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Preface

In the present issue of JOS, we are proud to feature a special section on selective editing.
Statistical data editing is an important and resource-demanding activity at national
statistical institutes and methodological improvements are crucial for a sound practice.
This issue aims to bring forward notable recent theoretical and methodological works on
selective editing, to provide an overview of the historic developments and current status
of the field, and to inspire future research.

The work on this special section was initiated at the UNECE Work Session on
Statistical Data Editing in Oslo, Norway, in September 2012. The JOS Editorial Board
acknowledges all contributors.

Li-Chun Zhang, Guest Editor
Annica Isaksson and Ingegerd Jansson, Co-Editors-in-Chief
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Selective Editing: A Quest for Efficiency and Data Quality

Ton de Waal

National statistical institutes are responsible for publishing high quality statistical information
on many different aspects of society. This task is complicated considerably by the fact that
data collected by statistical offices often contain errors. The process of correcting errors is
referred to as statistical data editing. For many years this has been a purely manual process,
with people checking the collected data record by record and correcting them if necessary.
For this reason the data editing process has been both expensive and time-consuming. This
article sketches some of the important methodological developments aiming to improve
the efficiency of the data editing process that have occurred during the past few decades.
The article focuses on selective editing, which is based on an idea rather shocking for people
working in the production of high-quality data: that it is not necessary to find and correct all
errors. Instead of trying to correct all errors, it generally suffices to correct only those
errors where data editing has substantial influence on publication figures. This overview
article sketches the background of selective editing, describes the most usual form of selective
editing up to now, and discusses the contributions to this special issue of the Journal of
Official Statistics on selective editing. The article concludes with describing some possible
directions for future research on selective editing and statistical data editing in general.

Key words: Errors; score function; selective editing; statistical data editing.

1. Introduction

National statistical institutes (NSIs) play a vital role as providers of objective statistical
information about society. Statistical figures published by NSIs are used to inform policies
and actions in government, trade unions, employer organisations and so on. The statistical
figures are also used as a basis for researching the “societal story”: what is the current
economic and sociological state of society and what main economical and sociological
changes have taken place over time? For these purposes it is of the utmost importance that
the statistical information provided by NSIs is of high quality.

Let us go several decades back in time and consider such an NSI. As do most NSIs,
it has well-trained and excellent statisticians to produce high-quality statistics. The
NSI carefully plans a survey, develops the questionnaire and a clever sampling design.
Next, it spends a lot of money, time and energy to actually collect the data. After this
painstaking process, the NSI is ready to analyse the observed data and publish the
statistical outcome.
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Now, let us suppose that statisticians at this NSI, while analysing the observed data,
discover that the collected data contain errors. The data, often literally, do not add up. For
example, components of a total do not add up to the overall total, or data of some
respondents are an unlikely number of times larger than the data of similar respondents.
Such an NSI would obviously try to correct these errors. And what could be more natural
than trying to find as many errors as possible and correcting them all? This was the
situation for many years at NSIs all over the world. As noted by Granquist (1997, p. 383),
implicitly in those days the process was governed by the paradigm: “The more checks and
recontacts with the respondents, the better the resulting quality”.

In a sense the situation has not changed much over the years: NSIs still have well-
trained and excellent statisticians to produce high-quality statistics. In another sense, much
has changed over the last few decades. At most NSIs, there are fewer resources to do the
work while output expectations have increased. So the work has to be done much more
efficiently, for instance by relying more on automated procedures (see, e.g., Pannekoek
et al. in this issue), while striving to ensure high quality statistics. Over the years, staff at
NSIs have become much more proud of doing their work as efficiently as possible.

In this overview article to the special issue of the Journal of Official Statistics on
selective editing, I will sketch some of the important methodological developments with
respect to processing data at NSIs that have taken place during the past few decades, and
that are still taking place as testified by the articles on selective editing in this issue.

The major change in the statistical process at NSIs that I want to discuss is a thought that
is rather shocking for people working in the production of high-quality data: that it is not
necessary to find and correct all errors, even if things just do not add up. Instead of trying
to correct all errors, one should look at the entire process from a Total Quality
Management point of view (see also Granquist 1995, and Granquist and Kovar 1997) and
focus on the errors that really matter.

Before we proceed, let us first define statistical data editing in general and selective
editing in particular. Statistical data editing is the procedure for detecting and “correcting”
errors in observed data. Here I have put correcting in inverted commas, as in practice one
generally cannot be sure if one is really correcting the data. In the remainder of this
overview article I will not put correcting in inverted commas. The reader should keep in
mind that they should be there, as in fact all one can do in general is to try to correct errors
as well as possible.

De Waal et al. (2011) define selective editing as an editing strategy in which manual
editing is limited or prioritised to those errors where this editing has substantial influence
on publication figures. According to Granquist and Kovar (1997) selective editing includes
any approach which focuses the editor’s attention on only a subset of the potentially
erroneous microdata items or records that would be identified by traditional manual or
interactive editing methods.

Selective editing, or even statistical data editing in general, is a relatively unknown part
of (official) statistics in the literature, although NSIs have always put much effort and
resources into statistical data editing as they consider it a prerequisite for publishing
accurate statistics. For business surveys, the monetary costs of editing at NSIs have even
been estimated as high as 40 per cent of the total budget (see Granquist and Kovar 1997).
The related problem of estimating missing values (imputation), which can be seen as
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detecting and correcting a special, easily detectible kind of error, is much better known in
the literature and has been studied in much more detail, not only by NSIs but also, and
especially, by academia.

The remainder of this overview article is organised as follows. Section 2 sketches the
history of statistical data editing in general, while Section 3 describes the background of
selective editing. Section 4 briefly describes the most usual and general form of selective
editing up until now, which is based on so-called score functions. Section 5 focuses on the
three articles on selective editing by Arbués et al. Di Zio and Guarnera and Pannekoek
et al. in this special issue of the Journal of Official Statistics. Finally, Section 6 describes
some possible directions for future research on selective editing and statistical data editing
in general.

2. A Brief History of Statistical Data Editing

Statistical data editing is likely to be as old as statistics itself. Errors have always been
present in statistical data. The data collection stage in particular is a potential source of
errors. For instance, a respondent may give a wrong answer (intentionally or not), a
respondent may not give an answer (either because he does not know the answer or
because he does not want to answer this question), errors can be introduced at the NSI
when the data are transferred from the questionnaire to the computer system, and so on.
When these errors have been detected, people have tried to correct them. For many years
this has been a purely manual process, with people checking the collected data record by
record and correcting them if necessary.

We start our brief history of statistical data editing not in these “ancient” times, but
somewhere around the 1950s. In the 1950s some NSIs started using electronic computers
in the editing process (see Nordbotten 1963). This led to major changes in the editing
process. In the early years the role of computers was, however, restricted to checking
which edit rules were violated. Edit rules, or edits for short, are user-specified rules that
have to be satisfied by the data. Examples of such edits are that the profit of an enterprise
should be equal to its total turnover minus its total costs, and that the total turnover of an
enterprise should be non-negative. Professional typists entered data into a mainframe
computer. Subsequently, the computer checked whether these data satisfied all specified
edits. For each record all violated edits were listed. Subject-matter specialists then used
these lists to correct the records, that is, they retrieved all paper questionnaires that did not
pass the edits and corrected these questionnaires. After they had corrected the data, these
data were again entered into the mainframe computer, and the computer again checked
whether the data satisfied all edits. This iterative process continued until (nearly) all
records passed all edits.

A major problem with this approach was that during the manual correction process, the
records were not checked for consistency. As a result, a record that was corrected could
still fail one or more specified edits. Such a record hence required more correction. The
advent of PCs in the 1980s enabled an improved form of computer-assisted manual
editing, called interactive editing. With interactive editing, the consistency of the entered
data can be checked during data entry. The computer runs consistency checks and displays
a list of edit violations per record on the screen. Subject-matter specialists can manually
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edit the data directly. After manual editing, the computer immediately checks the
edits again. Each record is edited until it satisfies all edits. Checking and correction can
thus be combined into a single processing step. Interactive editing has become so standard
over the course of time that manual editing and interactive editing have become
synonymous terms.

Nevertheless, even with interactive editing too much effort was spent on correcting
errors that did not have a noticeable impact on the figures ultimately published. This has
been referred to as “over-editing”. Over-editing not only costs money, but also a
considerable amount of time, making the period between data collection and publication
unnecessarily long. Sometimes over-editing even becomes “creative editing”: the editing
process is then continued for such a length of time that unlikely, but correct, data are
unjustifiably changed into more likely values. Such unjustified alterations can be
detrimental for data quality. For more on the dangers of over-editing and creative editing
see, for example, Granquist (1995, 1997) and Granquist and Kovar (1997).

There are several editing approaches that aim to reduce the effort spent on correcting
data: selective editing, automatic editing, and macro-editing. Macro-editing is sometimes
seen as a special form of selective editing. In this article, however, I will consider macro-
editing as a separate form of editing and reserve the term selective editing for editing
approaches that automatically select or prioritise items or records for manual review
without any human interference, apart from specification of metadata or parameters. Here
I will briefly discuss automatic editing and macro-editing. Selective editing is discussed in
subsequent sections of this overview article.

The aim of automatic editing is to let a computer do all the work. The main role of the
human is to provide the computer with metadata, such as edits and imputation models.
After the metadata have been specified, the computer edits the data and all the human has
to do is examine the output generated by the computer. In case the quality of the edited
data is considered too low, the metadata have to be adjusted or some records have to be
edited in another way.

In the 1960s and early 1970s, automatic editing was usually based on predetermined
rules of the following kind: if a certain combination of edits is violated in a certain
way, then a certain action has to be undertaken to correct the data. Freund and Hartley
(1967) proposed an alternative approach based on minimising the total deviation
between the original values in a record and the corrected values plus the total violation of
the edits (the more an edit after correction of the data is violated, the more this
edit contributes to the objective function). In this way only the edits had to be specified in
order to find the corrected values. The approach by Freund and Hartley never became
popular, probably because edits may still be violated after correction of the data — and
often are.

In 1976, Fellegi and Holt (Fellegi and Holt 1976) published a landmark paper in the
Journal of the American Statistical Association. In their article, Fellegi and Holt described
anew paradigm for localising errors in a record automatically. According to this paradigm,
the data of a record should be made to satisfy all edits by changing the values of the fewest
possible number of variables. This paradigm became the standard on which most systems
for automatic editing, such as GEIS (Kovar and Whitridge 1990), SCIA (Barcaroli et al.
1995), CherryPi (De Waal 1996), SPEER (Winkler and Draper 1997), DISCRETE
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(Winkler and Petkunas 1997), AGGIES (Todaro 1999), SLICE (De Waal 2001), and Banff
(Banff Support Team 2008) are based. The mathematical optimisation problem implied by
this paradigm can be solved in several ways. For an overview, I refer to De Waal and
Coutinho (2005).

In the 1990s, a new form of editing emerged: macro-editing. Macro-editing offers a
solution to some of the problems of micro-editing. In particular, macro-editing can deal
with editing tasks related to the distributional aspects of the data. It is common practice
to distinguish between two forms of macro-editing. The first form is sometimes called
the aggregation method (see e.g., Granquist 1990). It formalises and systematises what
every statistical agency does before publication: verifying whether figures to be
published seem plausible. This is accomplished by comparing quantities in publication
tables with, for instance, the same quantities in previous publications. Only if an unusual
value is observed a micro-editing procedure is applied to the individual records and
fields contributing to the quantity in error. A second form of macro-editing is the
distribution method. The available data are used to characterise the distribution of the
variables. Then all individual values are compared with the distribution. Typically,
measures of location and spread are computed. Records containing values that could be
considered uncommon (given the distribution) are candidates for further inspection and
possibly for editing. In macro-editing, graphical techniques are often used to visualise
outlying and suspicious records. Generally, there is human interaction to select records
for manual review.

For more on these techniques and on how they can be combined into an editing strategy,
I refer to De Waal et al. (2011).

3. Background of Selective Editing

The grand idea that it is not necessary to edit all data in every detail was already expressed
in the 1950s, although back then it was stated in a reverse way, namely that it was not
necessary to do more editing than NSIs already did. Nordbotten (1955) described an early
successful attempt to measure the influence on publication figures of errors that remain
after manual editing. A random sample of records from the 1953 Industrial Census in
Norway was re-edited using every available resource (including re-contacts), and the
resulting estimates were compared to the corresponding estimates after ordinary editing
(without re-contacts). No significant deviations were found on the aggregate level. With
this study, Nordbotten (1955) showed that the less intensive form of manual editing used
in practice was sufficient to obtain accurate statistical results. In other words: the
experimental “gold standard” editing process would have led to over-editing if used in
practice.

The grand idea had to wait until the 1980s and 1990s before it became popular. Up until
then, the paradigm “the more edits and corrections, the better the quality” still prevailed.
The grand idea forms the basis for selective editing. Studies such as Granquist (1995,
1997) and Granquist and Kovar (1997) have shown that generally not all errors have to be
corrected to obtain reliable publication figures. It usually suffices to remove only the most
influential errors. They also showed that in practice, editing can indeed be
counterproductive and, when taken too far, even detrimental to data quality.
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These and other studies show that the cost of editing cannot be justified by quality
improvement. A major conclusion from these studies is that too many values are being
edited. As noted by Granquist and Kovar (1997, p.431): “many statistical offices are
risking too much in their quest for perfection”.

One of the important observations was that small errors in the data often more or less
cancel out when aggregated, that is, their sum generally tends to be negligible in
comparison to the corresponding publication figure. Another important observation was
that, on an aggregated level, the total measurement error due to small measurement
errors in individual records is often negligible in comparison to other errors in the survey
process, such as the sampling error, under-coverage, over-coverage and nonresponse
error.

As figures published by NSIs are aggregated data, such as totals and means, leaving
small errors in the data is fully acceptable and does not diminish the quality of the data on
an aggregated level, or at least not by much. Moreover, parameters estimated from most
statistical models are also derived by some form of aggregated data and therefore it is not
necessary for parameter estimation either to correct all data in every detail (see e.g.,
Pullum et al. 1986, and Van de Pol and Bethlehem 1997).

The studies by Granquist (1995, 1997), Granquist and Kovar (1997) and others have
been confirmed by many years of practical experience at NSIs. As a result, research has
been focused on effective selective editing methods to single out the records for which it is
likely that interactive editing will lead to a significant improvement in the quality of
estimates. Besides being referred to as selective editing, these methods are sometimes also
known as significance editing.

Methods for selecting records for interactive editing that are specifically designed for
use in the early stages of the data collection period are called input editing methods.
Sometimes they are also referred to as micro-selection methods or micro-based selective
editing methods (see Pursey 1994, and De Waal et al. 2011). These methods can be applied
to each incoming record individually. They are based on parameters that are determined
before the data collection takes place, often estimated using previous versions of the
survey and the values of the target variables in the record under consideration. The purpose
of such methods is to start the time-consuming interactive editing as soon as the first
survey data are received. Other methods, referred to as output editing, macro-selection
methods, or macro-based selective editing methods are designed to be used when the data
collection is (almost) completed. These methods use the information from (nearly) all data
of the survey to detect suspect and influential values. When (nearly) all survey data are
available, estimates of target parameters can be calculated and the influence of editing
outlying values on these parameters can be estimated.

The scope of most techniques for selective editing is limited to (numerical) business
data. In these data some respondents can be more important than other respondents, simply
because the magnitude of their contributions is higher. Social data are usually count data
where respondents contribute more or less the same, namely their raising weight, to
estimated population totals. In social data it is therefore difficult to differentiate between
respondents. For social data micro-integration techniques (see e.g., Bakker 2011) are often
used to efficiently integrate data from different data sources, for example a register and a
survey. Errors are then corrected by comparing these data sources on a micro-level.
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For business data, selective editing has gradually become a popular method and
increasingly more NSIs use selective editing techniques.

4. The Basics of Selective Editing

This section briefly describes the basics of the most common form of selective editing up
to now, which is based on so-called score functions. For a substantial part, this section is
based on De Waal et al. (2011).

4.1. Introduction

The aim of selective editing is to split the data into two streams: the critical stream and the
noncritical stream. The critical stream consists of records that are the ones most likely to
contain influential errors; the noncritical stream consists of records that are unlikely to
contain influential errors. The records in the critical stream are edited in an interactive
manner. The records in the noncritical stream are edited not interactively but
automatically, or — in some cases — not at all. When selective editing is used, automatic
editing, for instance based on the Fellegi-Holt paradigm, is confined to correcting the
relatively unimportant errors. One purpose of automatic editing, besides correcting small
errors, is then to ensure that the data satisfy the most important edits, so that obvious
inconsistencies cannot occur at any level of aggregation.

At present no accepted theory for selective editing exists. In fact, selective editing is an
umbrella term for several methods to identify the errors that have a substantial impact on
the publication figures (see, for instance, Hidiroglou and Berthelot 1986, Granquist 1990,
Latouche and Berthelot 1992, Lawrence and McDavitt 1994, Lawrence and McKenzie
2000, and Hedlin 2003 for examples of such methods). It is hardly possible to describe
here all selective editing methods that have been developed over the years. Many selective
editing methods are relatively simple ad hoc methods based on common sense. A leading
principle in most selective editing methods was suggested in Granquist (1997, p.384):
“begin with the most deviating values and stop verifying when (macro-)estimates no
longer are changed”. This is still the leading principle nowadays. The most frequently
applied general approach to implement this principle is to use a score function (see e.g.,
Hidiroglou and Berthelot 1986).

A score for a record is referred to as arecord or global score. Such a global score is usually a
combination of scores for each of a number of important variables, which are referred to as
local scores. A local score is generally defined so that it measures the influence of editing a
field on the estimated total of the corresponding variable. In the following subsections I will
briefly examine local scores, global scores, and setting threshold values on the global score for
splitting the data into the critical and the noncritical streams.

4.2. Local Scores

Local scores are generally based on two components: the influence component and the risk
component. Local scores are then defined as the product of these two components, that is,

Sij:FinRij
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with s;; the local score, F; the influence component and R;; the risk component for unit
i and variable j.

The risk component measures the likelihood of a potential error. This likelihood of a
potential error can, for instance, be estimated by the ratio of the absolute difference of the
observed raw value and an “anticipated” value which is an estimate of the true value or the
value that would have been obtained after interactive editing.

In formula form, the risk component can, for instance, be defined as

)
P

y #* | ?

|Xl~j
where x;; is the value of variable j in unit i and xl*] is the corresponding “anticipated” value.
Large deviations from the “anticipated” value are taken as an indication that the raw value
may be in error. Small deviations indicate that there is no reason to suspect that the value is
in error.

The influence component measures the relative influence of a field on the estimated total

of the target variable. The influence component can, for instance, be defined as
Fy= Wi|xj-}|, (D

where x; is defined as above and w; is the design weight of unit i.
Multiplying the risk factor by the influence factor results in a measure for the effect of
editing a field on the estimated total. In our example, the local score would be given by

E3
sij = Wilx; — xlj|,

which measures the effect of editing variable j in unit i on the total for variable j.

Large values of the local score indicate that the field may contain an influential error and
that it is worth spending time and resources on correcting the field. Smaller values of the
local score indicate that the field does not contain an influential error.

In general, an “anticipated” value is modelled as a function of auxiliary variables. For
instance, the “anticipated” value of some variables may be modelled as the dependent
variable in a regression model with auxiliary variables. Auxiliary variables should be free
from gross errors, otherwise the corresponding “anticipated” values can be far from the
true values (or the values that would have been obtained after interactive editing) and
become useless as reference values. Auxiliary variables and estimates of model
parameters can sometimes be obtained from the current survey, but are more often
obtained from other sources such as a previous, already edited version of the survey or
administrative sources.

4.3.  Global Scores

A global score is a function that combines the local scores to form a measure for the whole
record. Such a global score is needed to decide whether or not a record should be selected
for interactive editing.

The global score should reflect the importance of editing the complete record. In order
to combine scores, it is important that the local scores are measured on comparable
scales. It is common, therefore, to scale local scores before combining them into a global
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score. One method for scaling local scores is by dividing by the (approximated) total of the
corresponding variable. Another method is to divide the scores by the standard deviation
of the “anticipated” values (see Lawrence and McKenzie 2000). This last approach has the
advantage that deviations from “anticipated” values in variables with large natural
variability will lead to less high scores and are therefore less likely to be designated as
suspect values than deviations in variables with less variability.

Scaled local scores can be combined to form a global score in several different ways.
Often, the global score is defined as the sum of the local scores (see e.g., Latouche and
Berthelot 1992). As a result, records with many deviating values will get high scores. An
alternative is to take the maximum of the local scores (see e.g., Lawrence and McKenzie
2000). The advantage of taking the maximum is that it guarantees that a large value on any
one of the contributing local scores will lead to a large global score and hence interactive
editing of the record. The drawback of this strategy is that it cannot discriminate between
records with a single large local score and records with numerous equally large local
scores. Compromises between these two options have been proposed by Farwell (2005) and
Hedlin (2008). In fact, the compromise proposed by Hedlin (2008) encompasses taking
the sum and taking the maximum as two extreme options. One can also multiply local
scores by weights, not to be confused with the design weights in (1), expressing that some
variables are considered more important than others (see Latouche and Berthelot 1992).

4.4. Setting Threshold Values

When one wants to apply input editing, a threshold or cut-off value has to be determined in
advance so that records with global scores above the threshold are designated as not
plausible. These records are assigned to the critical stream and are edited interactively,
whereas the other records with less important errors are assigned to the noncritical stream.

The most frequently used method for determining a threshold value is to carry out a
simulation study to examine the effect of a range of potential threshold values on the bias
in the principal output parameters. In an ideal situation, such a simulation study would be
based on a raw unedited data set and a version of the same data set in which all records
have been extensively edited interactively so that all true values have been recovered.
These data must be comparable with the data to which the threshold values are applied.
Often, data from a previous period of the same survey are used for this purpose. The
simulation study now proceeds according to the following steps:

e Calculate the global scores according to the chosen selective editing method for the
records in the raw version of the data set.

e Simulate that only the first p% of the records is designated for interactive editing.
This is done by replacing the values of the p% of the records with the highest global
scores in the raw data by the values in the edited data.

e Calculate the target parameters using both the p%-edited data set and the true values.

These steps are repeated for a range of values of p. The effect of editing p% of the records
can be measured by the differences between the estimates of the target parameters based
on the p%-edited data set and the true values. The costs (resources, timeliness, etc.) are
usually estimated by assuming fixed amounts of resources and time per record to be edited.
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Such fixed amounts of resources and time can be based on previous experiences with
editing these kinds of data. Sometimes different costs are used for different classes of
records. The threshold value corresponding to the value of p with the “best” trade-off
between costs and data quality is then chosen. What is considered the best value of p is a
policy decision to be made by the NSI.

The ideal situation of having a fully interactively edited version of the data set in which
all true values have been recovered is, however, very unlikely to arise in practice.
Generally, only a subset of the records will have been edited interactively, and not even for
those records will all true values be recovered. In such a case, one can only check as well
as possible (and hope!) that the edited data set is a good proxy for the true values.

4.5. Other Approaches

Although a score function approach, in one form or another, is thus far the most popular way
to implement selective editing, it is by no means the only way to implement a selective
editing approach. Other ways of selecting and prioritising records for manual review have
been developed and implemented, such as an edit-related approach that measures the extent
to which a record fails edit rules (see Hedlin 2003). For other approaches see Arbués et al. in
this issue and Chapter 6 of De Waal et al. (2011).

5. The Current Issue of the Journal of Official Statistics

In this issue of the Journal of Official Statistics, we are witnessing the formalisation of
selective editing. Whereas until now NSIs relied on rather ad hoc methods for selective
editing, such as those described in the previous section, in this issue theoretical
frameworks for selective editing are being developed.

As seen in the three articles different kinds of frameworks are being developed. The
article by Di Zio and Guarnera is most closely related to the traditional score function
approach and is important because it offers a statistical framework from which the local
score function can be derived.

Di Zio and Guarnera base their approach on a so-called contamination model. In this
contamination model, they posit a model for the true data and a separate model for the
error mechanism. In their application, Di Zio and Guarnera assume a multivariate normal
model for the true data and an error mechanism where only a proportion of the data is
contaminated with an additive error, which in their study is also assumed to be normally
distributed. Such an error mechanism, where only part of the observed units is affected by
errors, is typical for economic surveys at NSIs.

The statistical framework for selective editing developed by Di Zio and Guarnera
automatically generates a local score function: the combined use of a model for the true
data and a model for the error mechanism allows the derivation of a score function that can
be interpreted as an estimate for the error affecting the observed data. This in turn allows
the use of the score function to select a set of units for manual review so that the expected
remaining error in the data is below a user-specified threshold.

For economic surveys, a lognormal model for both the true data and the errors is often
more realistic than a normal model. Di Zio and Guarnera therefore extend their approach
to deal with lognormally distributed data and errors. The approach by Di Zio and Guarnera
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can, in principle, be developed further by assuming different distributions for the true data
or the errors. Their approach allows them to use auxiliary variables unaffected by errors.
Finally, they extend their model so it can deal with missing values in the data. The use of
auxiliary variables and the ability to deal with missing values make the approach more
applicable for practical situations.

The approach can be used when only data from the current data set to be edited are
available. In this case the editing approach should be considered as output editing, since a
substantial part of the data from the current survey are then needed to estimate the model
parameters. One can also estimate the model parameters using data from a previous period
of the survey. In that case the approach can be used as an input editing approach.

The article by Arbués et al. has an even more ambitious goal. Their aim is not just to
select and prioritise records, but to do this in an optimal way. In a sense, this could even be
seen as a change of paradigm. In past implementations of selective editing approaches,
NSIs were not overly worried about possibly selecting too many records. The focus lay on
prioritising the records to be edited, and then the staff actually doing the editing were
relied on not to edit too many records. This approach hence relied on the expert judgement
of the staff involved. In the approach by Arbués et al., such expert judgement is no longer
required. The approach automatically identifies which records are to be edited and the
order in which they are to be edited.

Arbués et al. aim to minimise the number of records for manual review. To this end they
develop a generic optimisation problem. Depending on the availability or non-availability
of all observed data for the current survey, this generic optimisation problem gives rise to
two different versions. If not all observed data of the current survey are available, they
derive a stochastic optimisation problem. In this case, the approach may be classified as
input editing. If all observed data of the current survey are available, they derive a
combinatorial optimisation problem. In this case, the approach may be classified as output
editing.

Similarly to Di Zio and Guarnera, Arbués et al. use models for the true data and the
errors. Arbués et al. combine these models in a so-called observation-prediction model,
that is, a multivariate statistical model for the true data and the measurement errors. By
setting user-specified bounds on loss functions, such as the modelled mean squared error
or bias of the survey estimators, the developed approach allows Arbués et al. to find the
optimal set of units for manual review. As usual, the costs are measured by assuming a
fixed amount per record to be edited. The approach can, in principle, be developed further
to differential costs for different (classes of ) records.

By extending their approach Arbués et al. not only succeed in selecting units for manual
review, but also in prioritising these units. This is especially useful when time or resources
run out before all units in the optimal set are edited, or conversely, when one decides not to
limit oneself to only the optimal set of units after all and interactive editing simply
continues until either time or resources run out. In a sense, when the approach of Arbués
et al. is used to prioritise units, it leads to a kind of score function again, albeit an implicit
score function with complicated coefficients.

As Arbués et al. point out, their approach is reminiscent of the Fellegi-Holt approach
used in automatic editing. In both approaches an optimisation model is developed. In the
Fellegi-Holt approach, the aim is to minimise the number of fields to change in a certain
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record so that it will satisfy all edits. In the approach by Arbués et al., the aim is to
minimise the number of records to be edited manually so that certain loss functions, such
as the modelled mean squared error, are below upper bounds.

The approach by Arbués et al. leads to an optimal selection of records to edit manually,
which is obviously very desirable for an NSI. However, everything comes at a price. In this
case, the price to be paid seems to be the higher complexity. The approach by Arbués et al.
may be more sensitive to misspecification of the model(s) than a traditional score function
approach, even advanced forms as those by Di Zio and Guarnera. A misspecified model
will lead to the wrong records being selected for manual editing. This is not a major
problem if one edits more records than just the optimal set. It may be a problem when one
limits the manual editing strictly to the optimal set.

Another practical problem of the increased complexity of the optimisation approach is
that it may be harder to understand for staff applying it in practice than a traditional score
function.

A completely different kind of framework is offered by Pannekoek et al. Whereas the
frameworks offered by Di Zio and Guarnera and Arbués et al. are both statistical in nature,
the framework offered by Pannekoek et al. is focused on processes.

Pannekoek et al. take the point of view that as many records as possible should be edited
automatically. Only data that are influential and cannot be treated automatically without
jeopardising data quality should be edited manually. They point out that it is useful to
distinguish between systematic errors and nonsystematic (random) errors, as some kinds
of generic systematic errors, such as unit measure errors, simple typing errors and sign
errors, can often be corrected quite easily in an automatic manner.

Pannekoek et al. break down the statistical data editing process into a taxonomy of
subprocesses, which they refer to as statistical or data editing functions, and discuss
automatic editing in terms of these statistical functions. Examples of such statistical
functions are verification functions that verify edit rules or compute quality indicators and
selection functions that select a record or field for further treatment. Not all of these
statistical functions can be carried out automatically while guaranteeing sufficient data
quality. For those that cannot, human interaction remains necessary. Selective editing is a
necessary step to identify the records or fields for which manual editing is required. The
taxonomy allows NSIs to decide which statistical functions can be handled automatically
and for which statistical functions manual review is needed.

Such a breakdown of the statistical data editing process into statistical functions also
facilitates the development of reusable software components for the statistical data editing
process, which leads to lower development and maintenance costs. It identifies for which
statistical functions one should, or at least could, develop reusable software modules.
Finally, the breakdown also enables the identification of which of these modules should be
able to communicate with one other by passing data and metadata, in the form of input and
output parameters. This allows one to easily connect the modules, and thus quickly build
an entire editing system in a “plug & play” manner for a certain survey.

The ideas presented in the article by Pannekoek, et al. are closely related to using an
architectural framework, which in turn is an instrument for achieving a higher degree of
standardisation with respect to methods, processes and software tools (see e.g., Struijs
et al. 2013).



De Waal: A Quest for Efficiency and Data Quality 485

6. Future Directions of Selective Editing Research

With the introduction of the frameworks for selective editing in this issue of the Journal of
Official Statistics an important step forward has been taken. However, this does not mean
that research on selective editing should be considered complete. So what are the main
research topics in selective editing for the near future?

In my opinion, the most important research question for the near future is: how do we
apply the developed frameworks for statistical editing in practice? Important practical
questions here are:

e Are staff able to apply the frameworks correctly in practice?

e Do they trust the results of the frameworks or do they tend to overrule the results of
the selective editing frameworks with the results of their own analyses?

o If staff are not able to apply the frameworks correctly, how can we support them?
Should we modify the frameworks so they become easier to apply, or should we
provide more training?

o If staff overrule the results of the selective editing frameworks with the results of their
own analyses, does this mean we should improve the frameworks, or does this mean
we should pay more attention to convincing staff to trust the results of these
frameworks?

Another practical aspect is how to estimate the model parameters of the approaches by Di
Zio and Guarnera and, especially, Arbués et al., described in this issue. The optimal
situation would be to use a double data set with raw values and true values, or good
approximations of the true values such as values edited according to a “gold standard”, to
estimate these model parameters. However, (a good approximation of) such an optimal
situation usually only exists when one starts using selective editing for the first time for a
certain survey. After that one usually only has data edited by means of a selective editing
approach from a previous period and raw data from the current period. The approach by
Di Zio and Guarnera is able to use only data from the current period. The approach by
Arbués et al. may need to be extended.

Di Zio and Guarnera and Arbués et al. propose two different statistical frameworks for
selective editing. The framework by Arbués et al. is the more ambitious of the two. It
seems more complex to apply, but it potentially offers more benefits to the NSI. It is an
open question at the moment which of the two frameworks, if any, will eventually prevail
for a given survey.

The current frameworks, including the framework by Pannekoek et al., that is also
described in this issue, have all been designed with traditional survey data in mind. An
important research topic for the near future is the extension of the frameworks to
administrative data and Big Data. Groves (2011) distinguishes between “designed-data”,
that is, data that have been collected especially for statistical purposes by the NSI itself,
and “organic data”, that is, data — in most cases electronic data — that somehow grow by
themselves. Examples of organic data given by Groves (2011) are Twitter that generates
tweets continuously, traffic cameras counting cars and scanners collecting information on
purchases. Survey data are designed-data, Big Data are generally organic data, and
administrative data are usually somewhere in between.
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Developing selective editing and other editing techniques for organic data is much
harder than for designed-data. The population (if any), concepts (if any), definitions of
variables (if any) underlying organic data are generally unknown to the NSI, whereas they
are known for designed-data. For organic data it is much more difficult to know what can
be anticipated than for designed-data. A score function with “anticipated” values for
organic data is therefore much harder to construct.

With respect to the roles of automatic editing and selective editing, there are two
competing points of view.

(1) According to one point of view, automatic editing should be the most important way
of editing used for the vast majority of records. Only for those records for which
automatic editing cannot provide an acceptable solution, one should resort to
interactive editing. Pannekoek et al. in this issue seem to adhere to this point of view.
When taking this point of view to the extreme, there is no selection of records for
interactive editing at all, except in exceptional cases.

(2) The other point of view is that selective editing is the most important part of the
editing process. Once the records selected for manual review have been edited
interactively, it does not really matter if (and how) the other records are edited.
Granquist (1995, 1997) seems to adhere to this point of view. When taking this point
of view to the extreme, automatic editing is only used for “cosmetic” purposes,
namely just to ensure that edits are satisfied.

Only time can tell which of these point of views will become the dominant one. In practice
the truth is likely to lie in the middle, and the “best” process will probably involve a bit of
selective editing and a bit of automatic editing.

The final research topic I want to mention is a research topic for statistical editing in
general. This topic has been mentioned since the 1960s. In those days, people already
recognised that detecting and correcting errors is not the most important aspect of editing.
For instance, Pritzker et al. (1965) observe that a more useful aspect of statistical data
editing is, or in any case should be, to identify error sources or problem areas of the survey.
As Granquist and Kovar (1997. p.430) say about statistical data editing: “its more
productive role lies in its ability to provide information about the quality of the collected
data and thus form the basis for future improvement of the whole survey process”.

According to Granquist (1984), statistical data editing has the following three goals:

e Identify and collect data on problem areas, and error causes in data collection and
processing, producing the basics for the (future) improvement of the survey vehicle.

e Provide information on the quality of the data.

e Identify and handle concrete important errors and outliers in individual data.

In order to achieve these goals, the focus of statistical data editing should be shifted from
detecting and correcting errors to obtaining more knowledge of the sources of errors
arising in the data. This information can subsequently be used to further improve future
versions of the survey. As noted by Granquist (1997, p.385): “Editing should be
considered a part of the total quality improvement process, not the whole quality process”.
Editing should be a coherent step in the chain of processes from data collection up to
estimation and dissemination of the final results.
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Much work has been done over the past decades on statistical data editing in general and
selective editing in particular. Despite all the hard and clever work done, the more general,
and likely more productive, goals of statistical data editing mentioned by Granquist (1984)
have thus far proven very difficult to achieve in practice.
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An Optimization Approach to Selective Editing

Ignacio Arbués', Pedro Revilla', and David Salgadol

We set out two generic principles for selective editing, namely the minimization of interactive
editing resources and data quality assurance. These principles are translated into a generic
optimization problem with two versions. On the one hand, if no cross-sectional information is
used in the selection of units, we derive a stochastic optimization problem. On the other hand,
if that information is used, we arrive at a combinatorial optimization problem. These problems
are substantiated by constructing a so-called observation-prediction model, that is, a
multivariate statistical model for the nonsampling measurement errors assisted by an auxiliary
model to make predictions. The restrictions of these problems basically set upper bounds upon
the modelled measurement errors entering the survey estimators. The bounds are chosen by
subject-matter knowledge. Furthermore, we propose a selection efficiency measure to assess
any selective editing technique and make a comparison between this approach and some score
functions. Special attention is paid to the relationship of this approach with the editing
fieldwork conditions, arising issues such as the selection versus the prioritization of units and
the connection between the selective and macro editing techniques. This approach neatly
links the selection and prioritization of sampling units for editing (micro approach) with
considerations upon the survey estimators themselves (macro approach).

Key words: Selective editing; optimization; observation-prediction model; selection
efficiency measure.

1. Introduction

Data editing is a crucial step in the survey statistics production process. It impinges on
several dimensions of survey quality such as accuracy, timeliness, response burden or cost
effectiveness. This production phase comprises both the detection and treatment of
nonsampling errors, mainly of nonresponse and measurement errors. Over time, a
typology of errors has been developed, identifying systematic errors, random errors,
influential errors, outliers, inliers or missing values, not to mention particular errors within
these classes as measurement unit errors or rounding errors. This diversity has given rise to
different techniques and algorithms to detect and treat them, such as interactive editing,
automatic editing, selective editing, macro editing, and so on (see De Waal et al. 2011 for a
comprehensive overview). Nowadays it is widely accepted that no single technique can
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deal with all kinds of errors. Thus they must be conveniently combined in so-called editing
and imputation (E&I henceforth) strategies, specifically designed and fine-tuned for a
given survey.

Selective editing focuses upon influential errors so that a selection of influential units is
performed to thoroughly treat their errors (mostly with interactive editing), underlining the
importance of recognizing and analyzing their source in order to prevent them when the
survey is conducted on future occasions (Granquist 1997). In the last two decades, this
editing modality has been recognized as a key element in E&I strategies. However, its
principles are heuristics. By and large, selective editing comprises four stages (Lawrence
and McKenzie 2000), namely (i) the construction of anticipated values y; for each sample
unit k according to an editing model; (ii) the construction of local score functions; (iii) the
construction of a global score function; and (iv) the choice of cut-off values below which
no further unit is selected. In general terms, the rationale is that those questionnaires k
with a large discrepancy between the anticipated values y; and the reported values y; will
be selected.

As a first general remark, our proposal can be succinctly described using the recent
taxonomy of data editing functions by Pannekoek et al. (in this issue). They identify six
types of editing tasks, called editing functions, according to the accomplishment of either
error detection only (as data quality verification or field/record selection) or also including
error treatment. These six editing functions are (i) rule checking, (ii) compute scores, (iii)
field selection, (iv) record selection, (v) amend observations, and (vi) amend unit
properties (see Pannekoek et al. in this issue for details). In this context, our proposal is to
be understood as a record selection editing function.

We set out two general principles to approach selective editing (Arbués et al. 2012b). In
keeping with Latouche and Berthelot (1992), who stated that “in the development of an
effective recontact and follow-up strategy, we have to minimize the amount of resources
used without affecting the overall data quality and timeliness of the survey”, we claim that

i) editing must minimize the amount of resources deployed to recontacts, follow-ups
and interactive tasks, in general,
ii) data quality must be ensured.

This framework is ample enough to give room to the preceding score function approach,
but its rigorous derivation seems difficult to us. In this article we propose a mathematical
translation of these principles into a general optimization problem, whose solution is the
selection of units. In our formulation, interactive editing resources are tantamount to the
number of selected questionnaires, whereas data quality is reduced to the accuracy of
estimators. Thus a general optimization approach is to minimize the number of selected
units, subjected to bounds on loss functions defined for a chosen number of variables of
interest. These loss functions may be targeted at the bias, mean squared error (MSE),
variance or other measures of the estimation uncertainty. They may be heuristic in nature,
such as the so-called pseudo-bias related measures traditionally used for score functions,
or they may be explicitly derived under some measurement-error models that are suitable
for the data. One example is the contamination model (Di Zio and Guarnera in this issue),
which is specified in terms of the full distribution of the true data and the conditional
distribution of the observations given the true data.
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Two versions of the optimization problem are provided, corresponding to the two
typical scenarios for the implementation of selective editing. In the first case, selection is
carried out unit by unit, in such a way that whether a given unit is selected or not does not
depend on the selection of the other units. This mode of execution is suitable for input
editing, where in principle the selection can be made in real time on arrival of each
questionnaire. We refer to this as the stochastic optimization problem, because the real-
time performance of the solution can only be established with respect to hypothetical
repetitions of the selection process. In the second case, selection is carried out jointly for
all (or a group of) units. This mode of execution is suitable for output (or macro) editing,
which takes place at a later stage of the data collection after a sufficient number of
observations have become available. We refer to this as the combinatorial optimization
problem, where the performance of the solution can be established conditional on the
actual sample observations under some specified measurement-error model.

Selection of units does not produce an order of priority by which the units are sorted
according to their respective “urgency” to be edited. But prioritization of units is helpful
for coping with the contingency of editing fieldwork. It is intrinsically related to selection
since it should be possible in some sense to regard the highest prioritized unit as the
optimal selection of a single unit, the second highest prioritized unit as the optimal
selection of a single unit given that the highest prioritized unit has been selected, and so on.
The combinatorial optimization problem can be adapted to yield prioritization. Not only is
this a useful variation for practice, but sometimes it is theoretically necessary for obtaining
a unique optimization solution, as we shall explain.

To perform a comparison with any other selective editing technique, we propose a
selection efficiency measure. The rationale of this measure is to choose as an input the
number of units to select and to compare our selection with an averaged random
selection of this number of units. The comparison is based on the reduction of the
absolute relative pseudo-bias of the survey estimators. In our view, the sooner the
influential units are selected (hence the faster the reduction of the absolute relative
pseudo-bias), the more efficient the technique will be. We perform a comparison with
some score functions in the literature (Latouche and Berthelot 1992) using real data
from the Spanish Industrial Turnover Index (ITI) and Industrial New Orders Received
Index (INORI) survey.

The article is organized as follows. In section 2 we formulate the generic optimization
problem as a mathematical translation of the above two principles. After fixing the
notation and setting out the problem in general terms in Subsection 2.1, we show how the
choice of the actual information used in this problem drives us either to a stochastic
optimization version (Subsection 2.2) or to a combinatorial optimization version
(Subsection 2.3). In Section 3 we show the general principles of the construct of any
observation-prediction model, as well as a general proposal for continuous variables. In
Section 4 we deal with the editing fieldwork and show how to choose the bounds and how
to go from the selection to the prioritization of units under the combinatorial optimization
approach. In Section 5 a selection efficiency measure is proposed and a comparison with
several score functions is carried out using real data from the Spanish ITI and INORI
survey. Finally we include an ample discussion in Section 6 in an attempt to assess this
proposal in the current framework of selective editing with score functions.
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2. The Optimization Problem

Before identifying the variables, the objective function and the restrictions of our
optimization problem, we need to introduce the following notation. The sampling design
according to which a probability sample s is selected will be denoted by p(-). The sample
size will be denoted by n and the corresponding sampling weights by wy,. The sample
dependence of the sampling weights implicitly assumes that they do not need to be the
design weights. For example, in a ratio estimator of the form ¥"# = X. };—Z, where x is a
known auxiliary variable from the sampling frame, X = ", x; is a known population
total, and Y7 =3, 2 (analogously for XHTy stands for the Horvitz-Thompson
estimator of the population total ¥ =", -, y, the sampling weights are given by
X 1

Wks = Tt s where 77 is the first-order inclusion probability for unit k. More complex
situations are embedded under this notation. The true, observed and edited values of a
variable y”, g =1, .. ., Q (for ease of notation we drop the superscript (¢) hereafter
except when strictly necessary), for unit k will be denoted, respectively, by y?, y, and y,f.
We assign a binary variable r, € {0, 1} to each unit k to indicate whether it is selected
(re = 0) ornot (1, = 1). The vectorr = (ry, . . ., r,)" for the whole sample will be referred
to as the selection strategy. The counterintuitive assignment allows us to relate the
preceding three values by the equation y,(r) = (1 — rk)~y2 + r1-yk, where we have made
explicit the dependence of the edited values upon the selection strategy. Note that we are
implicitly assuming that the editing work drives us from the observed to the true values.
If we denote the corresponding measurement error by €; = y; — yg, then we can write
yi(r) = yg + riye. Note that these edited values are in fact those to be plugged into the
survey estimators at this point of the E&I strategy. That is, if we are to estimate the
population domain total Y, = ", U, yg (for ease of notation we will drop the subscript
U, hereafter), then we denote the corresponding chosen estimator by
Vi(r) = Zkad wkSyZ (r). However, note that this estimator will not be the final estimator
after the whole E&I strategy has been executed. Some later procedures such as weight
adjustment or outlier treatment may follow. The selection of units proposed herein divides
the sample into a critical and a noncritical stream, the treatments of which are decided
by the statistician. We will restrict ourselves to population totals and linear estimators.
All auxiliary covariates not included in the questionnaire for unit k£ will be denoted by x;.

So far the preceding variables are numeric. To use statistical modelling techniques, we
promote these numeric variables to random variables according to a model m in a
probability space (€2, F, P). As usual, this promotion will not be specifically indicated in
the notation, except for the selection strategy, so that R will denote the random selection
strategy, and R(w) = r, with w € (), will be a particular numeric realization called the
selection. A predicted value of variable y; according to the chosen model m will be
denoted by ;. Note that the statistical model m embraces all promoted random variables
different from the probability sample s itself. When random variables are used in survey
estimators, we write indistinctly Y0 = > kes, Wiy, V= > kes, Wksyr and Y*(R) =
Zka{l wkSy;(R) for the survey estimators targeted at Y. We will denote by Z the set of
random variables actually used by the statistician to select the units in the E&I strategy.

In particular, we will consider two options, namely, either Z = 7/ = gorZlong =
{s, X} for the stochastic problem (see below for the difference) or Z = Z°% = {5, X,Y}
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for the combinatorial version. When this cross-sectional information is restricted to unit %,
we shall write accordingly Z{** = {s,x,yx}. The use of information is represented as
conditioning upon the corresponding random variables. The auxiliary covariates X are
chosen by the statistician according to the chosen statistical model to be used in the
problem (see below). They play a similar role to the auxiliary variables in the sampling
design or the known auxiliary variables in the weight calibrating process. Indeed, they may
coincide partially or totally with these auxiliary variables used in other parts of the
estimation process.

2.1.  The General Optimization Problem

As stated in the introduction, we want to minimize the number of questionnaires to edit
provided that the chosen loss functions of the survey estimators v targeted at the
population total Y are bounded. To formally set up the optimization problem we need
(i) the variables, (ii) the function to optimize, and (iii) the restrictions. Apart from
identifying these elements, it is important to show how the available information enters
into the formulation of the problem.

The ultimate variables are the selection strategy r” = (r;, . . ., r,) for the sample units
s={1,...,n}, where r, = 0 if the unit k is selected and r, = 1 otherwise. However,
since the measurement error €; = y; — yg is conceived to be random in nature conditional
on the realized sample s, and given the available information Z chosen to make the
selection of units, this selection can vary depending on the realized y, y° and Z. Thus let R
denote the stochastic selection strategy so that (i) R(w) =r is a realized selection and
(ii) E,,[R|Z] is the vector of probabilities of nonselection under the specific model m given
the chosen information Z. The objective function to optimize, given the information Z,
is then written as E,,[17R|Z], whose maximization amounts to minimizing the number of
selected units.

The constraints derive from the application of a loss function to the survey estimators.
Let us concentrate on the two loss functions most used in practice, namely the absolute
loss L =L"(a,b) = |a — b| or the squared loss L = L@(a,b) = (a — b)*>. Then it is
straightforward to prove (see appendix A rthat E,, [L(’)(f’*(R), Y)|Z] = n warrants
EpmlLO(Y*(R), Y)] < (nl/ "4 [Ell,{n’ [L(Y°,Y)] ) , where O() stands for the well-known
big O. In other words, each constraint controls the loss of accuracy in terms of the chosen
loss function L due to nonselected units, up to sampling design variability.

For these loss functions, each constraint can always be written as a bound on a quadratic
form, denoted by [E,[RTAR|Z] (see Appendix A). Particular forms suitable for the
stochastic and combinatorial problems will be explained in Subsection 2.2 and 2.3. The
n X n matrix A specifies the potential losses at the unit level. Measures of bias and/or MSE
seem natural in practice and they stem from the choice of the absolute or the squared loss
function respectively. These measures can be heuristic in nature, such as the pseudo-bias
for traditional score functions, or explicitly derived under some appropriate measurement-
error model. In particular, non-zero off-diagonal terms of A allow for cross-unit terms to
be included in the “overall” loss.

The choice of the matrix A is naturally linked to the choice of the loss function L, hence
the term loss matrix (see Appendix A for details). Thus, if A is diagonal with entries
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|wis€l, then we are choosing the absolute loss so that E,,[L(Y*(R), ¥°)|Z] is also bounded
by m (up to sampling design factors). This is targeted at the bias. Similarly, if
Ay = wiswis€r €, then we are choosing the squared loss so that [Em[(L(f/*(R), lA/O)IZ] is also
equally bounded. In turn, this is targeted at the mean squared error. In both cases, model-
based techniques using data from the current time period can be applied in the
combinatorial version, whereas in the stochastic version we are obliged to resort to
auxiliary information from other periods.

For instance, the (local) score for a given y-variable is usually conceived as the product
of a “risk” component and an “influence” component. A generic measure can be given
using a model-based approach. Let p; = P(yg # yklyk), that is, the posterior probability
that the true value is different from the observed one. Let g = [E,, (yg i, y? # yk), that is,
the conditional expectation of the true value given that it is different from the observed
one. Then, we have

En(yPlyve) = (1 = pye + pete and 8 = yi — En (Velvi) = puloie — )

It follows that w0, can be used to construct the local score of unit k with respect to y,
which is the product of “risk” measured by p, and “influence” measured by wy(yx — fix),
where wy can be the sample weight, for example. Di Zio and Guarnera (in this issue) derive
such a measure under the contamination model, which is suitable for the combinatorial
problem. For the stochastic problem, where scoring does not use observations other than
the unit at hand, f; cannot be evaluated for the current sample data and instead
information from preceding realizations of this survey or similar surveys must be used. It
is customary to replace it with some reference value, such as y, from a previous time point,
giving rise to a pseudo-bias. Nor can the “risk” component be assessed properly, and some
heuristics measure might be used, such as in the SELEKT approach of Statistics Sweden
(see for example Lindgren 2011). The auxiliary information, which we exploit in the
observation-prediction model (see Section 3), is fundamental.

The main difference between both versions arises when considering their actual
application. The stochastic problem, supplemented by the assumption that ignores the
cross-unit terms, allows the construction of score functions to be applied independently to
each unit. The supplementary assumption amounts to considering these cross-terms more
or less constant over time, hence playing no significative role in the selection. Conversely,
the combinatorial problem needs a sufficient number of observations available to carry out
the selection jointly for all units.

Taking into account the possibility of multiple constraints, we now arrive at the
following general optimization problem:

[Po] max E,[17R|Z]
st. ERTAYR|ZI=7n,, ¢=12,...,0,
R € Q

where )y denotes the admissible outcome space of R, and ¢ refers to the different
constraints. Manipulation of () creates extra flexibility for adoption. For instance, the
problem can be recast for selection conditional on the units that have already been
selected, by restricting () such that certain R; s are fixed at 0. The different constraints
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may arise from the fact that there are multiple y-variables of interest, or the constraints
may be directed at the different population domains even when there is only a single
y-variable. In particular, the loss matrices A", . . ., AY may all be derived under a single
multivariate model for the joint data, even when the bounds are marginally specified for
each target quantity on its own.

Variations of the optimization problem stated above are possible, by either adopting a
different function for optimization and/or different forms of constraints. For instance,
maximization may be changed to minimization as long as suitable alterations of the
selection variables and the loss functions are provided. Alternatively, one may for example
use w8 in A but state the constraint as E,,[[RTAR| |Z] = 1. We do not explicitly consider
such variations of the problem in this article, but note that (i) it is possible to adapt the
solutions presented below, should such variations be desirable in practice, and (ii) the
expounded optimization approach can be carried out in the same spirit.

2.2.  The Stochastic Optimization Problem

As stated above, the main assumption in this version of problem P, is neglecting
the cross-unit terms in each constraint. Then these constraints can be
rewritten as [E,,[RTAR|Z] = E,[R”7diag(A)|Z]. Furthermore, the distinction between
Z'"¢ = sand Z'*"¢ = {s5,X} is a matter of choice. In the former case, the restrictions are
required to be fulfilled only on average for all realizations of the survey, whereas in the
latter case they are imposed on the current realization, given the realizations of preceding
time periods. The deduced stochastic optimization problem is solved in Arbués et al. (2012a)
by using the duality principle, the sample average approximation and the interchangeability
principle. The solution resulting from this linear problem is given in terms of matrices
M@ =[E,[A9|Z°]. This dependence on Z“”* may seem misleading, but only
momentarily. Since this selection scheme is to be applied unit by unit upon receipt of each
questionnaire, and no cross-sectional information except that regarding each unit k
separately will be actually used, the formal conditioning upon Z°* reduces
effectively to conditioning upon the information Z{** = {s,X,y,} of each unit. Thus

we write M(q) = [Em [Alzcros_V] = dlag ([Em [Al(gc) |Zimss:| ) = dlag (M;g()) . On the other hand,

in order to obtain the optimal Lagrange multipliers /\Z involved in the dual problem, a historic
double-data set with raw and edited values is necessary. Putting it all together we arrive
at the final solution, which only requires the diagonal entries of the matrices M :

Lt > M =1,
Ry = (D
0 if 7 MY > 1.

Note that since the scheme is “trained” on the historic data, the evaluation of M,(:,]() given
the observations in the current sample necessarily yields a pseudo-measure, regardless of
the definition of the loss matrices.

This provides a score function for unit-by-unit selection. In the special case of O = 1,
unit & is selected provided My, > 1/A*, so that My, can be regarded as a single score and
1/A* as the threshold value. Equivalently, one may consider A*M, as a ‘“standardized”
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score, in the sense that the threshold value is generically set to 1. The latter extends in a
straightforward manner to the setting with multiple constraints, where each )\ZM,(j{) is a
standardized local score, and Z‘?ZIA:M}:,]() is the standardized global score, with the
generic global threshold value 1.

The global scoring derives from the linear structure of the dual problem and few
variations are allowed without a substantial modification of problem P,. As an exception,
if a global score is initially envisaged as the weighted sum of local scores, then one may
incorporate each weight into the constraint that generates the corresponding standardized
local score to begin with.

The stochastic problem thus clarifies the fact that the performance of unit-by-unit
selection can only be established over hypothetical repetitions of the selection process. At
the end of each selection process, we have the realized selection strategy r, and the
realized loss > _, rkngc), which can either be higher or lower than the specified bound 7,,
forg=1, .. .,0. Upon any hypothetical repetition of the selection process, however, y;
and y2 will vary, and so will the corresponding M,((’,’() and ry. It is over such hypothetical
repetitions that the constraint [Em[RA(q)RIZ] = 7, can possibly be satisfied, but not for
each particular realization of the selection process.

2.3.  The Combinatorial Optimization Problem

The combinatorial problem deals with the selection among all (or a group of) units. Cross-
unit terms are now allowed and the information actually used is that given by the sample s,
the auxiliary covariates X and the variables of interest Y, that is by Z = Z“*. Notice
that all this information is available only after all questionnaires have been collected, thus
it is only applicable as a form of output editing. It is easily proved that each constraint
reduces to F,,[RTAYR|Z5] = rTM@r, where M@ = E,,[A“|Z5], which can now
be possibly evaluated under some measurement-error model. Consequently, it becomes
possible to establish the performance of the realized selection strategy directly. The
optimization problem can be rephrased as

[Peo(M, 1,Q0)] max1’r
st. T'™™MPr=n,, ¢g=1,2,...,0,
r e Q()

Note that a more direct derivation can be obtained by not promoting the selection
strategy vector r to a random vector R when modelling the measurement errors.

This combinatorial problem is solved in two different forms using two greedy
algorithms, which run in n*-Q and n3.Q times, respectively. The solution of both
algorithms is not exact a priori but suboptimal with a good degree of approximation. The
faster algorithm is noticeably less precise than the slower one. This lack of precision
entails a small amount of overediting in practice, that is, more units than those optimally
obtained will be selected. The fourth and third power dependence on n may appear
discouraging for practical applications. However, firstly, the input size P in problem P is
actually P = O(n 2), thus the algorithms run in O(P 2) and O(P 3 2), which are acceptable
speeds for combinatorial problems. Secondly, in practice the problem is intended to be
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applied not to entire samples but to their breakdowns into publication cells, which are the
figures upon which precision is called for (see Section 6). These heuristic algorithms
locally search the optimum in each iteration until the current solution satisfies all the
restrictions. To do this we introduce infeasibility functions £,(r) for each algorithm i = 1,
2 (see Salgado et al. 2012 for details) indicating whether a solution satisfies all the
restrictions ((r) = 0) or not (h(r) > 0). Both algorithms start from the initial solution
r = 1 and in each iteration select the next unit in a locally optimal way until all restrictions
are satisfied. The infeasibility functions will also be used later when constructing the
prioritization of units.

Finally, we can regard both versions as related to two different approaches to the
problem of optimization under uncertainty (see e.g., Wets 2002). The combinatorial
version is consistent with the wait-and-see approach, since it puts off all decisions until all
the information is available. The stochastic version is, at least partially, a here-and-now
approach, since the decision about the procedure or rule of selection (although not the
selection itself) is made before the data collection.

3. The Observation-Prediction Model

To substantiate the constraints in both versions of the optimization problem, we need to
compute the loss matrices M@ = [Em[A(‘f)IZC”’S‘V] and to choose the bounds 7,. We now
show how to undertake the former whereas the latter is dealt with in the next section.
To compute the loss matrices we make use of the standard model-based techniques, but
not in a conventional way. Let us digress very briefly. When facing the editing tasks and, in
particular, the selection of units, one resorts to the very best auxiliary information
available at that precise moment. With full generality, this will comprise (i) the reported
values of the variables of analysis y,(f) for the present (t = T) and preceding (¢t < T) time
periods, (ii) the true values of these variables y(O’ D for those edited units in the pastt < T,
(iii) and the values of auxiliary covariates x,(f) for all time periods. In the notation of
preceding sections, we have y; = yE{T), y) = y,(:)"T) and x; = y,({"),ylio’”),x,im, with r; < T
and , = T. Note that some of these values can be coincidentally equal (e.g., when the
measurement error is null) and that y{ is only known after accomplishing the editing work.
But this is not everything. We also know (at least we can know) a point prediction y; for
each y-variable based on these auxiliary variables. For instance, we can make use of a time

series model { y,(co’t)} to make a point prediction f}f). Different choices arise depending
<T

on the amount and type of auxiliary information. These predictions will enter into the
selection problem as auxiliary covariates, so that x; = y,(c”),yio’l‘),ff,(f),x,(;”, with 1, < T
and t, = T.

Let us denote by m* the auxiliary model used to make the predictions ¥y, not to be
confused with the measurement error model m considered throughout this paper. This
measurement error model m is given as usual in terms of (i) the conditional distribution of
the predicted values y upon the true values y°, and (ii) the distribution of y° conditional on
the available auxiliary information X. To be specific, for a y-variable we will assume
e =)0+ € and y) =P + eimd. In other words, we are using the predicted value
computed according to the auxiliary model m* as an exogenous variable for the model
regarding y °. In this sense we refer to this proposal as an observation-prediction model.
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Generalizing these ideas, let us consider

i) an observation model I]:"Obsm(ylyo), that is, a conditional probability distribution for
the observed values y given the true values y;

ii) a prediction model |]3°0|p,ed(y0|§f), that is, a conditional probability distribution for the
true values y given the predicted values y° according to an auxiliary model m*.

Now let us denote by P4 the probability distribution of y conditional on the predicted
values § and by Py e the probability distribution of the true values y? conditional on
the observed values y°”* and the predicted values §. Then by Bayes’ theorem or a
generalization thereof, we can write

PobsIO X |]:DOIpred (2)

[P)Olobs pred — P
obs|pred

The product must be understood in a suitable generalized form when the distributions
are completely general. As usual, if the probability distributions are absolutely continuous
with density functions f.(-), Equation (2) can be easily recognized as

foble(nyoa f’)fo(yobA’)
IRQfobs|O(y|y0a f’)fo(y0|5’)dy0 .

fOIobs,pred(yO) =

The discrete case also boils down to applying Bayes’ theorem. Once we have the
distribution Poj,ps preq» the loss matrices can be computed as

M(q) = [E()Iobs,pred [A(q) |S7 Y7 ?] 3)

To illustrate this proposal, let us consider the following generic example with a
continuous variable y. Let us define the observation model y{* = y? + €* and the

prediction model y?** = §; + €r*, with the following specifications:

1. Ezbs — 6;;’”61(.

er = Be(py), where p, € (0, 1).

0

V% Pi Ok Vi

(O8]

pred bs) _

.| e ) =N|{0
( kT "\ prowvk 0%

€2l 5975 and e, are jointly independent of Z<™
r 2Ok k ] y P k-

L d
. e is independent of €}’ and &"".

oo

These are equivalent to stating that unit k£ has a probability 1 — p; of reporting a value
without measurement error (yk = yg) and, when reporting an erroneous value, the
measurement error distributes as a normal random variable with zero mean and variance
0'%. On the other hand, the prediction error distributes as a normal random variable with
zero mean and variance v7. Both errors distribute jointly as a bivariate normal random
variable with correlation p,. Reporting an erroneous value is independent of both types
of errors.
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For the time being let us assume that the parameters 6 = (pk, 0%, IJI%, pk)T are known.
Let us focus on the squared loss function. Then it is easy to prove (Arbués et al. 2012a) that

0% + prow i Yk — Yk Yk — Yk
[Em Y _yO |S7y7§) = Uk L ( ){( )7 4
[( k k) ks Yk k] k U%+V£+2pk0'k7/k ” k "

) o; + Prow i 2.
(T]% + Vzk + 2pk0'kvk

gttt (-2]ofe22)

E,. {(yk - yg)2|skayk75’k] =

En [(ve = ¥2) (5 = ) sk yies ] = B [ (0 = Y0) Uses s 3 ) B [ (00 = 39 s, yies S
k# 1,
where
L = 1

1+

1 — px Vlz —1/2 exp _1 0% ~+ 2p1 0% vk 2 .
Pk 0'%+V%+2pka'kvk 20',2(+V,%+2pk0'k1/k

Should we choose the absolute loss function, then, under the same hypotheses, we
would have (see Appendix A):

. 2 11 (=) Vi — Sk
- 0 = —_ . _— et — .
Enn [lyx = Yollse, i %] \/; 17 1F1< 75 27 i ) Q)

where | F(a; b; x) denotes the confluent hypergeometric function of the first kind.

The estimation of the parameters @ depends on the scenario. For the stochastic problem,
as before, we are obliged to use some reference values or heuristic measures. Once more
we resort to the auxiliary information. Our choice depends very much on the amount and
type of auxiliary information. From the historic double-data sets comprising 7 past time
periods (e.g., a fixed panel) we can compute

1 T
Dy = — 1o o0
T; ykl #«th’
A 1) —
= (E - Ek)
_ k )
T—1 p

. BN _\2 .
v% = p— 1; (eg) - ek) , where e(’) = y(’) (0 ’),
1 T
o= () — &) (e — &).
=1

In case of rotating panels or sampling designs with too short a continuity in the sample
for a number of units, we are forced to make simplifying assumptions such as partitioning
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the sample s = U’_s; and positing 6, = 0; if k € ;. We can also adopt these assumptions
for some of the parameters. The extreme case would 6; = @ = (p, o2, v2, p)! for all
k € s, which can be further supplemented with extra hypotheses such as p = 0.

On the other hand, for the combinatorial problem we do have (almost) the complete
current sample so that we can make use of these data, although with important limitations.
It is clear that it is impossible to estimate each 6, using only the current sample. We are
obliged to make some simplifying assumptions, as above. In practice, however, it is
advisable to use not only data from the current time period (# = T), but also from preceding
periods (# < T). The stationarity across time periods of the response mechanism supports
this course of action.

Alternatively, the contamination model by Di Zio and Guarnera (in this issue) is a
relevant example of a model-based technique which uses exclusively data from the current
period (except for the covariates for the model) to estimate the model parameters. The
usage of statistical models to make the selection of units allows us to cherish the hope of
extending this approach to qualitative and semicontinuous variables, thus paving the way
for the use of selective editing in household surveys.

4. Fieldwork: Selection and Prioritization of Units

The problem is not completely specified until we choose the bounds 7, to formulate the
optimization problem completely. The bound 1 on a given constraint E,[R'AR|Z] = 7
can be set either absolutely or relatively in terms of a chosen figure of merit or reference
value. This can be, for example, the a priori variance used in the sampling design phase so
that the constraint establishes a bound for the loss of accuracy as a fraction of the desired
precision. The decision will necessarily involve some subject-matter knowledge.

So far, the formulation of the selective editing problem as an optimization problem is
complete, providing a selection of units expressed by the solution r. However, in practice
having a selection of units must be confronted with the actual conditions of fieldwork. In
particular, both controllability and availability of resources, such as person hours for
example, are important issues in this respect. Given a particular selection, either we may
run out of resources and cannot edit all selected units or we may finish the editing field
work ahead of time and thus miss the opportunity to achieve better accuracy. In this sense
it seems natural to have at our disposal a set of selections to optimize the actual use
of resources. We achieve this by having a prioritization of units. Next we show how to
prioritize units in the optimization approach. In Section 6 we discuss in more detail this
issue of the selection/prioritization of units in relation with the fieldwork.

From the preceding sections it is clear that it does not make sense to prioritize units in
the stochastic formulation. On the other hand, to prioritize units in the combinatorial
version we propose combining different selections by choosing a sequence of appropriate
values as bounds. The basic idea is to choose large initial bounds which drive us to select
no unit, then to decrease the bounds until one unit is selected and to flag this unit for future
selections. Then we again decrease the bounds until a new unit is selected and flagged for
future selections. The procedure is repeated until all units have been flagged.

Let 1 C s = {1, ...,n} denote the set of flagged units at iteration k and Q([)k] the
outcome space of the combinatorial problem at iteration k. For any given strategy vector r
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we denote by ' (r) the set of strategy vectors ¥ obtained from r transforming exactly a
component 1 into 0. For example, I~ '((1,1,0)") = {(0,1,0)",(1,0,0)"}. Let & denote the
infeasibility function used in the greedy algorithms (see Subsection 2.3).

The algorithm of prioritization reads as follows:

1. Set fl9 = Q[O] = {0,1}>", sl = and !9 = (T y D01 gOIT 7 @gIONHT
2. FORk=0TO k=n
i. Set s+ = argmin ;¢ ;1 gu,(h(s)). In case of multiple s
random.
ii. Set* € s such that sl 5 sk,
ii. Setf[k“] =f[k] U {l*},Q([)kH] — ng] _ {s[k]} andn[k“] — (s[k+1]TM(1)S[k+l]’
sk g @glkt 1T
3.FORk=0TO0k=n
i. Set r'™ = arg max [P,,(M, 0, QL]
4. Sets = >} k.

The vector s provides the prioritization: unit X must be edited in the s;th place. Notice that
steps 1 and 2 provide a sequence of bounds ! and a sequence of outcome sets Qg‘]
which are used in step 3 to solve n 4 1 concatenated combinatorial problems. Two
comments are in place here. On the one hand, in practice, Step 3 indeed reduces to the first
point in Step 2 since r'*! = s'¥1 because £ is the infeasibility function of the optimization
algorithm.

On the other hand, this invites us to reconsider the role of the infeasibility function in the
prioritization of units: this depends on the choice of h. Should we choose, instead of the

+
original infeasibility function & 1(r) Z (r’M,(:l’)r - mé) of algorithm 1, the function

h(r) = Z ]wq( ’M,(g)r - fl) , where w, =0 are positive weights expressing the
different priority given to the accuracy of each variable y [’
prioritization. This can also be viewed more geometrically. To produce a sequence of
bounds we begin by having no selected units, that is, by o = (1'M V1, . . ., 1'M @),
and we need to produce a sequence of points in R such that its final point is 0. There exist
infinitely many possibilities (see Figure 1). In this context, the prioritization amounts
to choosing a path from 7 to 0. This path expresses the priority which the statistician
gives to the accuracy of the different estimators along the process of prioritization of
units. The original infeasibility functions of the algorithms confer the same relevance on

every estimator @,

11 choose one at

, we would arrive at a different

5. A Selection Efficiency Measure: Comparison with the Score Function Approach

To make a comparison of the selection undertaken under any approach, we propose the
following selection efficiency measure for an estimator Y. Beforehand, we need a double
data set with raw and edited values according to a gold standard so that when a unit is
selected, its raw values are substituted by their corresponding edited counterparts,
considered true. We will denote by Y(n,y) the estimator obtained when 7,y
questionnaires have been selected according to a selective editing technique sel and
edited correspondingly. Note that ¥*¢(n,; = n) = ¥°. As a figure of merit for the
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M2 - o = (1M1, 1M @)1
Wy > W,

Wy > Wy

e

=(0,0) ) M

Fig. 1. Example of two different sequences of bounds with Q = 2 arising from different choices of the weights w,.

selection of units we will focus upon the absolute relative pseudo-bias of an estimator ¥,
given by ARB (7(n,y)) = ‘% .
The rationale of the proposed measure is the comparison with a random selection of
units. The idea is to compare Aﬁ]é(f/“l(ned)) for a selective editing technique sel with
Aﬁ(ned) = AiﬁS([E[f/ "(neq)]), where ran stands for an equal-probability selection and
E is the expectation with respect to this random selection. It is immediate to show
that Aﬁ.% (neq) = ( - "”‘)ARB(Y "n(0)). Let us denote by Yo(neq) and y“l(ned) the
straight and polygonal lines with vertices yo(ned) = {(0, ARB(, 0)), (ngd,ARBO)(ned))}
and ¥ (neq) = {(0, ARB, (Y*(0))), (1, ARBy, (*(1))), . . ., (1ea, ARB, (F*“/(nea)))}.
respectively. Let us also denote by A,(n.q) the signed area of the surface between the
curve 7y and the horizontal axis to the left of the vertical line at n,, (see Figure 2). The area
is agreed to be positive if the polygonal line lies below the straight line and is otherwise
negative. We propose the following definition for the efficiency of the technique sel:

Al
GSEI(ned) = (Ayg(ned) - Ay»‘d(ned))/Ayg(ned) =1- ﬁ-

Note that this measure depends on the number of units to select. This allows us to
recognize those techniques which prioritize the most influential units first. A typical
situation is depicted in Figure 2.

We have carried out a comparison of the preceding proposal of prioritization of units
with that obtained from some score functions in the literature. In order to avoid possible
interferences with missing data and units recently added to the sample, we have used a
rectangular subset of the sample data of the Spanish ITI and INORI surveys (INE Spain
2010). For clarity’s sake we shall concentrate on one particular score function, illustrate
the corresponding results and make some comments regarding the similar behavior of all
of them. We have used a slightly enhanced version of the RATIO function of Latouche and
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Fig. 2. Absolute relative pseudo-bias vs. number of selected units
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Berthelot (1992). Let r\ = % and define
k

(1)
’
k _ e (D) : (1)
W 1 lfrk > medlank(rk ),
k\Tk )
=0
"o = NO)
1———k | otherwise.
: (1)
median (rk )

Also define g = wy, X7 X/ max (y",»{"") and then the local score
g —median, (g}f)) |
1R, (¢
variables, these combine in the global score function defined as
RATIO2(k,t) = S,(c') = Z,g:lsff’t). The enhancement arises due to the fact that only data
from the time period ¢ — 1 is used and not from # — 2, as in the original proposal. Thus this
function RATIO2 can only be used as a form of output editing after all data have been

collected (as the combinatorial approach, which we are making the comparison with).

Regarding the prioritization of units computed under the combinatorial approach, firstly
we must specify the auxiliary model m* to find the predicted values y;. For each unit we
have fitted three alternative time series models & : (1 — B), = a;, & : (1 — Blz)Zr =q
and & : (1 —B)(1 — Blz)z/ = qa;, where B stands for the backshift operator, zt =
log (m + y?) (m being a nuisance parameter estimated by maximum likelihood) and a,
denotes white noise. Each predicted value ¥ is computed according to the corresponding
best model £* (in terms of the minimal estimated mean squared error). Since the sample
is a fixed panel selected by cut-off, the sampling weights wy, are all equal to 1.

Next, we have applied the generic univariate observation-prediction model illustrated in
Section 3 to the logarithmic transforms of the turnover and the new orders received

§0 —

X , where IQR stands for the interquartile range. For g =1, ...,0
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independently. The common error probability p; = p and observation variance o7 = o
have been estimated from the past three months using a double-data set. The prediction
variance 7 has been computed according to the corresponding chosen best model £ for
each unit. As loss matrices, we have chosen both the squared and the absolute loss function
with entries given by Equations (4) and (5), respectively.

Finally, to make the comparison with a random selection of units, we have computed
the absolute relative pseudo-bias for 50 equal-probability random selections. We have
calculated the mean and first and third quartiles of the corresponding distribution. This
provides a confidence-like interval for each number of selected units (see Figure 3). The
motivation is to provide an insight not only into the average random selection but also of
its distribution.

We have carried out this comparison for 23 NACE Rev. 2 divisions and subdivisions
(aggregations of groups according to subject-matter knowledge). Firstly, RATIO2 showed
a better performance than the rest of score functions (RATIO, DIFF, FLAG ITI, FLAG INORI;

INORI absolute relative pseudo-bias vs. number of edited units
Spanish ITI and INORI Survey. Undisclosed period.
NACE division 15

2.0 4
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Fig. 3. Absolute relative pseudo-bias and editing efficiency vs. number of selected units
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see Latouche and Berthelot 1992). In 15 cases the absolute loss yielded the most efficient
prioritization, with nine of these cases having the RATIO2 score function as more efficient
than the squared loss choice (Figure 3 illustrates this behavior). However in five cases it is
the squared loss function that outperforms the other two choices, in which the absolute loss
also did better than the score function. In the remaining three cases, RATIO2 slightly
overcame the absolute loss, which in turn performed better than the squared loss.

Thus, in general, the absolute loss is more efficient than the squared loss in terms of the
pseudo-bias, as expected. This also happens with the score function RATIO2, since it is also
targeted at the bias. In general, the absolute loss is also more efficient than the score
functions. However, in actual production conditions, both missing data and respondents
newly added to the sample must be taken into account. In these cases, in the optimization
approach the prediction values y; must be imputed or fixed under some supplementary
scheme, since the considered time series models fail to produce these values. As an
elementary test, we assigned y; = y; in these cases in order for them not to be selected at
first positions. The general result was a slight deterioration of the performance of the score
functions for all values of n.;, while in the optimization approach, the behavior was as
good as before for the most influential units (n,; = 1,2, . . .), but noticeably poorer for the
last units (n.; = n/2). We have not considered these issues in the preceding comparison,
since they belong to sophistications of the observation-prediction model.

In our opinion it is important to note that the above results have been obtained with crude
time series models and extremely simplifying assumptions, and they do not incorporate
any subject-matter knowledge. Thus there is more room to elaborate further on them (using
better parameters, building multivariate models, etc.). In this line of thought the most
attractive point will arise if working models can be built for discrete or semicontinuous
variables, paving the way for the use of selective editing techniques also in household
surveys. The possibility of using well-established tools such as time series models or
statistical models in general, reinforces the statistical defensibility of the data editing work.

6. Discussion and Concluding Remarks

Once we have detailed the methodological proposal, we now proceed to discuss
several issues regarding this optimization approach from different perspectives. As two
immediate objections, a cautious reader can point out the limitation to linear estimators
and the polynomial running time of the algorithms. Firstly, the limitation to linear
estimators, which contrasts with the common use in practice of some nonlinear estimators
such as ratio estimators or regression estimators, can be easily overcome as
follows. In practice most nonlinear estimators f/gd are functions of linear estimators

ol (1 (M . L . .
)]:’/d =f Y(Ud7 Ce Y(Ud) . Then instead of considering the corresponding restriction for
the MSE of f’r;jd, we consider a restriction for each linear estimator ' l;n ]), m=1,... M.

The rationale amounts to expecting an accurate nonlinear estimator if each linear estimator
is accurate. Moreover, a bounded growth in the number of restrictions is expected, since
nonlinear estimators are usually built from different combinations of survey variables,
whose number is fixed by the questionnaire. Secondly, the polynomial running time of the
selection algorithms is not a practical concern, at least in Spanish sampling sizes standards,
as we will now explain. On the one hand, the estimation problem in a finite population U is
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essentially a multivariate problem seeking accurate and numerically consistent
estimations in given partitions of the population U. These partitions are fixed according
to the breakdown established by the statistical dissemination plan of each survey. Thus the
selection or prioritization should be applied to each of these publication cells, since no lack
of accuracy is rightfully allowed in any published figure. On the other hand, we have
applied this approach to the Spanish ITI and INORI survey as a pilot experience at INE
Spain (details will be published elsewhere). In these monthly short-term business
statistics, the sampling size amounts to around 12,000 industrial establishments broken
down into 37 publication cells with sizes ranging up to 1,500 units at most. The
prioritization of units in all cells took a total of three hours on a desktop PC, which is a
reasonable working time.

As a deeper concern, one can inquire why the roles of the two basic principles of our
formulation are not interchanged, that is, why data quality is not optimized (minimizing the
loss function) restricting the amount of resources used (number of questionnaires to
recontact). We give two reasons to support our proposal. From a broad perspective, in a
statistical office it appears desirable to minimize the cost of each survey in order to optimize
resources to face and embrace as many other surveys in the statistical production as
possible. In our view, this is a natural decision given the increasing demand for information
from stakeholders. From a more methodological standpoint, the multivariate feature of the
problem again arises. If we interchanged the roles of both principles, we would need to
minimize the loss function of the different variable estimators corresponding to each
publication cell restricted to the number of questionnaires to be recontacted. As a matter of
fact this is a multiobjective optimization problem, which ineludibly needs some decisions
to compute a solution (see e.g., Marler and Arora 2004). In this respect, our position in
official statistics production is to minimize the number of decisions taken by the survey
conductor, which is clearly expressed in the following citation by Hansen et al. (1983):
“[. . .]it seems desirable, to the extent feasible, to avoid estimates or inferences that need to
be defended as judgments of the analysts conducting the survey”.

As a matter of fact, the question of the number of decisions is a first relevant point to
establish a comparison with the score function approach. Nowadays the score function
approach is undisputedly the favored technique for selecting influential units in the editing
production phase. Thus it provides the framework to assess advantages and disadvantages of
any other technique. Furthermore, in our opinion, a comparison will help us reveal
fundamental aspects of the editing production phase irrespective of the particular techniques.
Regarding the number of decisions, let us recall that the score function approach comprises
four main decisions to determine a selection of units (Lawrence and McKenzie 2000),
namely (i) an editing model to construct the anticipated values, (ii) each local score function,
(iii) a global score function, and (iv) a cut-off value. On the one hand, in the optimization
approach the first three decisions are jointly substituted and integrated into a single step: the
construction of the observation-prediction model or an alternative statistical error-modelling
technique, and the subsequent formulation of the optimization constraints. Furthermore, in
our view, this integration renders this selection procedure more natural within the statistical
language, in contrast to a score function, which can seem extraneous. In this sense, let us point
out that the construction of an observation-prediction model is a multivariate exercise, so the
integration of the choices of both local and global score functions comes naturally together
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with the construction of the statistical model. On the other hand, the choice of the cut-off
value is now substituted for the choice of the bounds in the optimization problem. In the score
function approach, this value must be chosen normally using data from previous realizations
of the survey and using a heuristic or empirical connection between this value and the chosen
loss function of the survey estimators. In the optimization approach, the choice of the bounds
makes use of a priori values of variances (or some other similar measure) as in the survey
design stage and shows a neater connection with the loss function, thus fitting again more
naturally into the whole survey statistics production process. Indeed, we have shown how the
prioritization of units under the score function approach can be reproduced and slightly
overcome with a very simple model. Furthermore, although admittedly still too far, this
proposal points toward enlarging the traditional sampling strategy (D, T) comprising the
sampling design D and the construction of the estimator 7'(see e.g., Hedayat and Sinha 1991)
with a selection strategy R, so that we would have a triplet (D, R, T). This follows the spirit of
the total survey design.

The selection/prioritization issue goes hand in hand with the double version of
the optimization approach. This issue arises mainly from resource availability and
controllability, mainly of timeliness and person-hours in the editing fieldwork. When
having a selection of units in practice we face two situations: Either we run out of resources
to accomplish the interactive editing of all selected units, or we end up ahead of time and
then we miss the opportunity to gain more accuracy. Now, since editing near the source is a
must for this production phase, it is advisable to have a real-time selection mechanism on
each questionnaire, as pointed out in the introduction, independently of the rest of the
sample. Conversely, on later stages it is preferable to prioritize units to edit (interactively)
the most influential first. In this line of thought, the stochastic approach suits the selection
whereas the combinatorial approach suits the prioritization. Furthermore, since both
approaches derive from a common general framework focused on the exploitation of
auxiliary information, we envisage a more complex, although unified, editing process. Let
us parameterize the auxiliary information used in the editing work in terms of its
longitudinal, cross-sectional and multivariate dimensions. By longitudinal we mean the
value of variables for each unit in previous time periods. By cross-sectional we refer to the
information stemming from the sample at the current period. Finally, by multivariate we
mean the information arising from the multidimensional character of the survey (always
several variables are investigated). If we focus on the longitudinal and cross-sectional
dimensions of the auxiliary information, Figure 4 represents the transition from micro-
selective to macro editing as the data collection is being completed. In our view, these two
editing techniques appear as the head and tail of a time-continuous process driven by the
evolution of the data collection. We envisage that intermediate techniques combining both
the longitudinal and available cross-sectional information as a time-continuous process
during the data collection will be of practical usefulness.

Regarding the optimization approach, we want to point out that both versions fit
naturally as the head and tail of this time-continuous editing process, so that the stochastic
version corresponds to exploiting longitudinal information as in traditional selective
editing techniques, whereas the combinatorial version arises as a macro editing technique
focusing upon the cross-sectional information. In contrast, the score function approach and
traditional macro editing techniques can hardly be seen under the same methodological
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Fig. 4. Schematic representation of the transition from micro-selective to macro editing as data collection is
completed. As data collection is completed, more cross-sectional information is available

principles. It remains open for future work to find a more general formulation for this
proposed time-continuous process embedding both optimization versions.

A complementary comparison can be made with the automatic data editing techniques
based on the Fellegi-Holt methodology, in particular with the different approaches to the
error localization problem, which also make an extensive use of optimization techniques
(see De Waal et al. 2011). The common points reduce to the fact that mathematical
optimization appears as a natural translation of the proposed data editing principles.
Conversely, the Fellegi-Holt methodology focuses upon each questionnaire, seeking to
minimize the number of items to change satisfying all edits. In this approach we focus
upon the whole sample, seeking to minimize the number of units to be recontacted
satisfying restrictions upon the loss functions using a statistical model instead of edits.

To conclude, as immediate future prospects, we have recently begun to analyze the
inclusion of these techniques in the current E&I strategies in most business surveys in INE
Spain. A pilot experience with the ITI and INORI survey fosters our hope to reduce current
recontact rates and consequently both editing costs and the response burden at our office.
R packages and SAS macros implementing this optimization approach are under intense
development and being tested in these pilot experiences. Apart from this, more
methodological research is needed to find generic multivariate models fitting the
observation-prediction model and to generalize them to both qualitative and
semicontinuous variables. In this context, multivariate models already present in the
literature for data editing (Di Zio and Guarnera, in this issue) appear as a fruitful
alternative. In addition, we already have a first adaptation of the preceding greedy
algorithms to be applied to surveys with self-weighting samples and qualitative variables.
We are collaborating with experts from the Spanish National Health Survey to produce
an observation-prediction model adapted to these variables.

A. Mathematical Appendix

We include some mathematical proofs. Firstly we prove how the constraints imply a
control on the loss of accuracy. In particular, if L = L " denotes the absolute ( = 1) or
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squared loss (r=12) function, we prove that [Em[L(lA/*(R)f/O)IVZ]Sn (where
Z =7 orZ°%) implies E,,[L(Y*(R),Y)] = nl/f+[E},g;[L(1?0,Y)] . It is straight-
forward to prove that d(A,B) = [E;”/n’[L(’)(A,B))] is a metric. Then, by the triangle
inequality, we have

d(Y*(R),Y) = d(Y*(R), ¥°) + d(¥°, Y).
Now, using properties of the conditional expectation, we can write
d"(¥*(R), 1) = EplE4[L"(R), Y121 = m,

where Z = Z* or Z°%. The result follows immediately.

Secondly we show the connection between the loss matrices and
the loss function. In the absolute loss case, we have E,[|Y*(R)— Y9||Z]=
[EmHZkeSRkasEkHlZ] = [ZkESR,%IWkSEkIIZ], since R} =R;. Thus we can write
E.[|7*(R) = ¥°||Z] = E,,[RTAR|Z], where A is diagonal with entries Ay = |wise€xl.
In the squared loss case, in turn we have [E,[(Y*(R)—Y9)?Z]=
E,, [Zka ZkESRkR,wkxekwke;IZ]. Thus, we can also write E,[(Y*(R) = Y9)?|Z] =
E,.[RTAR|Z], where Ay = wis€r-wis€).

The conditional moments (4) and (5) are found along similar lines. Under
the hypotheses assumed in Section 3 regarding the observation-prediction model, it
follows that y; — 9% = € + E‘,ired and E, [(yk — yg)rlsk,yk,fzk] =, [Sfbx)rlshyk,jzk]
E.lexlsk, i, 9i], with r =1, 2. Conditioning on s, i, 9 amounts to conditioning on
Sk, ezbs, 91, thus we can rewrite these conditional expectations as E,,[-[sx, yi — &, $x]. Now
the second term is computed wusing Bayes’ theorem, so that
E.lelse, ve — i, Dl = Ck % . For the first term, we notice that the random vector

T
(SZbS,SZbS + e‘;:md) is normally distributed with expectation u =0 and variance

(Uf 07 + POt
S =

. The conditional moments follow then from standard
a + oy o3

properties of the multivariate normal distribution.
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Automated and Manual Data Editing: A View on Process
Design and Methodology

Jeroen Pannekoek', Sander Scholtus', and Mark Van der Loo"

Data editing is arguably one of the most resource-intensive processes at NSIs. Forced by ever-
increasing budget pressure, NSIs keep searching for more efficient forms of data editing.
Efficiency gains can be obtained by selective editing, that is, limiting the manual editing to
influential errors, and by automating the editing process as much as possible. In our view, an
optimal mix of these two strategies should be aimed for. In this article we present a
decomposition of the overall editing process into a number of different tasks and give an up-
to-date overview of all the possibilities of automatic editing in terms of these tasks. During the
design of an editing process, this decomposition may be helpful in deciding which tasks can
be done automatically and for which tasks (additional) manual editing is required. Such
decisions can be made a priori, based on the specific nature of the task, or by empirical
evaluation, which is illustrated by examples. The decomposition in tasks, or statistical
functions, also naturally leads to reuseable components, resulting in efficiency gains in
process design.

Key words: Automatic editing; selective editing; edit rules; process design; process
evaluation.

1. Introduction

The quality of raw data available to National Statistical Institutes (NSIs) is rarely sufficient
to allow the immediate production of reliable statistics. As a consequence, NSIs often
spend considerable effort to improve the quality of microdata before further processing
can take place.

Statistical data editing encompasses all activities related to the detection and correction
of inconsistencies in microdata, including the imputation of missing values. Data editing,
or at least the correction part of data editing, has traditionally been performed manually by
data-editing staff with subject-specific expert knowledge. The manual follow-up of a large
number of detected inconsistencies is, however, very time consuming and therefore
expensive and decreases the timeliness of publications. Therefore, several approaches
have been developed to limit this resource-consuming manual editing.
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One approach is selective editing (Latouche and Berthelot 1992). This is an editing
strategy in which manual editing is limited or prioritised to those errors where this editing
has a substantial effect on estimates of the principal parameters of interest. Provided that
there is an effective way of determining the influential errors, this strategy can be
successful. It has been well established (see the review by Granquist and Kovar 1997) that
for many economic surveys only a minority of the records contains influential errors that
need to be edited; the remaining errors can be left in without substantial effect on the
principal outputs.

An alternative route to reducing manual editing is to perform the editing
automatically. Automatic editing is not a single method but consists of a collection of
formalised actions that each perform a specific task in the overall editing process. Some
well-known tasks performed in automatic editing are the evaluation of edit rules to detect
inconsistencies in the data, the localisation of fields that cause these inconsistencies, the
detection and correction of systematic errors such as the well-known thousand error, and
the imputation of missing or incorrect values. Once implemented, automatic editing is
fast, uses hardly any manual intervention and is reproducible. For reasons of efficiency,
it should therefore be preferred to manual editing even if the latter is confined to
selected records. However, not all data-editing functions can be performed automatically
while achieving a result of sufficient quality. Selective manual editing is then a necessary
addition.

The relationship between manual and automatic editing as it emerges from the classical
literature on selective editing is that all important amendments should be done manually
and that the role of automatic editing is confined to the less influential errors: its purpose is
mainly to ensure the internal consistency of the records so as to avoid inconsistencies at all
levels of aggregation. In this view, the quality of automatic editing has no bearing on the
decision to edit a record manually or automatically. Efficiency gains are realised by the
selection process only. The point of view taken in this article is that for reasons of
efficiency, manual editing should be confined to the data that are influential and cannot be
treated automatically with sufficient quality. In this view, the quality of automatic editing
is important in making the decision to edit manually or not and improvements in automatic
editing will lead to efficiency gains.

This article gives an overview of the current state of the art in efficient editing of
establishment data. Using numerical results from two example statistics, it is shown how
with the current methods, selective editing can be minimised while data quality is retained.
We identify methodological research directions that in our view have potential for yielding
further efficiency gains.

Besides making the data-editing process more efficient, there is a need to increase the
cost effectiveness of designing and implementing data-editing systems. In this article we
propose a hierarchical decomposition of the data-editing process into six different task
types, called statistical functions. This view of the overall process builds on the previous
work of Camstra and Renssen (2011) and Pannekoek and Zhang (2012) by adding a
taxonomy of editing functions and defining the minimal input and output requirements of
each of these functions. Identifying the in- and output parameters of these abstract
functions allows us to move towards a modern approach to process design, based on
reusable components that connect in a plug-and-play manner.
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The remainder of this article is structured as follows. Section 2 discusses some basic
aspects of error detection in manual and automatic editing. First we consider the different
kinds of errors that can arise and differentiate between errors for which automatic
treatment is a possibility and those for which manual treatment is required. Then we
discuss the edit rules that are extensively used in data editing, in particular with respect to
business surveys. In Section 3 an overview is given of both well-known and more recently
developed automatic error detection and correction methods. Section 4 is concerned with a
decomposition of the overall data-editing process into data-editing functions based on the
action and purpose of these functions. In Section 5 the application of a sequence of
different editing functions is illustrated using two real data examples. This section also
gives references to the freely available R packages that are used for these illustrations.
Finally, in Section 6 we summarise some conclusions.

2. Error Detection in Manual and Automated Editing

2.1. Sources of Errors in Survey Data

In analyses of survey errors it is customary to decompose the total error into more or less
independent components that may be treated separately. Well-known decompositions
include those by Groves (1989) and Bethlehem (2009). Here, we use Bethlehem’s
taxonomy of survey errors since it allows us to identify sources of error with common
data-editing strategies.

Bethlehem (2009) uses the scheme shown in Figure 1 to distinguish between sources of
error in a statistical statement based on surveys. The total error is decomposed into
sampling and nonsampling error. The sampling error is further decomposed into selection
and estimation error. Selection error consists of differences between the theoretical and
realised inclusion probabilities of sampling units, while estimation error consists of the
usual variance and bias introduced by the estimation method. Nonsampling errors can be
split into observational and nonobservational errors. Observational errors are composed of
overrepresentation of elements in the population register (overcoverage), measurement
errors (item nonresponse, completion errors, etc.) and processing errors at the NSI (e.g.,
data entry errors). Nonobservational errors are caused by omission of elements from the
population register (undercoverage) and unit nonresponse.

Total Sampling Selection
Estimation
Nonsampling Observation Overcoverage
__Measurement |
| Processing |
Nonobservation Undercoverage
Nonresponse

Fig. 1. Bethlehem’s (2009) taxonomy of survey errors. Errors in grey boxes are commonly solved by manual
data editing while automated techniques are usually more suited for error causes indicated in dotted boxes
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Traditionally, automated data-editing methods have more or less focused on errors
occuring at the measurement or processing stage. That is, many automated data-editing
methods focus on the observed variables rather than the identifying or classifying
variables already available in the population register. For example, in a stratified hot-deck
imputation scheme, the values of stratifying variables are assumed correct to begin with.
In contrast, data-editing staff often do not make such assumptions and may frequently
reclassify units.

Since many automated data-editing methods are based on mathematical modelling,
they usually assume that some kind of structured auxiliary information is available.
In many cases historic records, auxiliary register variables or totals from related statistics
can be used to estimate values for erroneous or missing fields in a survey data set. By
contrast, data-editing staff may use unstructured auxiliary information to edit records.
Such information may, for example, include written financial reports or information from
websites, as well as recontacts. These two differences between manual and automated
data editing enable data-editing staff to correct for errors not caused at the moment
of measurement.

In 2010, thirteen of Statistics Netherlands’ data-editing employees working on the
short-term business survey were informally interviewed on commonly found errors and
data-editing practices. Besides a number of commonly found measurement errors
(reporting of net instead of gross turnover, reporting of value of goods instead of invoices,
etc.) many causes of error that were mentioned are nonobservational or sampling errors in
Bethlehem’s taxonomy. Examples include misclassifications such as retailers being
registered as wholesalers, population effects such as bankruptcies, splits and mergers, and
differences between legal units (chamber of commerce), tax units (of the tax office) and
economic units (of Statistics Netherlands). Such errors are detected and/or solved by
looking at auxiliary information such as figures and articles from sector organisations and
(financial) newspapers, a website dedicated to registering bankruptcies, publicly available
information on wages and retirement funds in a sector and so on. Subject-matter experts
also use (often unstructured) domain knowledge on branch-specific transient or seasonal
effects to detect errors. Examples of such effects include weather conditions (energy and
construction), holidays (food industry, printers, etc.) and special events (tourist sector).

For the various measurement errors mentioned by the interviewees, conventional
automatic data-editing methods can in principle be applied. For nonobservational errors
like population errors and misclassifications, the error detection and correction process is
based on fuzzier types of information and therefore harder to automate. At the moment,
we are not aware of methods that can exploit such information for data-editing purposes
automatically.

2.2.  Edit Rules for Automatic Verification

Prior knowledge on the values of single variables and combinations of variables can
be formulated as a set of edit rules (or edits for short), which specify or constrain the
admissible values. For single variables such edits are range checks; for most variables
in business surveys these amount to a simple non-negativity or positivity requirement
such as:
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e1: Number of employees = 0
e>: Turnover > 0

Edits involving multiple variables describe the admissible combinations of values of these
variables in addition to their separate range restrictions. For numerical business data, many
of these edits take the form of linear equalities (balance edits) and inequalities. Some
simplified examples of such edit rules are:

e3: Result = Total revenues — Total costs

e4: Total costs = Purchasing costs + Personnel costs + Other costs
es: Turnover = Turnover main activity + Turnover other activities
eq: Employee costs < 100 X Number of employees

The inequality and equality edits e; —e5 are examples of fatal or hard edits: they must hold
true for a correct record. This class of edits is opposed to the so called soft or query edits,
the violation of which points to highly unlikely or anomalous (combinations of) values that
are suspected to be in error although this is not a logical necessity. The edit e4 could be
interpreted as a soft edit.

More generally, an inequality edit k can be expressed as Zf:ﬂijj = by, with the x;
denoting the variables, the a,; coefficients, and by a constant. In e; and e, by = 0 and the
ay; are zero for all variables except one, for which a;;is —1. Linear equalities such as e3, e4
and es can similarly be expressed as Z!:Iaijj = by.

Note that these edits are connected by certain common variables, which is true for many
of the edits used in business statistics and has consequences for error localisation and
adjustment for consistency. In such situations it is convenient to re-express the edits as a
system of K linear equations and inequalities, in matrix notation:

ExOb, N

with E the K X J edit matrix with elements a;;, x a J-vector containing the variables and
b a K-vector with elements b;. The symbol O should here be interpreted as a vector of
operators (with values <, = or =) appropriate for the corresponding (in)equalities.

Each of the edit rules can be verified for each record. If we have N records and K edits,
all the failure statuses can be summarised in a binary N X K failed-edits matrix F,
corresponding to all the record-by-edit combinations. The failure statuses can be the input
to an error localisation function that selects variables from those involved in failed edits
with values that are to be considered erroneous and need to be changed in order to resolve
the edit failures (see Subsection 3.3).

The number of edit rules varies greatly between statistical domains. The structural
business statistics (SBS) are an example with a large number of edit rules. An SBS
questionnaire can be divided into sections. It contains, for instance, sections on employees,
revenues, costs and results. In each of these sections a total is broken down into a number
of components. Components of the total number of employees can be part-time and full-
time employees and components of total revenues may be subdivided into turnover and
other operating revenues. The total costs can have as components: purchasing costs,
depreciations, personnel costs and other costs. The personnel costs can be seen as a
subtotal, since they can again be broken down in subcomponents: wages, training and
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other personnel costs. Each of these breakdowns of a (sub)total corresponds to a (nested)
balance edit. SBS questionnaires also contain a profit and loss section where the revenues
are balanced against the costs to obtain the results (profit or loss), which leads to the edit e3.
This last edit connects the edits from the costs section with the edits from the revenues
section. Soft edits for the SBS form are often specified as bounds on ratios. For instance,
ratios between a component and the associated total, between the number of employees
and the personnel costs, between purchasing costs and turnover, etc.

3. Methods for Automatic Detection and Amendment of Missing or
Erroneous Values

The overall editing process can be seen as a sequence of statistical functions applied to a
data set. Such functions, for example selecting records for manual editing, may be
implemented as an automated or a manual subprocess. In this section we summarise a
number of data-editing methods that can be performed automatically.

Since these methods often detect or correct different types of errors, they will usually be
applied one after another so as to catch as many errors as possible. A detailed exposition of
the statistical methodology for each of these functions is beyond our scope, but below we
summarise the types of methods that could be used and/or give some simple examples.
More detailed descriptions can be found in De Waal et al. (2011) and the references
cited there.

3.1. Correction of Generic Systematic Errors

From a pragmatic point of view, a systematic error is an error for which a plausible cause
can be detected and knowledge of the underlying error mechanism enables a satisfactory
treatment in an unambiguous deterministic way. De Waal et al. (2012) distinguish between
generic systematic errors and subject-related systematic errors. A generic systematic error
is an error that occurs with essentially the same cause for a variety of variables in a variety
of surveys or registers. Subject-related systematic errors on the other hand occur for
specific variables, often in specific surveys or registers.

3.1.1. Unit of Measurement Error

A well-known generic systematic error is the so-called unit of measurement error which is
the error of, for example, reporting financial amounts in Euros instead of the requested
thousands of Euros. Unit of measurement errors are often detected by a simple ratio
criterion that compares the raw value x,,,, with a reference value x,... Such a rule can be
expressed as

Traw o, )
Xref
with ¢ some threshold value. The reference value can be an approximation to the variable x
that is unaffected by a unit of measurement error, such as an edited value for the same unit
from a previous round of the same survey or a current or previous stratum median of x. The
detection of unit of measurement errors may be improved by dividing the financial
variables by the number of employees (e.g., costs or revenues per employee) to eliminate
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the variation in these variables due to the size of the unit. If a thousand error is detected,
the affected values are divided by one thousand. See, e.g., Di Zio et al. (2005) and
Al Hamad et al. (2008) for further discussion and more advanced methods for detecting
unit of measurement errors.

Thousand errors are often made in a number of financial variables simultaneously,
yielding what is known as a uniform thousand error in these variables. Thousand errors
will not violate balance edits if they are uniform in all variables involved; therefore, they
cannot be detected by such edits. Incidental thousand errors may be detected by balance
edits when the error is made in one or more of the components or their total but not in all
these variables.

3.1.2. Simple Typing Errors, Sign Errors and Rounding Errors

Some inconsistencies are caused by simple typing errors. Recently, methods have been
developed to reliably detect and correct these types of errors (Scholtus 2009; Van der Loo
et al. 2011). The algorithm correcting for typing errors uses the edit rules to generate
candidate solutions and accepts them if the difference with the original value is not larger
than a prespecified value. The difference is measured with the restricted Damerau-
Levenshtein distance (Damerau 1964; Levenshtein 1966). This distance measure counts
the (possibly weighted) number of deletions, insertions, alterations and transpositions
necessary to turn one character string into another (the restriction entails that substrings,
once edited, cannot be edited again).

The typo-correction can also correct simple sign errors. More complex sign errors, such
as those caused by swapping Cost and Turnover in a questionnaire where the rule
Profit = Turnover — Cost must hold, can be solved by a binary tree algorithm that tests
whether (combinations of ) swapping options decrease the number of violated edits
(Scholtus 2011).

Rounding errors cause edit violations by amounts of a few units of measurement at
most. It is therefore of less importance which variables are adapted to resolve these
inconsistencies. The scapegoat algorithm of Scholtus (2011) uses a randomisation
procedure to adapt one or more variables by a small amount so that the number of equality
violations is decreased.

3.2.  Domain-Specific Correction Rules

In contrast to generic systematic errors, subject-related or domain-specific systematic
errors occur for specific variables, often in specific surveys or registers. Such errors are
often caused by a common misunderstanding of certain definitions among respondents.
Restaurants, for instance, often incorrectly classify their main revenues as revenues
from trade (because they sell food) rather than revenues from services as it should be.
As another example, reporting net rather than gross turnover may occur frequently in
some domains.
Direct if-then rules can be used to correct such errors. These rules are of the form

if condition then action,
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where condition is a logical expression that is true if an error is detected and action is an
amendment function that assigns new values to one or more variables.

Apart from being used for correction of subject-specific systematic errors, such rules are
also used for selection and imputation. For selection of records for manual editing, the
action consists of assigning TRUE to an indicator variable for manual treatment. For
instance, if for large units crucial variables such as Employment or Turnover are missing or
inconsistent, the unit may be selected for manual treatment. For the selection of fields to be
changed, the action consists of changing some fields to NA (which stands for Not
Available or missing). For instance, if the costs per employee are outside the admissible
range, the number of employees (in Full Time Equivalents, FTE) may be selected as
erroneous rather than the employee costs because it is known that the financial variables
are reported more accurately. For imputation the condition specifies which missing value
can be imputed by the rule and under what conditions. For instance

if Wages for temp. employees = NA and No. of temp. employees = 0

then Wages for temporary employees = 0,

We use the symbol = when we need to distinguish assignment from mathematical or
logical equivalence (=). Even the evaluation of an edit rule can be seen as a rule in this if-
then form. The condition is in that case the edit rule itself and the action is the assignment
of a TRUE-FALSE status to a column of the matrix F.

These rules are called direct correction/selection/imputation rules because the
implementation of the condition and the action follows trivially from the rule itself.
In contrast, the generic systematic errors discussed above such as typos and rounding
errors are also based on rules, because they use the edit rules, but in those cases the
implementation cannot be formulated in a single simple if-then rule but requires a more
sophisticated algorithm. The same is true for Fellegi-Holt-based error localisation and
model-based imputation with estimated parameters, to be discussed below.

3.3.  Error Localisation

Error localisation is the process of pointing out the field(s) containing erroneous values in
a record. Here, we assume that all fields should be filled, so an empty field (NA) is also
assumed erroneous. If there are N records with J variables, the result of an error
localisation process can be represented as a boolean N X J matrix L, of which the elements
L; are TRUE where a field is deemed erroneous (or when it is empty) and FALSE
otherwise.

Automated error localisation can be implemented using direct rules, as mentioned in
Subsection 3.2. In such a case a rule of the form

if conditionthen L; = TRUE 3)

can be applied. It should be noted that this method takes no account of edit restrictions, and
does not guarantee that a record can be made to satify all the edits by altering only the
content of fields with L; = TRUE; Boskovitz (2008) calls this the error correction
guarantee.
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Error localisation becomes more involved when one demands that 1) it must be possible
to impute fields consistently with the edit rules and 2) the (weighted) number of fields
to alter or impute must be minimised. These demands are referred to as the principle
of Fellegi and Holt (1976). Identifying 1 and O with the boolean values TRUE and
FALSE respectively, the localisation problem for each row I of L can be denoted
mathematically as

I= argminw’u “4)
ue{0,1}

under the condition that the set of (in)equality restrictions in Equation (1) has a solution for
the x; with [; = 1, given the original values of the x; with /; = 0. The vector I points out
which variables are deemed wrong (1) and which are considered correct (0). In addition, w
is a non-negative weight vector assigning weights to each of the J variables. These weights
are referred to as reliability weights, because they can be used to express the degree of trust
one has in each original value x;. Note that increasing w; makes it less likely that x; will be
chosen as a candidate for amendment, as feasible solutions with lower weights are more
likely to be available.

A special case occurs when only univariate (range) edits are considered — that is, when
every edit contains just one variable. Denote by C the K X J boolean matrix that indicates
which variables (columns) occur in which edits (rows), and denote by X the N X J
numerical data matrix. In this special case, the matrix C contains at most 2J nonzero
elements, since each variable can be bounded from above or below or both. The matrix L
can then be computed as

L= (FC>0)V (X =NA). 5)

Here, F is the N X K failed-edits matrix defined in Subsection 2.2, and the logical and
comparison operators (< and =) on the right-hand side should be evaluated elementwise.
The symbol V indicates the elementwise Or operation.

Several algorithms have been developed for error localisation under interconnected
multivariate linear constraints. See De Waal et al. (2011) and the references therein
for a concise overview of available algorithms. Regardless of the algorithm used, the
special case of Equation (5) can be applied to the subset of univariate edits prior to one of
the more complex algorithms to reduce computational complexity. The branch-and-
bound algorithm of De Waal and Quere (2003) and approaches based on a reformulation
of the error localisation problem as a mixed-integer problem (MIP) have recently
been implemented as a package for the R statistical environment by De Jonge and Van der
Loo (2011).

3.4.  Imputation of Missing or Discarded Values

Imputation is the estimation or derivation of values that are missing due to nonresponse
or discarded for being erroneous (as indicated by L in the previous section). Below we
discuss deductive and model-based imputation methods.
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3.4.1. Deductive Imputation of Missing or Discarded Values

In some cases the values for the empty fields can be derived uniquely from edit rules by
mathematical or logical derivation. For example, when one value in a balance edit is
missing, the only possible imputed value that will satisfy the balance edit can be computed
from the observed values. For the interrelated systems of linear edits that are typical for the
SBS, it is generally not obvious if some of the missing values are determined uniquely by
the edit rules. By filling in the observed values from a record in the edit rules, a system of
(in)equalities is obtained with the missing values as unknowns. Specifically, if x is
partitioned as x = (X,p5,Xis) Where x,,; denotes the subvector of x containing the
observed values and x,; the subvector with missing values and E is partioned
conformably as E = (E 4, E i), then we have from Ex O b,

Emixxmis Ob - Eobsxobs; (6)

where the right-hand side is calculated from the observed values and x,,;; contains the
unknown missing values. The problem now is to determine which, if any, of these
unknowns can be solved from this system and consequently deductively imputed. There
exist simple algorithms that can find the values of all uniquely determined values for the
unknowns in this system (De Waal et al. 2011).

3.4.2. Model-Based Imputation

Deductive imputation will in general only succeed for part of the missing values. For the
remaining missing items, models are used to predict the values and these predictions are
used as imputations. Here the term “model” is used in a broad sense, covering not only
parametric statistical models but also nonparametric approaches such as nearest-neighbour
imputation.

For business surveys with almost exclusively numerical variables, the predominant
methods are based on linear regression models including, as special cases, (stratified) ratio
and mean imputation (cf. De Waal et al. 2011, Ch. 7). Important for the efficiency of the
application of regression imputation is that models for each of the variables that need
imputation are specified in advance or selected automatically without the need for time-
consuming model selection procedures by analysts at the time of data editing. When
available, a historical value is often a good predictor for the current value.

An alternative, if all variables are continuous, is to use a multivariate regression
approach where all variables that are observed in a record are used as predictors for each of
the missing values. Thus, for each record, the variables are partitioned into two sets; the
variables observed in record i and the variables missing in that record. The subvectors of x
corresponding to these two sets will be denoted by x ;) and X,,;5; y and the value of X, )
in record i by x; .. If it is assumed that x is multivariate normally distributed, the
conditional mean of the missing variables, given the values of the observed variables in
record i, m; ;s Say, can be expressed as

Mimis = Mmis(i) + Bmis(i),obs(i)(xi.obs - Mobs(i))a (7)

with ;) and Mops) the unconditional means of X,z and X, peiy and Byisiy.obsi)
an Myyis ) X Nops(i) Matrix with rows containing the coefficients for the n,,;, regressions
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of each of the missing variables on the observed ones. Estimates of the conditional
means M; ;s are the regression imputations and can be applied for continuous variables
for which the linear model is a good approximation, without necessarily assuming
normality.

An estimator of the coefficient matrix B,z ).0bs;) €an be obtained from an estimator of
the covariance matrix 3 of x by using

Bnisiy.obs(i) = Zops(iy.obs(i )2 obsti \mis(i) (®)

with 3 i ).0bs ) the submatrix of 3, containing the (co)variances of the variables observed
in record i and 2. (i) misi) the submatrix containing the covariances among the variables
observed in record i and the variables missing in this record. Note that once we have
estimated the covariance matrix ¥ and mean vector pu for all variables, we can perform all
regressions needed to impute each of the records, with their different missing data patterns,
by extracting the appropriate submatrices and subvectors. In (8) we used a generalised
inverse, denoted by “—”, instead of a regular inverse because the covariance matrix
involved can be singular due to linear dependencies of the variables implied by equality

¢

constraints.

A nice property of this multivariate regression approach with all observed variables as
predictors is that linear dependencies in the data used to estimate 3, will be transferred to
each imputed record. Therefore, all equality edits will be satisfied by the imputed data
provided that ¥ is estimated on data consistent with these edits (cf. De Waal et al. 2011,
ch. 9). A possible data set to be used for estimation is the set of complete and consistent
records from the current data. If there are not (yet) enough such records, cleaned data from
a previous round of the survey provide an alternative. If the current data are used it is
possible to also include the records with missing values in the estimation of p and % by
applying an EM algorithm (see Little and Rubin 2002).

3.5.  Adjustment of Imputed Values for Consistency

Imputed values will often violate the edit rules, since most imputation methods do not take
the edit rules into account. The multivariate regression approach (7) takes equalities into
account but not inequalities. More involved imputation methods have been developed that
can take all edit rules into account (De Waal et al. 2011, Ch. 9), but for many unsupervised
routine applications such models become too complex. The inconsistency problem can
then more easily be solved by the introduction of an adjustment step in which adjustments
are made to the imputed values, so that the record satisfies all the edits and the adjustments
are as small as possible. This can be seen as an optimisation problem: minimise the
adjustments under the constraint that all edits are satisfied. When the weighted least
squares criterion is chosen to measure the discrepancy between the unadjusted and the
adjusted values, this problem can be formalised as

: T
Xagj = arg an (x - xunadj) W(x - xunadj)
xER’

subject to Ex 4 O b, ©)
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where it is understood that only the imputed values may be changed; the other elements of
X,q; remain equal to the corresponding elements of X,,,q4. The matrix W is a positive
diagonal matrix with weights that determine the amount of adjustment for each of the
variables; adjustments to variables with large weights have more impact on the criterion
value and therefore these variables are adjusted less than variables with small weights. For
instance, the choice W = ah'ag(xL,m,dj)*1 leads to minimisation of the squared
discrepancies relative to the size of the unadjusted values; see Pannekoek and Zhang
(2011) for more details. For a different approach in the context of sequential imputation,
see Pannekoek et al. (forthcoming).

3.6. Selection of Units for Further Treatment

Automatic treatment cannot be expected to find and repair all important errors and
consequently some form of additional manual treatment will be needed. The selection of units
for manual treatment is the essential part of selective editing. The goal of this approach is to
identify units for which it can be expected that manual treatment has a significant effect on
estimates of totals and other parameters of interest and to limit manual review to those units.

An important tool in this selection process is the score function (Latouche and Berthelot
1992; Lawrence and McDavitt 1994; Lawrence and McKenzie 2000; Hedlin 2003) that assigns
values to records that measure the expected effect of editing. The record score is usually built
up from local scores for a number of important variables. Each local score measures the
significance for the variable of concern. Often it can be decomposed into a risk component that
measures the likelihood of a potential error, and an influence component that measures the
contribution or impact of that error on the estimated target parameter. The local score for
variable jin record i can then be expressed as s;; = I;; X R;; with I;; the influence component and
R;; the risk component for variable j in record i. See, for example, Di Zio and Guarnera in this
issue, for an example of a local score function with risk and influence components. A record- or
unit-level score is a function of local scores, thatis S; = f(s;1, . . ., siy). The measure of risk is
commonly based on the deviation of a variable from a reference value, often a historical value
or stratum median. Large deviations from the reference value indicate a possible erroneous
value and, if it is indeed an error, a large correction.

Since the local score and the record score reflect the occurrence and size of outlying
values with respect to the reference values, the score can be seen as a quantitative measure
for an aspect of the quality of a record. In this sense it is a verification function (cf.
Section 4). Its purpose, however, is selection, and this can be accomplished by comparing
the scores with a predetermined threshold value and selecting the units with score values
higher than the threshold for manual editing. Alternatively, the units can be ordered with
respect to their score values and manual editing can proceed according to this ordering,
until some stopping criterion is met.

In practice we also see other, simpler selection functions being applied. The following
are some examples.

e A function that identifies units that are “crucial” because they dominate the totals in
their branch; selected units will be reviewed manually, whether they contain suspect
values or not (selection on influence only).
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e A function that selects influential units for which automatic imputation is not
considered an accurate treatment because some main variables are missing or
obviously incorrect; selected units will be recontacted.

e A function that selects noninfluential units for which automatic imputation is not
considered an accurate treatment because some main variables are missing or
obviously incorrect; selected units will be treated as unit nonresponse, for instance by
weighting techniques in the estimation phase after editing is completed.

e A function that selects units for which an automatic action has failed, for instance, if
the error localisation took too much time and the process was stopped without having
obtained a solution. Selected units can be treated as unit nonresponse or reviewed
manually, depending on their influence.

For some recent theoretical developments in the field of selective editing, see Arbués et al.
and Di Zio and Guarnera in this issue.

4. The Data-Editing Process

Much of the complexity in the design of a data-editing system is caused not by
mathematical difficulties relating to the underlying methods, but by combining the
implementation of those methods into a working process or supporting system. A typical
data-editing process consists of a mixture of domain-specific error correction and
localisation actions, a number of automated editing steps, and a possibility for manual
intervention on selected records. Each part of such a process has its own input, output,
and control parameters that influence how it can be combined with other steps to build up
a full process.

To design, compare and evaluate data-editing processes it is useful to have a common
terminology for the types of activities that are instrumental in realising the end result of a
data-editing process. In line with Camstra and Renssen (2011) we call these types of
activities statistical functions. In Subsection 4.1 below we propose a decomposition of the
overall data-editing process in a taxonomy of statistical functions that are characterised by
the kind of task they perform and the kind of output they produce. The effects of these
statistical functions can be evaluated by inspecting their characteristic output.

A statistical function describes what type of action is performed but leaves unspecified
how it is performed. To implement a statistical function for a specific data-editing
application (discussed in Subsection 4.2), a method for that function must be specified and
configured. It should be noted that the same statistical function can, and often will, be
implemented by several methods even within the same application. For instance, the
statistical function (or type of task or kind of activity) record selection can be implemented
by both a score function methodology and by graphical macro-editing.

An actual implementation of a data-editing process can now be seen as a collection of
implementations of statistical functions. The overall process can be structured by dividing
it into subprocesses or process steps, that each implement one or several (but related)
statistical functions executed by specified methods. Process steps are application-specific
but the statistical functions that they implement are much more general and are used to
categorise the kinds of activities implemented by the process steps. The granularity in
which a process is divided into process steps is, to an extent, arbitrary. For example, one
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may talk about a statistical process as the complete process from gathering input data to
publishing results, and divide that process into process steps using the GSBPM (UNECE
Secretariat 2009). In that model, data editing occurs as a single step. For our purposes
however, it is natural to define a more fine-grained approach.

The choice of methods to be used in the process steps and the order in which the process
steps are executed will depend on the properties and requirements of the specific
application at hand, but some general considerations regarding these choices are discussed
in Subsection 4.3.

4.1. A Taxonomy of Data-Editing Functions

Just like process steps, statistical functions may be separated on several levels of
granularity. In Figure 2 we decompose data editing hierarchically, in three levels, into
ultimately six low-level statistical functions.

At the first level of the decomposition we distinguish between functions that leave the
input data intact (compute indicator) and those that alter the input data (amend values).
At the second level, functions are classified according to their purpose. We distinguish
between indicators that are used to verify the data against quality requirements
(verification) and indicators that are used to separate a record or data set into subsets
(selection). Verification functions are separated further into functions that verify hard
(mandatory) edit rules (rule checking) and functions that compute softer quality indicators
(compute scores). The selection function allows for different records (record selection) or
different fields in a record ( field selection) to be treated differently. There is no separation
based on purpose for the amendment function; amendment functions are only separated
into functions that alter observed values (amend observations) and functions that alter unit
properties (amend unit properties) such as classifying (auxiliary) variables. This may be
interpreted as a decomposition based on a record-wise or field-wise action.

It should be recognised that there are many other dimensions along which one could
separate the types of tasks performed in a data-editing process. For example, Pannekoek

Compute

Data editing indicator

Verification Rule checking

Compute

scores

Selection Field selection

Record

selection

Amend
observations

Amend values

Amend unit
properties

Fig. 2. A taxonomy of data-editing functions. Each data-editing function has its own minimal input-output
profile which determines how they may be combined in a data editing process (Table 1)
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and Zhang (2012) distinguish between methods that can be performed on a per-record
basis (e.g., Fellegi-Holt error localisation, imputation with historical values) and actions
that need batch processing (e.g., error localisation by macro-editing, imputation with
current means). The point of view we take here is that we wish the taxonomy to abstract
from implementation issues. The lowest-level statistical functions defined here allow one
to define quality indicators for each function, in terms of their effect on data, performance,
expense, and so on, which are independent of the chosen statistical method or
implementation thereof. Below, the six lowest-level data-editing functions are discussed
in some detail.

Rule checking. This verification function checks, record by record, whether the value
combinations in a record are in the allowed region of the space of possible records. Such a
task may be done automatically, when the rules and possible reference data are available in
a machine-readable format, or manually, by expert review.

Compute scores. The score function computes a quality indicator of a record or field.
Examples of score functions are counting the number of missings in a record, determining
whether a field contains an outlier, or counting the number of edits violated by a field. The
output of score functions is often input for automated selection functions. Score functions
are rarely computed manually.

Field selection is used to point out fields in records that need a different treatment than
the remaining fields, for example because they are deemed erroneous. Selection may be
done manually by expert review, or automatically. Examples of automated methods
include detection of unit of measurement errors, and Fellegi and Holt’s method for error
localisation.

Record selection aims to select records from a data set that need separate processing.
This can be done automatically, for example by comparing the value of a score function to
a predefined threshold value. Manual record selection is commonly based on macro-
editing methods, such as sorting on a score function, reviewing aggregates, and graphical
analyses.

Amend observations. This function aims to improve data quality by altering observed
values or by filling in missing values. Many automated imputation and adjustment
methods exist, some of which have been discussed in Section 3. The amendment function
can also be performed manually, for example by data-editing staff who may recontact
respondents.

Amend unit properties. This function does not alter the value of observed variables but
amends auxiliary properties relating to the observed unit. In business statistics, this
function entails tasks like changing erroneous business classification codes (NACE codes)
and is often performed manually. Another commonly performed task falling into this
category is the adjustment of estimation weights for representative outliers.

Pannekoek and Zhang (2012) and Camstra and Renssen (2011) also proposed a
decomposition of statistical functions related to data editing. The former distinguish
between the verification, selection and amendment functions, while the latter also
distinguish calculation of score functions. The taxonomy in the current article further
completes the picture by assigning data-editing functions a place in a hierarchy based on
clearly defined separating principles (amend or not at the first level and select or verify at
the second level).
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4.2.  Specification of Data-Editing Functions

As mentioned in the beginning of section 4, each function in the taxonomy of Figure 2 can
be performed with several methodologies, and each methodology may be implemented in
several ways. The operationalisation of a function for a specific data-editing process can
therefore be made by documenting the input, the output, and the method. Indeed, Camstra
and Renssen (2011) propose such a specification model for general statistical functions,
shown in Figure 3. In principle, a data-editing process is completely determined once the
order of process steps and their specifications are known.

As an example, consider a simple record selection function that compares a score value
to a threshold value. The input consists of a score value s and a threshold value ¢, so the
data model for the input is R*. The method specification is the algorithm

IF (s > 1) return (TRUE) ELSE return (FALSE),

so the output data model is {FALSE, TRUE}.

The above algorithm is a very simple example of how a selection function may be
implemented. In our taxonomy, the work of Di Zio and Guarnera and Arbués et al.
presented elsewhere in this issue also falls into the category of record selection functions,
even though the methods described there are much more advanced. The most important
commonality between record selection functions is the type of output they produce,
namely a decision for each record on whether it should be selected or not. Regardless of
the method used, such an output can be represented as a boolean vector with the number of
records in the data set as dimension. On the input side, any effective record selection
function will at least need the data to be able to return a reasonable decision vector. At this
level of abstraction, even wildly different methods may be compared to support decisions
about which method to use in which process step. Indeed, the taxonomy described in this
article has been designed with such a purpose in mind.

Just like for the record selection function, it is possible to identify a minimal set of input
and output parameters for each data-editing function, regardless of the method that
implements it. Table 1 denotes this set of minimal in- and output parameters for every low-
level statistical function of the taxonomy. Any extra in- or output parameter used in a
particular process will be related to the specific method chosen to implement a function.
The taxonomy and input-output model presented above make no assumptions about the
type of data or type of rule sets. For example, the model leaves undecided whether each
data record has the same number of variables, or whether the data have a hierarchical
structure (as used in household surveys). Furthermore, there are no assumptions about the

Specification Specification of Specification
of data model statistical method of data model

| | |

Values of operational - Black box (sta- - Values of operational
variables (input) tistical method) variables (output)

Fig. 3. A model to specify the operationalisation of statistical functions (Camstra and Renssen 2011). Besides
statistical data, the values of operational variables include auxiliary information and control parameters at the
input side and process metadata and quality indicators at the output side
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Table 1. The minimal input and output for data-editing functions. The input data consist of N records, where the
number of variables may vary per record. Each record is subject to K rules

Function Input Output

Rule checking Data, rules N X K edit failure indicator
Compute scores Data N-vector of score values
Field selection Data, rules Field selection indicator
Record selection Data N-vector of subset indicators
Amend observations Data Data

Amend unit properties Unit properties Unit properties

type of rules used; they may be numerical, linear, nonlinear, categorical, of mixed type or
otherwise specified.

4.3. Combining Process Steps

An overall editing process can be seen as a combination of process steps, each consisting
of one or more statistical functions executed by specified methods. The choice of methods
that implement these functions, as well as the specifications of parameters or models
for these methods, will differ between applications and depend on the data to be edited,
availability of auxiliary data, output and timeliness requirements, and so on. Moreover, the
order in which process steps will be carried out is also application-dependent. However,
some general considerations about the composition of process steps in terms of statistical
functions, the order of application and the choice of methods will be outlined below.

A single process step can combine several functions that will always be applied
together. For instance, correction of generic and domain-specific systematic errors
typically involves the implementation of a field selection function by a method that detects
a specific systematic error and an amend observations function to replace the erroneous
value with a corrected one. Since the detection is always followed directly by the
correction action specific for the kind of error detected, it is meaningful to combine these
two functions into a single process step with data and rules as input and a field selection
indicator as well as modified data as output. The indicator reflects the detection part and
the modified data the amendment part.

Several process steps will often perform the same statistical function but with different
methods. In particular, amend observations refers to a large group of process steps that
each implement a different method to solve a different problem in (possibly) different data
values. An overall process will often include steps that perform the following amendment
tasks: correction of generic and domain-specific systematic errors, deductive imputation,
model-based imputation and adjustment of imputed values for consistency.

Although the ordering of process steps can differ between applications, there is a logical
order for some process steps. For instance, selection for interactive treatment itself can
occur at different stages of the editing process, but it is evident that for efficiency reasons
such a selection step should always precede the actual manual amendment of values. In
addition, if the selection is performed by a score-function methodology, the calculation of
scores must precede the selection step. Furthermore, automatic amendment steps will
usually start by exhausting the possibilities for solving systematic errors and deductive
imputation before approximate solutions by model-based imputation are applied.
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Timeliness of the results is an important requirement that influences the choice of
methods for the statistical functions. For surveys where the data collection phase extends
over a considerable period of time, it is important that the time-consuming manual editing
starts as soon as possible, that is, as soon as the first data arrive. Selection for manual
editing should then be based on a score function that can be evaluated on a record-by-
record basis without the need to wait until all or a large part of the data are available. On
the other hand, for administrative data or surveys with a short data collection period,
selection for interactive treatment can be done using macro-editing methods that by
definition use a large part of the data.

5. Numerical Illustrations

5.1. Introduction

In this section, we illustrate the effects of applying a sequence of automatic and manual
editing functions using two real data sets. Both data sets come from regular production
processes at Statistics Netherlands. The first example concerns data on Dutch childcare
institutions (Subsection 5.2); the second example concerns SBS data on Dutch wholesalers
(Subsection 5.3).

For both examples, we have identified the following possible process steps that can be
applied during editing.

1. Correction of generic and domain-specific systematic errors:
(a) Correction rules for falsely negative values
(b) Correction of uniform thousand errors
(c) Other direct correction rules
(d) Correction of simple typing errors
(e) Correction of sign errors
(f) Correction of rounding errors
. Automatic error localisation (under the Fellegi-Holt paradigm)
. Deductive imputation of missing or discarded values
. Model-based imputation of missing or discarded values
. Adjustment of imputed values for consistency
. Selection for interactive treatment
. Manual editing (interactive treatment)

~N N AW

The first six numbered steps were treated in Section 3 as part of our overview of automatic
editing methods. Step 7 is the only one considered here that requires real-time human input.
The other steps can be run automatically once they have been set up. As was suggested in
Subsection 4.3, a large number of different editing processes can be obtained by combining
some (not necessarily all) of the above process steps, possibly in a different order. In general,
different choices will have a different impact on the quality of the output data and
on the efficiency of the editing process. This will be illustrated in the examples below.
Some brief remarks on the implementation now follow. All the numerical
experiments reported below have been performed in the R statistical environment.
Definition and checking of edit rules can be done with the editrules package of De Jonge
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and Van der Loo (2012). Typing, sign, and rounding errors can be corrected, while taking
edit rules into account, with the deducorrect package of Van der Loo et al. (2011). The
deducorrect package also offers functionality to reproducibly apply user-defined domain-
specific actions, as discussed in Subsection 3.2. The term “reproducibly” here means that
every action performed on the records is automatically logged, while the user can
configure the conditional actions independently of the source code defining the data-
editing process. Error localisation for numeric, categorical or mixed data can be done with
the editrules package. See De Jonge and Van der Loo (2011) for an introduction.
Deductive imputation methods are again included in the deducorrect package. See Van
der Loo and De Jonge (2011) for a description. For model-based imputation a multivariate
regression method is applied, implemented in R. Imputed values are adapted using the
rspa package of Van der Loo (2012). The code used for selecting records for manual
editing and for repairing thousand errors is not part of any package and has been developed
for the purpose of this article.

5.2.  Data on Childcare Institutions

In this illustration we will show the effects of a sequence of automatic editing functions in
terms of the amount of errors detected and the number of resulting amendments to data
values. The data used for this example are taken from a census among institutions for child
day care in 2008. Apart from questions on specific activities, the questions and the
structure of the questionnaire are similar to what is typical for structural business statistics.
For this illustration a subset of the census data was used, consisting of 840 records with
45 variables. For these variables 40 hard edit rules were specified, of which 11 are
equalities, 27 are non-negativity edits and the remaining two are other inequalities. The
edit rules as well as the rules for detecting thousand errors and domain-specific generic
errors are subsets of the rules used in production.

We have applied the automatic process steps 1 through 5 listed in Subsection 5.1 to
these data. The results are displayed in Table 2. The second column of this table shows the
number of changed data values at each process step. In the third column are the numbers of
failed edits after each process step, which can be obtained directly from the failed-edits
matrix. Some edits cannot be evaluated for some records because the edit contains
variables with missing values in that record. The corresponding elements of the failed-
edits matrix are then missing; the number of such missing elements is listed in the column
Not evaluated edits. The number of missing data values is in the last column.

The first line of Table 2 shows that before automatic editing there are, in the whole data
set, 258 edit violations and 158 edits that cannot be evaluted because of 124 missing
values. As a first automatic step, 9 false minus signs are removed by a simple direct rule for
a variable that is not part of any equality edit. Obviously 9 non-negativity edit failures are
resolved by this action. The detection of uniform thousand errors is applied within the
revenues, costs and results section separately and 17 such errors are found. However,
the number of violated edits is increased by one. By looking at the difference between the
failed-edits matrix before and after the correction for thousand errors, it appears that the
newly failed edit is Total revenues — Total costs = Pre-tax result and that this occurs
because a thousand error was detected in the revenues and pre-tax result, but not in the
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Table 2. Numbers of values changed, edit violations and missings at each step of a sequence of automatic
editing functions

Changed Violated Not eval.

Process step values edits edits Missings
0. None 0 258 158 124
la. Rules for false minus signs 9 249 158 124
1b. Thousand errors 17 250 158 124
Ic. Other direct rules 43 252 158 124
1d. Simple typing errors 53 187 158 124
le. Sign errors 0 187 158 124
1f. Rounding errors 102 147 158 124
2. Error localisation 215 0 477 339
3. Deductive imputation 161 0 248 178
4. Model-based imputation 178 109 0 0
5. Adjustment of imputed values 144 0 0 0

costs. Records with thousand error corrections that break edit rules should be followed up
manually because falsely correcting a thousand error is bound to have influential effects
on estimates. The next step concerns the application of other direct rules, resulting in
43 corrections. Again, some of these changes cause edit failures that should be followed up
manually, not only to correct the data but also to see how these direct correction rules can
be modified so that they become consistent with the edit rules.

We now apply the algorithms for resolving simple typing errors, sign errors and rounding
errors discussed in Subsection 3.1.2. There are 53 typing errors detected and corrected, of
which 12 appear to be sign errors. These corrections are very effective in removing errors as
the number of violated edit rules is reduced by 65. After the correction of sign errors in
Step 1a and 1d, the algorithm for more complex sign errors (Step 1le) could not detect any
additional sign errors. Rounding errors (Step 1f) are also important since 40 of the edit
violations can be explained by such errors and correcting them with the algorithm mentioned
in Subsection 3.1.2 prevents the necessity of treating these violations by the computationally
intensive error localisation in Step 2. Separating the trivial rounding errors from other, more
important, errors also clarifies our picture of the data quality.

At this stage, the possibilities for correction of generic and domain-specific systematic
errors are exhausted. The remaining inconsistencies and missing values are resolved by
applying steps 2 through 5. Error localisation (Step 2) identifies 215 values that need to be
changed in order to be consistent with all edit rules. These values are treated as missing in
the following process steps. The increase in missing values also increases the number of
not evaluated edits to a great extent. To impute the missing values, deductive imputation
(Step 3) is tried first and succeeds in filling in close to half of the missing values with the
unique values allowed by the edit rules. For the remaining 178 missing values, the
multivariate regression method of Subsection 3.4.2 (Step 4) is applied. These imputed
values again result in edit violations. However, contrary to the situation prior to Step 2, the
violation of an edit rule is now not caused by a measurement error in some (probably only
a few) variables but by the fact that all model-based imputations are only approximations
to the real values. Therefore (Step 5) we adjust the imputed values as little as possible and
solve the 109 edit violations and a complete and consistent data set results.
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5.3.  Data on Wholesale

For a second illustration, we consider a data set of 323 records from the Dutch SBS of
2007. The data are on businesses with ten employed persons or more from the sector
wholesale in agricultural products and livestock. The survey contains 93 numerical
variables. These should conform to 120 linear edits, of which 19 are equalities.

In terms of the possible process steps listed in Subsection 5.1, the editing process that
was actually used in production consisted of Steps 1(abc) and 6, followed by Step 7 for the
selected records and by Steps 2, 4, and 5 for the rest. Selection for interactive treatment
was based on a score function for businesses with less than 100 employed persons.
Businesses with 100 employed persons or more were always edited manually. In addition,
the model-based imputations in Step 4 were obtained from a linear regression model with
one predictor separately for each variable. We use the outcome of this production process
as a benchmark.

The second column of Table 3 shows the mean values of twelve key variables in the
production-edited data set. The third column shows the corresponding means for the
unedited data (ignoring all missing values). Prior to editing, the observed means of all
financial variables are much too high, which reflects the presence of thousand errors in the
unedited data. Moreover, while the production-edited means satisfy basic accounting rules
such as Total operating revenues = Net turnover + Other operating revenues (apart from
rounding effects), the unedited means do not.

The above editing process involves a substantial amount of manual editing: the number
of records selected for interactive treatment was 142, or 44% of all records (representing
about 84% of total net turnover in the production-edited data set). We now look at two
different set-ups that involve less manual editing. The first alternative editing process is
almost entirely automated. It consists of the above numbered process Steps 1(abcdef ) and
2 through 5 (in that order). Step 7 is included as a fall-back to treat records for which
automatic error localisation fails. The second alternative process is almost the same, but
we add Steps 6 and 7 at the end, with a simple selection mechanism that sends all
businesses with 100 employed persons or more to manual editing. Note that both
alternative editing processes contain the deductive correction methods 1(def) and a
deductive imputation step, which were not used in production. These additional steps are
expected to improve the quality of automatic editing.

To compare the outcome of these alternative editing processes to our benchmark, we
simulated the results in R. In the implementation of the process steps, we mostly followed
the methodology originally used in production.

We only made changes to the model-based imputation and adjustment steps. For model-
based imputation, we did not use a separate regression model for each variable but instead
simultaneous regression with all variables, as explained in Subsection 3.4.2. For the
adjustment step, linear optimisation was used in production, but here we used quadratic
optimisation as implemented in the rspa package. Manual editing was simulated by
copying the production-edited values. The number of manually edited records under the
first alternative strategy was 4 (about 1% of all records, also representing about 1% of total
net turnover). Under the second alternative strategy, this number was 34 (about 11% of
records, but 55% of total net turnover).
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The rightmost columns in Table 3 show the means of key variables for both alternative
editing strategies. We see that the first alternative yields large differences with respect to
the benchmark for several variables. Moreover, with one exception, all differences are
positive. Thus it appears that for these data, relying completely on automatic editing does
not produce an acceptable result. By contrast, these second alternative yields values that
are close to the benchmark for all variables but one. For nine of the twelve key variables,
the relative difference is less than one percent. It is interesting to note that automatic
editing appears to have an adverse effect on the quality of the variable Employed persons
(FTE). This may be explained by the fact that the hard edits contain relatively little
information about this variable: it is only involved in two inequality edits, whereas the
other key variables are all involved in at least one equality edit.

The above results suggest that for this data set, some of the manual work could be
replaced by automatic editing without affecting the quality of the main output. However, a
more thorough analysis would be required before we can draw this conclusion. For one
thing, we did not take the sampling design into account. Moreover, other quality indicators
are important besides the unweighted means of key variables. The purpose of this analysis
was merely to illustrate the effects of different editing strategies on real-world data.

6. Discussion and Conclusions

In this article we have discussed the relation between automated and manual (selective)
data editing from three different viewpoints. The first viewpoint we take is that of the
source of error. As it turns out, data-editing staff spend considerable time editing data that
are not observed survey data. Often, classifying variables from the business register (e.g.,
NACE codes) have to be altered as well. The source of error (overcoverage) is then not a
measurement error of the survey but an error in the population register. The amendments
proposed by editors in such cases are usually based on unstructured information such as
websites. Moreover, such amendments often have consequences for other statistical
processes, for example when a centrally maintained variable (such as the NACE code)
needs to be adapted.

The second viewpoint we take is from the current state of the art in automated data
editing. The image emerging from the discussion and numerical examples is that
established automated methods tend to perform well for the majority of records, provided
that hard edit rules have been defined and sufficient structured auxiliary information is
available for the estimation of new values. Exceptions include mostly records of large
businesses; these usually have a more complex structure than small establishments and
data-editing staff often use external unstructured information to repair such records.
Obviously, automated methods are better suited for (computationally, mathematically)
complex calculations than data-editing staff. On the other hand, data-editing staff are
better at judging the violation of soft edit rules, often again by using unstructured auxiliary
information.

Thirdly, we have discussed the relationship between manual and automated data editing
from the point of view of process design. We have decomposed the data-editing process
into several types of tasks (statistical functions), which are independent of how they are
implemented: manually or automatically. This allowed us to separate the tasks which are
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currently easier to implement manually from those that may be implemented
automatically. Here, we find that record selection, possibly supported by macro-editing
tools, as well as judging and amending unit properties, are often performed manually.

Table 4 summarises the above discussion. We may conclude that currently, automated
methods serve very well to edit observed variables in business survey records of
establishments that are not overly complex (large) and are restricted by hard edit rules.
Automated methods are not yet suited to repairing records related to large, complex
companies, records under soft restrictions or performing amendments based on
unstructured data. Those tasks are still mostly performed manually. Of course, manual
editing of observed variables of simple (small) units based on structured information is
always possible; our point is that here the same quality can often be achieved more
efficiently with automated methods.

The decomposition of data editing into different statistical functions given in Section 4
allows one to assess a data-editing process on a task-by-task basis. This leads to a more
refined complementation of automatic editing by (selective) manual editing than what
emerges from the classical literature on selective editing. Evaluation of the results of
automatic editing tasks also enables one to select the best automatic method for a specific
task and thus minimise manual actions related to that task. Furthermore, the statistical
functions in the decomposition each have their own set of minimal, well-defined inputs
and outputs which are independent of the method used to implement the function. This
modular approach to data editing offers clear potential for the development of reuseable
components, yielding efficiency gains in process design.

To conclude, we see the following research opportunities. First of all, standardised
quality aspects of the statistical functions identified in Section 4 should be developed.
Such aspects could be, for instance, the fraction of false negatives or positives in the
selection of suspicious units or erroneous fields, the predictive accuracy of imputed values
obtained by some imputation method or the reduction in bias of estimates due to different
amendment functions. This, then, would allow data-editing processes to be compared in a

Table 4. Relative strengths and weaknesses of manual
and automated data editing

Editing mode

Aspect Manual Automated

Variable
Observed variable - +
Unit property + -
Edit rules
Hard edits - +
Soft edits + -
Use of aux. information
Structured - +
Unstructured + -
Type of unit
Simple - +
Complex + -
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standardised way and paves the way for further development of reusable components
based on various methodologies. Secondly, data-editing research should focus on areas
where automated data editing is currently less suitable (Table 4). Interesting fields of
research are the use of unstructured information to verify and/or amend data and the use of
soft edits in automated data editing. Some recent progress in the latter field was made by
one of the authors (Scholtus and Goksen 2012; Scholtus 2013). The use of, for example,
web-scraping or text-mining techniques in data editing remains largely unexplored.
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A Contamination Model for Selective Editing

Marco Di Zio" and Ugo Guarnera'

The aim of selective editing is to identify observations affected by influential errors. A score
function based on the impact of the potential error on target estimates is useful to prioritize
observations for accurate reviewing. We assume a Gaussian model for true data and an
“intermittent” error mechanism such that a proportion of data is contaminated by an additive
Gaussian error. In this setting, scores can be related to the expected value of errors affecting
data. Consequently, a set of units can be selected such that the expected residual error in data
is below a prefixed threshold. In the context of economic surveys when positive variables are
analyzed, the method is more realistically applied to logarithms of data instead of data in their
original scale. The method is illustrated through an experimental study on real business survey
data where contamination is simulated according to error mechanisms frequently encountered
in the practical context of economic surveys.

Key words: Statistical data editing; influential errors; finite mixture models; score function.

1. Introduction

Selective editing is based on the idea of looking for observations containing important
errors in order to focus the treatment only on them thus reducing the cost of the editing and
imputation phase (E&I), while maintaining a desired level of quality of estimates
(Granquist 1997; Lawrence and McKenzie 2000; Lawrence and McDavitt 1994). The
underlying assumption is that the true values for the selected units can be obtained through
follow-up or interactive treatment. In practice, observations are prioritized according to
the importance of errors expressed by the values of a score function (Latouche and
Berthelot 1992; Hedlin 2003), and units having a value of the score function above a given
threshold, are selected for a careful treatment.

The most commonly used methods to determine the scores are based on the difference
between observed and predicted values. This difference is composed of the possible
measurement error and the prediction error. When only raw data are available, traditional
methods do not allow the estimation of these two elements separately, hence scores are not
directly related to the expected errors. The consequence is that the value of the selective
editing threshold will not be directly interpretable as a level of accuracy of estimates of
interest and it will be difficult to find a stopping rule related to the expected level of quality
of estimates.

The introduction of a contamination model naturally leads to building a score function
as defined in Jader and Norberg (2005). It is defined in terms of a risk component
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(the probability of being in error) and an influence component (the magnitude of error),
and allows the estimation of the expected error associated with each unit. In particular, the
contamination normal model is characterized by peculiarities that make it useful for the
problems generally treated by selective editing. In fact, it is usually applied to deal with
gross errors (see Ghosh-Dastidar and Schafer 2006) and is based on a latent variable
addressing the status of error for each observation. The latent variable describes the
intermittent nature of the errors generally affecting surveys carried out by National Statical
Institutes (NSIs) where in fact only a part of the observations are affected by errors. In
order to make the model useful in practice, it is extended to deal with lognormal variables,
to manage the presence of auxiliary variables not affected by errors (for instance in the
case of administrative variables), and to cope with missing values. As far as incomplete
observations are concerned, usual methods may lack of possibility of computing a set of
consistent and comparable scores. In our setting, the score is coherently computed by
taking into account the relevant marginal distribution obtained from the estimated
multivariate distribution. In the proposed approach, the scores can be interpreted as
expected errors, and a threshold can be determined such that the expected error of the
target estimates due to residual errors left in data is below a predefined value. An algorithm
to select the units to be edited is also proposed. Although the contamination model, the
score function and the selection algorithm are presented as parts of a unique procedure,
they can be used separately in different selective editing strategies.

Some experiments showed that the procedure can be usefully applied even when there
are some departures from the model assumptions (Buglielli et al. 2011). It is currently used
in some Istat surveys such as the Building permits survey, the Structure of earning surveys,
and the Information and communication technology survey.

The selective editing procedure is modularly implemented in an R package named
SeleMix (Buglielli and Guarnera 2011) that is available on the R website (http://cran.
r-project.org/).

The article is structured as follows. The contamination model is described in Section 2
where, in particular, it is explained how to obtain predictions for each single observation
(Subsection 2.1). The algorithm to estimate the model parameters is illustrated in
Section 3. The use of the model in presence of missing data is presented in Section 4.
Section 5 describes the application of the contamination model in the selective editing
setting, and in particular a proposal for a score function and for a selection criterion is
given. In Section 6 we present an experimental application to illustrate the approach and to
empirically evaluate its properties. Concluding remarks are given in Section 7.

2. True Data Model and Error Mechanism

An important feature of the proposed model is that it explicitly takes into account the fact
that only a proportion of survey data are affected by errors, that is, the error mechanism has
an intermittent nature. Data may be partitioned in two groups: error-free data and
contaminated data, the membership of each unit being unknown. This naturally leads to
modelling the observed data through a latent class model, where the latent variable is a
binary variable to be interpreted as an error indicator variable. When the interest is focused
on the identification of gross errors, one possible approach consists in specifying


http://cran.r-project.org/
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a distribution for the observed data as a mixture of two probability distributions
corresponding to error-free and contaminated data respectively. This is the approach
followed, for instance, by Ghosh-Dastidar and Schafer (2006), that uses the membership
posterior probabilities to asses the degree of outlyingness of each observation. In the
context of selective editing however, one is mostly interested in identifying errors having
high impact on some estimate of interest, rather than in identifying implausible
observations. Thus there is the need to estimate the error magnitude. This can be done if
the distribution of the “true” unobserved data and the error mechanism are specified
separately. In particular, the error mechanism is specified via the conditional distribution
of observed data given true data. In the following, the true data model and the error
mechanism are described in detail.

We suppose that true unobserved data are independent realizations of p-variate random
vectors ¥; = (Yyy,.. .Y,),i=1,...,n, whose distributions are Gaussian with mean
vectors p; and common covariance matrix . Furthermore, it is assumed that on each
sampled unit i a (possibly empty) set of g covariates x; = (x;1, . . . ,x,-q)/ is also available
and that w; = B'x;, where B is a ¢ X p matrix of unknown coefficients. The previous
hypotheses can be expressed in matrix form as

Y'=XB+U (1

where Y is the n X p true data matrix, X is the n X g covariate matrix, and U is the n X p
matrix of normal residuals whose rows are independent realizations of Gaussian random
vectors with zero mean and covariance matrix 3.

Hereafter, the notation f(v) will denote the generic marginal probability distribution (or
density) for the random variable V. Analogously, f(v, w) and f(v|w) will denote joint and
conditional distributions involving variables V and W. Thus, for instance, for the ith unit,
f(}) and f(u;) are the marginal distributions of the true value and of the residual
respectively. From the previous assumptions:

f(yf)zN(yf”‘“HEL f(ui)zN(ui;Oaz)a i=],...,f’l, (2)

where, as usual, N(y; m,2) denotes the Gaussian density with mean vector m and
covariance matrix 3.

We assume that presence of errors in data is governed by n independent Bernoulli
random variables I;, (i = 1, . . ., n) with parameter 77, that is, I; = 1 if an error occurs on
unit i and /; = 0 otherwise. Furthermore, given that an error is present on the ith unit (i.e.,
given the event {I; = 1}), its action is described through an additive random noise
represented by a p-variate random Gaussian variable € with zero mean and covariance
matrix 3, proportional to 3. If ¥ denotes the data matrix associated with the observed
(possibly contaminated) data and € the error matrix whose ith row is eﬁ, we can formally
express the error mechanism as:

Y=Y +Ie f(€)=N(€:;0,%), T =(a— DX, 3

where « is a numeric constant greater than 1, and I is a diagonal n X n matrix whose
diagonal elements are the Bernoullian variables Iy, . . ., I,. Equivalently, we can specify
the error model through the conditional distribution:
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FolbH =0 - mdy —y") + aN(y;y", 2o). 4)

where 7 (mixing weight) represents the “a priori” probability of contamination and
S(f' — ¢t) is the delta-function with mass at .

In the previous model, the crucial aspect is the intermittent nature of the error implied by
the introduction of the Bernoullian variables ;. Due to this assumption, it is conceptually
possible to think of data as partitioned into the two groups of error-free and contaminated
data, and to estimate, for each observation, the posterior probability of group membership,
i.e., the probability of being error-free or contaminated. This is the key aspect of the
proposed approach to selective editing. In fact, as we will see, differently from most
selective editing methods, the ‘“suspiciousness” of each observation is naturally
incorporated in the model through the posterior probabilities.

Once the true data distribution and the error mechanism have been specified, the
distribution of the observed data can also be easily derived through multiplying the true
data density by the error density (4), and integrating over y*. The resulting distribution is:

fyd) =0 = mN(yi pi, 2) + 7Ny pi, o). 5)

Expression (5) represents a mixture of two regression models having the same coefficient
matrix B and proportional residual variance-covariance matrices. This distribution can be
estimated by maximizing the likelihood based on n sample units via an ECM algorithm
(see Meng and Rubin 1993). Details are provided in Section 3.

2.1. Predictions

The contamination model can be used to obtain predictions or “anticipated values” for true
unobserved data. The separate specification of true data model and error model allows,
contrarily to the direct specification of the observed data distribution, to derive, for
i=1,...,n, the distribution f(y;|y;) of the true data conditional on the observed data,
where we have suppressed the reference to the X variates in the notation. A straightforward
application of the Bayes formula provides:

i) =n(y)dy; —y) + n(y)ING: i, 2) (6)
where

g =it bp) g (1 _1)2,

[ed (o4

8(yl’-‘ —y;) is the delta function with mass at y, and 7,(y;), 7(y;) are the posterior
probabilities that a unit with observed values y; belongs to the correct or erroneous data
group respectively:

(I — WN(yi; pi, %)
(1 = MN(yis pi, 2) + 7N(yis pi, @)
n(y) = Pr(y: #y;ly) =1 — 1y,

i=1,...,n

Ti(y:) = Pr(y; =yily) =
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In order to make the meaning of Formula (6) clear, let us consider the univariate case
in absence of covariates (E(Y") = w). Let o’ 02E denote the variances of true data
and errors respectively, and define o = (0'2 + 025)/ o?. Then it is easily seen that the
mean [, of the second component of the mixture (6) is given by
(o-e_zy + 0'_2,u) / (0'_2 + 0';2). In other words, given that the observed value y is not
correct, the expectation of the corresponding true value is a weighted mean of the observed
value y and the unconditioned mean u with weights proportional to the inverse of the
variances o and o2 respectively. Moreover, the variance ¢° = (o2 + 0'5_2)71 is lower
than both o2 and of, that is, the knowledge of the error mechanism reduces the uncertainty
about y* and the knowledge of the true data model reduces the uncertainty about the
evaluation of the error y — y* that actually occurred.

It is natural to define predictions in terms of the conditional expected value
¥i = E(y;ly:). From (6) it follows:

yi=7n(yyi +n(yd@;, i=1,...,n @

Correspondingly, we can define the expected error as
Yi—¥i=ny)y: — L).

The last expression makes it natural to interpret 7, and y; — f; as “risk component”
and “influence component” respectively to be considered in the score function
definition. In practice, parameters involved in expected errors are unknown, and have to
be estimated. The algorithm to obtain maximum likelihood estimates (MLE) of the
parameters is described in Section 3, and their use in a score function is illustrated in
Section 5.

We remark that in the context of economic surveys, when positive variables are
analyzed, logarithms of data instead of data in their original scale are often modeled
through a Gaussian distribution. The above methodology can be easily adapted to the
lognormal case. In this case the error model assumed for data in original scale is
multiplicative; more precisely, contaminated data are related to true data by means of the
relation

Z=17"e

where € ~ N(0,X,).

Fori=1,...,n,letY; = InZ;,Y; = InZ;, where Z; and Z represent the variables
associated with true and contaminated data respectively, and Y;,Y; are modeled as
previously illustrated (Formulas 2—6). The distribution of Z given z is:

f@lz) = 1i(In @)z — z) + (I @)ILNGE;; fii, 2), ®)

where LN(-; i, %) denotes the lognormal density with parameters p and 3.
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3. Estimation

In this section, the algorithm to obtain MLEs of the model parameters is described.
The log-likelihood to be maximized is:

> logfiyn,
=1

where
filyd) = A = WN(yi; i, 2) + 7N(yi; i, a2,

and m; = B'x;. An ECM algorithm is used and it consists in repeatedly applying, until
convergence, the following steps:

E-step
iy = (1 — mMN(yi pi, 2)
Y (1= Ny piy 2) + TNy i, o)
ny)=1-—7(y)
i=1,...,n
CM-step

(M1) update the mixing weight ()

n

= %Z m(yi)

i=1
(M2) update regression parameters (B)
B=X'0X)"'X'QY
(M3) update covariance matrix (%)

_ (Y~ XB)Q(Y — XB)

n

3

(M4) update variance inflation parameter (o)

trace{(Y — XB)'w(Y — XB)X "'}
a =
qm

where:

'TD
o

and TiD denotes the diagonal matrix of which the ith diagonal element is 7;(y;), j=1,2.
Note that, in (M1)—(M4), maximization with respect to model parameters is not
simultaneous but conditional on the other parameters remaining fixed. This make the
convergence of the algorithm, convergence slower than it would be in a genuine EM
algorithm. In order to initialize the algorithm we use as starting points for B and % the
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estimates of the corresponding parameters obtained through ordinary linear squares (OLS)
based on all data. A random value for 7 in the interval [0.6, 1] is chosen, and « is
initialized with some reasonable value, for instance o € [5, 10].
In case of log-normal data, the ECM algorithm has to be applied to logarithms of data.
In the following, the MLEs will be denoted by 7?',1}7 ﬁ:, &. Analogously, 7i(y;), 72(y:)
and ﬁi will denote the estimates of 7(y;), m(y;) and fi;.

4. Incomplete Data

The previous methodology can be easily extended to situations where observed data are
incomplete and the nonresponse mechanism is assumed to be MAR. According to the
usual notation for incomplete data, the equality ¥; = (Y;,,Y;,) means that the random
vector ¥; can be partitioned in two subvectors Y; ,, Y; ,, corresponding to the observed and
missing items respectively for the ith unit. The partition induces a similar decomposition
for the starred variables: ¥; = (¥;,,Y;,). Note that by definition, the ¥ variables are
never observed, so that partitioning is determined only by the missing pattern of the
contaminated variables. According to the partition of ¥ and ¥ vectors, we obtain the

partition of all relevant vectors and matrices. The matrix 3, can be partitioned as:
2()0 Eom
2 =
E}‘Vl{) 2l‘}‘tl’l’l
so that, analogously to the complete data case, we can define matrices i,,,, and imm as
(1-1/0)%,, and (1 — 1/a)X,,, respectively.

In the same manner, for each missing pattern, we can partition the matrix B as
B = [B,,B,,], where the columns of matrices B, and B,, correspond to observed and

missing variables respectively. Furthermore, fori =1, . . ., n, let:
_ Yio+ (= Dpmio) Yim + (@@= Dpim)
Mio =B/ x:; pim=B,xi; fli,=—"" DL P = S
o a
Our goal is to estimate, for i = 1, . . ., n, the conditional distribution of Y}k givenY;,.
We have:

FDiolyi o Y Or i O]
f(yi.o) '

f(y;k |yi,o) Zf()’;my;m |yi,o) = C))

From the assumed error model in Formula (3), each observed variable, conditionally on
the corresponding true variable, is independent of all other true variables, thus we can
rewrite (9) as

FYiolyi i)

f(y, |yi,0) = f(yi,o)

Oy (10)
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The fraction in (10) is the conditional density of Y;'k,o giveny;, and can be obtained from
Formula (6) of Subsection 2.1:

( iUl ;‘ko) ;‘ko) # # * <
W :f(.yiﬁg Iyi,n) = TI(yi‘o)‘S(yiﬁu - yi,o) + Tz(yi,o)N(yi,o; ﬂi,o» zon)-

Thus, we can write:

FOiyio) = (i) 13 yio) + T2(¥io) 20} [Yio),

where
F1071yio) = 8037, = ¥iod (¥ Wl¥i)) = 807, = ¥io (i mlyio) (11)
L2035 1¥10) = NV o3 o, 200 (Vi lyio)- (12)

Both conditional densities in (11) and (12) can be obtained from that of a bipartitioned
multivariate normal distribution. The density (11) can be directly derived from the true-
data distribution (2). The density fz(y;k | ¥i,0) is normal, but the derivation is somewhat more
involved. It is thus possible to obtain closed expressions of the expected true values given
the observed ones. The adaption of these results to the log-normal distribution is
straightforward. All the details are given in the Appendix.

As far as parameter estimation is concerned, we have used the ECM algorithm
described in Section 3 on completely observed data. This approach is a suboptimal and
could be properly modified in order to take into account also incomplete observations. The
adaption of the ECM algorithm is a topic for a future study.

5. Selective Editing and Score Function

The score function is the main tool to prioritize observations according to the impact of
errors on target estimates. It is natural to think of the score function as an estimate of the
error affecting data. The estimate is generally based on comparing observed with predicted
values, taking into account the probability of being in error (suspiciousness). The latter
element arises from the implicit assumption that only a certain proportion of data is
affected by error, or, from a probabilistic perspective, that each measured value has a
certain probability of being erroneous. When the degree of suspiciousness is not taken into
account a large proportion of false alarms is expected, as noted in several case studies by
Norberg et al. (2010).

Prediction and suspiciousness are usually combined to form a score for a single variable,
named local score. An example of local score for the unit i with respect to the variable Y;
when the target quantity to be estimated is the total t; = Zf\’:ly; in a population P of size
N is:

_ piwily = 9l

ref
g

Sij

where p; is a degree of suspiciousness, y;; is the observed value of the variable Y; on the ith
unit, ¥;; is the corresponding prediction, w; is the sampling weight, and t;gf is a reference

estimate of the target parameter t; A review can be found in De Waal et al. (2011).
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When the interest is on more than one variable, the local scores can be combined to form a
global score GS;, examples of global scores are GS; = Z; S;» or GS; = max;Sj;, see
Hedlin (2008).

The global score is used to evaluate the impact on the target estimates of the errors
remaining in the unedited observations. To this aim, observations are ordered by their
global score and all the units with a score above a threshold value are selected. The
threshold should be chosen so that the impact on the target estimates of the errors
remaining in the unedited observations is negligible.

The evaluation of the impact of errors remaining in data and so of the threshold is
generally done through a simulation study based on raw and edited data from a previous
occasion of the same survey (De Waal et al. 2011). This approach is based on the
assumption that the edited data can be considered as true data and that the error mechanism
and the data distribution are the same in the two survey occasions. Moreover it cannot be
applied when raw and edited data from previous occasions of the survey are not available.

In our setting, the introduction of a model allows to define a score function that can be
interpreted as an estimate of the expected error of the observation, and consequently the
threshold value 7 can be directly linked to the level of accuracy of the estimates of interest.

The proposed score function for the total t;“ is based on the relative individual error for
the ith unit with respect to the variable Y;. The latter is defined as the ratio between the

(weighted) expected error and the reference estimate t;ef of the target parameter t;-“, that is

~ wilyy — 9p)
rij—tr—ef,
J

13)

where the prediction y;; for the variable Y; on the ith unit is obtained plugging in the MLE
of the parameters in the conditional expectation as expressed in Formula (7). The local
score function is defined as

Note that, the estimated expected errorisy; — y; = H(y:)(y; — ﬁi), that is the product
of the probability of being in error, 7, and the difference (y; — ﬁi) between the observed
value and the expectation of the true value conditional on the event that y; is contaminated.
Hence, S;; can be seen as composed of a “risk component” #>(y;) and an “influence
component” wi(y; — f,).

In the next paragraph, an algorithm for the selection of units to be accurately edited is
described. For i = 0,1, . . .,n, let us define R;; as the absolute value of the expected
residual relative error for the variable Y; remaining in data after removing errors in the first
i ordered units (when i = 0 no observations are selected), that is R;; = }ZZ> ; rkj|. Once an

accuracy level (threshold) 7 is chosen, the selective editing procedure consists of:

1. sorting the observations in descending order according to the value of S;;

2. finding n, = n.(n) such that n, = min{k™ € (0,1, . . . ,n)|Ry; < m, Vk =k"}, that
is, selecting the first n, units such that all the residual errors Ry; (for a given j)
computed from the (n, 4 1)th to the last observation are below 7.
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This procedure implies that the absolute value of the expected difference between the
estimator t computed on edited data and the estimator t computed on true data is below
the accuracy level nt "/ Furthermore, Sy <2m, Vk > n, for each unit not revised,
implying that also the error at micro level is bounded.

The algorithm described so far is easily extended to the multivariate case by defining a
global score function GS; = max ;S;;. The two-step algorithm is:

1. order the observations with respect to GS; (decreasing order);

2. find n, such that n, = min{k™ € (0,1, . . . ,n)lmax;Ry; < m, Yk =k"}, that is,
select the first n, units such that all the residual errors Ry; computed from the
(n, + 1)th to the last observation are below 7.

The above accuracy properties are still valid for all the variables. In fact,
‘E(l - )’ <, j=1,.,0

and Sy; <27, Vk>n,j=1,...,J.

We remark that different values of the parameter 7 can be set for the analyzed variables
in order to take into account their possible different importance.

The reference estimate t 7 in Formula (13) can be computed by using the predictions J;;
obtained by the contammatlon model,

Aref Z lel]

As an alternative, reference estimates can be obtained by using data from a previous
survey occasion.

6. Application to Real Data

In this section we describe an experimental evaluation based on data from the 2008 Istat
Survey on small and medium enterprises. The application refers to the subset of enterprises
in the Nace Rev2 sections B, C, D and E corresponding to aggregation of economic
activities in Manufacturing, mining and quarrying and other industry. This group of units
(N =5,399) has been used as the reference population (U) and for this population the
variables turnover (X) and labor cost (Y) have been used, assuming that the available data
are error-free. Errors are artificially introduced into the Y variable according to some error
mechanisms frequently met in the context of NSI surveys; they are explicitly described in
the next paragraphs. We suppose that the population parameter to be estimated is the total
of the variable Y. The variable X is used as a covariate in the contamination model to
obtain predictions for Y. The Gaussian contamination model is assumed for log-
transformed data, according to Formula (8).

A Monte Carlo study based on 1,000 iterations has been carried out to study the
performance of the proposed selective editing strategy. Each iteration of the Monte Carlo
experiment consists of the following steps:
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1. Sampling
Draw a simple random sample without replacement (srswor) s, of n, = 1,000
observations from the target population U.

2. Data contamination
e Multiply Y values by 1,000 in 1% of data.
e Swap the first two digits of Y values in 2% of data.
e Swap the last two digits of Y values in 2% of data.
e Replace the Y value with the value “1” in 2% of data.

3. Model estimation and score computation

Compute on the logarithm of data the MLEs of the model parameters and use them to
calculate the score function (14) for each unit. Order observations accordingly. In order
to assess the impact of the risk component 7,, a score function based only on the
influence component y; — ﬁ,l. is also computed.

4. Selective editing

Given the threshold 7, the most influential observations n, are selected according to the
procedure described in Section 5. In an alternative experiment, we have selected n;
observations according to an analogous procedure where the score function is based
only on the influence component, as described in the previous step. The selected units
are replaced with the corresponding true values.

5. Target estimates
Compute the Horvitz-Thompson estimates of the variable Y on the true data (?;), on the
corrupted data (ty) and on the two sets of edited data, that is, and I

The results are summarized through the empirical relative root mean squared error
(RRMSE) and the empirical relative bias (RB) based on the 1,000 Monte Carlo
realizations 7, 2 ty(i), ; @ and te(’) (i=1,...,1,000) of the three estimators in Step 5. The
error is to be 1ntended as dev1at10n from the estimate based on true data (7 (l) , because we
are interested in evaluating the effectiveness of the methods regardless of the sampling

error. Thus, for instance, for the estimator ?y(i) RRMSE and RB are defined respectively as:

| L000 /50 _7® 2
RRMSE = J
1,000 Z ( i Q) )

and

1,000 A(t) 3 (r
)
RB = 1 0002 A(z)

Empirical RRMSE and empirical RB are reported in the 3rd and 4th column of Table (1)
according to different threshold levels 7). The efficiency of the procedure is measured by
comparing the percentage of selected units n,% with n;%, and with the percentage of
observations n..% we would obtain by using true values as predictions, that is, by
replacing the expression in Formula (13) with (y; — y) /?: The average percentage of
selected units (n,%) is also reported in the last column of the table.
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Table 1. Empirical RRMSE, empirical RB of the estimates computed on contaminated and edited data, and
average percentage of edited units according to the threshold n

~e

n [ i ?; 1+ % n,% 1%
0.05 RRMSE 10.882 0.016 0.011 1.0 1.0 12.1
RB 9.893 —0.006 0.005 - - -
0.01 RRMSE 10.542 0.006 0.001 1.7 2.4 61.0
RB 9.641 0.002 0.000 - - -
0.005 RRMSE 10.910 0.005 0.000 2.4 3.1 71.0
RB 9.984 0.002 0.000 - - -

The impact of errors on the estimates is particularly harmful; in fact the RRMSE
computed on observed data ranges from 10.54 to 10.91. After the selective editing
procedure, the RRMSE dramatically decreases, and its value is (on average) below the
accuracy level required and expressed by 7. As far as the efficiency is concerned, the
results show that n, is close to the number of selected observations n,. that would be
selected in the ideal situation in which true data were known. Based on the comparison of
n, with n; we can note that not taking into account the risk component leads to the
selection of a much higher number of observations.

These results are important because they show that the editing procedure performs
satisfactorily even though data clearly do not satisfy the assumptions of the model; in
particular the error mechanism is clearly far from the normality assumption.

In order to obtain a picture of some important parameters of the procedure, a single
Monte Carlo realization is described in Figure 1 and Figure 2.

In Figure 1(a) outliers and selected observations according to i = 0.01 are reported
on the scatter plot of contaminated log data. An observation is considered an outlier if

(a) Outlier and Influential (b) Contaminated and Selected
* OS 0 * CS 0
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| = 0S | = CS
27 os B ° 27 s B
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15 B N 15 A ¥ 4
o S A
¥ &0 af
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5 10 15 20 5 10 15 20
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Fig. 1. Outliers, contaminated and selected observations in logdata
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Fig. 2. Estimated vs. true residual error

the estimated conditional probability of being in error 7,(y;) is greater than 0.5.
Observations classified as outliers and not selected are denoted by OS, selected and not
outliers by OS, as both outliers and selected by OS. The remaining units that are not
selected and not outliers are denoted by OS.

Figure 1(b) shows contaminated units and selected observations. Observations that are
contaminated but not selected are denoted by CS, not contaminated units that are selected
by CS, contaminated and selected observations by CS. The remaining units that are not
selected and not contaminated are denoted by CS.

The estimated and true residual errors are reported in Figure 2(a) for the first 35
observations, while in Figure 2(b) the same residual errors are reported from the 15th
observations onward in order to zoom in and avoid masking scale effects. The horizontal
dashed line is the threshold and the vertical dashed line corresponds to the number of
selected units in this experiment (n, = 32).

Figure 2(a) and Figure 2(b) show that the estimated residual errors are close to the true
residual errors. It is worth noting that the accuracy of the estimate is below the threshold
even though many errors are left in the data (see Figure 2), as it is required from a selective
editing procedure. As far as the outliers are concerned, it is interesting to note that not all
the outliers are considered influential by the procedure, and on the other hand some
selected units are not outliers. The distinction is due to the impact of the estimated error on

the estimates.
7. Conclusions

In this article a model-based approach to selective editing is proposed. The considered
model is referred to in the literature as a contamination model and it is typically used to
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detect gross errors. The introduction of a model for both true data and error mechanism
makes it possible to define a score function that can be interpreted as an estimate of the
error affecting data. This allows the relation between the choice of a threshold for selection
of the units to be reviewed and the level of accuracy required for the estimates to be made
explicit. According to this peculiarity, an algorithm to select influential errors is proposed.

Since the remaining uncertainty due to the unedited data can be properly estimated
under the model-based approach based on latent classes, it is possible to determine a
threshold for the score function conditional on the actual sample observations of the
current survey. By contrast, traditional methods do not assume an explicit measurement-
error model and the threshold value for the score function is usually set based on edited
data from previous surveys. Since the error mechanism and the data distribution do not
remain exactly the same over time, the remaining uncertainty of the current unedited data
can only be heuristically controlled.

The main advantages of the proposed approach are due to the introduction of an explicit
model for true data and error mechanism, and of course the limits lie in the validity of the
hypothesis on which the model is based. Nevertheless, the experimental studies carried out
in this paper suggest that the use of a Gaussian contamination model can be usefully
applied also when data and error mechanism deviate from the model assumptions,
especially when data are contaminated by gross errors.

An implication of the error model described is that errors on different items are not
independent of each other; this means that the intermittence nature of the error is at record
level and not at variable level. Further studies should be devoted to study more general
models able to encompass this assumption.

The use of edits in such a procedure is an open issue. However, some remarks are
needed in this respect. Soft edits such as ratio edits are implicitly taken into account by the
procedure, since the analysis of anomalous relationships between variables is the core of
the proposed approach. By contrast, it is not easy to treat hard edits consistently in the
model, and further analysis should be devoted to this aspect.

The editing described in the article can be classified as “output editing”, meaning that a
certain amount of data from the current survey is needed to estimate the model. However,
it can also be used from an “input editing” perspective, in situations where the model is
applied to a previous survey occasion, and the estimated parameters are used to select
influential units in the current survey.

Finally, even though the article describes a strategy composed of a latent class model
for predicting data and an algorithm to select influential units, they can be used
independently of each other. In fact, parameter estimation, computation of predicted
values and selection of influential errors are separately implemented in the R package
SeleMix.

Appendix
The density in (11),

S17io) = 80y, = i Y1y = 807, = il i ulVio),
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is:
fl(yjlyi.,o) = S(yjo - ylﬂ,ﬂ)N(y;m; @Xm,ilo + Bml(}yi’m Emlll)-
In the density (12),
F20750) = N Ao, S0 07,57,),

the factor f( y;m [yio) is the true-data conditional distribution corresponding to the missing
pattern being considered, and can be derived from the true-data multivariate Gaussian
distribution in Formula (2):

f(yzmlyzg) = N()’l*m, Ay ilo + Bmloyim 2mlo)v

where

—1 -1
A ilo = Mim — Bmlo”‘i,m Bmla = 2moz'm) 2mlo = 2'mm - 2'maz(m Eom~

In order to obtain an explicit expression for the second density f2(y;|y;,), it suffices
to observe that N(Y; ,; fior 200)N; i Qilo + BmloYios 2mlo) is the factorisation of a
multivariate Gaussian density N(y; .,y ,,; i, %) of which the parameters are:

, _ Eoo i:()m
i = [ﬂ;,m (am,ilo + Bm|ﬂlj’is0)l] ’ r= S ’

where:

a—1

S0 =30 = %00
S0 = £y = ButoFoo = Zno2y Lo = L%,
DI SRR 0 I T

S TR 0 SHNILANLS 0 e

-1
S om-

00

= 2mm - lzmoz
83

From the previous formulas it follows that the expected value of Y; conditional on the
observed value y;, is:

EYlyio) = 11(¥yio)E1i + 72(yi0)Ea,
where
Eui =1y, (@0 + BuaYio)] = W0 (Bim + Buto(Yio — mi0)']

Es = [, (@0 + Butohio)'1 = U, o, (i + Bo(io — 1io))'].
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The case of incomplete log-normal data can also be easily treated, in fact with a slight
shift of the notation and letting y; o = In(z;,) we have:

E(Z}|zi,) = 1i(In(z;)E%; + m(In(z;,))ES;,

where:
EL _ 1 Ed 1 Ed
i = |eXp| Yio T E 00 | 5 EXP| Qpilo Tt Bmloyi,o + E m|0
. i 1 . / i 1 iy /
E2i = |€Xp| Mi,o + 5200 9 exp am,ilo + Bmlol-"i,o + Ezmw )

and 3¢ denotes the vector of the diagonal elements of the matrix 3.
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Aspects of Responsive Design with Applications to
the Swedish Living Conditions Survey

Peter Lundquist' and Carl-Erik Sirndal®

In recent literature on survey nonresponse, new indicators of the quality of the data collection
have been proposed. These include indicators of balance and representativity (of the set of
respondents) and distance (between respondents and nonrespondents), computed on available
auxiliary variables. We use such indicators in conjunction with paradata from the Swedish
CATI system to examine the inflow of data (as a function of the call attempt number) for
the 2009 Swedish Living Conditions Survey (LCS). We then use the LCS 2009 data file
to conduct several “experiments in retrospect”. They consist in interventions, at suitable
chosen points and driven by the prospects of improved balance and reduced distance.
The survey estimates computed on the resulting final response set are likely to be less biased.
Cost savings realized by fewer calls can be redirected to enhance quality of other aspects
of the survey design.

Key words: Household surveys; nonresponse; auxiliary vector; register variables; stopping
rules; balance indicators; representativeness; R-indicator.

1. Introduction

Large nonresponse is typical of many sample surveys today. This can be a serious
detriment to survey quality. Nonresponse causes systematic error, called bias, in the
survey estimates. The purpose of this article is to define and apply new tools, in the spirit of
responsive design, to the Swedish Survey of Living Conditions (LCS), so as to improve the
data collection for this important survey, which has become affected by high nonresponse
in recent years.

An extensive literature is devoted to survey nonresponse and its consequences. In
dealing with the problem, statisticians need to consider (a) measures to be taken at the data
collection stage, and (b) measures to be taken at the estimation stage.

With the data collection completed, the estimation stage begins, and the statistician’s
task is to produce estimates that are properly adjusted for the nonresponse bias still
remaining, despite efforts to achieve balance or representativity at the data collection
stage. The objective at the estimation stage is to achieve the best possible reduction of a
nonresponse bias that can never be completely eliminated. One way to do this is by
adjustment weighting, through calibration on selected auxiliary variables. Nonresponse
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weighting adjustment has been studied in several publications, including Sédrndal and
Lundstrom (2005, 2008, 2010), Sédrndal (2011b).

The focus in this article lies on the data collection. The nonresponse rate measures one
aspect of the data collection. It has become increasingly clear that the nonresponse rate by
itself is not suitable, or at least not sufficient, for effective monitoring of the data
collection. For example, it may be wasteful to continue a data collection according to an
unchanging scenario driven primarily by the desire to obtain the highest possible response
rate in the end, or to reach, by a costly and unrelenting effort, a predefined rate of response,
such as 70% for example.

Wagner (2012 p.557) expresses the dilemma as follows: “To the extent that response
rates are not a good indicator for nonresponse bias, decisions about data-collection
activities or post-survey adjustments that are made based on the response rate will be
inefficient, biasing or both. Something is needed to fill this gap between response rates —
which are known — and nonresponse biases — which are unknown, but are the thing about
which we are really concerned.” In the typology of data sources in Wagner (2012), the type
that describes our approach is “the response indicator and frame data/paradata.”

Two important recent concepts with implications for this article are adaptive design
and responsive design. Bethlehem et al. (2011) regard responsive design as a special case
of adaptive design.

At the present stage of development, adaptive design appears to refer mainly to situations
where treatments applied to sampled elements are identified prior to the start of the data
collection, although they may also be revised or modified during the data collection.

Responsive design is an adaptive approach where available information is used to
modify the data collection for the remaining cases. The data collection may thus involve
two or more phases, with decisions taken underway about subsequent phases. The general
objectives of responsive design are formulated in Groves and Heeringa (2006). A number
of applications of related approaches have subsequently appeared. Options for responsive
design in a Canadian setting are discussed in Mohl and Laflamme (2007) and Laflamme
(2009). Work on the development of adaptive designs has been presented for example
in Wagner (2008). The present article draws mainly on the ideas of responsive
design. Groves and Heeringa (2006) use the term “phase capacity” for “the stable
condition of an estimate in a specific design phase”. When phase capacity has been
reached in a given phase, it is no longer effective to continue data collection in the same
mode or phase; there is an incentive to modify the design, if data collection is to be
continued at all.

Several directions have emerged in recent years in research on adaptive designs.
The question whether a definite relationship exists between nonresponse rates and bias in
the estimates is reviewed in Groves (2006). A meta-analysis on nonresponse studies is
reported in Peytcheva and Groves (2009). The conclusion, somewhat pessimistic about
the bias-reducing effect of demographic auxiliary variables, is that there is no strong
evidence that variation in response rates across sample groups can help reduce biases in
the study variables.

In the Scandinavian countries, the choice of auxiliary variables is much broader.
Indicators for the data collection were developed in Schouten et al. (2009) and in Sidrndal
(2011a). We apply the indicators to an existing data set: that of the 2009 Swedish Living
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Conditions Survey (LCS). Our objective is to demonstrate how the indicators work and to
suggest improvements for the data collection in future versions on the Swedish LCS.

Stopping rules for the data collection have been studied in Rao et al. (2008) and in
Wagner and Raghunathan (2010).

An approach with obvious appeal is to observe changes in survey estimates, for
variables that allow this, as a function of making additional contact attempts. It is one of
the techniques used in this article. Related to this is the question of whether respondents
interviewed early (say, in the first five attempts) differ considerably from those brought in
later with respect to important measurable variables. These questions are studied in
Peytchev et al. (2009) and in Peytchev et al. (2010). They conclude that focusing on
groups with low response probability may not be efficient in some surveys; it may be better
to identify those units with the greatest potential to induce bias in the survey variable
estimates.

Responsive design may take different forms. One option is to strive for an ultimate set
of respondents with measurable and favorable characteristics for the set of respondents.
Especially in the later stages of the data collection intervention is permissible in order to
realize an ultimate response set that is better balanced, or more representative of the total
sample, than if no special effort is made. Recently proposed indicators for balance and
representativity are important in this process; they are used in this article to monitor the
data collection and to implement changes. Both concepts build on a specified auxiliary
vector with values known for the full sample.

The 7th EU Framework Programme funded a project called RISQ, which stands for
Representativity Indicators for Survey Quality; on it, see, for example Schouten and
Bethlehem (2009). One of its objectives was to develop and study indicators for the
representativity of survey response. The R-indicator (with R for Representativity) was
proposed by Schouten et al. (2009) and further developed in Schouten et al. (2011).
One of its uses is in comparing surveys — the same survey in different countries, or
different surveys within the same country — with respect to the representativity of the
final set of respondents. The statistical concept behind the R-indicator is the variance of
the response probabilities, estimated with the aid of auxiliary variables. The motivation
is that a small variability of such estimates would suggest a “representative set of
respondents”.

Indicators based on the concept of a balanced response set were developed in Sdrndal
(2011a). The response set is said to be balanced if the means for specified important
auxiliary variables are the same or almost the same for the set of respondents as for all
those selected in the probability sample. That respondents should be on average like all
those sampled is an attractive notion. The balance indicators are computable from the
auxiliary variable values available for responding as well as for nonresponding units.

The present article presents general concepts for monitoring the data collection, and
they are applied to the 2009 LCS. We describe the survey in Section 3, and we analyze the
LCS 2009 data in Section 4. The concepts of balance (of the response set), distance
(between respondents and nonrespondents), and representativity are reviewed in Section 5,
then applied to the LCS 2009 data. In Section 6 we conduct several “experiments in
retrospect” with the LCS 2009 data. These experiments show that balance and distance can
be improved by interventions in the data collection with the aid of paradata from Statistics
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Sweden’s WinDATI system explained below. Implications for the future are discussed in
Section 7. The theoretical framework presented in the article is general in scope,
applicable to any probability sampling design.

The access to ample auxiliary information is of crucial importance. Statistics Sweden
operates in a data-rich survey environment, where high quality administrative registers
allow access to many auxiliary variables, particularly for surveys on individuals and
households. This also applies to the other Scandinavian countries and the Netherlands. The
whole issue of nonresponse adjustment will necessarily present itself in quite a different
light in countries where only highly limited auxiliary information is available, say at best a
few demographic variables. However, a trend towards increased availability and use of
high quality administrative data is evident in many countries.

2. Earlier Experiences at Statistics Sweden

Several earlier studies at Statistics Sweden illustrate that a data collection motivated
principally by a desire to achieve the best possible ultimate rate of response is inefficient.
They suggest that scarce resources are being spent with little effect on the estimates and
little improvement in representativity. Horngren et al. (2008) and Lundquist and Sdrndal
(2012) summarize several studies of surveys with telephone interviewing of individuals
drawn by probability sampling from the Swedish Total Population Register (TPR).
We mention them briefly here.

A study of the November 2002 edition of the Swedish Labour Force Survey (LFS) had
found that the estimates change very little after the fifth contact attempt. It was concluded
that a less elaborate fieldwork strategy, with say four call attempts instead of twelve, could
considerably reduce the monthly cost for calls in the LFS.

A study along similar lines was carried out in 2007 for the Household Finances (HF)
survey. Estimates were computed successively over the data collection period, as a
function of the number of call attempts identified by “WD-events”, which are events
registered by the data collection instrument WinDATI. The simple expansion estimator
(the mean for units having responded up until a given number of attempts) stabilizes at an
early stage in the data collection: After about ten call attempts, the estimates change very
little. Since the total number of call attempts for a sampled person may exceed 20, there is
strong indication that resources are not effectively used. The calibration estimator based
on selected auxiliary variables stabilizes even sooner, at around five call attempts.

In a later project, the effect of a follow-up strategy for the HF survey was studied. Low
response rates had been observed in the primary data collection for several groups
expected to have a high impact on the nonresponse error. However, it was found that the
follow-up (the field work following the ordinary data collection) had little effect on the
estimates, and that follow-up respondents are not the ones that influence the nonresponse
error the most. In the end, the response rate remains disappointingly low for groups already
underrepresented in the ordinary data collection.

An earlier study of the LCS had found that the representativity (measured by indicators)
changes very little after an early point in the data collection, suggesting that the response
set fails to become more similar to the selected sample. In addition, the follow-up appears
to have little effect on the estimates. The present article examines the LCS in more depth.
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3. The Swedish Living Conditions Survey

The Swedish LCS is a yearly sample survey. It has a long tradition of providing important
information about social welfare in Sweden, in particular among different subgroups of
Swedish society. It has become increasingly affected by nonresponse. The sample consists
of individuals with an age of 16 or above drawn from the Swedish Total Population
Register. The data set used in the analysis in this article is a subsample of n = 8,220
individuals, taken from the actual LCS 2009 sample. This subsample can be regarded as a
simple random sample from the population of individuals.

Telephone interviews were conducted by a staff of interviewers using the Swedish
CATI-system, WinDATI. All attempts by interviewers to establish contact with a sampled
person are registered by WinDATTI. Those paradata are important for this article. For every
sampled individual, the WinDATTI system records a series of events which we refer to as
“call attempts”. They play an important role in our analysis. The WinDATTI events include
“call without reply”, “busy line”, “contact with household member other than the sampled
person”, and “appointment booking for later contact”. When contact and data delivery has
occurred, the data collection effort is completed for the sampled person in question. All
registered WinDATI events are taken into account in the analysis that follows.

The LCS 2009 ordinary field work lasted five weeks, at the end of which the response rate
was 60.4%; for some sampled persons, 30 or more call attempts had then been recorded.
This was followed by a three week break during which characteristics of non-interviewed
individuals were examined in order to prepare the three week follow-up period, which
concluded the data collection. All individuals considered by the survey managers to be
potential respondents were included in the follow-up effort, which brought the response rate
up to an ultimate 67.4%. However, there was no separate strategy or revised procedure for
the follow-up. It followed the same routines as the ordinary field work. Hence, there were no
attempts at responsive design where, for example, a follow-up would focus on
underrepresented groups, in an objective to improve balance and reduce nonresponse bias.

In addition to these paradata, the information recorded in the LCS 2009 data set includes
the response obtained on the survey target variables. In addition, it contains for all 8,220
individuals the values of a number of register variables, some of which we use as auxiliary
variables. Three other register variables are used as study variables (y-variables), as
explained in Section 4. For these we can compute unbiased estimates, based on the full
sample, and compare them with estimates made under nonresponse.

We have chosen here to regard data inflow as a function of the attempt number rather
than as a function of time evolved (Day 1, Day 2, and so on) since the start of data
collection. Our analysis could have been conducted under the time-evolved perspective
instead, with somewhat different results. In a CATI data collection, the attempt number
concept is practical and natural.

4. An Analysis of the LCS 2009 Data

Results in this section reinforce the impression from earlier studies at Statistics Sweden
that a data collection (including a follow-up) that proceeds according to an essentially
unchanging format will produce very little change in the estimates beyond a certain
“stability point” reached quite early in the data collection.
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In this section, we study the dynamic behavior of survey estimates as the data collection
proceeds. We measure the progression of the population total estimates for three variables
as a function of the number of the call attempt, defined more precisely as the attempt at
which an interviewer made successful contact with a sampled person and data delivery
occurred. The three variables are register variables, used here as study variables. Their
values are therefore known for all sampled units, not only for responding ones. To let three
register variables play the role of study variables restricts to some extent the pool of
available auxiliary variables, but it is a price worth paying in order to realize the
methodological objectives.

Some notation is needed. The finite population U = {1, . . .k, . . ., N} consists of N units
indexedk = 1,2, . . ., N. Aprobability sample s is drawn from Uj; in this sampling, unit £ has the
known inclusion probability 7, = Pr(k € s) > 0 and the known design weight dj = 1/m.
We denote the value of the study variable y as y;. The target parameter for estimation is the
population total ¥ = >, yx. (A sum ), -, over a set of units A C U will be written as ) _, .)
Normally, the survey involves many study variables and many totals to be estimated.

The response set is the set of units for which the value y, has been recorded. Since we
follow the data collection as a function of the call attempt number, there is a series of
successively larger response sets. In a completely rigorous notation, we would denote
these increasingly large response sets as r ), where a refers to “call attempt number”,
a=1,2,...,and

rfDerPc...cr9c... 4.1)

But in order to not burden the notation, it is sufficiently clear to let the notation r refer to
any one of the increasingly larger response sets. Data collection stops before the
expanding r has reached the full probability sample s. The value y, recorded for k € r
provide, together with auxiliary variable values, the material for estimating the parameter
Y =%y

The (design-weighted) survey response rate is

P= de/de. 4.2)

In the context of the LCS, all d; are equal because of simple random sampling from the
Swedish TPR, so P is simply number of individuals responding divided by number in
sample, but for more generality, the formulas that follow are expressed in arbitrary design
weights d,. The response probability of unit k, denoted 0, = Pr(k € rlk € s), is a
conceptually defined, nonrandom, unknown number. The response rate P is an estimate of
the (unknown) mean response probability in the population, 6 = > v 0/N.

Auxiliary information is crucial. We denote as x, the auxiliary vector value for unit %,
assumed available at least for all units k € s, possibly for all k € U. If J = 1 auxiliary
variables are used, then x; = (x1x, . . ., Xjk, - - . ,x;1), where Xji is the value for unit k of
the jth auxiliary variable, x;. We consider auxiliary vectors x; of a form such that for some
constant vector . we have p/x; = 1 for all k. This is not a major restriction. Vectors of
importance in practice are usually of this kind, such as when x; = (1,x;)’ and p = (1,0)".

The LCS 2009 data file analyzed here contains the observed values y,; of a number of
study variables (“the y-variables”) and the values xj of a number of auxiliary variables
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(“the x-variables”) which may be either continuous or categorical equal to 1 or O to code
the presence or the absence of a given trait of unit k. Some of these auxiliary values are
obtained from the Swedish Total Population Register, while others are derived by
matching from other reliable Swedish administrative registers, using the personal
identification number.

We compute estimation weights calibrated on auxiliary information about x for k € s.
The weight given to the value y, observed for k € r is dmy, the product of the sampling
weight dy = 1/ and the adjustment factor

-1

!
!
my — dexk deXka X -
N r
Hence the resulting calibration estimator is

Yoa = dimgyie (4.3)

The weights d;m; are constructed to deliver unbiased estimates for the variables in the
auxiliary vector, as expressed by the calibration equation y  dymyXx = Y diX. For any
x-vector and any response set r, the mean adjustment factor is >, dimy/ >, di = 1/P.
Consequently, when the data collection progresses and r gets increasingly larger, the
increasing proportion P of observed sample units in the Estimator (4.3) is correspondingly
matched by a decreasing average mean adjustment factor 1/P. But it is the composition of
the response set r, the particular units that are in r at any given point, that determines the
more or less pronounced bias of Year. We want “the ri ght kind of units” to be in r in the end.

For the theory behind calibration for nonresponse, see, for example Sdrndal and
Lundstrom (2005). Calibration will generally reduce the nonresponse bias, and quite
considerably if the auxiliary vector is powerful, but without eliminating it entirely.
At Statistics Sweden, many potential auxiliary variables are typically available for the
estimation. The question then arises about the best choice among those. Indicators for this
purpose are given in Sdarndal and Lundstrdm (2008, 2010).

Remark: The calibrated weights in (4.3) use an auxiliary vector x; known for the sample
units. In practice at Statistics Sweden the calibration estimates ordinarily draw on
auxiliary information at two levels: at the population level, transmitted by a vector X, and
at the sample level, transmitted by a vector x;. The population total Y, x; is known, while
>y X; is unknown but estimated without bias by > dix;, which helps the reduction of
nonresponse bias. The auxiliary vector is x; = x| and to benefit from the potential

for reduced variance when Y, X, is known, the weights are calibrated to satisfy

du XZ

Yowmxg=X= S dx | The published survey estimate is )A/ZAL = wiy with

weights wy = dk{X’ (Zr dkxkx’k) 71xk}. But for the purposes of this article, it is deemed
appropriate to use IA/CAL = Zr dimyyr in (4.3) with weights calibrated as
Zr dkkak = ZS dek-
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In our analysis of the LCS, the adjustment factors my in (4.3) are computed on an
auxiliary vector x; of dimension eight considered suitable for monitoring the estimates
over the course of the data collection and composed of the following categorical auxiliary
variables: Phone access (equaling 1 for a person with accessible phone number;
0 otherwise), Education level (equaling 1 if high; O otherwise), Age group (four zero/one
coded groups; age brackets —24, 25-64, 65-74, 75+ years); Property ownership
(equaling 1 for a property owner; O otherwise); Country of origin (equaling 1 if born in
Sweden; 0 otherwise). We refer to this vector as the standard x-vector (to distinguish it
from the experimental x-vector needed in Section 6). These variables are a subset of those
used to produce the published calibration estimates in the LCS 2009.

The variable Property ownership equals one for a person identified in the property tax
register as having paid taxes on real estate property owned. The variable Phone equals one
for a person whose phone number is available and ready to be used at the very beginning of
the data collection period. All persons in Sweden have access to a phone, whether a
landline or cell phone. When the sample of persons has been drawn from the Swedish
Total Population Register, it is matched to the phone register and, if found, the number is
noted. “Found” or “not found” defines the dichotomous variable Phone. For different
reasons, not all phone numbers are in the phone register. About 90% of the needed phone
numbers are found. Before the start and during the field work, the interviewers try to trace
the persons with phone numbers as yet missing using various sources, for example the
internet. In this manner, telephone numbers are found and can be used for about one third
of those with initial value zero on the Phone variable.

In Tables 1 and 2 (as in later tables), the entries for “Attempt number” a (where a = 1,
2,3 .. .) are computed on the union of the sets of persons having responded at attempts 1,
2, .. .,a,asexpressed by (4.1). Not all call attempts are shown in the tables, but changes
for deleted rows are minor. The entries for “End ordinary field work™ are computed on the
respondents at the end of the five week ordinary data collection period; “Final” is based on
the total response recorded at the end of the follow-up period.

The three register variables used here as study variables are: Sickness insurance benefits
(for simplicity called Benefits, a categorical variable equaling 1 for a recipient of such
benefits; 0 otherwise), Income (a continuous variable including employment as well as
retirement income), and Employed (a categorical variable equaling 1 for an employed
person; O otherwise). We chose these three register variables because they are central
aspects of living conditions as studied in the LCS. The use of these register variables as
study variables meets a methodological objective: We can follow the progression of
estimators of interest, and study the benefits of calibrated weighting.

For the three register variables, y; is available for k € s, and we can for comparison
compute the unbiased full sample (Horvitz-Thompson) estimate

Yo = diyie (44)

The computable percentage relative difference between f/pUL (unbiased) and IA/CAL (biased
to some extent) is

RDFcar = 100+ (Year — Yeor)/ Yeur. 4.5)
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The calibration estimator generated by the primitive auxiliary vector, X, = 1 for all units k
serves as a benchmark; it is the expansion estimator given by

Foxe = (3 o) (L )/ (L) (*.6)

Its often large relative deviation from the unbiased )A/FUL is
RDFgxp = 100 (Yexp — Yrur)/ Yevr.- 4.7)

Table 1 shows RDF,; (computed with the standard x-vector) and RDFrxp for the three
variables and for a number of steps in the LCS 2009 data collection. We note that:

e The numerically important changes in RDF c,; and RDF gxp occur early in the series
of attempts because of important data inflows. From around attempt five onwards,
both follow quite a stable pattern; later changes are small, moving in smooth
continuous fashion. The changes are necessarily minute when the data collection has
gone on for some time, because small amounts of new data are added to a substantial

Table 1. The LCS 2009 data collection: Progression of the response rate P (in per cent) and of RDF for three
selected register variables. The calibration estimator is based on the standard x-vector explained in this section

Benefits Income Employed

Attempt

number 100X P  RDFca.  RDFpxp  RDFcap RDFgxp  RDFcar,  RDFpxp
1 12.8 10.5 —10.0 —0.05 0.3 -13 -9.0
2 24.6 33 —-139 —1.1 0.4 —-2.0 —8.1
3 32.8 1.6 —12.1 —-04 1.6 0.2 —4.7
4 39.6 2.7 —10.1 0.2 2.9 0.4 —24
5 443 3.7 —-7.2 0.7 3.6 1.1 —1.1
6 47.8 2.7 -7.0 1.2 4.5 1.7 0.4
7 50.9 1.6 -7.3 2.1 55 2.5 1.6
8 53.0 1.0 —-74 24 6.2 24 2.3
9 54.6 0.2 —8.0 2.8 6.4 2.6 2.5
10 55.7 0.2 —8.0 2.8 6.6 2.6 2.8
11 56.8 -0.5 -85 2.7 6.5 2.6 3.0
12 57.7 0.1 -79 3.0 6.8 25 3.1
13 583 -0.3 —8.0 3.0 6.9 2.7 34
14 58.7 —0.1 =7.7 3.0 6.9 2.7 3.6
15 59.1 -0.5 —8.0 3.1 7.1 2.8 3.8
20 60.1 -0.5 =7.7 3.4 7.5 3.0 4.1
End ord. 60.4 -09 -79 33 7.4 29 42
fieldwork

Follow-up

1 61.4 —1.0 —8.0 33 7.1 29 4.1
2 62.6 —1.6 —82 3.1 6.7 3.0 39
3 63.8 —-25 -9.2 3.0 6.7 32 4.2
4 64.6 —-2.8 —-93 3.1 6.7 33 4.3
5 65.3 2.7 -9.0 3.1 6.8 3.1 4.3
10 66.8 -29 -89 29 6.7 3.0 4.5

Final 67.4 —3.6 —94 29 6.7 3.1 4.8
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body of existing data. Every new contact attempt brings progressively smaller
amounts of new information. For this we use the word “stabilization”, as evidenced in
Table 1 for RDF and in later tables for other statistics.

e For all three study variables, RDF 4, is small, in fact near zero, early in the data
collection. For example, for the Benefits variable, RDF 4, hovers around zero in the
range from 9 to 14 call attempts. The other two variables have near-zero RDFca;,
even earlier in the data collection. Nevertheless, at the very end (the row “Final”), the
value of RDF ¢y, is large, —3.6%, 2.9%, and 3.1% respectively. The LCS with its
unchanging data collection plan does not result in small estimation error.

e The large departures from the unbiased estimate Yry;, signaled by high values of
RDF rxp, indicate that the LCS 2009 data collection ends up with a markedly skewed
response. In most of the steps in Table 1, RDFgxp is greater than RDF -4;. Hence the
auxiliary information that I?CAL =Y dimyy, can draw on is valuable for reducing
the departure from the unbiased estimate for all three variables, although the end
result is short of satisfactory. The difference between RDFgxp and RDF ;. is less
pronounced for Employed; for this variable, the auxiliary vector is less effective.

5. Further Tools: Indicators of Balance, Distance and Representativity

In the theoretical first part of this section, we explain several indicators designed for
monitoring the data collection. The indicators reflect well known statistical concepts.
Later in the section we illustrate the indicators numerically by computing them on the LCS
2009 data. Furthermore, in Section 6, those indicators will be used in an experiment with
the LCS 2009 data, whereby we intervene “in retrospect” in the data collection process,
aiming to achieve a better balanced, or more representative, ultimate response set than if
no action were taken. The indicators can be computed from the auxiliary variable values,
known for both respondents and nonrespondents.

We distinguish three types of concept from which to construct an indicator: (i) Balance
(of the response set, for selected auxiliary variables), (ii) Distance (between respondents
and nonrespondents), and (iii) Variability of (estimated) response probabilities. All depend
on the idea of imbalance now to be defined. Desirable features are high balance, low
distance and small variability of the response probabilities. We use the indicators to
observe the dynamic pattern as the data collection unfolds and to allow interventions to be
made at suitable points.

All the indicators rely on an auxiliary vector, denoted in general by x with value x; =
(Xtks - - 5 Xjks + - - ,x7)" known for the units k € s (or possibly for k € U). The dimension J
is arbitrary. For the j:th auxiliary variable x;, with value xj for unit k, we compute the
difference D; = X; — X;; between the respondent mean, X;, = > dixj/ D, dk, and the full
sample mean, Xj; = > dixjx/ Y di. If D; =0 for all J auxiliary variables, then r is a
perfectly balanced response set. In vector form, D = (D, .. .,D;, .. D)) =%, — X
with vector mean X, = >, dixy/ >, di for the respondents and X, = > dixx/ >, dy for
the full sample. Under perfect balance, D = 0, the zero vector.

We must seek balance on the auxiliary variables, because unlike real study variables, they
are individually known for the full sample (or for the whole population). What benefit can
we expect from balancing on a chosen vector x,? Is there reason to expect that balance on the
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x-vector will produce, if not perfect, at least good balance for the y-variables in the survey, in
particular for the highly important y-variable? Let us consider these questions. The concept
of balance refers to the equality of response set mean and full sample mean. We have
x-vector balance if X, = X;. We can strive to come close to this during data collection.
The desirable goal of y-variable balance is expressed as y, = y,. Whether or not this comes
close to being satisfied for a real study variable y will never be known. But balancing on a
chosen x-vector can bring us closer. Using the property p'x; = 1 for all k, we express the
difference y, — ¥y, (which we would like to be zero or close to zero) as a sum of two terms,

Vr =¥ =&, — is)/br + (b, — bx)/is 6.1

where b, = (3, dkxkx,{)ilzr dixgyr and by = (3, dkxkxk/)ilzs diXpye are linear
regression coefficients (regressing y on x), for the response set and for the full sample
respectively. That b, and b, may differ is an expression of a dilemma well known
in regression analysis: Non-random selection of cases causes biased regression. The
computable first term of (5.1), (X, — X,)'b,, is zero if the x-balance X, = X is realized.
This by itself does not imply that the second (not computable) term (b, — b,)’; is zero or
small. But often that term, which is what remains of the difference 3, — ¥, after complete
balance on the x-vector, is smaller than what that difference would be in the absence of any
balancing. One situation where the second term is small is when y is well explained by
the x-vector, so that y, = B’x; and therefore b, = b,. In other words, if the response is
balanced for a vector x, highly related to the study variable y, then we are close to y-variable
balance. Another condition under which the second term (b, — by)'X; is small occurs if
the data collection can be directed to yield a response set r that is an essentially random
subset of s. In many situations there is a strong incentive to seek balance on a suitable
x-vector, because it will likely bring us closer to y-variable balance. Multiplying by
N= >, di shows Equation (5.1) in a different light:

Yexe — Yeor = (Vexp — Year) + (Year — Yeor)-

Here the computable difference f’Exp - IA/CAL is the adjustment we apply to the primitive
estimate Ygxp to arrive at the improved estimate Year. The term Year, — Yryr, unknown fora
real y-variable, is not zero, but may be small compared with the adjustment f’Exp - IA/CAL.
There is no choice of x-vector that will completely eliminate the nonresponse error
Year — Ypyr. Some bias always remains after calibration. Expressed differently, there
exists no x-vector that realizes missing at random, given X.

Normally in practice, D # 0, suggesting departure from balance. We transform the
multivariate D into a suitable univariate measure of imbalance, for the given survey
outcome (s, r) and the given composition of x; The imbalance is a quadratic form in D
defined as

D3 'D=(x — %) (% — %) (5.2)

with weighting matrix 2, = > dixix;// >_ dy. Increased mean differences D; tend to
increase the imbalance D’ ES_ID. Interposing the inverse of the weighting matrix permits
an upper bound to be stated on the imbalance: For any outcome (s, r) and any composition
of X, we have 0 = D’ES_]D = Q — 1 with Q = 1/P (see Sirndal 2011a). For most data
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encountered in practice, D’EA__ 'D is not a large number, often 0.3 or less. As the data
collection unfolds and the response rate P gets larger, one often finds that D’ES_ID
decreases, because X, moves closer to X; when the response r grows toward the full
sample s, although the question depends also on what particular units happen to be in the
set r at a given moment.

Balance is imbalance with a reversed sign. We use two indicators of balance, measured
on the unit interval scale and such that the value “1” implies perfect balance. The first is

/D'S7'D
Bll =1- ﬁ (53)

It follows from 0 < D’ES_'D = Q-1 that 0 = BI; = 1. Because P(1 — P) = 1/4, an
alternative indicator also contained in the unit interval is

BI, =1—2P\/D'3_'D. (5.4)

For most data, D’E;lD does not come near Q — 1. It is not a sharp upper bound.
Consequently, both indicators transmit an inflated notion of balance, often greater than 0.8
for both BI; and BI,. The lower portion of the unit interval is not effectively used. The
notion of distance now to be discussed is less subject to this criticism.

Our concept of distance, which contrasts respondents with nonrespondents for the
chosen x-vector, is a transformation of mean difference vector, X, — X,,,, where nr =s — r
is the nonresponse set with mean X, = > _ diX/ > _, di. This distance is

diStrlnr = [(Xr - inr)lzs_l(ir - j:m‘)]l/z- (55)

If respondents and nonrespondents agree on average for every variable in the x-vector,
then X, = X, and dist,,,, = 0. From (5.2) and the equation X, — X, = (1 — P)(X, — X,,)
follows that dist,,, is a simple transformation of the imbalance D’ ES_ID:

1 _
dist,y = m(DIE‘Y 'py!/2 (5.6)

From D/ ES_ID = Q — 1 follows that dist,,, = 1/5/P(1 — P). Thus for nonresponse in the
range 20% to 50%, dist,,, can never exceed 2.5. But for data encountered in practice
dist, |, is normally much lower, rarely exceeding 0.6. One reason is that the upper bound
covers any vector composition x; and even the most extreme response outcome r that
can occur for the given sample s. The measure dist,,, reacts distinctly but smoothly to
the steps in the data collection and is a more expressive indicator than BI, or Bl,, which
tend to concentrate in the upper quarter of the unit interval. For example, in Table 3
(Subsection 6.2), dist,,, roughly doubles from 0.23 at the beginning to 0.47 at the end
of the data collection, while B, only moves from 0.85 to 0.72.
Simple relationships between dist,|,,- and the balance indicators follow from (5.3), (5.4)
and (5.6):
Bl =1 — +/P(1 — P)Xdist,,, ; Bl,=1—2P(1 — P)Xdist,,,. (5.7)

The principal tools for the empirical work reported later are the balance indicator B/; and
the distance dist,,,,. It is important to follow their progression as the response set r expands
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and P increases. Increasing balance and decreasing distance are signs of a satisfactory data
collection. But the undesirable opposite can happen, as in an empirical illustration that
follows. The level of the indicators depend on the choice of x,, notably on the number of
x-variables in X; — it is harder to obtain balance on more variables — and on their
relationship with response. The ultimate response set r should have high balance and low
distance; however, it is hard to formulate definite ultimate target values for BI, and dist,,,,
because of their strong dependence on X.

If dist,y,,- decreases when P increases, then the balance, as measured by BI, or by Bl,, may
or may not improve, that is, get larger. If the distance dist,,, increases when P increases
towards 50%, then the balance, measured by B, or by Bl,, will necessarily deteriorate.

The third concept behind an indicator for the data collection is the variability of
(estimated) response probabilities. It was used in the RISQ project mentioned earlier.
The resulting indicators are called R-indicators (with R for representativity); see, for
example Schouten et al. (2009). Let 6, be the estimated response probability for unit k € s.
Their variance is

=" db = 62/ e (5.8)

where 6, = S, diby/ 3, di. The R-indicator is defined as
R=1-28 (5.9)

The rationale behind the construction (5.9) is that if the data collection can be directed
to reduce variability in the estimated response probabilities, then the representativity of
the response set, measured by R, is said to be improved.

For the chosen specification xy, the estimates ék =f (xk’ﬁ) can be obtained via different
link functions. For the linear response function, using weighted least squares, we
determine 3 to minimize Z di(Iy — ka)2 where I, is the response indicator, I = 1 for
k€ randy=0fork €s — r. Asaresult,p = (3, dkxkxk) (Z diXy), and for k € s,
the response probability estimate is b = 10 w1th th = ka If we denote by S the variance
(5.8) computed with Gk =t;, the R-indicator (5.9) is =1- ZS,S. Because
52 = PZXD’Eng, the R-indicator for the linear response function is equal to the
balance measure (5.4): 1 — 2S;; = BI,.

Schouten et al. (2009) closely examine the case where ék is obtained through a
logistic response function. By logistic regression fit, we obtain first ﬁ, then ék‘,lng =
exp (x{ B) /1 + exp (Xk B)] for k € s. Their variance, denoted S , is computed in the
manner of (5.8) with Gk = Gk log » and the resulting logistic R- 1nd1cat0r is

R=1- 2Sélog7s'

(5.10)
Bethlehem et al. (2011) consider a bias-adjusted R-indicator, reflecting a desire to reduce
the bias that (5.10) may have when viewed as an estimate of a corresponding population
quantity. With our data, (5.10) differed negligibly from its bias-corrected counterpart, not
shown in Table 2.
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A noteworthy property of the imbalance D'2, 'Dis its simple relation to the coefficient
of variation of the estimates 8; = #; for k € s. Because 7, = > ditx/ >, di = P we have

vy = S/t = (D'Y, D)2, (5.11)

Often close in value to cv, is the coefficient of variation of the adjustment factors my in the
estimator ¥ = >, dimgyr. It can be shown that

CVinr = mr/mr = (DIEr_ID)l/z

where 2, = 3 dixix// 3, dis Spr = [, di(my — m,)? /S, di ] 12 and
m, =% .dumg/ >, dy =1/P. The two coefficients of variation differ only in the
inverted weighting matrix: 3, ' in the former, 3" in the latter. The statistic cv,,, is used in

Table 2. The LCS 2009 data collection: Progression of the response rate P (in per cent), balance BI; and BI,,
logistic R—indicator (5.10), distance dist,,,, and square root of imbalance (D’Z;]D)l/2 = cvy. Computations
based on the standard x-vector explained in Section 4

Balance

Attempt ———  R-indicator Distance  Sqrt. imbalance
number 100x P Bl Bl formula (5.10)  dist,,, CVyg

1 12.8 0.855 0.904 0.902 0.433 0.378
2 24.6 0.802 0.829 0.829 0.460 0.347
3 328 0.779 0.793 0.794 0.470 0.316
4 39.6  0.770 0.775 0.780 0.471 0.285
5 443 0.767 0.769 0.775 0.469 0.261
6 47.8 0.763 0.763 0.770 0.475 0.248
7 50.9 0.756 0.756 0.763 0.488 0.240
8 53.0 0.751 0.752 0.758 0.499 0.234
9 54.6 0.750 0.752 0.757 0.501 0.227
10 55.7 0.748 0.749 0.756 0.508 0.225
11 56.8 0.746 0.749 0.754 0.512 0.221
12 57.7 0.747 0.750 0.756 0.513 0.217
13 583 0.744 0.748 0.754 0.519 0.217
14 58.7 0.742 0.746 0.753 0.523 0.216
15 59.1 0.741 0.745 0.752 0.527 0.215
20 60.1 0.737 0.743 0.751 0.536 0.214
End ordinary 60.4 0.738 0.744 0.752 0.536 0.212

Follow-up

1 61.4 0.736 0.743 0.751 0.542 0.210
2 62.6 0.734 0.742 0.750 0.550 0.206
3 63.8 0.730 0.741 0.748 0.561 0.203
4 64.6 0.728 0.740 0.747 0.569 0.201
5 65.3 0.727 0.740 0.748 0.573 0.199
10 66.8 0.719 0.736 0.742 0.596 0.198

Final 674 0.717 0.735 0.742 0.603 0.197
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selecting auxiliary variables at the estimation stage, as in Sdrndal and Lundstrom (2010)
and Sirndal (2011b).

Table 2 shows the progression during the LCS 2009 data collection of Bl;, B, and the
logistic R-indicator (5.10), all viewed as functions of the call attempt number. The three
measures are numerically close, but all are subject to the criticism that they fail — here and
in other applications — to effectively use the whole unit interval. Often around 0.8 or
higher, they seldom fall below 0.7. Here, as for most other data, the imbalance D%, 'p
does not come near its upper bound Q — 1, so (5.3) and the related (5.4) fall predominantly
into the upper end of the unit interval. Because BI;, Bl, and the logistic R-indicator (5.10)
tell essentially the same story, we focus in the following on BI;. Table 2 also shows the
progression of the distance dist,,, between respondents and nonrespondents.

The desired pattern of reduced distance and increased balance does not happen for the
LCS 2009 data collection. Instead Table 2 shows that the balance indicators and the
distance dist,|,,» go the wrong way: The balance decreases; the distance dist,,, gets larger.
Thus Table 2 reinforces the message already conveyed in Table 1 of a weakness in the
LCS data collection. It raises the question of whether the ordinary field work should
proceed as long as it currently does, instead of ending after say ten attempts. The follow-up
does not bring improvement; the indicators continue in the wrong direction.

Also shown in Table 2 is (D' EJID)V 2 = ¢y, defined in (5.11). Here the imbalance
DX 'D goes from an initial value 0.14 to a final value 0.04, a decrease explained in large
part by the increasing proportion P, which makes X, move closer to X; and D closer to the
Zero vector.

6. Experimental Data Collection Strategies

6.1. Auxiliary Vector for the Experiments

There is strong evidence that realizing a predefined “respectable” overall response rate
should no longer be accorded the same dominant importance in future renditions of the
LCS. It is hard to justify a costly effort for a possible five per cent greater ultimate response
rate unless accompanied by concrete measures of quality in the response set, such as
progressively better balance and closeness of respondents to nonrespondents. As Tables 1
and 2 have shown, those features are lacking in the LCS 2009 data collection.

This section presents the results of three “experiments in retrospect” carried out with the
existing LCS 2009 data file. We cannot add more data, but we can delete data from that file
to show the effects of different interventions in the data collection, in particular the trend
in the balance indicators B, and Bl,, and in the distance dist,,,. Increasing balance and
decreasing distance are features we hope to find. Our experiments consist in treating data
collection as terminated, at suitably chosen points in the data inflow, for sample groups
with relatively high response. For example, it might stop in some groups after a suitable
number of call attempts because realistic expectations for the response have already
been met, whereas for the other groups, data collection would continue for some time
yet before stopping, and for remaining low-responding groups it would continue until the
very end of the data collection period. We refer to the points where stopping occurs as
intervention points.
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In this manner we delete data in the existing LCS 2009 data file pretending that data
collection has been terminated at given points for relatively high-responding sample
subgroups. In other words, for those groups, we sacrifice some data y, that were in reality
available beyond the intervention points. The imbalance measured by DY, - 'D plays a key
role in the analysis. It determines the balance measures BI; and B, given respectively
by (5.3) and (5.4) and the distance dist,,, given by (5.6). An aim for the data
collection should be to reduce the differences D; that make up the vector
D=x,—-%x,=(D,...,Dj,...,Dy).

The imbalance D’ 2;1D has a particularly transparent expression when the vector x; is
defined by J mutually exclusive and exhaustive traits or characteristics, for example when
“Age” is defined by, say, J = 3 traits, Young, Middle-aged and Elderly. But usually in
practice, several categorical variables are crossed to define a set of mutually exclusive and
exhaustive groups. The trait of unit k is then uniquely coded by the J-vector x; =
(Yiks -+ s Yikr - - o> ¥) = (0, ..., 1, .. .,0) (with a single entry “1”), or equivalently
by the J-vector X, = (1, yik, - . ., Ys—1x), wWhere vix = 1 if k has the trait j and y; =0
otherwise. Denote by s; the (non-empty) subset of the sample s consisting of the units k
with the trait j, and let r; be the corresponding responding subset of the whole response
set 3 r; C ;. For trait j, denote by Wjs = >_ di/ > dk that trait’s share of the whole
sample s. Then the imbalance is a sum of non-negative terms expressed as

J
DE'D=) "¢ 6.1)
j=1
with
2
P;
C; = Wy X (F - 1) (6.2)

where P; = Z,/_ di/ ZSJ_ dy is the response rate for the jth group and P is the overall
response rate given by (4.2). We call (P; — P)/P the response rate differential for the jth
group. Together, the J differentials (P; — P)/P describe the state of the response for the set
of groups at any given point in the data collection. The differentials are positive, negative
or zero. If all are zero, the imbalance is zero, and the balance is perfect for the chosen
x-vector: BI; = BI, = 1. The differentials change continuously during data collection and
can be substantially different, although experience shows that they are seldom greater in
absolute value than 0.3. At any given point in the data collection, their weighted average is
Zero: 21:1 Wjs X ((P;/P) — 1) = 0. The imbalance (6.1) is therefore the variance over the
J groups of the differentials (P; — P)/P. If the maximum |P; — P|/P over the J groups
equals, say, 0.5, it follows that D’S'D =< 0.25 and that (D'Y,, 'D)"/? = cv,, = 0.5. If all
J response rates P; are equal then D’ 3 'D=0.

The analysis in Sections 4 and 5 was based on the standard x-vector, close to the
auxiliary vector used to produce the calibration estimates for LCS 2009. Here we choose a
more appropriate vector that identifies a set of particularly important sample subgroups.
Using this experimental x-vector we carry out three “experiments in retrospect” on the
LCS 2009 data, each based on an experimental data collection strategy defined by one or
more intervention points and a stopping rule for each intervention point. This vector points
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out membership in one of J = 8 mutually exclusive and exhaustive sample groups. Every
intervention point marks a change in the data collection. The stopping rule is formulated in
terms of a predefined target response rate for each group, so that data collection will be
deemed terminated at a given intervention point for groups having at that point reached the
specified response rate. This is a simple form of responsive design, made possible by the
categorical nature of the experimental vector.

The experimental x-vector is defined by the crossing of three dichotomous auxiliary
variables: Education level (high, not high), Property ownership (owner, non-owner),
Country of origin (Sweden, other). There are J=2>=38 mutually exclusive and
exhaustive groups coded by the experimental x-vector X; = (yi, . . ., vsk), Where
vix = 1 if k belongs to group j and y; = 0 otherwise. Group membership, and hence the
value X, is known auxiliary information for all k € s. Those eight groups are important to
monitor because experience has shown their response rates to be considerably different
and indeed strikingly low for some, as Table 5 confirms.

6.2. The Actual LCS 2009 Data Collection Analyzed with the Experimental x-vector

By the actual LCS data collection we mean the data collection as actually carried out, with
all the contact attempts and realized responses, resulting in the actual LCS 2009 response
set. We compare it in Subsection 6.3 and 6.4 with three experimental data collections
where the LCS 2009 data set is censored by stopping rules for data collection in certain
sample subgroups.

To put the experiments in their proper light, we analyze first the actual LCS 2009 data
collection in the light of the experimental x-vector defined in Subsection 6.1. Summary
results are shown in Tables 3 and 4.

As Table 1 showed for the standard x-vector, Table 3 shows that RDF -, (with weights
now calibrated on the experimental x-vector) does not terminate at desirable near-zero
levels. The balance, measured by BI; and Bl,, decreases as the data collection proceeds,
and the distance dist,,, increases. This again indicates an inefficiency in the 2009 data
collection, with its predefined unchangeable format.

Table 4 shows the progression over the LCS 2009 data collection of the eight terms C;
defined by (6.2), whose total D’E;lD is given in the bottom line. Both are multiplied
by 100. A low variability in the C; is a goal, because if all C; are equal in the end, the
imbalance is zero. The groups in lines 1 and 8 stand out, but for different reasons. In both
cases, C; remains high from attempt 5 (where the data collection has gained a certain
stability) until the very end. High values of C; also prevail throughout for lines 4, 5 and 6.
The very low-responding line 1 group, education not high, non-owner, foreign origin, has
a large negative response differential (P; — P)/P, and although 100 X C; decreases
somewhat from 1.44 at attempt 5 to a final value of 1.18, the decrease is much weaker than
desired. A negative response differential and a large C; also characterizes the line 5 group.
By contrast, distinctly positive response differentials (P; — P)/P characterize lines 4, 6
and 8. Most prominent of these is the line 8 group, high education, property owner,
Swedish origin, for which 100 X C; decreases somewhat, from 0.58 at attempt 5 to a final
value of 0.44, but less than one would like to see.
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Table 3. The actual LCS 2009 data collection: Progression of RFDcay, (for three study variables), BI; and
dist,),,. Computations based on the experimental x-vector of dimension eight defined in Subsection 6.1

RDFcar
Attempt number 100 X P Benefits Income  Employed BI, dist,|,,
1 12.8 —84 =27 —-10.2 0.922 0.233
2 24.6 —13.2 —3.2 —-9.7 0.887 0.263
3 32.8 —11.5 —-2.3 —-6.3 0.867 0.283
4 39.6 —8.5 —-1.5 —4.4 0.850 0.306
5 44.3 —5.8 —-0.5 —-3.0 0.846 0.310
%3 53.0 —-5.7 1.7 0.2 0.812 0.377
:12 57.7 —6.1 2.5 1.2 0.805 0.394
:20 60.1 —6.0 3.1 2.2 0.795 0.418
End ordinary 60.4 —6.2 3.1 2.3 0.796 0.417
field work
Follow-up

1 61.4 —6.2 3.0 2.3 0.796 0.418
4 646  —179 2.8 26 0792 0435
Final 67.4 -79 2.9 3.1 0.779 0.471

In Subsections 6.3 and 6.4 we contrast these results on the group factors C; with results
from three experimental strategies obtained through interventions in the LCS 2009 data
base. All three use the experimental x-vector of dimension J =2 =8 as defined in
Subsection 6.1, but they differ in the points of intervention and in the stopping rules.

Table 4.  The actual LCS 2009 data collection: values of the eight terms C; of D' El\._lD (both multiplied by 100).
Computations based on the experimental x-vector defined in Subsection 6.1

Group characteristic 100x 6
Property Ord. field work attempt Follow-up attempt

Education  ownership  Origin 1 5 12 End 1 4 Final
Not high Non-owner  Abroad 149 144 126 123 125 1.16 1.18
Not high Non-owner  Sweden 0.00 0.06 0.11 0.11 0.08 0.07 0.07
Not high Owner Abroad 0.06 0.01 0.00 0.00 0.00 0.00 0.00
Not high Owner Sweden 072 024 021 019 017 0.17 0.18
High Non-owner  Abroad 128 039 029 026 025 0.23 0.22
High Non-owner  Sweden 0.11 026 025 024 021 020 023
High Owner Abroad 0.18 0.01 0.03 0.03 0.03 002 0.04
High Owner Sweden 029 058 0.64 066 062 053 044

IOOXD’EIID 413 299 278 272 261 237 236
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Table 5. Response rate P (in per cent) at three points in the actual LCS 2009 data collection for the eight groups
formed by the experimental x-vector

Group characteristic Response rate P (per cent)
Property Attempt 12 Attempt 2 Individuals
Education  ownership Origin ordinary follow-up  Final in sample
Not high Non-owner  Abroad 37.5 41.8 44.6 847
Not high Non-owner  Sweden 54.6 59.8 64.6 3210
Not high Owner Abroad 58.5 62.3 66.8 171
Not high Owner Sweden 63.0 67.6 73.2 2036
High Non-owner  Abroad 394 449  48.7 236
High Non-owner  Sweden 66.8 71.6 77.6 816
High Owner Abroad 68.1 73.6 81.9 72
High Owner Sweden 72.2 77.4 81.5 832
Total 57.7 626 674 8220

6.3. Experimental Strategy 1 and Its Results

We define Experimental Strategy 1 to have two intervention points, Attempt 12 of the
ordinary data collection (point 1), and Attempt 2 of the follow-up (point 2); the stopping
rule is to declare data collection terminated (so that no further y-values are taken into
account) in a group that has realized at least 65% response. Table 5 shows the response
rates for the actual LCS 2009 data at the two intermediate points and at the very end

Table 6.  Experimental strategy 1: the eight terms C; ofD/ESID (multiplied by 100), the response rate P (in per
cent), the balance Bl,, and the distance dist,,,, computed on the experimental x-vector at three points in the data
collection

Group characteristic Value of 100 X C; at
Property Attempt 12 Attempt 2
Education ownership Origin ordinary follow-up Final
Not high Non-owner Abroad 1.26 1.06 0.94
Not high Non-owner Sweden 0.11 0.03 0.00
Not high Owner Abroad 0.00 0.00 0.00
Not high Owner Sweden 0.21 0.24 0.08
High Non-owner Abroad 0.29 0.21 0.16
High Non-owner Sweden 0.25 0.07 0.02
High Owner Abroad 0.03 0.01 0.00
High Owner Sweden 0.64 0.31 0.17
100X D' 'D 278 1.93 1.39
100 X P 57.7 61.5 63.9
BI, 0.805 0.824 0.843

dist 0.394 0.361 0.326
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(Final). It follows that the Strategy 1 data collection is deemed terminated at point 1 for the
groups in lines 6, 7 and 8, and at point 2 for the group in line 4, while remaining groups
continue until the very end. For the low-responding line 1 and 5 groups, the final response
rate is still far from 65%.

For the data collection of Strategy 1, Table 6 shows the progression of the terms C; and
their total D’ 2;]D (both multiplied by 100). Data collection has ended at point 1 for the
relatively high-responding groups in lines 6, 7 and 8. The ensuing marked decrease in C;
for lines 6 and 8 occurs because the response differential (P; — P)/P drops when the
increasing P draws nearer the unchanging P;. The low-responding group 1 accounts for the
largest 100 X C;. It drops from 1.26 at point 1 but still ends at a fairly high 0.94. Both P,
and P increase; they are getting closer, and |P; — P|/P is reduced, but not enough.
Although only two interventions are used in Strategy 1, the imbalance 100 X D’ E;ID is
greatly reduced, from 2.78 at first intervention to 1.39 at the end. As Table 6 also shows,
both balance and distance now go in the desired directions: The balance BI; increases from
0.805 to 0.843 and the distance dist,,, decreases from 0.394 to 0.326. The ultimate
response rate for Strategy 1 is 63.9%, as compared with 67.4% in the actual LCS 2009
data collection.

6.4. Experimental Strategies 2 and 3

Experimental strategies 2 and 3 use sharpened stopping rules for the data collection in the
eight groups defined by the experimental x-vector defined in Subsection 6.1. The objective
is to attempt to confirm the expectation that still better balance can be achieved.

Strategy 2 is defined to declare data collection terminated (in the ordinary data
collection or in the follow-up) for a group as soon as its response has reached 60%. The
resulting five intervention points are shown in Table 7: Five groups terminate at four
different points in the ordinary data collection, and one group terminates at follow-up
attempt 3. The low-responding line 1 and line 5 groups continue to the end, but still do not
come near 60% response.

Table 8 shows the terms 100 X C;, which sum to the total imbalance 100 X D’E;lD.
Compared with Strategy 1 in Table 6, we see that Strategy 2 brings improvement in that
for all but the line 1 group, C; is reduced to near-zero levels at the end (the column Final).
The column total 100 X D’ E;lD is reduced markedly from 3.07 at first intervention to a
final value of 0.82, considerably lower than the final value 1.39 for Strategy 1. As a result,
the balance improves markedly, and the distance dist,,, is reduced in the end to 0.220, as
compared with 0.326 for Strategy 1.

The stopping rule for experimental strategy 3 is to declare data collection terminated
for a group whose response rate has reached 50%. For this more stringent rule, data
collection terminates with still fewer attempts than in Strategy 2. The improvement in
the indicators becomes further pronounced, giving better balance and decreased distance
compared with Strategies 1 and 2. The distance dist,,,, now ends at 0.089, as compared
with final values of 0.220 in Strategy 2 and 0.326 in Strategy 1. Strategy 3 in the end
leaves very little variation in the response differentials, which explains the low value
0.20 of 100X D'S.'D.
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Table 8. Experimental strategy 2: the eight terms C; of D/ES_ID (multiplied by 100), the balance BI;, and the
distance dist,,, computed on the experimental x-vector at six points in the data collection. Column “7 ord.” refers
to “Attempt 7 in the ordinary data collection”; analogous for other columns

Group Value of 100 X Cj at data collection point
Property
Education  ownership Origin 7 ord. 8 ord. 9ord. 15ord. 3 fol.-up Final
Not high Non-owner Abroad 1.39 1.40 1.29 0.99 0.78  0.60
Not high Non-owner Sweden 0.12  0.09 0.05 0.00 0.07  0.05
Not high Owner Abroad 0.00  0.00 0.00  0.01 0.00  0.00
Not high ~ Owner Sweden 025 033 0.33 0.13 0.02  0.01
High Non-owner Abroad 0.35 0.31 0.31 0.22 0.15  0.09
High Non-owner Sweden 0.33  0.21 0.14 0.05 0.01  0.00
High Owner Abroad 0.02 0.03 0.02  0.01 0.00  0.00
High Owner Sweden 0.61 044 0.33 0.18 0.07  0.06
100 X D’ES_'D 3.07 281 2.49 1.59 1.09 0.82
100 X P 509 525 53.8 56.0 58.6 589
BI, 0.822 0.824  0.830 0.858 0.876  0.892
dist,|,, 0.357 0.353 0.341 0.287 0.252  0.220

Table 9.  Experimental strategy 3: the eight terms C; of D'3 D (multiplied by 100), the balance BI,;, and the
distance dist,,,, computed on the experimental x-vector at six points in the data collection. Column headed
“4 ord.” refers to “Attempt 4 in the ordinary data collection”; analogous for other columns

Group Value of 100 X C; at data collection point
Property
Education  ownership ~ Origin 4ord. Sord. 6ord. 7ord.  8ord. Final
Not high Non-owner Abroad 1.51 1.39 1.23 1.10 1.05 0.13
Not high Non-owner Sweden 0.05 0.03 0.02 0.00 0.03 0.00
Not high Owner Abroad 0.01 0.00 0.00 0.01 0.01 0.00
Not high Owner Sweden 0.26 0.30 0.46 0.25 0.16 0.05
High Non-owner Abroad 0.59 0.38 0.35 0.27 0.22 0.00
High Non-owner Sweden 0.27 0.30 0.12 0.06 0.03 0.01
High Owner Abroad 0.00 0.01 0.02 0.01 0.01 0.00
High Owner Sweden 0.72 0.21 0.07 0.02 0.01 0.00
IOOXD/EJID 3.42 2.62 2.26 1.73 1.51 0.20
100 X P 39.6 43.8 46.4 47.8 48.7 50.3
BI, 0.850  0.857 0.860 0.874  0.880 0.955
disty |, 0.306  0.288 0281 0.252  0.240 0.089

6.5. A Comparison of the Data Collection Strategies

All three experimental strategies use interventions in the LCS 2009 data, with successively
more stringent stopping rules, as described in Subsections 6.3 and 6.4. Table 10 sum-
marizes the experiments and compares them with the actual LCS 2009 data collection
(with no interventions). For comparability, at the end of the respective data collections the
entries in Table 10 are computed on the standard auxiliary vector defined in Section 4,
which resembles the one used to produce the LCS estimates in 2009. The entries for the
actual LCS 2009 data collection (the first line) are taken from the bottom line, “Final”, in
Tables 1 and 2.
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Table 10. The three experimental strategies compared with the actual LCS 2009 data collection; response rate
P (in per cent), RDF ca;, Bl,, dist,),, and reduction (in per cent) of the number of call attempts. Computations
based on the standard x-vector explained in Section 4

RDFcap,
End data Reduction
collection 100 x P Benefits Income Employment Bl distynr  in %
Actual 67.4 —3.6 29 3.1 0.717  0.603 0.0
LCS 2009
Strategy 1 63.9 -1.6 2.7 3.0 0.765  0.489 8.2
Strategy 2 58.9 —-1.2 2.6 32 0.787 0433 20.2
Strategy 3 50.3 1.0 1.0 23 0.808  0.383 36.4

Table 10 shows that each experimental strategy improves on the preceding one. The
relative deviation RDF ¢4 is reduced in each step for all three register variables used as
study variables (if we disregard a slightly higher value for the variable Employment in
Strategy 2). For Income and Employment, the major reduction in RDF ¢4, occurs in the
step from Strategy 2 to Strategy 3.

Both the balance and the response-to-nonresponse distance improve in each step. The
distance dist,,, drops from 0.603 to 0.383. The balance BI, increases from 0.717 to 0.808,
the greatest step occurring from the actual LCS 2009 to Experimental Strategy 1. The
balance shown in Table 10 is lower than the balance for the corresponding experimental
strategy in Tables 6, 8 and 9. This is because the x-vectors are different; it is harder to
achieve high balance for a more extensive vector.

A striking benefit from the experimental strategies is an implicit reduction of data
collection cost through significantly fewer call attempts. To reach the 67.4% response in
the complete 2009 LCS data collection, 53,258 attempts were used, but to reach the 63.9%
response in experimental Strategy 1, only 48,883 attempts are used, a reduction of 8.2%.
The reduction in call attempts is even more striking for the other two experimental
strategies: 20.2% for Strategy 2 and 36.4% for Strategy 3. In practice, such cost savings
should be used to improve other aspects of the survey design; one could for example afford
a larger size sample s to begin with.

7. Discussion and Implications for the Future

The concepts proposed in this article, more specifically those presented in Sections 4 and 5,
are general in scope and can be applied to a variety of sample surveys. We have chosen the
2009 Swedish Living Conditions Survey as an instrument to illustrate the use of these
concepts, which are also being tested and evaluated in other surveys at Statistics Sweden.

In Section 5 we introduced the concept of imbalance, defined mathematically by the
quadratic form D' 'D, Formula (5.2). The imbalance, a function of the chosen auxiliary
vector X,, determines important tools presented in Section 5: The balance of the set of
respondents and the distance between respondents and nonrespondents. Signs of a good
data collection are increasing balance and decreasing distance during the course of the data
collection.

In this article we have used these tools and paradata from the Swedish CATI-system to
examine the data collection in the 2009 Swedish Living Conditions Survey. Earlier studies
at Statistics Sweden had cast doubt on the merits of conducting a follow-up in the LCS; our
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results in Sections 4 and 5 confirm those earlier findings. In Table 1 we studied the changes
in the estimates for three register variables as the data collection progresses. The follow-up
does not produce the improvement one would hope for.

Table 2 shows that the balance indicators BI; and BI, have a decreasing trend over the
course of the LCS 2009 data collection. Contrary to reasonable expectations, the set of
respondents is thus less balanced after the follow-up than at the end of the ordinary
fieldwork. Furthermore, in Table 2 the distance dist,,, shows an increasing rather than a
decreasing trend as the data collection unfolds. This adds to earlier doubts about the
efficiency of the current LCS data collection.

When the auxiliary vector x; codifies membership in one of J mutually exclusive and
exhaustive sample subgroups, the imbalance D’E;lD is particularly transparent: It is a
sum of non-negative terms, D’ E;lD =37, C;, where C; s the contribution to imbalance
of the j:th group. This representation allows us to focus on each specific group in the data
collection. Problematic groups are those for which C; remains high throughout the data
collection. This happens in the LCS 2009 data collection, as illustrated in Table 4. To
reduce imbalance, one should direct the data collection so that all group contributions C;
are small in the end.

Section 6 described three experiments carried out by interventions in the LCS 2009 data
file. A set of eight important sample subgroups was defined, and data collection was
deemed terminated when subgroup response meets specified levels. These experiments,
summarized in Table 10, showed that appropriate interventions in the data collection can
bring considerable improvement — increased balance, reduced distance — compared with
the actual LCS data collection. The cost savings realized by fewer call attempts might
instead be used to improve other aspects of survey quality.

To use the conclusions from these experiments in practice, we must anticipate a
“reasonable expectations” response rate to be used as a stopping rule for data collection in a
group. In a regularly repeated survey such prior information is usually available, but this may
not be the case in a survey carried out for the first time. But an assessment would be necessary.

In practice, whether or not responsive design has been used, nonresponse weighting
adjustment for nonresponse will necessarily take place at the estimation stage. Balancing
does not guarantee that the nonresponse bias is eliminated. The question then arises
whether one could just as well delay the use of some of the auxiliary variables — those
chosen to inform the responsive design — until the estimation stage, where they, usually
together with other auxiliary variables, will determine the calibrated adjustment weights.
In our opinion, although the responsive data collection can be an advantage, it does not
eliminate the need for efficient calibrated weighting at the estimation stage. The question
needs to be addressed in future research.

An issue in the LCS survey is the frame over-coverage; certain sample subgroups
contain highly mobile people, some of whom may no longer reside in the country.
It is clear that groups with chronically low response rate deserve particular attention in
the data collection. In particular, improvements are needed to reach immigrants and
younger persons whose style of living and interest in the survey may differ
substantially compared with a majority of the population. Future savings could be
realized by transferring interviewer effort from “easy-to-reach” respondents to the more
problematic groups.
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A central question is the choice of auxiliary variables to enter into the vector x; that
determines the imbalance D’ ETD used to direct the data collection. This question needs
to be addressed further in the future. Auxiliary variables are used first during the data
collection and then with a somewhat different perspective at the estimation stage. In the
data collection, the selected auxiliary variables serve to monitor the balance of the
response set and the distance dist,),,, between respondents and nonrespondents. At the data
collection stage, the auxiliary vector should thus be one that lends itself well to contrasting
respondents with nonrespondents. At the estimation stage, on the other hand, the auxiliary
vector serves to yield the most accurate estimates, particularly for the most important
survey variables, and this vector is likely to contain more variables than the one used in
monitoring the data collection.
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Utilising Expert Opinion to Improve the Measurement of
International Migration in Europe
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In this article, we first discuss the need to augment reported flows of international migration in
Europe with additional knowledge gained from experts on measurement, quality and
coverage. Second, we present our method for eliciting this information. Third, we describe
how this information is converted into prior distributions for subsequent use in a Bayesian
model for estimating migration flows amongst countries in the European Union (EU) and
European Free Trade Association (EFTA). The article concludes with an assessment of the
importance of expert information and a discussion of lessons learned from the elicitation
process.
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1. Introduction

To fully understand the causes and consequences of international movements in Europe,
researchers and policy makers need to overcome the limitations of the various data
sources, including inconsistencies in data availability, quality and collection mechanisms.
For example, in 2007, Germany reported receiving 15,515 migrants from Spain, whereas
Spain only reported sending 3,601 migrants to Germany. From this single example, many
questions arise: Why are the two numbers so different? How accurate are the data provided
by the two countries? Could measurement be responsible for some of the difference? In
this article, we describe our attempt to answer these questions by collecting information
from experts on migration data.

! Southampton Statistical Sciences Research Institute, University of Southampton, University Road,
Southampton SO17 1BJ, UK. Emails: a.wisniowski@soton.ac.uk, j.bijak@soton.ac.uk, j.raymer@soton.ac.uk,
j.J.forster@soton.ac.uk and p.w.smith@soton.ac.uk

2 Department of Economics, University of Oslo, P.O. Box 1095 Blindern, N-0317 Oslo, Norway. Emails:
s.g.christiansen@econ.uio.no and n.w.keilman@econ.uio.no

3 Australian Demographic and Social Research Institute, Australian National University, Coombs Building,
Canberra AT 0200, Australia. Email: j.raymer@soton.ac.uk

Acknowledgments: This research is part of the integrated Modelling of European Migration (IMEM) project
funded by the New Opportunities for Research Funding Agency Co-opertion Europe (NORFACE). We gratefully
acknowledge the help of the following persons, who acted as an expert, tested the pilot survey questionnaire, or
contributed otherwise to the development of the questionnaire: Guy J. Abel, Corrado Bonifazi, Harri Cruijsen,
Frank Heins, Michael Jandl, John Kelly, Ewa Kepinska, Dorota Kupiszewska, Marek Kupiszewski, Giampaolo
Lanzieri, Jodo Peixoto, Nicolas Perrin, Michel Poulain, and Rob van der Erf. It should be stressed that all persons
contributed in their own personal capacity to the project. We also wish to acknowledge comments received from
reviewers and from the editor of this journal, which greatly improved the presentation of this article.

© Statistics Sweden


http://dx.doi.org/10.2478/jos-2013-0041

584 Journal of Official Statistics

This information is gathered for use as prior inputs into a Bayesian model for
harmonising and estimating international migration flows amongst the 31 countries in the
European Union (EU) and the European Free Trade Association (EFTA) (Raymer et al.
2013).

Bayesian statistical methods are particularly adept at handling data from different
sources and are ideal for situations in which some of the data are inadequate or missing.
Additional expert information can be included in the form of prior distributions reflecting
expert beliefs and judgements. The resulting estimates are then based on posterior
distributions, which combine these expert beliefs with other available information,
including all relevant data sources and covariates. The posterior distributions can also be
used to quantify uncertainty in the estimates, providing the users, such as governments and
planning agencies, with valuable additional information to design their policies directed at
supplying particular social services or at influencing levels of migration (Bijak and
Wisniowski 2010).

The structure of this article is as follows. First, we describe the underlying conceptual
framework for harmonising and estimating flows of international migration within Europe.
Second, we outline our approach for eliciting information from experts concerning the
characteristics of the reported statistics on flows. Third, we present our methodology for
translating this expert information into informative prior distributions for subsequent use
in the model for migration flows. We illustrate the method with an application to a
European migration flow matrix for 2002—2008. The article ends with an assessment of
the importance of expert information and a discussion of lessons learned from the
elicitation process, followed by some conclusions.

2. A Conceptual Framework for Modelling Migration

There have been several attempts to harmonise international migration flow statistics in
Europe. Poulain (1993) developed a constrained optimisation procedure to minimise the
differences between two origin-destination migration flow tables representing sending and
receiving country reported statistics. His ‘correction factor’ method has been extended
more recently by Poulain and Dal (2008), Abel (2010) and De Beer et al. (2010). Van der
Erf and Van der Gaag (2007) and DeWaard et al. (2012) developed iterative hierarchical
procedures to allow countries providing better data to have more weight in the estimation.
Finally, Nowok (2010) proposed a probabilistic framework for harmonising international
migration statistics (see also Nowok and Willekens 2011). Our approach to harmonising
migration flows differs from these works by the emphasis on modelling the measurement
aspects of the reported statistics and by providing measures of uncertainty. In this section,
we introduce the underlying conceptual framework for estimating migration flows in
Europe, which has been developed as a Bayesian model in (Raymer et al. 2013). In the
following section, we turn to the main focus of this article: the elicitation of expert
judgements.

The framework we have developed permits expert opinion to be combined with the data
on migration flows and covariate information to strengthen the inference. The approach
also facilitates the combination of multiple data sources, with their differing levels of
error, as well as prior information about the structures of migration processes, into a single
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prediction with associated measures of uncertainty. Given the substantial inconsistencies
in reported statistics on international migration flows in Europe (Poulain et al. 2006), the
elicitation of expert opinion concerning various aspects thereof is critical for the success of
the whole modelling exercise.

In terms of measurement, true flows are assumed to be consistent with the United
Nations (1998) recommendation for long-term international migration:

A person who moves to a country other than that of his or her usual residence for a
period of at least a year (12 months), so that the country of residence effectively
becomes his or her new country of usual residence. From the perspective of the country
of departure, the person will be a long-term emigrant and from that of the country of
arrival, the person will be a long-term immigrant (United Nations 1998, p. 18).

Place of ‘usual residence’ is defined as

The country in which a person lives, that is to say, the country in which he or she has a
place to live where he or she normally spends the daily period of rest. Temporary travel
abroad for purposes of recreation, holiday, visits to friends and relatives, business,
medical treatment or religious pilgrimage does not change a person’s country of usual
residence (United Nations 1998, p. 17).

Finally, the United Nations definition we have adopted includes undocumented (irregular)
migrants. In practice, the migration statistics in most countries do not cover undocumented
migrants (for obvious reasons). Thus, one of the aims of the presented approach is to use
expert judgement to address the levels of this aspect of migration.

Our approach to measuring migration takes into account four aspects assumed to be
independent: (i) accuracy of data collection system, (ii) duration criteria used to qualify
migrants that differ from the twelve months in the UN definition, (iii) undercount and
(iv) coverage of migrants. Let zgt denote the counts (flows) from country i to country
Jj during year ¢ reported by country k, either the sending k = i or receiving k = j. The
interest of this research is to estimate y;; — the true unknown flow of migration from
country i to country j in year ¢. It includes migration flows to and from the rest of world.
Note that for each y;;, there are potentially two reported flows: zé, and Z',-;-t.

We assume that the observed data z reflect the true flows y, distorted by the above
mentioned deficiencies of the migration statistics, that is

zf:‘i, = yijit X dury X undy X covy X errl!;,. (1)
The variance of the general error term erri’]‘.t measures the accuracy of the data collection
system for country k. It informs the end users of the outcomes of this study on the quality
of the data and measurement mechanisms utilised to collect the data. The number
of parameters required to capture differences in accuracy depends on our typology of
collection systems, and their relative ability to capture migration flows, regardless of
definition and coverage. Here, we distinguish three types of systems: (1) interlinked
population registers in the Nordic countries (Denmark, Finland, Iceland, Norway and

Sweden), which exchange migration information; (2) other good-quality registers (The
Netherlands, Germany, Austria, Belgium, Switzerland, and immigration in Spain) and
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(3) less reliable registers and survey-based systems (Poland, Bulgaria, Estonia, Lithuania,
Latvia, Italy, Slovenia, Slovakia, Romania, the Czech Republic, Greece, Hungary,
Liechtenstein, Malta, France, Luxembourg, Portugal, United Kingdom, Cyprus, Ireland,
and emigration from Spain). Our typology of accuracy is based on reports from the
MIMOSA project (Kupiszewska and Wisniowski 2009; Van der Erf 2009) and our own
assessment of the data quality in Europe.

The duration parameter dur, reflects the difference between the duration of stay
criterion adopted by the country k data collection system and the baseline twelve-month
criterion of the UN. For example, if a given country uses a six-month criterion, the number
of true migrants (i.e., residing for twelve months or more) should be smaller than the
reported number of migrants, independent of the other measurement deficiencies. Note
that in practice the duration is intended or planned rather than actual.

We interpret the undercount parameter und,, as a fraction of the true flow that is captured
by the data collection system in a given country. We propose two classifications here. In
both of them, we work with two levels of undercount. The first one distinguishes between
intra-European flows and those to and from the rest of the world. In the second one, we
classify some countries as having high undercount and others as having low undercount;
see Section 5 for details. The latter classification of countries with low or high undercount
is based on our own assessment, as well as reports from the various projects (Poulain et al.
2006; Kupiszewska and Wisniowski 2009; Van der Erf 2009).

The country-specific error parameters cov, reflect the discrepancies between the
observed data and the true flows that are not captured by the more general undercount
parameters. These often include certain subgroups, such as international students or
refugees, in the reported migration flows (Poulain et al. 2006; Kupiszewska and
Wisniowski 2009). Furthermore, we assume these parameters to lie between zero and one
and interpret them as the differences in coverage with respect to the United Nations
definition of migration. Given that the coverage parameters are country-specific, we
assume that they measure the proportions of migration covered in relation to the true flows.
For the Nordic countries and the Netherlands, these parameters are constrained to one, that
is, we assume that there are no coverage errors for these countries. This assumption ensures
identifiability of the parameters. For the rest of the countries, we use noninformative prior
distributions. We considered the elicitation of the country-specific prior densities infeasible
for the scale of our project. This approach would require at least five experts for each of the
31 countries under study. Also, since the coverage aspect of the measurement model did not
utilise expert judgements, it is not discussed further in this article.

3. Obtaining Expert Information

The approach described in Section 2 requires prior information on the quality of data
sources, differences in various aspects of measurement and covariates used to predict
missing data. In this case, external expert judgement was sought only on the data and
measurement aspects of the underlying migration flows. The experts in data collection
systems were asked to rate the credibility they give to different types of migration data
collected from different types of collection mechanisms (e.g., survey versus register),
and to compare sending country data (i.e., emigration flows) with receiving country data
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(i.e., immigration flows). Experts were also asked about the bias (e.g., systematic
undercount) in the reported migration flow statistics. Each expert was asked to give us a set
of values concerning certain parameters, which we then converted into probability
distributions. The totality of resulting expert opinions was subsequently combined into a
single set of distributions, allowing for the introduction of yet another source of
uncertainty, related to the heterogeneity of experts.

To facilitate the elicitation of expert judgements, a two-stage process was used within a
Delphi survey framework, whereby the expert opinions were allowed to be informed and
influenced by other experts’ views. This process provided a convenient avenue for the
exchange of opinions and views as well as for clarifying any ambiguities as to the
underlying concepts and ideas.

The elicitation of expert opinion to construct probability distributions has a long history
(O’Hagan et al. 2006). In general, the acquisition of such information is a very difficult
task (Kadane and Wolfson 1998). Asking an expert to draw a distribution would assume he
or she has a statistical background or require us to provide such training. In our study, we
could not guarantee all experts had a statistical background and did not have the time or
resources to provide training. As a result and based on the feedback we received from
pretesting the questionnaire, we had to limit the use of statistical terms, such as ‘quantile’,
‘distribution’, ‘variance’ and ‘precision’. For this reason, we followed the elicitation
guidelines of O’Hagan (1998) and O’Hagan et al. (2006), as well as an example of
elicitation of opinion from ‘non-statisticians’ in Szreder and Osiewalski (1992).

From our heterogeneous group of experts, we sought basic information on particular
values associated with the measurement of migration flows, which we then converted into
probability distributions that could be used in our computations. After the first Delphi
round, experts were provided with the densities resulting from our interpretation and
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Fig. 1. Selected graphical representations of expert answers from Round 1: Undercount of emigration
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parametrisation of their answers (see Figure 1 and Section 4), as well as the anonymous
results from other experts in the study. This allowed them to reconsider and revise their
opinions.

When formulating questions, it is important to prevent respondents from being
overconfident in their opinions. For example, questions about means or medians may lead
to anchoring the answer and lowering the uncertainty about the tails of the distribution
(Kadane and Wolfson 1998; Rowe and Wright 2001). To avoid this problem, we
constructed questions that focused on ranges of values with direct interpretations and the
certainty about these ranges. Each certainty could then be interpreted as a probability that a
given parameter lies within a specified range.

Experts were free to select the upper and the lower bounds of the intervals. There is an
extensive literature on the issue of fixed versus variable interval bounds; see, for example,
Kadane and Wolfson (1998), Garthwaite et al. (2005) or Dey and Liu (2007) for reviews.
One problem with preselected intervals is that uncertainty may vary across individuals in
complex ways, and hence it is difficult to find an optimal design of a preselected interval.
On the other hand, lower and upper quantiles (often used in preselected intervals) have the
advantage that they can be assessed by a method of bisection, as described in Garthwaite
et al. (2005). From the literature on fixed and preselected intervals they also concluded that
there is conflicting evidence as to which method performs better.

In one of the questions to our experts, we asked about their subjective probability
concerning the accuracy of the data collection system (see Subsection 4.3). As pointed out
in the literature, elicitation of probabilities is a difficult task. The perception of probability
may vary depending on the formulation of the question, for example, odds ratios tend to be
more extreme than the probability specified within a range [0, 1] (Goodwin and Wright
1998). Another issue is viewing uncertainty in terms of frequencies rather than subjective
probabilities (Gigerenzer 1994; Kadane and Wolfson 1998) and forgetting about the
context of an event under consideration. Hence, in the formulation of our question, we
followed the advice of Gigerenzer (1994) of asking about proportions and providing the
context of the subject.

3.1. Delphi Technique

The Delphi technique is a method used to obtain information from a group of experts in
order to make judgements and forecasts when extensive or reliable data in the field of
enquiry are not available (Rowe and Wright 1999). It was first developed by the RAND
Corporation for US military use in the 1950s. More recently, and in the context of
international migration in Europe, this technique was applied to (i) forecast migration
between Central and Western Europe after the fall of communism (Drbohlav 1996),
(ii) the MIGIWE (Migration and Irregular Work in Europe) project to gain information on
irregular foreign employment in Austria following the Sth Enlargement of the EU (Jandl
et al. 2007) and (iii) the IDEA (Mediterranean and Eastern European Countries as new
immigration destinations in the European Union) project to augment forecasting models
for seven European countries (Wisniowski and Bijak 2009; Bijak and Wisniowski 2010).

In a Delphi survey, the elicitation of expert opinions takes the form of an anonymous
questionnaire with multiple rounds, where the experts report their subjective beliefs on the
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topics in question. Between rounds, experts are provided with feedback on the answers in
the preceding round, including qualitative arguments in support of various views. The
experts then complete the next round of the survey where they are free to alter their
previous answers in light of the new information provided by the feedback.

According to Rowe and Wright (2001), the Delphi technique is most reliable when there
are between five and 20 respondents who are experts in the field of enquiry and when there
is heterogeneity among the experts. The questions should be sufficiently comprehensive to
contain the relevant information but not cause information overload. The final round
answers are usually weighted equally. Past evaluations have shown that the answers from
the final round Delphi surveys are more accurate than other approaches using only one
expert, focus groups or single-round questionnaires. By using an anonymous questionnaire
instead of a group meeting, one avoids group pressure and the domination of the group by
some individuals. The Delphi method may also lead to better results because the experts
think more carefully when responding when they know that their answers will be given as
feedback to other experts.

3.2.  Constructing the Questionnaire

For our project, the elicitation process consisted of two rounds (hereafter Round 1 and
Round 2) and involved eleven external experts. We selected the experts from among those
international colleagues who we thought would be knowledgeable about the measurement
of international migration in several countries. The online questionnaire was pretested by
an additional two external experts and two of our team members. The survey was preceded
by an invitation letter, in which the aim of the project and the purpose of the questionnaire
were explained. The experts were asked to give their opinion about how specific
measurements of international migration deviate from the benchmark of the United
Nations definition of a long-term migrant (see Section 2).

The Round 1 questionnaire included a definition of a long-term migrant according to the
United Nations definition discussed above plus 14 questions grouped into four sections.
Each section contained a specific set of closed questions and an open question, in which
experts were allowed to express their comments or arguments related to their answers. In
all questions, experts were asked to provide their answers in terms of percentages, and to
state how certain they were about their answers, that is, 50%, 75%, 90%, 95% or Other.
The first three sections of the questionnaire were restricted to intra-EU/EFTA migrants,
while the fourth section concerned migration between the EU/EFTA countries and the rest
of the world. Finally, the experts were also allowed to provide general comments or
suggestions, as well as to ask questions of their own. The full questionnaire is available for
download at [http://www.imem.cpc.ac.uk].

The undercount of migration between EU and EFTA countries and from or to the rest of
the world was the focus of Section A (Questions 1-3) and Section D (Questions 12—14) of
the questionnaire respectively. Here, experts were asked to provide their judgements and
uncertainty regarding the lowest and highest percentages of the possible undercount of
emigration and immigration in the published statistics. To do this, the experts needed
to consider a nonspecific, hypothetical European country with a good population register
and migration definitions corresponding exactly with the United Nations (1998)
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recommendation. In other words, the experts were asked to think of migration collection
systems rather than specific country experiences.

The focus of Section B of the questionnaire (Questions 4—6) concerned the duration of
stay criteria included in the definition of migration. In Europe, different timing criteria are
used by different countries and these questions aimed at assessing how this might affect
the relative levels of reported migration. Thus, in Question 4, experts were asked how
much, in percentage terms, the level of migration would be for a duration of stay criterion
of six months instead of twelve months. Question 5 asked for the difference between three-
and six-month criteria.

Finally, the questions in Section C were aimed at obtaining information about the
accuracy of population registers in measuring migration. Experts were asked to consider
registers in which there was no systematic bias and with random factors being the main
source of error. In Questions 7 to 11, experts were asked to provide their beliefs and
certainty regarding published statistics falling within an interval from minus 5% to plus
5% compared to the true total level of emigration and immigration.

All eleven respondents from Round 1 took part in Round 2 of the survey. Of these, nine
chose to change their answers to one or more of questions in Round 2. Further information
about the changes in the experts’ opinions between the two rounds can be found in the
following section. The questionnaire in Round 2 consisted of the same set of questions as
in Round 1. It also contained anonymised answers from Round 1 and the arguments used
to support the various views, including the underlying reasons for different assessments.
The experts also had the option to look at graphical representations of their individual
answers, examples of which are shown in Figure 1. Details on how these distributions were
compiled are provided in Subsection 4.1.

4. Translating the Expert Information into Prior Distributions

In this section, we explain how the opinions and judgements obtained in the first and
second round of the Delphi survey were translated into prior distributions for the
parameters introduced in Section 2. The parameters in question are used to address
undercount, duration of stay and accuracy of measured migration flows.

The construction of prior densities based on expert answers was a three-step process.
First, having obtained the raw answers to a given question about some parameter 6, we
identified a distribution, that, in our opinion, reflected the expert judgements about the 60
most appropriately. Second, we constructed a prior density f(6) for each expert i,
i=1,...,n Third, we combined the individual densities into a single prior density:

1 n
P(O) ~ > _fi(6) 2)
i=1

We chose to have an equally-weighted opinion pool because it allowed us to have a
simple, robust and general method for aggregating expert knowledge. Aggregation
methods based on weighting, such as that of Cooke (1991), require a separate elicitation
round in which each expert is asked about a particular variable, of which the real value is
known to the facilitator but not to the expert. In our situation, we did not know the real
values of any of the parameters. Therefore, we assigned equal weights to the experts. The
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equal weights also allowed the different and sometimes opposing assessments to be fed
into the estimation model. Smoothing techniques or fitting a parametric distribution to the
expert answers, for example, would have reduced the amount of information provided by
the experts. Another option, which could be explored in the future work, would be to
perform Bayesian model averaging over models with each single expert prior distribution
as a separate input. For a discussion about the benefits and consequences of the various
ways expert opinions can be combined, we refer the reader to Clemen and Winkler (1990)
and O’Hagan et al. (2006).

4.1.  Undercount of Emigration and Immigration

4.1.1. Method for Constructing the Prior Density

In the first and fourth section of the Delphi questionnaire, experts were asked to provide
answers to the following question about undercount of migration within Europe and to and
from the rest of world. In the preamble to the question on undercount, the reference to the
baseline UN definition was made. The question was formulated as:

[. . .] Consider a European country with a good population register, e.g., Sweden or
Finland, that has fully adopted the UN definition. Because migrants do not always have
sufficient incentives to report their moves to the relevant authorities, migration statistics
are often lower than the true total level. For immigrants this difference is thought to be
smaller than for emigrants.

(a) By how many per cent do you expect that emigration (or immigration) flows are
undercounted in the published statistics, as compared to the true total level of
emigration (immigration)? Please provide a range in percentages.

(b) Approximately how certain are you that the true undercount will lie within the
range that you provided above?

Let P, and P, denote the lower and upper percentages stated by an expert about
undercount and c denote the certainty about the range (P, P,). The underlying assumption
regarding undercount is that P € [0, 1] X 100%, which is

(I -Py=z, 3)

where y are true flows and z are reported flows. Then (1 — P) can be interpreted as a
fraction of the true flow which is captured in the reported data. A couple of the answers
provided by experts in the first round were not meaningful, suggesting some difficulties
were experienced in interpreting the questions. We addressed this issue in the Round 2
questionnaire (see the following section).

To convert the experts’ answers into prior distributions for the parameters, we first had
to identify which probability distributions would both accurately reflect experts’ beliefs
and work well with the underlying conceptual framework introduced in Section 2. We
considered three densities: piecewise uniform, logit-normal and beta. These densities were
chosen because they could be constrained to values between zero and one and they were
flexible in terms of shapes. Besides, as opposed to truncated distributions such as normal
or log-normal, their parameters could be easily calculated.
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Table 1. Experts answers to question 1 — undercount of emigration

Respondent 1 2 3 4
Lowest percentage, P 20 30 50 4
Highest percentage, P, 80 50 90 8
Certainty, ¢ 90 75 90 5

To illustrate the differences between various densities, consider four answers of the
experts to Question 1 set out in Table 1. For example, Respondent 2 believes that the
emigration flows in the published statistics are undercounted by 30% to 50% with a
probability of 75%. Respondent 4, on the other hand, believes that the reported flows of
emigrants are only 4% to 8% too low, which represents a very precise range, but his or her
certainty is only 5%. It should be intuitive that the wider the range of undercount, the
larger the certainty should be. Note that in Round 1 of the Delphi survey, almost all
answers were consistent with this rule. For the questions concerning undercount, only one
expert indicated relatively large range with a small level of certainty. This led to some
computational and interpretation problems.

For the case of the piecewise uniform densities, the computation was straightforward.
We assumed that the certainty level ¢ provided by a given respondent corresponded with
the probability mass between P; and P,. The remainder, (1 — ¢), was proportionally
distributed between [0, P;] and [P;, 1]. Thus the quantiles of the resulting piecewise
uniform density were

1 —-oP,

_ _ (=00 =Py
1+P— P, '

d
R )

q1 “)
The resulting piecewise uniform densities, after transformation into undercount using
Equation (3), are presented in the first row of Figure 2.

In the case of the logit-normal density, it was assumed that

ey o)
p+od (Ch)_l—log(Pl)
(5)
1, log(Py)
n+od (612)—71 ~log (Py)

where u and o are expected value and standard deviation of the underlying normal density
and ® ' denotes the inverse cumulative distribution function of the standard normal
distribution. Two specifications of g; were considered. In the first one, the probability
mass c lies between P and P, and the remainder, (1 — ¢), symmetrically distributed
between [0, P;] and [P», 1]:

1—c d 1+c¢
= —_— an =
q1 3 q2 D

(6)

The second specification is based on quantiles as in the piecewise uniform approach,
as given by Equation (4). The resulting densities for these two approaches, after
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Fig. 2. Densities for four experts with various specifications

transformation using Equation (3), are presented in second and third row of Figure 2
respectively.

Finally, two sets of quantiles were also considered for the beta distribution. The
parameters « and S of the beta density were computed by solving a set of two equations:

Fb_l(PhaaB):ql

_ , 7
Fy\(Py, o, ) = 42 @
where F ;l is an inverse cumulative distribution function of the beta distribution. This was
achieved by finding roots of the following expression:

2

SO IF P a B - al, )

i=1

where ¢; and g, were either proportionally (4) or symmetrically (6) distributed. Vector
(ag =1, Bp = 1) was used as a starting point for this algorithm. The densities obtained for
the four example experts are presented in Figure 2 in the fourth and fifth rows for
symmetric and proportional quantiles respectively.

From all of the approaches considered to translate and represent the subjective expert
opinions, the beta density with proportional quantiles was ultimately chosen. Piecewise
uniform was rejected because it produced relatively crude results. The logit-normal and
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beta distributions with symmetric quantiles also tended to yield unintuitive shapes,
especially in cases where experts assigned more certainty to regions close to zero or 100%
undercount. Such a case is represented by Respondent 4 in Figure 2. Both symmetric
approaches (logit-normal and beta in rows 2 and 4, respectively) are bimodal with most of
the probability mass assigned close to zero and one, which was considered to be a rather
implausible representation of an expert’s opinion. The proportional logit-normal approach
also resulted in a bimodal density and was rejected (depending on relative sizes of w and o,
the logit-normal distribution has one or two modes; see Johnson 1949, pp. 158—159).

4.1.2. Feedback to Experts and Round 2 Questionnaire

As mentioned in Subsection 3.2, the second round of the Delphi survey included
anonymised answers from the first round, together with arguments used to support the
views and reasoning of various experts. Besides this feedback, we also took advantage of
Round 2 to ensure a shared understanding of all underlying concepts among the
participants. For example, in Round 1, a few of the experts gave answers to some of the
questions on undercount which lay outside the 0—100% range, making interpretation
difficult in terms of Equation (3). This suggests that the undercount was understood as
‘how many times larger are the true flows, in comparison to the reported data’, that is,

y=00+a)z 9)

where y and z are the true flows and reported data, respectively, and « denotes magnitude
of how many times the true flows are larger than the reported data. Hence, if an expert
provided at least one number « falling outside of a range [0, 1], both answers were treated
according to the interpretation implied in Equation (9) and recomputed to be
P=1-1/(1 + @), where P is the undercount factor as in Equation (3). Those experts
who in Round 1 had provided answers outside the 0—100% range were contacted to
confirm that our interpretation of their answers was correct. In Round 2, it was specifically
stressed for some of the questions that the answer must lie in the interval 0—100%.

4.1.3. Expert Answers and Resulting Prior Densities

The answers provided by the experts to the question on undercount of emigrants within EU
and EFTA countries, converted into proportions, are presented in Table 2. For the

Table 2. Experts’ answers concerning undercount of emigrants

Resp. 1 2 3 4 5 6 7 8 9 10 11

Round 1
P, 020 0.30 0.00 050 0.10 0.04 0.10 001 0.80 005 0.20
P, 080 050 1000 090 030 008 040 030 095 020 0.80
c 090 0.75 050 090 020 005 075 090 050 075 090
Round 2
P, 0.25 0.30 0.100 050 0.10 0.04 020 001 050 050 0.30
P, 075 0.50 1.00 0.70 030 0.08 050 050 075 090 0.90
c 090 0.75 050 075 050 005 050 090 0.75 090 0.90

Resp. — Respondent, P; — Lowest proportion, P, — Highest proportion, ¢ — Certainty.
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emigration undercount we observe that two respondents did not change their opinions
between two rounds of the study, while three increased their confidence. Some of the
experts provided wide percentage spans with large confidence (e.g., Respondents 1, 4, 10,
11), while others gave a comparatively narrow range with lower certainty (Respondents 2,
6 and 9). Respondent 3 provided a percentage range exceeding the envisaged 0—100%
range with a relatively small confidence. Hence, we interpreted it as the undercount given
in Equation (9) and transformed it accordingly. In the Round 2 answers, we observe that
only two experts lowered their certainty.

In Figure 3 and Figure 4, we present the Round 1 and Round 2 expert opinions regarding
factors (1 — P), that is, the parameters und;, which capture the emigration and immigration
undercount, respectively, transformed into beta densities with proportional quantiles. The
individual curves were used to construct mixed prior densities (bold curves in Figure 3 and
Figure 4) for the und, parameters.

The prior density for emigration undercount, based on answers from Round 1 (bold
curve in the left plot of Figure 3), is weakly informative in the sense that there is no clear
region of undercount that would be indicated by the majority of experts. The resulting
density has four modes. Mean undercount is 52%, with a standard deviation of 27%. The
corresponding Round 2 prior density is unimodal, with a mean of 56% and a standard
deviation of 22%. Unimodality and lower spread in the second round suggests there has
been some convergence of the answers.

Comparing the prior densities of the immigration undercount answers with those of
emigration, we observe a shift of the probability mass from the region of a very high
undercount (near zero) to the values suggested by the majority of experts, that is around
60—80%. The Round 1 prior density mean is 68% with standard deviation of 25%; in the
second round these values changed to 72% and 18%. Again, the three modes of the Round
1 prior were replaced by a unimodal density in Round 2, which is a sign of convergence in
judgements.

The overall large standard deviation and a relatively ‘flat’ shape of the distribution of
the mixture densities reflects the heterogeneity of expert judgements about the undercount.
It may also stem from different experiences of the experts with migration statistics. That is,
their opinions may have been based on the systems known best to them or on their lack of
knowledge regarding other systems.

.0 0.2 0.4 0.6 0.8
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Fig. 3. Expert answers transfomed to densities for undercount of emigrants parameter, Round 1 (left) and
Round 2 (right)
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Fig. 4. Expert answers transfomed to densities for undercount of immigrants parameter, Round 1 (left) and
Round 2 (right)

As shown in Figure 5 and Figure 6, the expert assessments of the undercount of
emigration to and immigration from the rest of the world are more ambiguous than for
intra-European migration. Four experts stood by their Round 1 answers in Round 2 and
two reduced their confidence and changed the undercount range.

Consensus among experts concerning the undercount of rest of world flows was not
reached. Respondents pointed out that the data on non-EU citizens are in general better
captured due to more requirements for them than the data on nationals or other EU
citizens. This would reduce the undercount. On the other hand, including the
undocumented migrants in our estimates has had a reverse effect and blurs its evaluation.

4.2.  Overcount Due to Different Duration of Stay Criteria

4.2.1. Method for Constructing the Prior Density

The duration of stay parameters capture the effects of different timing definitions used to
qualify migrants. We assume that, in the presence of no undercount and the same accuracy,
the shorter the duration measure, the greater the number of migrants:

Yo <¥1i2 < Y6 <y3 < Yo, (10)

where the subscripts of the true flow y denote the durations with p = permanent,
12 = twelve months, 6 = six months, 3 = three months and 0 = no time limit. For

15
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Fig. 5. Expert answers transformed to densities for undercount of emigrants to rest of world parameter, Round
1 (left) and Round 2 (right)
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Fig. 6. Expert answers transformed to densities for undercount of immigrants to rest of world parameter, Round
1 (left) and Round 2 (right)

simplicity, we suppress country and time subscripts. Our benchmark criterion was twelve
months, following the United Nations (1998) definition described in Subsection 3.2.
The overcount of the number of migrants, due to the different duration criterion in the
reported data z, can be expressed by a factor dur, in the equation

z=durg X yi2,

where s denotes the applied duration criterion, that is s € {0, 3, 6, 12, p}.

The question in the Delphi study about the overcount was introduced after the question
concerning the undercount. In the preamble it was pointed out that the undercount did
not play a role in here. It was formulated as follows:

[. . .] Consider a European country that uses a 12-month criterion. Now imagine that the
six-month criterion is used instead. With this new criterion, more persons are considered
migrants compared to the previous criterion.

(a) By how many per cent do you expect that the level of migration with the SIX
(THREE) MONTH criterion is higher than with the twelve (SIX) MONTH
criterion? Please provide a range in percentages.

(b) Approximately how certain are you that the true value will lie within the range that
you provided above?

The experts were asked to provide lower and upper percentages of the overcount,
denoted by P, and P,, as well as their level of certainty about the range (P, P»).
The percentage P > 0 provided by experts represents the duration overcount in the
following way:

Yo = (1 4+ P)yp, (11)

where « denotes a shorter duration criterion than b. The overcount due to using a six-
month criterion instead of a twelve-month criterion is captured by 14 P = exp (d3),
where d3 > 0 is an auxiliary variable, so that ys = exp (d3)y;». Similarly, the overcount
of migrants measured using a three-month criterion compared to a six-month criterion is
exp(d,), d» > 0, which can be expressed as y; = exp (d2)ys. Thus the effect of using a
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three-month criterion compared to a twelve-month criterion is y3 = exp (d, + d3)y1s.
For permanent duration the relevant scaling factor is yp = exp (—d4)yi2, where d4 > 0.
These formulations led to the following constraints imposed on the duration parameters
durs, s € {0, 3, 6, p}:

dury = exp(d| + dy + d3),

dury = exp (dr + d3),

dureg = exp (dz), 12

dur, = exp(—ds).

We further assume that each d;, [ = 1, 2, 3, 4, follows a log-normal distribution. Then
the parameters of each expert-specific density for d; can be calculated by solving the
following set of equations:

uw+ o CI)_'(I/Z +¢/2) = log log (1 + Py)

w—o®'(1/24¢/2) = loglog(l + P,)’ (13
where w and o are the expected value and standard deviation respectively of the
underlying normal density, ¢ is the elicited certainty level, and ® ' denotes the inverse
cumulative distribution function of the standard normal distribution.

The comparisons of the ‘permanent’ and twelve-month criterion, as well as the three
months with ‘no time limit’, were elicited from the migration experts during a workshop
organised by the authors. This workshop brought together academics and persons
responsible for migration data at national and international institutions, including some of
the experts from the Delphi study. For elicitation, the same approach and formulation of
the questions were used but the number of experts was 24 instead of eleven. Here we
present the results only of the original Delphi questionnaire, as it is consistent with the
other questions on undercount and accuracy.

4.2.2. Expert Answers and Resulting Prior Densities

The representations of individual expert answers concerning the overcount of migration
due to different duration of stay criteria are presented in Figure 7 and Figure 8 for six
months versus twelve months and three months versus six months respectively on the
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Fig. 7. Expert answers transformed to densities for duration overcount exp(ds), 6 months versus 12 months,
Round 1 (left) and Round 2 (right)
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Fig. 8. Expert answers transformed to densities for duration overcount exp(d;), 3 months versus 6 months,
Round 1 (left) and Round 2 (right)

linear scale. In other words, the curves represent the expert answers translated into
densities for parameters exp(d;) and not the overcount factors dur;.

When we compare the mixture prior densities (bold curves in Figure 7 and Figure 8)
resulting from two rounds of questions about the overcount due to different duration
criteria, we observe two important changes between Round 1 and Round 2 of the Delphi
survey. In both the twelve month to six month and six month to three month comparisons,
the expert whose answer contributed to the mode at 0% changed his or her judgement. The
mixture is a heavy-tailed distribution because Respondent 3 provided a comparatively
small confidence in the answers. Here, the number of migrants captured by the data
collection system with six months duration of stay criterion is expected to be 10-30%
larger than with the twelve-month criterion. Experts were more uncertain and ambiguous
about the difference between the three- and six-month criteria.

4.3. Accuracy

4.3.1. Method for Constructing the Prior Density

The question regarding accuracy of data collection appeared to be the most challenging
for the experts to answer. It was asked for in the third section of the Delphi questionnaire.
In the preamble to the question, it was explained that accuracy should be assessed
assuming there were no biases in the measurement, that is, it was independent from the
undercount and duration issues.

[. . .] Consider a European country with a population register in which there is no
systematic bias in the measurement of migration. In this case, we may expect random
factors, for instance administrative errors in the processing of the data, to affect the level
of migration that is actually measured.

(a) For EMIGRATION (IMMIGRATION), how probable do you think it is that the
published statistics are within an interval from minus 5% to plus 5% compared to
the true total level of emigration? (If it helps, think of how often the annual
published statistics are within this interval during a period of 100 years). Please
provide a range in percentages.

(b) Approximately how certain are you that the true value will lie within the range that
you provided above?
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The interpretation of the question in brackets was provided to help respondents understand
the notion of accuracy and provide a context of the range of minus 5% to plus 5%.

To transform experts’ answers into prior densities for the precision of the random terms
in the measurement equations, consider a simplified equation for the observed data z and
true flows y:

z=yX¢, (14)

where ¢ denotes an error term. On the logarithmic scale, & is normally distributed with
mean zero and precision 7. Given the * 5% deviation from the true level of migration and
two probabilities of such an event provided by the experts, P, and P,, it follows that

P; = ®[log (1.05)/7] — ®[log (0.95)/7], i=1,2. (15)

Using the approximation log(1.05) = —1log(0.95) = 0.05, we simplify the above
equation into

P, =2®0.05)7) — 1, i=1,2. (16)

Then the precision 7; is computed as
L (Pi+1\]
T,-=4oo[c1> 1(—; )] yi=1,2. 17

For expert-specific distribution of 7, a gamma G(a,r) density is assumed.
Parametrisation of the gamma distribution throughout this article is such that the
expected value is a/r and the variance is a/r 2. We can estimate the parameters « and r by
solving the following set of equations:

F:gil(Pla‘Lr) =41

E\Paayr) =g, (1%

where F;l is an inverse cumulative distribution of the gamma distribution. This is
achieved by finding the roots of the expression:

2

S Ean—gl (19)

i=1
where

(1 —op, _d—od—P)
and = =

N=1ip —p, L= 1P —p,

For the cases where experts provided zero or 100% probabilities, this formula cannot be
used because it has no unique solution. To overcome such answers, we replaced zeros with
0.01% and 100% with 99.99%.

To find starting point values for the optimising algorithm a log-normal approximation
was used, with parameters w and o calculated as

o= log (1) — log(71)
(1 —gq) — D (q)

(20)
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and

p=log(m) —a® (1 — q). (1)

Then, the expected value and the variance of the approximating log-normal density were
computed as follows:

E(1) = exp(un+ 0?/2)
Var(7) = [exp (02) — 1]exp Qu + o?)

Finally, we solved the basic equations E(7) = a/r and Var(7) = a/r? for e and r to obtain
the starting point values.

4.3.2. Expert Answers and Resulting Prior Densities

In Figures 9 and 10, the graphical representations of expert answers for emigration and
immigration respectively are shown. For clarity, we present the densities for the expected
proportion of observations with less than 5% error, as was requested in the question, rather
than the gamma densities for the precision 7. The bold curves represent mixtures of the
experts’ single densities. In terms of results, we observe that in both Round 1 and Round 2,
the experts’ answers were diversified. About a third of all experts provided low
probabilities suggesting that the measurement of both emigration and immigration is
rather poor, while the rest of experts stated that the data collection systems are mostly
accurate with probabilities higher than 50%. This heterogeneity could stem from the
different backgrounds and experiences with various data collection systems in Europe.
Although experts perceived the measurement of immigration to be more accurate than
emigration, their opinions were far from unanimous. For example, one of the experts,
having seen the results of Round 1, reduced his or her level of confidence in Round 2. In
general, we observed some convergence in opinion for the accuracy of immigration.

5. Importance of Expert Information

As described in Subsection 4.1.3, the elicited prior densities for undercount were varied
and uncertain. In our process of assessment, we came to the conclusion that our original
specification for the undercount parameters had likely created some confusion amongst the
experts related to the difficulty in distinguishing undercount amongst intra-European flows
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Fig. 9. Expert answers transformed to densities for accuracy of emigration measurement, Round 1 (left) and
Round 2 (right)
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Fig. 10. Expert answers transformed to densities for accuracy of immigration measurement, Round 1 (left) and
Round 2 (right)

and flows to and from rest of the world. Moreover, by running the model in (Raymer et al.
2013), we found that the prior densities for undercount led to inflated medians and very
wide posterior distributions of the estimated migration flows. This was especially
noticeable for countries with reliable population registers, such as Sweden, Norway and
the Netherlands.

As aresult of our assessment, we considered a different specification for the undercount
parameters. Rather than making a distinction between intra-European flows and flows to
and from the rest of the world, an expert within our project grouped the countries into two
categories: low and high undercount. The opinions for this new specification were also
provided by this person. The answers in terms of P; and P, in Equation (3) were as
follows:

e Low undercount countries: The Netherlands, Sweden, Finland, Norway, Denmark,
Germany, Iceland, Austria, Belgium, United Kingdom, Cyprus, Ireland, Italy,
France, Luxembourg, Switzerland, and immigration to Spain.

— Emigration: undercount of 20—30% with 60% certainty.
— Immigration: undercount of 5—15% with 75% certainty.

e High undercount countries: Bulgaria, Estonia, Lithuania, Latvia, Poland, Slovenia,
Slovakia, Romania, the Czech Republic, Greece, Hungary, Liechtenstein, Malta,
Portugal, and emigration from Spain.

— Emigration: undercount of 50-60% with 60% certainty.
— Immigration: undercount of 25-35% with 60% certainty.

This information was then used to construct the prior densities in the same way as
described in Subsection 4.1 and resulted in posterior distributions reflecting the assessed
differences in the quality of the available data.

We also investigated whether expert opinion on undercount could be removed from the
model in two ways. First, we replaced the expert-based prior densities with noninformative
uniform prior densities for parameters constrained between zero and one. While we were
able to obtain some information concerning the differences between the high category and
low category undercount, the level could not be determined purely from the data. Second,
we replaced the expert-based prior densities with the noninformative prior densities and
assumed all countries had the same level of undercount. In this case, the estimation
algorithm did not converge.
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The expert-based duration of stay prior densities were examined by keeping the
constraints in Equation (10) the same and assuming weakly informative prior densities for
the duration parameters in the model described in (Raymer et al. 2013). As it was
mentioned in Subsection 4.2, information about the ‘no time limit’ and ‘permanent’
criteria was elicited from participants in a workshop organised by the authors. The answers
were then transformed into densities following the method outlined in Subsection 4.2. We
found that the outcomes were moderately sensitive to the prior densities for the duration of
stay parameters. In particular, for the countries with no time limit criterion, the estimated
migration flows were lower by only 6—9%, for the three-month criterion, the model with
weakly informative prior densities yielded slightly larger estimates (by 4—5%), whereas
for the six-month, twelve-month and permanent duration, the differences were smaller
than 2%. For individual flows between countries, the differences were seldom larger than
* 5%, except for countries not providing data for flows from or to the rest of the world.
Here, the differences oscillated around = 10—15%. Finally, the uncertainty of the flow
estimates was unaffected by using weakly informative prior densities.

To assess the sensitivity of the results to the expert-based prior densities for accuracy,
we analysed the model in (Raymer et al. 2013) using weakly informative prior densities.
The classification of accuracies of the data collection systems in countries remained the
same as described in Section 2. In general, this sensitivity analysis showed that the expert-
based prior densities, which reflected lack of consensus among experts about accuracy of
the data collection, produced nearly the same patterns as when weakly informative prior
densities were assumed. This outcome confirms the difficulty of assessing the accuracy of
data collection systems.

6. Lessons Learned

As was mentioned in the literature review, elicitation of subjective opinions is a difficult
task. Hence, retrospective reflections on the process as well as lessons learned during it can
be as valuable as the results themselves. What did this project teach us about elicitation of
expert opinion? We mention four points.

First, in our initial analyses of undercount we found that the results are sensitive to the
way we specified prior densities, as reported in Section 5. The reason for this problem is
not entirely clear. One explanation could be that there is very little information about
migration flows to and from Europe, and experts were very uncertain about the
undercount, much more so than for intra-European flows. The fact that we found stable
results by reformulating the model and distinguishing between two broad categories of
countries (rather than distinguishing between intra-European flows and flows to and from
the rest of the world) gives some support to this explanation. Therefore, a general lesson
is that it may be useful to combine extremely uncertain parameters with ones that are
more certain.

Second, the notion of ‘undercount of migration flows’ expressed as a percentage turned
out to have different meanings for different experts. In the first round one of the questions
was By how many per cent do you expect that emigration flows are undercounted in the
published statistics, as compared to the true total level of emigration? Please provide a
range in percentages. The idea was that an undercount of 40%, say, reflects a situation
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where the published number is 40% lower than the real (unknown) flow. But some experts
gave answers that exceeded 100%. We contacted them to verify that their interpretation of
an undercount of 200%, say, was as follows: The true flow is three times as large as the
reported flow. In Round 2, we improved the wording of the questions on undercount. This
example shows that our pilot survey was too limited (two team members and two external
experts). Moreover, the testing round could have included various formulations of
questions about probabilities (odds, probability, percentage or real example), which would
allow us and the experts to check their consistency.

Third, the formulation of questions lacked information about the complement of the
range provided by the expert. For the undercount, we did not explain to the experts that the
complement of the certainty c, that is 1 — ¢, is distributed to the values of the undercount
outside the specified interval (but inside the interval [0, 1]). Hence, the probability mass
expressed in terms of ¢ lacked context (Gigerenzer 1994; O’Hagan et al. 2006). On the
other hand, we did not want to overwhelm the experts with too detailed questions. One
option here could have been to ask for a judgement, such as During last 10 years, how
many times did the reported statistics fall into the specified interval?, rather than
confidence. This question would violate the assumption of exchangeability of events (as
measurement in a given year is unique) but would provide a context for experts and
possibly a clearer interpretation of certainty.

A fourth general lesson is that one should be careful in selecting the experts, in
particular when it comes to experience with and knowledge of probabilities and
uncertainty. Indeed, we had considerable problems (fortunately in the pilot survey) to
convince the experts that subjective probabilities are useful information for our assessment
of migration flows. During the first and the second Delphi rounds we were in close contact
with two more experts who appeared to be sceptical of the task. Some of these problems
might have been avoided had we included in our introductory letter a clear explanation of
the two types of uncertainty: epistemic uncertainty (lack of knowledge) and aleatory
uncertainty (randomness); see Jenkinson (2005). We should have also emphasised the
importance of the explanations and views behind experts’ judgements.

7. Conclusion

In situations where data are inconsistent and weak, the inclusion of expert judgements is
essential for improving the estimation and for reflecting uncertainty. In our research on
modelling migration flows (see Raymer et al. 2013 and http://www.imem.cpc.ac.uk), we
sought to provide the best possible estimates and measures of uncertainty based on
available data, covariate information and expert judgements. These three pieces of
information subsequently can be integrated into a single model for providing harmonised
estimates of migration flows amongst 31 countries in the EU and EFTA from 2002 to 2008.

In this article, we have described our methodology for obtaining expert information on
migration data to supplement reported flows and covariate information. Our
implementation of this methodology was the first attempt at eliciting and quantifying
opinions on various aspects of the migration data collection systems. As a result, we
obtained a valuable assessment of the data on migration flows. From the varying opinions
on the undercount, we can conclude that the data collection systems are expected to
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capture about a half of emigrants in Europe and around 60—90% of immigrants. We
learned about the likely effects of different duration of stay criteria used to record
migration flows, for example, the differences in reported figures between a six-month
definition and twelve-month definition. Finally, the largest ambiguity concerns the
assessment of the accuracy. The only conclusion that can be drawn in that respect is that
the experts expect immigration to be measured with greater precision than emigration.
After two rounds of the Delphi survey, we found that experts often disagreed on the
various measurement aspects of migration. The feedback from the first round did not lead
to significant changes in their opinions. However, we did not aim at convergence, as this
could lead to an artificial reduction of uncertainty. Moreover, we believe that due to the
heterogeneity of expert judgements expressed in the survey, the results are an important
assessment of the problematic quality of the data collection systems across Europe.
Nonetheless, elicitation and quantification of the expert knowledge on the data collection
mechanisms in Europe is desired, especially in the context set out by the Regulation (EC)
No. 862/2007 of the European Parliament and of the Council of July 11, 2007. According
to the Regulation, countries in the EU are required to provide statistics on migration based
on the harmonised definition of a migrant to Eurostat. The Regulation allows for use of
well-documented scientific estimation and modelling methods to compile statistics on
migration. Expert knowledge expressed in terms of probability distributions, as described
in this article, can provide an important input to models for harmonising migration data. It
also helps to understand the data collection mechanisms applied in Europe and the
differences among them, as well as to assess the quality of the data produced.
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Internet Coverage and Coverage Bias in Europe:
Developments Across Countries and Over Time

Anja Mohorko', Edith de Leeuw?, and Joop Hox*

To estimate the coverage error for web surveys in Europe over time, we analyzed data from
the Eurobarometer. The Eurobarometer collects data for the European Community across
member and applicant states. Since 2005, the Eurobarometer has contained a straightforward
question on Internet access. We compared respondents with and without Internet access and
estimated coverage bias for demographic variables (sex, age, length of education) and
sociopolitical variables (left-right position on a political scale, life satisfaction). Countries in
Europe do differ in Internet penetration and resulting coverage bias. Over time, Internet
penetration dramatically increases and coverage bias decreases, but the rate of change differs
across countries. In addition, the countries’ development significantly affects the pace of these
changes.

Key words: Web survey; Internet; coverage; coverage bias; nonsampling error;
Eurobarometer.

1. Introduction

Modern society relies on reliable and valid survey data, and almost every country in the
world uses surveys to estimate important statistics, such as rate of unemployment, health
indicators, opinions about the government and key issues in society, intention to vote in
the coming elections, and people’s satisfaction with services. Surveys are also one of the
most common methods in the social sciences used to understand the way societies work
and to test theories.

The last decennium has been marked by fast-paced technological changes that influence
survey methods and survey quality. A dramatic change in survey methodology was caused
by the development of Internet surveys (Bosnjak et al. 2006; Couper 2000). Internet
surveys have many advantages, such as low costs, timely data, and more privacy due to
self-completion. The latter is especially important when sensitive topics are being
surveyed, and mode comparisons consistently show that Internet surveys give rise to less
social desirability than interviews (e.g., Kreuter et al. 2008; Link and Mokdad 2005; for an
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overview see De Leeuw and Hox 2011). In this sense, Internet surveys are indeed more like
self-administered questionnaires and share their benefits, as Couper (2008) postulated.

From the onset of Internet surveys, coverage error has been a source of major concern.
A main problem with Internet surveys is under-coverage resulting from the “digital
divide”, that is, a difference in rates of Internet access among different demographic
groups (such as an unequal distribution regarding age and education for those with and
without Internet access; see Couper 2000). Although Internet coverage is growing — for
instance for Europe as a whole, Internet coverage increased from 15% in December 1999
to approximately 63% in June 2012 (Internet World Stats 2013) — it varies widely across
countries. For example, at the beginning of the 21st century almost 15% of Europeans
had Internet access, but according to the World Bank (2009) this ranged from less than
4% (e.g., Romania and Turkey) to 44% and 46% (the Netherlands and Sweden). For a
more detailed overview, see Blyth (2008). This differential coverage would not be a
problem if the covered part represented the general population with respect to important
survey variables. However, even in countries with a high coverage a digital divide can be
observed, as Internet access is unevenly distributed over the population, with highly
educated and younger persons more often having an Internet connection (e.g., Bethlehem
and Biffignandi 2012; Rookey et al. 2008; Couper et al. 2007). This differential coverage
over countries and demographic groups may result in biased estimates of substantive
variables of interest in a study. To estimate the coverage bias, one needs data on both
parts of the population, that covered and that not covered.

In terms of coverage of the household population, face-to-face interviews are often
viewed as the gold standard to which other modes are compared (e.g., Groves et al.
2009). Since 2005, the Eurobarometer, which is based on face-to-face interviews,
contains a question about Internet access at home. This provides us with a unique data set
to analyze Internet coverage and coverage bias across European countries and over time.
How would substantive results change if important international studies like the
Eurobarometer used Internet surveys instead of the (golden) standard face-to-face
interviews? As data collection in the Eurobarometer does not depend on respondents
having access to the Internet, the survey mode is held constant, and as the same battery
of questions is asked over time and across countries, this data set enables us to
investigate how potential coverage bias could influence the results if the data had
been collected using Internet surveys instead of face-to-face interviews. In other
words, this gives us an indication of Internet coverage and coverage bias over time and
across countries.

In this study, we compare those with access to Internet at home to the whole target group
of Eurobarometer face-to-face interviewees (both with and without Internet access at
home). It is expected that the coverage bias between the two groups differs between
countries and will decrease over time for all countries. We also expect that the rate of
decrease may be different in different countries and that social and economic indicators at
the country level may explain some of these differences.

In the following sections, we first describe the available data and the analysis methods
used. We then present our results on trends in Internet coverage at home and the resulting
coverage bias for available demographic variables and sociopolitical variables. This is
followed by a multilevel analysis to model the changes over time and the influence of
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socioeconomic development on these trends. We end with a critical discussion and
implications for research.

2. Method
2.1. Available Data

2.1.1. Eurobarometer

The Eurobarometer collects data for the European Community across EU members and
applicant countries four to eight times a year. The Eurobarometer has a separate data
collection for East and West Germany, the Republic of Cyprus and the Turkish Republic
of Northern Cyprus, and Great Britain and Northern Ireland. Therefore, the following
32 countries were included in the analyses: Austria, Belgium, Bulgaria, Croatia, Cyprus
(Republic and TCC), Czech Republic, Denmark, Estonia, Finland, France, Germany (East
and West), Great Britain, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg,
Malta, the Netherlands, Northern Ireland, Poland, Portugal, Romania, Slovakia, Slovenia,
Spain, Sweden, and Turkey. Since 2005, the Eurobarometer contains a yearly question
about Internet access at home.

Each wave of the Eurobarometer consists of face-to-face interviews and includes a core
questionnaire plus an additional questionnaire with special topics. For each standard
Eurobarometer survey, new and independent samples are drawn; since October 1989, the
basic sampling design has been a multi-stage probability sample. To ensure the total
coverage of each country, the sampling in the first stage is based on a random selection of
sampling points (PSU) after stratification by the distribution of the national, resident
population in terms of metropolitan, urban, and rural areas, that is, proportional to the
population size. Within the PSUs addresses are then selected using random route
procedures, followed by a random selection of a person at the address (for more details on
sampling and coverage, see GESIS Eurobarometer Survey series 2013).

Every household survey suffers from nonresponse (Bethlehem et al. 2011; De Leeuw
and De Heer 2002; Groves and Couper 1998), and the Eurobarometer is no exception.
Unfortunately, there is no detailed information on response rates made available publicly
and on a regular basis by the principal investigator, the European Commission’s
Eurobarometer unit. Still, there is some indication that response rates vary between
countries. For instance, Busse and Fuchs (2012) note that for the 2002 Eurobarometer,
response rates varied between rates of around 70% for East and West Germany and 40% or
less for Ireland, Denmark and the UK. No systematic nonresponse studies are available.
However, the Eurobarometer data do include integrated design and poststratification
weights to adjust the realized samples to EUROSTAT population data (Moschner 2012).
These weights will be used in estimating the coverage bias indicators.

The core questionnaire contains trend questions about sociopolitical orientation and
standard demographic questions and, since 2005, also includes a question on having an
Internet connection at home, allowing us to estimate Internet access at home and the
resulting coverage bias. Besides Internet access at home, interview data on the following
variables were available for all countries: sex, age, length of education, political left-right
self-placement and life satisfaction (see Mohorko et al. 2011 for the question wording
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used); also the year of data collection was recorded. All the data were downloaded in
February and March 2011, at which point the Eurobarometer data were fully available for
the years 2005 to 2009. Hence, our analysis will cover this five-year period. To assess
coverage bias, we analyze three demographic variables: sex, age, and length of education,
and two substantive variables: political left-right self-placement and life satisfaction. The
demographic variables age, sex, and education are seen as important indicators for the
digital divide (e.g., Couper 2000) and correlate with many substantive variables typically
assessed in academic or market research surveys (Fuchs and Busse 2009). The substantive
variables political left-right self-placement and life satisfaction give us an opportunity to
directly investigate the influence of undercoverage on the assessment of two major socio-
political indicators.

2.1.2. Additional Country-level Variables

The data from the Eurobarometer are individual level data, collected through face-to-face
interviews in each country. Apart from Internet penetration, the countries involved in the
Eurobarometer also differ on socioeconomic variables, which may influence Internet
coverage. To model this, we collected socioeconomic country-level data from Eurostat,
the World Bank, and the Human Development Report. Contextual country-level variables
are: life expectancy at birth (in years), country’s educational index, duration of primary
and secondary education (in years), and urbanization (the percentage of urban population).
Economic indices on country level are the percentage of employed (labor force), the Gini
coefficient (which measures income inequality), Gross Domestic Product growth (GDP),
and inflation. For a description of these variables and the data sources including the URL,
see Mohorko et al. (2011, 2013). It should be noted that these variables are measured at the
country level, but they are available for each year, hence they are time-varying predictors.

2.2.  Analysis

2.2.1. Coverage and Indicators of Coverage Bias

Coverage is defined as the percentage of the population of interest that is included in the
sampling frame; ideally the coverage should be 100%. Furthermore, there should be a one-
to-one correspondence between the population of interest or target population and the
(sampling) frame population. If this is not the case, and if those missing in the frame differ
from the target population on a key variable of interest in the study, coverage error occurs
(Biemer and Lyberg 2003; Groves et al. 2009). Groves (1989, p. 11) describes coverage
error as follows: “Coverage error exists because some persons are not part of the list or
frame (or equivalent materials) used to identify members of the population. Because of
this they never can be measured whether a complete census of the frame is attempted or a
sample studied.”

Undercoverage is one of the main concerns for the validity of conclusions based on
Internet surveys (Couper 2000). Although Internet access is growing, there are still many
individuals who are not covered, and if those without Internet access differ on key
measures from those with Internet access, the resulting estimators will be biased.
For example, if wealthier households are more likely to have Internet access, then a survey
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about household assets that is based exclusively on the Internet will produce income
estimates that are too high (Lohr 2008).

To investigate coverage problems in Internet-based surveys, we compare the responses
of the subgroup of Internet-at-home with those of the total group of Eurobarometer
respondents. Since the Eurobarometer was conducted face-to-face in all countries and
face-to-face surveys have the least coverage problems (Groves et al. 2009, p.163;
De Leeuw 2008, p. 125), the total Eurobarometer group in this study is regarded as a proxy
for the target population. Differences between those with an Internet connection at home
and the total Eurobarometer group give an indication of the bias due to undercoverage if
an Internet survey had been implemented instead of a face-to-face survey.

The net coverage bias is defined by Lessler and Kalsbeek (1992, p. 59-60) as

- - _ N notcovered ,_ -
Yeovered T Ytarget = T (y covered — Ynot covered) (1)
N target

which is used by Bethlehem and Biffignandi (2012, p. 289) to define bias due to the non-
Internet population. Based on Equation (1), we use two indices to assess the amount of
coverage bias: the relative bias (Lessler and Kalsbeek 1992, p. 60) and the absolute relative
bias (Groves and Peytcheva 2008). The relative coverage bias is used for descriptive
purposes, as the sign of this estimate indicates the over- or undercoverage of specific
groups (e.g., if more men than women have Internet access at home in a certain year and in
a certain country). However, when modeling changes occur over time and across
countries, positive and negative values for relative coverage can cancel each other out and
the resulting regression coefficients may falsely give the impression that the overall
coverage error is close to zero. Therefore, we use the absolute relative coverage bias in our

multilevel analyses.
The relative and absolute relative coverage bias due to lack of Internet access are

defined as
relative coverage bias = ylmy_i 2)
EB

and

. . Yt — YEB
absolute relative coverage bias = ym_iy

3

YEB

where EB represents the total achieved Eurobarometer sample, which is viewed as our
target population, and Int represents the covered Internet subsample. Analogous ygp and
Y represent the means of the Eurobarometer target population and the Internet subsample
on the variable y.

2.2.2. Statistical Analyses

The relative coverage bias is used for descriptive analyses over countries and time.
Positive values indicate that surveys, which are exclusively conducted through the
Internet, will result in estimates that are too high, whereas negative values indicate that
these will result in estimates that are too low.
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Multilevel analysis on the absolute relative coverage bias is used to model and explain
trends over time and country for all bias indicators (sex, age, length of education, political
left-right self-placement and life satisfaction). For ease of interpretation, the absolute
relative coverage bias is expressed as percentage points. In the multilevel model, the
lowest level represents the years, indicated by a time variable coded 2005 = 0, 2006 = 1,
et cetera. To estimate change over time, we analyze a null model that always includes the
linear effect of time and tests whether the variance component for the slope of time is
significant. If this random component is not significant using a likelihood ratio test, it is
removed from the null model. Since the plots for the effect of time in Figure 1 indicate
possible nonlinearity, we test for nonlinear effects by analyzing the quadratic effect of
time. If the quadratic term is not significant at the conventional 5% level, it is removed
from this model; the linear term for time is always retained in the null model.

In a second step, we add country-level socioeconomic variables. Country-level
variables model initial differences in bias between countries in the starting year 2005.
Since the country-level variables vary across time, they may also explain change over
time. Because the country-level variables are correlated with time, adding them to the
model may replace (part of) the explanatory power of the time variable as estimated in the
null model.

Finally, differences between countries in the rate of change over the years, as indicated
by variation in the slopes of the time variable, are modeled as interactions of country-level
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Fig. 1. Internet access at home across Europe 2005—-2009, based on the Eurobarometer’s weighted data. The
lines represent the 32 countries/regions distinguished in the Eurobarometer
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variables with the time variable. Again, effects that are not significant are removed from
the model. A two-sided significance level of alpha = 0.05 is used throughout.

3. Results
3.1. Coverage Bias in European Countries

Internet access at home increases over time across Europe, but the rate of increase differs
across countries (see Figure 1). The actual proportions per country and per year are
presented in Appendix A. These numbers show that for countries with an initial low
Internet penetration, for example Bulgaria and Romania, the proportions increase rapidly,
while for countries with an initial high penetration, for example Sweden and the
Netherlands, the growth is less steep.

But even with an Internet penetration above 80%, there still may be considerable
differences between those with and without Internet access. This is indicated by the
relative coverage bias, which is based on the standardized difference between the
subgroup of those who do have Internet at home compared to the total (Internet and
non-Internet at home) group. Full descriptive tables with the values of the relative
coverage bias for each country in the Eurobarometer and each year are available in
Mohorko et al. (2011).

For the demographic variables sex, age, and length of education, the descriptive tables
indicate a digital divide. In Europe, those with Internet at home are more often male,
younger, and highly educated (Mohorko et al. 2011, Appendix D, Tables D1-D3); similar
patterns have been found in the USA (cf. Couper 2008). The bias for sex is relatively low
and decreases strongly over time. The highest value was found for Greece with 8.5% more
men than women having Internet access in 2006, which decreased to 5.5% in 2009. The
lowest values (less than 1% more men) were found for countries like Sweden, Slovenia,
Ireland, and the Netherlands in 2009. In general, the gender gap is closing very fast over
time. Furthermore, the age difference is becoming smaller over time; younger people are
still overrepresented, but for some countries (e.g., Sweden and the Netherlands) the age
bias is really low (around — 0.04) in 2009, while for others (e.g., Bulgaria) it is still rather
high (—0.22 in 2009). The same can be seen for length of education. It should be noted
that countries with the smallest digital divide regarding the demographics of age, sex, and
education are also the countries with the highest Internet penetration. This gives an
optimistic outlook for the future that as Internet penetration increases, the digital divide
will decrease.

When we take a closer look at the descriptive tables for the substantive variables
political left-right self-placement and life satisfaction (for the detailed tables per country
over the years, see Mohorko et al. 2011, Table D4 and DS5), we again note that the
differences are becoming smaller over time. On average, the coverage bias is very low for
political left-right self-placement, where its bias decreases towards zero over time with the
largest differences found in Bulgaria (from 0.23 in 2005 to 0.075 in 2009). It should be
noted that the coverage bias for this variable does not take the same direction in all
countries. For some countries, those with an Internet connection at home place themselves
more on the left (e.g., Austria, West-Germany, Great Britain), for other countries they
place themselves more on the right (e.g., Bulgaria). For the second substantive variable life
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satisfaction, we see that in every country and every year there is a positive bias, indicating
that those with Internet at home are more satisfied with life than the Eurobarometer
population in general. This bias decreases slightly over time.

3.2.  Changes in Coverage Bias Over Time

The change in coverage bias over time is analyzed using multilevel analysis, with years
(coded 2005 = 0, . . .,2009 = 4) nested within countries. This allows us to test whether
the change over time is significant and to test if country-level variables can predict changes
over time. The analysis showed that the effect of time squared was never significant, and
therefore only the linear trend of time is included in the model. Table 1 presents the
parameter estimates for each dependent variable for two models: a model with only the
linear time indicator and a model with the time indicator and the significant country
variables.

When we examine the effect of time in the first model, the results show a steady
decrease in absolute relative coverage bias across time, as indicated by a negative value for
the regression coefficient of time, except for political left-right self-placement where the
overall effect of time is not significant. For all five bias indicators, Table 1 shows a
significant and sometimes large country-level variance, which means that there were clear
differences in overall bias between countries in 2005. For three out of five bias indicators,
the time variable has a significant slope variation (indicated in Table 1 under “time slope
variance”), which means that the biases for “age”, “political left-right self-placement” and
“life satisfaction” decrease at different rates across countries. Compared to the size of the
regression coefficient for the time variable itself, these variances are relatively large. This
indicates large differences in the rate of decline between countries for these bias
indicators.

3.3. Coverage Bias and Country Differences

There are differences between countries in the size of the coverage bias and, for some
variables, in the rate of the decrease of this bias over time. These differences are modeled
by the direct effects of the available country-level variables: life expectancy, educational
index, duration of primary and secondary education, urbanization, employment, Gini
index, GDP growth rate, and inflation. The differences in rate of decrease are modeled by
the interactions of these variables with the time indicator.

The explanatory variables secondary education, GDP growth rate, and inflation were
never significant and are omitted from the model. Table 1 shows the estimated multilevel
model and the significant regression coefficients for each of the five coverage bias
indicators. The bias for political left-right placement could not be predicted by any of the
available country variables. The other four coverage bias indicators can be predicted by
different subsets of country-level variables. Thus differences between persons with and
without Internet across countries can be predicted using different country-level variables.

Table 1 shows that coverage bias for age is higher in countries with a high income
inequality as indicated by the Gini-coefficient, while coverage bias for age is lower in
countries with a higher educational index, a higher life expectancy, longer duration of
primary school education, and high urbanicity. In contrast, coverage bias for sex is only



617

Mohorko, De Leeuw, and Hox: Internet Coverage and Coverage Bias in Europe

"W} 10J JUSIOYJI0D JUBOYIUSIS-UOU SAIBIIPUL

'G0°0 Jo eyd[e papis-om] & Je Jueoyrusds jJou sem Iojowered asneoaq parowal Ing pa)sd) Iejewrered sojeorpur -,
"PINIWO I8 PUB ‘$)09JJ2 JuLdYIUSIS OU PRy UOHBHUI PUB Y)MoIS-J(o ‘uoneInp uoneonpd K1epuodss sojqeriea A1oyeue[dxa ay) :9JoN

QJUBLIBA

- (S1)970 )y ero  (1T) 150 (€2) S¥0 - - (60)S1°0 - - ados sy,

12 L99 (689 6£5C  (9TH) 0£'ST (O ¥9°ST (899) 69Cc  (6T°L) 16°LT 9T 9L (99°6) 860 (ze) 080 (S£) 860 QoueLeA Anuno)

(€s)Lse  (ov)LLT (ot 08T (0t 08°C (€€) +8'1 (0S) 86'¢ (Te) sve (Ie)€re (§2) 961 (ST)96'1 9OUBLIEA [ENPISTY

(98) 8 (38) 8 (09) 8 (CH (38) 8 (09) .8 (39) .8 (38) .8 (8) 8 (38) 8 jaed wopuey

¥0) 10— - (90) ST°0— (S0 01°0— - Kyrotueqin

.HS@ MOOQOm

- - - (F¥) 260— - Arewng

(L1)99°0— - - (61) 650— - Koueyoadxe o1y

(€T 9Ty — - (86°1) T8¢ — - - juowkordwyg

- - (T1) 0g0— (80) 120— - Xopul [euoneonpy

- - - (80) €20 #07) 60°0 JUAIOYFO0D TUID)

S9[qerreA %haﬂﬂco

- (€1 sco— - w91 500 L1 evo— (I1)8L0— I veo—  (17090—  (80) Lz0— (80) LTO— auiy,

O¥'TD 0978 (T6) SS°S (I¥) 2o'e (L) egc  (€ocD 1679 (L6) 1101 (L091) 69C8  (€8) 0191 FED 010 (97) L8T 1dadreyug

(4s) q (%) q (3s) q (es) q (%) q (3s) q (3s) q (3s) q (es) q (es) q yjaed paxiy
so3ompard  (60—5$002) sto3o1paxd  (60—5007) stoopard  (60—5002) siootpard  (60—5002) szojo1paxd  (60—5002)

Anuno) IR X Anuno) IBOX Anuno) B X Anuno) IBOX Anuno) IBOX [9POIN

uonoRJSIES I
serg

JuUSWAOR[J-J[oS

WERI-T Teonod
serg

uoneonpy Jo yISua|
seld

uonisodwo)) a8y uonisodwo) xo§
selq seld

(28) 40442 pavpuvis Sutpuodsa.iod puv (,s) smauoduiod

20UDLIDA (q) SIUIIf200 UOISSIAE2L YIIM [apOUL [2A]INPY "SI]GDLIDA [242]-L47un0d pup 4pak £q pajdipaid $ajqvLIpa pajdajas 4of siq 2812402 2a1vjal 2INjosSqy [ |qV[



618 Journal of Official Statistics

associated with the Gini coefficient; coverage bias for sex is higher in countries with high
income inequality (high Gini). Coverage bias in length of education is lower in countries
with a higher educational index, a higher employment level, and a higher urbanicity.
Coverage bias in life satisfaction is lower in countries with a higher employment rate,
higher life expectancy and high urbanicity.

There were no significant interactions with time, meaning that the available country-
level variables do not predict the differences in the rate of bias decrease. When we
compare the model with country variables added to the model with only time as predictor,
an interesting pattern emerges. For all four bias indicators with a significant effect of time,
Table 1 shows that adding country-level variables to the model decreases the size of both
the regression coefficient for time and the variance across countries. Thus part of the effect
of time is the result of changes over time in country-level variables. The signs of the
regression coefficients for the country variables suggest that, in general, coverage bias
decreases when education, employment, life expectancy, and urbanicity increase. In other
words, differences between persons with and without Internet access decrease when the
value of these variables increase. In contrast, the differences between persons with and
without Internet access increase when the income distribution is more unequal.

4. Conclusion and Discussion

As expected, Internet penetration has increased over time in all countries included in this
study. As a result, the absolute relative bias in the estimates of four out of five variables has
also decreased; only political left-right self-placement does not show this trend. In other
words, differences in age, sex, education, and life satisfaction between those with and
without Internet access are diminishing. Multilevel analyses show that for those four bias
indicators, the decrease in coverage bias over time differs across countries and that the
countries’ development affects the pace of this decrease. For age and life satisfaction, the
variation in decrease is fully explained by the country-level variables in the model, albeit
only partially for sex and education.

The general trend is that higher levels of economic development, education, and health
are associated with lower coverage bias, whereas higher income inequality is associated
with higher levels of bias. Given the general economic and demographic trends, one
conclusion of our study is that coverage bias due to low Internet penetration is
disappearing across countries in Europe. The multilevel analyses also show variation
across countries in both the initial level and rate of decrease of coverage biases for
demographic variables. This shows that the “digital divide” (Couper 2000) not only differs
between countries, but also is diminishing at different rates over time in these countries.

Our measure of Internet penetration and coverage bias is based on a question in the
Eurobarometer that inquires specifically about Internet access at home. However, there are
alternative ways to access the Internet, for instance at work, in libraries, or on mobile
devices. For this reason, our analyses are based on the assumption that for surveys that
consist of more than a couple of pop-up questions, respondents will prefer to answer in an
environment where they have time, feel comfortable, and have privacy. Although mobile
Internet is promising, only one third of the population was covered by mobile Internet in
Europe in 2007. Furthermore, coverage biases for demographic variables for the mobile



Mohorko, De Leeuw, and Hox: Internet Coverage and Coverage Bias in Europe 619

web were larger than for landline Internet (Fuchs and Busse 2009). The use of mobile
Internet on telephones and tablet devices is likely to increase further in the near future,
which will necessitate a change in the measurement of Internet access. Provided that
survey methodologists adapt their surveys to these new devices (e.g., Callegaro 2010), this
will not change our conclusion that coverage bias for Internet surveys is decreasing over
time.

This study focuses on coverage bias. Good coverage is a necessary but not a sufficient
condition for high quality survey data. Other error sources exist, such as nonresponse error
or mode effects. Meta-analyses (Cook et al. 2000; Lozar Manfreda et al. 2008) show that
Internet surveys yield on average 11% lower response rate than other modes. Clearly,
measures should be taken to increase this response rate. For a discussion of such measures
we refer to Dillman et al. (2009). Compared to face-to-face interviews, responses to
Internet surveys may differ due to mode effects, especially when sensitive topics are
addressed. For a discussion, we refer to De Leeuw and Hox (2011), Dillman et al. (2009),
and Kreuter et al. (2008).

In our study we treat the data from the face-to-face Eurobarometer samples as a
representative sample of the total target population, and our results are conditional on the
selection and nonresponse processes in the Eurobarometer. Therefore, in estimating
the bias indicators, we used the design and post-stratification weights included in the
Eurobarometer data. Nevertheless, nonresponse in the Eurobarometer samples can still
affect our results. The use of adjustment weights amounts to treating nonresponse as
missing at random (MAR, cf. Little and Rubin 2002). However, if the nonresponse in the
Eurobarometer were related to Internet access itself (and were therefore missing not at
random or MNAR), there is a potential for nonresponse bias. Hence we view our findings
as an indication of a generally decreasing coverage bias in the countries studied, but not as
precise estimates of this bias.

A potential alternative data source for a future follow-up study would be the European
Social Survey (ESS), which recently added a question on Internet access to the core
module. Like all surveys, the ESS also has differential nonresponse across countries, but
the ESS response rates and sources of nonresponse are well documented and available for
more in-depth analyses (Stoop et al. 2010). Ideally, in some countries it may be possible to
validate survey-based information on Internet access with registry data.

In conclusion, even if Internet coverage is not complete, Internet surveys may still
compete with other survey modes. For instance, in 2008 the Netherlands had an 86%
Internet coverage, while the landline telephone coverage was around 60—70% (Bethlehem
etal. 2011, p. 100 and p. 102). The same trend can be seen in other countries; for instance,
Smyth and Pearson (2011, p. 16 and p. 17) report that in 2008 the US had an Internet
coverage of just over 70%, and random digit dialing landline telephones had a coverage of
about 78%. However, landline telephone coverage is decreasing (cf. Busse and Fuchs
2012; Mohorko et al. 2013), while Internet coverage is rapidly increasing over time — as
this study shows.
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Appendix A:
Growth of internet access at home across Europe: 2005-2009 based on the
Eurobarometer weighted data for that time period

Country\Year 2005 2006 2007 2008 2009 Grand Total
Austria 0.46 0.53 0.56 0.55 0.56 0.53
Belgium 0.55 0.60 0.63 0.63 0.62 0.61
Bulgaria 0.09 0.16 0.21 0.29 0.32 0.21
Croatia 0.32 0.42 0.43 0.41 0.41 0.40
Cyprus Rep. 0.33 0.37 0.43 0.48 0.48 0.42
Cyprus (TCC) 0.27 0.34 0.41 0.55 0.53 0.42
Czech Rep. 0.33 0.42 0.45 0.49 0.53 0.44
Denmark 0.77 0.77 0.81 0.83 0.84 0.80
Estonia 0.44 0.52 0.61 0.63 0.62 0.56
Finland 0.63 0.69 0.75 0.75 0.79 0.72
France 0.42 0.50 0.59 0.57 0.62 0.54
Germany East 0.46 0.44 0.51 0.57 0.61 0.52
Germany West 0.56 0.62 0.60 0.65 0.69 0.62
Great Britain 0.57 0.59 0.63 0.63 0.65 0.61
Greece 0.22 0.26 0.27 0.24 0.30 0.26
Hungary 0.17 0.21 0.27 0.34 0.37 0.27
Ireland 0.50 0.50 0.51 0.64 0.65 0.56
Italy 0.37 0.35 0.38 0.41 0.39 0.38
Latvia 0.16 0.30 0.42 0.50 0.50 0.38
Lithuania 0.17 0.26 0.36 0.37 0.38 0.31
Luxembourg 0.65 0.71 0.69 0.72 0.76 0.71
Malta 0.50 0.52 0.63 0.66 0.66 0.59
Northern Ireland 0.54 0.54 0.56 0.62 0.65 0.58
Poland 0.25 0.31 0.41 0.42 0.48 0.37
Portugal 0.21 0.24 0.33 0.35 0.33 0.29
Romania 0.11 0.19 0.22 0.32 0.33 0.23
Slovakia 0.18 0.26 0.33 0.40 0.43 0.32
Slovenia 0.54 0.54 0.61 0.63 0.64 0.59
Spain 0.33 0.39 0.38 0.43 0.41 0.39
Sweden 0.78 0.85 0.84 0.87 0.88 0.84
The Netherlands 0.83 0.83 0.86 0.88 0.90 0.86
Turkey 0.08 0.15 0.17 0.22 0.25 0.17
Grand Total 0.40 0.45 0.50 0.53 0.55 0.49
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