general population. This is a serious risk because most

“it-is-what-it-is” sources suffer from significant coverage issues associated with various

sub-populations within a target population. (Overcoverage, duplicates, undercoverage,

and missing data can occur in any data source and they can all lead to a population or

sample being nonrepresentative. For brevity, at times we will use these terms

interchangeably or in a generic sense.) The risk of bias is a systemic problem when

dealing with “it-is-what-it-is” data sets and, as illustrated in Subsection 4.4, the cross-

linking of “it-is-what-it-is” data sets significantly increases the potential risk. This is the

Achilles heel of “it-is-what-it-is” data and, if we cannot address this issue, we will never be
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able to widely use “it-is-what-it-is” data. As survey methodologists, we must be able to

defend ourselves from criticisms of bias caused by, for example, undercovering

populations, such as the underprivileged or rare populations. Without a methodology to

measure coverage issues and correct its effects, how do we maintain our credibility? Our

schema offers a strategy for confronting this key issue and a stepping stone enabling CSAs

to handle a paradigm change and make statistics by repurposing and combining data from

sources outside their direct control.

2.3. Correcting Nonrepresentativeness with Registers and Frames

In our article, we address the representativeness risk by creating statistical population

registers or frames that allow us to measure and correct over- and undercoverage. Most

CSAs estimate for three types of populations: persons, businesses (from a National

Accounts perspective these include nonprofit and public organizations) and geography.

So, we propose that CSAs adopt these registers as their fundamental mechanism for

dealing with nonrepresentativeness within their data ecosystem. As we go through the

next few sections we will outline a strategy that:

1. Creates three lighthouse (base) registers systems and uses them to measure under-

and overcoverage in various strata. Then, we use these registers to create calibrations

(design-based designs) or models (model-based designs) or Bayesian priors

(Bayesian designs) to correct for under- and overcoverage.

2. We will assume that we can construct a stratification definition process that ensures

that within each stratum we can assume that the observed entities were generated by

a random process. Thus, within each stratum the observed entities are assumed to be

representative of the stratum sub- population.

3. This estimation capability will be supported by efficient and frequent monitoring of

entity transitions in the registers. We foresee the regular use of indicators of entity

flows and means of validation (through surveys and investigations) that are regularly

used to update the strata and tombstone information in the registers.

The authors recognize that their strategy is naive and pseudo-scientific. It may not

correct for all the biases created by the “it-is-what-it-is” data sets’ under- and overcoverage.

Yet it is a first step along a well-trodden design-based path. As we gather more expertise,

future methodologists will develop more mature and complex methodologies for dealing

with representativeness. By anchoring “it-is-what-it-is” data over time against better known

or controlled data, there will be progress. While we recognize the risks of following

a strategy that does not have an unambiguous theory behind it, we feel there is no

other choice.

3. Creating the Lighthouse Registers

3.1. Estimation and Representativeness Requirements Imply the Need for Registers

Our evolutionary schema’s estimation strategy is built upon three lighthouse registers

systems (Thygesen and Grosen-Mielsen 2013). The structural supports for estimation will
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be the three traditional entity registers/frames already used by many CSAs. These are

geography (or land, dwellings, property, or addresses), persons (or households, or

families) and firms (or organizations, businesses, enterprises, establishments, or plants).

Traditionally, the census played the role of both the dwelling and person registers, while

the business register provided a firm register. To these three key base registers we add

time, so that cause and effect relationships can be studied. As in science, time is a special

dimension with unique properties quite different from our other three entity dimensions.

Yet nevertheless, it will enter many estimation problems. Note that in our schema, a base

register system is not equivalent to a sampling frame nor to a census. A census could be an

input for building a register and a frame is an output of a register system. In practice, base

register systems might be a single database file spanning all time periods and sub-

populations or it might be a collection of subregistries achieving the same purpose. Base

registers: define important statistical units, define standardized populations, contain links

to units in other base registers, contain links to other data sources that relate to the same

units, are important as a sampling frame, and can be used for demographic statistics for

the units (Wallgren and Wallgren 2014). For convenience, we will dispense with using

the descriptor “system” and use the singular form “register” when referring to base

register systems.

The base registers of geography (LR), persons (PR) and businesses (BR) together with

time are the lighthouses for estimation in their respective dimension. They illuminate

potential areas of bias in our estimation system and shine light on the quality of our

estimates (Figure 1). Base registers that are connectable to our data sources are the key

design element that will allow us to make high quality estimations. These registers will be

our starting point for adjusting for nonrepresentativeness effects in our schema.

Business register 
Firm
Enterprise
Establishment
Plant
Farm
Organization

People register 
Individuals
Households
Families

Land register 
Dwellings
Property
Environment

It is what
it is data

Fig. 1. The three base registers anchor estimates and illuminate the quality of “it-is-what-it-is” data sets.
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Historically CSAs have built business registers from administrative files, while censuses

and administive address files have been the main sources to make pseudoregisters for

dwellings and persons. We envision a future where all three base registers are built from

administrative files supplemented by surveys and censuses.

The challenge is how to create a base register from a disparate collection of

administrative files. If we create a union data set of all the entities covered by multiple

administrative data set sources, the resulting population size is often orders of magnitude

larger than the current estimated population count of entities. Alternatively, when we

create an intersection data set for the available administrative data sources, the coverage of

the population rapidly plummets as more administrative data sets are joined. Typically, the

entity count in the intersection data set is much lower than the current estimated population

of entities. Winnowing down the number of entities in this collective to create an unbiased

frame with complete unduplicated coverage of a desired target is a complex task. We

believe that this implies that we must recognize representativeness as the core issue in

developing our register systems. The data sources will be “it-is-what-it-is” data sets and

we accept that fact and deal with it the best we can. Without some structured strategy for

dealing with this issue, any estimation process will be of poor quality. Fortunately, CSAs

have a template for developing these future registers: the current universally accepted

process for creating business registers.

In the following sections, we will outline a strategy for constructing a representative

base register. There are commonalities of function and design that cross the three base

registers defined within our schema. Each register will be made up of well-defined entities

that exist in the real world and are theoretically finite in number and countable. In each

case, the registers will cover a wider population of entities than the current active

population. The register will be created from multiple sources of varying quality,

indicating whether an entity existed or not and over which period. Entities will have birth

and death dates. Hierarchical structures may exist within each register: for businesses

(enterprises, establishments, plants, locations); for persons (households, families,

persons); and geography (regions, census tracts, land holdings, buildings, addresses).

3.2. Universal Identifiers

Most of the literature on creating person registers was written by authors from countries

where universal and unique personal identifiers exist and have been in use by the general

population for decades (Bakker and Daas 2012). If a country has a universal identifier

given to every resident at birth or upon entering the country for residence, then they have

the core of a personal registry. Yet even in this fortunate case, this will not be sufficient

information for creating a base person register. To create a PR, one also needs entry and

exit dates from the country and birth and death dates for every entity. Alternatively, a

country that conducts regular censuses has the core for creating a person register. But in

this case, they must coherently merge all the available censuses into a unified file, plus

augment the information from other sources detailing births and deaths, and entries and

exits to the country. Adding time to our schema complicates our design.

Outside of Europe, universal identifier registers are rare. In most countries, there are

serious technical and political obstacles to overcome if one wishes to create a universal
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identifier system. The authors believe that for the foreseeable future, most of the countries

in the world will not have a universal person identifier system. Therefore, a generic

register construction methodology should not depend on the existence of a universal

identifier. This requirement presents us with a conundrum if neither a universal identifier

system nor regular censuses exists. We are confident that the current available BR

technology, together with an evolutionary development strategy can overcome this

challenge. In the following sections, we will assume that a universal identifier does

not exist.

3.3. A Template for a Base Register

The basic BR template is mature, well understood and supported by a broad international

consensus. Thus, we will use a simplified BR structure as a template for illustrating how

one might construct and maintain the three base registers. In common usage, the term

“business register” is not a base register system in the sense that we define it. The current

standard design of the business register encompasses a complex system of interacting files,

rather than one core list. In our schema, we define three types of files encompassed within

each base register system: the source files or administrative registers; the entity register

which is our core base register; and the statistical registers, which we might think of as

statistical frames.

The BR’s entity register of firms enumerates all business entities that have an event in

any “it-is-what-it-is” source data files in the past V years. These collections of source files

used to identify and birth entities to the entity register we will call the administrative

registers and are subregisters within the business register system. The BR’s administrative

registers can give conflicting or partial information concerning the presence of business

activity at any point in time. They can have different processing dates with different lags in

their arrival at a CSA. Different data source agencies tend to use different identifiers.

Duplicate transactions can occur. The information collected by each source can be

radically different, with conflicting evidence concerning events and activity. Thus, the

entities birthed from the administrative registers into the entity register represent a

spectrum of entities with a varying quality of information. Some entities will have

definitive birth dates and continuous ongoing economic activity over a span of time.

Others may only show evidence of an entity registration, with no sign of subsequent

activity. We divide this spectrum into three groups. The groupings depend on the quality

of the administrative information indicating whether the entity exists and is active in a

specific target population at a specific time. At the top of the spectrum are entities with

multiple confirmed indicators of existence from high quality sources and at the bottom of

the spectrum are firms with only partial information from one low quality source.

All sources are not considered of equal quality or informative value concerning the

presence of activity. As such, rules must be created that define when the activity observed

implies an actual birth to the register. When maintaining the register, there is a trade-off

concerning the breadth of information included in the entity register versus the cost of

processing and maintenance of this information. Typically, a small number of sources are

viewed as “fundamental” indicators. New registrations from these fundamental sources

will always generate births to the base register. Internal IDs for these fundamental sources
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are maintained within the entity register. Typically, these maintenance processes ensure

that the internal IDs are consistent over time and space, and are unduplicated. If there are

multiple IDs on the registers, there should exist an internally generated unique ID that

spans the population of all the fundamental sources. If hierarchical structures exist on the

register, then multiple internal IDs may be required. The entity register can include

“inactive” entities: entities that show uncertain, infrequent, very weak or no signal of

activity. (For business entities, “inactive” is an acceptable terminology, but for the PR

it would be inappropriate. A preferred terminology then might be a classification of

“unconfirmed”.) An example of an inactive firm is a single indicator of registration or

creation on a single administrative file with no known other event. Figure 2 summarizes

this process.

The full register system is not useable in any real sense by users outside CSAs because it

contains a collage of disparate populations and plethora of active and inactive entities. The

essential process in Phase 1 is the “birthing rules” shown in Figure 2. In the BR, these rules

are typically set by a cooperative team from the BR, National Accounts, business surveys

and methodology. External users of the register cannot change or control these rules.

The administrative and entity registers are never seen by external users. Instead, the

users see the statistical registers (or target population frames). A frame is the empirically

derived list of the target population of interest. In the design-based paradigm, it would be

our sampling frame and most practitioners think of a frame in the context of a sampling

but, it is also our best possible estimated entity count. The register system presents

statistical registers (or survey frames) to users by putting a filter over the full register. Each

filter changes what entities the user will see. This is the second phase of the register

maintenance system. Figure 3 below summarizes this process. The key process in phase 2

is the “statistical register creation rules”.

Entities with a high-
quality indicator 

of activity

The pool of entities 
with a low-quality 

indicator of activity 

Entities with an
intermediate quality 
indicator of activity 

Intermediate
database 

B
irthing rules

Entity register

Core
taxation
sources 

Core
sources 

Non-core 
Sources

Administrative registers

Fig. 2. Phase 1: The birthing and maintenance processes for generating an entity register.
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The real output of the registers is frame lists from the BR, PR, and LR of target

populations at a given time for example, lists of active firms, resident populations or

property holdings. In our paradigm, it is these statistical registers that become our

lighthouses for identifying and decreasing potential biases.

The “statistical register creation rules” are a filtering mask that uses standardized rules

to extract statistical registers. Users will have no control over the definitions of the

standardized filtering fields, but they will have considerable flexibility within these

definitions. In the case of the BR, the user may extract any standard industrial code (SIC)

grouping, but they will not be able to change SIC definitions. Similarly, BR users would

not be permitted to change the definition of “inactive firms” but they could choose to select

active and/or inactive firms. Of course, inactive firms will not be maintained to the same

standards as active firms.

Typically, a CSA will generate a full business frame (statistical business register) every

publication period (monthly, quarterly or annually). Thus, a design principle of a statistical

business register is that it must be possible to recreate the business frame that was used

for a particular publication date. Meanwhile, updates keep flowing into the BR and

influencing the view of these historical periods. In general, while revised historical frames

could be created, the original frames are used instead. This would be an appropriate

strategy for the other base registers. It is information from the time stamped versions of the

Statistical Register that we suggest should be used to calibrate estimates and make the

results from using “it-is-what-it-is” data sets more representative (less biased) of the target

populations. We will discuss this further in Section 5.

In a base register system, there may be a third phase, a feed-back loop between the

estimation processes from the evolutionary databases and the register processing. For

example, in the context of the BR, business survey responses can lead to updates of name,

address, industry classification, and so on. In the case of our evolutionary data bases

environment, the estimates that come from the various integrated data sources are

analyzed and the knowledge discovered can be fed back to the entity register. These

feedback loops are important for keeping the core registers up-to-date and as accurate

as possible. We assume the updates will be tombstone information at the entity level.

Statistical register
creation rules 

Entities with a high-
quality indicator of

activity 

The pool of entities with
a low-quality indicator

of activity  

Entities with an
intermediate quality
indicator of activity  

Entity register

Probably identified in
the target population 

Low probability of being
in target population 

Statistical register (frame)  

well-identified entities
in the target population 

Fig. 3. Phase 2: Creation of statistical register and target population frame.
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Event information is not maintained in the register. Observed shortcomings in the

register’s design may also lead to feedback. This can be particularly important in a build-

up stage to monitor and tune the rules for “birthing” and “statistical register creation” in

phases 1 and 2. As the CSAs become more proficient at generating these intermediate files,

they will provide the registers with a continuous maintenance function. Figure 4 illustrates

all three phases as one integrated register maintenance system.

4. The Evolutionary Database Schema – The Data Model

4.1. Time and Cause and Effect Relationship

CSAs tend to view time as a descriptive characteristic rather than a fundamental

dimension. Time becomes an estimation domain much like sex, age, race, and so on. Yet,

observations are events in time and when we combine two or more data sources we need to

know how to time order the events observed in the data sources. Many social scientists

intuitively grasp this point because they are looking for cause and effect relationships or

they wish to understand how social systems are evolving. For social scientists, time is a

transcendental variable that helps them make sense of estimates. CSAs tend to think in
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Fig. 4. Putting it all together: a base register system.
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terms of cross-sectional estimates (or panels) in time rather than a time series evolution.

Time series analysis questions are often “end of the line” analyses that marginally affect

the cross-sectional survey designs.

Time opens avenues for us to use, analyze and improve the quality of our data sets.

Observing related events (a timeline of events) for an entity can provide us with a sense of

the evolutionary changes in our data or the volatility of measurements over time. This can

provide us with proxies for measuring quality. Having a timeline of events for a common

individual allows us to develop improved methods for detecting and fixing errors that are

localized to one time period. When one wishes to link entities and events in disparate data

sets, the time lines can provide extra information that can improve the quality of the

linkages and in some cases, it may allow us to develop quality measurement tools for the

cross-linkages.

Time in our evolutionary schema is a fundamental concept and every recorded event

must have a time stamp. There is a time-ordering of all events in the schema, so we can

distinguish between events, such as diagnosis, treatments and results. Time can open new

avenues to improve editing, linking and quality measurements. For an interesting

and expanded discussion of the importance of time in statistical analysis one might read

Dunn (1946).

4.2. Event and Timeline Databases

To illustrate how the evolutionary time schema might work, let us consider an example of

a researcher who wishes to test whether a causal link exists between wealth later in life and

education. The data sources available are two administrative data sets, an annual filing of

income tax returns, and a collection of school records from a group of school boards. We

can view each of these data sets as a list of unique entities and associate a set of date-

stamped events with each entity. Each entity’s record can be viewed as a timeline of

observed events for that entity. Because new events will be constantly added to the

database timelines, the timelines are always evolving in time. The events are containers

holding the information gathered for this event. In practice, the information might be just a

date stamp and virtual pointers to a record in a subsidiary database.

4.2.1. The Annual Filing of Personal Income Tax Returns

Let us call each collection of files that come from a common generating mechanism and

contain common frame entities and identifiers a “timeline database”. Thus, the collective

of all the taxation filings by individuals through time would be the timelines database of an

individual’s annual tax filings. The data within this database would be structured in a

specific manner. The fundamental unique key in the database might be the individual’s

taxation number and an individual’s annual tax filing would be an event in that

individual’s timeline. Note that there is no requirement that the data be collected on a fixed

periodicity and entities’ annual filings could be missing in some years. Within each

timeline database, the collection of entities must be of a common type, but different

timeline databases could contain different types of entities or events. Using survey

terminology, there must be a common frame unit within each timeline database. In our

schema, the grouping of events based upon a common entity ID within a single timeline
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database is viewed as a deterministic function and not a linking process which we view

as a nondeterministic process. Entity IDs are assumed to be known true facts. In our

terminology the process of creating the entity timeline in Figure 5 will be referred to as a

“grouping” function.

Maintaining the taxation database could be straight forward and cost effective.

Whenever a new batch of annual filing comes in, one only needs to find the associated

Entity ID in the database and add a new event to the record. If the evolutionary database

consisted of containers with virtual pointers, one would only need to update the pointers. If

the database was structured properly, this activity might require minimal re-indexing and

sorting. Once a new batch of records was appended to the end of the timelines database, it

might never be touched again. The imposition of the timelines schema onto the taxation

database does not require the owners and previous users of the subsidiary tax databases to

change any of their previous methods. If these databases remain static, no changes will

occur in the timeline database. Even edits of the subsidiary data sets may not require any

updates to the timeline database. Only additions, deletions or changes involving Entity IDs

will require a recompilation of the groupings inside the event containers. For an expanded

discussion on the evolutionary data base structure, one might read Chapter 3 in Lothian

et al. (2017).

4.2.2. The Collection of Education Events from a School Board

For the education timeline database, the unique identifier might be a student while, the

events might be results from tests, special education evaluations, discipline reports, and so

on. Each event would occur at a specific time and there would be characteristics defined

for each event. Some characteristics might be defined at the identifier level (like birth

date, last address, name), while others might be defined at the event level (like date of

transaction, observed attribute, and so on). In this timeline database, multiple different

types of events might be recorded; each being pulled from a different subsidiary database.

Again, the records must all relate to a common entity and there must be a mechanism for

grouping a student’s events into a timeline.

Identifier inconsistencies could be a significant issue with educational data. Changing

schools could lead to the generation of an alternate student number and home address.

In addition, as children age they can change their desired names. These types of

inconsistencies might result in students being assigned multiple identifiers and causing

fragmentation of the student’s event timelines.

Entity i Event 1 Event 2 Event n
Entity ID Event date Event date Event date

characteristic 1 Event type Event type … Event type

characteristic 2 characteristic 1 characteristic 1 characteristic 1
characteristic 2 characteristic 2 characteristic 2 

measurement m measurement k measurement k measurement k

Fig. 5. One entity’s timeline in the taxation timeline database.
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The database design and programming would be evolutionary, so that mechanisms can

be developed at future dates to resolve these inconsistencies. The long-term solution for

this issue is to make the unique key an internally generated database ID that can be

remapped to join up the fragments. For an expanded discussion on this issue, one might

read Appendix B in Lothian et al. (2017).

The two timeline databases examples were chosen to illustrate the proposed timeline

database structure and give a flavor of the challenges that CSAs would face when

implementing this structure. In our design, we emphasize flexibility and evolution to deal

with the constant changes in the number of data sources and what is contained within each

source. By “farming out” the control of the data sources we are implicitly accepting that

each source is an “it-is-what-it-is” data source. Note that timeline databases are not

lighthouse registers, but the lighthouse registers might use information from timeline

databases.

4.3. Linking or Relating Timeline Databases

One of the intended purposes of the evolutionary schema is to allow users to explore

cause and effect relationships and to cross-relate disparate “it-what-it-is” data sets. To

accomplish this task, users of this evolutionary schema will want to build and discover

linkage relationships between different timeline databases. As an example, they may want

to explore the relationship between school performance and health and wealth in three data

sources. To build the output data set, one must start with one of the timeline databases and

connect to a second timeline database through a linkage relation database. Then one must

connect the resultant amalgamated database to the third source database using a second

linkage relation database. Figure 6 illustrates how the potential relationships (linkages)

TAX_TL Database
Unique key: TAX_ID 

HLTH_TL Database
Unique key: HLTH_ID

EDUC_TL Database
Unique key: EDUC_ID 

TAX_HLTH relation
TAX_ID vs HLTH_ID

 linkage database

HLTH_EDUC relation
EDUC_ID vs HLTH_ID 

linkage database

TAX_EDUC relation
TAX_ID vs EDUC_ID

linkage database

Fig. 6. Functional relationships in the evolutionary system.
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between the timeline databases are defined. The ovals in Figure 6 will be referred

interchangeably as linkage functions or linkage databases.

The linkage databases are the tools that will allow us to cross-relate timeline databases

and explore causal models. The linkage databases will contain unique key pairs defining

relationships (links) between two timeline databases. All linkages are assumed to be

one-to-one and are not necessarily exhaustive. Only direct relationships can exist between

two timeline databases. Linkages involving three or more timeline databases only exist

indirectly and the solutions are path dependent. Thus, if A, B, and C are three timeline

databases then (A > B) > C – (A > C) > B. The intersection of the three databases

is path dependent and is neither commutative nor transitive. Anyone who has observed

Google searches is aware that the results of the search depend on the order of the words

used to do the search. This can lead to inconsistencies in the produced results, but a

generalized multi-path linkage function is not feasible. CSAs will have to establish orders

of precedence for multi-source linkages.

Our database design is evolutionary in many senses. The algorithms linking, editing or

transforming the data will incrementally evolve as more knowledge is acquired. Initially,

some linkage relationships might be undefined and implemented on a need-to-have basis.

Fields in subsidiary databases, events, timelines and new survey data sources can be

iteratively added as they become available or are needed. The maintenance of the

evolutionary database will be devolved and distributed amongst local groups with

strengths and experience in the local data. The timeline databases can be disseminated

among unrelated control groups and separate teams could be assigned responsibility for

creating and maintaining the linkage databases. Each team could add events; edit fields

independent of the other groups. New linkage technologies could be implemented without

requiring any revisions to the timeline databases or their subsidiary databases. It becomes

a distributed and cooperative evolutionary system where local changes will not force a

recompile of the complete system.

4.4. Cross-Linking Disparate Data Sets Significantly Increases Risks

Intuitively, most humans have a sense of the Law of Large Numbers. We know that

small observation sets are untrustworthy. So, it is natural to assume that adding more

data to our system must make it more trustworthy, but that is not true when cross-

linking timeline data sources. For linked data sets, this premise does not hold. To

demonstrate the problem, let us return to the example we used in Figure 6, where we

are linking health and wealth data sources, so we can explore how health affects

wealth. Let us make a few conceivable assumptions. We will assume that each data

set is drawn for the same population, but suffers from coverage issues. Perhaps, the

TAX data does not cover some of the people who never entered the labor market and

thus earns no revenue and the health data only partially covers children. Figure 7

illustrates what happens when you link the data. The integrated data set (small oval)

acquires the weaknesses of both source data sets. Integrating additional data set

sources only makes things worse. When dealing with integrated data sets, one

should always assume the output linked data set will not be representative of the

target population.
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Representativeness is the central issue when dealing with it-is-what-it-is data sets and

this section illustrates that however we attack the problem, there are no magic bullets.

Instead, with representativeness in mind, one must use a structured and methodical

strategy to identify and eliminate biases related to coverage problems. Our approach

transfers the representative problem to the lighthouse registers in Figure 1. There

dedicated teams can focus on continually identifying and improving representativeness in

an evolutionary manner. Like in the case of the BR, new sources or strategies will be found

to minimize coverage biases.

4.5. Timelines are a Fundamental Concept

In the data model presented, time is a foundational concept. Our intent was to design a

database that could relate causes and effects, and a necessary requirement for this is

ordering events from multiple timeline databases into a single event timeline. The linking

of events into a timeline can open avenues for improved linkage strategies. Missing

linkage variables can be estimated from other events in the timeline and inconsistencies in

names, addresses, age, and so on, can be edited and standardized by analyzing the full

timeline. The linkage strategy could depend on time vectors instead of a single value.

Perhaps this kind of linkage strategy could help us deal more effectively with name and

address changes.

4.6. Linkage Processes have an Underlying Probabilistic Nature

Linkage functions are assumed to be probabilistic, in the sense that the linkage function

always has significant uncertainty associated with each identified link. Linkage functions

produce a subsample of the two source data sets, where the records produced have an

underlying probabilistic element. The number of links found and the “truth” of each link is

probabilistic (random) in some sense. While it is almost certainly true that the linked data

Target popula�on

TAX coverage–
undercovers women  

Health data coverage–
undercovers children 

Linked integrated sample–
undercovers women and children 

Fig. 7. Coverage biases in integrated data sets.
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set is generated by some probabilistic process, we have little knowledge concerning the

selection probabilities. We are not even certain whether the selection is with or without

replacement. A key issue is whether the probabilistic sample is representative of our target

population. What we will assume is that the sample selected will be non-confounded

(at random) (Rancourt et al. 1994) within some estimation domain. This is a powerful

assumption.

Our linked output data set is a convenience sample (i.e. non-probabilistic samples

sometimes referred to as opportunity or accidental samples see for example Baker et al.

2013) which we will refer to as a linked sample. Our linked sample is a subpopulation

derived using relationships to which we have access, but we have no control or

knowledge of how these relationships were constructed. Researchers using this linked

sample cannot make scientific generalizations about the general population from this

sample because it may not be representative of the target population. Strictly speaking,

linked or convenience samples are non-probability samples (Baker et al. 2010 and

2013), yet we can hypothesize a hidden underlying probabilistic selection mechanism

that is random within some estimation domain (stratum). Thus, the non-probabilistic

element of the selection process only affects the balance between estimation domains.

The credibility of a researcher’s results when using this hypothesis will depend on

convincing the reader that the researcher has properly compensated for the imbalance

between domains and that the final estimates are representative of the population of

interest.

4.7. Using Stratum Definitions to Improve Representativeness

CSAs create various types of strata to help address nonrepresentative issues and to

improve the efficiency of estimates. Coverage issues are regularly encountered in CSA

surveys and censuses. Even full-enumeration censuses can experience significant

undercoverage of special subpopulations. CSAs have several strategies for dealing with

these types of issues. One standard practice is to assume that nonresponse is missing at

random within a stratum. This is analogous to the strategy that we are proposing.

CSA methodologists are mindful of the potential weaknesses caused by assuming that

nonresponse is missing at random. Yet, nonresponse and undercoverage of special

subpopulations occurs in every survey and census. This has forced CSA methodologists to

develop a toolbox of strategies to eliminate coverage issues. These may include: assuming

missing at random within strata; modelling using auxiliary information; Bayesian

imputation; targeted follow-up surveys of under-represented subpopulations; calibration;

capture-recapture techniques; propensity models; and so on.

Historically, CSAs have followed an evolutionary strategy in developing these

methodologies. The authors see a comparable evolutionary development strategy

occurring within our schema. Our assumption of “random selection within a stratum” is

a first step in this development chain. We expect that, over time, more sophisticated

technologies for dealing with coverage issues will arise.

Our lighthouse registers and assumption concerning randomness within a stratum are

initial building blocks that force methodologists to confront representative issues head on.

What we are proposing is a heuristic strategy based on what worked in the past, rather than
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a theory built from first principles. If a CSA can construct the three lighthouses and if the

statistical registers are a reasonable approximation of complete unduplicated coverage of

the target populations, then the authors believe that toolboxes for fixing representativeness

can be developed for “it-is-what-it-is” data sets.

5. Estimation Plays a Central Role in the Design of the Evolutionary Schema

Up to this point, the focus of our database design was implementing a cause and effect

design and exploiting the scalability, flexibility and efficiencies of an evolutionary data

model. The objective is to use estimates derived from this schema to make inferences

concerning real world populations and how entities in these populations interact in time

and space. (For a further discussion on the importance of space and supporting GIS

solutions in our paradigm see Lothian et al. 2017).

To derive interpretable estimates from the data, we must make some conjectures about

the data and apply a structured scientific estimation theory. From survey theory, we

suggest borrowing from one of the three different paradigms. The first is the design-based,

or randomization, theory (Särndal et al. 1992), which emphasizes that attribute values of

the records in the data are fixed values and that it is the random selection of the elements in

the data set that ensures the representativeness of the target population through the use of

a sampling frame. The second paradigm is the predictive, or model-based, approach

(Valliant et al. 2000), where the values are regarded as realizations of random variables

and the design by which the survey elements are selected is of less importance. A third

paradigm that can be implemented is a Bayesian inference framework. It has been put

forward as useful for analysis of small non-probabilistic samples and appears to be a direct

alternative when data from different sources are being combined (Little 2012 and 2015;

Rao 2011). The choice of which paradigm to use depends both on one’s estimation

objective and/or philosophical training. In our schema, we present a design-based

paradigm, but either of the other two paradigms could be substituted. Our schema does not

favor any of the three paradigms. One just needs to choose one paradigm and stick with it.

In the literature to date, there has been much discussion on the data availability,

potential data models, building the databases and linking algorithms, rather than how

estimation and statistical inference enters the data schema. Most of the literature seems

to focus on database structures or building the information technology infrastructure

(Holman et al. 2008). There are numerous articles on linkage algorithms (Fellegi and

Sunter 1969; Jabine and Scheuren 1985; Winkler 2009); others on specific attempts to

define the required data structures (Holmberg et al. 2011; Wallgren and Wallgren 2014);

and others on the construction of specific data ecosystems (Holman et al. 1999). Literature

with an end-to-end perspective of all the components necessary to do statistical inference

and estimation are less common. One such overview is the paper by Zhang (Zhang 2012),

which provides a conceptual statistical methodological framework for using “it-is-what-it-

is” data sets (or administrative data sets in his article). This article was inspired by Zhang’s

article. Our schema provides one possible implementation framework within Zhang’s

conceptual model.

Discussions on estimation strategies are complex and the non-probabilistic nature of the

“it-is-what-it-is” data sources can generate considerable controversy. As we mentioned
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previously, the major obstacle is constructing an estimation framework that generates

results that are representative of the general population. We believe that registers must

play a central role in making estimation representative. Registers and frames are the

support scaffolding for estimation done within the evolutionary schema. Without this

scaffolding, our estimation strategies will be weak and prone to failure irrespective of the

design paradigm that we choose to use.

5.1. Registers/Frames Anchor the Evolutionary Databases

Generally, statistical frames will be derived from information available from one of the

three base statistical entity registers using the Statistical Register Creation Rules

(Figure 3). If U R is the set of all entities in our base register, then:

U F , U R ð1Þ

The base or entity register U R is an integrated, micro-merged and maintained list of

entities created from the combination of different administrative data sources based on

identifiers that are unique to the various data sources, (see Section 3). In addition, we need

a linkage relationship database that cross-links the statistical frame and the entity timeline

database of interest. With U F defined, we could calibrate the “it-is-what-it-is” linked

sample to the frame. (In Bayesian terminology, these calibrations would be prior

constraints on the probability distributions.) By using aggregate data from the frame, such

as domain totals Xd and domain counts Nd and regarding them as known constants, weights

and calibration equations can be constructed that reproduce these known parameters

within the linked data set. Hence, we construct weights wk that satisfy the principal

expressions:

Xd ¼
X
Ad

vd;kxd;k ¼
X
UF

d

xd;k

Nd ¼
X
Ad

vd;k ¼
X
UF

d

1d;k

ð2Þ

where Ad is the subset of linked elements k observed within domain (stratum) d. UF
d is the

complete enumeration of elements k within domain d in the survey frame F while xd,k is a

vector of known variables provided by the frame. Depending on the circumstances,

different variants of Equation (2) can be used (Särndal et al. 1992).

In our formalism, we assume that U F provides unduplicated complete coverage of the

target population U T. To cover domains d, we just add the subscript d and define variables

xd;k ¼
xk for k [ UF

d

0 for k [ U F 2 UF
d

8<
: ð3Þ

where an important case of xk are the indicators 1k variables that gives us, Nd ¼
P

UF
d

1d;k.

The estimation of other parameters, for example, an unknown total Yd ¼
P

UF
d

yd;k from

the linked data set is then done by using the same set of calibration weights, that is,

Ŷd ¼
P

Ad
vd;kyd;k.
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This is a popular technique often used in a design-based inference (Lundström and

Särndal 2005; Särndal 2007). To apply it here, we have to make the naı̈ve assumption that

the linked sample within an estimation domain is a nonconfounded sample from the target

population. Then calibrated estimates are possible, and under this simple scenario one

could estimate variances. (Nonconfounded might be considered as synonymous with

“observations missing at random”. We assume that the observed subpopulation is

representative of the full target population in every variable. Nonconfounded has a wider

contextual meaning that implies the measurement variable is unbiased in both the statistical

and non-statistical sense. The term “unconfouded” is discussed by Rancourt et al. 1994).

If we have entity level information from the frame, we can take the calibration

technique one step further and apply explicit models, that is, compute calibration weights

that, instead of Yd and Nd produce model predictions of super-population parameters Y*
d

and N*
d (Wu and Sitter 2001). In this case, a separate model can be applied for every study

variable and domain, although that would require a considerable modelling effort.

In a Bayesian framework, we can denote the information we have from the statistical

entity frame by Z, it would enter in the specification of the prior distribution of the

population values, p(Y|Z). It would also be used as covariates during the generation of

the posterior distribution and parameter estimation when the prior is confronted with the

linked data (Bryant and Graham 2015).

The above discussion is a framework for an estimation strategy rather than an explicit

methodology. In practice, we are advocating reproducing classical (design-, model-, or

Bayesian-based) estimation techniques used in current survey designs.

5.2. Linking Disparate Timeline Source Files to the Frame

Ancillary register/frame information is necessary for unbiased estimation when one is

cross-linking two “it-is-what-it-is” data sets. To illustrate this point, we will demonstrate

how estimation might occur in a simple example. Let us look at the Section 4 example with

our timeline databases of health and income. We wish to estimate the relationships

between health and wealth of individual entities in the current population (see Figure 7).

There are multiple difficulties with these data sets. First, the TAX and HLTH timeline

databases contain out-of-scope units and have significant undercoverage of the target

population. In survey terminology terms, we are neither sure of the true target population

size N nor of the true sample size n. Without some knowledge of the true n and N, how can

we make unbiased estimates of the relationships? How do we answer such questions as:

how many children are expected to have a specific health issue? At best, we can estimate

ratio or proportional effects that apply to unknown subpopulations. Second, we know that

both timeline databases are confounded, possibly in different ways. In general, the poor,

immigrants, the very young, the very old, persons with handicaps, stay-at-home parents,

and so on may be missing from one or both timeline databases. In survey language

terminology, our linked subsample is a biased sample. However, if we assume that the

sample within each estimation domain d is “at random” or nonconfounded, and if the

entity frame is of good quality, giving us nd and Nd we can apply the calibration technique

in Equation (2) and improve the estimates by decreasing the bias. Without the register/

frame we would not have this possibility.
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5.2.1. Linking the Integrated Sample to the Frame

There are two simple strategies one might use to link the integrated sample to the empirical

frame. If we are fortunate enough to have quality information available to link the sampled

records at the entity level, we can create a micro-entity estimation file with weights applied

at the entity level. Even if entity level linkage is not possible, we could link at the domain

estimate levels if each timeline database file contains the domain stratum identification

variable. In these simple cases, we will be making the naı̈ve assumption that any over-

or undercoverage or nonresponse is “at-random” and within an estimation domain is

ignorable. As mentioned in Subsection 4.7, CSA methodologists have developed a toolbox

of strategies to eliminate coverage issues. We are presenting one of the most straightforward

strategies.

5.2.2. Estimation when Entity Level Linkage with the Frame Exists

Let us assume that we have a statistical register of current residents (perhaps derived from

a recent census or as a result of maintaining a PR lighthouse). Furthermore, a linkage

relationship exists, connecting the resident ID on the frame to the person’s personal

TAX_ID in the taxation timeline database.

Each ellipsoid in Figure 8 could be considered indicative of a survey processing step

or a linkage-step and we call the steps through the linkages ‘phases’. Figure 8 illustrates

what a phase means in our schema: the pentagon is our output integrated data set from the

first phase and comprises two container fields holding the TAX_ID and the HLTH_ID.

Without context, the output data set is not generally sufficient information to derive

reasonable estimates. In phase 2, the context (or calibration) turns the phase 1 output file

into estimates. At times, the second contextual phase can be overlooked when dealing with

“it-is-what-it-is data”. We believe this is a key point, and frames and registers can provide

the scaffolding that supports quality estimates.

TAX_TL Database
Unique key: TAX_ID 

HLTH_TL Database
Unique key: HLTH_ID 

TAX_HLTH relation
TAX_ID vs HLTH_ID 

linkage database

Census_TAX relation
TAX_ID vs Person_ID

linkage database

Census 
derived 
person 
registry

Second Phase

First phase

HLTH versus TAX
Estimates 

Integrated HLTH
& TAX entity

records

Fig. 8. Estimation processing steps when entity level linkages exist.

Lothian et al.: Evolutionary Schema for Using “it-is-what-it-is” Data 157



5.2.3. Estimation when Entity Level Linkage with the Frame Does Not Exist

In some cases, no reliable entity level linkage information may be available, or it is

possible that we wish to link disparate information collected from different, but similar,

entities. If the three data sets (health, wealth, census frame) are nonconfounded within an

estimation domain, are concurrent and have common domain stratification variables, then

an estimator may be found. Figure 9 illustrates this case.

In Figure 9, the linkage between the entity level data (pentagon) and the frame (the

circle) will be indirect. The second phase parallelogram represents the combined

information from the two. As an example, assume the linked timeline databases contain

categorical data such as a geographical (domain d with D categories) and a socio-

economic classification (domain d 0 with D 0 categories) and that we have this information

in the frame as well, but not necessarily simultaneously. With 6 being the domain category

indicator, we can form xk ¼ ð61k; : : : ; 6dk; : : : ; 6Dk; 61 0k; : : : ; 6d 0k; : : : ; 6D 0kÞ
T and the

right-hand side of (2) will be the domain counts Nd† for d ¼ 1, : : : , D and N†d 0 for

d0 ¼ 1, : : : , D0. Hence, we use the marginal distribution of the domain categories from the

frame to support the estimation. The weights that satisfy a calibration equation will depend

on the inferential principle used and with this xk there is no nice expression, however

numerical computations are not difficult. In a generic sense, Equation (2) still holds.

6. Total Survey Error Measurement in the Evolutionary Schema

6.1. Error Measurement and Metadata

The authors see information on error measurement as a fundamental component of the

evolutionary schema. We see this information being stored and maintained in ancillary

metadata files within the ecosystem. We see a metadata file attached to every register,

TAX_TL Database
Unique key: TAX_ID 

HLTH_TL Database
Unique key: HLTH_ID 

TAX_HLTH relation
TAX_ID vs HLTH_ID
linkage database 

Census 
derived 
Person 
Registry

Second Phase

First
Phase 

HLTH versus TAX
Estimates 

Stratum
calibration
g-weights 

Integrated HLTH
& TAX entity

records

Fig. 9. Estimation processing steps when only common stratum information is available.
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source data and linkage function file in the ecosystem. The metadata file will contain

information on data sources, variables available, discussions on weaknesses and strength

of the data and other quality-related information. We see these files as a vital component of

ensuring representativeness and long-term quality of estimates.

6.2. Metadata is the Gateway to the Evolutionary Schema

Researchers will often approach the evolutionary database with an ambiguous research

objective. While these research questions may appear to be wide-ranging or imprecise,

they often have very restrictive underlying constraints that will impact on estimation, such

as, requiring specific data years and/or subpopulations and/or source data sets and/or

relationships being estimated. Researchers will want to know if the available

sources/relationships/registers/linkage functions adhere to these constraints. Thus,

associated with every object/function in the evolutionary schema should be a metadata

descriptor.

The most basic and most requested metadata is an explanation of how to access the data

and how it is structured. Users wish to get on with using the data. They require database

access protocols, file names and locations, field names, formats and brief descriptions, and

source providers for the various data sources.

While this access information is vitally important to users, it presents dangers if it is not

balanced with information related to the quality and limitations of the data. Without some

discussion on the populations covered by each file, you are encouraging users to apply

their analysis to inappropriate subpopulations. Reid et al. (2017) propose a framework for

quality documentation and communication in this situation. Or, perhaps, the user is linking

two sources with slightly different entities (family versus head of household), and this

creates misleading relationships. The authors believe that the priority of meta-data should

be the presentation of quality information to the database user, rather than a focus on

metadata that is easy to create or requested most often.

6.3. Measuring TSE

Total Survey Error (TSE) (see, for example Biemer 2010; Groves and Lyberg 2011) can

rarely be reduced to one number, instead it is a structured methodological approach for

reviewing and compiling sources of error in a survey. Errors can arise at each classical

survey processing step: frame creation, sample design, questionnaire design, questionnaire

distribution, collection, editing, follow-up, imputation and estimation. Each survey

processing step can introduce errors in potentially different dimensions of error. The TSE

paradigm treats each aspect or dimension of the survey processing system as part of a

collage that defines the overall measure of quality. At each processing step, quality

measurables are collected and assembled into an overall package that allows the survey

designer to understand where errors occur and give them some sense of their overall

impact on the TSE. TSE is a structured approach to cataloguing and measuring the errors

that arise in each of the classical survey processing steps. TSE challenges us to view

survey errors in a structured and holistic manner.

While the classical survey processing steps may not be applicable in a data integration

paradigm, we believe one should use a similar structured approach that breaks down the
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overall estimation process into self-contained subprocesses. A few simple measurables

will be suggested within each subprocess. These measures will be naı̈ve, but we believe

they will address the primary concerns of most users. We propose focusing on the

coverage or representativeness of the specific output data set in the specific subprocess.

6.4. Error Arising from Source or “it-is-what-it-is” Data Sets

In our schema, the source data sets are the rectangles in Figures 8 and 9. Source data sets

will be administrative, survey or census data sets containing observed variables that we

wish to interrelate. Often, the incoming quality and content of these sources will be beyond

the control of the CSAs. In the following section, quality measurables will be suggested for

these source data sets. Note that the timeline concept introduces a new way to view quality

in the schema.

6.4.1. Coverage Statistics

In the Evolutionary Schema, population coverage is a critical concept because it is

expected that most data sources will have biases in their coverage of the target population.

Every source data set should be related to its coverage of a frame or register, preferably

either the BR or the PR or the land register. The population coverage should be as

devolved as possible. Thus, for person entity data sources one should provide coverage by

sex, age, geography and as many other demographic characteristics as possible.

Thus, for each processing step p and domain d, we will calculate the quality measure set

Q
p;R
d ¼ kNd; nd; f dlp;R where Nd is the size of the target population in domain d of frame

U F which in turn was derived from the base register U R. Let nd will be the number of

entities in domain d observed in the output data set. Finally, coverage for process p within

domain d will be

f d ¼
nd

Nd

ð4Þ

If there are m domains in processing step p, the full set of preliminary quality measures

Q
p;R
d will be:

Qp;R ¼ Q
p;R
d1
;Qp;R

d2
;Qp;R

d3;†;†;†;
Q

p;R
dm

n o
ð5Þ

By examining Q p,R for all d, the analyst/user can derive some sense of the

representativeness of the output data set derived from process p. These three measures

are simple, and far from comprehensive, yet nevertheless powerful. They address the

principle weakness of linked and “it-is-what-it-is” data sets, representativeness. Small

values of nd and fd or disparate values of fd for different d can be indicators of quality

problems.

We propose using at least one of the three statistical registers/frames to generate Q p,R

for each processing step and then placing this information in the metadata. We recognize

that these sets of measures are not comprehensive, but they are relatively simple to auto-

generate and if they are used properly they will stop the worst cases of misuse of the data.

From our perspective, this is the first step in the evolutionary development of TSE

indicators of representativeness.
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6.4.2. Stability Over Time

These basic measures could be augmented by measuring changes within event timelines.

Timelines are collections of events for a specific entity from a common data source. For

each entity’s timeline, we could record statistics concerning how often a field changes or

is missing. Then, aggregate (domain) estimates of the average changes or proportions of

missing values could be automatically generated and placed in the metadata. Grouping

events into timelines gives us an extra dimension of quality to measure.

6.4.3. Evolution will Develop New Measures of Quality

As new registers, sources, linkage functions, timelines and events get added to the

database, users will develop new insights about the data and better measures of quality.

We will discover new algorithms to calculate these measures and place them into the

metadata.

7. Summary

We set out to identify some key issues in using administrative data: estimation and

assurances of quality. In a two-year-long discussion amongst ourselves and other

methodologists, we explored the numerous pitfalls one encounters when using

administrative data and we discussed several strategies that needed to be a part of any

statistical system using administrative data. While we quickly realized that representa-

tiveness was the Achilles heel of administrative data, we were strongly influenced by

Zhang’s article calling for a new conceptual paradigm when dealing with administrative

data. Thus, right from the beginning of our discussions we attempted to tackle the problem

in a holistic manner, attempting to use a full conceptual paradigm for dealing with

administrative and it-is-what-it-is data. Below is a summary of our major finding and an

outline of the main features of our schema.

7.1. Administrative Data is Nonrepresentative

The key weakness of administrative data is that various sections of the targeted population

have coverage issues, and this generates representativeness problems. Coverage is never

100% in any administrative data source and in most cases, significant portions of a

population are under- or overcovered. This is a systemic problem that is considerably

worsened by cross-linking multiple administrative data sets. Methodologists must address

this key fact steadfastly. We must be capable of defending our estimates from criticisms of

bias caused by undercovering the under-priviledged or the rare populations. If we cannot

do this effectively then CSAs will lose credibility.

7.2. Correction with Registers and Frames

Our solution to this problem and recommendations to CSAs is to create the three

lighthouse registers and use them to measure under- and overcoverage in various

domains/strata/classes. Then we use these registers to create calibrations (design-based

designs), models (model-based designs), or Bayesian priors (Bayesian designs) to correct
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for coverage issues. Here we are following the historical development path for correcting

coverage issues in censuses.

7.3. Evolutionary (System Grows in Every Sense Over Time)

We see our schema as an evolutionary system in every sense. New data sources will

evolve, and old ones will disappear. New data points will be added (both in time and cross-

sections). New database designs will be incorporated, and new estimation and linkage

algorithms will constantly be developed. New methodologies will be constantly under

development and evaluated.

7.4. Distributed and Collaborative System

Administrative data spans wide areas of knowledge, subject-matter areas, geography and

time. In addition, the final design will incorporate ongoing development of complex

statistical and IT methodologies. No one group can do these tasks centrally. The tasks and

data sources must be delegated across various teams with varying backgrounds and

expertise. A central design and control structure would be created to oversee these teams.

7.5. Evolutionary Convergence

When we create our registers, data sources, methodologies, and so on, there must be a path

of convergence towards an ever-improving system. Ideally, each new evolutionary step

will incorporate all previous information gathered. Consider the BR. In general, most of

the information in the BR is tombstone information that rarely changes over time. Births

and deaths are a small percentage of the population, only a small percent of the addresses

or names change each period, and so on. The BR team focuses on changes rather than the

full population. This is also the manner in which the census address list is maintained.

Similarly, our evolutionary system would be built along paths that evolve towards better

quality and optimality.

Feedback loops are important in this system. Users must be able to feed corrections that

they have identified in the registers, algorithms, and so on, back into the system. This is the

way the BR and the address register of traditional censuses worked.

7.6. Timelines (Cause and Effect)

There is one message we are hearing continually from researchers who want to use CSA

data. They want to do cause and effect studies or longitudinal studies. Our data need to

have a natural time structure built in from the beginning. We see each administrative data

transaction as an event that occurs at a specific time. We propose grouping and time

ordering these events that occurred for a common entity into timelines. For each data

source, an implicit timeline database would be created for each entity. Viewing the data

in this manner not only allows for effective studies, it also opens new possibilities for

editing, imputation, linking, and so on. Of course, there are still statistical challenges

in establishing representativeness in longitudinally linked records in order to reliably

interpret the results.
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7.7. Total Survey Error

We propose a simple strategy for creating measurement tools for quality estimation and

we address the representativeness side of the Total Survey Error (TSE) model. In each

stratum/class/domain defined by the three lighthouses, we propose calculating the

coverage ratio of that data source versus the estimated lighthouse population. When cross-

linkages and integrations are done, the stratum coverage ratios should be calculated for the

linked data set. This TSE information should be stored in the metadata.
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How Standardized is Occupational Coding? A Comparison
of Results from Different Coding Agencies in Germany

Natascha Massing1, Martina Wasmer1, Christof Wolf1, and Cornelia Zuell1

As occupational data play a crucial part in many social and economic analyses, information on
the reliability of these data and, in particular on the role of coding agencies, is important.
Based on our review of previous research, we develop four hypotheses, which we test using
occupation-coded data from the German General Social Survey and the field test data from the
German Programme for the International Assessment of Adult Competencies. Because the
same data were coded by several agencies, their coding results could be directly compared. As
the surveys used different instruments, and interviewer training differed, the effects of these
factors could also be evaluated.

Our main findings are: the percentage of uncodeable responses is low (1.8–4.9%) but what
is classified as “uncodeable” varies between coding agencies. Inter-agency coding reliability
is relatively low k ca. 0.5 at four-digit level, and codings sometimes differ systematically
between agencies. The reliability of derived status scores is satisfactory (0.82–0.90). The
previously reported negative relationship between answer length and coding reliability could
be replicated and effects of interviewer training demonstrated. Finally, we discuss the
importance of establishing common coding rules and present recommendations to overcome
some of the problems in occupation coding.

Key words: Occupation coding; coding rules; ISCO.

1. Introduction

Occupations are an important outcome of previous life decisions and a determinant of life

chances. Therefore, occupation is an important variable in social and economic research;

it allows the analysis of labor market processes, social mobility, and status attainment, to

mention just a few. Occupation is a complex construct that is difficult to measure and

requires categorization. Most surveys aiming at collecting data on occupation include

open-ended questions about the respondent’s current or last job. Hence, responses are

recorded verbatim.

In order to be analyzed, these textual data on occupation must usually be coded, that is,

unstandardized texts must be aggregated into pre-defined categorical systems, for

example, the International Standard Classification of Occupations (ISCO) or the Standard

Occupational Classification (SOC). Researchers often derive socioeconomic status scores,

occupational prestige scores or social class positions (Ganzeboom and Treiman 2003,

159–193), or occupational health hazard scales (‘t Mannetje and Kromhout 2003) from

these occupational codes.
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Because of the great importance of the occupation variable, it is essential to understand

the coding process and to assess the quality of coding results. In the present article,

we therefore address the following questions: What percentage of responses to open-

ended questions about occupation are uncodeable? How reliable are occupational

codings? With regard to the latter question we ask, in particular, to what extent coding

results are affected by rules implemented by the coding agency (“house effects”). We

explore how the application of different coding rules influences measures of

socioeconomic status (SES) and occupational prestige. Finally, we analyze the

relationship between the length of answers given by respondents and the reliability of

coding across different agencies.

In order to answer these questions, we use data from the German General Social Survey

(Allgemeine Bevölkerungsumfrage der Sozialwissenschaften, ALLBUS) 2010 and the

German field test of the Programme for the International Assessment of Adult

Competencies (PIAAC) carried out in 2010. Occupational information was coded into

the 2008 version of ISCO (ISCO-08) by three agencies for ALLBUS and two agencies

for PIAAC.

This article is structured as follows: We begin by briefly reviewing relevant literature

on the coding of occupations and discussing key challenges in this field. Based on this

presentation, we develop hypotheses that will guide our empirical analysis. After a short

description of the data and the coding procedures used in our study, we present our results.

We conclude with a discussion of the main findings and implications of our study.

2. Challenges of Occupation Coding and Previous Research

Transferring textual information on occupations into numerical information is a

multifaceted and demanding task. Errors can occur at several stages and impact the quality

of coding. To date, both theoretical attempts to systematize and explain factors affecting

the quality (i.e., validity and reliability) of occupational coding results and empirical

research on this topic have been limited. Elias (1997, 13) distinguished between

1) problems relating to the extent and quality of the data to be coded, 2) problems relating

to the classification itself, and 3) problems relating to the formulation and application of

coding rules and the coding process.

In interviewer-administered surveys, interviewers must ask the questions and record the

information provided by respondents. The first prerequisite to obtaining valid and reliable

information on occupation is the use of adequate questions. The usual recommendation is

to use at least two separate questions (International Labour Office (ILO) 2012, 55f.) to

obtain both information about the job title and about the main tasks and duties performed

in the job. Hoffmann et al. (1995) point out that the questions should be simple, containing

familiar, widely understood terms. Furthermore, they underline the importance of specific

design features. For example, including instructions and examples in the questions seems

to have different effects depending on the education of respondents. They also show that

the size of the text fields provided for the answers affects the answer length because it

serves as a cue to the level of the detail expected (Hoffmann et al. 1995). Hak and Bernts

(1996) point out the fact that the interpretation of answers by the coders is a preliminary

key step of the coding process. In particular, when respondents used vague or ambiguous
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terms or provided contradictory information, the assignment of a specific occupational

code is mainly a matter of interpretation. One can try to improve the quality of the

responses by appropriate interviewer training (Billiet and Loosveldt 1988).

Indeed, several authors have reported challenges encountered during the interview

process that might result in problems when coding answers to the questions about

occupation. For example, Schierholz et al. (2017) reported that respondents tend to

provide incomplete or contradictory information, which influenced coding results.

Similarly, Geis and Hoffmeyer-Zlotnik (2000, 113) reported that typically 15% to 25% of

answers cannot be completely coded to the most detailed level. Therefore, our first

hypothesis is:

H1: We expect the percentage of not completely codeable answers to be around 20%.

The quality of coding is not only influenced by the question used or the interviewer

training, but also depends on the precision, completeness, and clarity of the coding

scheme. In this context, the descriptions of the categories play a crucial role in helping

coders to find the correct codes. However, changes in occupational specialization reduce

the applicability of coding schemes over time, and the typical lengthy updating phase of

such classifications might be too long to capture ongoing changes in occupational

structures. Coding schemes developed for cross-national comparison are even more

challenging because they have to find the right balance between categories reflecting

international comparative structures and national specificities. In this article, we cannot

test the effect of the coding scheme itself on the quality of codings, as we use only one

coding scheme in our empirical analysis.

Basic criteria reflecting the quality of coding results are inter-coder reliability – that is,

the extent to which the same code is assigned to a given text by different coders – and

internal validity – that is, the extent to which the most appropriate code is selected. For our

data, we do not have any codings that could serve as a “gold standard” to assess validity.

Therefore, we will focus on reliability, keeping in mind that high reliability does not

guarantee high validity, but certainly is a necessary requirement. Several measures of

reliability are available, for example, simple percent agreement, Cohen’s kappa, Scott’s pi,

and Krippendorff’s alpha (see, e.g., Freelon 2010). We will report Cohen’s kappa – a

coefficient measuring agreement adjusting for agreement occurring by chance. With an

increasing number of categories, random agreement is negligible and Cohen’s kappa

(multiplied by 100) is only marginally lower than percent agreement.

One way to increase the reliability of occupational coding is to formulate and apply

rules capturing the definitions and general guidelines of an occupational classification

(see, for example, Geis and Hoffmeyer-Zlotnik 2000). Usually, the occupational

classification manual includes some general rules. For example, in the publication

International Standard Classification of Occupations: Structure, Group Definitions and

Correspondence Tables, which is referred to in what follows as the “ISCO manual”, ILO

(2012) suggests that the following three rules (in that order) should be applied when

classifying jobs with a broad range of tasks and duties: (1) If the tasks and duties require

different skill levels, the job should be classified in accordance with the tasks and duties

that require the highest level of skills. (2) If the tasks and duties are connected with

different stages of the production and distribution process, tasks and duties related to the
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production process should take priority. (3) In cases with tasks and duties at the same skill

level and at the same stage of production and distribution, the job should be classified

according to the predominant, that is, most time-consuming, tasks performed. Detailed

explanations of specific boundaries (for example, concerning the distinction between

managers and supervisors or operators of small businesses) are included in the ISCO

manual. Also, recommendations are provided regarding the use of job-related information

other than job title and main tasks and duties actually performed. The developers of ISCO

(ILO) recommend that decisions should be based on the tasks actually performed, rather

than on any other information.

However, beyond general clarifications and rules, more specific operational rules are

needed to determine the most appropriate occupational code for a given description of

a particular job. When automatic dictionary-based coding is applied, the program that

assigns codes to text can be considered part of these rules. In addition, to ensure

consistency, previous coding decisions will usually be incorporated into agencies’

coding rules. Finally, recurring incomplete or ambiguous answers require rules on how

to deal with these cases. As an example, Ganzeboom and Treiman (1996, 210)

recommend providing coders with information on the numerical sizes of the specific

occupational categories, and thus on the probability of category membership, in order to

help them code ambiguous cases. Specifications on whether and how further job-related

information (e.g., employment status or size of organization) are to be taken into

account in case of doubt are also an important part of practical coding rules. This is

especially relevant if important information about performed tasks is lacking in the input

material. In the actual process of assigning codes to verbatim answers, the individual

coders will – more or less systematically – use and “enrich” these rules in their own –

more or less idiosyncratic – way. This may be a source of bias, especially when the

correlated coder variance is high because of high workload per coder (Campanelli et al.

1997, 444–445).

Belloni et al. (2016) studied coding errors in occupational data in the Netherlands using

data from the Survey on Health, Ageing and Retirement in Europe (SHARE). The authors

recoded responses to open-ended questions about occupation for the Dutch sample of the

SHARE data using software for semi-automatic coding: all cases above the certainty score

threshold of 70 were coded automatically; all residual cases were coded manually by an

expert coder. This coding was used as a benchmark and compared to the results of the

coding according to the standard procedure implemented in SHARE (manual coding by

trained coders). Inter-coder agreement at the one-digit ISCO level was 71% for current

job and 72% for last job; at the three-digit ISCO level, it was 52% for current job and 56%

for last job.

Campanelli et al. (1997) reported results of two similar empirical studies, in which they

compared results from different coders of the Office of National Statistics (ONS) and

applied manual, computer-assisted and computer-automated coding methods on data of

the British Household Panel. Data were coded in accordance to the UK Standard

Occupational Classification (SOC), a classification similar to ISCO. Reliability for manual

codings was between 0.75 and 0.80. Validity, assessed by comparisons with expert coders,

yielded agreement rates, ranging between .69 and .84. Only modest gains in reliability and

validity could be obtained by using computer-assisted methods.
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Several studies have dealt with the question of how the quality of coding results is

influenced by the rules applied during the coding process. For manual coding, Hak and

Bernts (1996) argued that the effectiveness of training in terms of inter-coder reliability

is improved, not only by “communicating coding instructions to coders (theoretical

training)”, but also by “socializing coders into practical rules” beyond the general coding

instructions. Such practical coding rules are, at least partly, specific to the coding agency

(or individual coders) and, as such, reflect their experience and expertise. Thus, coding

rules can have a negative effect, as they can lead to what Bushnell (1998) referred to in a

different context as the “coding system bias.” Depending on the coding agency and the

rules in place, results of coding can differ systematically between agencies (“house

effects”). The higher the differences between these agency-specific rules, the higher is the

likelihood of house effects in occupational coding, that is, that the coding will differ

systematically between agencies. Thus, although these house effects increase the

reliability within one agency, they may reduce reliability between different agencies and

jeopardize validity. Thus, our second hypothesis is:

H2: The coding reliability between different coding agencies is lower than the coding

reliability within agencies.

In social research, occupational codes are often used to calculate occupational prestige

and socioeconomic status (SES) scores (Ganzeboom and Treiman 2003). The agreement

between prestige and SES scores derived from the codings of different agencies will be

higher than the inter-agency agreement between the occupational codes. This is

necessarily true because merging a large number of codes into a smaller number of

categories results in higher agreements per se. Additionally, we argue that in the cases

where the choice between different codes is hard to make, the occupations in question are

more similar with respect to prestige and SES than a randomly chosen pair of occupations

would be. In a study by Maaz et al. (2009), occupational information was coded by

professional coders and lay coders (trained student assistants). The level of consistency

between these codings was generally not as high as desirable. For example, for the ten one-

digit codes of the International Standard Classification of Occupations of 1988 (ISCO-88),

the authors reported a Cohen’s kappa (k) of around 0.67. For the 390 more detailed four-

digit ISCO codes, k did not exceed 0.5. When occupational codes were converted into

International Socio-Economic Index (ISEI) scores, correlations were generally higher

(between 0.75 and 0.85). Therefore, our third hypothesis is:

H3: Socioeconomic status and occupational prestige scores will show high levels of

agreement.

Finally, we are concerned with the relation of answer length and codeability. Previous

research suggests that longer text strings do not necessarily result in more reliable codings.

Conrad et al. (2016) found that longer descriptions of occupations were less reliably coded

than shorter descriptions. For coders, texts that provide too much detail or are too complex

can be difficult to interpret within the framework of an occupational classification and can

make it difficult to decide on a unique occupational code. The Conrad et al. (2016) study

corroborates Bergmann and Joye (2005, 9f) that “: : : the more detailed the information to be

sorted into occupational groupings, the less reliably individual cases are assigned to
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categories.” It is also in line with the findings of Cantor and Esposito (1992). They found that

coders who were asked to comment on interviewer recordings of occupations only rarely

indicated that these should contain more specific information; some even criticized the fact

that interviewers had provided too much information. Thus, our fourth hypothesis is:

H4: Long answers to open-ended questions about occupation do not result in higher

coding reliability.

Before we present analyses on our hypotheses, we briefly discuss the data and approach we

use in our empirical study.

3. Data, Classification, and Coding Procedure

3.1. Data

To test our hypotheses, we use data from the German General Social Survey (ALLBUS)

2010 and the German field test of the Programme for the International Assessment of

Adult Competencies (PIAAC) conducted in 2010. Both ALLBUS and PIAAC were

carried out as computer-assisted face-to-face interviews with randomly selected

respondents from official population registers.

We restricted the samples to respondents in gainful employment aged between 18 and

65 years. In our analysis, we considered the respondents’ current or last occupations and

their parents’ occupations. We did not differentiate between these different types of

occupations because coding reliability showed no substantial differences.

Respondents’ job titles and activities were measured with a two-part open-ended

question in ALLBUS and a three-part open-ended question in the PIAAC field test (see

Table 1). These questions were embedded in different background questionnaires that also

Table 1. Questions about current occupation used in ALLBUS and PIAAC.

ALLBUS PIAAC

1. What work do you
do in your main job?

1. What job are you in at the moment?

Please describe
your work precisely.

2. Please describe this job exactly. Please give the
exact title of the job. For example, rather than just
saying “management assistant” give the full title
“management assistant in freight forwarding”; instead
of merely stating “worker”, give the exact title, for
example “machine fitter”. If you are a civil servant,
please give your exact grade, for example “police
sergeant” or “tenured secondary school teacher”.
And if you are a trainee/apprentice, then state the
profession in question.1

2. Does this job, this work
have a special name?

3. Does this job have a special name?

1A similar instruction was provided in ALLBUS in the general interviewer training. However, this instruction did

not appear on the screen and was therefore not read out to the respondents.
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included other occupation-related questions. The ALLBUS respondents were first asked

about their status in employment using a very detailed classification that distinguished

white-collar workers according to their tasks, civil servants according to their career paths,

blue-collar workers according to their qualifications, employers by number of employees,

and farmers by the size of their utilized agricultural area (for more details, see

Supplemental data, Table A1). This was followed by the open-ended questions about

occupation presented in Table 1. The first sub-question of ALLBUS asked for a

description of work done in the job. Strictly speaking, only the second sub-question

referred to the key information “job title”, although in practice, many respondents reacted

to the first sub-question by naming the title of their job. After these questions, several other

occupation-related questions (e.g., about supervisory status) were asked. The original

question wording in German can be found in the Supplemental data (Table A2).

The question about occupation in PIAAC was similar to, but more detailed than that in

ALLBUS (see Table 1). There were three sub-questions about occupation, starting with a

sub-question explicitly asking for the exact job title. In contrast to ALLBUS, all sub-

questions required an answer (a text entry or a click on the “don’t know” or “refused”

button). Also in PIAAC, these questions were followed by several occupation-related

questions (e.g., the industry that the respondent was working in, and supervisory status).

In both surveys, respondents who were currently not employed, but who had worked in

the past, were asked about their last job. Furthermore, respondents were asked about their

mothers’ and fathers’ occupations when the respondents were 15 (ALLBUS) or 16

(PIAAC) years old. The wording was similar to that of the questions about the

respondent’s occupation, however only limited ancillary information was provided to the

coders about the parents (formal qualifications and, in ALLBUS, employment status).

To carry out the survey, the PIAAC interviewers were trained very thoroughly. Their

training included instruction on how to retrieve and record information on occupation;

they were instructed to ask the respondents in a way that the interviewers actually

understood what kind of job the respondents were doing. Furthermore, they also had to

practice how to ask the occupation questions. In ALLBUS there was no such training.

However, the interviewer instructions for the study (in written form) included explanations

and examples to illustrate the level of detail necessary with respect to the open-ended

questions on occupation.

3.2. The ISCO-08 Classification Scheme

ISCO-08 is the current version of the International Standard Classification of Occupations

curated by the International Labour Organization, a specialized agency of the United

Nations. It “provides a system for classifying and aggregating occupational information

: : : [and] allows all jobs in the world to be classified into 436 unit groups” (ILO 2012, 3).

For the purposes of ISCO-08, a job is defined as “a set of tasks and duties performed, or

meant to be performed, by one person” (ILO 2012, 11). Jobs with very similar main

tasks and duties are aggregated into “occupations”. Different occupations form the most

detailed level of ISCO, unit groups.

Besides job, the second main concept underlying ISCO classification is skill, which is

defined as “the ability to carry out the tasks and duties of a given job” (ILO 2012, 11). More
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specifically, in ISCO, occupations are categorized according to the typically required skill

level and skill specialization. Skill level is differentiated into four ordered groups from low

to high educational qualifications and accompanying levels of literacy and numeracy. As

can be seen in Table 2, Major Group 9: Elementary Occupations is characterized by Skill

Level 1; Major Group 3: Technicians and Associate Professionals by Skill Level 3; Major

Group 1: Managers by Skill Levels 3 and 4; Major Group 2: Professionals by Skill Level 4;

and all other major groups by Skill Level 2. Major Group 0: Armed Forces Occupations is

an exception, in that it can contain a broad range of skill levels.

Within the major groups, occupations are grouped by the type of skill specialization,

that is, “the field of knowledge required; the tools and machinery used; the materials

worked on or with; and the kinds of goods and services produced” (ILO 2012, 11). It is

important to note that the concept of skill level and skill specialization refers to the

requirements of jobs and occupations, rather than the skills or education of a specific job

incumbent.

Overall, ISCO follows a hierarchical structure where an increasing level of detail is

expressed as one- to four-digit codes. As mentioned above, unit groups, which are denoted

by four-digit codes, constitute the most detailed level of the classification. These unit

groups are aggregated into 130 minor groups, expressed as three-digit codes, which in turn

are grouped into 43 sub-major groups, denoted by two-digit codes. At the highest level, the

classification comprises 10 major groups (see Table 2).

The structure of the classification is illustrated in Table 3. For example, Unit Group

3112: Civil Engineering Technicians is part of Minor Group 311: Physical and

Engineering Science Technicians, which in turn is part of Sub-major Group 31: Science

and Engineering Associate Professionals, which belongs to Major Group 3: Technicians

and Associate Professionals.

Table 2. Structure of ISCO–08, number of categories, and skill level.

ISCO-08 Major group
Sub-major

groups
Minor
groups

Unit
groups

Skill
level

1 Managers 4 11 31 3 þ 4
2 Professionals 6 27 92 4
3 Technicians and

Associate professionals
5 20 84 3

4 Clerical support workers 4 8 29 2
5 Services and sales workers 4 13 40 2
6 Skilled agricultural, forestry

and fishery workers
3 9 18 2

7 Craft and related trades
workers

5 14 66 2

8 Plant and machine operators,
and assemblers

3 14 40 2

9 Elementary occupations 6 11 33 1
10 Armed forces occupations 3 3 3 1 þ 2 þ 4

Total 43 130 436

Source: (ILO 2012, 14, 22).

Journal of Official Statistics174



3.3. The Coding Process

For our study, a number of agencies were contracted to independently code all the

occupational data. These agencies are experienced in occupational coding and offer this

service commercially; all agencies offer their service roughly in the same price range. All

agencies trained their coders according to their own procedures. Most of the coders were

experienced in coding occupations, however, we do not have detailed knowledge about their

background. The agencies were provided with respondents’ answers to open-ended

questions about occupation, which had been recorded verbatim by the interviewers.

Furthermore, ancillary variables were provided for use by coders during the coding process,

including age, gender, formal education, status in employment, public sector employment,

supervisory tasks, and industry. Three agencies (labeled here as Agency A, Agency B, and

Agency C) coded the responses to the ALLBUS open-ended questions about occupation;

two agencies (Agency A and Agency B) coded the PIAAC data. Whereas Agency A was the

same agency in both cases, Agency B was not. Agency B refers, in fact, to two agencies: The

first agency coded the PIAAC occupation data; its successor coded the ALLBUS data. As

the first agency handed over all relevant material to the second agency, and the second

agency also adopted the first agency’s coding procedures, they are treated as one unit here.

The agencies were not given any further instructions on how to code. Rather, they could

apply their typical coding procedures. They could use either semi-automatic or manual

coding, and they were allowed to use any coding tools they had available. Furthermore, the

agencies themselves decided on the coding strategy to be adopted, that is, 1) the number of

coders; 2) the additional material provided (e.g., the complete ISCO manual or sample lists

of possible codings); and 3) the organization of the coding process (e.g., coding the major

group first and coding the other digits in a second step).

For the coding process, Agency A used a software program that provided the text of the

responses. There was no automatic coding involved in the process. However, the coding

software offered coding suggestions via templates. These suggestions are based on the

Table 3. Extract from ISCO-08.

3 Technicians and associate professionals
31 Science and engineering associate professionals
311 Physical and engineering science technicians
3111 Chemical and physical science technicians
3112 Civil engineering technicians
3113 Electrical engineering technicians
: : : : : :
3119 Physical and engineering science technicians not elsewhere classified
312 Mining, manufacturing and construction supervisors
: : : : : :
32 Health associate professionals
321 Medical and pharmaceutical technicians
: : : : : :
324 Veterinary technicians and assistants
3240 Veterinary technicians and assistants
325 Other health associate professionals
: : : : : :
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ISCO group labels (e.g., coding digit 1, the suggestions are based on the ISCO major

groups, coding digit 4, the suggestions are unit group labels). The main objective of

employing this software was to reduce the complexity of the coding process for the coders

by using a hierarchical coding strategy, providing the same information to all coders. The

coders were not given the ISCO manual as a reference. The coding instructions, ancillary

information, conventions, and known problems with suggested solutions were part of an

interface in the software.

Agency B used, as a first step, automatic coding based on an extensive dictionary. About

45 to 55% of the answers can usually be coded this way (Geis and Hoffmeyer-Zlotnik

2000, 127). Responses that were not automatically codeable were listed alphabetically,

and alphabetically ordered blocks were randomly assigned to coders. In the case of the

coding of the PIAAC data by Agency B, an expert coder reviewed the codes assigned, and

if systematic errors were observed, coders were given additional training. Several rules

were specified for the coders, for example: 1) If two different codes from different major

groups are plausible, assign the occupation with a lesser degree of professionalization.

2) If two occupations were mentioned by a respondent, code the first-mentioned occupation.

3) If two different job titles were mentioned, code the more concrete title. The first rule

seems to contradict the ILO rule cited earlier, whereby, in the case of several plausible

alternatives, the occupation with the highest skill level should be coded. However, we are

not sure how “professionalization” was operationalized. To our knowledge, this agency

used auxiliary information on employment status in ambiguous cases. We do not know how

the two other agencies handled this status variable during coding.

The coding process at Agency C involved two steps: first, occupations were coded

according to the five-digit German Classification of Occupations (KldB) 2010

(Bundesagentur für Arbeit 2011). This was initially done automatically, using a dictionary

with around 100,000 entries. This coding process was supported by taking into account

the ancillary information provided (for example, industry or occupational status). The

remaining responses were then manually coded. Several rules were applied, for example: 1)

If two occupations were reported, code the first-mentioned occupation. 2) If the open-ended

response is inadequate to determine the occupational code, use the ancillary information. 3)

If two different codes are equally plausible, assign the code that occurs more frequently in

practice. As a second step, the codes of the German Classification of Occupations (KldB)

2010 were automatically mapped to ISCO-08 codes using correspondence tables provided

by the German Employment Agency (Bundesagentur für Arbeit 2011).

To control the coding quality within the agencies, and to determine whether low coding

reliabilities were due to house effects, we asked the two agencies coding the PIAAC data

to code a subsample of answers a second time, assigning them to different coders.

4. Results

In the following sections, we describe our results in the order of our four hypotheses. First,

we present results on uncodeable or not completely codeable answers, followed by the

description of inter-agency and inter-coder reliability and coding differences. After that,

we present consequences for socioeconomic status and prestige scores and finally, we

report differences in answer length and reliability.
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4.1. Uncodeable or Not Completely Codeable Answers

The number of uncodeable answers was low; to a large extent answers could be coded at

the four-digit level (between 78.0% and 97.8%). As can be seen in Table 4, the percentages

of answers that could not be assigned to at least a major group by the three agencies that

coded the ALLBUS data were 3.4%, 3.0%, and 2.2% respectively. For PIAAC, the

respective percentages were 4.9% and 1.8%. These findings are in line with the findings of

Hoffmeyer-Zlotnik et al. (2004), who reported 3% of not codeable answers in a survey of

the German Environment Agency in 1999. Looking closer at the answers that could not be

coded, we found large differences between the agencies: For ALLBUS, 274 answers were

classified as uncodeable by one of the agencies, 51 answers were classified as uncodeable

by two agencies, but only 28 answers were classified as uncodeable by all three agencies.

A clearer pattern could be observed for PIAAC, with Agency A showing a greater

tendency to classify a given answer as uncodeable. Agency A could not code 134 of the

cases that Agency B coded, whereas Agency B was unable to code only eight cases that

Agency A coded. If we look at answers that were coded, but not to the most detailed four-

digit level, we find that these sum up to 16% and 19% for ALLBUS and 11% and 9% for

PIAAC. These percentages were, thus, lower than we expected (see hypothesis H1).

Agencies A and B seem to follow the recommendation of the ILO (2012, 56) to code vague

responses to the most detailed level still supported by the information provided. In

addition, we found surprisingly large differences with respect to which answers were

classified as uncodeable. Here, the different rules of the agencies become obvious. To give

an example, one agency classified the response “housewife and typist” as uncodeable

(housewife), whereas the others assigned the code for typist (4131). Agency C is a special

case in this regard: because they first coded the answers into the Germany Classification of

Occupations (KldB) and then recoded these codes to ISCO-08 using the official cross-walk,

they used the most probable ISCO unit group when answers were not completely codeable

or when the KldB code was not unambiguously transferable.

4.2. Inter-Agency and Inter-Coder Reliability and Coding Differences

For the analysis of the reliability we included all codings of the three agencies. If an

agency marked an answer as uncodeable or not codeable on the four-digit level, whereas

the other one coded the same answer with a four-digit code, this could be handled as a

mismatch in the sense of coding reliability. As can be seen in Table 5, coding agreement

Table 4. Number of codeable digits (in percent).

ALLBUS PIAAC

Agency A Agency B Agency C Agency A Agency B

Not codeable 3.4 3.0 2.2 4.9 1.8
1 digit coded 3.7 4.4 0.0 1.4 2.3
2 digits coded 8.2 7.5 0.0 6.0 1.6
3 digits coded 3.7 7.3 0.0 3.4 4.9
4 digits coded 81.0 78.0 97.8 84.3 89.3

ALLBUS: N ¼ 5,130; PIAAC: N ¼ 4,159.
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between the different agencies was far from perfect. We only report k, because checking

the proportion of agreement showed that the differences between these measures are

negligible. For ALLBUS, in a comparison of Agency A and Agency B, the inter-agency

reliability of assigning an open-ended answer to the same major group (i.e., the same first

digit) was 0.72. With k ¼ 0.68, the inter-agency coding reliabilities for major groups

between Agency A and Agency C and between Agency B and Agency C were even lower.

The results are similar for PIAAC: The inter-agency reliability between Agency A and

Agency B was around 0.76 for the major groups. As there are only ten major groups, these

inter-agency reliabilities are not satisfactory.

Because of the hierarchical structure of ISCO, once the first digit differs, all more

detailed codes differ. Thus, reliabilities for sub-major, minor, and unit groups were even

lower. In the end, the assigned four-digit ISCO codes differed in nearly half of the cases

for ALLBUS (k ¼ 0.48 to 0.51), and inter-agency agreement was only slightly higher for

PIAAC (k ¼ 0.57). This low level of reliability casts serious doubt on the usability of

these data for further analysis.

As Table 5 shows, the largest information loss occurred at the level of the major group.

Taking the ALLBUS codings as an example, a glance at the distribution of the major groups

(Figure 1) reveals systematic differences resulting from the codings of the three agencies

involved. In particular, frequencies of Major Groups 3, 5, 8, and 9 differ considerably.

Table 5. Inter-agency reliability (Cohen’s kappa).

ALLBUS PIAAC

Agencies Agencies Agencies Agencies
C & B A & C A & B A & B

1 digit 0.683 0.685 0.722 0.760
2 digits 0.644 0.632 0.674 0.715
3 digits 0.572 0.528 0.574 0.630
4 digits 0.506 0.475 0.508 0.566

ALLBUS: N ¼ 5,130; PIAAC; N ¼ 4,159.
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Fig. 1. Percentage distribution of major groups in ALLBUS by coding agency.
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The difference is most extreme in Major Group 9, where the number of elementary

occupations coded by Agency C was 1.5 times higher than that coded by Agency A.

In what follows, we briefly explore some of the systematic discrepancies we observed

in the assignment of the first digit by the different agencies (see supplementary material,

Figures A1a and A1b, for relative frequencies of the observed differences on Major Group

level; for the most frequent unit group combinations among these first digit discrepancies,

see Supplemental data, Table A3). Because it is impossible to list all the differences we

found, we concentrate on those differences observed most often and on those that have a

large effect on the prestige and SES scores derived from the codes. We identified six such

systematic differences:

The first difference related to the handling of self-employed respondents (see

Supplemental data, Table A4a). For ALLBUS and PIAAC, Agency B coded a large group

of these respondents into Major Group 1: Managers, whereas the other agencies often

assigned them to Major Group 5: Services and Sales Workers. To give some examples: if a

respondent reported that he or she was a self-employed hairdresser, Agency B classified

the occupation into Unit Group 1120: Managing Directors and Chief Executives, whereas

the other agencies assigned it to Unit Group 5141: Hairdressers (see Supplemental data,

Table A4a). A similar problem was caused by the answer “innkeeper”. Agency B

classified it into Unit Group 1412: Restaurant Managers; the other agencies assigned it to

Sub-major Group 51: Personal Service Workers. ISCO defines “Operators of small cafés,

restaurants and bars to whom the management and supervision of staff is not a significant

component of the work are classified in Unit Goup 5120 : : : ” (ILO 2012, 238). The rules

are clearly defined but the answer of the respondents are often not detailed enough to

decide what the main task is.

A second frequently occurring difference between the codings for ALLBUS is related to

the classification of manual workers. Depending on the agency, these workers were coded

either into Major Group 6: Skilled Agricultural, Forestry and Fishery Workers; Major

Group 7: Craft and Related Trades Workers; Major Group 8: Plant and Machine Operators

and Assemblers; or Major Group 9: Elementary Occupations. Agency C assigned blue-

collar workers (e.g., chemical workers, metal workers, or railroad workers) much more

often to Major Group 9, whereas, whenever possible, the other two agencies assigned them

to a major group other than Major Group 9 (see Supplemental data, Table A4b).

Differences arose because many of the responses were not unambiguously codeable.

Major Group 6, 7, or 8 would be appropriate if more complex tasks were performed,

whereas Major Group 9 should be reserved for those occupations involving only simple

and routine tasks.

The third typical systematic coding difference which occurred both in the ALLBUS and

the PIAAC codings related to the assignment of responses to Major Groups 3 and 4. Major

Group 3 comprises technicians and associate professionals who “perform mostly technical

and related tasks connected with research and the application of scientific or artistic

concepts and operational methods, and government or business regulations” (ILO 2012,

169). Major Group 4 comprises clerical support workers who “record, organize, store,

compute and retrieve information, and perform a number of clerical duties in connection

with money-handling operations, travel arrangements, requests for information, and

appointments” (ILO 2012, 219). Whereas occupations in Major Group 3 typically require

Massing et al.: How Standardized is Occupational Coding? 179



completion of upper secondary education and possibly a higher education degree (Skill

Level 3), most occupations in Major Group 4 require only completion of lower secondary

education and possibly vocational training (Skill Level 2). Frequent and typical answers

that caused the coding problem in question were “secretary”, “clerk” (Sachbearbeiter),

and “accountant” (see a list of most frequently observed unit group combinations among

first-digit discrepancies in Supplemental data, Table A3). To give an example, secretaries

may, on the one hand, be what are referred to in ISCO-08 as “administrative and

specialized secretaries”, who “provide organizational, communication and documentation

support services, utilizing specialized knowledge of business activity of the organization

in which they are employed” (ILO 2012, 202). In this case, they should be classified into

Major Group 3. On the other hand, secretaries may be “secretaries (general)”, who

“transcribe correspondence and other documents, check and format documents prepared

by other staff, deal with incoming and outgoing mail” and so on, in which case they should

be classified into Major Group 4 (ILO 2012, 221). Without more detailed information

about the respondents’ tasks and duties, the occupations cannot be coded with certainty.

However, the coding of these answers is of great relevance because of their high frequency

and the low inter-agency agreement in relation to these two major groups (around 70%,

depending on the coding agencies compared).

The fourth systematic coding difference occurred – again for both surveys – when

assigning responses to Major Group 7: Craft and Related Trades Workers, and Major

Group 8: Plant and Machine Operators and Assemblers. The main difference between

these two major groups is the operation or use of machines at work. Although in the

modern industrial world, most crafts require the use of machines, it is not clear from the

respondents’ answers whether or not the work was done predominantly with or without

machines. Thus, the occupation “metal worker” may be classified into Sub-major Group

72: Metal, Machinery and Related Trades Workers or into Minor Group 812: Metal

Processing Plant Operators, depending on the stage of development of the industry in the

national context.

The fifth systematic coding difference occurred when coding occupations such as

educators (Erzieher) working in early childhood education and care or youth welfare

services. Agency A assigned these occupations mostly to Major Group 5: Services and

Sales Workers, Unit Group 5311: Child Care Workers; Agency B assigned them to Major

Group 2: Professionals, Unit Group 2342: Early Childhood Educators; and Agency C

assigned them to Major Group 3: Technicians and Associate Professionals, Unit Group

3412: Social Work Associate Professionals. At least part of the confusion probably

stemmed from the difference between the educational requirements for these occupations

in Germany and elsewhere. Whereas in Germany these occupations usually require

qualifications corresponding to Skill Level 3, most other countries appear to require Skill

Level 4. The ISCO manual is quite clear on this point, stating that “occupations that

require the performance of similar tasks should be classified in the same group” and that

primary and pre-primary teachers “should all be classified in Major Group 2” (ILO 2012,

28). However, this innovation introduced for ISCO-08 does not seem to have been

acknowledged by all coding agencies.

The sixth coding problem was caused by a special national situation in Germany, where

– as in some other countries – one type of vocational education and training is “dual
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vocational training”, which comprises theoretical and practical elements. Most careers in

crafts start with such a training program. After successful completion of this program,

further training is possible in order to obtain the qualification “Meister” (master

craftsperson or engineering technologist). This type of career is very common in Germany.

When asked what their occupation was, many respondents answered that they were, for

example, a master carpenter or a master electrician. Although no additional information

was available on the tasks performed by these master craftspersons, Agency C coded such

answers into Unit Group 3122: Manufacturing Supervisors, whereas the other two

assigned a code from Major Group 7: Craft and Related Trades Workers that described the

craft the respondent was working in. However, the required skill level in Major Group 7 is

lower than that in Major Group 3. The reason for the different handling of this type of

occupation may result from the coding in KldB and transferring the codes to ISCO: in

KldB 2010 all job titles containing the word “Meister” are coded as supervisory tasks,

which results in the 3122-coding. Once again, the difference in coding shows that agencies

create specific rules to handle national specificities that are not reflected in ISCO. In

this case, Agency C applied a standardized rule using the public and official German

classification as their standard. As there is no concerted effort to standardize these rules,

agency-specific approaches result in different codings and lower inter-agency reliability.

The reliabilities reported in Table 5 reflect not only differences between the agencies’

coding rules, but also differences between coders. To disentangle house effects from coder

effects, we asked the two agencies that coded the PIAAC data to code a subsample of the

occupational information twice, assigning the answers to different coders. We interpret the

difference between the inter-coder and inter-agency reliabilities as a house effect that

reflects differences in the coding procedures and rules. Inter-coder reliability (k) of the

four-digit codings of our PIAAC subsample was 0.84 between the two coders deployed by

Agency B, and between 0.68 and 0.74 at Agency A, where coding was carried out by five

coders. As these reliabilities were considerably higher than those between the agencies

(0.57), this result supports our assumption that the coding procedures and rules applied

by a coding agency affect ISCO coding to a considerable extent. This is in line with

hypothesis H2.

4.3. Consequences for Socioeconomic Status and Prestige Scores

As mentioned previously, occupational prestige or SES scores are often derived from

ISCO codes. Therefore, we analyzed the extent to which the reliability of these scores was

affected by the (comparatively low) reliability of the ISCO codes. Our analysis focused

on the International Socio-Economic Index (ISEI) and the Standard International

Occupational Prestige Scale (SIOPS), both of which were developed for cross-national

research (Ganzeboom and Treiman 2003). Using the syntax proposed by Ganzeboom and

Treiman (2012), we calculated these scores separately for each of the coding results of the

agencies. In less than 5% of the coded occupations, it was not possible to assign an SES or

occupational prestige score. Although the inter-agency reliability of the four-digit ISCO

codes was only around 0.5, the consistency between the derived socioeconomic status and

prestige scores was much higher than expected. For ISEI, the correlation between each

pair of agencies was 0.90, which is higher than the correlations reported in the study by
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Maaz et al. (2009). For ALLBUS, the correlation of SIOPS between Agency A and

Agency B was 0.84, between Agency B and Agency C it was 0.82, and between Agency A

and Agency C it was 0.85. For PIAAC, the correlation between Agency A and Agency B

was 0.84. The high correlations of both SES and prestige scores confirm hypothesis H3.

4.4. Differences in Answer Length and Reliability

In a final step, we analyzed the length of the answers given to the question about

occupation in the two surveys. Because of the differences on how the questions on

occupations were phrased in PIAAC and ALLBUS (see Subsection 3.1), we assume that

PIAAC answers were more detailed, that is, longer. We measured answer length by

counting the total number of words after combining all sub-questions. One drawback of

this method is that we were not able to identify word repetitions. Thus, if respondents

repeated words, these were counted each time.

Our analysis showed that the questions in PIAAC were answered, in fact, in more detail,

leading to answers that were about twice as long as the answers in ALLBUS. The average

number of words recorded by interviewers was 2.70 (SD: 2.22) for ALLBUS, with a

minimum of one and a maximum length of 23 words. For PIAAC, the average number of

words recorded was 5.52 (SD: 3.87), with a minimum of one and a maximum of 48 words.

Furthermore, when systematically checking very common answers, such as “secretary”

and “clerk”, it became obvious that in PIAAC, as compared to ALLBUS, most

respondents had given more details than just a general job title. For example, PIAAC

respondents more frequently added information such as “personal assistant to the CEO” to

the general job title “secretary”, or “office clerk in accounting” to the job title “clerk”.

However, the crucial question is whether longer answers result in better – that is, more

reliable – codings. To investigate this question, we calculated reliability coefficients based

on length of answer (see Table 6). We found that the inter-agency reliability (k) did indeed

vary with the length of the answer. However, contrary to what one might intuitively

expect, reliabilities decreased as answers became longer, thus confirming hypothesis H4.

This is in line with the finding by Conrad et al. (2016). A closer inspection of long answers

(.15 words) did not yield any specific clues as to the reasons why they appear to be more

difficult to code. We suspect that fewer words might result in incomplete occupational

Table 6. Inter-agency reliability (Cohen’s kappa) by length of answer.

ALLBUS PIAAC

Answers Agencies Agencies Agencies Answers Agencies
Answer length in % B & C A & C A & B in % A & B

1 word 32.1 0.54 0.53 0.54 2.6 0.63
2 words 33.7 0.54 0.53 0.56 22.8 0.61
3 words 9.9 0.49 0.45 0.48 6.7 0.58
4 words 9.3 0.46 0.44 0.47 15.1 0.57
5 words 6.0 0.47 0.37 0.44 13.8 0.57
6 words 3.0 0.39 0.32 0.40 10.1 0.57
. 6 words 6.0 0.37 0.36 0.43 28.9 0.51

ALLBUS: N ¼ 5,130; PIAAC: N ¼ 4,159.
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descriptions but that, for frequently used occupational titles, coders have internal coding

rules for handling these (partially incomplete) answers. If the answers are longer, coders

have more scope for decision-making, and simple rules can no longer be applied. Less

consistent coding of longer answers may also be due to the fact that coders are reluctant to

read longer texts and therefore base their coding on only parts of the answer.

Although this result is true for both ALLBUS and PIAAC we found, in general, that

occupations in PIAAC were more reliably coded than in ALLBUS. For example, the

reliability between Agency A and Agency B for one-word ALLBUS answers was 0.54,

whereas it was 0.63 for one-word PIAAC answers (Table 6). Interviewer training and a

more detailed question seem to have led to longer, more precise answers.

Finally, if longer answers are more difficult to code, it could be assumed that they are

also more often uncodeable or not completely codeable. However, our findings do not

support this assumption. Uncodeable or incompletely codeable answers were, on average,

shorter than codeable answers: the means for completely codeable answers were 2.76,

2.71, and 2.71, while the means for not completely codeable answers were 2.26, 2.39, and

2.30 for Agencies A, B, and C respectively.

5. Conclusion

To better understand how the process of occupational coding affects outcome quality, we

studied occupational data from two surveys, each coded by several agencies. We found

that the share of uncodeable answers was comparatively small, ranging from 1.8% to

4.9%, depending on the coding agency and data source. However, a closer look revealed

that what was deemed “uncodeable” varied between coding agencies. In a next step, we

examined the coding results more closely and discovered characteristic, systematic

differences in the way agencies interpreted ISCO and defined relationships between

answers to be coded and ISCO categories. Notwithstanding the comparatively low

agreement between occupational codings from the different agencies, the correlations for

SES and occupational prestige scales were satisfactory (between 0.82 and 0.90). Finally,

we observe a negative correlation between length of answers (number of words) and

coding reliability both in ALLBUS and PIAAC. At the same time, coding reliability

between the two agencies (A and B) that coded data from both surveys was higher for

PIAAC than for ALLBUS. This difference remained when we controlled for length of

answer. In line with Elias (1997, 13) we discuss our findings in relation to the following

aspects: the data to be coded, the coding rules and coding process, and the classification.

With regard to the data to be coded the seemingly contradictory results concerning

answer length are the most interesting. Several factors may have contributed to these

findings. First, the intensive interviewer training in PIAAC may not only have increased

answer length – with a general negative effect on reliability – but might also have led to

“better” answers because interviewers were thoroughly trained on what kind of

information was useful for occupational coding. Especially with respect to some

frequently reported occupations that are difficult to code without additional information

(e.g., educators, secretaries, or clerks) the interviewer training may have had, on balance, a

positive effect on reliability. The higher percentage of four-digit codes for PIAAC data

also points to the effect of interviewer training.
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The second factor that may have contributed to the higher inter-agency reliability of

PIAAC codings are differences in the way occupational information was collected. In

particular, the first sub-question in PIAAC explicitly asking for the exact job title, may

have elicited answers that were more suitable for ISCO coding. In addition, the detailed

question about employment status that preceded the open-ended question about

occupation in ALLBUS may have played a crucial role. This may have affected the

answers given to the open-ended questions because respondents had just given some of

this information in the preceding question on their employment status. Besides effects

caused by the resulting differences in the core input material for occupational coding, it

seems reasonable to assume an interaction effect of data provided and coding rules. The

use of this ancillary information for occupation coding seems to have varied in extent or

manner between the agencies involved. This could be an important factor that explains the

lower inter-agency reliabilities observed for ALLBUS compared to PIAAC, where the

question on employment status only differentiated between employed and self-employed.

Taking all these factors together, our results concerning the ALLBUS-PIAAC

differences suggest that some of the inter-agency coding disagreements result from

various differences in the survey instrument and the interviewer training, and the ensuing

differences in the occupational data to be coded – partly in interaction with coding rules

applied concerning this data. Therefore, identifying and understanding those

characteristics of question wording and interviewer training that lead to the most suitable

input material for occupational coding would be a promising field for further research.

Turning to the coding rules and coding process, we argue that the systematic deviations

that we observed between codings from different agencies indicate that the rules and

procedures laid down in the ISCO manual (ILO 2012) do not suffice to completely cover

the coding process. This results in low inter-agency reliability and low validity of the

results.

From a quality perspective, (inter-coder) reliability is important, but validity of codes

is essential. Hak and Bernts (1996) pointed out that the validity of the coding process

depends on the quality of coding instructions, whereas inter-coder reliability depends on

the implementation of these instructions. This implies that insufficient reliability and

validity of occupational codes have common sources. To elicit both reliable and valid

information, interviewers should be trained to filter as little information as possible and to

ask for an occupational title. Moreover, they should be familiarized with basic coding

procedures (Cantor and Esposito 1992, 665).

To improve coding quality, agencies engaged in occupational coding create rules of

their own that reflect their interpretation of ISCO, and these house rules lead to the large

differences in coding decisions that we found. The shortcomings of the ISCO manual

and the secondary, agency-specific coding rules are a serious threat to the validity of

occupational codes. We assume that this threat is even larger in the cross-national context

where these agency-specific rules most likely reflect particularities of national labor

markets. To overcome this situation, we suggest that coding agencies state the rules they

apply as clearly as possible and make them public. A publicly accessible body of rules

would allow more systematic discussion and development by those engaged in

occupational coding. For the time being, survey practitioners commissioning coding

services should ask agencies about the coding rules they apply and, where necessary,
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negotiate such rules. One may think that the problems resulting from differences in rules

may be overcome by applying completely automatic coding routines. Indeed, such

methods have been proposed, for example, based on statistical learning (for a discussion of

such approaches, see Gweon et al. 2017). However, up to now these approaches are not

able to code considerably more than half of the occupations, thus limiting their usability.

With respect to the classification, some problems related to coding ISCO originate from

the national context in which it is applied, for example, “Meister” (master craftsperson) in

Germany. It can be expected that similar problems arise in other national contexts, as

ISCO can be seen as a compromise between different national views and peculiarities (see

Desrosières 1996, 19–21 for a concise description of the development of international

comparative statistics). We have also seen that agencies make fundamentally different

decisions when coding occupations. We were particularly surprised to see that there are

considerable differences in the use of major groups, pointing to “boundary problems”.

A further improvement of the ISCO manual, by including even more precise definitions

and more detailed explanations, could certainly be helpful in dealing with problematic

distinctions.

Given the multitude of jobs actually performed in the real world, rules and procedures

laid down in a manual will never suffice to completely cover the coding process.

Approaches supporting the coding of ISCO directly in the field may help to avoid some

of the problems. The idea behind in-field coding is that respondents have better and

more detailed knowledge of the type of work they carry out. Based on additional

variables, such as employment status, public sector employment, or supervisory tasks,

they could be asked for more details depending on their answer to the first question

about occupation. Initial results of such approaches (Tijdens 2014, 2015; Schierholz

et al. 2017) are promising. When discussing developments in the way occupational data

is assessed and coded, it is also important to look into the effect that new approaches

have on the survey process. In-field coding would introduce additional burden on

respondents and interviewers, and increase survey costs. Nevertheless, improving results

of occupational coding should be a central aim of efforts to improve the overall quality

of surveys.
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Modeling a Bridge When Survey Questions Change:
Evidence from the Current Population Survey

Health Insurance Redesign

Brett O’Hara1, Carla Medalia1, and Jerry J. Maples1

Most research on health insurance in the United States uses the Current Population Survey
Annual Social and Economic Supplement. However, a recent redesign of the health insurance
questions disrupted the historical time trend in 2013. Using data from the American
Community Survey, which has a parallel trend in the uninsured rate, we model a bridge
estimate of the uninsured rate using the traditional questions. Also, we estimate the effect of
changing the questionnaire. We show that the impact of redesigning the survey varies
substantially by subgroup. This approach can be used to produce bridge estimates when other
questionnaires are redesigned.

Key words: Health insurance; redesigned survey; aggregate model; unit model.

1. Introduction

Health insurance is the primary avenue to receive health care in the United States. People

without health coverage are less likely to go to the doctor or hospital than people who

have health coverage (O’Hara and Caswell 2013). As such, people with health insurance

have higher economic well-being than people who lack health insurance because they have

greater access to health care services (Kaestner and Lubotsky 2016). Health insurance

coverage also acts as a buffer against the adverse effect of health shocks (McGeary 2009;

Bradley et al. 2012), but means that some workers have less job-mobility because of

a dependence on their employment-sponsored insurance (Bailey and Chorniy 2016).

Furthermore, health insurance is linked to public policy practices and changes in the United

States. A key example is the 2010 Patient Protection and Affordable Care Act, the health

care law that shaped availability and access to health insurance for millions of Americans.

The Current Population Survey Annual Social and Economic Supplement (CPS)

generates widely used estimates on health insurance coverage in the United States, is used to

calculate official poverty estimates, and serves as the basis for many policy-related

decisions (Blewett and Davern 2006). However, estimates of the uninsured population from

the CPS have been historically higher than estimates from other federal surveys (Smith and

Medalia 2015). This runs counter to expectation, since the CPS measures health insurance
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coverage in the previous calendar year, while the majority of other surveys measure

coverage at the time of interview. When someone is more likely to be uninsured on a

particular day than on all days in the year, the calendar year estimate of uninsured persons in

the CPS should be lower than the uninsured estimates from other surveys, not higher.

Research indicated several reasons why this was the case. For example, estimates from the

CPS may have actually reflected a mixture of current and past year coverage (Kenney and

Lynch 2010), or respondents may have had difficulty with the long recall period (Pascale

et al. 2009). Respondents may also be confused about the type of coverage they have. For

example, Medicaid coverage has been shown to be misreported as another type of health

insurance coverage, but also misreported as being uninsured, which could contribute to an

overestimate in the uninsured rate (Call et al. 2008). Another possible explanation focuses

on suboptimal imputations of missing data (Davern et al. 2007).

To address these issues, the U.S. Census Bureau implemented a redesign of the health

insurance questions in the CPS in 2014, which measured coverage during the 2013

calendar year. One of the major changes implemented in the redesigned survey was

improvements to the way data were collected about coverage during the previous calendar

year, thereby reducing potential recall bias and clarifying the reference period (Pascale

et al. 2016). The redesigned survey asks about health insurance coverage on the day of the

interview, and then asks follow-up questions to determine monthly coverage from January

1 of the previous calendar year through the interview date. Additional changes to the

questionnaire are explained in Table 1.

The redesigned questions in the CPS lowered estimates of the uninsured rate and

brought health insurance estimates more in line with other federal surveys (Smith and

Medalia 2015). The timing of this questionnaire change, which completely replaced the

traditional questions, was particularly important because it established a strong baseline

for measuring health insurance coverage in calendar year 2013, before the implementation

of many provisions of the Affordable Care Act. However, at the same time, CPS estimates

from prior to 2013 are not comparable to estimates for the period 2013 and beyond, and

there is no direct survey-based estimate of the effect of the questionnaire change.

While there are other surveys that measure health insurance coverage that did not

undergo questionnaire redesigns during this period, the CPS is unique because it produces

the official poverty estimate for the United States; due to the strong association between

health insurance and income, it is important to continue the time trend in health insurance

coverage in the CPS. Predicting the uninsured rate in 2013 and beyond using the

traditional questions makes it possible to continue the historic time series forward, which

is necessary to provide an estimate of the effect of changing the questionnaire, and is a

central issue when questionnaires are redesigned. This is important because it will allow

researchers and policymakers to take a broader view of trends in health insurance coverage

from before the ACA’s implementation in 2010. In addition, a better understanding of the

effect of the CPS questionnaire change provides a measure of the percentage-point

difference between the traditional and redesigned estimates for micro-simulation models.

Research is needed to derive a model-based bridge estimate between the redesigned and

traditional health insurance questionnaires. Our goal is to produce a reliable counter-

factual: if the U.S. Census Bureau had kept the traditional health insurance questions in the

CPS, what would the uninsured rate have been?
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2. Data

The data for this article come from two sources, the CPS and the American Community

Survey (ACS). The CPS is an annual survey of about 98,000 addresses and includes

detailed questions regarding health insurance coverage, income received and place of

residence. Interviews are conducted from February through April each year, either in

person or by phone. We use data from the 2010 to 2013 CPS files, which collected health

insurance using the traditional questions about coverage during the previous calendar year.

We also use the 2014 to 2015 CPS files, which used the redesigned questions about the

months of coverage.

The ACS is a survey of about 3.5 million addresses annually, which collects social,

demographic, and housing information. We use the restricted access data that are available

through the U.S. Census Bureau’s Research Data Centers. The ACS are collected

continuously from January to December each year, and interviews are either self-

administered (conducted by paper or on the internet), or interviewer-administered (in

person and by phone). Note that because there were no changes to interview mode over

time, differences in mode between the CPS and the ACS do not affect our results. The

health insurance questions in the ACS ask about coverage on the day of the interview.

Both surveys have post-stratified weights and the standard errors are computed using

successive difference replication (Fay and Train 1995).

3. Methods

We use two methods to predict what the CPS estimate would have been if the health

insurance questions had not been changed: the first is based on yearly aggregates and the

second is based on a difference-in-difference model on person-level data. Both methods

Table 1. Comparison of the traditional and redesigned health insurance questions in the CPS.

Traditional Redesigned

Reference period
of estimates

Previous calendar year Previous calendar year

Reference period
of questions

Only asks about previous
calendar year

Starts with current and then goes
back to previous calendar year

Types of coverage Laundry-list style questions Starts with general question
and then gets more specific

How questions
are asked

Collected at the
household level

Collected by person; also asks if
others in household were
covered by fsplan

New content n/a Participation in the health
insurance marketplace

Employer-sponsored insurance
offers and take-up

Revised medical out-of-pocket
expenses

Notes: Health insurance coverage for both is captured at the time of the survey but estimates reflect coverage

during the previous calendar year.

For the details on the question wording changes from the traditional to redesigned CPS, see (Pascale 2016).
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rely on the assumption that the time trend in the CPS is parallel to the trend in the ACS

over the period 2009 to 2012 (pre-redesign) and 2013 to 2014 (post-redesign), an

assumption that we test and validate (Figure 1).

The first approach uses aggregate-level data to predict what the CPS uninsured rate may

have been in 2013, had the questionnaire remained the same. To do this, we use the

uninsured rate in 2013 from our auxiliary data source, the ACS, plus the difference between

the uninsured rates in the CPS and ACS in 2012 (see Equation 1). The difference

between the estimates in the CPS and ACS is stable over time; we average the differences

between the point estimates of the uninsured rate and the variances between the two

surveys over 2009 to 2012 to improve the stability of the estimates. Subsection 6.2.,

Appendix 2 details the method for calculating the standard errors (Equation A1).

Pred RateCPS2013

� �
¼ RateACS2013

þ
1

4

X2012

k¼2009

RateCPS 2 RateACSð Þk ð1Þ

This approach has been used in other estimates of health insurance coverage, which used

the CPS rate in one year together with the growth rate in other surveys and administrative

records (Centers for Medicare and Medicaid Services 2014). As shown in Equation 1,

the aggregate approach estimates the uninsured rate primarily, but can also be used to

estimate the effect of the questionnaire change secondarily by subtracting the estimated

uninsured rate of the traditional CPS in 2013 from the observed redesigned uninsured rate

in the same year.

We validate this approach by predicting the uninsured rate in years that we also have

observed data, such as 2012, and find that the predicted and observed lines fall on top of

each other (not shown). While the aggregate method can provide a good benchmark, it is

10
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%
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Aggregate Model (CPS)
Person-Level Model (CPS)
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Fig. 1. Time series of the uninsured rate from 2010 to 2014, by data source. Source: 2009–2014 one-year

American Community Surveys (restricted data), 2010–2015 Current Population Survey Annual Social and

Economic Supplements. Note: Traditional CPS refers to the official uninsured estimate from the CPS for calendar

years from 2012 and before. Redesigned CPS refers to the official uninsured estimate from the CPS for calendar

years 2013 and beyond.
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not practical for the analysis of subgroups due to high variance in the survey. Another

limitation to the aggregate model is specific to the case explored here (e.g., health

insurance coverage). As many provisions of the Affordable Care Act went into effect in

2014, the relationship between demographic characteristics and the uninsured rate

changed between 2013 and 2014, so the aggregate model cannot be extended past 2013.

The second approach uses a linear probability difference-in-difference regression,

hereafter referred to as the person-level model, to control for other factors that might have

affected the uninsured rate in addition to the questionnaire change (Equation 2). The

person-level model also enables us to examine differences in the predicted uninsured rate

between subgroups, something that we could not do using the aggregate-level approach

due to sample size. This person-level model assumes that certain effects are constant over

time, but we also test this assumption using interactions between key demographic

characteristics and a time component. In Subsection 6.2., Appendix 2, the variance

formulas and the weighting procedure are discussed for the person-model.

PðUNINSiÞ ¼ aþ gt þ b1CPSþ b2CPS * QCHANGECPS þ b3X þ 1 ð2Þ

Where UNINS is a dummy for being uninsured (i.e., the probability of being uninsured

is the average between the ACS and the CPS), gt is calendar year (controlling for the effect

of the year), CPS is an indicator for the data used (CPS¼1 if CPS data are used and

CPS ¼ 0 if ACS data are used), QCHANGECPS is a dummy representing the redesigned

survey questions (for CPS in 2013 and beyond), X is a vector of covariates (listed below)

that are controlled for in the model, and i denotes the individual. In this application, the

primary parameter of interest is b2; it represents the effect of the questionnaire change in

the CPS. The regression is estimated separately for the full sample and by subgroup. At the

individual level, we use the estimated coefficients to predict the probability of being

uninsured for each individual in the data set. Now, we have a predicted individual value

for the traditional questions by subtracting the parameter that is due to the questionnaire

change (b2) (see Equation 3). By subtracting the effect of the questionnaire effect from the

redesigned estimate, this model also produces a predicted estimate of the traditional

uninsured rate of the CPS in 2009 through 2014. All ACS data are removed from the

analysis at this point.

if year $ 2013 then PredðTraditional Questioni;Þ ¼ PredðUNINSiÞ2 b2

else PredðTraditional QuestioniÞ ¼ PredðUNINSiÞ ð3Þ

After the individual prediction of the traditional questions is done, we take the weighted

mean for our final national estimate, by year. In the regression, we control for age, race,

sex, Hispanic origin, disability status, citizenship, receipt of Supplemental Nutrition

Assistance Program (SNAP) benefits, income-to-poverty ratios, and living in a

metropolitan statistical area. In addition to the above characteristics, we control for

several interactions between terms. Details are listed in Subsection 6.1., Appendix 1.

We denote this collection of control variables as X in Equation 2. Without these

covariates in the model, the results of the person-level model would be equivalent to those

of the aggregate-level approach (Equation 1) if the person-level model had only used
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2009–2013 data (the model uses 2009 to 2014 data). We use the aggregate-level model as

a robustness check for the person-level model, since the simplest form of the person-level

model is very close to the aggregate-level model. If the person-model was based on just

2009–2013 data and B3 ¼ 0 (i.e., no covariates except for time, survey, and the years that

the CPS redesigned survey questions were in effect), then the person-level estimate of the

uninsured in 2013 should be very close to the aggregate model. This robustness check was

done and the intuition is borne out in the data (not shown).

4. Results

The first part of the analysis uses the aggregate method to estimate what the uninsured rate

would have been, using the traditional questions (i.e., had the questions not changed). The

time trend in the estimated uninsured rate for each survey is shown in Figure 1. Recall that

one of the primary reasons the CPS was redesigned was to address the overestimate of the

uninsured rate compared to other federal surveys. The uninsured rate in the traditional CPS

was higher than in the ACS, despite the fact that the uninsured in the CPS rate reflects the

entire calendar year, while the uninsured rate in the ACS reflects a point in time. The

uninsured rate in the redesigned CPS, on the other hand, is lower than the uninsured rate

in the ACS, which is consistent with the expectations that someone is less likely to be

uninsured for an entire calendar year than on any given day in a year.

The aggregate model predicted the uninsured rate in 2013 to be 15.3% (Table 2). The

predicted year-to-year change in the uninsured rate from 2012 to 2013 is, by design,

equivalent to the change in the uninsured rate in the ACS over that period: 0.1 percentage

point (not statistically significant). As the 2013 CPS uninsured rate using the redesigned

questions was 13.3%, the estimated questionnaire effect was 1.9 percentage points.

The next part of the analysis uses person-level models to predict the questionnaire effect

and the traditional uninsured rate in 2013, while controlling for possible confounding

covariates. Because the fully specified model has 90 variables and there are 21 subgroups,

we do not show all of the regression parameters (available upon request). The person-level

model shows that the estimate of the questionnaire effect was 1.7 percentage points

(15.0% for the predicted traditional CPS less 13.3% for the redesigned CPS), not

statistically different from the questionnaire effect derived from the aggregate-level model

(see Table 2). The predicted uninsured rate for 2013 using the person-level model is

15.0%, slightly lower than the person-level prediction in 2012. In addition, when

comparing the predicted estimates for 2013, we find that the person-level model produces

a slightly lower estimate than the aggregate-level model (see Subsection 6.2., Appendix 2

for a discussion of how the standard errors were calculated). Overall, the predictive power

of the person-level model was 21%. The degree of the predictive power varied by

subgroup. For example, the population aged 65 and over had an R-squared of 2%, which

was in line with the expectation that this group would be relatively unaffected by the

questionnaire change.

The person-level model allows us to examine variation in both the questionnaire effect

(in 2013) and change in the uninsured rate (2012 to 2013) by subgroup, including race and

Hispanic origin, age, low-income status, and labor force status (for adults aged 19 to 64).

The data show variation in the effect of the questionnaire change by subpopulation group,
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but little variation in the year-to-year change in the uninsured rate (Table 3). Among the

race and Hispanic origin subgroups, the effect of the questionnaire change on the

uninsured rate was the lowest for non-Hispanic Whites, who experienced a change of

almost half of the effect on the total population. Non-Hispanic Blacks and Hispanics, on

the other hand, had decreases in their uninsured rates due to the questionnaire change that

were greater than the average for the population. Non-Hispanic Whites and Hispanics

experienced increases in their uninsured rates from 2012 to 2013, though the change was

greater for Hispanics.

The age group with the largest questionnaire effect on the uninsured rate was adults

aged 19 to 64. Children under age 19 had a difference that was about half of the change for

the working-age adults, and adults aged 65 and over showed the smallest difference in the

uninsured rate between the traditional and redesigned questions. When examining the low-

income population (family income is less than or equal to 200% of the Income-to-Poverty-

Ratio), the effect of the questionnaire change is about twice as large as the effect for the

total population. The age pattern of the questionnaire effect on the uninsured rate for

the low-income population is consistent with the age pattern for the total population: the

smallest effects are associated with the elderly and the largest effects are associated with

working-age adults. In these low-income groups, only the low-income population overall,

working-age adults, and people under 65 experienced a change in the uninsured rate from

2012 to 2013.

We also examined labor force status for working-age adults and found that the

uninsured rate differed less for workers than nonworkers when the questionnaire changed.

The questionnaire change had the largest effect for the unemployed and adults not in the

labor force, a smaller effect for part-time workers, and the smallest effect on the uninsured

rate for full-time workers. Between 2012 and 2013, unemployed adults were the only labor

force category to experience a change in the uninsured rate.

5. Conclusion

In 2014, new health insurance questions replaced the traditional questions in the CPS. This

change established a disruption in the time trend for the CPS, where estimates from 2012

and earlier cannot simply be compared to the estimates from 2013 and beyond without

disaggregating the effect of the questionnaire change from the time trend. While the

redesigned questions improved health insurance estimates by making them more in line

with other federal surveys, it is also important to maintain the historical time trend, so that

researchers and policymakers can take a broader view of trends in health insurance

coverage from before the ACA’s implementation in 2010. This article fills that gap, by

predicting what the uninsured rate would have been if there was not a change in the health

insurance questions.

Using the year-to-year change in the uninsured rate as measured by the ACS, together

with the uninsured rate from the traditional questions in the CPS in 2009 through 2012, we

predicted that the uninsured rate would have been 15.3% in 2013 using aggregate-level

data, unchanged from the level in 2012. Using person-level data, we employed a

difference-in-difference model to control for demographic and socioeconomic changes in

the population, and predicted that the uninsured rate would have been 15.0% in 2013, not
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different from the aggregate-level prediction but slightly lower than the person-level

prediction in 2012. Both the aggregate- and person- level models could be used to evaluate

other survey redesigns. For the former application, additional research would be needed to

determine just how far the model could be extended without over-specifying the model.

For the latter, one would need to update the data every couple of years and evaluate the

goodness of fit to assure that the bridge still fit.

In addition to continuing the historic time trend, we also estimated what effect changing

the CPS questionnaire had on the uninsured rate in 2013, the first year of data that

collected health insurance using the redesigned questions. We found that the redesigned

questions reduced the uninsured rate by about 1.7 percentage points using the person-level

model to control for confounding covariates (not statistically different from the aggregate-

level estimate). The questionnaire effect varied by subpopulation, and was greater, in

general, for the groups that had higher uninsured rates in 2012 as measured by the

traditional questions. For instance, the questionnaire change had the smallest effect on the

uninsured rate for children, seniors, and adults working full time. These findings were

consistent with the expectation that populations with higher rates of coverage would be

less affected by the questionnaire change. Another finding was that the effect of the

questionnaire change for non-Hispanic Whites was lower than average and lower than

for the other race and Hispanic origin groups. This finding may be explained by a

disproportionate number of non-Hispanic Whites over age 65, which is consistent with

previous research (Day 2013). Finally, we found that the questionnaire change had the

largest impact for low-income working-age adults. This means that low-income adults are

reporting insurance more often using the redesigned questions as compared with the

traditional questions.

Due to changes in the demographic and socioeconomic composition of the population

between 2012 and 2013, the aggregate-level model produced a different predicted

uninsured rate in 2013 than did the person-level model. These changes in the population

also explain why the aggregate-level model did not produce a change in the uninsured rate

between 2012 and 2013, while the person-level model showed a slight decrease.

Therefore, when possible, it is preferable to use a difference-in-difference regression on

person-level data to control for overall population changes, but when it is not possible,

aggregate-level data produce similar results.

It is important to note that the person-level model is a linear probability model instead of

a logit model. We chose to use a linear probability model because it is the standard model

in the difference-in-difference context. However, we could have used a logit model.

In this article, we take advantage of the stable relationship between estimates from

multiple surveys over time in order to fill in the gap during a disruption in the time series.

Surveys need to change questions for many reasons: to reduce respondent burden,

improve validity, and to harmonize questions with other surveys. When survey questions

change, there is always a balance between maintaining the time trend and improving the

questions. However, as long as there are other sources of data that track in parallel over

time with the survey, there does not have to be a tradeoff. This approach can be used when

other surveys change questions.
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6. Appendix

6.1. Appendix 1: Covariates Included in Person-Level Model

Table A1. Covariates included in person-level model.

Demographic covariates Health covariates Interaction terms

Age Disability status IPR by survey1

0–5 Has a disability Age 19–25 by year2

6–18 Does not have a disability Receives SNAP
by 0–138% IPR3

19–25 IPR by year4

26–34 Socioeconomic covariates SNAP by year4

35–44 Supplemental Nutrition
Assistance Program (SNAP)

SNAP by 0–138%
IPR by year4

45–54 Receives SNAP benefits
55–64 Does not receive SNAP benefits
65–74 Income-to-poverty ratio (IPR)
75 and over 0–138% IPR

Sex 139–199% IPR
Male 200–299% IPR
Female 300–399% IPR

Race and Hispanic Origin 400–499% IPR
Non-Hispanic

White alone
500% and over IPR

Non-Hispanic
Black alone

Non-Hispanic other Geographic covariates
Hispanic Metropolitan Statistical

Area (MSA)
Citizenship Lives in MSA

Citizen Does not live in MSA
Not a citizen Medicaid Expansion

State (as of 1/1/14)
Lives in expansion state
Does not live in expansion state

Notes:
1We include interactions between each IPR level and the survey because income is measured differently between

the two surveys (the CPS collects over 50 types of income while the ACS collects only eight).
2Interactions between the age group 19 to 25 and each calendar year account for changes in the relationship

between health insurance coverage and age over the period due to the 2010 implementation of the dependent

coverage provision of the ACA.
3An interaction between receipt of SNAP benefits and IPR less than or equal to 138% of the poverty threshold is

included because only low-income families are eligible for SNAP benefits.
4We control for time-effects (in addition to the direct effect of gt), by including interactions for year by all levels

of the IPR, year by receipt of SNAP benefits, and a three-way interaction between year, receipt of SNAP benefits,

and low-income status (IPR is between 0 and 138% of the poverty threshold).
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6.2. Appendix 2: Variance Estimation

All of the estimates presented in this article, including both the mean and the variance, are

weighted estimates. In the article, we focus on the means of the uninsured. Appendix 2

focuses on the modeled variance. We will not focus on direct estimates of variance. Direct

estimates of the means and variances use the person data and the post-stratified weights

and the standard errors are computed using successive difference replication (Fay and

Train 1995).

Aggregate Model, Tabular

For the aggregate model, the Rate and Var(Rate) is calculated directly from the survey.

The second step is estimating the variance of the standard error of the prediction.

SEPredðCPS2013Þ¼

SQRT VarðRateACS2013Þþ
1

16

X2012

k¼2009

ðVarðRateACSÞþVarðRateCPSÞÞk

 !
ðA1Þ

Person-Model, Regression

The sample size for the ACS is roughly 35 times the sample size of CPS. If we ignore the

sample size difference, the contribution of the ACS to the final prediction in the CPS

estimate will be overstated. Therefore, we must adjust the final estimates of the mean and

the variance. We do this in steps: first, we calculate a person-weight adjustment, and

second, we use the adjusted person weight to calculate the variance of the prediction.

Step 1: Person-Weight Adjustment

To account for the complex survey designs in both the ACS and CPS in the regression-

based person-model, each year of data for each survey is weight-adjusted to match their

effective sample size (Kish 1965) for the uninsured rate. The Rate and Var(Rate) is

calculated directly from the survey. The ESS is calculated (Equation A2a) on the

uninsured rate.

ESSj ¼ ðRatejÞð1 2 RatejÞ=VarðRatejÞ ðA2aÞ

where j ¼ calendar year, subgroup, and survey.

An adjustment factor is applied (Equation A2b).

Adjustj ¼ ESSj=Sum of person weightsj ðA2bÞ

An adjusted/final person-weight (FPW) is used for the regression (Equation A2c).

Final Person Weighti;j ¼ Adjustj £ Person Weighti ðA2cÞ

Where i ¼ person in group j.
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Step 2: Final Estimate of Variance

Using the FPW as the weight for the regression model, we run the model. For each

observation that comes from the CPS, the relevant output for calculating the standard error

of the traditional questions (SE Ŷj

� �
) are: FPW, prediction error under the model (SE Ŷi; j

� �
),

calendar year, and subgroup. All of the ACS observations are dropped. At the person-

level, calculate an adjustment to the person-level variance of the prediction of being

uninsured.

P1 VARi;j ¼ FPW2
i;j £ SE Ŷi;j

� �
2 ðA3Þ

Equation A4 is the standard error of the weighted predicted mean for our final national

estimate, by year and subgroup.

SE Ŷj

� �
¼ SQRT

X
P1 VARi;j

� �
=
X

FPWi;jÞ ðA4Þ
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Adjusting for Measurement Error in Retrospectively
Reported Work Histories: An Analysis Using

Swedish Register Data

Jose Pina-Sánchez1, Johan Koskinen2, and Ian Plewis2

We use work histories retrospectively reported and matched to register data from the Swedish
unemployment office to assess: 1) the prevalence of measurement error in reported spells of
unemployment; 2) the impact of using such spells as the response variable of an exponential
model; and 3) strategies for the adjustment of the measurement error. Due to the omission or
misclassification of spells in work histories we cannot carry out typical adjustments for
memory failures based on multiplicative models. Instead we suggest an adjustment method
based on a mixture Bayesian model capable of differentiating between misdated spells and
those for which the observed and true durations are unrelated. This adjustment is applied in
two manners, one assuming access to a validation subsample and another relying on a strong
prior for the mixture mechanism. Both solutions demonstrate a substantial reduction in the
vast biases observed in the regression coefficients of the exponential model when survey data
is used.

Key words: Bayesian statistics; measurement error; mixture model; retrospective data;
unemployment.

1. Introduction

Many different forms of measurement error (ME) have been treated in the literature

(Berkson 1950; Black et al. 2000; Neuhaus 1999; Novick 1966). Moreover, in some

instances, different forms of ME interact within the same data-recording strategy. We

consider here such a case, motivated by a retrospective data set, where ME is best modelled

using a combination of errors. We demonstrate the application of a mixture of ME using

validation samples of 20% and 40%, as well as in the absence of validation samples.

Retrospective questions are useful for collecting information about life-course events

over a span of time from a single contact with a respondent. They are cheaper to administer

than alternative data collection schemes that rely on repeated updates of the current state

(Solga 2001). On the other hand, retrospective questions are prone to ME due to memory

failures. These memory failures can take different forms.

For questions retrieving specific events, for example, “When was the last time you went

to the dentist?” (Office for National Statistics 2006) – we can detect telescoping effects
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(Golub et al. 2000; Johnson and Schultz 2005). Neter and Waksberg (1964) coined this

term to refer to the temporal displacement of an event, whereby people perceive recent

events as being more remote than they are (backward telescoping or time expansion)

and distant events as being more recent than they are (forward telescoping or time

compression). Other researchers (Bradburn et al. 1994; Huttenlocher et al. 1988; Rubin

and Baddeley 1989) have argued that, rather than distorted time perceptions, recall errors

take the form of random ME around the reported date with the size of the error being

proportional to the distance between the time of the interview and the actual date. That is,

the further away the date of the event to be reported, the harder it is to recall and therefore

the bigger the ME.

For questions retrieving count data – that is, those enquiring about the number of times

an event has been experienced over a period of time, for example, “How many times

during the last two years have you put together self-assembly furniture at home?” (Office

for National Statistics 2008). – interference effects have been detected. This term was

coined by Crowder (1976) and refers to the probability of recalling a particular event being

inversely related to the number of times the respondent experiences similar events

(Shiffrin and Cook 1978).

All these types of memory failure result in a significant loss of reliability and validity

in most of the variables collected retrospectively, which in turn can have severe

consequences in the form of loss of statistical power and biased estimates when used in

statistical models. Nonetheless, although undoubtedly inconvenient, these effects can be

mitigated through the implementation of methods for the adjustment of ME. In particular,

much of the literature has focused on the implementation of adjustments where

multiplicative models (see Section 2) are used to specify the distribution of recall errors

(Augustin 1999; Dumangane 2007; Glewwe 2007; Holt et al. 2011; Pickles et al. 1996,

1998; Pina-Sánchez 2016; Skinner and Humphreys 1999).

Multiplicative models can be successfully used to map different ME processes

stemming from memory failures in the reports of specific events. However, things become

much more complicated when dealing with retrospective reports of different kinds of

histories. Such reports require the identification and timing of the same or different events

in chronological order. Take this question from the 2003 Improving Survey Measurement

of Income and Employment project (Jenkins and Lynn 2005) as an example, “Have you

received Job Seeker’s Allowance at any time since ,DATE OF PREVIOUS

INTERVIEW .?” If yes, interviewees were then asked “For which months since

,MONTH OF INTERVIEW . have you received Job Seeker’s Allowance?”. Here, we

might expect spells of receiving the benefit having misdated start or end times. However,

we should also expect ME in the form omitting spells that did occur, over-reporting spells

that did not occur and misclassifying spells by, for example, reporting receipt of one

kind of benefit when it was, in fact, a different benefit. These other types of errors can

generate severe distortions since, unlike misdated starts or ends of spells, they give rise

to durations of spells that are unrelated to their true values. Under such circumstances,

the impact of ME on the estimates of, say, a regression model, should be expected to be

more serious than when using spells solely subject to multiplicative errors, while the

potential application of adjustment methods is more limited and more complex to

implement.
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In this article, we use administrative data from the Swedish register of unemployment

linked to survey reports of individuals’ work histories (described in Section 3). Under the

assumption that the former is perfectly measured, we assess: a) the prevalence and forms

of ME in the retrospective reports of work histories (Subsection 4.1), b) the consequences

of using durations of spells of unemployment captured from those work histories as the

response variable in an exponential model (Subsection 4.2), and c) the effectiveness of

different approaches based on Bayesian methods to adjust for the consequences of ME in

such an exponential model (Section 5). In particular, we demonstrate the potential of an

adjustment using a Bayesian mixture model. We calibrate the ME model separately using

validation samples and by relying on past information. Section 6 concludes with a list of

recommendations regarding the collection of work histories retrospectively, and with a

discussion of possible further improvements in the adjustment model, using auxiliary data.

2. Modelling Recall Errors

In order to adjust for the consequences of using variables prone to ME, many analysts rely

on the assumption that the error mechanism is classical. The classical ME model was first

formally defined by Novick (1966) as X* ¼ X þ V; where X* is the observed variable,

equal to the true variable, X, plus the ME term, V, with the following five assumptions:

The classical model nicely reflects the type of ME that we can expect to find in

continuous variables prone to random errors, for example when measuring temperature

using an unreliable thermometer. In addition, the classical model is often used as the

foundation upon which more complex ME processes are specified. One such a case is

the previously mentioned multiplicative model, where the additive relationship between

the true value and the error is substituted by a multiplicative one, so, X* ¼ XV.

The same assumptions about the error term described above apply, except that the error

term is now log-normally distributed with a mean of one. The ME has a symmetric effect

across the true values and maintains the scale used in duration and count data, from 0 to 1.

More importantly, since the effect of V on X* is proportional to the value of X, the

multiplicative model can be used to reflect a random ME process stemming from memory

failures observed in retrospective questions capturing events or counts of events (see the

examples from the Office for National Statistics in the introduction). That is, the greater

the number of events experienced, or the further the event from the time of the interview,

the higher the prevalence of ME. Note, as well, that this same model can also be used to

account for systematic (i.e., nonrandom) recall errors, such as those found under the

presence of backward and forward telescoping effects, by shifting the distribution of V to

the right or left so its mean goes below or above one.

Table 1. Assumptions of the classical model.

E(V) ¼ 0; null expectancy
Var(Vi) ¼ Var(V ); homoscedasticity
V , N (0, Var(V )); normally distributed
Cov(X, V ) ¼ 0; indep. error and true value
E(Y jX, X*) ¼ E(Y jX ); non-differentiality
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However, this model cannot adequately account for the type of ME observed in

questions where interviewees are requested to report retrospectively not only the duration

of a specific spell, but an entire history. As anticipated in the introduction, such reports are

subject to additional forms of ME. In particular, the spells comprising the reported history

will not only be affected by problems of their start or end being misdated, or any of the

other typical forms of bias found in survey data, such as social desirability, or

acquiescence bias, but also by more problematic issues of omission/overreporting and

misclassification. Each of these forms of ME can distort the true durations of the spells in

different ways. In Figure 1, we present three examples of the potential implications of ME

when the retrieved durations are considered as the response variable of an event history

model based on first spells (as opposed to multiple spells). The examples are taken from

the data set presented in the following section, where all subjects start from a state of

unemployment and the window of observation covers 395 days. The true spells of

unemployment are now denoted by Y and are represented by the continuous lines. The

error is represented by V and is encompassed by the bracket immediately below, whereas

the observed durations are denoted by Y*.

When spells are misdated, the observed durations can appear shorter or longer than the

true ones. This is represented by the first case shown in Figure 1, where the only spell of

unemployment experienced within the window of observation has been reported to be

90 days longer than it really was. Misdating errors are the only types of recall errors that

can occur when subjects known to be in one particular state are requested just to report

the duration or the end date of that spell. This simple case could be well represented by the

classical multiplicative model, where shorter durations will be associated with more

accurate reports.

0 66 132 197 263 329 395
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Fig. 1. Work history durations affected by different types of measurement error.
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The omission of spells could more seriously distort estimation based on this data. Take

the second work history presented in Figure 1, for example: if the spell representing a

status different from unemployment starting in day 66 was omitted, the two spells of

unemployment that occur before and after would be artificially linked, and the reported

work history for that subject would look like a unique spell of unemployment. The same

situation could also be reproduced as a result of misclassification of spells, specifically if

the spell between Y1 and Y2 was a false positive case of unemployment (e.g., a registered

case of employment reported as a spell of unemployment). An equally problematic form of

ME occurs as a result of overreported spells. The third case in Figure 1 represents an

example of a spell different from unemployment being mistakenly reported. This spell

only covers 20 days (from day 100 to 120), but it has a severe effect, since it splits a true

duration that was right censored and generates an observed duration only 100 days long.

Finally, we could also categorise a ME effect from misclassified spells in the form of

false negative spells of unemployment. Given our particular setting, where all work

histories start from unemployment and only first spells are considered, the effect of false

negative spells will resemble that of missing data since these cases will be completely

unobserved. The difference lies in the fact that in the presence of missing data we know

which cases are missing. As long as the probability of committing false negatives is

independent of the duration of unemployment and other observed explanatory variables,

it will only affect the precision of model estimates.

3. Data

The data we use has been obtained from the “Longitudinal Study of the Unemployed” a

research project designed by the Swedish Institute for Social Research (SOFI) at Stockholm

University, directed by Sten-Åke Stenberg, and with the collaboration of the register of

unemployment (PRESO). This register provided individual-level data on the work status of

the participants of three surveys, run in 1992, 1993, and 2001. The sample was designed to

capture 830 jobseekers randomly selected amongst those registered as unemployed on

1992-02-28 who met the following criteria: aged between 25 to 55 years, of Nordic

nationality, no occupational disability, and seeking a full-time job. The three surveys are

relatively similar with respect to the composition of both the sample of participants and the

questionnaire, although for reasons of attrition the response rate for the three surveys

decreased across time from 64.7%, to 59.4% and 50%. In this study, we use data derived

from a retrospective question on work status from the 1993 survey, which reads as follows:

Which of the alternative answers best describes your main activity the first week of

1992? When did this activity start? When did it end?

Which was the subsequent main activity? When did this activity start? When did it end?

In order to simplify the reported work histories to be analysed, we set the beginning of

the window of observation at 1992-02-28 and only consider subjects who started from

a state of unemployment in both the register and the survey. Under this restriction, our

sample mimics the structure seen in state-based samples (Holt et al. 2011), where the

sample frame is created out of individuals who are known to be in a particular state. Our

final sample size captures 381 individuals (from a total of 532 captured by both survey and
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register). The window of observation encompasses all spells from 1992-02-28 to 1993-03-

30, where the end date represents the earliest day that interviews were held for the second

wave of the survey. Right censoring is present in both the survey and register data sets.

In addition to drawing the duration of spells of unemployment from PRESO, the register

also provides the age and experience of the 381 subjects. Given that age is an important

variable in the register, the probability that it is prone to ME is very low. This is not so for

experience, which captures self-reported levels of experience in the type of work that the

subject applied for on a scale with three levels (low, medium, and high). However, in our

analysis we assume that both age and experience are free of ME. The value for age is taken

in February 1993, which gives us a mean sample age of 37 and a standard deviation of 8.8,

while for experience the mean of the monthly reported levels in 1992 is used, with a mean

and a standard deviation in our sample of 2.6 and 0.6 respectively. The rest of the

descriptive statistics for the variables used in our study are reported in Table 2.

4. Prevalence and Impact

In a study using this same data set, Pina-Sánchez et al. (2014) found evidence of the

different types of errors discussed in Section 2. For example, 57% of the first spells

reported were misdated by more than 31 days, and 30% were misclassified (interviewees

reported to be employed or out of the labour force when, in fact, they were registered as

unemployed, or vice versa). In addition, a tendency to omit spells of unemployment was

detected since the ratio for the mean number of spells of unemployment reported over

those registered during the window of observations was 1.4/1.7.

Here, we carry forward this analysis to assess the prevalence and effect of the ME found

in spells of unemployment retrieved from work history reports. First, we look at

differences between spells of unemployment from the same subjects and across the same

window of observation captured by the survey and the register to estimate the prevalence

of ME in the former. Second, we assess the impact of such ME on event history analysis,

by looking at differences in regression coefficients and their measures of uncertainty

between the same models when survey instead of register data is used. These analyses are

based on the key assumption that spells from the register are free of ME. This is a realistic,

yet not entirely perfect, assumption. Even data from registers can be affected by ME

(Kapteyn and Ypma 2007; Pavlopoulos and Vermunt 2015). As a result, in the few

Table 2. Descriptive statistics of the sample.

Mean/
Median

Standard deviation/
Interquartile range Minimum Maximum

Age 37 8.8 26 55

Experience 2.6 0.6 1 3

Register durations* 253 303 1 395

Survey durations* 92 144 1 395

*Since these variables are subject to censoring, their medians and interquartile ranges are reported.
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instances where the register is inaccurate, we might be wrongly considering spells of

unemployment to be misreported.

4.1. Prevalence of Measurement Error in Durations of Unemployment

A comparison of medians (Table 2) shows that the durations of spells of unemployment

are substantially longer in the register (253 days) than in the survey (92 days). This longer

duration of registered spells is also reflected by the 133 cases (35% of the sample) that are

right censored (remained unemployed by the end of the window of observation), compared

with only 23 (6% of the sample) in the survey. These differences can be appreciated in

Figure 2(a), where the survivor functions for the two types of durations are represented

using Kaplan-Meier estimates (P(S) indicates the probability of not having made a

transition out of unemployment at a particular time). The two data sets show a similar path

for the first 30 days; from that point until about day 100 the two measures diverge due to an

accelerated failure rate in the survey; from then on, the two survivor functions behave

roughly similarly and the gap between them is maintained.

The different failure rates observed for the reported and registered durations indicate the

presence of a systematic component in the ME process. In Figure 2(b) we plot the density

of the error term assuming it is multiplicative, V ¼ Y*/Y. Here we can observe that,

although a majority of errors are centred around one (as could be expected in a classical

multiplicative framework), the distribution is bimodal and shows a substantial number of

extreme values. The calculation of the error term might be biased since the right-censored

cases were taken to be equal to 395. However, this could not account for the extreme

values seen here. Hence, we can conclude that the ME process is not multiplicative.

The ME can also be assessed using scatter (c) and density plots (d). The former can be

used to assess the effect of ME on a case-by-case basis, while the latter represents the
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Fig. 2. Survey, register durations, and the effect of measurement error.
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probability density functions of the error term as the difference between the registered and

reported durations. First, we can see how a substantial proportion of cases are relatively

unaffected by ME. This is reflected by the points lying around the diagonal line of the

scatterplot, where survey and register durations are equal. In particular, 162 subjects, 42%

of the sample, reported durations within ^15 days of what was captured in the register.

This pattern is also manifested by the dotted line depicting differences between registered

and reported durations in the density plot, which shows a majority of cases for which the

observed ME appears to be well approximated by a Normal distribution centred around

zero, as could be expected from classical additive ME. However, the same density

function also shows that for a considerable proportion of the sample, durations have been

markedly shortened, together with a few other spells reported to be artificially long. For

these cases, there does not seem to be a particular relationship between Y* and Y since –

except for the cases subject to classical additive ME – they are roughly uniformly

distributed across the window of observation (as depicted by the dotted line).

The complexity of the ME seen here can be regarded as the outcome of the different ME

mechanisms affecting the retrospective report of work histories (presented in Figure 1).

In the light of the sample restrictions –– namely the selection of spells for which the

respondents reported correctly to be unemployed –– we can differentiate two ME

mechanisms: 1) spells where the difference between the registered and reported durations

are distributed around zero, which could be considered to be due to problems of misdating;

and 2) spells that are spread across the window of observation, which could be due to the

problems of omission or false positives (case 2 in Figure 1), or to problems of overreported

spells (case 3 in Figure 1).

4.2. Impact of Measurement Error in an Exponential Model

To assess the consequences of using durations of unemployment prone to this type of ME,

we now compare the results obtained for two accelerated-life exponential models, one

using durations from the register as the response variable (the true model) and the other

relying on the reported durations (the naı̈ve model) – see Pina-Sánchez et al. (2013) for a

detailed review of the impact of this type of ME in different types of event history analysis

models. An exponential model is used instead of other commonly used Weibull or Cox

specifications (Kettunen 1997; Lancaster 1979; Pyy-Martikainen and Rendtel 2009) for

reasons of parsimony. Given the monotonic increase of the cumulative hazard functions

for the reported and registered durations (Figure 3) and the complexity of the adjustments

carried out in the following sections, it was deemed preferable to use the simplest plausible

model specification. We include the same set of explanatory variables, age, work

experience, and their interaction term in these two models. These variables could be

considered nondifferential (see Table 1) with respect to the ME observed here, since the

Pearson correlation coefficients between the ME (defined as V ¼ Y* 2 Y) with age and

experience were 0.07 and 20.01.

To facilitate comparisons with the adjustments presented in the following section, the

true and naı̈ve models are estimated using Bayesian methods. We specify a model with

a hierarchical dependence structure that lends itself to straightforward estimation in

software such as WinBUGS (Lunn et al. 2000), JAGS (Plummer et al. 2006), or Stan
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(Carpenter et al. 2017). All of these Bayesian packages are based on the Markov chain

Monte Carlo (MCMC) approach (Geman and Geman 1984) that may be used when the full

conditional posterior distributions of all unobservables are known distributions that are

simple to draw from “directly”.

The joint distribution for the true model can be formally expressed as

pðY;bjXÞ ¼ pðbÞ
i

Y
pðYijmiÞ; ð1Þ

where X represents the three explanatory variables, age, exp, and their interaction term ae,

and mi is the expected value of Yi. We assume that Yi is exponentially distributed where we

model mi using the link function Xib ¼ log(mi). To complete the specification of the model

we give diffuse priors to the regression estimates included in m. For our 381 observations,

we expect the likelihood to overwhelm the prior and we assume, a priori, that b , N4(0,

1002I4). To estimate the naı̈ve model, we only have to substitute Y for Y* in Equation 1.

Results from both the true and naı̈ve models are shown in Table 3.

Although all the estimated coefficients have the same sign in both the naı̈ve and true

models, the effect of ME is clearly reflected by substantial attenuation in the estimates

for the model using survey data. In particular, the effects of age, experience and their

interaction on the durations of spells of unemployment are at least 90% smaller in the

naı̈ve model than in the true model. This has been measured using the relative bias

(R.BIAS) for coefficient b̂
ðsurveyÞ

k relative to the true regression coefficient, b̂
ðregisterÞ

k ,

R:BIAS ¼ 100 b̂
ðsurveyÞ

k 2 b̂
ðregisterÞ

k

��� ���= b̂r

�� ��; for k ¼ 1; 2; 3; 4:

Table 3. Results of the exponential true and naive models and the impact of measurement error in terms of

R.BIAS and R.RMSE*.

Register Survey R.BIAS R.RMSE

constant 9.10 (1.36) 5.12 (1.15) 43.7% 204.6%
age 20.088 (0.038) 20.001 (0.032) 89.9% 143.9%
experience 21.39 (0.50) 20.13 (0.42) 90.6% 171.1%
age £ exp 0.038 (0.014) 0.002 (0.012) 94.7% 163.7%

*Results for all the models presented in this article are calculated from the posterior distributions formed from

two chains of 400,000 iterations after the first 10,000 from each chain are burnt-in.

**Posterior standard deviations are shown within brackets.
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The R.BIAS is useful for making comparisons between explanatory variables using

different scales. In addition, in order to take into account the impact on the precision of the

regression coefficients, we use the relative root mean squared error (R.RMSE), which is

the root mean squared error of a regression coefficient obtained in the naı̈ve model,

RMSE b̂
ðsurveyÞ

k

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SD b̂

ðsurveyÞ

k

� �2

þ ðBIASÞ2;

r
over that of the same coefficient in the

true model, R:RMSE ¼ 100
RMSE b̂

ðsurveyÞ

k

� �
2SD b̂

ðregisterÞ

k

� ��� ��
SD b̂

ðregisterÞ

k

� � :

In our study, the naı̈ve model underestimates the standard deviations of all the

regression coefficients. However, due to the attenuation of those estimates, the posteriors

for the naı̈ve model cover zero except for the constant term. The combination of bias and

imprecision in the naı̈ve model makes the impact of ME in terms of RMSE range from

being doubled for the case of the constant term, to an increase of 43.9% (for age).

5. Adjustment

The great impact of the ME found in spells of unemployment derived from retrospectively

reported work histories just shown is even more worrying if we take into account the

difficulty of adjusting for such a complex process. Most of the standard methods designed

for the adjustment of ME rely on rather simple assumptions regarding the behaviour of the

ME. For example, methods such as SIMEX (Cook and Stefanski 1994), or the methods of

moments (Fuller 1987) tend to assume that the error is classical (see Table 1), whereas

other methods that can easily account for systematic ME, such as multiple imputation

(Brownstone and Valletta 1996; Cole et al. 2006; Freedman et al. 2008; Messer and

Natarajan 2008; Peytchev 2012; Rubin 1987) or regression calibration (Carroll and

Stefanski 1990; Freedman et al. 2008; Glesjer 1990; Messer and Natarajan 2008; Veronesi

et al. 2011; Wang et al. 1997) assume that the ME process is homoscedastic.

The problem of ME that changes in size according to the true value is typical in the

retrospective report of start or end of spells. Several studies in the literature have

investigated the adjustment of such types of errors using multiplicative models (Augustin

1999; Biewen et al. 2008; Dumangane 2007; Glewwe 2007; Holt et al. 2011; Pickles et al.

1996; Pickles et al. 1998; Pina-Sánchez 2016; Skinner and Humphreys 1999). However, as

seen in the previous section, the type of ME observed in spells of unemployment derived

from retrospectively reported work histories cannot be approximated using a

multiplicative model. In particular, we have seen how, in addition to typical problems

of spells being misdated, we should expect more serious problems of omission/overreport

and misclassification of spells, which can generate cases where the observed and true

durations are unrelated.

To adjust for such complex types of ME, we rely on the flexibility of the Bayesian

approach. The possibility of specifying the ME freely to map the error-generating

mechanism adequately is the key element that gives Bayesian methods an advantage over

the previously discussed methods in terms of the flexibility and applicability in treating

missing data (Rubin 1996). See for example, Clayton (1992) for a general framework;

Richardson and Gilks (1993) demonstrated how the missing data allows for treatment of a

wide variety of ME; Dellaportas and Stephens (1995) deal with both Berkson and classical
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errors-in-variables ME for regressors; Butts (2003) treat ME in perceptions of social

interaction; Ghilagaber and Koskinen (2009) correct for ME stemming from

retrospectively defined covariates.

In what follows, we explore the possibility of extending the naı̈ve model presented using

a mixture measurement model with the aim of differentiating between two ME processes.

The first process will reflect cases being either correctly reported or misdated. The second

will deal with spells that result from misclassification, omission or overreporting of events,

and for which the observed duration cannot offer much, if any, meaningful information

about the true duration. In order to inform the mixture model about the allocation of cases

to each of these processes, we explore two approaches: one relies on having access to a

validation subsample, while the other relies on specific prior information.

5.1. Adjustments Relying on Validation Subsamples

For the first of these adjustments, we use random validation subsamples of 20% and 40%

of the true durations captured in the original sample of 381 respondents. Compared to

other studies seeking to adjust for ME, 20% is a relatively small subsample – for example

Cole et al. (2006) used validation subsamples of 150 cases, accounting for 25% of the

original sample – but large enough to make the model identifiable regardless of the

configuration of the validation subsample. This was not always the case for smaller

validation subsamples of 5% and 10%. A 20% validation subsample will, on average, only

have 44 noncensored and 32 censored cases.

We present a general hierarchical mixture measurement model and then proceed to

define the parameter structure and prior distributions. We let L ¼ b; u;s 2
1 ;s

2
2 ;p

� �
denote

the collection of parameters of interest and introduce a latent variable T ¼ (Ti:

i ¼ 1, : : : , 381). With prior distribution p(L), the joint distribution of data and the

unobservables is

pðY *; Y ;b;L; TjXÞ ¼
i

Y
p Y*

i jYi;L; Ti

� �
pðTijXi; Yi;LÞ ð2Þ

£
i

Y
pðYijXi;LÞ ð3Þ

£ pðLÞ; ð4Þ

where the model (3) for the true response is defined as an exponential distribution

pðYijXi;LÞ ¼ pðYijXi;bÞ as before, but conditionally on a response Yi, we define the ME

distribution (2) for Y*
i as a mixture of different ME models.

5.1.1. Mixture Measurement Model

The mixture model permits us to account for different types of ME simultaneously. We

could, for example allow some cases to follow a multiplicative ME, while others follow an

additive ME model. Here, we limit the case to two types of ME. For each respondent

i ¼ 1, : : : , 381, we assume that they belong to one of two unobserved categories

indicated by the latent variable Ti [ {0, 1}. If Ti ¼ 1, we assume a standard additive ME
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model Y*
i Ti ¼ 1;Yi;s

2
1

� 	�� , N Yi;s
2
1

� �
. Conditional on Ti ¼ 0, we assume that Y*

i is

completely unrelated to the true duration Yi. Denoting this distribution f Y*
i

� �
and writing

pi ¼ PrðTi ¼ 1jp;Xi; YiÞ, the two processes correspond to a mixture

pif Y*
i ; Yi;s

2
1

� �
þ ð1 2 piÞf Y*

i

� �
;

where fð�; a; bÞ represents the pdf of a normal distribution with mean a and variance b.

The intuition is that additive ME might work for a subset of data but not for another

subset. For a purely additive model, this heterogeneity would have to be accounted for

entirely by the variance s 2
1 . A number of distributions for f (·) are conceivable and the

shape of the distribution may contribute information and help discriminate between

additive and random ME. To allow for f (·) to depend on for example X, would not alter the

general structure of the model as long as the parameters of f ð�jXÞ were distinct from b.

Here we assume a normal distribution f Y*
i

� �
¼ f Y*

i u;s*
2

��� �
which is convenient and can

be interpreted as a variance decomposition of the ME. The conditional predictive

distribution for Y*
i with unknown Ti simplifies to

Y
*

i pi; Yi; u;s
2
1 ;s

2
2

� 	�� , N piYi þ ð1 2 piÞu;p
2
i s

2
1 þ ð1 2 piÞ

2s 2
2

� �
:

Since respondents cannot report negative durations, Y*
i can be truncated to the left in 0.

Here we chose to relax this constraint and permit Y*
i to have support R. The reason for

this is partly because the MCMC becomes less efficient with the truncation. Another

consideration is that the truncation confounds the variance partition and makes

interpretation of ME in terms of classical ME difficult. The distribution of the true value Yi

given Y*
i and L, will be nonnegative even if Y*

i is not truncated (see Section 7 Appendix

for details).

5.1.2. Mixture Proportions

The latent variable, T, denoting the part of the mixture model to which cases are allocated,

is set to follow a Bernoulli distribution Pr(Ti ¼ 1jY, X, L) ¼ p, independently for all

respondents conditional on the mixture proportion p. A priori p determines what

proportion of cases follow the classical ME and what cases are unrelated. A posteriori, the

predictive distribution for individual memberships also incorporates the information in the

other variables. Like other latent variable models, it is possible to model pi but we chose

the more straightforward case.

5.1.3. Prior Distributions

To balance the evidence in data for the different ME processes and to adjust proportions,

we need to pay careful attention to prior distributions. To reflect the structure of the model,

we set prior distributions

pðLÞ ¼ pðpÞpðbÞ p u;s 2
1 ;s

2
2

� �
;

assuming a priori independence between different blocks of parameters. As p [ (0, 1),

a convenient and common choice is Beta(z1, z2), with standard reference priors being

z1 ¼ z2 ¼ 1/2 (Jeffreys, 1946) or a uniform distribution z1 ¼ z2 ¼ 1. Here we chose the

latter.
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The analysis of the full register data was not very sensitive to the prior for b. With 20%

or 40% validation samples, the scant information in data will, however, give more weight

to the prior distribution. For regression parameters b, it is common in generalised linear

models to use the prior distribution b , Npð0; diagðlÞÞ, for l ¼ ðl1; l2; l3; l4Þ
T . This may

be interpreted as a prior that shrinks the coefficients towards the origin. We set a relatively

conservative l ¼ ð1002; 102; 102; 102ÞT, where the variance l1 for bcons reflects the greater

variation in this parameter and prevents too great attenuation of the intercept. Other

alternatives include the class of conjugate families (Chen and Ibrahim 2003), or other

forms of reference priors – for example, Ibrahim and Laud (1991) – that can account for

the difference in scale and correlation between covariates.

As the ME model attempts to parse out the relative contribution of variance in Y* 2 Y,

from the two kinds of ME, the model is potentially sensitive to the prior specifications for

p u;s 2
1 ;s

2
2

� �
. Since we do not have any theory to guide us and given the structure of the

mixture model, we assume that u;s 2
2

� �
are independent of s2

1 a priori. Here, we consider

two different kinds of prior distributions.

The first type is a standard conjugate prior

1

s 2
1

, Gaða1; g1Þ;

and for the parameters of f we chose a standard normal-inverse-gamma prior

u s 2
2 , N u0;s

2
2 =n0

� ��� 1

s 2
2

, Gaða2; g2Þ;

for hyper parameters a1, a2 . 2, g1, g2 . 0, and n0 . 0. To make sure that both the

variances and the precisions have proper distributions with the first two moments finite, we

set a1 ¼ a2 ¼ 3. This is to ensure that the conditional posteriors are well defined for the

case when
P

i Ti ¼ 0 or
P

i Ti ¼ 381, that is, when the model allocates all observations to

either one of the two latent classes. Throughout, we will set n0 ¼ 1 and u0 ¼ 187, which is

exactly the centre of the range of observable values on Y
*

i . Because of the (conditional)

conjugacy, updates of a1,a2, g1,g2, and u are efficient. Similarly, updates of unobserved Yi

are straightforward given the result in the Section 7 Appendix.

To relax the dependence between u and s 2
2 somewhat, and make f () slightly more robust

to violations of normality, we also consider a prior where u and s 2
2 are independent a priori.

More specifically, we set the prior for u , Nðu0; t
2Þ; u0 ¼ 187, and independently thereof

s 2
s , Uð1; asÞ, for some choice of upper bound as, s ¼ 1, 2 (Gelman et al. 2006, 520).

5.2. Performance of the Adjustment

To investigate the performance of the adjustment, we assess the sampling error associated

with the choice of validation subsample, as well as the sensitivity to prior specifications.

We estimate the model from 50 samples of 20% and 40% of the register data for prior

specifications, as in Table 4.

5.2.1. 20% Validation Sample

A comparison of the posteriors for b with the naı̈ve analysis and the gold standard is

provided in Figure 4 that provides the 95% credibility intervals (CI) for the adjustments
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under priors I, II, and II, as well as the CIs and means for the validation sample only and

register analyses. While the posteriors for p, s1
2, s2

2, and u clearly are sensitive to the prior

specifications, the posteriors for the regression parameters b appear robust to the priors for

the ME. With as few as 76 validation cases, it appears that we get valid inference for both

b and T and there seems too be a very weak dependence on the actual sample judging by

the small variation across samples. The posterior means for the adjustments seem to be

close to those obtained using the validation sample only, but the CIs for the latter are

much wider than for the adjustments. Using the survey only yields less uncertainty and

narrower CIs (as shown in Table 3) than the adjustment, but the bias of the survey results

means that the CIs do not cover the true posterior mean for any parameter.

All regression coefficients for the adjustment are attenuated and the CIs are somewhat

wider. For b the adjustment CIs are close to identical for Priors I, II, and III. There is a

Table 4. Specifications for hyper parameters for s 2
1 and s 2

2 .

g1 g2 E s 2
1

� �
E s 2

2

� �
V s 2

1

� �
V s 2

2

� �
Prior I 5 10 2.5 5 6.25 25
Prior II 10 100 5 50 25 2500
Prior III 100 400 50 200 2500 40000
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Fig. 4. 20% validation samples: CDF of Credibility intervals under prior specifications I, II, III, for 50

replicates, compared to the naı̈ve estimates and the validation sample only.
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healthy overlap between the adjustment CIs and the true CIs, but the interval lengths for

the latter are shorter. The relative bias for age ranges between 5 and 129, with a mean of

58; for the constant, the relative bias ranges between 1 and 46 with a mean of 23.

We may note that on balance, the first part of the mixture model Ti ¼ 1 makes a

relatively small contribution in the adjustment. The fact that the model can differentiate

between these cases and those much more seriously affected by ME is critical for the

success of the adjustment. Using the 20% validation subsample, the mixture model

estimates that the proportion of cases set to T1 ¼ 1 (p) is generally in the range 30% to

60% which covers 46%, the proportion of cases in the validation subsample where

reported durations lay within ^15 days of what was captured in the register.

While the inference for b seems robust to the prior specification using the tight coupling

of u and s 2
2 of the conjugate prior, we also fitted the adjustment model using the second

kind of prior with a1 ¼ 50 and a2 ¼ 500 (Prior IV). Again, the posterior means and

standard deviations are not affected by the prior specification for the ME. Prior IV

partitions the variance of the ME more clearly but is very similar to Priors I and II

(Figure 5).

5.2.2. 40% Validation Sample

Increasing the size of the validation subsample to 40% yields more information both for

the regression parameters b and the ME process. We re-estimate the model under Prior II
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Fig. 5. Comparison of posterior ratio between variance contributions of ME different types of priors across

20% validation samples.
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(given that the inference for 20% was robust to choice of prior). The posterior means for b

are still somewhat attenuated, but the CIs (Figure 6) are now very close to the intervals for

the register data. This improvement is not matched by the validation-only analyses. For

example, the average interval length for age for the adjustment is 0.18 and for validation

only it is 0.24.

5.3. Adjustments Without Validation Sample

Without a validation subsample, the previous model would have been unidentifiable since

it would be impossible, using the survey data alone, to determine the probability of cases

belonging to each part of the mixture model. However, the requirement of having access

to validation data can be relaxed using more informative priors. In particular, we obtain

results by assuming that the probability of cases falling within each of the two parts of the

mixture model is fixed. Prior distributions become a very useful tool in the presence of

models that cannot be identified – as is often the case when dealing with ME problems.

“One intuitive way of thinking about Bayesian inference in the absence of parameter

identifiability is that the prior distribution plays more of a role than usual in determining

the posterior belief about the parameters having seen the data” (Gustafson 2003, 64).

However, this greater reliance on the priors implies a reduced role for the data and, in

consequence, an increased possibility of incurring in model misspecification.
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Fig. 6. 40% validation samples: CDF of Credibility intervals under prior specification II, for 50 replicates,

compared to the naive estimates and the validation sample only.
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The more informed the researcher is about the value of the model parameters, the lower

the probability of misspecification will be. Hence, studies designed to assess the presence

of ME are essential to carrying out adequate adjustments. A number of studies have

explored the problems of ME affecting retrospectively reported work histories (Biemer

2011; Kreuter et al. 2010; Manzoni et al. 2011 and 2010; Poterba and Summers 1984 and

1995; Pyy-Martikainen and Rendtel 2009). However, we are only aware of one study

(Pyy-Martikainen and Rendtel 2009) using a register as validation data to assess the

different types of ME found in these types of questions, and even here we should note

some important differences from our study. Pyy-Martikainen and Rendtel (2009) looked at

a representative sample of the Finnish population, studied spells reported over a period of

five years, and the question used only required respondents to report the work status

experienced in each month of the year. We, on the other hand, study a sample composed of

Swedish jobseekers, observed for a period of one year, and responding to a question where

every spell needed to be identified in chronological ordered and dated.

These differences in terms of the sample composition, window of observation, and

question format, are so important that it would probably be unwise to borrow specific point

estimates from Pyy-Martikainen and Rendtel (2009) for our adjustment. However, we can

take the overall lower prevalence of ME found in Pyy-Martikainen and Rendtel (2009)

into consideration as one of the scenarios that we explore. In particular, we carry out

adjustments ranging from p ¼ 0.5 – a rounded estimate of the proportion of reported

durations that lay within ^15 days of the true ones – to p ¼ 0.7 – an estimate that

assumes a lower prevalence of cases being misclassified, omitted or overrepresented. We

assume Prior IV for the ME process.

Judging from Figure 7, inference for b is little affected by our choice of p but the added

uncertainty of not having a validation sample is reflected in spread in the posteriors. The

bias (relative to the register means) increases for all parameters as p increases. This is

more clear in Table 5, and the bias for the two extremes are compared in Figure 8.

We see that the models explored succeeded in reducing the bias found in the naı̈ve

analysis (Figure 8), while some of the added uncertainty is reflected in inflated standard

deviations. The model assuming p ¼ 0.5 performed better at reducing the R.BIAS and
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R.RMSE. The R.RMSE for the constant is reduced from 204% to 120%, and from 144% to

49% for age.

It seems that a value of p closer to what can be observed in the sample helps in the

reduction of the R.BIAS observed in the naı̈ve model. However, the lower the value of p

the higher the proportion of cases being treated by the second part of the mixture model.

Finally, if we compare the adjustments based on 20% and 40% validation subsamples,

they generally have slightly higher R.BIAS and R.RMSE on average than models relying

on a fixed p [ (0.5, 0.7), but with a range that covers those for the latter. For example,

R.BIAS for age for the 20% adjustment is between 4.7 and 129 with an average of 58;

and the 40% adjustment is between 0.3 and 124 with an average of 40. R.RMSES for age

for the 20% adjustment is between 14.9 and 215 with an average of 85; and the 40%

adjustment is between 11 and 205 with an average of 58.

6. Discussion

As has been noted by different authors (Augustin 1999; Jäckle 2008; Pyy-Martikainen and

Rendtel 2009), the understanding of and adjustment for ME in longitudinal data remains

an understudied area. “Despite the recognition of the existence of measurement errors in

Table 5. Adjustment using mixture models with fixed proportions*.

Register Survey p ¼ .5 p ¼ .7

constant 9.10 (1.36) 5.12 (1.15) 6.85 (1.98) 6.64 (1.94)
age 20.088 (0.038) 20.001 (0.032) 20.079 (0.056) 20.065 (0.058)
experience 21.39 (0.50) 20.13 (0.42) 20.87 (0.72) 20.75 (0.70)
age £ exp 0.038 (0.014) 0.002 (0.012) 0.027 (0.020) 0.023 (0.020)
s1 3.13 (2.22) 2.80 (1.83)
s2 130.4 (8.7) 132.2 (12.9)
u 218.9 (13.0) 254.5 (19.8)

*Posterior standard deviations are shown in brackets.
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Fig. 8. Effectiveness of the adjustment using a mixture model with fixed p.
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survey-based data on event histories, little is known about their effects on an event history

analysis.” (Pyy-Martikainen and Rendtel 2009, 140). Our intention here has been to

contribute to this topic by studying the prevalence, impact, and adjustments of the type of

ME observed in spells of unemployment derived from retrospectively collected work

histories using register data. From this analysis, we would like to underline three main

points, each being a consequence of the previous one:

1) Unlike the typical problems of time displacement found in reports of the starts or

ends of specific spells, here we have noted that reports of work histories can also be

prone to ME in the form of misclassification omission and overreporting of spells.

Furthermore, these different types of ME can occur simultaneously, generating

complex ME patterns.

2) Misclassification, omission and overreporting of spells are more problematic forms

of ME than misdated spells because they tend to result in observed durations that

are unrelated to the true values, hence endangering both the validity of these

measures and the analyses based on them. In particular, we have shown how, when

spells of unemployment derived from retrospectively reported work histories are

used as the response variable of an event history model, its regression coefficients

are severely attenuated by up to 90% of their true value.

3) Because of the complexity of the ME processes studied, standard adjustment

methods are inadequate. In particular, it is important to note that the vast majority

of studies aiming to adjust for the ME found in retrospective reports of dates have

been based on elaborations of multiplicative ME, which are inadequate in the

presence of spells being omitted, overreported, or misclassified.

Here, we have proposed to adjust for different ME mechanisms simultaneously through

the use of a Bayesian mixture measurement model. Specifically, the mixture model allows

us to differentiate between spells that are correctly reported or affected by minor problems

of misdating, and those for which the observed durations are not related to their true value.

To inform the mixture model about the proportion of cases that needed to be predicted

according to each of the mechanisms, we explored two approaches.

First, we assumed that the researcher could have access to a validation subsample. The

method performs well for 40% validation sample, but also works for 20% validation

sample. Here, 20% means only 76 cases from the register (32 on average of which are

censored), but even such a small figure is often inaccessible to most researchers due to

reasons of confidentiality. As an alternative to using validation data, we demonstrate the

use of fixing, a priori, the proportion of subjects in one of the two ME processes when no

validation subsample is available. These adjustments were even more effective. For a

model where the probability of being in the first part of the mixture model is fixed at 0.5 –

reflecting the percentage of spells observed to be correctly reported or simply mildly

misdated – we obtained average reductions of the R.BIAS of 65%, whereas fixing that

probability at 0.7 showed average reductions of 54%. In addition, these models fixing the

probabilities of the mixture model at 0.5 and 0.7 reduced the R.RMSE by 41% and 47%,

respectively.

The adjustment methods presented here are potentially useful strategies to reduce the

impact of the types of ME that can be expected in the report of life-course histories. The
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adjustments have been kept relatively simple and could be implemented by other

researchers using data that are similarly prone to combinations of different types of ME.

It is, for example, straightforward to model the mixture proportions as a function of

observables and to relax assumptions for the form of unrelated ME. The question remains

as to how to choose the necessary priors to make the model identifiable when no validation

data is available. Findings from studies analysing the prevalence of ME in similar survey

questions could help to inform those decisions, but even in the context of a well-analysed

question, a sensitivity analysis, or the comparison of results obtained from the use of

different priors, is the most prudent solution. For example, future studies specifying

durations of unemployment stemming from similar retrospective questions to the one

analysed here could use our approach to explore the robustness of their findings when the

percentage of spells taken to be misclassified, omitted, or overreported grows from 0% to

20% and 40%. Future work is needed to explore to what extent replicate data from the

posterior predictive distributions can be used to assess what ME has best fit to observed

data (Gilks et al. 1996).

The quality of the adjustment could also be improved using the, nowadays, more

frequently coded paradata. For example, the probability of cases being considered by each

part of the mixture model could be made conditional on certain factors known to be

associated with the misclassification, omission or overreporting of spells of

unemployment, such as whether the interview was taken on the phone rather than face-

to-face (Mathiowetz and Duncan 1988). Such adjustments could be further improved if

the researcher has access to key socio-demographic characteristics of the respondent. For

example, it has been consistently detected that individuals less engaged in the labour

market are more prone to omit spells of unemployment (Bound et al. 2001; Jürges 2007;

Levine 1993; Morgenstern and Barrett 1974; Paull 2002).

We would also like to add a note of comfort regarding the high levels of both the

prevalence and the impact of the ME analysed here, since there are reasons to believe that

they might be unusually high. First, the sample under study here is not representative of the

Swedish population, as it is composed of strictly unemployed subjects, who, for reasons of

social desirability might have a higher tendency to omit their spells of unemployment.

Second, the register of unemployment is not infallible. We detected coding errors in the

form of nonsensical dates, for example spells that started before the previous spell had

ended, or others dated the 32nd day of a month. These cases were dropped from the

sample, but other coding errors in the register might have gone undetected, which should

make us aware that a proportion of the differences between the register and the survey

were actually reflecting ME in the former and not in the latter. Finally, the format of the

question used is cognitively quite demanding. Nowadays, longitudinal surveys like the

European Union Statistics on Income and Living Conditions (EU-SILC), or the Swedish

Level of Living Survey (LNU), use questions where respondents are only asked to report

their work status in each of the months of the previous year. These questions will fail to

detect transitions shorter than a month, but since they are easier to answer we could also

expect lower levels of ME than in questions where all work-related spells are asked to be

reported and dated with day-level detail.

The different format of these questions affects the level of measurement of the variables

to be retrieved from them, and with that, the modelling strategies to be used. Rather than
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obtaining duration data amenable to parametric event history model specifications – like

the exponential model presented here – person-period categorical data is obtained, which

is more suitably specified using nonparametric models (Box-Steffensmeier and Jones

2004). The details of the adjustment presented here would not be directly applicable in

those instances. Instead, we would direct the interested reader to relatively recent studies

from Manzoni et al. (2010) and Biemer (2011) implementing adjustments based on latent

Markov models and repeated measures.

7. Appendix – Conditional Predictive Distribution for True Values

For the un-truncated normal distribution, the location and scales are independent and

normal conjugacy applies. This makes it straightforward to model u, s 2
2 , and s 2

1 such that

data are able to determine class memberships (Ti: i ¼ 1, : : : ,381). The conditional

posterior predictive distribution of the true value Yi given Y*
i and L, is a normal

distribution truncated to the left in 0. Note that this only holds when Y*
i itself is not

truncated.

Let h ¼ pY þ ð1 2 pÞu; t ¼ 1
2 p2

i
s2

1
þð12piÞ

2s2
2ð Þ

, and set z ¼ Y *, then yj[z, L] has pdf

pð yjz;LÞ ¼
pðzjy;LÞpð yjLÞÐ
pðzjy;LÞpð yjLÞdz

¼
exp {2tðz 2 hÞ2 2 y=m}1ð y . 0ÞÐ
exp {2tðz 2 hÞ2 2 y=m}1ð y . 0Þdy

:

The integrand in the denominator can be written

exp{2tðz 2 hÞ2 2 y=m}1ð y . 0Þ ¼ hðz;LÞgð y; z;LÞ

where h(z, L) is a only a function of z and L, and

gð y; z;LÞ ¼ exp 2tp2 y2 2 ylþ
ts

p2

� �n o
1ð y . 0Þ

¼ exp 2tp2ð y 2 lÞ2 2 tp2 l2 2
ts

p2

� �n o
1ð y . 0Þ

¼ ðptÞ21=2fð y; l; y 2Þcðz; u;mÞ1ð y . 0Þ

Where s ¼ zþ ð1 2 pÞu,

l ¼

pt 2
1

mt

p2
; y 2 ¼

1

2p2t
; t ¼ z 2 ð1 2 pÞu;

and

cðz; u;mÞ ¼ e2tp 2ðl 22ts=p 2Þ:

Since c(z, u, m) is a function of z, u, and m, only, and h(z, L) is a only a function of z and L,

we have

pð yjz;LÞ ¼
fð y; l; y 2Þ1ð y . 0ÞÐ
fð y; l; y 2Þ1ð y . 0Þdy

¼
fð y; l; y 2Þ1ð y . 0Þ

Fð2l=y Þ
:
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We recognise this as a normal distribution N(l, n 2), truncated in the left at 0.

Consequently, even when f () is inconsistent with data in the sense that Y*
i may take

negative values, the conditional predictive distribution for the true values Yi is still

consistent with data.

Consider now the case when the observations with error Y * are themselves truncated to

the left in 0. For the normal distribution fð�; a; bÞ=Fð2a=bÞ truncated to the left in 0, the

variance is a function of a (for example, for fixed b, setting a , 0 increases the variance).

For our data, the truncation results in u becoming negative so that the variance in

Y*
i u;s 2

2 ; Ti ¼ 0
� 	�� is determined by the right tail of the truncated distribution rather than

the variance of the distribution. Negative mean u and the dependence of

V Y*
i u;s 2

2 ; Ti ¼ 0
��� �

on both u and s 2
2 makes the interpretation in terms of classical ME

difficult and sampling using MCMC inefficient.
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Evidence-Based Monitoring of International
Migration Flows in Europe

Frans Willekens1

In Europe, the monitoring and management of migration flows are high on the political
agenda. Evidence-based monitoring calls for adequate data, which do not exist. The sources of
data on international migration differ significantly between countries in Europe and the
initiatives to improve data collection and produce comparable data, including new legislation,
did not yield the expected outcome. Scientists have developed statistical models that combine
quantitative and qualitative data from different sources to derive at estimates of migration
flows that account for differences in definition, undercoverage, undercount and other
measurement problems. Official statisticians are reluctant to substitute estimates for
measurements. This article reviews the progress made over the last decades and the challenges
that remain. It concludes with several recommendations for better international migration
data/estimates. They range from improved cooperation between actors to innovation in data
collection and modelling.

Key words: Europe; international migration statistics; migration flow modelling.

1. Introduction

The quality of international migration statistics in Europe has been an issue for decades.

In the early 1970s, the Conference of European Statisticians (CES), a subsidiary of the

United Nations Economic Commission for Europe (UNECE) and the United Nations

Statistical Commission, noted serious shortcomings in statistics on immigration and

emigration (Kelly 1987). The UN Economic Commission for Europe initiated a study

comparing immigration and emigration statistics of member countries and found great

discrepancies. While preparing demographic scenarios for Europe in preparation for the

Conference on ‘Human Resources in Europe at the Dawn of the 21st Century’, Eurostat

concluded that the existing data are inaccurate and not usable for population projections

(Willekens 1994). Poulain (1991) had documented the inaccuracies. The migration flow
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data could not be used and Eurostat used net migration estimates instead. That practice

continues today (EUROPOP2015) (Lanzieri 2017a, 2017b). Net migration is obtained as a

residual (population change minus natural change) without reference to data on migration.

That approach allocates to migration the effect of several statistical adjustments made to

balance the demographic accounting equation. Disregarding information on immigration

and emigration has far-reaching implications, not only for demographic projections and

the EU Economic Policy Committee’s monitoring of the sustainability of public finances

in EU Member States (which relies on Eurostat’s population projections), but also for

migration governance and the public debate on immigration.

The demand for accurate migration flow data increased ever since migration became

a crucial issue for Europe and started to dominate policy and political agendas. The

Amsterdam Treaty, adopted in 1997, requested the European Commission to develop

uniform procedures for the management of international migration and for the production

of community statistics, including migration statistics. The Treaty led to the establishment,

in 2002, of the European Migration Network to promote the collection and dissemination

of information on migration. In 2003, the European Commission and the European

Parliament concluded that further progress towards improving migration statistics requires

legislation. That resulted in new legislation in 2007, the regulation on Community

statistics on migration and international protection (for further details on the history of

Regulation (EC) No. 862/2007 of 11 July 2007, see Willekens and Raymer 2008). This

legislation paved the way for statistical estimation methods, by allowing National

Statistical Institutes to use estimation methods to produce the migration data to be

submitted to Eurostat: “[a]s part of the statistics process, scientifically based and well

documented statistical estimation methods may be used” (Article 9). Skaliotis and

Thorogood (2007), both from Eurostat, discussed the challenges that migration posed to

the European Statistical System. Regulation (EU) No. 1260/2013 of 20 November 2013

on the establishment of a common legal framework for the production of European

demographic statistics in the Member States encouraged the use of scientifically based and

well documented statistical estimation methods. The achievement of the objective of the

Regulation, including the production of estimates, involves all Member States in an

interactive way and effective coordination at the European level (Eurostat). The two

Regulations and the Commission Implementing Regulation (EU) No. 2017/543 of 22

March 2017 on population and housing censuses also stress the need to harmonize

concepts used in the production of statistics, in particular the concept of usual residence.

These developments and targeted funding by the European Commission, in particular

Eurostat and the Directorate General for Research and Innovation, stimulated new

research to improve the availability, reliability and comparability of migration data (for an

overview of projects, see King and Lulle 2016; European Commission 2016a; Boswell

2016). In addition, NORFACE (New Opportunities for Research Funding Agency

Cooperation in Europe) had a program to support migration research (Caarls 2016). The

research resulted in an extensive assessment of data sources and the differences in the data

produced, data collection practices, and activities undertaken at country and EU levels to

overcome problems with migration data (Poulain et al. 2006; Kupiszewska and Nowok

2008; Kraler and Reichel 2010). In addition, improved statistical techniques were

developed for estimating migration flows (e.g., Raymer and Willekens 2008; De Beer et al.
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2010; Raymer et al. 2013; Abel 2013; Wiśniowski et al. 2016) and for forecasting

migration in the presence of data deficiencies (Bijak 2011; Disney 2014). These studies

did not yet resolve the inadequacies in migration statistics.

At the sixty-second plenary session of the Conference of European Statisticians in 2014,

Lanzieri (2014a) of Eurostat reviewed research on European migration statistics and

concluded that a wealth of methods is available to official statisticians for improving

migration statistics, but that the potential remains under-exploited. Official statisticians are

insufficiently aware of the methods that have been developed by researchers. Eurostat adds

that the multiple methods studied and proposed may have created the impression that the

research is not yet conclusive. Eurostat notes that the distinction between statistics and

estimates hampers the implementation of research outcomes. Statistics represent the

product of a compilation of records from primary data sources. Estimates represent the

outcome of statistical models, possibly combining information from various sources.

Official statisticians are reluctant to present estimates as official migration statistics,

although the 2007 EC Regulation facilitated the use of statistical estimation methods to

produce harmonized migration statistics. Eurostat calls for a strong and constant

commitment to improve primary data sources and the derived statistics. Note that the

compilation of records from primary data sources may also involve some estimation to

overcome differences in definitions and measurements. By way of illustration, see the

feasibility study by Statistics Netherlands on the production of migration data that satisfy

the concept of usual residence specified in the European demographic regulations and the

duration of stay criterion of 12 months (Statistics Netherlands 2016). Data from different

sources, including the population register, are combined to produce consistent estimates.

In this article, I review recent research aimed at better data on international migration

flows in Europe and argue that the most effective strategy to produce high-quality data on

international migration for the monitoring and the management of migration is to create a

synthetic database. A synthetic database combines quantitative and qualitative data from

different sources. It contains the best possible estimates of the ‘true’ migration flows and

indicators of how reliable the estimates are, given the different sources of uncertainty in

the reported data. I argue that the development and maintenance of a synthetic database is

a learning process, which implies that knowledge is updated in light of new evidence. The

Bayesian model of learning combines data from different sources, while accounting for the

uncertainties involved. These methods may ultimately be incorporated in the database

leading to a smart database, which recognizes data types, suggests estimation methods and

signals new trends and discontinuities in migration flows.

The structure of the article is as follows. In Section 2, I approach the development of a

synthetic database as a learning process. Section 3 is a very brief overview of main data

sources of international migration. The subject of Section 4 is the modelling of migration

flows. The Poisson model is the dominant model of migration. It is a probability model that

predicts count data and associates with each prediction a probability that the prediction

coincides with observations. To estimate the parameters, different types of data, including

expert opinions, may be used. Bayesian inference provides a formal framework for

combining different data types. Sections 5 and 6 focus on different types of observation

and the modelling of errors in observation. One observational issue is selected for an

in-depth discussion: the duration threshold or duration criterion applied to define usual
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residence and used in the definition and measurement of migration. Section 7 concludes

the article.

2. Evidence Accumulation: A Learning Process

The reasons for the inadequacies of international migration statistics, identified by the CES

in the 1970s (Kelly 1987), still exist today (Poulain et al. 2006; Lanzieri 2014a):

a. No common definition of immigration and emigration. Although Regulation (EC) No.

862/2007 requests member countries, whenever possible, to follow the United Nations

recommendations on statistics of international migration (United Nations 1998), only

a few countries adopt the UN definition of long-term and short-term migrant.

b. Coverage of migrants is often incomplete. In some countries, international migration

statistics do not cover the entire resident population.

c. Undercount of migration continues to exist, in particular for emigration. By

implication, return migrations are underreported too.

Data sources vary greatly between countries in Europe, even if some similarities exist.

Some countries rely on the population census, other use surveys, and still other use

administrative data, for example the population register, databases on residence and work

permits, and border data. For a brief evaluation of administrative data other than

population registers, see Poulain and Herm (2011). Population registers vary in accuracy

because registration depends on self-reporting and therefore on the individual’s

willingness to report. Some countries introduced administrative adjustments to account

for the undercount, while other did not. Countries also collaborate with other countries and

share data on arrivals and departures to enhance consistency in international migration

statistics. Mirror statistics, that is, statistics produced on the same subject by other

countries, explain and reduce asymmetries in reported international migration statistics.

The power of official statistics depends on the trust that stakeholders have in the figures.

To be trustworthy, statistics should be valid, accurate, precise and reliable. Measurements

are valid if they measure what they are supposed to measure. They are accurate if they

represent reality. They are precise if different measurements yield results that are close.

Measurements are reliable if they produce the same results under varying conditions.

To produce international migration statistics that meet these requirements, direct

measurements are necessary, but not sufficient. Direct measurements (primary data)

should be complemented by scientifically based and well documented statistical

estimation methods that make optimal use of the observations and quantify distortions and

their effects on the derived statistics. An effective strategy is to create a synthetic database

combining data from different sources and to view the development and maintenance of

the database as a learning process. Learning involves a knowledge structure, the search for

new evidence and integration of evidence in the knowledge structure.

2.1. Synthetic Database

Governments collect data for many nonstatistical purposes, such as tax and labour market

policies. Other public and private organisations also collect data for purposes of

administration and management. Some scientists collect data, but even if they do not, they
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may have useful knowledge about migration flows. All these data can be used for

statistical purposes. The European Commission (2009) supports the use of data from

multiple sources, including the private sector, to improve statistics. The integration of

different data types into a single synthetic database poses a major challenge. Large

differences in definition and measurement of migration do not justify the production of

migration statistics from raw data only. The data need to be harmonized. A useful

harmonisation strategy is to use a model of migration that can accommodate different data

types, both quantitative and qualitative data. The purpose of the model is to produce

the best possible estimates of the ‘true’ number of migrations (by migrant category).

Quantitative data come mainly from primary data sources (see following section) but may

include previous measurements or estimates of migration flows, for instance data from a

population census organized several years ago. Qualitative data include knowledge about

migration flows elicited from subject matter experts. Estimates of true flows are updated

when new data become available. An advantage of a model of true migration flows is that

it can be used to simulate different types of data, including new forms of data, and different

measurement methods. Models can also be used to assess the impact of data types and

measurement methods on the discrepancy between true versus reported migration flows.

The models can subsequently be integrated in migration forecasting (Disney et al. 2015).

The need for a model that integrates data from different sources has been set out in

Eurostat’s vision for the production of statistics (European Commission 2009). In that

vision, an integrated model is proposed, in which needs for statistics are identified and the

European Statistical System (ESS) attempts to respond to these needs by drawing upon,

and integrating, information from different administrative and survey data sources

(Radermacher and Thorogood 2009; Kraszewska and Thorogood 2010). Obtaining

migration estimates that meet the expectations of stakeholders calls for a concerted effort.

It cannot be achieved only at the national level, but needs to involve Member States in an

interactive way, which requires effective communication, collaboration, data sharing, and

coordination at the intra-European level.

2.2. Learning Process

The combination of data from different sources and the updating of prior knowledge

in light of new evidence are essentially learning processes. Insight produced by one data

source changes when data are added from another source. Viewing the development and

maintenance of a synthetic database on migration as a learning process implies a cognitive

approach to database development. The cognitive approach is currently the dominant

approach to machine learning and artificial intelligence (cognitive computing). It could

also be a useful approach to database development. A formal method of learning that is

particularly useful in this context is the Bayesian model of cognitive development, in short

Bayesian learning. A fundamental premise is that processes such as migration involve

many uncertainties; the outcome (e.g., whether an individual migrates in a given period or

the number of migrations in a population during the same period) is inherently uncertain.

To process information effectively and produce reliable statistics despite the uncertainties

is a challenge. The uncertainties imply that an outcome can take on a range of possible

values. If the outcome is a discrete variable, a probability can be associated with each
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possible value. If the outcome is a continuous variable, a non-zero probability can be

associated with an interval. The distribution of probabilities indicates which outcomes are

more likely and which are less likely. The more we know about a process, the better we are

able to identify possible outcomes and predict how likely they are. The Bayesian model of

learning is a formal approach to updating existing (prior) knowledge or beliefs in light of

new evidence. Fundamental features of the Bayesian approach are that (1) knowledge or

beliefs on processes and their outcomes are represented as probability distributions, and

(2) when new evidence becomes available, the prior beliefs are updated. The Bayesian

method is a probabilistic method of scientific reasoning (Howson and Urbach 1989). The

method has shown to be effective in a range of areas, including cognitive science and

statistics.

Bayesian learning involves a formal description of how new information is assimilated

in existing cognitive schemes, that is, of the mechanism of integrating data from different

sources into a coherent structure. It facilitates interpretation of data and it can also be used

to study the measurement bias in existing cognitive schemes. These insights contribute to

the production of valid, accurate and reliable information on a subject or process from

empirical observation and prior knowledge. That makes Bayesian learning particularly

attractive for the estimation of international migration flows.

Bayesian learning is remarkably similar to Piaget’s theory of learning, known as

constructivism. The theory states that people learn by incorporating newly acquired

information or experience in the knowledge they already possess (see e.g., Miller 1983 for

a good introduction to Piaget’s theory). Both learning theories insist on the importance of

prior beliefs and knowledge for the interpretation of new information and the prediction

of unknown outcomes (Tourmen 2016, 14). According to Piaget, children and other

individuals build (causal) models of the world in order to interpret observations and

experiences and to predict what will happen next. Knowledge is structured and stored

in mental structures, known as cognitive schemes. Schemes are structured knowledge

representations in our mind. They are mental models of reality. They represent the

knowledge base an individual relies on to interpret observations and experiences and to

make predictions, in short, to make sense of the world. They determine an individual’s

beliefs about the processes in his or her environment (world view) and how these processes

are perceived. New experiences and evidence usually lead to updating the cognitive

schemes. Assimilation is the incorporation of new experiences into an existing framework

without altering that framework. As long as new observations and experiences are aligned

with the internal representations of the world, they can be assimilated and the mental

model is adequate for interpretation and prediction. If new evidence contradicts an

individual’s internal representation, the individual may (a) disregard the evidence (denial),

(b) change his or her perception of the evidence to fit the internal representation, or (c)

adjust the mental representation. Piaget refers to the adjustment of knowledge structures

in the light of new observations or experiences as accommodation. The processes of

assimilation and accommodation describe a learning mechanism. Learning is building and

updating cognitive schemes, a process known as constructivism.

Piaget did not elaborate on how knowledge is stored in mental schemes. In the Bayesian

method of learning, knowledge is stored as probabilities and probability distributions.

Beliefs are subjective probabilities associated with given outcomes or events. Subjective
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probabilities are updated in light of new evidence. The similarities between Piaget’s

theory of learning and the Bayesian method have recently attracted the interest of

cognitive scientists (see e.g., Frank 2016; Tourmen 2016). Learning processes in humans

and machines are increasingly being formalized as Bayesian probabilistic inference (e.g.,

Chater et al. 2006; Gopnik and Tenenbaum 2007; Perfors et al. 2011; Jacobs and Kruschke

2011; Gopnik and Bonawitz 2015).

3. Sources of Information on Migration

The main data sources for international migration are censuses, administrative records and

sample surveys (for a general introduction, see for example, Bilsborrow et al. 1997;

Cantisani et al. 2009; Bilsborrow 2016). At the world level, the population census is the

main data source. The census reports, for members of the resident population, the current

place of residence, that is, at the time of the census, and the place of birth. These data make

it possible to distinguish between native- and foreign-born. The census may also solicit

from respondents the place of residence one or five years prior to the census or the duration

of residence and the previous place of residence. The United Nations, the Organisation for

Economic Co-operation and Development (OECD) and the World Bank have invested in

making these census data publicly available. The quality of data varies because not all

countries adhere to the UN Recommendations for Population and Housing Censuses.

Some features of the census limit the usefulness of the census as a source for up-to-date

data on migration flows (Willekens et al. 2016). First, the census obtains information from

the resident population. Hence immigrants are included, but emigrants are not. The

number of emigrants from a country may be derived from censuses of destination

countries (mirror data), provided the country of birth is reported (Dumont and Lemaitre

2005). Second, the age or year of migration cannot be derived from the date of birth.

Hence, unless data are available on place of residence at some recent date prior to the

census, the data are ill-suited for an analysis of migration trends and effects on migration

of social, economic or political events and processes, and natural disasters. Third, return

migrations and frequent migrations go unnoticed. Fourth, censuses come only every ten

years in most countries. In Europe, the traditional census is being replaced by a register-

based census. In a register-based census, the census is conducted on the basis of

information in the registers, rather than through field enumeration. Information in registers

may be complemented by data from other sources. Valente (2010) reviews census-taking

in Europe.

Abel (2013) developed a method to estimate international migration flows from census

data on place of current residence and place of birth. The estimates are counts of people

that changed residence at least once during a period of fixed length prior to the census (see

also Abel and Sander 2014; Abel 2016). Lanzieri (2014b) of Eurostat tested whether

Abel’s method can be used to overcome problems of quality and availability of migration

data in Europe. The test showed that the method cannot provide a full coverage of

migration flows within the EU-EFTA region, primarily due to lack of input data, but can

estimate the flows of persons born in specific countries. Lanzieri also found that the

method can profitably be applied using any breakdown of population stocks, such as by

citizenship or educational attainment.
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Administrative data are produced by organisations in connection with administrative

procedures. People have to register their residence status and their address when they enter

school, apply for a work permit, a driver’s license or social security. They are required

to report any change of address. Several countries keep a population register, an

individualized data sheet (personal card) that includes a unique identification number,

personal characteristics, and a continuous registration of a selection of life events. When

newborn children and immigrants are registered, a data sheet is created. Deaths and

emigrations result in de-registration, provided people notify the local authorities that

maintain the register. The population register is used for a range of administrative

purposes and, when kept up-to-date, is a tool to track individuals and retrieve data at the

individual level. The population register may be linked to other administrative data, for

example, business register, housing register, register of residence permits and working

permits, to individual data collected by censuses and surveys, and to administrative data

collected by private organisations. Although administrative data are not collected to

monitor population change, a selection of administrative data is provided to statistical

institutes to produce statistics. The timeliness of the updating of the population register

and the accuracy of the information determine the quality of the derived statistics. For

a discussion on the potential of population registers for migration statistics (and other

demographic statistics), see Poulain and Herm (2013). In addition to the registration data

mentioned, other registration data are useful for migration statistics, for example, register

of visa recipients and asylum seekers.

Sample surveys provide relatively detailed data on a selection of individuals. The

information is usually collected at one point in time only (cross-sectional survey). In some

surveys, individuals are followed over time and information is recorded at regular intervals

(panel surveys, follow-up studies). Although surveys may include information on current

and previous places of residence, the sample size is usually too small to determine the level

and direction of migration in a population. However, surveys may yield a wealth of

information on respondents and that information may be used to determine who is likely to

migrate and who is not, and why. Migration data are extracted from household surveys,

labour force surveys (Wiśniowski 2017), and surveys on living conditions (see e.g.,

De Brauw and Carletto 2012). Several of these surveys include questions on place of birth

and previous place(s) of residence. Some solicit information on household members

living abroad. Recently, Bocquier (2016) assessed whether in developing countries,

demographic surveys and demographic and health surveillance systems can be sources of

migration data. In the area of gender statistics, it is common to collect data on gender in

general social and economic surveys. Eurostat proposed a similar approach for migration

(Knauth 2011) and in 2010 the European Statistical System Committee (ESSC) adopted a

conceptual framework and work program for migration statistics mainstreaming and the

development of migration statistics. Mainstreaming of the migration dimension in data

collection has great potential, not only for the production of migration statistics but also

for socio-economic policies and development cooperation.

Designated migration surveys exist too. Designated surveys yield better insight in (a)

the who, why and how of migration, and (b) effective policies aimed at the management of

flows (Willekens et al. 2016). They differ from migrant surveys, which focus on migrants.

Examples of designated migration surveys include the International Passenger Survey
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(IPS) in the United Kingdom, the Migration between Africa and Europe (MAFE) survey,

and the Mediterranean Household International Migration Survey (MED-HIMS). The IPS

is used to determine the number of immigrants and emigrants of the United Kingdom. It is

the main source of international migration statistics in the United Kingdom. A selection of

travelers is asked how long they intend to stay in the United Kingdom or away from the

United Kingdom (ONS 2015). Intentions may change and the Office of National Statistics

(ONS) estimates the number of ‘switchers’. To predict the number of people who stay at

least 12 months in the United Kingdom or abroad (long-term international migrant LTIM),

the ONS computes for each respondent in the IPS, “a person’s probability to switch their

intentions based on their nationality and the average number of people who have switched

their migration intentions in the previous three years.” (ONS 2016, Annex 1).

The MAFE was organized in 2008 in three countries of Africa and six countries of

Europe to gain insight in reasons for migration, the methods people use to enter Europe,

and the impact of personal contacts on migration (Beauchemin 2018). MAFE survey data

have been used to estimate rates and probabilities of emigration from countries of Africa

to Europe, using extensions of statistical techniques of event history analysis that account

for complex sample design (oversampling of migrant households) (Schoumaker and

Beauchemin 2015; Willekens et al. 2017).

In a MEDSTAT (European Commission’s statistical cooperation programme for the

countries of North Africa and the Eastern Mediterranean) regional workshop in

Wiesbaden in March 2008, participating countries called for the implementation of a

household migration survey to overcome the lack of data on international migration for

the Mediterranean (MED) region (MEDSTAT Committee for the Coordination of

Statistical Activities 2011). The MED-HIMS (Households International Migration

Surveys in the MED countries) questionnaire is designed to collect data on out-

migration, return migration, forced migration, intention to migrate, circular migration,

migration of highly-skilled persons, irregular migration, and other useful data on

migration, migrants, and the effects of migration on households and communities.

National statistical offices implement the surveys. The countries covered by MEDSTAT

are: Algeria, Egypt, Israel, Jordan, Lebanon, Morocco, Syria and Tunisia, as well as the

Palestinian Authority. So far (August 2017), the MED-HIMS survey has been

implemented only in Jordan and Egypt (Eurostat 2017). For a description of the project

in the context of other international migration surveys, see Bilsborrow (2016).

Designated international migration surveys have common goals, use common methods

and face similar challenges of sample design, questionnaire design, implementation, data

processing, and analysis. To gain insight into migration flows and their root causes,

scientists recently called for a World Migration Survey (Beauchemin 2013, 2014;

Bilsborrow 2016; Willekens et al. 2016). The survey could build on the experiences

gathered in the MAFE and MED-HIMS surveys and other multi-country international

migration surveys, such as the Mexican Migration Project (MMP) of Princeton

University and the Push-Pull Project, a joint venture of Eurostat and the Netherlands

Interdisciplinary Demographic Institute (NIDI) (Schoorl et al. 2000; Van Dalen et al.

2005). The promises and challenges of survey-based comparative international migration

research have been documented, and the experiences and lessons learned reviewed

(Liu et al. 2016). A World Migration Survey would be a significant step toward an
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understanding of why people leave their home country and what should be done to

develop a sustainable system of global migration governance.

New technologies lead to new forms of data. Mobile phones and other internet-

connected devices generate data on the geographic location of the object. Geolocation data

constitute a new form of data, obtained from a variety of sources, such as Global

Positioning System (GPS) signals, the physical addresses associated with Internet Protocol

(IP) addresses, and RFID (Radio-Frequency Identification) tags attached to objects (e.g.,

passports or identity cards). Internet Protocol (IP) addresses have been used to map

locations from where users sent e-mail or used social media within a given period. Twitter

and Facebook data, and Yahoo! email accounts have been used to infer migration flows.

Google search data have been used to infer migration intentions and preferred destinations.

Recently, Fiorio et al. (2017) used Twitter data to estimate the relationship between short-

term mobility and long-term migration. Gerland (2015) and Hughes et al. (2016) review

estimations of migration flows from geolocation data. Although geolocators track the

locations of online connections and not the addresses of users or owners, and IP addresses

can be masked, geolocation data may complement traditional data sources, provided they

are available on a regular basis, anonymous, and the selection bias and privacy issues can

be resolved. The challenges of using geolocation data as a source of migration data are

huge (Laczko and Rango 2014). Hughes et al. (2016, 29) conclude that “[n]ew and

traditional data sources do not substitute for each other, they complement each other. : : :

Combining data sources is key to producing an infrastructure that is robust to

unanticipated changes in the use of technology. Building that infrastructure would be a

gradual and incremental process where increasing data production and access, together

with the development of methods, would sustain each other. We believe that Bayesian

statistical models for migration count data hold the promise of addressing the issue of

unifying traditional and emerging data sources.” The view that the new forms of data,

known as big data, may complement but not replace traditional data sources, is consistent

with the vision of the European Statistical System (2015).

4. Modelling Migration

The oldest model of migration is the gravity model. It predicts migration flows from

characteristics of place of origin and place of destination, and the distance between origin and

destination. Characteristics include population size. Distance is usually physical distance, but

can also be cultural distance. The gravity model is deterministic and lacks quantification of

uncertainties in the measurement of migration. In the early 1980s, researchers reformulated

the gravity model as a probability model, more particularly a Poisson regression model (see

e.g., Flowerdew and Aitkin 1982; Willekens 1983). The advantages were that (i) the gravity

model could easily be extended by including a range of predictors of migration, (ii) the theory

of statistical inference could be used to estimate the parameters of the model, and (iii) the data

generating process is specified (implicitly or explicitly). That process, which is assumed to

generate observations on migration numbers, is a stochastic process, more particularly a

Poisson process (Pinsky and Karlin 2011, chap. 5) (see further). The Poisson regression

model is the most popular model of migration. It is usually written as a log-linear model, with

the log of the number of migrants as the dependent variable. The log-linear model is a member
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of the family of generalized linear models (GLM). For an introduction to the Poisson model

and other probability models of migration, see, for example, Willekens (2008, 2016a). For

applications of Poisson regression models in estimations of true unknown migration flows in

Europe, see Abel (2010), Raymer et al. (2013) and Wiśniowski et al. (2013). Cohen et al.

(2009) apply the Poisson regression model (presented as GLM) to estimate migration

between selected countries and regions of the world.

The assumption that migration flows are outcomes of an underlying Poisson process is

restrictive. The Poisson distribution is fully determined by a single parameter: the

expected number of migrations during a given period, for example, a year. The variance of

the Poisson-generated flows is equal to the expected value of the flows. If migration flows

are small, as in international migration, the variance in the data is usually much larger than

the variance implied by the Poisson process. To account for larger variance or

overdispersion, the negative binomial distribution is often used (Davies and Guy 1987;

Congdon 1993). Abel (2010) and Ravlik (2014) use the negative binomial regression

model to predict international migration flows. The negative binomial emerges as a

limiting case of a mixture of Poisson distributions where the mixing distribution of the

Poisson parameter is a gamma distribution. The study of overdispersion in migration data

could benefit from developments in other fields, such as biostatistics. Payne et al. (2017)

review several methods for dealing with overdispersion and Chebon et al. (2017) list three

factors that contribute to overdispersion in count data: (1) unobserved heterogeneity due to

missing covariates, (2) correlation between observations (such as in longitudinal studies),

and (3) the occurrence of many zeros (more than expected from the Poisson distribution).

In mobility studies, the mover-stayer model is the earliest example of a mixture model that

accounts for the unobserved differences between movers and stayers (see e.g., Goodman

1961). In Section 6 of this article, I discuss the mover-stayer model in the context of

international migration. Correlation between observations may be associated with factors

that generate spatial dependence and spatial structure. It leads to spatial autocorrelation

(for a discussion, see Griffith and Haining, 2006). In the presence of many zeros (zero-

inflated data), which is relatively common in migration tables, the zero-inflated Poisson

(ZIP) model may be used. It consists of two components. The first is a binary regression

model that predicts structural zeros. The proportion of structural zeros is a latent variable.

The second is a Poisson model that predicts counts for the remaining observations. The

mover-stayer model is essentially a ZIP model (Yiu et al. 2017).

Not all scientists quantify uncertainty (e.g., Poulain 1993; De Beer et al. 2010). Those

who do quantify uncertainty, do not all specify a Poisson model or its extension, the

negative binomial model. Bijak (2011, 96) explicitly deviates from the Poisson model in

favor of a normal distribution. Brierley et al. (2008, 153) assume that observations on

migration flows follow a log-normal distribution with, as expected value, the log of the

true flow and a given variance reflecting undercounting and other sources of uncertainty

(log of data are normally distributed around the true values with a common assumed

variance). True flows are predicted by push and pull factors. Azose and Raftery (2015) and

Azose et al. (2016) focus on net migration and do not refer to the underlying process

generating the migration flows. They predict net migration from past net migrations.

Today, the common approach to the estimation of migration is to specify a model of flows

and to determine the unknown parameter values that maximize the probability that the
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model predicts the observed flow data. The number of migrations (by characteristics of

persons migrating, by origin and destination, during a given period) is the dependent

variable of the model. In the statistical literature, that data type is referred to as count data

and the stochastic process generating the data is a counting process. A counting process is a

stochastic process that counts the number of events as they occur. A model with parameter

values that are not plausible is not likely to yield accurate predictions of migration flows.

The most common method to determine the unknown parameter values is to maximize the

likelihood function. The model of migration flows relates migration to (a) factors that (are

assumed to) influence migration systematically, and (b) random factors. The effects of

random factors are captured by specifying an appropriate stochastic process. For instance, if

N(t) is a random variable denoting the migration count in year t or during the period from 0 to

t, then the sequence {N(t)} ¼ {N(0), N(1), N(2), : : : .} is a counting process. Counting

processes arise in different ways, for example, by counting the number of times a person

migrates before a given age x, or by counting the number of persons who migrate in a given

period. The migration flow model should be consistent with the postulated underlying

stochastic process. The implication is that the mathematical structure of the model of

migration is determined by the assumed underlying stochastic process.

Many statistical models are based on counting processes. The theory, which was

developed by Aalen (1975) in his PhD thesis, is well-established (Andersen et al. 1993;

Aalen et al. 2008). It emerged as the main statistical theory for the estimation of models of

event occurrences (survival models), event sequences (event history models) and complete

life histories (for a brief introduction and for applications see e.g., Willekens 2014). The

Poisson process is the simplest and most widely used counting process. It has a single

parameter, the expected value of the number of migrations in an observation period. The

variance is equal to the expected value. If events occur randomly in continuous time and

if the occurrences are independent of each other, then the counting process is a Poisson

process. The parameter of the Poisson process may vary by age, sex, income, region of

origin, region of destination, and other factors. The parameter may also vary in time. For

each of these categories, the parameter may follow a probability distribution to reflect the

unobserved heterogeneity in a population.

By way of illustration, consider a change of residence and disregard the restriction on

duration of stay associated with the concept of usual residence. I refer to a change of

residence without duration threshold as relocation. An individual may relocate multiple

times during a period of observation. Hence, relocation is a repeatable event. Let N(t)

denote the number of relocations experienced by the individual during t years of

observation, from onset at time 0 to time t. Assume that relocation is governed by a

Poisson process. That implies that the count variable N(t) is a Poisson random variable and

the distribution of possible values of N(t) is a Poisson distribution. Without loss of

generality, we assume that people are identical with respect to their relocation behaviour,

which implies that all have the same propensity to relocate. The likelihood of observing n

relocations between 0 and t is given by the Poisson distribution:

Pr{NðtÞ ¼ njl} ¼
ln

n!
e ½2l� ð1Þ

The parameter of the Poisson distribution (l) is the expected number of relocations during

the observation period (l ¼ E[N(t)]). The variance is also equal to l: Var(N(t)) ¼ l. The
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value of l is determined by maximizing the probability that model (1) predicts the

observations (maximum likelihood method).

The relocation rate is the number of relocations per individual per year. It is the ratio

of the observed total number of relocations by the study population during a given

observation period (n) and the total duration of exposure (in years) by all individuals

exposured to the risk of migration during that period (PY ). The relocation rate is

m̂ ¼ n=PY , while: l̂ ¼ m̂PY ¼ n. Since relocation is a repeatable event, an individual

remains at risk after a relocation, hence all people are at risk during the entire period

irrespective of the numbers of relocations experienced. If people enter the population

after the start of the observation period or leave the population before the end of the

observation period, then the duration of exposure needs to be adjusted for late entry (left

truncation) and departure (right censoring). The relocation rate m is an occurrence-

exposure rate. Note that l ¼ mPY. The likelihood of n events is proportional to

mn e [2mPY ] since the exposure level PY is known. In Poisson regression models, PY is

known as offset.

The estimation of the expected number of relocations during the observation period (l)

from the observed number of relocations illustrates the traditional approach to the

prediction of migration flows. Frequently, relevant information about relocations and

migrations is available from other sources and hence, not contained in the data. For

instance, migration flow data may be available for some past year or period, for example,

from a census. Subject matter experts may have relevant information that is not contained

in the data, for example information on regulations introduced during the observation

period that affect the registration of relocations and migrations or that cause a

discontinuity in the relocation rate. Traditional models of migration often incorporate

relevant prior information into the model. Algorithms to integrate historical data on

migration in estimations of migration flows include the iterative proportional fitting (IPF)

method, entropy maximisation and the EM (Expectation-Maximisation) algorithm (for an

overview of these methods, see Willekens 1999).

To include prior information in the prediction of migration, most researchers today

adopt the Bayesian approach to statistical inference. The approach postulates that some

prior information is available on the unknowns (the true flows or the parameters of the

Poisson model) and that the prior information comes as probability distributions of

plausible values of the unknowns. The prior information can be objective, such as

migration data of an earlier period, or subjective, such as expert opinions or beliefs.

Fundamental features of the Bayesian approach are that (1) information and knowledge

are represented as probability distributions of possible values, and (2) prior information

on unknowns is updated in light of (new) observations. Prior information is expressed as

a probability distribution. It implies an assumption that not only the expected value of a

variable of interest is known, but that the distribution of possible values of the variable is

known too. In traditional methods that use prior information (e.g., IPF), prior knowledge

is represented as point estimates; the distribution is not considered. If the prior

information is limited, a uniform distribution is appropriate because it assigns equal

probabilities to all possible migration counts. This prior is said to be noninformative.

When more evidence (data) becomes available, beliefs about the number of migrations

are updated. The updates are captured in a posterior probability distribution. Updating
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beliefs, opinions, knowledge or predictions in light of new evidence is essentially a

learning mechanism.

To combine data and prior information on the unknowns, Bayes’ theorem is applied (for

an excellent and accessible introduction, see Bijak and Bryant 2016; for a textbook see

Congdon 2001):

pðunknownsjdataÞ /
pðdatajunknownsÞ pðunknownsÞ

pðdataÞ
ð2Þ

The p’s denote probability distributions, that is, probabilities or probability density

functions. The term p(datajunknowns) is the probability that a migration model with

unknown parameters predicts the data, that is, the observed migration flows. It is the

likelihood function described above. The term p(data) is the probability of observing the

data. If the data are obtained by sampling a population, then it is the probability of

obtaining that particular sample. The term p(data) is fixed for any given data set and plays

a minor role in most applications. It is often omitted. The term p(unknowns) is the prior

probability distribution. It represents empirical evidence (objective) or beliefs (subjective)

about the values of the parameters of the model prior to data collection. In case of a

noninformative prior, the posterior distribution p(unknownsjdata) is determined by the

likelihood and the Bayesian method produces results that are similar to the traditional

method. ‘Unknowns’ can be replaced by ‘model’ or ‘hypothesis’ in which case the prior is

the probability that we select a model or formulate a hypothesis, given the data and prior

information. The posterior probability distribution is used to determine a credible range of

values of the unknowns (credible set), analogous to the confidence interval in classical

(frequentist) statistics. A 95% credible interval has a 95% probability of containing the

true value (Bijak and Bryant 2016, 3; Congdon 2001, 6). The range of values reflects the

subjective prior beliefs, not only uncertainties in the data.

To illustrate the Bayesian approach to the estimation of migration, consider the

likelihood function (1). Assume we have subjective prior information on l that we want to

use in the estimation procedure. We believe that l is nonnegative and the possible values

follow an exponential distribution (from 0 to 1) with parameter j equal to 1, hence

p(ljj) ¼ je [2 jl ] with j ¼ 1, hence p(l) ¼ e [2l ]. Given the distribution, the expected

value of l (the expected number of relocations during the period of observation) is 1/j

¼ 1, which may be very different from the number of relocations observed in the sample

population. Suppose that, prior to data collection, we expect 1 relocation during the period

of observation. The posterior distribution of the number of relocations is

Pr {ljNðtÞ ¼ n} ¼

ln

n!
e ½2l� e ½2l�

Ð1

0

ln

n!
e ½2l� e ½2l�dl

¼ 2nþ1 l
n

n!
e ½22l� ð3Þ

which is the probability density function of the gamma distribution with shape parameter

n þ 1 and scale parameter 1/2. The inverse of the scale parameter is known as rate

parameter, in particular in the context of the Poisson process. Let b denote the scale

parameter and c the shape parameter. A common specification of the gamma distribution
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is (Evans et al. 2000, 98):

Pr {ljb; c} ¼
ðl=bÞc21

bGðcÞ
e ½2l=b� ð4Þ

where G(c) is the gamma function. Since c is a positive integer, G(c) ¼ (c 2 1)! with !

denoting factorial of c 2 1. The expected value of l is E[l] ¼ bc, hence the expected

posterior value of l is (n þ 1)/2, which is the mean of (a) the prior guess of the number of

relocations during the observation interval and (b) the observed number. If we believe

or assume that one individual relocates during a given period, but we observe 150

relocations, then the expected posterior number of relocations is 75.5. The central, for

example, 95% interval of a gamma distributed random variable is obtained analytically

from the relationship between the gamma distribution and the Poisson distribution (for a

recent discussion, see Fay and Kim 2017). It can also be obtained by sampling from the

gamma distribution.

The exponential distribution is a special case of the gamma distribution. It is a gamma

distribution with c ¼ 1 and b the inverse of the rate, the parameter of the exponential

distribution. If the prior is a gamma distribution, the posterior is a gamma distribution too.

The posterior and prior distributions are conjugate distributions and the posterior has a

closed-form expression. For instance, if we assume a gamma prior for m, then the posterior

density for m will be a gamma too. If the prior is G(a,b), then the posterior is

G(a þ n,b þ PY). (Congdon 2001, 35).

Except for simple cases such as the one presented here, the mathematical form of the

posterior probability distribution is not known and the parameter(s) cannot be obtained

analytically. The solution is to explore the (joint) posterior distribution of the unknown(s)

by walking around on that distribution (surface), take samples and determine how likely

the samples are given the migration model, the prior distribution of the unknowns and the

data. The walk is a random walk modified by an acceptance rule. The rule states that a

proposed move from the current location to a new location is accepted if that move

contributes to finding the target posterior distribution. Once the target distribution is

found, samples are taken to determine the unknowns. The samples are not independent.

The current location determines the new sample. That is operationalized by considering

each possible location as a state in a state space. The sequence of states is a Markov chain.

The transition probabilities of the Markov chain are the probabilities of accepting moves,

which are determined by the acceptance rule. The Markov chain that results has the target

posterior distribution as its equilibrium distribution. This method is the Markov Chain

Monte Carlo (MCMC) method (see e.g., Congdon 2001, 466; Brooks et al. 2011; Bijak

2011, 32ff ).

The MCMC method was developed in the 1940s by Metropolis (Metropolis et al. 1953)

and extended by Hastings (1970). German and German (1984) introduced Gibbs sampling

into the arena of statistics. The idea of Gibbs sampling is to simulate from conditional

distributions to produce samples from a joint distribution. Software for MCMC simulations

is abundantly available. In a chapter contributed to Bijak (2011), Wiśniowski reviews

available software for Bayesian analysis. Popular software includes WinBUGS, OpenBUGS

and JAGS. The BUGS platform was developed by the BUGS (Bayesian inference

Using Gibbs Sampling) software project (www.mrc-bsu.cam.ac.uk/software/bugs/).
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Increasingly, the R software environment is used for handling Bayesian computations.

A good starting point is the text by Robert and Casella (2010) and the CRAN Task View

“Bayesian inference” (https://CRAN.R-project.org/view¼Bayesian).

5. Modelling Measurement Errors with Input from Subject-Matter Experts

Four key data problems emerge in the measurement of international migration (Raymer

et al. 2013; Disney 2014; Disney et al. 2015): (1) the definition of migration, (2)

population coverage (some population groups are omitted), (3) underreporting of

migration, and (4) concerns about accuracy of the measurements. The prediction or

nowcasting of the true migration flows in a given observation period by country of origin

and country of destination is complicated by the mentioned measurement problems.

The first is the definition of migration. Two broad data types are distinguished to define

migration (Courgeau 1973): event data and status data. Event data measure event

occurrences, for example, migrations. Status data measure personal attributes, for

example, place of residence. By comparing places of residence at two points in time, the

occurrence of a migration can be inferred. To distinguish these indirect measurements

of migration from event data, they are referred to as transition data (see e.g., Willekens

2016a). A major source of event data is the population register. The population census and

labour force surveys are major sources of transition data. Some important data problems in

the measurement of migration can be reduced to these two data types (Willekens 1999;

Poulain 2008). Event data and status data on migration are not really comparable, but they

can be made comparable by modelling the ‘true’ migration process underlying both event

data and status data.

The definition of migration is two-dimensional. It includes a spatial dimension and a

temporal dimension. The spatial dimension defines the areal units (places of residence)

considered in the measurement of migration. In international migration, it is a country. The

temporal dimension adds a duration criterion to the definition of residence and change of

residence. In 1998, the United Nations introduced the concepts of long-term and short-

term migrant and adopted the definition of resident (as opposed to visitor) included in the

1994 United Nations recommendations on tourism statistics (United Nations 1998). A

long-term migrant is a person who moves to a country other than that of his or her usual

residence for a period of at least a year (12 months), so that the country of destination

effectively becomes his or her new country of usual residence. A short-term migrant is a

person who moves to a country other than that of his/her usual residence for a period of at

least three months but less than 12 months. The concept of short-term migrant also

depends on the reason for migration. Moves that are for purposes of recreation, holiday,

visits to friends and relatives, business, medical treatment or religious pilgrimage are

excluded. Many countries do not follow the UN definition, but use different duration

thresholds. Some, for example Germany, have no threshold and consider all changes in

usual residence as migrations irrespective of intended or effective duration of stay. Other

countries, for example Poland, register a change in usual residence if and only if a person

indicates that the change is permanent. For a list of EU and EFTA countries and the

duration thresholds they consider in measuring migration, see Cantisani and Poulain

(2006); UNECE (2012) and Raymer et al. (2013, 803). The UNECE Task Force on
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Analysis of International Migration Estimates Using Different Length of Stay Definitions,

set up in 2008 to explore the different definitions in use, found five different ways

countries in Europe measure duration of stay for an immigrant and duration of absence for

an emigrant (UNECE 2012). Regulation (EC) No. 862/2007 on migration adopted the

definition of long-term migrant recommended by the United Nations. Regulation (EU) No.

1260/2013 of 20 November 2013 calls on the Member States to carry out feasibility studies

to determine whether the country can comply with the UN (and Eurostat) definition of

usual residence (by 31 December 2016). It is worth noting that the International

Organisation of Migration (IOM) does not adhere to the definition of migration proposed

by the United Nations and omits duration of stay criteria (IOM 2011 and IOM website

https://www.iom.int/key-migration-terms).

The definition of migration is complicated by differences in definition of residence.

Countries that use a de jure enumeration of individuals register the usual place of

residence, while countries that use a de facto enumeration record the actual place of

residence. The concept of residence is increasingly becoming a fluid concept, one that

means different things to different people. Some people, known as transnationals, have

multiple residences in different parts of the world and identify with multiple communities.

In other words, they have multi-sited individual and social lives (IOM 2010b; Bilgili

2014). Transnationalism is a key factor in contemporary migration management (IOM

2010a, 2010b). The definition of migration is also complicated by the concept of legal

residence. A person who changes usual residence with an intention to stay at least 12

months in another country is not recorded as an immigrant unless the person is allowed to

reside within the country of destination (and can show a document as proof of residency,

such as a residence permit). Transnationalism and the concept of residency pose

challenges for the definition of usual residence and the measurement of international

migration. These challenges have their roots in the concept of sovereign nation state,

introduced in the Peace Treaty of Westphalia (Germany) of 1648 as part of the new system

of political order in Europe and upheld in the UN Charter. That treaty offers the legal basis

to control national borders and regulate international migration (Betts 2011).

Measurement issues are also related to main method of data collection. In general, a

population register yields better data on immigrations and emigrations during a given

calendar year than surveys or other means of data collection. Censuses generally provide

accurate data on immigrants but not on emigrants. A population register and a census

differ in the residence concept used. A register considers the administrative place of

residence, while the census uses the actual or usual place of residence. Countries with a

population register differ in quality of the migration data. The quality is considered better

in Nordic countries, which exchange individual data on international migration. The five

Nordic countries record migration between the countries on a special form, the Inter-

Nordic Migration Certificate, and pass individual data on new arrivals to the population

register of the country of origin. To improve its migration statistics, Romania started to

exchange aggregate data with Italy and Spain, two of the main destinations of Romanian

emigrants (Pisică 2016). Two sources of error complicate the measurement of migration

further: under-registration (undercount) and undercoverage. Undercount occurs when not

all migrations are recorded. If immigration and emigration depend on self-reporting, the

willingness to report varies, and the undercount can be substantial. Major sources of
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under-registration of immigration are people who overstay their tourist visa or residence

permit, and undocumented border crossing. Under-registration of emigration is caused

by people leaving the country without notice. A consequence of under-registration of

emigration is that return-migrations are under-registered. Some countries, for example the

Netherlands, correct emigration statistics by including unreported emigration of foreigners

if the administration reveals that residents are missing and likely moved abroad.

Undercoverage occurs when some categories of the population are excluded from the

measurement of migration. For instance, asylum seekers are usually excluded because

they are not admitted yet to reside legally in the country, although they intend to stay at

least 12 months. Countries differ in ways they record cross-border migration of nationals

and foreigners (UNECE 2012). For instance, Romania’s immigration data include

foreigners only, while emigration data include nationals only (Romanian Institute for

Research on National Minorities 2014). Because of differences in definition and

measurement, a migration between two countries may be recorded in one country but not

in the other. As a consequence, sending countries and receiving countries report different

migration counts.

These measurement problems have been known for a long time and attempts to do

something about it have a long history. The Conference of European Statisticians (CES)

identified the problem as early as 1970. In 1971, the CES organized the United Nations

European Seminar on Demographic Statistics in Ankara and Istanbul in cooperation with

the United Nations Office for Technical Cooperation and the Government of Turkey

(Kelly 1987). Participants noted that there were serious shortcomings in the statistics

of immigration and emigration available for UNECE countries in that they differed

considerably in scope, coverage, definitions, classifications, and content and that in most

instances, they did not meet the requirements of population analysis research. They

concluded that the improvement and harmonisation of statistics on international migration

was an urgent task. They also recommended organizing an exchange of statistics on

international migration among ECE countries. The CES followed the recommendation and

the improvement of migration statistics was included in the 1972 work programme. In its

1974 meeting, the CES pointed out that the quality of immigration statistics is generally

much better than that of emigration statistics and proposed that a meeting of interested

countries be held to discuss arrangements for bilateral exchanges of data on migration

between pairs of ECE countries. That meeting was organized in 1975. In preparation of

that meeting, the ECE secretariat collected immigration and emigration statistics for 1972

and arranged the data in two origin-destination matrices, one based on immigration data

and another based on emigration data. The bilateral flow data revealed serious

asymmetries in the migration data compiled by the countries in the ECE region. Reported

emigrations from country A to country B did not match the reported immigrations to

country B from country A. In 1980, the Council of Europe collected similar data from

the 21 Member States of the Council of Europe and found the same anomalies. The

matrices were attached to the 1981 annual report on the demographic situation in Europe.

Issues such as coverage and duration threshold were already discussed at that time. To

date, these issues have not been resolved satisfactory, although considerable progress has

been made. Actions called for in 1974, for example the exchange of statistics on

international migration between countries, are still being called for today (Skaliotis and
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Thorogood 2007; Radermacher and Thorogood 2009; Raymer 2012; Willekens et al.

2016), although an example of good practice exists; namely, the exchange system in the

Nordic countries. Insights in the types of migration data being collected increased

significantly (Poulain et al. 2006; Kraler and Reichel 2010) and methods for the

reconciliation of national statistics have been developed. These methods are the subject

of the remainder of this article.

Until concepts and definitions of residence and migration are refined and innovations

in data collection methods and procedures reduce measurement errors and increase the

comparability of data, methods are needed to infer trustworthy and comparable migration

statistics from data provided by the different countries of Europe. Essentially, two

methods have been developed to reconcile national statistics on international migration in

Europe. Both start from the bilateral migration flow data compiled by countries of origin

and countries of destination, and adjust the reported migration data to obtain a unique,

complete and internally consistent matrix of migration flows between the countries of

Europe. The first method adjusts the reported migration without explicit reference to the

sources of error in the measurement of migration. The method was proposed by Poulain

and Wattelar (1983) and improved by Poulain (1993, 1999). It was adopted as a point of

departure in the Eurostat-funded project MIMOSA (Migration Modelling for Statistical

Analyses 2007–2009), which resulted in several publications listed below. The method

considers uncertainties in the data and experts help inform the estimation procedure by

their judgments on the magnitude of the uncertainties that result from measurement

problems. Migration flows to and from countries with good international migration data

are given priority over migration flows between countries with serious data limitations and

hence a larger uncertainty in migration flows. The second method pays more attention to

the measurement process and specifies a measurement model that relates the quality of

migration estimates to the main sources of measurement error: differences in definition,

coverage, undercount and accuracy in migration measurement. Experts are interviewed

and their judgments on the relative significance of the different reasons in explaining the

incomparability of data are incorporated in the model. The measurement model is

combined with a migration model that aims at predicting true migration flows (latent, not

observed) from knowledge of the determinants of migration. The Bayesian approach is

used to combine the different data types. The method was proposed by Raymer et al.

(2013) in the context of the NORFACE-funded project IMEM (Integrated Modelling of

European Migration 2009–2012). In the remainder of this section, I review the two

methods.

5.1. The Poulain Approach with Extensions

Poulain and Wattelar (1983) proposed a method to reconcile immigration and emigration

statistics. They distinguish three types of countries with different levels of data

availability: (1) countries with immigration and emigration data, (2) countries with

immigration or emigration data, and (3) countries without data on international migration.

For each country, two correction factors are defined, one for immigration data and one for

emigration data. Let Iij denote the immigrants in j originating from i, reported by receiving

country j, and Eij the emigrants from i with destination j, reported by sending country i.
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The correction factors correct the flow from i to j such that

ajIij ¼ biEij ð5Þ

where aj is a correction factor associated with the immigration data of country j and bi is a

correction factor associated with emigration data from i. If C is the number of countries,

then there are C(C 2 1) equations and 2C unknowns. The system of equations is

overdetermined, that is, there are more equations than unknowns. To obtain an

approximate solution, the Euclidean distance measure
P

i;jðajIij 2 biEijÞ
2 is minimized

subject to the constraint that the total sum of estimated migration flows is equal to the total

of the observed immigrations: X
ij

Sij ¼
X

ij

Iij ð6Þ

where Sij ¼ 0:5½âijIij þ b̂ijEij�

A two-step procedure is used to improve the quality of the estimates. In a first step, five

countries with complete and relatively good data are selected and the correction factors

are determined. The correction factors are fixed up to a constant. To remove the constant,

one correction factor is set to a given value. The authors fix the correction factor of

immigration data of Denmark to unity. A correction factor equal to one preserves the

reported immigration data. In a second step, the correction factors determined in the first

step are fixed and those for the other countries are determined. The procedure results in

two migration flow matrices, one with corrected immigration data and the other with

corrected emigration data. The two matrices are close, but not equal. Unique values of

migration flows are obtained by averaging the corrected immigration flow and the

corrected emigration flow. Poulain (1993) repeats the procedure, but considers two groups

of countries. The first group consist of the Nordic countries with good data. The second

group consists of the other countries. The procedure consists of three steps. First, the

correction factors are estimated for the Nordic countries. In a second step, the correction

factors for flows between the Nordic countries and the other countries are estimated. These

factors are used in a third step to estimate the remaining migration flows. Poulain (1999)

divides countries into three groups depending on the reliability of migration data. The

procedure is similar to Poulain (1993). The approach implies that the estimates of the

migration flows between countries with good data are not influenced by data of less quality.

Van der Erf and van der Gaag (2007) adopt the method developed by Poulain. They start

with the Nordic countries and add countries successively based on the perceived reliability

of their migration data. The sequence of countries introduced in the iterative estimation

procedure is determined by experts. Expert judgments are also used to adjust correction

factors if appropriate.

Poulain and Dal (2008) apply the procedure to estimate migration flows between 28

countries of Europe: 13 countries with consistent migration data (called referee countries)

and 15 other countries. The correction factor for immigrations registered in Sweden is set

equal to one because Sweden uses the UN definition of migration (12 months criteria) and

is considered to record immigration accurately. They change the function to be minimized

to
P

i;jðajIij 2 biEijÞ
2=ðIij þ EijÞ and maintain a single constraint that the total averaged

estimated flow is equal to the total immigration. The denominator removes a limitation of
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the least square method, namely that large flows receive considerably more weight than

small flows, which means that flows from large countries have a strong influence on the

estimates. A limitation of that new distance function is that small flows receive much more

weight than large flows. The problem is well-known in migration research and is resolved

by considering multiple distance functions (Willekens et al. 1981; Abel 2010).

De Beer et al. (2010) adapted the constrained optimisation procedure to assure that the

marginal totals of the corrected I and E matrices are equal:X
j

âjIij ¼ b̂i

X
j

Eij ð7Þ

and

âj

X
i

Iij ¼
X

i

b̂iEij ð8Þ

for all i and j. Equations (7) and (8) can be written as a homogeneous system of 2C linear

equations with 2C unknowns. The correction factors are unique up to a constant. The

correction factor of reported immigration data for Sweden is set equal to one, for the

reason given by Poulain and Dal. Since âj¼Sweden is fixed, the system of equations becomes

a system of nonhomogeneous equations of the form Ax ¼ B, which has 2C equations and

2C 2 1 unknowns. The solution is of the form x ¼ AgB, where Ag is the generalized inverse

of A. That solution is identical to the one obtained by minimizing
P

i;jðajIij 2 biEijÞ
2

subject to constraints (7) and (8).

Missing data constitute a separate problem. Some authors omitted countries with

missing data. Poulain used the correction factors obtained from countries with data to

estimate migration flows for countries without data. Abel (2010) estimated the missing

flows using a regression model, fitted to the harmonized international migration flow data.

The predictors are characteristics (covariates) of sending and receiving countries, and

characteristics of links between the countries (distance, contiguity, trade, and so on). The

model is a spatial interaction model, an established type of model for estimating migration

flows. The idea to introduce a migration model that relates the harmonized data to

covariates was important and was adopted by others (e.g., Raymer et al. 2013). The

parameters of the model are estimated taking into account the incompleteness of the

observed (harmonized) data. Abel applies the EM (expectation-maximisation) algorithm,

which is a maximum-likelihood technique that uses the migration model to predict missing

data, initially with preliminary values of the parameters, and uses the predictions to

improve the parameter estimates.

5.2. The Raymer et al. (IMEM) Approach

Raymer et al. (2013) use a migration model to predict true migration flows and a

measurement model to quantify differences between observations and true flows. In their

study, true migration flows are long-term migrations, that is, relocations for at least

12 months. A true flow can be defined in different ways, like events can be defined

differently, as long as the definition is unambiguous and unique. The measurement model

captures effects of the measurement problems mentioned above. The authors initially
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assume that migrations are generated by a Poisson process, but they assume that the

expected values of migration counts are normally distributed. That approach allows for

larger variability than the Poisson distribution, that is, for overdispersion. The dependent

variable of the migration model is log(l), where l is the true number of migrations (UN

definition) in a given year. l is origin-destination specific and is different for each calendar

year. The true number of migrations in a given year is predicted by a set of covariates.

A time-invariant normally distributed random factor (random effect) is introduced to

smooth flows across time. The factor induces residual correlation between the same

flows at different points in time. Variation in the random factor is restricted to induce a

residual correlation between flows in opposite directions. If a flow is larger than predicted

by the model, the flow in the opposite direction is also expected to be larger. The

parameters of the model were estimated using the Bayesian method. Weakly informative

prior distributions were used (normal distributions and gamma distributions with

parameters fixed by the authors or drawn from probability distributions). This implies that

the predictions of migration are driven mainly by the covariates and that the influence of

prior information is limited. The prior distributions are selected for computational

convenience only.

To convert the reported data to comply with the definition of migration used in the true

data (UN definition), a measurement error model is introduced. The covariates are

assumed to be measured correctly, but migration is not measured correctly for reasons

listed above. Reported migration data, that is, the observations, are initially assumed to be

generated by a Poisson process and to follow a Poisson distribution with parameter l* (by

country of origin, country of destination and calendar year). The parameter l* differs from

the parameters of the model of the true migration flows (l) because of measurement errors.

Immigrations and emigrations are modeled separately to account for the asymmetry in

bilateral migration flow matrices, that is, substantial differences between immigration data

from receiving countries and emigration data from sending countries. Let i denote the

sending country and j the receiving country. Let lij denote the true migration flow from i to

j, ZR
ij the flow from i to j reported in the receiving country j (immigration data), and ZS

ij the

flow from i to j reported in the sending country i (emigration data), l
*R
ij the expected

number of migrations from i to j recorded in j, and l
*S
ij the expected number of migrations

from i to j recorded in i. The expected number of migrations from i to j, observed in j, is

proportional to the true flow:

l
*R
ij ¼ lij aR

ij ð9Þ

The proportionality factor aR
ij depends on the factors that distort the measurement of

immigrations in j. Equation (9) may be written differently, as true flow ¼ factor† data, with

factor ¼ 1=aR
ij . The expected number of migrations from i to j, observed in i, is also

proportional to the true flow:

l
*S
ij ¼ lij aS

ij ð10Þ

The proportionality factor aS
ij is a function of the factors that distort the measurements of

migration in country i: duration threshold, undercount, coverage, and country-specific

level of accuracy of the data collection system.
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a. Duration threshold

If the duration threshold is identical to the threshold used in measuring the true flow (12

months in the Raymer et al. study), then the threshold effect on the distortion is 1. If the

duration threshold is less than the threshold used for the true data, true migration is

overestimated and aij is larger than 1. If the duration threshold exceeds the one used in

the true data, true migration is underestimated and aij is less than 1. Five duration

threshold parameters are considered, one each for duration 0 (no duration threshold),

three months, six months, 12 months and permanent. The duration threshold of 12

months is the reference category.

b. Undercount

The undercount effect is large if the undercount is large and small if undercount is low.

IMEM considers two levels of undercount: low and high.

c. Coverage

The coverage effect captures country-specific deficiencies in measuring migration not

reflected in the undercount. IMEM considers two types of coverage: standard and

excellent. The coverage effect for a country is a normally distributed random variable,

with mean and variance functions of the coverage assumed for that country (standard

or excellent). To ensure that the random effect is between 0 and 1, a logistic

transformation is used. Let ki denote the normally distributed coverage effect

(21,þ1) for country i and let pi denote the associated random effect between 0 and 1.

Then ki ¼ logit(pi) and pi ¼ 1 þ e (2 ki). For migration to and from the rest of the

world, Raymer et al. assume perfect coverage. They justify that assumption by the

more rigorous registration requirements for migrants originating from or departing to

countries outside of the EU/EFTA region. That assumption and the justification are far

from realistic.

d. Accuracy of the data collection system

A country-specific term is added to capture differences in accuracy of the data

collection system, irrespective of duration threshold, undercount and coverage. IMEM

distinguishes three types of data collection systems for migration: (1) registers in the

Nordic countries, (2) other good register-based systems, and (3) less reliable register-

based or survey systems.

Raymer et al. elicited opinions of experts on migration statistics to quantify the factors that

distort the measurement of migration and to derive the prior for the estimation.

Information was obtained from eleven experts using the Delphi method. Experts were

invited to provide, for each distortion factor, (a) a range of values for the distortion, and (b)

an indication of how certain they were about that range. The method is described in detail

by Wiśniowski et al. (2013). For instance, consider the duration threshold. Experts were

asked by how many percent they expect the level of migration with the six-month criterion

to be higher than with the 12-month criterion, which is used to measure the true migration

flow. They should not give a single percentage, but rather a range of percentages, for

example, between 15 and 30%. The lower bound is Pð6Þ1 and the upper bound is Pð6Þ2 . Hence

the overcount factor ranges from durð6Þ1 ¼ 1þ Pð6Þ1 to durð6Þ2 ¼ 1þ Pð6Þ2 . The beliefs of
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experts need to be translated into a probability distribution. The authors considered

probability density distributions for which the parameters could easily be calculated.

To that end, an auxiliary variable d was introduced:

d ð6Þ ¼ ln ½dur ð6Þ�

d ð3Þ ¼ ln ½dur ð3Þ�2 d ð6Þ

d ð0Þ ¼ ln ½dur ð0Þ�2 d ð3Þ 2 d ð6Þ

d ð pÞ ¼ 2 ln ½dur ð pÞ�

ð11Þ

where p denotes ‘permanent’. The expert-specific probability density of the auxiliary

variable d (s), with s ¼ {0, 3, 6, p}, is assumed to follow a log-normal probability density

distribution. The mean and the standard deviation are estimated from the values of d,

derived from the ranges of percentages given by the experts, weighted by elicited certainty

levels. Wiśniowski et al. (2013, 598) show the equations. The individual densities were

used to produce a mixed probability density distribution.

Raymer et al. (2013, 806) state that the median of the true flow (12-month duration

threshold) is 81% of the median of the flow measured with the six-month duration

criterion. The median of the true flow would be 51% of the median of the flow estimated

with no time limit (overestimation 96%) and the median of the true flow would be 61% of

the median of the flow measured with the three-month criterion. The median of the true

flow would be 1.64 times the median of the flow estimated with the ‘permanent’ criterion.

A similar procedure was followed for the undercount and the coverage. For the

undercount, the beta density was selected. The individual densities were used to produce a

mixed density. The mean undercount of immigration was 72% with a standard deviation of

18%. The mean undercount of emigration was 56% with a standard deviation of 22%

(Wiśniowski et al. 2013, 595). The large standard deviation and the flat shape of the

distribution of the mixture densities reflects the heterogeneity of expert judgements about

the undercount. Raymer et al. (2013) give further results. Experts believe that in countries

with low undercount, 88% of the immigration and 73% of the emigration are reported.

They believe that in countries with high undercount, 68% of the immigration and 45% of

the emigration are reported. The lack of consensus among experts was an interesting

finding. Wiśniowski et al. (2013) attribute it to different experiences of the experts with

migration statistics. The experts’ beliefs may have been based on the data collection

systems they know best. A consequence of the lack of consensus among experts is that the

probability distribution, if used as a prior in Bayesian estimates of immigration and

emigration, is weakly informative, that is, not much different from a uniform distribution

that attaches equal probabilities to all possible values. Wiśniowski et al. (2013, 603)

conclude that the expert-based prior densities led to very wide posterior distributions

of estimated migration flows. Expert-based prior densities do not produce estimates of

migration that are substantially different from estimates based on noninformative

or weakly informative priors. The authors list four lessons learned from the elicitation of

expert opinions:

1. The form of the prior probability density distribution and the distinction between

categories of countries matter.
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2. The wording of questions posed to experts is important. Different formulations

should be tested. Recently, Hanea et al. (2016) proposed the IDEA protocol as a

method for removing linguistic uncertainties in eliciting expert opinions.

3. Certainty levels are easily misinterpreted. If an expert expects that, in a country, the

undercount of immigration is between 20 and 35%, and the certainty level is 70%,

then 30% of the immigrations are distributed outside of the range indicated by the

expert. Several experts misinterpreted that mechanism.

4. One should be careful in selecting experts. Some invited experts were not convinced

that subjective probabilities are useful information for the estimation of migration

flows.

The authors do not question the usefulness of expert judgements to complement migration

flow data, but propose a more thorough assessment of the empirical knowledge experts

have and how they translate knowledge into subjective estimates of migration flows. In

some cases, expert opinions may be replaced by models. In the next section, I discuss and

illustrate the use of models to tackle problems currently addressed by involving experts

and eliciting their judgments.

6. Modelling Measurements Errors with Auxiliary models

In this section, I argue that, although expert opinions should continue to be utilized to

improve the measurement and prediction of international migration in Europe, they cannot

replace the use of formal models. The question whether experts produce better predictions

than models has occupied scientists for a long time. Armstrong (2001, 6.4), who for many

years studied the use of expert judgments in forecasting cites “strong empirical evidence”

that models (quantitative methods) are generally less biased and make more efficient use

of data. To get more reliable and accurate expert information, Burgman (2016) advocates

a change in attitudes towards expert estimates and predictions such that they are “treated

with the same reverence as data, subjected to the same kind of cross-examination and

verification.” (Burgman 2016, vii). An expert’s opinion is based on a model too: a mental

model of true migration flows. Since the ultimate aim is to optimally combine quantitative

methods (data and models) and qualitative methods (e.g., elicitation of opinions,

expectations and predictions from experts, focus groups and stakeholders), formal models

and mental models should be considered.

Mental models are outcomes of learning. Learning involves the development of mental

models (cognitive schemes), which are representations of structured knowledge. Experts

also use mental models and their beliefs and opinions are based on these models. Experts

with more and better structured knowledge about a subject (better subject specialists) and

with a strong empirical orientation are more likely to produce better estimates and

predictions. When the expert’s knowledge representation includes a deep insight in

measurement procedures and the models that scientists use to produce estimates and

predictions, the judgments may not be much different from the figures produced by the

models that scientists use. An expert’s degree of confidence in his or her estimates and

predictions and his/her cognitive bias are influenced by the mental model. Initiatives to

develop structured methods for elicitation, using well-defined protocols, are a first step to

make explicit the mental models on which expert judgments are based.
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Consider one of the measurement problems mentioned above, differences in duration

threshold. Wiśniowski et al. (2013, 603) describe how they elicit from experts their

opinions on the sensitivity of migration counts to duration thresholds, and how they

translate that information into probability distributions to be used in estimations of

migration flows. The expert opinions are translated into probability distributions via

auxiliary variables d(s), which are assumed to follow log-normal distributions. It is not

clear what substantive reasons exist for the selection of the log-normal. In this section,

I show how correction factors can be obtained from a model of true migration flows. As a

reference, I do not use the 12-month criterion, but a zero-month criterion (no time limit). I

show that, for the same underlying data-generating process, that is, a process producing the

true data, different results can be obtained depending on the measurement of the process.

A measurement model that describes the impact of measurement method on the estimates

of relocations was developed in a project to explore the use of micro-simulation for the

harmonisation of migration statistics (Nowok 2010, Nowok and Willekens 2011).

Assume that people may relocate multiple times during an observation interval and that

individuals act independently at the same constant relocation rate. This very simple

situation is sufficient to illustrate the effects of differences in duration thresholds.

Extensions will be considered at the end of this section. Relocations that satisfy these

simple conditions are governed by a Poisson process. The distribution of numbers of

relocations during an observation period is given by Equation (1). In Equation (1), l is the

expected number of relocations in a population during an observation period of length t.

Since individuals relocate independently and at the same rate, we may consider the

relocation of any single individual. The individual relocation rate is m. It is the expected

number of relocations experienced by an individual during a unit time interval, for

example, one year. The expected number of relocations that the individual makes during a

period of length t is mt. Define a migration as a relocation (change of usual residence) that

is followed by a minimum duration of stay, the duration threshold. Migration statistics

differ in the duration threshold used. Let dm denote the duration threshold. An individual

who relocates at time t is recorded as a migrant if he or she resides in the destination

continuously for at least dm years. Both actual and intended durations of stay may be used.

The probability that an individual experiences n migrations between the onset of

observation and time t if the duration threshold is dm is:

Pr {NðtÞ ¼ njm; dm} ¼
ðmtzÞn

n!
e ½2mtz� ð12Þ

where z ¼ e [2mdm] is the probability of no relocation within dm years. It measures

the proportion of relocations that are migrations, given the duration threshold dm. The

migration rate is zm.

The expected number of migrations during the interval of length t is

E½Ndm
ðtÞ� ¼ mtz ¼ mt e ½2mdm� ð13Þ

If a duration threshold of one year is used as a reference, as recommended by the United

Nations, then a duration threshold of dm results in a number of migrations experienced by

an individual, that is Odm
times the number of migrations experienced under the one-year
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duration criterion, where Odm
is (Nowok and Willekens 2011, 527):

Odm
¼ E

Ndm
ðtÞ

Nd12
ðtÞ

� �
¼ e ½2mðdm2d12Þ� ð14Þ

The overestimation is 100 ðOdm
2 1Þ %, with Odm

measured in years. It is independent of

the length of the observation period t. The overestimation is the same as the overcount

factor, which is the percentage by which the number of migrations counted in a population

is overestimated. For instance, if the relocation intensity is 0.2 and a country uses the

six-month criterion, then Odm
¼ 1.10, indicating that the reported figure overestimates the

number of migrations by 10% measured in accordance with the UN guidelines (12-month

criterion). Recording all relocations (no time limit) results in an overestimation of

migrations by 22% (UN definition). Counting permanent migrations only, which are

defined as migrations followed by a stay of at least five years (Nowok 2008), results in an

underestimation of migrations (UN definition) by 55%. If ‘permanent’ means a stay of

at least ten years, the underestimation is 84%, that is, only 16% of the migrations

(UN definition) are recorded.

The overestimation is particularly sensitive to the relocation rate. The higher the rate,

the higher the overestimation. Raymer et al. (2013, 807) reports that experts judge the

number of migrations without time limit (i.e., relocation) to be about twice the number of

permanent migrations (one-year criterion). If relocation is governed by a Poisson process

with constant relocation rate, the relocation rate should be around 0.7 (m ¼ 2 ln(z) ¼

2 ln(0.5)) to produce the expert judgment. That figure means that, on average, an

individual relocates every 18 months, which is unrealistic. Another validity test of the

Poisson model is to consider actual data on migration published by countries in Europe.

Figures differ for a number of reasons listed above, with differences in the duration

threshold being only one reason. Consider emigration from Poland. In the period

2002–2007, Poland registered an annual average of 22,306 emigrants to 18 EU and EFTA

countries considered by De Beer et al. (2010), whereas the destination countries registered

a total of 217,977 immigrants from Poland. Assuming that destination countries report

immigrations correctly, the emigration rate in Poland would be six per thousand (in the

period considered, the population of Poland was about 38 million). Poland records

emigration if the person leaves the country permanently. Given the very low emigration

rate of Polish residents, the Poisson model is unable to predict the large difference in

recorded migrations in Poland and destination countries. The situation is worse if we

consider the migration from Poland to one particular country. Consider migration to

Sweden. During the same period, 2002–2007, Poland recorded an average annual

emigration to Sweden of 303 persons, while Sweden recorded an annual average of 3,718

immigrants from Poland (De Beer et al. 2010). Sweden follows the UN guidelines in

measuring migration. Given the very low rate of migration of Polish residents to Sweden,

the Poisson model is unable to predict the large difference in recorded migrations from

Poland to Sweden (Polish emigration data report only 8% of emigrants to Sweden if

Sweden’s immigration figures are considered accurate). The Poisson model could explain

the difference if (a) the migration rate from Poland to Sweden is 0.2, (b) ‘permanent’ does

not mean five or ten years, but a stay of at least 13.5 years, and (c) other measurement
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errors have no effect. In that case, the measurement method used by Poland would

underreport the true migration flow to Sweden by 92%.

The assumption that all individuals have the same relocation rate is not realistic. A large

proportion of the population does not consider relocation and is therefore not really at risk

of migration. Suppose that 2.5% of the residents of Poland consider emigration within a

year. These have a much higher emigration rate than the average of the population of

Poland (six per thousand). Since 0.006 ¼ 0.975 † 0 þ 0.025m, the emigration rate of

people considering emigration is m ¼ 0:006
0:025
¼ 0:24. Destination countries use different

duration thresholds to measure immigration. If a duration threshold of six months is an

acceptable average and ‘permanent’ emigration from Poland means a stay abroad longer

than ten years, then the proportion of emigrants recorded in Poland is e [2 m(d6 – d12)] ¼

e [2 0.24(10 2 0.5)] ¼ 0.102, which is 10%. That figure is a very good approximation of the

proportion of emigrants recorded by Poland during the period 2002–2007. During the

observation period, 1.7% of the emigrants from Poland emigrated to Sweden. Suppose

residents of Poland have a slight preference for Sweden over other countries in the EU and

EFTA region, increasing the emigration rate of those considering emigration to Sweden to

0.27 (instead of 0.24). That emigration rate results in a proportion of emigrants to Sweden

recorded by Poland of e [2 0.27(10 2 1)] ¼ 0.088, which is the proportion observed in the

period 2002–2007. The conclusion is that the Poisson model can yield an accurate

estimate of the underreporting of emigration due to differences in duration threshold, if the

migration rate does not apply to the total population but to the subpopulation that considers

emigration, that is, the potential migrants. The relocation rate should apply to them and

not to people who have no intention of emigrating or have an extremely low risk of

emigration. To accurately describe underreporting or overreporting, the Poisson model

should be extended to a mover-stayer model to incorporate unobserved heterogeneity in a

population with respect to the desire to emigrate.

The experts, whose judgments were considered by Wiśniowski et al. (2013) and Raymer

et al. (2013), indicate a much larger effect of the duration threshold than produced by the

simple Poisson model. Table 1 shows the undercounts estimated by experts, the simple

Poisson model with emigration rate of 0.24, and a mixture model, which is an extension of

the mover-stayer model.

The expert judgments indicate that experts believe that onward or return migration soon

after a previous migration is considerably higher than predicted by the Poisson model,

which is a reasonable assumption. Unobserved heterogeneity may explain the deviation

Table 1. True migration flows (UN definition) as fractions of recorded flows. Expert judgments, Poisson model

and mixture model.

Duration threshold Experts judgment Poisson model Mixture model

No time limit 0.51 0.79 0.51
3 months 0.61 0.84 0.64
6 months 0.81 0.89 0.77
12 months 1.00 1.00 1.00
Permanent (p)) 1.64

5 years 2.61 1.80
10 years 8.67 2.98
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from the Poisson model. Suppose a small proportion of the potential migrants (‘movers’)

(for example, 6%) is very mobile and moves almost every six months (relocation rate is

1.8), while most (94%) potential migrants are modestly mobile and migrate every ten

years, on average (migration rate is 0.1), then the true migration (according to the UN

definition) as a fraction of the recorded flow is given in the third column of Table 1

(mixture model). The figures are close to the correction factors derived from the expert

judgments. A model that distinguishes between people with and without a desire to

emigrate produces true migration flows as fractions of the recorded flows that are similar

to the expert judgments. If the population is indeed heterogeneous with respect to their

desire to migrate, then part of the difference between the recorded migration flow and

the true flow (according to the UN definition) can be attributed to the unobserved

heterogeneity. That part is not a measurement problem caused by differences in duration

thresholds, but a consequence of misspecification of the migration model. In that case,

models of true migration flows, such as the one included in IMEM, should be extended to a

mixture model to allow for that unobserved heterogeneity. A well-known example of a

mixture model in the study of migration is the mover-stayer model. The prior probability

distribution should also be a mixture distribution. Expert judgments on the proportion of

movers in the population may be used to construct the mixture distribution.

An effect of population heterogeneity on relocation rates and migration rates is

confirmed by the UNECE Task Force on analysis of international migration estimates

using different length of stay definitions (UNECE 2012, 13f). The duration-of-stay

dependence of relocation rates varies between males and females and between nationals

and foreigners. The rate also varies between first international relocation and subsequent

cross-border relocations. The first relocation is followed by a shorter duration of stay than

subsequent relocations. The Task Force also presents, for different countries, the

proportions of relocations using the three-month criterion that are recorded if the 12-

month criterion is used. The findings differ greatly between countries.

7. Conclusion and Recommendations

In European countries, people feel uncomfortable with the level of immigration. Political

parties that promise to regain control over immigration are on the rise. Politicians respond

by discussing annual ceilings on the number of immigrants or a net number of migrants.

How do they know the numbers? How valid and reliable are the numbers they use?

This article, as other articles on how we know the facts of international migration, paints

a rather bleak picture of the state of international migration statistics. The problem was

diagnosed almost 50 years ago and became acute when migration became the dominant

component of demographic change and a major item on the political agenda. Several

initiatives were taken at the national and European (and global) levels to improve the

availability, quality and comparability of international migration statistics. The initiatives

can be classified into broad categories. The first is the improvement of the production of

migration statistics by the national statistical offices and other producers of official

statistics in Member States, frequently in collaboration with Eurostat and in some cases

with members of the European Statistical System in other Member States. It involves

the documentation of the data collection process, the harmonisation of concepts and
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measurement methods. In some cases, it also involves the use of mirror data supplied

by other countries. The second category of initiatives is the development, by the research

community, of statistical methods for estimating bilateral migration flows and for

harmonizing available migration data. That often involves using different types of data

from multiple sources.

That research produced a broad consensus among scientists that a dual strategy is

required to improve statistics on international migration flow in Europe. The first

component is that producers of statistics should thoroughly document the procedures they

use to collect data and produce migration statistics. This documentation may be

accompanied by a risk assessment, in which the types and sources of uncertainty in the

data and the limitations in the production of statistics are made explicit. The second

component of the dual strategy is oriented towards the research community. Models serve

as a vehicle to effectively combine and integrate data from different sources and produce

accurate and comparable migration estimates and migration statistics. The estimates are

synthetic because data from different sources are combined and integrated. They yield

harmonized statistics if the estimation procedure accounts for differences in the process of

data collection and production of migration statistics. All steps of the estimation procedure

should be thoroughly documented.

Past research on the estimation of international migration flows, reviewed in this article,

revealed significant progress and a clear direction. A common element in all research is the

use of migration flows by countries of immigration and flows by countries of emigration.

The first such matrices were published in the mid 1970s, by the United Nations Economic

Commission for Europe (UNECE). UNECE obtained the data from national statistical

offices by a special request. Later, countries that collected the data provided the data

annually. The data revealed that the immigration data and the emigration data are not

consistent, that immigration is generally reported more accurately than emigration, and

that some countries cannot produce such data or are not able to report immigration and

emigration flow data on a regular basis. Initially, the focus of research was reconciliation

of immigration and emigration flows. To make the data consistent, one set of country-

specific adjustment factors was estimated and applied to the reported immigration data

matrix and a different set was applied to the reported emigration data matrix (Poulain and

Wattelar 1983). The correction factors are such that a measure of distance between the

adjusted matrices is minimal, while some constraints imposed on the adjusted data are

satisfied. The Euclidean distance was used initially, but later other distance functions were

introduced. The adjusted immigration and emigration matrices are not equal. Poulain took

the average of the two adjusted matrices. Abel (2010) gave priority to the correction

factors for countries of immigration because immigration is generally measured more

accurately than emigration. Initially, estimated migration flows were constrained to be

equal to the total of the reported immigration flows. Later, additional constraints were

imposed, but the basic approach remained constrained optimisation. De Beer et al. (2010)

imposed the constraint that the adjusted immigration matrix and the adjusted emigration

matrix have the same marginal totals.

Countries differ in the quality of their migration data and some countries do not report

migration flows at all. Countries also use duration thresholds that may differ from the

one-year duration of stay criterion recommended by the United Nations and Eurostat.
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To account for the differences and to assure that the correction factors for countries with

good data remain small, stepwise procedures were developed. The correction factors for

countries with good data were estimated first, and those for countries with data limitations

next. That introduced the need to judge the quality of the migration data reported by

statistical offices. Expert judgments were solicited to rank countries by the perceived

quality of their migration data. It also led to constraints on the correction factors for

countries with good data and restrictions on the adjustments of some of the migration flows.

Missing data constituted a separate problem. Some authors omitted countries with missing

data. Abel (2010) estimated the missing flows using a spatial interaction model. He applied

the EM (expectation-maximisation) algorithm to obtain the parameters of the model.

Raymer et al. (2013) adopted a similar idea, but replaced the constrained optimisation

with a measurement model. A measurement model accounts explicitly for the sources of

distortion in data due to differences in (1) concepts used, (2) measurements and data

collection systems, in this case, differences in duration thresholds, (3) coverage of

migrants, (4) undercount of migration, and (5) accuracy of the data collection mechanism.

Raymer et al. also provided measures of uncertainty for all flow estimates and parameters

in the model. A Bayesian approach is adopted to integrate the different types of data,

covariate information, and prior knowledge. The migration model is used both to estimate

the missing migration flow data and augment the measurement model. True migration

flows that are consistent with the United Nations and Eurostat recommendation for the

measurement of international migration (long-term migrations, i.e., migrations with

duration threshold of 12 months) are treated as unobserved (latent) variables that need to

be estimated from flow data reported by countries of immigration and countries of

emigration, covariate information, and expert judgments. Wiśniowski et al. (2013) give a

detailed account of how expert judgments are converted into prior distributions for

subsequent use in the Bayesian inference.

The research community has followed an impressive trajectory in response to the call

for migration data that are trustworthy and that can be used in migration governance and

the migration debate. A milestone was EU Regulation No. 862/2007 of 11 July 2007

allowing Member States to use scientifically based and well documented statistical

estimation methods in the production of migration statistics. The research community

responded vigorously and produced the know-how and the technology to generate

migration statistics that are harmonized and internally consistent, and accompanied by

indicators of the accuracy of the statistics. That represents the state-of-the-art today. It

is not the end of the trajectory. Further improvements are envisaged. The pace of

improvements will critically depend on cooperation: cooperation among members of the

European Statistical System and cooperation between the ESS and the research

community. A concerted effort is needed to produce the evidence that allows a debate

based on opinions and facts and motivates policies that are responsive to the evidence. The

success of a concerted effort will depend on having a shared vision and a clear strategy.

The vision is embedded in EU Regulation No. 862/2007: a combination of high-quality

data collection and scientifically proven techniques provide the best guarantee for

trustworthy international migration statistics. Since the sources of migration data that

Member States rely on differ, the outcome will be a migration database that is synthetic,

that is, which combines data from different sources. The database will evolve based on
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stakeholders’ changing expectations and queries, new sources of data and progress in

science and technology. To master that process and find a proper balance between

continuity and change, the perspective of a learning process is recommended. The

synthetic database is a representation of reality. It represents a knowledge base for public

debate, governance and research. New data may be incorporated (‘assimilated’) in the

database without altering the structure of the database. When new data cannot be

incorporated in an existing structure, the structure needs to be adjusted (‘accommodation’)

which means that the model generating the database is updated. The information it

contains should be reliable, but will not be perfect. Therefore, indicators of epistemic

uncertainty (ignorance) and aleatory uncertainty (due to randomness) should be part of the

database. Approaching the development of a synthetic database as a learning process

paves the way for an effective use of insights from cognitive sciences and may guide the

collection of new data.

The future trajectory involves several specific actions. Most have already been proposed

and even advocated by others. The actions include:

1. Identify and document sources of data of international migration. The census and

administrative records are main sources. Surveys, in particular household surveys,

labour force surveys and designated migration surveys have untapped potential.

Enhance migration mainstreaming in labour force surveys (e.g., migration questions

and migration modules) and other data collection activities. Although the ESSC

adopted a conceptual framework and work programme for migration statistics

mainstreaming in 2010, it seems that guidelines and practical tools for mainstreaming

migration in data collection have not yet been finalized. Gender mainstreaming may

serve as a benchmark for migration mainstreaming (see e.g., European Commission

2017). Geolocation data generate new data sources for migration.

2. Statistical institutes that collect primary data or derive the statistics from primary data

should publish detailed metadata on migration concepts and measures, and on the

data collection process. The metadata should include a description of adjustment

procedures introduced to account for nonreporting and other measurement problems.

Scientists, who rely on metadata to develop methods for estimating and forecasting

migration, should develop a thorough understanding of the migration data before

engaging in estimation and/or forecasting (see also Disney et al. 2015).

3. Use mathematical/statistical models to produce the synthetic database. The

distinction between migration model and measurement model (Raymer et al. 2013)

is very useful. Migration models predict numbers of migrants by origin and

destination, and by migrant attributes, such as sex, age, and education. Their policy

relevance increases if they include the social and economic situation of migrants

(Radermacher and Thorogood 2009). Measurement models should consider

coverage, undercount, duration thresholds, accuracy, and other factors that cause

observations to differ from true migration flows.

4. Include circular migration in models of migration. Duration thresholds considered

in migration models should be flexible to cover permanent migration, short-term

migration and circular migration. The modeling can benefit from the procedures

developed by National Statistical Institutes for the measurement of short-term and
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circular migration (see e.g., Johansson and Johansson 2016). UNECE and Eurostat

support that development (see e.g., UNECE 2012, 2016; TEMPER 2015).

5. Develop life history models of migration, in addition to the population-level models

in use today. Life history models adopt a longitudinal perspective and predict

individual sequences of migrations/relocations and expected durations of stay in

destination countries. They provide a logical way to incorporate lifetime migration

(place of birth by place of residence), long-term migration, short-term migration,

repeat migrations and circular migration in a single model in a coherent and

consistent way. The UNECE Task Force on Measuring Circular Migration supports a

life-history approach: “[i]n the ideal situation, the complete migration history of a

person would be available. This would make it easy to determine whether a person

qualifies as a circular migrant.” (UNECE 2016, 20). Since data on individual

migration histories will always be incomplete, truncation and censoring need to be

dealt with (see also Beauchemin and Schoumaker 2016, 194). The theory of counting

processes is the appropriate statistical theory for dealing with truncation and

censoring (Aalen et al. 2008). Recently, DeWaard et al. (2017) used a life history

model to estimate expected durations of stay in the EU-15 by migrants from new-

accession countries.

6. Life history models may be extended to incorporate transnational activities. For

instance, a person may obtain education in one country, work and raise children in

another country and retire in a third. Activities are intertwined with migration. A

temporary or circular migrant engages in more different activities than a permanent

migrant. Life history models enable the integration of different types of relocations in

the human life course and the assessment of how migration interacts with education,

income generating activities, partnerships, the social network, and other aspects of

life. Such an extension offers an analytical framework for the study of multi-sited

individual and social lives (IOM 2010b).

7. Approach the development of the synthetic database as a learning process. A learning

process builds representations of real world phenomena and improves the

representations in light of new evidence and experiences. If one accepts that

building a synthetic database is a learning process, then insights from cognitive

science can help produce better data on migration.

8. The synthetic database is a step towards a smart or intelligent database. Databases

may be trained to recognize data types, suggest estimation methods and signal new

trends and discontinuities. The learning process may also point to individual decision

processes and social processes that generate migration. Decision rules may be

identified and incorporated in the database by replacing the statistical models by

agent-based models (ABMs). Agent-based models simulate how agents process

information (signals) from multiple sources in their environment and integrate that

knowledge into a knowledge structure that is the basis for purposeful action (see

Klabunde and Willekens 2016 for a review of agent-based models of migration and

Willekens et al. 2016b and Klabunde et al. 2017 for recent illustrations).

9. Formalize learning. A formal method of learning that is particularly useful is the

Bayesian method or Bayesian inference. A critical aspect of the Bayesian approach is

to translate information or knowledge into probability distributions. Official
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statisticians, who ultimately are responsible for developing the synthetic database,

should be trained in the Bayesian method. Bayesian statisticians, on the other hand,

should reach out to official statisticians and explain the logic of the Bayesian

method.

10. Stimulate collaboration between National Statistical Institutes of sending and

receiving countries to increase the comparability of migration data and enhance the

harmonisation of data collection procedures and estimation methods. Promote

exchange of data and the sharing of good practices. Secure adequate funding and

training. UNECE (2010) developed guidelines on using data from destination

countries to improve emigration statistics of origin countries (see also the UNECE

site on migration statistics http://www.unece.org/stats/migration.html) and Eurostat

established a secured web repository for exchanging migration data before their

release (Kotowska and Villán Criado 2015). The 2016 New York Declaration for

Refugees and Migrants also calls for enhanced international cooperation to improve

migration data (United Nations General Assembly 2016).

11. Improve communication of migration data and publicize good practices. The

Conference of European Statisticians’ initiative to publish key recommendations

and good practices in the communication of population projections shows the right

direction (UNECE-CES Task Force on Population Projections 2016).

12. Bridge the gap between producers of statistics and scientists. Kotowska and Villán

Criado, members of the European Statistical Advisory Committee, recommend that

Eurostat takes the initiative and the lead to bridge that gap. Eurostat is, indeed, very

well positioned and has demonstrated in the past decades that it can bring together

scientists and producers of official statistics (Kotowska and Villán Criado 2015).

13. Methods for estimating emigration are particularly rare and should receive more

attention. A very good point of departure is the report of the Suitland Working Group

(Jensen 2013). Labour force surveys, household surveys and special migration

surveys can be used to estimate rates of emigration. Wiśniowski (2017) uses Labour

Force Surveys of Poland and the United Kingdom to estimate migration flows

between the two countries. To identify emigrations, household surveys should

collect data on the country of residence of household members living abroad, their

age and the age at emigration. The sample design should assure enough observations

to yield sufficiently precise estimates. Willekens et al. (2017) review the literature on

the estimation of emigration. In addition, they use the Survey on Migration between

Africa and Europe (MAFE) to estimate emigration rates from the Dakar region,

Senegal to Europe, accounting for the complex sample design of the MAFE survey.

14. Produce reliable data on the number of irregular immigrants and integrate the data

into the synthetic database. Reliable data on irregular migrants in the European

Union do not exist. As border crossings by third country nationals are currently not

registered, it is not possible to establish lists of overstayers. It is generally agreed

that the majority of the 1.9 to 3.8 million of irregular immigrants within the EU

overstay their Schengen visa (European Commission 2013), although this figure is

not repeated in the 2016 version of the text (European Commission 2016b). The

European Commission proposed the establishment of an advanced passenger

information system for non-EU nationals travelling to the EU (European
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Commission, 2013, 2016b). The system includes an Entry-Exit System (EES), with

register of entries and exits, and a Travel Information and Authorization System

(ETIAS). The system is modelled after the Electronic System for Travel

Authorization (ESTA) and National Security Entry/Exit System (NSEERS) in the

United States. The EES includes a mechanism to identify persons overstaying their

authorized stay. In May 2015, a pilot EES project was started in Portugal. The

system is believed to contribute to smart border management, but the experiences of

the United States indicate the many challenges that emerge and need to be resolved.

15. Initiate and support a global, concerted effort to collect data on the root causes of

international migration aimed at interventions that address emigration decisions and

their motivating factors, rather than the consequences of the decisions. Several

recommendations were made for a World Migration Survey building on the

knowledge and experience gathered across the world in recent migration surveys of

limited scale (see Section 3 of the article).

16. Expand research and analytical practice regarding measures of uncertainty for point

estimates and related diagnostics for adequacy of the fit of the models employed.
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of international migration statistics in the European Community)” Revue Européenne
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Wiśniowski, A., J. Bijak, S. Christiansen, J.J. Forster, N. Keilman, J. Raymer, and

P.W.F. Smith. 2013. “Utilising Expert Opinion to Improve the Measurement of

International Migration in Europe.” Journal of Official Statistics 29(4): 583–607.

Doi: https://doi.org/10.2478/jos-2013-0041.
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A Note on Dual System Population Size Estimator

Li-Chun Zhang1

Several countries are currently investigating the possibility of replacing the costly population
census with a Population Data set derived from administrative sources, in combination with a
purposely designed Population Coverage Survey. We formulate the assumptions of the dual
system estimator in this context, and contrast them to the situation involving a census and a
Census Coverage Survey.

Key words: Coverage error; undercount; capture-recapture; administrative data.

1. Introduction

The dual system estimator (DSE) has been used for adjusting population census

undercoverage error with the help of a Census Coverage Survey (CCS). See Nirel and

Glickman (2009) for a review. Wolter (1986) lists eight assumptions, that is, Assumption

1-6, 8, and 11, for the DSE in the most basic setting. Several countries are investigating the

possibility of replacing the costly population census with a Population Data set (PD)

derived from administrative sources, in combination with a purposely designed Population

Coverage Survey (PCS). There is a need to pin down the assumptions of the DSE based on

the PD and PCS, because the data generation process of a PD can be quite different and

more difficult to model than that of a census. We propose to treat the PD as fixed and to

consider the PCS as the only random source. This allows one to circumvent the problem of

modelling the PD enumeration, where the mechanisms at the sources of the data may lie

beyond the control of the statistician, and to focus on the design and implementation of

the PCS, which is under the direct control of the statistician. In Section 2, we formulate

the assumptions in the basic setting that is comparable to that of Wolter (1986). The

advantages of the proposed conditional approach to the DSE, given the PD, will be

explained in comparison to the traditional approach, where both the census and CCS are

considered to be random. Some additional remarks on departures from the basic setting are

given in Section 3, as well as some related ongoing developments.

2. The Four Assumptions for Consistency

Denote by U ¼ {1, 2, : : : , N} the target population, which is of the unknown size N. Let A

contain x enumeration records from the PD. Let S contain n records from the PCS. For

each i [ U, let pi ¼ E(dijA), where di ¼ 1 if i [ S and 0 otherwise. The notation E(·jA)

q Statistics Sweden
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emphasises that the enumeration in A or not is treated as fixed for all i [ U. In the most

basic setting that is comparable to the DSE based on census and CCS, the following four

assumptions are needed for the DSE based on PD and PCS:

(i) There are no duplicated records in A or S, and A < S # U.

(ii) The matched records between A and S can be identified without errors.

(iii) The capture probability in S is constant, that is, pi ¼ p and 0 , p , 1, for i [ U.

(iv) The captures in S are uncorrelated, that is, Cov(di,djjA) ¼ 0 for i – j [ U.

According to (i), there are no duplicated or erroneous records in A or S, where a record

i is erroneous if i � U. This is the same as Assumption 5 “Spurious Events” in Wolter

(1986). The assumption (ii) combines Assumption 4 “Matching” and 7 “Nonresponse” in

Wolter (1986). According to (iii), every population element has the same positive

inclusion probability in the PCS. This is the same as Assumption 11 in Wolter (1986),

except that it refers only to the capture probabilities in the PCS that are designed by the

statistician, not the inclusion in the PD. Finally, the assumption (iv) is the same as

Assumption 3 “Autonomous Independence” in Wolter (1986), except that it only pertains

to the PCS enumeration, not the PD.

Let m be the number of matched records between A and S. Provided the assumptions

(i) – (iii), we have mm ¼ E(mjA) ¼
P

i[A p ¼ xp and mn ¼ E(njA) ¼
P

i[U p ¼ Np,

such that xmn /mm ¼ N. Replacing mn and mm by n and m, respectively, we obtain the DSE

N̂ ¼ xn=m: ð1Þ

It is important to notice that the only random source is the PCS that generates S, whereas

we treat A (and x) as fixed, regardless of how complicated the data generation process may

be that leads to the creation of A. In particular, the PD is allowed to have systematic

undercoverage of the population, which is often the case with administrative registers. For

instance, data set A may contain everyone that pays tax, but none who does not. The DSE

(1) can still be motivated, because the estimated capture probability of the PCS among the

tax payers, that is, m/x, can be extrapolated to the others, as long as the PCS satisfies

assumption (iii). This provides additional flexibility, which is not permitted under the

traditional approach to census and CCS. Moreover, treating A as fixed removes two of the

three remaining assumptions of Wolter (1986). Assumption 2 “Multinomial” distribution

of (di,census,di,CCS) is unnecessary, where di,census and di,CCS are the enumeration indicators

of the census and CCS, now that inclusion or not in A is treated as fixed. Likewise,

Assumption 8 “Causal Independence” between di,census and di,CCS is unnecessary, since the

random variable di cannot be correlated with a constant, that is, i [ A or not.

Finally, Assumption 1 “Closure” of the population was used to ensure that the census

and CCS aim at the same target population. In practice, it creates some tension to

Assumption 8 “Causal Independence”: to accommodate “Closure” one would conduct the

CCS as close as possible to the census, yet doing so can potentially jeopardise “Causal

Independence”. The “Closure” assumption is no longer necessary, provided assumptions

(i) and (iii) are satisfied. It is possible to implement any census population definition in the

PCS, provided one can extract the data set A from the PD, which satisfies the assumption

(i). For example, suppose the reference date is 11 November 2017 for a census night
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population definition. The PCS may be deployed on the same day or immediately

afterwards. Any member of the population has a chance to be enumerated in S, provided

(iii), and no overcounting occurs, provided (i). Meanwhile, the processing of list A from

the PD can take place both before and after 11 November 2017, aimed to satisfy

assumption (i) and avoid erroneous enumeration. There is no need to assume that the target

population itself is closed for a prolonged period after 11 November 2017.

Expanding N̂ with respect to (n,m) around (mn,mm) yields

N̂¼Nþ
x

mm

ðn 2mnÞ2
N

mm

ðm2mmÞ2
x

m2
m

ðn2mnÞðm2mmÞþ
N

m2
m

ðm2mmÞ
2þR3; ð2Þ

where R3 is the remainder. We have

E
N̂

N
jA

� �
2 1¼ 1 2

x

N

� �
m22

m VðmjAÞþ
1

N
EðR3Þ

VðN̂Þ<
ðN 2xÞ2

m2
m

VðmjAÞþ
x2

m2
m

Vðn2 mjAÞ;

ð3Þ

where V (mjA) ¼ xp (1 2 p) and V (n 2 mjA) ¼ (N 2x)p (1 2 p). Notice that we have

used Cov(n 2 m,mjA) ¼ 0 and Cov(n,mjA) ¼ V(mjA), due to the assumption (iv).

Provided x/N ¼ O(1) asymptotically, as N ! 1, and E(R3)/N is of a lower order than the

first term on the right-hand side of (3), we have E N̂
N
jA

� �
!1, because V (mjA)/x ¼ O(1)

and x/mm ¼ O(1). Now that V N̂
N
jA

� �
!0 in addition, the DSE (1) is such that N=N̂!P1

asymptotically, as N ! 1. The consistency of the DSE based on PD and PCS can thus be

established under the assumptions (i) – (iv).

3. Additional Remarks

Below we consider potential departures from the four basic assumptions, taking them one

by one in the reverse order.

Correlated PCS captures The assumption (iv) can be relaxed to allow correlated

captures, such as intra-cluster correlated enumeration within the same household or

building. Let the population U be partitioned into K clusters, denoted by U ¼ <K
k¼1Uk.

(iv.c) Cov(di,dj) ¼ 0 for i [ Uk and j [ Ul, for 1 # k – l # K.

Provided (iv.c) instead of (iv), we have

E
N̂

N
jA

� �
2 1 < 1 2

x

N

� �
m22

m VðmjAÞ2
x

N
m22

m Covðn 2 m;mjAÞ;

where VðmjAÞ ¼
P

i[A pið1 2 piÞ þ
PK

k¼1

P
i–j[Ak

Covðdi; djÞ, for Ak ¼ A > Uk, and

Covðn 2 m;mjAÞ ¼
PK

k¼1

P
i[Ak

P
j[Ac

k
Covðdi; djÞ; for Ac

k ¼ UknAk. Asymptotically, as

N ! 1, provided x/N ¼ O(1) as before, and K/N ¼ O(1) and Nk ¼ O(1), where Nk is the

size of Uk which remains bounded asymptotically, the consistency of the DSE (1) is
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retained. Moreover, the variance of N̂ is now approximately given by

VðN̂Þ ¼
ðN 2 xÞ2

m2
m

VðmjAÞ þ
x2

m2
m

Vðn 2 mjAÞ2 2
xðN 2 xÞ

m2
m

Covðn 2 m;mjAÞ;

where Vðn 2 mjAÞ ¼
P

i[U nA pið1 2 piÞ þ
PK

k¼1

P
i–j[Ac

k
Covðdi; djÞ.

Heterogeneous PCS capture The assumption (iii) can be relaxed.

(iii.h) pi ¼ ph and 0 , ph , 1, for i [ Uh, where U1, : : : ,UH form a post-

stratification of the target population U.

Post-stratification is common in the practice of census-CCS DSE. Wolter (1986)

introduces Assumption 7 “Post-stratification” to ensure that any variable used for the post-

stratification is error-free. Provided this and the assumption (iii.h) instead of (iii), one may

employ a post-stratified DSE based on the PD and PCS, which is given by

N̂p ¼
XH

h¼1

xhnh=mh; ð4Þ

where xh is the size of A > Uh, and nh that of S > Uh, and mh that of A > S > Uh.

Asymptotically, as Nh ! 1 for all h ¼ 1, : : : ,H, we have N̂p=N !
P 1.

(iii.a) �pA ¼ �p c
A, where �pA ¼

P
i[A pi=x and �p c

A ¼
P

i[U nA pi=ðN 2 xÞ are the

average capture probabilities among the population elements in and out of A, respectively.

According to (iii.a), the PCS does not have to achieve a constant capture probability across

the population, which is less stringent than the assumption (iii). We have

x
mn

mm

¼ N
x

N
þ 1 2

x

N

� � �p c
A

�pA

� �
¼ N;

where mm ¼ EðmjAÞ ¼ x �pA, and mn ¼ EðnjAÞ ¼ N ðx=NÞ �pA þ ð1 2 x=NÞ �pc
A

� �
. The

relative bias of the DSE is still given by (3), except that we now have VðmjAÞ ¼P
i[A pið1 2 piÞ and V(n 2 mjA) ¼

P
i[U\Api(1 2 pi). Asymptotically, as N ! 1, it

converges to zero as before, so that the consistency property of the DSE (1) is retained.

(iii.ha) �pAh
¼ �pc

Ah
, where �pAh

¼
P

i[A>Uh
pi=xh and �pc

Ah
¼
P

i[Uhn A pi=ðNh 2 xhÞ.

The assumption (iii.ha) combines (iii.h) and (iii.a), provided which the post-stratified DSE

(4) retains its consistency property, as Nh ! 1 for all h ¼ 1, : : : ,H.

Linkage error The Matching assumption (ii) may be violated unless a unique identifier is

available in both A and S, which can be used to link the records directly. See Ding and

Fienberg (1994), Di Consiglio and Tuoto (2015) for a discussion in the presence of linkage

errors. To adjust the DSE, one needs to obtain estimates of the relevant linkage error

probabilities, which is not an easy task in practice. Moreover, heterogeneous linkage error

probabilities may further complicate the treatment of heterogeneous catch probabilities (in

S). ONS-M8 (2013) outlines a potential alternative approach, which is to match A and S at
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a cluster level (such as address or dwelling) that is not affected by linkage errors. However,

the approach requires an additional assumption that the PCS fully enumerates everyone in

the captured clusters, which may be difficult to satisfy in practice.

Erroneous enumeration The assumption (i) is violated for A if it contains erroneous

records. The traditional approach is to include an additional survey (sampled from A) to

estimate the over-coverage rate (e.g., Nirel and Glickman 2009). In some recent works,

models and methods are developed to accommodate erroneous records directly. Zhang

(2015) considers log-linear models of two PDs, subjected to both erroneous and missing

records, together with the PCS. Zhang and Dunne (2017) apply the trimmed DSE to Irish

data to explore the potential over-coverage error of the PD. In situations where the PD is

compiled from multiple administrative registers, it is possible to trim one or more source

registers directly. Di Cecco et al. (2018) develop latent class models based on four or more

enumeration lists, all of which may be subjected to erroneous enumeration.

In particular, the treatment of linkage error and erroneous enumeration are important

research topics for the census transformation programmes in the coming years.
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J. Bunge, and P.v.d. Heijden: 239–259. Chapman and Hall/CRC.

Received November 2017

Revised April 2018

Accepted July 2018

Li-Chun Zhang: Note Dual System Estimator 283

http://dx.doi.org/10.2478/JOS-2018-0026
http://dx.doi.org/10.1515/JOS-2015-0025
http://dx.doi.org/10.1515/JOS-2015-0025
https://www.ons.gov.uk/census/censustransformationprogramme/beyond2011censustransformationprogramme/reportsandpublications
https://www.ons.gov.uk/census/censustransformationprogramme/beyond2011censustransformationprogramme/reportsandpublications
http://www.jstor.org/stable/2289222
http://www.jstor.org/stable/2289222
http://dx.doi.org/10.1515/JOS-2015-0023


In Memory of Professor Susanne Rässler

Jörg Drechsler, Hans Kiesl, Florian Meinfelder, Trivellore E. Raghunathan,

Donald B. Rubin, Nathaniel Schenker, and Elizabeth R. Zell

On the 29th of August 2018, Susanne Rässler, long-term associate editor of the Journal of

Official Statistics, died far too early at the age of 55. All who knew her agree that she was a

very special person. As Danny Pfeffermann said: “You could not just be a colleague. You

had to be a friend.”

Susanne received her PhD in Statistics from the Friedrich-Alexander Universität

Erlangen-Nürnberg (FAU) in Germany in 1995 with a thesis comparing several estimators

in unequal probability sampling. Following an offer to join the Department of Statistics

and Econometrics at the FAU as a faculty member, she started her research in the field

of statistical matching of multiple data sources, which culminated in her seminal book

Statistical matching: A frequentist theory, practical applications, and alternative

Bayesian approaches published in 2002. Two years later she temporarily left academia to

accept a split appointment at the headquarters of the German Federal Employment Agency

(BA) and the Institute for Employment Research (IAB), the research branch of the BA.

Despite working at the BA and the IAB for only three years, Susanne had a lasting

impact at both institutions. At the IAB she established the Department for Statistical

Methods and initiated numerous research projects on missing data, sampling designs,

multiple imputation, and statistical disclosure control. Under her guidance, the IAB got

involved in cutting edge research on methodological questions related to official statistics.

As early as 2005, the institute experimented with split questionnaire designs to reduce the

response burden of survey participants and to increase the quality of the gathered

information. The institute was also the first statistical agency outside the United States to

release multiply-imputed synthetic datasets to facilitate access to its highly sensitive

establishment survey data for external researchers. Arguably, the most influential project

initiated during her time at the IAB was a joint research project between the institute, the

BA and Harvard University called TrEffeR (Treatment Effects and Prediction). The joint

research enabled the BA for the first time to obtain detailed evaluations of its training

measures based on the potential outcomes approach for causal inference (Rubin’s Causal

Model). The sophisticated procedures for matching treated and controls using the rich

administrative databases available at the BA are still used today to evaluate all labor

market programs offered by the Federal Employment Agency as well as for evaluating the

relative effectiveness of the different providers of these programs.

In 2007 Susanne was appointed to the Chair of Statistics and Econometrics at the

University of Bamberg, a position she held until her death. Because of her charming and

warm personality, at Bamberg she was equally popular among students and academic

colleagues, and her numerous committee positions within the faculty are testimony of her

tireless commitment and dedication. In 2010 she initiated a new master’s program in

q Statistics Sweden
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Survey Statistics, which over the years evolved into one of the largest Statistics programs

in Germany with currently over 100 enrolled students. In the same year, the University of

Bamberg started the National Educational Panel Study (NEPS), a large scale multi-cohort

longitudinal study with more than 60,000 participants. Susanne was the obvious choice for

the head of the Statistical Methods Department of the NEPS and later became the scientific

director of the same department, when the NEPS was integrated into the newly founded

Leibniz Institute for Empirical Educational Trajectories (LIfBi).

Stimulating the exchange of ideas and fostering statistical literacy was always important

for Susanne. She tirelessly worked to bridge communication gaps between academia,

official statistics and the public. As part of this endeavour, she joined forces with the

Bavarian State Office for Statistics and Data Processing and the IAB, and co-founded (as

representative of the University of Bamberg) the Statistical Network of Bavaria in 2013.

Even more important was her involvement in the last census in Germany. When the

German statistical system started preparing for the 2011 Population Census (the first

census in Germany since 1987), which was to feature novel methodology combining

population registers and a large household survey, the German ministry of the interior

established a scientific advisory body and invited Susanne to be a member of this board.

In the years that followed, Susanne discussed methodological questions within the Board

and with delegates of Destatis (the German national statistical institute). At the same time,

she participated in numerous discussions on radio and on television, trying to convince

the audience of the merits of the upcoming census. In 2017, some German states went to

the Constitutional Court, claiming that parts of the census methodology were not in line

with the constitution. Susanne served as a technical expert during the hearing, and may

surely take the main credit for the court’s 2018 decision in favour of the census.

Susanne was a wonderful mentor for her numerous PhD students. She always offered

support, seeking any opportunity to promote the work of her students as well as to

introduce them to the scientific community. The enthusiasm, which she showed for any

proposed research idea (no matter how minor), motivated her students to keep working

towards their degree even in times of little progress and much frustration.

For Susanne, all of her statistical collaborators were part of her family. She and her

wonderfully supportive husband Hendrik would spend hours hosting the “statistical

family” at their house. Many research ideas emerged from the discussions at the outdoor

dining area, where Hendrik, though not a statistician, would always be there. Her warm

and embracing nature and her remarkable energy will be deeply missed by all who had the

fortune to know her.
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