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Unit Nonresponse and Weighting Adjustments:
A Critical Review

J. Michael Brick'

This article reviews unit nonresponse in cross-sectional household surveys, the consequences
of the nonresponse on the bias of the estimates, and methods of adjusting for it. We describe
the development of models for nonresponse bias and their utility, with particular emphasis on
the role of response propensity modeling and its assumptions. The article explores the close
connection between data collection protocols, estimation strategies, and the resulting
nonresponse bias in the estimates. We conclude with some comments on the current state of
the art and the need for future developments that expand our understanding of the response
phenomenon.
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1. Introduction

This article critically reviews aspects of unit nonresponse in sample surveys, where unit
nonresponse is defined as the failure to obtain a valid response from a sampled unit. We
emphasize the consequences of unit nonresponse and methods of adjusting for it in
circumstances that are typical of cross-sectional household surveys. Establishment surveys
and attrition nonresponse in panel surveys are also subject to unit nonresponse, and issues
reviewed here pertain to these surveys. However, the data collection design options,
reasons for nonresponse, and auxiliary data available for adjustment differ dramatically
across types of surveys. Because these features are critical to dealing with nonresponse
and nonresponse bias, we have chosen to focus on situations frequently arising in cross-
sectional household surveys.

Unit nonresponse is just one form of missing data in surveys. Other types of missing
data include incomplete coverage of the target population, item nonresponse, and partial
nonresponse such as wave nonresponse in panel surveys and failure to obtain second-
phase responses in two-phase surveys. While these are all important, they are beyond the
scope of this review.

Most surveys, especially government surveys, employ large sample sizes and design-
based theory to make inferences from the sample to the target population. This theory
assumes complete response. While surveys employ methods to minimize nonresponse and
its effects on estimates, in almost every survey some sampled units do not respond.
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Model assumptions and adjustments are made in an attempt to compensate for missing
data. Because the mechanisms that cause unit nonresponse are almost never adequately
reflected in the model assumptions, survey estimates may be biased even after the model-
based adjustments. Nonresponse also causes a loss in the precision of survey estimates,
primarily due to reduced sample size and secondarily as the result of increased variation of
the survey weights. However, bias is the dominant component of the nonresponse-related
error in the estimates, and nonresponse bias generally does not decrease as the sample size
increases. Thus, bias is often the largest component of mean square error of the estimates
even for subdomains when the sample size is large.

The classification of nonresponse by reason is important because the effects and
methods of dealing with nonresponse may be directly tied to the reason (Lin and Schaeffer
1995; Steele and Durrant 2011). Reasons for unit nonresponse are usually classified as the
failure to contact the sampled unit, the inability to persuade the sampled unit to respond,
and other reasons (Brick and Montaquila 2009). Noncontact or inaccessibility
nonresponse may occur for a variety of reasons. For example, the sampled unit may not
be at home during the times the data collector visits or calls, the survey schedule may limit
the number of contact attempts, or data to locate the sampled unit may be incorrect or out
of date. Refusal nonresponse may occur because the sampled person does not wish to
participate in the particular survey, or because someone else such as a gatekeeper refuses
to provide access to the sampled person. For example, in a telephone survey the person
answering the telephone may not be willing to give the telephone to the sampled person.
While noncontact was a larger component of total nonresponse in earlier times, refusals
now constitute the majority of total nonresponse in most surveys (Atrostic et al. 2001;
Brick and Williams 2013). The other nonresponse category includes assorted reasons such
as language problems and health problems that may prevent the sampled unit
from responding. These other problems are typically a small proportion of the total
nonresponse in a survey, but may be important in some cases (see Feskins et al. 2011;
Brick et al. 2012).

2. Background

Unit nonresponse has been recognized as a potential problem since the early days of
probability sampling. Colley (1945), Hansen and Hurwitz (1946), Ferber (1949), Yates
(1946), and Deming (1953) are examples of early research that examined data collection
and weighting methods to deal with nonresponse®. As research on nonresponse and its
effects accumulated and worries about increasing nonresponse rates were expressed, the
Committee on National Statistics in the United States convened a Panel on Incomplete
Data in 1977 to consolidate this research and develop new approaches. The Panel’s work
resulted in a three-volume set in 1983 (Vol. 1 edited by Madow, Nisselson, and Olkin; Vol.
2 edited by Madow, Olkin, and Rubin; Vol. 3 edited by Madow and Olkin) that was the
first monograph dedicated to nonresponse in surveys. Around the time of the Panel, the
way nonresponse was conceived and adjustments were motivated began to shift to treat

2 The references in this section are examples and useful summaries of a body of work and are not intended to
assign precedence for ideas.
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response as a random rather than fixed outcome. In our review, several references to
chapters from one of the three volumes reflect some of these changes.

In the years following the Panel’s meetings, several published books were devoted
largely to survey nonresponse. These include Kalton (1983), Goyder (1987), Brehm
(1993), Groves and Couper (1998), Tourangeau et al. (2000), Groves et al. (2002),
Sérndal and Lundstrom (2005), Stoop (2005), Stoop et al. (2010), and Bethlehem et al.
(2011). Journals have dedicated special issues to survey nonresponse, including the
Journal of Official Statistics and Public Opinion Quarterly. International workshops and
symposiums have been also been held; the Groves et al. (2002) monograph is a product
of one of these.

To provide some context for this research, we identify three major themes in
nonresponse research (although there is considerable overlap among them). One theme is
the study of the response mechanism that causes nonresponse. This research seeks to
understand important psychological and sociological factors that dispose some units to
respond and others to fail to respond. Goyder (1987) is an example of this work that takes a
sociological perspective on the causes of nonresponse; Tourangeau et al. (2000) is an
example taking the psychological view. Most of the psychological and sociological
research examines the willingness or amenability of the sampled unit to participate in the
survey by looking at factors such as the interviewer, the survey materials, and the
characteristics of the respondent that might influence response.

A second theme is data collection methods to reduce nonresponse. Dillman’s (1978)
tailored design method illustrates one branch within this theme. He offers general
approaches to the design of data collections to increase cooperation rates and improve the
chances of reaching respondents to deliver the survey request. The literature on incentives
is another such example (Singer 2002). The other branch within this theme describes a set
of methods for following up nonrespondents; survey methods to gain the cooperation of
those who refuse the initial survey request or who are never contacted are important topics
in this area. Switching modes for nonresponse follow up is an example within this area
(Dillman et al. 2009).

Statistical adjustment of the survey weights to adjust for survey nonresponse is a third
theme while retaining the design-based mode of inference. Sdrndal and Lundstrdm (2005)
is an example. They examine statistical models to adjust the estimates from the survey
after the nonresponse has been realized. The aim of all of this research is to reduce the
level of nonresponse and develop methods to minimize nonresponse bias in the estimates.

For many years, nonresponse bias and response rates were often treated as equivalent, or
at least surveys with low response rates were thought likely to have the potential for high
nonresponse bias in the estimates. Data collection efforts that increased response rates
were assumed to reduce nonresponse bias. This presumed relationship is especially
pronounced in the literature on incentives, where effects of incentives on response rates
are carefully described and nonresponse bias is often not assessed directly (Singer and Ye
2013). The reasons for this assumption are easy to understand. Response rates are easy to
compute, provide a single measure for an entire survey, and have face validity.

A spate of articles in the last decade forced researchers to reconsider this presumption.
These articles show that the empirical relationship between response rates and
nonresponse bias is not strong (e.g., Keeter et al. 2000; Curtin et al. 2000;
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Groves 2006). Of course, even long ago we knew that a single measure like a response rate
could not be used to predict nonresponse bias. Ferber (1949, p. 672) noted “The problem of
response bias must be considered with specific reference to a particular question or
characteristic. The presence of bias in one question does not mean a priori that the replies
to other questions on the same questionnaire are also biased.”

Falling response rates in most countries across the developed world, especially in the
past few decades, are documented in various reviews (e.g., Stoop 2005; Steeh et al. 2001;
Atrostic et al. 2001; de Leeuw and de Heer 2002; Smith 1995; and Synodinos and Yamada
2000). Furthermore, the trend toward lower response rates is happening despite additional
procedures aimed at increasing response in many surveys. Some of these procedures are
designed to increase contact rates and others are aimed at reducing refusals. However,
none of these methods appear to be capable of reducing the level of nonresponse, and
reliance on adjustments to the survey weights is increasing.

Although response rates may not be predictive of nonresponse bias, the declines in
response rates have raised the level of concern among survey methodologists and
prompted new developments. Some debate whether low response rate probability samples
are qualitatively different from nonprobability samples; others have sought to find
different measures that are more predictive of nonresponse bias. Schouten et al. (2009)
propose R-indicators to serve as a substitute for response rates. These indicators attempt to
measure how similar the respondents are relative to the full sample by estimating the
variability in the estimated response propensities, where the response propensity (¢;) for
every sampled unit i is its probability of responding to the survey. Schouten et al. (2009)
define the R-indicator as

R($(x)) = 1 — 25((x)), (D

where S(¢(x)) is the population standard deviation of the response propensities and X is a
vector of auxiliary variables known for the full sample. If the R-indicator is close to unity,
the respondent set is more ‘representative’ of the target population, at least as measured
with respect to X, and has a lower potential for nonresponse bias. Schouten et al. (2011b)
extend these results.

Sédrndal and Lundstrém (2005) and Sérndal (2011a) propose what they refer to as
balance indicators that are intended to measure the similarity between the respondents and
the sample. Some of these indicators are like the R-indicators in that they measure
variation in subgroup response rates, where the subgroups are formed based on auxiliary
variables. Wagner (2010) proposes using the fraction of missing information as an
alternative to the response rate because this measure permits the inclusion of auxiliary
variables in the determination of the influence of the missingness on the estimate.

All of the alternatives for response rates are only able to measure representativeness of
the respondents in relation to X, the auxiliary variables available. Different choices of X
lead to different values of the indicators. Although using these data is an improvement
over response rates that do not consider any auxiliary data, the measures are only useful
when powerful auxiliary variables for the specific estimates are available.

Some of these measures were influenced by the desire to continually monitor the data
collection process for responsive designs (Groves and Heeringa 2006). Responsive and
adaptive designs are two data collection approaches that have been proposed as a way to
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reduce nonresponse bias. Responsive design makes changes to data collection strategies
during data collection when one recruitment protocol is no longer successful in getting
responses from sampled units, especially units with differing characteristics (Groves and
Heeringa 2006). For responsive designs, data for making these decisions must be collected
and analyzed rapidly during the field period. Adaptive design is similar, but the analysis
of response patterns may be done from previous or similar collections (Schouten et al.
2011a). Both responsive and adaptive designs contemplate data collection strategies that
are tailored for specific sampled units, whereas the standard data collection procedure for
many years has been to apply a single protocol to all units.

3. Bias Representations

The rationale for the design, data collection, and estimation approaches mentioned above is
based on models of nonresponse bias. Two models dominate the way we think about
nonresponse bias. The models are most often presented in terms of the bias of an unadjusted
estimator of the mean, where unadjusted implies using the full sample estimator with just
the respondent data. The unadjusted Horvitz-Thompson estimator of the total is

Sun = Y _diyi, @)

i€s,

where d; is the inverse of the probability of selection of unit i and the sum is over s,, the set

of respondents. The ratio mean is §un = Yun / > d;.
i€s,

The deterministic representation of bias partitions the population into respondent and
nonrespondent strata (Cochran 1977), and nonresponse bias is then a function of the
nonresponse rates and the characteristics of the units in these strata. In the deterministic
approach, response is a fixed outcome of the survey (and the procedures used in data
collection) and is not subject to random variation other than the variation due to sampling
the response strata. The nonresponse bias of the unadjusted estimator of the mean is

bias@,m) ~(1—-P) (Y, - Ym), 3)

where P is the proportion of units in the respondent stratum, Y, is the mean in the
respondent stratum, and Y, is the mean in the nonrespondent stratum (Thomsen 1973).
The expression shows that bias depends on the response rate and the distribution of each
characteristic as discussed by Ferber (1949). However, a difficulty with Expression (3) is
that the response strata definition is post hoc so it is difficult to use this in advance of data
collection.

The alternative stochastic model has become more popular since the late 1970s,
although its origins go back as early as Politz and Simmons (1949) and Hartley (1946). It
assumes that response is a random variable and the probability of response is like the
probability in an additional phase of sampling, but the probability of response for every
unit 7 in this phase is unknown.

The nonresponse bias of an estimated ratio mean under the stochastic model is

bias Gun) = ' 040,pg., €
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where ¢ is the population mean of the response propensities, o, is the standard deviation
of ¢, o, is the standard deviation of y, p,, is the correlation between ¢ and y, and ¢; > 0
for all i (Bethlehem 1988). The estimated respondent mean is unbiased if ¢ and y are
uncorrelated.

The two expressions are appropriate for the Horvitz-Thompson of the unadjusted mean,
but different relationships hold for totals, correlations, and other statistics as well as for
different estimators. Brick and Jones (2008) extend these results to other types of statistics
and some calibrated estimators.

Both models are useful for estimating the potential bias under particular circumstances.
For example, if data are available for all units in the population, then the bias can easily be
computed using (3) or (4) after data collection is complete. Both bias expressions are
equivalent in this case. The two models also lead to similar conclusions about how to
attempt to adjust for biases due to nonresponse. We find the stochastic model to be
generally more helpful when speculating about the potential magnitude of bias prior to
data collection. It expresses bias in terms of a correlation so it is bounded, and correlations
computed from other surveys may be useful guides for speculating about the magnitude of
correlation.

Thus far, we have discussed bias in the simple situation in which no other information is
known about the sampled units. In practice, we often have other data available for either
the sampled units or the entire population. Thus, the expressions given above can be
revised slightly to account for the auxiliary information. For example, the response
propensity can be written more formally as

¢i = dxi) = Pr(R; = 1|X =x)), &)

where X consists of the set of variables known for the full sample and R; = 1 if unit i
responds (Rosenbaum and Rubin 1983). The bias expressions for both the deterministic
and stochastic models can also be modified to account for auxiliary data. For example,
suppose auxiliary data are available and used for poststratification. The stochastic
expression for the bias of the poststratified estimator of the mean is

bias(ip-‘) ~N"! Z d_)h_lo-¢h OYuP i, Yn» (6)
h

where & denotes the poststratification classes. See Kalton (1983), Brick and Kalton (1996),
and Bethlehem et al. (2011) for such expressions and their implications.

The auxiliary variables are very valuable for adjusting the design weights to account for
nonresponse. Kalton (1983, p.63) states: “Among the potential variables for use in
forming weighting classes, the ones that are most effective in reducing nonresponse bias
are those that are highly correlated both with the survey variables and the (0,1) response
variable.” Both (3) and (4) explicitly contain the characteristic being estimated, suggesting
that adjustments could be developed by modeling the distribution of the characteristic.

Two types of auxiliary variables can be used: if the auxiliary variables are known for all
sampled units, then the adjustment is called sample-based or Info-S; if they are known for
the entire population, the adjustment is population-based or Info-U (Kalton and Kasprzyk
1986; Lundstrom and Sdrndal 1999). The population-based adjustment is especially useful
when characteristics for the entire sample are not available but the population totals are
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known, because these adjustments only require capturing the data from the respondents.
Population-based adjustments may also reduce noncoverage error and sampling error.
Sample-based adjustments need data for the full sample but do not require knowing
control totals for the entire population. Sample-based and population-based adjustments
are equally effective for dealing with nonresponse bias (Sdrndal and Lundstrom 2005;
Brick and Jones 2008).

4. Modeling and Missing Data Mechanisms

As noted above, modeling either the response propensity or the outcome variable can be
effective for reducing nonresponse bias. Nevertheless, this section discusses only response
propensity modeling, for two reasons. First, modeling outcomes and using design-based
calibration estimators like the generalized regression estimator can be extremely valuable
for improving the precision of the estimates even when there is full response. Ratio and
regression estimators were originally developed exactly for these reasons. These
estimators are also beneficial at reducing nonresponse bias when the same variables are
correlated to response (e.g., Bethlehem 1988; Fuller et al. 1994). Our perspective is that
powerful auxiliaries for key outcomes should be included in the estimator when they are
available, irrespective of their relationship to response.

Second, in our experience most cross-sectional household surveys produce multiple
characteristics and there are few auxiliary variables that are related to any of these
outcomes. In this situation, response propensity modeling may be the only remaining tool
to reduce nonresponse bias. It has the potential to reduce bias for variables that cannot be
modeled directly because powerful correlates of the variable are not available. Of course,
this approach is not a panacea by any means. Often, bias is reduced by response propensity
weight adjustments, but only partially, as shown by Micklewright et al. (2012).

We also concentrate on nonresponse where the data are missing at random (MAR). In
our notation, the missing data mechanism is MAR (see Rubin1976; Little and Rubin 2002)
when

Pr(R; = 1|Y;,X;) =Pr(R; = 11X)) (N

for all sampled units. Roughly speaking, under the MAR assumption the missing data
mechanism may depend on observed data but not on unobserved data. When (7) does not
hold, the missing data mechanism is called not missing at random (NMAR). Although this
dichotomy is useful, in practice it is not possible to assess whether the data mechanism is
MAR or NMAR without obtaining additional data for the nonrespondents.

Two approaches have been proposed for handling nonresponse when researchers
assume the mechanism is NMAR. The first is called the selection model approach; it
postulates a model that relates the missing data to the distribution of the outcome.
Heckman (1979) is probably the best-known example of an explicit selection model.
Greenlees et al. (1982) also use this approach. A second approach is the pattern mixture
model (PMM), where the distribution of Y is conditioned on the missing data and mixed or
averaged over different populations (Little 1993). Andridge and Little (2011) have
recently expanded on the PPM approach using a proxy variable. Nearly all researchers
using NMAR models strongly urge sensitivity analyses to determine whether the estimates
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are robust to the modeling assumptions, since generally there is no other way to assess
these assumptions.

Molenberghs et al. (2008) show that for every NMAR model there is a MAR counterpart
that has an equal fit to the observed data. This means that the NMAR model cannot be
distinguished from its MAR counterpart based on the observed data. Even though they
have equal fits, the models do not necessarily produce the same estimates. In a similar
vein, David et al. (1986) re-examine the NMAR approach of Greenlees et al. (1982) using
a MAR model and find that the MAR model is adequate. Molenberghs et al. (2008) show
an example where the estimates from the NMAR models and their MAR counterparts are
very different. They use a series of MAR counterparts corresponding to NMAR models for
sensitivity analysis. Since MAR models are usually easier to understand and describe, in
the following sections we generally restrict our attention to MAR models. We will return
to this concept later.

5. Response Propensity Weight Adjustment

One approach to weight adjustment is to model the response propensities for the sampled
units individually, and the adjustment factor is the inverse of the estimated propensities of
the respondents. The idea is to replace the unknown probability of response by an estimate.
The propensity-adjusted estimator of the total is

yrp = Zdid;i lyi (8)
IEs,
where (13,~ is the estimated propensity for unit i where i is a respondent. The qlA>,~ are usually
estimated by logistic regression, but probit and nonparametric methods are also used
(Little 1986; Da Silva and Opsomer 2009; Phipps and Toth 2012).

As mentioned above, Politz and Simmons (1949) pioneered thinking about stochastic
response models when they estimated propensities by collecting data on how often the
respondent would be at home on different days. These data provide a basis for estimating
contact propensities to account for noncontact nonresponse. Related methods such as those
proposed by Bartholomew (1961) and Dunkelburg and Day (1973) have not generally proven
to be effective, especially as contact rates have risen due to increased data collection efforts.

Rather than estimating individual response propensities, the approach most surveys use
is to form groups and adjust the weights in each group by the inverse of the observed group
response rate. Sdrndal et al. (1992) describe these as response homogeneity groups
(RHGs). Weighting classes is an alternative term that has been used for decades. Important
outcome statistics or domains may also be considered when forming RHGs. If all the units
within an RHG have the same response propensity so that MAR holds, any nonresponse
bias is eliminated (see Da Silva and Opsomer (2004) for extensions). In this case, (8) is a
weighting class estimator and can be written as

)A’wc = Z ngi(i;;lygi 9
8

iE.Y,-g

where ¢ = 1,2,. . .,G are the RHGs, i € Sy, is a respondent in RHG g, and qgg is the
estimated response propensity in g. One issue that often arises with weighting class



Brick: Unit Nonresponse and Weighting Adjustments 337

estimators is the need to have large enough respondent counts in each cell to avoid
unstable estimates. For this reason, Little (1986) proposes using cells based on the
estimated propensity scores rather than individually estimated propensities.

A third general approach is to use calibration estimation (Deville and Sidrndal 1992) for
adjustment. Lundstrom and Sérndal (1999) extend calibration estimators to encompass
estimators to include both sample-based and population-based information for
nonresponse adjustment. The calibration estimator is

Sea =Y _d;yi, (10)

i€s,

where the sum is over the respondents, dl is the adjusted weight that satisfies the

calibration equation Zd;xi = X, x; is a vector of auxiliary variables, and X is a vector of
i€s,

totals (sample based, population based, or a combination of the two) of those auxiliary
variables. Since the weights are not uniquely defined by these conditions, other constraints

may be imposed, such as d, = d;v;, where v; is a linear regression estimate (Bethlehem
2002; Siarndal and Lundstrom 2005). A wide variety of nonresponse adjustment estimators
are in this class, including poststratification, raking, and generalized linear regression
estimators. Lumley et al. (2011) give insight into the relationship between calibration
estimators and nonresponse bias for different estimators.

Poststratification is a simple calibration estimator that has a single dimension and has
been used for decades (Holt and Smith 1979). Assume that poststrata are defined by the
number of persons in age categories (N;) and that N, is known for the entire population. In
this case, (10) simplifies to J,, = Xh:%—;;diyi, where N, :'eZdi and the sum is over the

i€sp, 1SS,
respondents in poststratum /. The calibration equation forces the estimator for the age
groups to match the known population total for that group.

It is easy to see that the weighting class estimator given by (9) is a sample-based
calibration estimator — the calibration equation in this case forces the adjusted weight to
reproduce the weighted (using d;) distribution of the weighting classes from the sample. A
related estimator that only uses x; = 1 for all i € s is called the primitive estimator by
Sarndal (2011b) and is given by

1
Sor= | D di | [ D di > dii |- (11

= €5, i€s,

Estimators of this nature have a substantial effect on the bias of the estimated total but
have no effect on the ratio mean.

Details on specific nonresponse adjustment techniques are covered in several articles
and texts, including Sédrndal and Lundstrom (2005), Kalton and Flores-Cervantes (2003),
Chang and Kott (2008), Brick and Montaquila (2009), and Bethlehem et al. (2011).
Generally, the specific form of the adjustment is not highly related to the bias reduction,
except when the form limits the ability to take advantage of all the information in the
auxiliary data. For example, poststratification may be less effective than linear calibration
or raking when many variables are available because poststratification has one dimension.
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In addition, any method that results in large variability in the nonresponse adjustments due
to instability in the estimated adjustments should be avoided since that may increase the
variance of the estimates without further reducing bias.

The basic theory underlying the adjustment methods described above is formalized by
Cassel et al. (1983), who treat response as an additional phase of “sampling” (see also Oh
and Scheuren 1983). According to this theory, the adjusted estimator should have
desirable statistical properties such as unbiasedness and consistency when expectations
are taken over both sampling and response mechanisms, provided that the response

propensities can be adequately estimated. Suppose that RHGs are formed and the
. . . . . . 21
adjustment to the sampling weight is the inverse of the response rate in the RHG, d)g .
PR . . 21
The heuristic interpretation is that each respondent in an RHG g “represents” (qbg - 1)

nonresponding units in the group. Within this framework, the goal is to identify groups
of units with the same probability of responding to the survey at the end of data
collection, so that the MAR assumption is satisfied. The methods employed to create the
RHGs and the choice of variables for creating these groups are an essential feature of
nonresponse weighting.

6. Choosing Auxiliaries and Alternative Metrics

Traditionally, auxiliary variables and weighting classes were developed based on the
availability of variables and the judgment of the statisticians (Madow, Nisselson, and
Olkin Vol. 1, ch. 4, 1983). Predictors of response, key outcome statistics, and domains are
considered in this process. Demographic variables such as age, sex, race, and geography
were, and still are, frequently chosen even though they may not be effective in reducing
bias (Peytcheva and Groves 2009). Many of these are population-based adjustments using
data from a recent census for the controls. When the number of respondents in a cell of the
cross-classification of the variables is below a threshold set for the survey, then cells are
collapsed to avoid large adjustment factors.

When many variables are available, other methods of choosing which variables to
include are needed. Search algorithms and regression models are sometimes used in this
setting (Brick and Kalton 1996). These methods divide the sample into cells that
discriminate between response and nonresponse or variables correlated with key outcome
variables. The main advantage of these methods, especially the search algorithms, is the
ability to identify interactions among the variables that may be important for nonresponse
reduction. Regression models can also be used to examine interactions, although
practitioners often rely on main effect models. Brick and Jones (2008) show the
importance of interactions in some situations.

New methods for choosing auxiliary variables to reduce nonresponse bias in the
estimates have been recently developed. Schouten (2007) and Sérndal and his colleagues
(Sdrndal and Lundstrom 2005, 2008, 2010; Sdrndal 201 1a) suggest two approaches. These
approaches do not assume that the data are missing at random, but to be effective they do
require powerful predictors of the response mechanism. The methods are also described in
terms of searching for main effects and including or excluding variables. Extensions are
needed to deal with interactions among the variables.
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Schouten et al. (Schouten 2007; Schouten et al. 2009) use indicators for choosing
variables for weighting that are related to R-indicators. Schouten (2007) gives a forward-
backward selection strategy for choosing variables, similar to stepwise regression. He
starts with the variable that minimizes an estimate of maximal bias (which is linked to the
R-indicator) and iteratively adds and removes other variables. The maximal bias is
computed based on a generalized regression estimator.

Sarndal and Lundstrom (2008) approach the choice of auxiliary variables by focusing
on the estimation phase, although they are explicit about the importance of the design and
data collection stages also (see Sdrndal and Lundstrém 2010; Sérndal 2011a). Sdrndal and
Lundstrom (2010) propose survey-specific indicators that account for the sample design,
the set of observed respondents, and the specific calibration estimator. Their indicators
choose auxiliaries based on the distance between the calibrated estimator and the primitive
calibration estimator (., and 3,,) and may be outcome specific or generic. These authors
describe an “all vectors procedure” that chooses the auxiliaries that are in the list of vectors
that has the highest indicator. They also offer a “stepwise” procedure that builds the vector
one variable at a time.

Sdrndal and Lundstrém (2010) compare the two approaches and find that they do not
always include the same set of auxiliary variables in the estimator. They attribute some of
the difference to the different perspectives, especially the fact that Schouten’s (2007)
approach uses population-level measures while theirs are sample-level. When choosing
among many possible auxiliary variables to include or exclude in the estimation phase, the
indicators of Sdrndal have the advantage of assessing improvements in estimators for the
specific sample.

In some countries, especially in northern Europe, population registers may provide the
types of data needed for using these methods. However, in household surveys in
countries like the United States and Canada, these methods are less pertinent because
there are few powerful auxiliary variables. When the information available for the
sample does not predict response well, researchers have resorted to creating paradata
from the survey itself (Beaumont 2005; Bates et al. 2008). The use of paradata is a
rapidly developing area, but initial findings reveal that this may be a difficult task
(Kreuter et al. 2010).

7. Response Propensity Models in Surveys

Because response propensity scores play such a large role in nonresponse adjustment
methods, we describe the underlying theory and assumptions here. We begin with a few
observations. First, response propensities are unknown, unlike probabilities associated
with an additional phase of sampling. In fact, they are latent variables and cannot be
observed directly — we observe only the binary outcome of response or nonresponse.
Second, we assume that ¢; > 0 for all i. Deming (1953) explicitly considers units with
zero response propensities. He calls those that never participate “permanent refusers.”
Third, as Brick and Montaquila (2009) note, response propensities are specific to both the
units sampled and the survey conditions. The same units may have different response
propensities depending on key survey conditions. The survey conditions may be
manipulated to increase response rates during data collection.
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Rosenbaum and Rubin (1983) provide the framework for the application of propensity
scores in observational studies for estimating causal effects. In observational studies,
propensity scores are used to approximate unbiased estimates of the average effect of a
treatment (the difference in outcomes between those subject to a treatment and those not
treated) when the treatment assignment is not randomized. Rosenbaum and Rubin show
that the propensity score is the coarsest balancing score and that, at any value of a
balancing score, the average treatment effect can be estimated without bias when certain
assumptions hold.

Response propensity theory has been used in a wide variety of applications, including
survey nonresponse adjustment. Little (1986) applied propensity score theory to surveys,
primarily utilizing the property that propensity score is the coarsest balancing score. In
surveys, all sampled units are subject to a data collection protocol — as opposed to the
observational setting where units are subject to more than one treatment (one of which
may be the null treatment). In surveys, the response propensities are primarily used to form
groups to satisfy the MAR. In terms of propensity scores, MAR implies that

Pr(R; = 11Y;,X;) =Pr(R; = 1|$(Xy)). (12)

Thus, by conditioning on the groups based on estimated response propensities, we hope to
be able to justify the assumption that missing data are independent of the outcome
characteristic. The response propensity score is just the dimension-reducing function that
facilitates using multiple auxiliary variables in forming groups.

David et al. (1983) outline a structure using the framework of Rosenbaum and Rubin
(1983) and define the treatment as the survey response and the outcome as the
characteristic being estimated. In observational studies, we are interested in differences in
outcomes when subjects self-select into different treatments and outcomes are observed
for those with different treatments. In surveys, we do not observe outcomes for those who
do not respond. Despite this difference, David et al. (1983) use this structure only to take
advantage of theorems of Rosenbaum and Rubin (1983) showing that the propensity score
has the dimension-reducing property.

Two assumptions in Rosenbaum and Rubin’s (1983) development are the strongly
ignorable treatment assignment assumption and the stable unit treatment value
assumption (SUTVA). The strongly ignorable assumption roughly translates into the
MAR assumption in the survey context, and it is considered in most applications of
propensity scores in nonresponse adjustment. In many cross-sectional household surveys,
the lack of powerful predictors means that the strongly ignorable or MAR assumption is
tenuous. Of course, the effectiveness of propensity scores to satisfy the MAR assumption
is bounded by the power of the auxiliary data used to create the score. Researchers
appreciate this limitation and have sought to find better variables or to collect them
using paradata.

The second key assumption in propensity score theory, SUTVA, is rarely discussed in
the nonresponse adjustment literature. In observational studies, SUTVA is sometimes
summarized as a lack of interference between units. One way to translate this into the
survey situation is to state that the response propensities of the sampled units are not
affected by those of other units, at least within the subsets or groups of units used to
estimate the propensities. The typical approach to estimate propensities is to assume that
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the response for a sampled unit is independent of responses for other units. For the
multistage, clustered samples used in many household surveys, this practice seems
problematic. For example, interviewers in face-to-face surveys are typically clustered in
areas to reduce travel costs. There is ample evidence showing that interviewers and
supervisors may influence response (Groves and Couper 1998). Skinner and D’Arrigo
(2011) use multilevel models and find some bias in estimates of response propensities that
ignore clustering. They suggest using conditional maximum likelihood for estimating
propensities rather than the standard logistic modeling. They see the problem as a failure
to satisfy the strong ignorability assumption rather than the SUTVA. Other examples are
clearer failures of SUTVA, such as when sampling more than one adult per household or
multiple teachers from a school. In this case, the sampled units may influence other
sampled units directly.

Finally, an issue we think is likely to have even greater importance is related to the
definition of the propensity in the nonresponse setting. The propensity is often treated as a
fixed attribute of a sampled unit. This conceptualization of response propensities prompted
Dalenius (1983, p.412) to take a “dim view” on estimating response propensities because
“it appears utterly unrealistic to postulate fixed response probabilities which are
independent of the varying circumstances under which an effort is made to elicit a
response.” In large measure, we agree and believe a more refined definition of response
propensities is needed.

We prefer to express the propensity so that the survey conditions are explicit, such as

b = Pa;, X)) = Plan, ap, . . ., X;) = Pr(R; = 1]a;, X)), (13)

where the effort or activity vector (a) indicates the relevant data collection activities. The
components of the activity vector encompass all forms of data collection, such as the
number of call attempts, the use of incentives, the modes of data collection, and refusal
conversion attempts. Schouten et al. (2011b) and Olsen and Groves (2012) are also explicit
about including fieldwork as well as other variables known for all sampled units when
defining the propensity. The quantity that should be estimated to create a nonresponse
adjustment factor is ¢'(a;, X;), where the prime denotes the actual activities at the end of
data collection. Defining the propensities as in (13) does not simplify the task, but at least it
better defines the quantity being estimated.

Olsen and Groves (2012) and Schouten et al. (2011b) both postulate that response
propensities are dynamic, with the response propensity of a sampled unit varying as
the recruitment protocol changes. They show that response propensities are influenced by
the data collection protocol. In our terminology, they demonstrate that the response
propensities are not constant when at least some components of a are altered.

Olsen and Groves (2012) also plot conditional response propensities and show that
these decline over the field period during which a stable data collection protocol is in
place. They argue that this decline implies that the individual’s response propensity
decreases over repeated applications of the same recruitment protocol. While their
explanation is consistent with our perception and with the discussion in Schouten et al.
(2011b), there is an alternative explanation that highlights our concern about the
unobservable nature of response propensities. Assume that the persons in the sample are
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members of two different RHGs, with 70 percent of the sample having fixed response
propensities of 0.4 and 30 percent having propensities of 0.2. The dotted lines in Figure 1
show the constant propensities over the data collection (effort) for each of the RHGs, and
the solid line shows the decreasing propensity of the entire sample. The solid line
approximates the shape observed by Olsen and Groves (2012), suggesting that
combining RHGs with different propensities could produce the effect they observed
even though the conditional response propensities for individuals are constant. Because
the response propensities are unknown even after data collection, it is impossible to
assess whether the propensities are changing or whether we are mixing groups with
different, but constant, response propensities.

8. Response Propensities and Data Collection

The importance of the connection between data collection and nonresponse adjustments
can be illustrated by simple examples. We begin with an example inspired by Olsen and
Groves (2012). A sample is selected and a standard data collection protocol is applied to
all sampled units; some units respond at the end of the first phase of data collection. For the
second phase, a subsample of nonrespondents is selected and given a new protocol (e.g., a
large incentive, more highly trained interviewers, a different mode), which increases
response. We assume that all the units in the sample have identical response propensities,
¢ (a, X), but that only those in the subsample are given the additional effort.

One approach to estimation (Approach A) is to exclude those units not in the second-
phase subsample; weight the first-phase respondents by the inverse of their selection
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Fig. 1. Observed response propensities for a sample composed of two RHGs



Brick: Unit Nonresponse and Weighting Adjustments 343

probabilities, d;; and weight the second-phase respondents by d; times the inverse of the
product of the subsampling rate and the response rate within the subsample. For example,
if half of the nonrespondents are subsampled and 40 percent of these respond, the weight
for the second-phase respondents would be 5d; (5 = .5~ '+ .47 is the adjustment factor).
Under the sample-response mechanism, this estimator is unbiased.

In practice, it may be tempting to use an alternative Approach B that computes the
nonresponse adjustment across respondents to both the first phase and the second phase to
reduce the nonresponse adjustment factor and its impact on the variance of the estimates.
In this case, all respondents get the same final weight — d; times the inverse of the response
rate, where the response rate is computed over the entire sample rather than the subsample.
Essentially, this estimator ignores the subsampling. The Approach B estimator is biased if
the characteristics of the second-phase respondents differ from those of the first-phase
respondents. The problem is that the Approach B estimator combines two groups that have
different response propensities at the end of data collection. In other words, while all the
sampled units have the same ¢ (a, X), they have different values of ¢’ (a, X) because the
activity vectors are not identical for the first- and second-phase units. The MAR
assumption holds only when the groups are defined by the data collection activity.

Now consider a slightly revised example with the same structure. Suppose we want to
estimate the proportion with a characteristic (y; = 1), and assume that the units with y; = 1
have a response rate of 60 percent at the end of the first phase while units with y; = 0 have
a first-phase response rate of 40 percent. This is a classic example of topic salience bias.
We assume that no auxiliary data are available to identify those with and without the
characteristic. A second-phase protocol is implemented by giving all nonrespondents an
incentive, and the conditional response rate for the second phase is 60 percent for those
with y; = 1 and 50 percent for those with y; = 0. The two adjustment methods used above
are applied; Approach A computes the nonresponse adjustment factor over just the second-
phase respondents (there is no subsampling here); Approach B computes it over all
respondents. Figure 2 shows the bias associated with two adjustment approaches. Neither
method eliminates the bias completely because the additional phase does not eliminate the
difference in the response rates between units with y; = 1 and y; = 0. Thus, this is an
example of NMAR. However, Approach A produces estimates that are less biased in this
situation because the difference in rates or response propensities is reduced by the second
phase of data collection. This result is not always obtained, as discussed below.

In both examples, the data collection activities applied to the units affect the response
propensities at the end of data collection. In the first example, the response propensities for
all the units are identical but the adjustment groups must be defined by phase for MAR to
hold. In the second example, the response propensities differ for those with and without the
characteristic, and we must “know” that the incentive applied at the second phase reduces
the differences in response rates for these groups to justify using Approach A. We can
observe that the percentage with y; = 1 is greater in the second phase than the first phase,
but there is no test to show that this reduces bias (an example below has the opposite
effect). Of course, the rationale for the second-phase incentive “should” have been that it
would reduce bias, otherwise it is hard to justify its application to the second-phase data
collection protocol. Unfortunately, in many surveys these factors are not fully considered
in data collection, and the main concern is increasing the overall response rate.
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Fig. 2. Bias in estimated proportion using two adjustment methods

These hypothetical examples may seem overly simple or unrealistic, so some examples
from real surveys are presented. We begin with two examples with desirable outcomes.
The first is taken from Mohadjer et al. (1997). They show that providing incentives in an
adult literacy survey improved responses more from low education and minority adults,
resulting in reduced bias in key outcomes such as literacy scores by race and education
level. A second example is provided by Groves and Heeringa (2006), who offered
incentives in the second phase of a responsive design. They too show differential
improvements in response rates and reduced nonresponse bias for some statistics.

Examples of changes in data collection protocols that have little or no effect on the
estimates appear to be more numerous. This suggests that these results are surprising
because publishing null results is generally difficult. One of the first of the recent examples
of this genre is Keeter et al. (2000), who substantially increased response rates in a
telephone survey by increasing the level of effort (number of call attempts, length of data
collection period, etc.). Despite the higher response rates, however, almost none of the
estimates from the survey changed significantly. Similar outcomes have been observed
numerous times, for example by Curtin et al. (2005), Haring et al. (2009), and Ingen et al.
(2009). While there are several possible explanations for the lack of an effect on the
estimates, these examples point out gaps in our understanding of the effects of data
collection efforts on biases.

There are also examples of data collection efforts that increase both response rates and
nonresponse bias. Wetzels et al. (2008) document a survey where incentives increased
response rates and had little effect on most estimates. They also report that response rates
of non-Western foreigners did not increase with the use of incentives, possibly increasing
the biases of estimates related to this subgroup. Merkle et al. (1998) describe an
experiment with incentives in an exit poll survey where increased response rates were
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accompanied by increased nonresponse bias. They suggest that the incentives appealed
differentially to voters by party. Schmeets (2010) examines changes in data collection
procedures to increase response rates for the Dutch Parliamentary Election Study. He
concludes that the changes increased the survey response rates but also might have
increased the bias for some of the estimates.

These examples lead us to consider how we can use effort data from the survey to form
RHGs for adjustment purposes. Clearly, the data collection activities do not have to be the
same for all units; rather, the objective is to classify units with the same final response rate
into a RHG irrespective of how they get to this final state.

The traditional approach to forming groups is to use the auxiliary data to identify groups
with different response propensities by logistic regression models. Olsen and Groves
(2012) suggest using discrete hazard models because response propensities vary over the
data collection period. Because the goal is to identify groups of sampled units that have the
same value of ¢/(a;, X;) at the end of data collection, we believe hazard models might be
valuable only when the sequencing of data collection activities is important to the response
process. The Skinner and D’Arrigo (2011) findings indicate that conditional maximum
likelihood estimation might account for clustering.

A perhaps more important realization is that, for most surveys, regression models may
not be useful in assigning sampled units to RHGs based on data collection effort. For
example, suppose all the units in the sample have the same response propensity for a three-
contact data collection protocol. Some units respond at each contact level and some do not
respond after all three contacts. If we model response based on the number of calls it took
to get a response, we would form RHGs giving different adjustment factors to the
respondents by the number of calls it took to respond. These RHGs would only increase the
variation in the weights and could, in some situations, introduce bias. Contrast this with
the first hypothetical example given above, where bias is reduced by weighting only those
units given additional effort. Why should we not adjust the weights only for the cases that
responded on the third call? The difference is that we assume in the three call example that
the response propensities at the end of the protocol are the same regardless of when the unit
responded. The data themselves do not inform us which assumption is correct. Modeling of
effort will not reveal this. We would argue that if we subsampled nonrespondents at the end
of the first contact, then forming RHGs based on effort would be appropriate in most
surveys. The most troubling fact is that the real examples cited above show that we do not
always know which assumptions are most reasonable. Although forming RHGs with
logistic regression models based on X is valuable, modeling based on data collection
activity may not be as effective without a more complete theory of response.

9. Discussion

As we have mentioned several times, there is a substantial literature that shows the
effectiveness of data collection strategies for enhancing response rates. Such strategies
include changing modes of data collection, providing incentives, and converting reluctant
respondents. When these strategies reduce nonresponse bias, however, is less clear.
Without a better understanding of these effects, it is difficult to design effective data
collection and estimation strategies to combat nonresponse bias for surveys.
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Responsive and adaptive designs have been proposed as a way to reduce nonresponse
bias, but these are predicated on making changes to data collection strategies either during
data collection (Groves and Heeringa 2006) or from analyses of response patterns in
previous collections (Schouten et al. 2011a). Because these designs implement data
collection protocols that may vary at the sample case level, they require a refined
understanding of the effects these data collection protocols have on nonresponse bias.
These types of designs have the potential to increase nonresponse bias if the design, data
collection, and estimation stages are not fully integrated.

For example, suppose increased effort is given to some sampled units identified during
data collection based on paradata collected in the initial contacts. How should this be
handled in forming RHGs? Should units getting extra effort be identified as separate
RHGs, or should we assume that the extra effort for those units equalizes response rates so
that separate groups are not needed? The answer depends on the assumptions made about
the effect of the efforts on nonresponse bias. Surveys that use responsive or adaptive
designs need to explain the rationale for their nonresponse adjustment procedures
sufficiently so that others can assess the assumptions underlying their estimation methods.

The central problem, in our opinion, is that even after decades of research on
nonresponse we remain woefully ignorant of the causes of nonresponse at a profound
level. This may be a harsh critique given all the progress we have made in many areas. We
better understand methods to reduce nonresponse due to noncontact in surveys and have
made substantial strides in this area. We also have a much better understanding of
correlates of nonresponse. Over time, studies have replicated the correlations between
demographic and geographic variables and nonresponse rates (e.g., Groves and Couper
1998; Stoop et al. 2010). These are important developments but have not led to a profound
understanding of the causes of nonresponse.

Stoop (2005) reviews some of the areas of research on noncooperation in surveys, but
her review shows few lessons that can be generalized and used to reduce nonresponse bias.
For example, some research has shown that certain types of people — outgoing and
altruistic people — seem to cooperate in surveys more than others. However, utilizing these
findings to mitigate nonresponse bias remains a challenge. Another example is the practice
of asking people why they refuse to participate in surveys. These requests produce
uninformative responses such as being “too busy,” and the distribution of these responses
has been constant for years (Brick and Williams 2013). Even though we know that
sampled units will never be able to answer our analytic questions about the response
process directly, we continue to ask these questions. To better understand the response
process we need to reformulate our approach, use less direct questions, and ask both
respondents and nonrespondents similar items to support comparative analysis (Singer
and Ye 2013).

Some research approaches do appear to have promise and could lead to improvements
in our practices and our understanding. For example, if we can increase the perceived
value of the survey to the respondent and make the response process simple and enjoyable,
then we could potentially lower nonresponse bias (e.g., Dillman et al. 2009). Additional
research into ways of increasing the value and making the process more enjoyable is
needed. Another promising development is by Groves et al. (2006), who report on an
innovative approach to try to generate nonresponse bias in surveys by manipulating factors
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thought to be related to nonresponse bias. Many practitioners were surprised that their
results showed less bias than might have been expected. The idea of prospectively
manipulating factors in a controlled manner could increase our understanding of the
response mechanism.

One of the difficulties preventing a deeper understanding of nonresponse in surveys is
the complexity of the survey process. Many factors in a survey contribute to complexity
and may affect nonresponse. These factors include the target population, sponsorship,
survey content, interviewer training and experience, mode of data collection, incentives,
length of interview, the available field period, and regulatory limitations. Complex
systems are inherently more difficult to analyze than simple ones.

One of the ways that other sciences have made progress in studying complex systems is
to conduct basic research, often in a laboratory setting, to isolate important main effects.
Survey research seems to lack that type of basic research. The exception is statistical
design and estimation work that is not as constrained as data collection. Nearly all survey
research is empirical, and most of our knowledge comes from experiences in specific
surveys. This makes it harder to generalize the findings.

Cognitive research methods were originally introduced into surveys with some of these
issues in mind. Over time, this movement has largely devolved into a set of tools to
improve questionnaires. Tanur (1999) reviews the origins and evolution of cognitive
research in surveys. Today, there are few, if any, settings or laboratories where survey
methodologists and psychologists can postulate and explore response theories without
being tethered to the needs of a particular survey. The reasons that the cognitive movement
has gone in this direction seem clear in hindsight: The research is situated in survey
organizations, and those organizations need to justify the allocation of scarce resources.
As a result, the application to specific surveys is a higher priority than basic research.

Perhaps the time is ripe for new approaches to the vexing and important question of why
people do and do not respond to surveys. Interdisciplinary and basic research may prove
profitable if the structural issues can be addressed. But substantive progress cannot be
guaranteed by any single approach. Research on making the process more respondent
friendly, experiments to induce nonresponse bias, and comparative analysis of respondents
and nonrespondents using indirect assessments of attributes of response may have merit.
Until we have methods to better understand the relationships between survey requests and
response, we are unlikely to be able to structure survey designs, data collection protocols,
and estimation schemes to minimize nonresponse bias.
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Discussion

Olena Kaminska'

1. Introduction

The article by Michael Brick comes at a time when the survey methodology field
is actively looking for solutions to constantly decreasing response rates. After a number
of decades developing design features for achieving higher response rates, and therefore
unintentionally educating our clients and funders that response rates are important, we
are now struggling to explain the importance of nonresponse bias. But what is more
challenging is to understand ourselves how we can deal with nonresponse bias in the
best way.

I found the article to be a much needed reminder to the field of the gaps in our
knowledge about nonresponse bias today, and how much is to be developed in order to
identify best practice in dealing with nonresponse. The work is both comprehensive and
current with a historical overview of research into nonresponse, and identification of
areas with unanswered issues, and areas with the potential to answer pressing questions.

I enjoyed reading about recent developments in the field of nonresponse that directly
refer to nonresponse bias, instead of response rate. Brick first reviews adaptive
or responsive design that tailors data collection in order to decrease nonresponse bias.
One attraction of such designs is the idea of tailoring fieldwork procedures in response
to information obtained before or during the fieldwork. Yet to me the biggest value of
such an approach is that for the first time we are developing design with an explicit aim
of decreasing nonresponse bias. Adaptive and responsive designs do not have to be
the only designs with such an aim; and as the author suggested, we should review
already developed design features with respect to their influence on nonresponse bias.
We know that incentives increase response rates (e.g., Singer et al. 2000; Singer et al.
1999), but do they also decrease nonresponse bias? We know that mentioning a salient
topic of the survey may increase response rate (e.g., Groves et al. 2004), but does this
decrease nonresponse bias? Questions like these require answers in order to tailor our
practice to decreasing nonresponse bias directly, rather than through increasing response
rate alone.

Another important development mentioned is the collection of new paradata which
should give stronger predictors for the adjustment stage. While weighting for nonresponse
is hoped to be a ‘solution’ to nonresponse bias, it largely depends on good correlates of
nonresponse and of y-variables (more precisely, of estimates of substantive interest). Often
little information is available on both respondents and nonrespondents; and gathering
additional information that can be used in nonresponse adjustment models and that is
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tailored to important y-variables has direct impact on the quality of nonresponse
adjustment. While little resources tend to be put into collecting paradata in comparison to
large resources for converting reluctant respondents, it is possible that the reverse would
be most beneficial for reducing nonresponse bias in final estimates.

A more complex development suggested by the author is an integration of three
practices that largely have been developing autonomously so far: research into causes of
nonresponse, development of design features to decrease nonresponse bias, and adjusting
for nonresponse. For example, from a fieldwork perspective, responsive design is a very
attractive set of procedures which in the end should result in minimal nonresponse bias on
selected variables. Yet such a design, having differential selection and nonresponse
probabilities, may lead to an increase in standard errors of estimates which can outweigh
the gains from bias. While this is theoretically possible, little is known about such
interaction at the moment. Thinking about both design features and nonresponse
adjustment in this example would pose these questions earlier, and will challenge the
development of designs that optimize collection and adjustment simultaneously.

With the above said, I feel that the literature on survey weighting is particularly in need
of development in order to answer the questions being raised by the innovations in data
collection procedures. Weighting has largely developed in the previous century for a one-
time cross-sectional study of one population and for one survey protocol. Michael Brick’s
article is one of very few attempts today to develop the best weighting approach for a
situation which differs from that above: a situation where the survey protocol changes
during data collection. This includes two-stage design, where only some nonrespondents
are attempted in the second stage, responsive design, or a design with increasing incentives
in the later stages of the fieldwork. In my discussion, I comment on response probabilities
in such situations and point out an alternative weighting procedure to account for selection
probabilities and nonresponse.

2. Do Response Probabilities Change with Fieldwork?

This is one of the questions raised by Michael Brick in the article (Section 6). In my
opinion, the answer to the above question is yes and no — and both perspectives are useful.
When we think of fieldwork and design procedures to convert reluctant sample members,
we aim to change reluctant sample members’ probabilities conditional on not having yet
participated. We do this either by sending reminders, issuing another call, offering higher
incentive, sending more experienced interviewer and so on — each of these with one aim:
to increase the chance of response of those who have not responded yet. The idea that
conditional response probabilities are constant and cannot be changed over the fieldwork
period is not practical in such a situation as it would imply that whatever we do — we
cannot help bringing more respondents through design. In this situation researchers are
interested in response probability at a particular call — and it is useful to treat such
conditional probabilities as prone to manipulation via survey design features.
Nonetheless I share the opinion of the author (Section 6) that the above perspective of
changing probabilities over time is not useful in all contexts; in particular, weighting
adjustment should estimate final probabilities, that is, total, cumulative probabilities over
all stages of survey fieldwork. This is because at the end of the fieldwork period we aim to
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extrapolate the information from final respondents to the whole sample (or population).
It is therefore important to know the final response probability for each sample member.
From this perspective final probabilities under the same protocol and in the same survey
situation (population, topic of the survey, etc.) are constant, and do not vary over fieldwork
time (unlike the conditional probabilities discussed above). I understand that in the
discussion of Figure 1 in the article when describing RHGs Michael Brick talks about
final probabilities to respond.

3. Weighting for a Two-Stage Design

One of the contributions of Michael Brick’s article is the discussion of weighting for
a two-stage design, where some respondents participate in a survey in the first stage, and at
the second stage all or a subsample of nonrespondents is followed, some of whom also
provide interviews. The author suggests two ways of developing weights in this situation,
Method A and Method B. I believe that both methods are unbiased under specific
assumptions. Method B is unbiased under MAR assumption that all respondents are
different from nonrespondents only on variables in the nonresponse adjustment model.
Method A is unbiased under MAR assumption that Stage 2 respondents are different
from nonrespondents only on variables in the nonresponse adjustment model. I agree
with the author that Method A corrects for nonresponse bias better than Method B when
Stage 2 respondents are more similar to final nonrespondents in comparison to Stage 1
respondents.

I would like to suggest Method C for weighting correction in a two-stage design, which
not only recognizes the two stages of design, but also recognizes that each respondent has
a chance to respond at either (but not both) of the two stages. The discussion from the
previous section becomes useful here: at both stages of the design respondents have
probabilities to respond — the probability of responding in the second stage is conditional
on not responding in the first stage; the total probability is the combination of these two
probabilities. Thus, the total response probability can be expressed as

Protal = p1 + (1 — p1)*ps

where p is the probability to respond at the first stage and p, is the conditional probability
to respond at the second stage. (1 — p;) expression reflects a chance of a sample member
being issued into Stage 2, which is conditional on nonresponse in Stage 1.

In the design where second stage nonrespondents are subsampled, a probability of
selection (pg.) should be included in the expression:

Dol = P1 + (1 = p1)*pser*p2

The important point here is that every selected sampling unit has a value for each
probability. In other words, respondents, who are observed to have responded in Stage 1,
had a chance to not respond in Stage 1. In this situation they would have a chance to be
selected into Stage 2, and a conditional chance to respond in Stage 2.

While the formulae make sense theoretically, estimating these probabilities in practice
is challenging given that we do not observe a Stage 2 response outcome for those not
selected into Stage 2 (either because of subselection or because they have responded in
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Stage 1 already). Such calculation is nevertheless possible and can follow an approach
similar to the one in Kaminska and Lynn (2012). First, p; is estimated in the usual way
using predictors available for respondents and nonrespondents. Selection probability pg is
known by design. Next, p, is estimated only for those who were issued into Stage 2,
drawing upon the same pool of auxiliary variables as in the above model. Given the model
for p,, we can now estimate p, for all respondents, including respondents from Stage 1.
This is possible because the same auxiliary variables are available for all respondents. This
way we estimate response probability in Stage 1, p;, and conditional response probability
in Stage 2, p,, for each respondent, regardless of the stage at which they participated.
This provides us with all the components required for the nonresponse correction.

One advantage of this approach over methods A and B, described by Michael Brick,
is that it estimates response probabilities at each stage empirically and independently
of each other, thus avoiding the unnecessary assumptions.

4. Conclusion

It has been an honour to be a discussant of such an interesting, comprehensive, current and
innovative article. There are many more thoughts and ideas in the article worth discussion
and further development. I feel we are at the turning point of understanding nonresponse
and I look forward to future developments in this field.
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Discussion

Phillip S. Kott"

Let me start by thanking Mike Brick for his informative guide through the literature, both
old and new, on unit nonresponse in household surveys, its impact on the quality of survey
estimates, and some of the methods developed to reduce the negative consequences of that
impact. Although I have a few quibbles, to which I will get shortly, I nonetheless found the
article a treasure trove of useful ideas and references. Moreover, I agree wholeheartedly
with many of its conclusions.

Now to those quibbles. We read in Section 3 that “modeling either the response propensity
or the outcome variable can be effective for response bias.” Nevertheless, “in our experience
most cross-sectional household surveys produce multiple characteristics and there are few
auxiliary variables that are related to any of these outcomes [italics added]. In that situation,
response propensity modeling may be the only remaining tool to reduce nonresponse bias.”

Had “any” been replaced by “every” I would be inclined to agree. We only need one
model to explain unit response, but we need a separate model for each outcome variable.
The single response model either (nearly) holds or does not, while the outcome models can
hold for some variables and fail miserably for others.

The author, however, claims that we often can model unit response but do not have the
auxiliary variables to model any outcome variable. In my experience, the variables we use
to model response can usually be employed to model survey outcome. When we form
response homogeneity groups (RHGs) or poststrata, we very often are also creating
outcome model groups, the units within each group having a common mean for many
survey variables of interest. Ironically, that is why we use the design weights when
computing the implicit probability of response within each RHG/poststrata: it reduces or
removes the bias of the resulting estimates under the outcome model and thereby reduces
the overall mean squared error (see Kott 2012).

If I may belabor the point a bit, consider a variation of the example in the beginning of
Section 7. A simple random sample is divided into initial responders and nonresponders.
The latter group is subsampled and extra effort is given to elicit responses from the
subsample. Suppose, unlike in the text, the extra effort had been successful. If the
responding units from two groups (initial responders and nonresponders) have distinct
outcome means, then we need to have separate weights for each. Otherwise, we do not.

In practice, a survey usually has many variables of interest. It is possible that some have
a common mean across the two groups while others have distinct means. We do not know.

With full response, we do not have to assume a model of outcome behavior; we can use
probability-sampling principles to produce unbiased estimates in some sense by weighting
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the groups separately. We often accept additional variance to protect ourselves from
potential bias with survey samples because the former can be measured while measuring
the latter is illusive. Moreover, sample sizes tend to be large, so bias often dominates
variance within overall mean squared error.

Now, suppose there remains some unit nonresponse in the initial-nonresponder group even
after expending the added effort. It seems reasonable to treat the units from that group as if
they had a common mean for a survey variable, a mean that may be distinct from that of the
initial responders. Again, we are trying to protect ourselves from potential bias. We are not,
of course, fully protected because we have assumed an outcome model that may be flawed.
In particular, we have assumed that the survey variables of respondents and nonrespondents
among the initial nonresponders have a common mean. In the very special case of this
example, the outcome model is equivalent to the response model, namely that each initial
nonresponder is equally likely to respond after the extra effort. This equivalence is not
usually the case. Still, I argue that if there are variables on which to build a response model,
there are variables on which to build outcome models. Moreover, it is precisely when that is
the case that there is nonresponse bias to reduce (see Little and Vartivarian 2005).

Little and Vartivarian also point out that an increase in the variability of the weights
does not always lead to higher variances. For my taste, there is an over-emphasis in the text
— and in general practice — on weight variability. At the very least, a prudent statistician
should conduct sensitivity analyses to assess differences in the resulting estimates for key
survey variables caused by using alternative nonresponse models, one simpler and one
more complex. Moreover, under the assumption that an estimator using the more complex
model is bias free, one can test whether the simpler model leads to a systematically biased
estimate for a particular survey variable using a procedure proposed by Fuller (1984) for
determining whether survey weights matter in a linear regression. An analogous procedure
using replication was suggested by Korn and Graubard (1993).

In the Fuller procedure (the replication version is trivial), each observation is duplicated
with one version assigned to Domain A and weighted one way while the other is assigned
to Domain B and weighted the alternative way. Recognizing that both versions are from
the same primary sampling unit, one can then use design-based software to measure
whether the difference in the domain means for the variable are larger than we would
expect due to random chance alone. Since we are as much concerned with Type 2 error
(ignoring a real bias) as Type 1 (finding a false one), I would argue against accepting the
null hypothesis (that the observed difference in the estimates derives from random noise)
when the absolute ¢ value of the difference is much greater than 1.

I wish the text had provided a deeper discussion on using calibration weighting to
adjust for unit nonresponse. As it correctly points out, calibration can be viewed as
a generalization of reweighting using RHGs (also called “weighting classes”) or
poststratification depending on whether one is calibrating to the original weighted sample
(RHGsS) or the population.

With linear calibration weighting, the adjusted weight for respondent i has the form:

T
di =di{ 1+ X = dixi| | Y dixixi | xip=di(1+g"x) =di; (1)

kEs, kEs,
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(by the way, I would not call »; the “linear regression estimate” as is done in the text).
There is no reason why some components of x; cannot be related to the efforts employed
in eliciting response as advocated by the author. Moreover, as Mike correctly points out,
the totals in X can contain both population totals and weighted sums from the original
sample.
Using linear calibration weights, the estimator in Equation (10) of the text
Vea = Zia, dfy,-) is nearly unbiased under the response model:

Pr(R = 1lx) = ——, @)

YV Xi
where the unknown parameter vector vy is estimated by g in Equation (1). Equation (2) is
not a very plausible response model except when the components of x; are group-
membership indicators, the special case of RHGs/poststrata.

To my way of thinking, a better justification for linear calibration weighting in general
is that the survey variable behaves roughly like a random variable with mean x;@. In
household surveys, many survey variables are binary and cannot be modeled precisely as a
linear function of the components of x;. That is why I added the modifier “roughly.” In
some surveys, there may be variables for which the linear outcome model (E(y;) = x/B)
does not come close to holding. I suspect that the linear calibration estimates for the totals
of these variables will often not be close to unbiased either.

Even though linear calibration can sometimes be effective in reducing or removing
nonresponse bias when the response model in Equation (1) is clearly wrong (see
D’ Arrigo and Skinner 2010), I prefer using a back-link function that implicitly assumes a
more plausible response model. One such is d] = d;[1 + exp (g”x;)], which assumes
Pr(R; = 1|x;) = [1 + exp('yTx,-)] _1, a logistic response model with g in the back-link
function being a consistent estimator for y when the assumed response model holds.
Calibration weighting using this back-link function provides double protection against
nonresponse bias since the estimator is nearly unbiased in some sense when either
the response model or the linear outcome model holds (or when both hold; see Kott and
Liao 2012).

Let me also point out that the vector, let us now call it q;, of variables in the response
model need not coincide with the calibration variables in x;. As a result, although the
calibration-variable totals (X in ), d;x; = X) must be known for either the original
weighted sample or the population, some of the component of ¢; need not be.

The response model is now Pr (R; = 1|q;) = f(g”q;) for some back-link function f(.).
Since nothing prevents components of q; from being survey variables, this version of
calibration weighting can be used to treat nonresponse that is not missing at random. To
my knowledge, Deville (2000) was the first to point this out. In Deville’s formulation, the
number of components of ¢; and x; must coincide. Chang and Kott (2008) extend
calibration weighting for nonresponse adjustment to allow more calibration variables than
response-model variables. Many of the calibration weighting ideas in that article have
been incorporated into SUDAAN 11 (RTI International 2012).

I have concentrated here on relatively small points related to areas of my research in
an article that has a much broader sweep. Mike Brick is to be congratulated for producing
a fine contribution to the literature.
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Discussion

Roderick J. Little'

I appreciate the opportunity to comment on Mike Brick’s review of unit nonresponse
adjustments for household surveys. The topic of unit nonresponse in design and analysis
has received increased attention with the recent literature on ‘“responsive design”,
attempting to improve the quality/cost tradeoffs and the deployment of alternative data
collection modes to help address the escalating problems of contacting and interviewing
respondents. Brick’s review assembles a substantial body of research, and provides a
useful summary of the “design-based” perspective on unit nonresponse adjustment.

The “critical” part of his “critical review” is mainly directed at our lack of
understanding of the processes that lead to nonresponse, and the fact that cognitive
research methods are focused on improving questionnaire design, rather than on more
general aspects of survey design and analysis. Design approaches to limit missing data are
important — I recently chaired a National Research Council panel (National Research
Council 2010) where a major focus was design and conduct of clinical trials to reduce the
level of missing data. However, is the increase in nonresponse in surveys that much of a
mystery? It seems to me clear that people are harder to reach, busier, increasingly
inundated with requests to fill out surveys, many from self-serving sources, and just want
to be left alone. Characteristics of nonrespondents are important, but as a modeler (Little
2004, 2012), I think the field is too focused on reasons for nonresponse and not enough on
modeling the relationship between nonresponse and survey outcomes.

Brick’s review embraces the design-based perspective. My “critical review” of the
literature would focus more on the limitations of that perspective, both for responsive
design and for developing improved nonresponse adjustments. Thus, I liked Brick’s quote
of Ferber (1949) that “the problem of response bias must be considered with specific
reference to a particular question or characteristic”, but Brick’s review does not really
address this key aspect. Models of survey outcomes are largely absent, the emphasis being
on modeling the response propensity and associated weighting adjustments. This lack of
explicit modeling is characteristic of the design-based perspective — models are implicit
and buried in the estimating equations — but attempting to address unit nonresponse
without modeling the outcome is for me like trying to tie a shoelace with one hand behind
one’s back.

I now offer some more specific comments, driven by this overall perspective.

! University of Michigan, School of Public Health, Dept of Biostatistics, 1420, Washington Heights, Ann Arbor,
MI 48109-2029, USA. Email: rlittle @umich.edu
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1. Limits of Weighting

Brick’s emphasis on weighting, in the title and the equations he presents, is a reflection
of the current state of the field, where unit nonresponse is nearly exclusively handled by
weighting adjustments. However, from the modeling perspective, the goal is not to weight,
but to predict values of survey variables for nonrespondents, with estimates of uncertainty
that reflect imputation error. This philosophy applies whether the nonresponse is at the
unit or item level. Some prediction estimators can be expressed using respondent weights,
but suitable nonresponse weights often do not have the interpretation of a sampling weight
as a sampled case representing a certain number of individuals in the population.

Weighting is limited — it can handle unit nonresponse in a cross-sectional survey, or a
monotone pattern such as occurs with attrition in a panel survey, where the variables
Yy,. . .,Y, can be arranged so that Y; is observed for all the cases where Y, is observed
for j=1,..., p — 1. It does not handle nonmonotone patterns of missing data well,
which is one reason why it is not the approach of choice for item nonresponse. Unit
nonresponse in its basic form has a monotone or close to monotone pattern, but
nonmonotone patterns can be expected to be more prominent in future, with increased
inclusion of information from administrative sources that have their own patterns of
missing data. Prediction approaches such as multiple imputation can handle both unit and
item nonresponse, and place the emphasis where I believe it belongs, on modeling the
survey outcomes. Applying multiple imputation to unit nonresponse is counter to the
current orthodoxy, but I note an increasing interest in creating multiple versions of
synthetic data sets, where all the data, not just nonrespondent data, are imputed (Rubin
1993; Kinney et al. 2011).

2. Near-exclusive Focus on Bias Over Variance

Brick’s review mentions precision in a few places, but the emphasis is on bias. He states
on page 2 without supporting evidence that “bias is the dominant component of the
nonresponse-related error in the estimates”. I find this almost exclusive focus on bias odd,
particularly since precision is the predominant concern in sample design. A more balanced
approach would also consider efficiency, mean squared error, and good confidence
interval coverage, but that requires modeling the survey outcomes. The emphasis on
bias leads naturally to response propensity weighting and associated R indicators, but

Table 1. Effect of weighting adjustments on bias and variance of a mean, by strength of association of the
adjustment cell variables with response and outcome

Association with outcome

Association with nonresponse Low High

Low Cell 1 Cell 3
Bias: ---- Bias: ----
Var: ---- Var: |

High Cell 2 Cell 4
Bias: ---- Bias: |

Var: 1 Var: |
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weighting on a very good predictor of the response propensity that is not related to the
outcome is making things worse, leading to inefficient estimates with highly variable
weights — see the bottom left cell of Table 1, from Little and Vartivarian (2005) — and
confidence intervals with below nominal coverage. On the other hand, other approaches
focused on mean squared error, like model-based shrinkage of the weights (e.g., Elliott and
Little 2000), or stratifying or weighting based on the predicted mean of an outcome,
address both bias and variance (Little 1986; Little and Vartivarian 2005).

Under missing at random (MAR), the response propensity is potentially an important
predictor in a model for predicting the outcomes, because misspecification of the
relationship between the outcome and the propensity leads to bias — this motivates
penalized spline of propensity prediction (An and Little 2004; Zhang and Little 20009,
2011), which models the relationship between the outcome and the propensity as a flexible
penalized spline.

3. Missing Not at Random (MNAR) Models

Contrary to Brick’s discussion in Section 5, I do not think that tinkering with the weights is
a fruitful approach to modeling deviations from missing at random. Some estimates under
MNAR models can be constructed in a weighted form (an early example is Little 1985),
but I think that the best way to address the problem is to explicitly model the joint
distribution of the nonresponse indicators and the survey outcomes, as in the proxy
pattern-mixture analysis of Andridge and Little (2011). One promising area for improving
nonresponse adjustments is the inclusion of proxy and survey process variables, which are
often subject to measurement error.

West and Little (2012) address measurement error in auxiliary variables using a pattern-
mixture model. Another simple pattern-mixture approach to modeling deviations from
MAR is to apply multiple imputation with offsets to reflect differences in the predictive
distribution of outcomes for nonrespondents and respondents. Giusti and Little (2011)
describe this approach on a rotating panel survey, with missing income values and a
nonmonotonic pattern.

Deviations from MAR will always remain a hard problem, and I agree with Brick that
finding good predictors of the outcomes is key. Incidentally, Brick mentions that the
approach of Schouten (2007) does not assume MAR, but at a key point in the argument
regression coefficients estimated from the respondents are substituted for coefficients
defined for the whole sample. This substitution is only justified under the MAR
assumption.

Nonresponse adjustments, unit or item, require modeling assumptions. It is a problem of
prediction, not weighting, in my opinion.
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Discussion

Geert Loosveldt'

The article by Michael Brick about unit nonresponse and weighting adjustments presents
an excellent overview of the concepts, trends, and strategies in unit nonresponse research.
This overview clearly demonstrates that the conceptual and analytical framework of
nonresponse research is highly evolved and has been much improved. The author mention
that we have a better understanding of the correlates of nonresponse and the methods to
reduce nonresponse due to noncontact. However, as the title suggests, it is a critical review.
Perhaps as a result, the general undertone is rather pessimistic. According to the author,
response rates are falling in most countries and most procedures to reduce nonresponse are
not effective. As a consequence, weighting adjustment procedures are important, but the
author state that we do not have a sufficiently thorough understanding of the impact of these
procedures on the reduction of nonresponse bias. In the discussion Brick concludes that
“even after decades of research on nonresponse we remain woefully ignorant of the causes
of nonresponse at a profound level” and “Perhaps the time is ripe for new approaches to
the vexing and important questions of why people do and do not respond to surveys.”
As always, a discussion involving statements such as these is an invitation to formulate
some related considerations, comments, and suggestions. The starting point is a few
observations about the trend in nonresponse rates in the European Social Survey (ESS).

The ESS is a biennial, face-to-face survey organized in as many European countries as
possible and concerns changes in attitudes across Europe (http://www.europeansocialsurvey.
org/). The first round of the survey was organized in 2002. Figure 1a presents the response
rates in the ESS Rounds 1-4, and Figure 1b illustrates the refusal rates (Matsuo et al. 2010;
similar results concerning Round 1-3 are presented in Stoop et al. 2010).

The results in Figure la clearly illustrate that there are differences between countries in
terms of response rates. In Poland and Portugal, for example, the response rate is always
near the target of 70 percent, whereas in France and Switzerland the response rate in each
Round (1-4) is below 50 percent. In addition, for the refusal rates (the largest category of
nonresponse in most countries) we observe clear differences (e.g., low refusal rates in Greece
and high refusal rates in France and Switzerland, Figure 1b). There are also differences within
countries. In some countries there is a systematic increase or decrease in the refusal rate
across the ESS rounds (e.g., an increase in the Netherlands and a decrease in Spain). In a few
countries there is an increase in response rates: the Czech Republic, Spain, France, and
Portugal.

The observed differences between countries and differences within countries put
the overall trend of increasing refusal rates and decreasing response rates, and the
related pessimistic opinion of the author about survey participation, into perspective.

! Professor Dr Geert Loosveldt, Department Sociologie, Katholieke Universiteit Leuven, Parkstraat 45, Bus 3601
B-03000 Leuven, BELGIUM. Email: Geert.Loosveldt@soc.kuleuven.ac.be
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The differences also make it clear that a general theory about unit nonresponse must not
only focus on the question of why people participate in a survey, but must also be able to
identify the differences between and within countries. To understand the differences
between countries and the deviations from the trend, characteristics at three different
hierarchical levels seem to be relevant: the macro or country level, the intermediate or
organizational level, and the micro or individual level. The authors’ question of why
people do not participate in surveys, and the discussed weighting adjustment procedures,
are situated at the individual level. It is mainly a respondent-oriented approach that does
not take into account the relevance of the other levels. I will argue that this restricted
approach could be enriched by using information at the country level and organizational
level that is relevant in explaining differences between and within countries. This
additional information partially explains why people participate in surveys and is
probably useful in optimizing weighting procedures.

The survey climate can be considered a relevant societal characteristic in explaining
differences between countries. It relates to the public’s willingness to cooperate and the
extent to which people consider survey research, and thus survey interviews, to be useful
and legitimate (Loosveldt and Storms 2008). The number of surveys in a society and the
discussions in the media about the accuracy and utility of the results of various polls and
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surveys all contribute to this climate. One can assume that a more positive survey climate
stimulates individual participation. The individual subjective experience of the survey
climate mediates the general survey climate (country level) and a respondent’s decision to
participate (individual level). This subjective experience manifests itself in an individual’s
opinions about different aspects of a survey (value, cost, enjoyment, reliability, and
privacy). To answer the question of why people participate in surveys and to detect
effective weighting variables, it is important to obtain information about the sample unit’s
opinion about surveys and the sample unit’s characteristics that correlate with this opinion.
In this context, the reasons for nonparticipation or refusals observed during the doorstep
interaction with the sample unit can be informative. The doorstep interaction can also be
used to ask respondents and nonrespondents a few basic questions about their opinions
concerning surveys. This is a suggestion for comparative analysis as mentioned by the
author in the discussion. It should be noted that fieldwork organizations such as National
Statistical Institutes are partially responsible for the survey climate and can take initiatives
to monitor and improve it (Lorenc et al. 2013). In this regard, unit nonresponse is
not only the respondents’ responsibility, as strongly suggested by the author’s approach.
To summarize the reflection on the survey climate, the survey climate can have an impact
on the nonresponse rate and can be translated into characteristics at the individual level,
which are correlated with substantial variables and discriminate between the group of
respondents and that of nonrespondents.

The intermediate or organizational level refers to the capacity of the fieldwork
organization and the way they organize and implement the survey. This level can be used
to explain differences within countries with the same survey climate. The differences
within countries illustrated in Figures 1a and 1b clearly demonstrate that the nonresponse
profile within a country is not a fixed property. Characteristics of the survey design (e.g.,
use of incentives, selection and training of interviewers, quality and remuneration of
interviewers) and paradata about the implementation of fieldwork procedures (e.g., efforts
to contact respondents, refusal conversion procedure) is typical information at the
organizational level that can be used to explain fluctuations in response rates within
countries. As mentioned by Brick, paradata can be used to calculate response propensities
based on the survey conditions. This refined definition of response propensity stresses the
idea that it is not a fixed property of respondents. Paradata is available for all sample units
and sometimes is the only information available with which to calculate response
propensities. This is probably the reason why paradata is becoming popular. This kind of
data meets the need of researchers to have information about both respondents and
nonrespondents. However, available data is not always relevant data, and at the
organizational level it is necessary to assess the relevance and meaning of data with regard
to the respondent’s decision to participate or not. Here also, it is necessary to translate the
information at organizational level into relevant sample unit characteristics (e.g., number
of contacts and ability to contact them) in order to answer the question of why respondents
participate in or refuse an interview. These sample unit characteristics stem from the way
in which the fieldwork is implemented and these kinds of characteristics are useful
to calculate response propensities with as much exploratory power as possible. Similar
comments can be formulated concerning register or sampling frame data and observational
data. The latter is data about the sample unit’s (respondents and nonrespondents) type
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of dwelling and neighborhood characteristics such as litter and graffiti. This type of
individual-level data is mostly collected by interviewers and can be used as proxy for
socioeconomic status to calculate response propensities.

The current use of paradata, register or sampling frame data, and observable data to
calculate response propensities illustrates the core problem of unit nonresponse analysis
and weighting adjustment procedures: the need for sufficient and relevant information
about nonrespondents. All the types of secondary data can only partially answer the
question of why people refuse to participate in a survey. However, it is clear that this
information deficit cannot be resolved by means of survey research. Therefore, it seems
better not only to focus on the particular respondent participation question, but also to
concentrate on what kind of information at each level can be used to decrease the
nonresponse rate and to understand the differences between the group of respondents
and of nonrespondents. The ultimate objective is to reduce bias and to improve survey
estimates.
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Rejoinder

J. Michael Brick

I want to thank the editors of the Journal of Official Statistics for inviting me to prepare
this article and for obtaining such a distinguished set of discussants for it. As I prepared
the article, I quickly realized that reviewing the massive literature on nonresponse and
nonresponse bias is a daunting exercise. It has given me even greater appreciation for those
who have done such excellent research in this area.

I would also like to thank all the discussants. Their comments give valuable insights
into nonresponse bias and I found their remarks very stimulating. I would also like to
thank the discussants for pointing out issues in my initial draft; their suggestions helped
me improve the quality of the article.

The diversity of the discussants’ comments and concerns highlight some of
the challenges we face dealing with nonresponse in surveys. Below, I briefly address
some key similarities and differences I have with comments provided by each of the
discussants.

Professor Loosveldt perceives my review as being pessimistic, and I understand this
reaction. My review tried to paint the challenges of nonresponse as starkly as possible.
However, I share his optimism about making progress, but only if we face the complex
issues associated with nonresponse. Our field has many skilled and innovative
methodologists and, if they work on nonresponse diligently, then I believe we will see
significant improvements in our understanding and methodology.

Loosveldt notes that nonresponse has more levels and complications than are discussed
in my review. I fully agree and would like to add to those he mentions factors such as the
mode of data collection and ‘house’ or organizational effects. The effects of these factors
can be substantial. He also mentions that the survey climate interacts with response
propensities. I again agree, but note that thus far we have not done well in specifying
exactly how the interaction works (Brick and Williams 2013). As he describes, the entire
system, including the data collection process and other cultural factors, could be critical to
nonresponse bias and we need to better understand these effects and how national
statistical organizations can influence them.

Professor Loosveldt’s extension to include cross-country comparisons provides a nice
perspective on the nonresponse problem. His idea of capturing data in a doorstep interview
seems to be an option worth pursuing. This idea appears to be related to those of Kulka
et al. (1982) and Lynn (2003).

A final point of clarification is that I did not intend to suggest nonresponse was the
respondent’s responsibility. Rather, I was trying to urge those of us who mount surveys to
take a more respondent-friendly orientation. In the early days, respondents may have been
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more willing to do any survey, but those days (if they ever existed!) are gone. It is the
survey’s responsibility to be more respectful in asking respondents to spend their time on
and give attention to a task they did not initiate.

Dr. Kaminska explains several of the complex issues related to nonresponse bias in ways
that I found informative. I especially enjoyed her discussion of overall and conditional
response propensities. She clarifies when and why each type of propensity is important to
researchers. I agree with her that at the data collection stage the conditional propensities are
essential, while at the weighting stage only the overall response propensities are important.

She also offers fresh ideas for weighting in a two-phase design. Her Method C seems
very reasonable, and she clearly points out difficulties that might arise associated with
computing the response propensities required for her method. I encourage her to pursue the
research necessary to evaluate the statistical properties of her proposed method because I
believe it has promise.

In describing her proposed method, she states that we should include the probability of
selection for the second phase in the weights. I agree with her, but suspect others might
not. As a design-based survey statistician, I would accept the inclusion of these selection
probabilities in the weights as a default proposition and require strong evidence of their
ineffectiveness before dropping them. This is related to a comment by Dr. Kott on
accepting some increase in variance to reduce the potential for bias.

Dr. Kott notes that sometimes the same variables that affect response are related to the
outcome variables and could be modeled for this purpose. I agree, and the paper by
Micklewright et al. (2012) is an excellent example of this. His quibble about my use of the
word ‘any’ is an important one. In the example I was trying to point out that if we had this
information for any important outcome variables we should include it in the estimator
regardless of whether it is related to response. Dr. Kott correctly points out that we would
need this information for ‘every’ important outcome to support the robustness goal when
modeling outcomes and using a design-based adjustment framework.

As mentioned above, I also agree with Dr. Kott on the importance of bias in the large
sample sizes that are common in national statistical office surveys — and share the position
that we should take actions to reduce the potential for bias even if it incurs some additional
variance. Although Dr. Kott felt the text overemphasized variability of the weights, T did
not intend that. I agree that there may be too much emphasis on this point in general, since
with reasonable precautions adjustments for nonresponse rarely substantially increase the
variance of the estimates.

Some of the differences Dr. Kott mentions may be a manifestation related to what
Sdrndal (2007) referred to as a difference between calibration and GREG “thinking.”
Dr. Kott prefers a model justification for the linear calibration estimator, while I think in
terms of restoring balance in the calibration variables. He prefers a logistic response model
(Kott and Liao 2012), while I often choose raking. In practice, the differences are often not
very substantial.

I am skeptical of the use of survey variables in calibration advocated in Chang and Kott
(2008) and Kott and Chang (2010). Specifically, I worry that the procedure might induce
substantial bias if the statistician makes a poor choice of survey variables for calibration.
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I have not investigated this myself but look forward to more research to clarify the
robustness of the procedure.

Professor Little states nonresponse requires modeling assumptions and I fully agree. The
models I discussed differ from those he advocates — those I describe primarily model
the response mechanism while he prefers modeling the relationship between response and
the outcome — but modeling is essential. Furthermore, I agree that modeling the
relationship between response and outcomes can be useful, especially if the result can be
implemented in such a way to produce a general purpose nonresponse adjustment. As I
noted in the article, I prefer that “powerful auxiliaries for key outcomes should be included
in the estimator when they are available, irrespective of their relationship to response.”
The rationale is that such modeling reduces variance. If this procedure is followed, then
residual nonresponse adjustment must be primarily based on a response propensity model.
If the modeling of the outcomes is not done in advance, then modeling outcomes and
response propensities is valuable.

Micklewright et al. (2012) is an example of where modeling the outcome led to
adjustment related to response propensities. The adjustment they applied reduced the
variance of the specific outcomes modeled as well as reducing nonresponse bias in the
outcome and other statistics. If the auxiliary data they used had not been related to the
specific outcome but was still related to response propensities, it is the type of general
purpose nonresponse adjustment I would propose even though it would not reduce the bias
for the specific outcome. Unfortunately, there may be no auxiliary data available that are
strongly correlated with response propensities, and in this case response propensity
adjustments are ineffective.

Professor Little restates his opinion that design-based inference is flawed and needs to
be replaced by model-based approaches (Little 2012). I, on the other hand, find the design-
based approach and nonresponse adjusted weights to be a valuable tool. Lohr (2007) gives
some properties of weights that are desirable. Of those she describes, the properties of
robustness, internal consistency of the estimates, and objectivity are critical in my
assessment. Model-based estimates, as currently proposed, do not fully satisfy all of these
properties. Related issues were raised by Brion, Smith, and Beaumont in their discussion
of Little (2012).

The design-based procedures I described are general purpose, simple to use, and
accessible for a wide variety of users. This means users can access the data set and produce
an estimate without modeling a specific estimate. They can obtain the same estimate as the
data set producer. The estimated totals they produce for subsets (e.g., males and females)
equal the total for all persons when summed. These properties may sound trivial, but they
are important to users. Over the years, national statistical offices have translated these user
requirements into quality measures (e.g., Statistics Canada 2009). The quality measures
include timeliness, accessibility, interpretability, and coherence; these measures are not
statistical in the sense of producing minimal mean square error estimates.

I agree with Professor Little that, with sufficient effort, a model-based estimate may
give a more efficient statistical solution for a particular estimate than a general purpose,
design-based weighting procedure. If an important decision depended on one or a small set
of estimates from a survey, it might be prudent to examine alternatives to the general
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purpose approach to improve the accuracy of the estimates. My inclination would be
to seek more efficient design-based alternatives for the specific estimates, but model-
based alternatives are another reasonable approach. However, in my opinion the existing
model-based methods do not sufficiently address user-oriented quality measures such
as timeliness, accessibility, interpretability, and coherence for the vast majority of
applications. I doubt model-based methods will be adopted in practice unless they do.

I also have a different perspective on whether “the field is too focused on reasons for
nonresponse.” Knowing the reasons for nonresponse is essential to design efforts to reduce
nonresponse. Similarly, modeling nonresponse appropriately requires understanding the
reasons for nonresponse. For example, Lin and Schaeffer (1995) provide compelling
evidence that outcomes can be very dependent on the reason for nonresponse.

On the preferences for weighting and imputation, I consider both as methods of
implementing an estimation scheme. In some cases, the two are equivalent; for example,
hot-deck imputation can be rewritten in terms of item-specific weights for a particular
estimate. The choice of whether to use weights or impute is based largely on usability
considerations. Imputation is preferable when sufficient data, such as responses to other
items by the same respondent, are available. Weighting is preferable when characteristics
at the sampled unit level are limited. However, both weighting and imputation are just
different tools for accomplishing the same goal.

Finally, I agree with Professor Little that multiple imputation can be valuable, even
though it is not the best solution to all nonresponse adjustment problems. Multiple
imputation is a form of replication and I, like many design-based statisticians, am fond of
replication.
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Incorporating User Input Into Optimal Constraining
Procedures for Survey Estimates

Matthew Williams' and Emily Berg*

We examine the incorporation of analyst input into the constrained estimation process. In the
calibration literature, there are numerous examples of estimators with “optimal” properties.
We show that many of these can be derived from first principles. Furthermore, we provide
mechanisms for injecting user input to create user-constrained optimal estimates. We include
derivations for common deviance measures with linear and nonlinear constraints and we
demonstrate these methods on a contingency table and a simulated survey data set. R code and
examples are available at https://github.com/mwilli/Constrained-estimation.git.

Key words: Calibration; general deviance measures; nonlinear constraints; raking;
user feedback.

1. Introduction

Constrained estimation has diverse applications in survey estimation. In the presence of
auxiliary information, calibration of survey weights can improve the efficiency of a design
consistent estimator. Deville and Sédrndal (1992) define calibrated weights as the weights
that minimize a deviance function subject to the restriction that the weighted sum of
a vector of auxiliary variables is equal to a known population total. They suggest a family
of deviance functions and demonstrate that the resulting calibration estimators are
asymptotically equivalent to a generalized regression estimator, a particular type of
calibration estimator that arises from a quadratic deviance function. Chen and Sitter
(1999) formulate the calibration problem using an empirical likelihood. Calibration can
also be used to reduce a bias due to undercoverage of the sampling frame or nonresponse
(for example, see Kott 2006, Chang and Kott 2008, and D’ Arrigo and Skinner 2010). In a
seminal paper, Deming and Stephan (1940) use iterative proportional fitting to enforce a
restriction that the estimated marginal totals of a two-way table agree with census margins.

Whether the purpose of the calibration is to improve the efficiency of a design-unbiased
estimator or reduce a bias due to nonsampling errors, care is often needed to avoid
negative or extreme weights. Deville and Sirndal (1992), Chen et al. (2002), and Singh
and Mohl (1996) discuss methods for imposing range restrictions on calibrated weights.
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These ensure that each sampled unit represents a reasonable positive number of units in the
population.

Another application of constrained estimation is benchmarking of small area estimates
to ensure that aggregated model-based estimates agree with a direct estimator or a
previously published statistic for a larger region. Wang et al. (2008) review benchmarking
methods in the context of a linear mixed model. They define a class of benchmarked
estimators by minimizing a quadratic form subject to the benchmarking restriction.
Nandram and Sayit (2011) incorporate linear constraints for small area probabilities using
hierarchical Bayes and the standard beta-binomial model. In related work with shrinkage
estimators, Ghosh (1992) imposes constraints on the mean and variance of Bayes
estimates for a quadratic loss function. While variance constraints are quadratic
(nonlinear), the use of a quadratic loss function leads to a closed form solution.

Many of the applications of constrained estimation discussed above apply linear
constraints (see Sarndal 2007; Estevao et al. 1995, who mention ratios of totals) to a set of
initial estimates or initial weights by solving a constrained optimization problem. While
the methods serve different purposes and have distinct interpretations, the functional
forms are similar and derivations can be based on fundamental mathematical principles
(such as the method of Lagrange multipliers). Because of the similarities between
methods, constrained estimation in the survey world can seem like a tangle of overlapping
terms and concepts. One of the objectives of this article is to clarify some of these
associated concepts.

What is missing in the literature is a framework to create an interface between a user and
the automated constraining procedure. Such a framework is essential for a statistical
agency which is tasked with establishing estimates that are timely and accurate with the
expectation of being compatible with subject or commodity knowledge and administrative
data with partial coverage. Incorporating constraints into such a process must go beyond
default settings and a choice of deviance measures. In addition to clarifying concepts, the
purpose of this work is to establish such a framework.

1.1. Motivating Example

For statistical agencies, data often occur in triplets of numerator (n), denominator (d), and
the ratio (r) of the two. Suppose we have a set of such triplets which must agree in
aggregation with known targets (Table 1). Most methods in the literature would use linear
constraints on the totals for n and d. But if r represents an agricultural rate of yield, which
is production (n) per harvested area (d), then biological and industry knowledge would
suggest adjusting the ratio directly (using nonlinear constraints) rather than the total
production. The choice of which two of the three items in each triplet to adjust will often
give distinct solutions. Figure 1 compares the relative adjustments made to each initial
estimate when applying equivalent methods for constrained estimation to n and d versus d
and r. The linear approach applies a constant proportional adjustment (decreasing for n
and increasing for d). The nonlinear approach decreases r and increases d, but not at the
same rates across all rows.

Constrained estimation provides a way for an analyst to incorporate external knowledge
of the process that generated the basic estimators (either the direct survey estimators or
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Table 1. Simulated Survey Data (rounded). Targets
increase (light) and decrease (dark)

Num (n) Den (d) Ratio (r)

1 2,586.20 56.55 45.73
2 30,491.31 913.17  33.39
3 4,141.68 78.83 5254
4 1,975.41 68.59  28.80
5 18,827.87 362.00 52.01
6 6,280.19 13720  45.77
7 8,597.05 182.03  47.23
8 4,995.37 24278  20.58
9 7,402.01 216.61  34.17
10 1,168.46 5252 2225
11 5,455.36 24330 2242
12 1,778.24 60.79  29.25
13 3,208.09 19524 1643
14 2,249.00 56.44  39.85
15 2,215.65 72.80  30.44
16 14,297.99 45496  31.43
17 3,948.72 19049  20.73
18 1,653.01 77.39  21.36
19 2,545.01 86.12  29.55
20 2,749.02 7291  37.70

Total 126,565.63  3,820.71  33.13

Target [120,23735 393533 80557

estimators based on a subsequent model). For instance, contributions of large operators in
establishment surveys, sizes of nonresponse and bias adjustments, administrative records,
historical data, and qualitative information about the data-generating mechanism can be
difficult to integrate into the basic estimation procedure, but might factor into an analyst’s
decision to set some values and reweight the adjustments on others. The analyst would
then need a procedure to enforce these additional “user” constraints. For example, we can
use analyst knowledge to fix entire rows in Table 1 and fix individual ratios r;, and

Num Den Ratio Num Den Ratio Num Den Ratio

1 1 1

2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
8 8 8 -
9 9 9
10 10 10 H
11 1" 11 4
12 12 12 o
13 13 13 o
14 14 14 4
15 15 15
16 16 16 4 e
17 17 17 4
18 18 18
19 19 19 +
20 20 20

Fig. 1. Heat Map for Default Constraint of Triplets: (left to right) Log(Data), % Change (Linear), % Change
(Nonlinear). White to black increases counts or size of change. Signs (—/+ ) show direction of change
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Den Ratio Num Den Ratio Num Den Ratio
1 14 ND 1 ND
2 2 Ro 2 Ro.
3 3 ND 3 ND
4 4 4
5 5 - Ra 5 Ra
6 6 6
7 7 7
8 8 o 8 o
9 9 o 9 o
10 10 ND 10 ND
1 1 4 o 11 o
12 12 ND 12 ND
13 13 o 13 o
14 14 ND 14 ND
15 15 15
16 16 Ra 16 Ro
17 17 4 17
18 18 + 18
19 19 4 19
20 20 20

Fig. 2. Heat Map for User Constraint of Triplets: (left to right) Log(Data), % Change (Linear), % Change
(Nonlinear). White to black increases counts or size of change. Signs (—/4) show direction of change. Num and
Den fixed (ND), Ratio set (R), rows reweighted (o)

reweight to redistribute the amount of change absorbed by some rows. In heat map
representation (Figure 2), these adjustments take the form of white cells (no change) and
increases in intensity (darker up-weighted cells).

In the next section, we review the relationship between constraints and deviance
measures. We introduce the concept of user interaction with an optimal procedure and
explore several examples that might occur. Section 3 contains the details for a Newton-
type method to generate solutions. In Section 4, we revisit the data set from Deming and
Stephan (1940), applying our framework to incorporate user interaction. In Section 5 we
elaborate on the example of linear and nonlinear constraints for triplets described in
Subsection 1.1. Finally, we conclude in Section 6 with a summary and implications for
further research. R code for methods and examples is available at https://github.com/m-
willi/Constrained-estimation.

2. Constrained Estimation

We consider the vector of observations (or unrestricted estimates) y of length n. We may
wish to impose k < n linear constraints Ax = q, where x is a constrained version of y.
Linear constraints take the form of weighted sums a;x =3 ayx; = gifori € 1, .. .,k
where a; is the ith row of the k X n coefficient matrix A. We restrict A to have full row rank
k. Otherwise at least one a; leads to a redundant constraint or creates a conflicting
constraint. Consider an example in which constraints are imposed on all marginal totals of
a two-way table with R rows and C columns. Because both row and column margins sum
to the total for the table, a coefficient matrix A containing R 4+ C rows, one for each
column and row sum, will contain one redundant row. This creates a deficient row rank for
A of R + C — 1. A row associated with one of the row or column sums can be removed to
produce a coefficient matrix with R + C — 1 rows and thus full row rank. (See Section 4
for further discussion of restrictions on the marginal totals of a two-way table).

We also consider k < n nonlinear constraints g(x) = q. While the general class of
nonlinear functions (all functions which are not necessarily linear) is extremely broad, we
limit consideration to those that are well defined and have n X k continuous derivatives
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D,(x). In practice we consider polynomial, rational, and transcendental functions and
compositions of them. These are generally wellknown and wellbehaved nonlinear
functions. For example, the ratio of numerator and denominator from our motivating
example (Subsection 1.1) is simple and wellbehaved when the denominator is nonzero.
The variance constraint imposed by Ghosh (1992) for shrinkage estimates is a basic
quadratic function used to counteract the overshrinking which occurs commonly in
applications such as small area estimation.

We can no longer appeal to matrix rank to ensure that we do not have any conflicting
constraints. However, it is clear that equations such as x; +x; = g, x; — x2 = ¢2, and
X1 /x2 = g3 produce a conflict. Many methods for solving nonlinear systems of equations
use linearization techniques involving derivatives (see Section 3). For these methods to
find solutions, further restrictions may be placed on Dy(x). For our purposes we will
assume D,(x) has full column rank k for each value of x.

2.1. Deviance Measures

Since n > k, the constraints by themselves do not imply a unique solution X, but instead a
family of solutions. A reasonable criteria to select a member of this family is to choose the
x “closest” to y. This concept of closeness implies minimizing a scalar deviance between
x and y. We will generally restrict these deviances to be rather simple and interpretable.
From the calibration literature (for example, see Deville and Sdrndal 1992), there are
several deviance functions used. We highlight the three most popular (for example, see
D’Arrigo and Skinner 2010): the quadratic deviance x*(x|y), the Poisson deviance /(x|y),
and the discrimination information D(x|y). Each of these measures falls within the
framework developed. Practitioners may use their current preferred deviance measure and
still take advantage of the results and ideas presented here. Alternatively, one can change
the deviance measure while still maintaining the other structures described below, such as
the weighting matrix and the form of the constraints.

We express these deviances in matrix formulation and provide a weighting structure (W)
which allows for user input from an analyst or another model (see Subsection 2.3). The
matrix formulations for some of the deviance measures may seem unnecessary, but the key
insights come from the matrix formulation of the constraints. Expressing both in terms of
matrix operations makes them more directly compatible (Subsection 2.2). We assume the
base W is symmetric and invertible (although often the case, W need not be positive
definite). We define (v) as a square diagonal matrix with vector v on the diagonal and Os
elsewhere. We use the notation [-] to denote elementwise operations in two ways: First we
use [ab + c] for vectors a, b, and ¢ of the same dimension to produce a vector with the ith
element equal to a;b; 4+ c;. Second we denote f [v] as yielding a vector with ith element
equal to f'(v;). In other words, f[v] applies the scalar function f(-) elementwise to each v;.

The Quadratic Deviance
Xxly) = (x = y)W(x - y)

Examples include the Pearson chi-squared distance (W = (y) ') and the Least Squares
distance (W = Var(y)"'). Use is often motivated by a regression-based approach
(Fuller 2002).
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The Poisson Deviance
Ixly) = 1'W, [y log [%] —y+ x}

where W, is a diagonal matrix of full rank. Motivation comes from the deviance measure
of a log-linear model comparing a restricted model of means to the saturated model
(Agresti 2002). In this case, y is the data (or saturated model) and x is the restricted model
for y. We will show in Subsection 2.2 that the Poisson deviance leads to the pseudo-
empirical maximum likelihood estimator of Chen and Sitter (1999).

The Discrimination Information

D(xly) = l(y|x) = 'W, {x log E] — x4 y}

The name seems to come from the application of the principal of minimum discriminability
to cell probabilities (see Ireland and Kullback 1968, who attribute this to Good and
Kullback). So-called raking methods such as iterative proportional fitting (IPF; Deming
and Stephan 1940) are readily available to minimize this deviance for specific settings.

Of the three, x*(x|y) is the simplest to implement and will often lead to closed-form
solutions (Subsection 3.1). However, when y are positive survey weights, some of the
resulting x may be negative. D(x|y) and /(x]y) are often preferred in this context, because x
will remain positive for both methods. We can see that D(x|y) and I(x|y) are closely related
and easy to confuse. However, the estimating equations for each are clearly different (see
Table 2), so the emphasis is often placed here rather than on the original measures. To
further add to the confusion, when y is already close to satisfying the constraints (Ay = q
or g(y) = q), the three deviance criteria give very similar results, thus explaining the error
in Deming and Stephan (1940) (see Section 4).

2.2.  Solving for Linear and Nonlinear Constraints

Suppose we are given a vector y and wish to find the x satisfying a possibly nonlinear
constraint g(x) = q for some vector-valued function g(x) with derivative matrix Dy(x) (the
linear form Ax = q is a special case with D,(x) = A'). Since such an x will generally not
be unique, let x minimize the deviance d(x|y). Assume d(x|x) = 0 for all appropriate x.
However d(x|]y) need not be symmetric d(x|y) # d(y|x). We assume the derivative

Table 2.  Five common deviance measures (Deville and Sirndal 1992) and the corresponding functions needed
for estimation

Name Deviance d® hlu] ht )[u]
Quadratic x—y)Wx—y) x—y) y+u 1
Discrimination 1'Wy [xlog [3] - X+ y} log [%] [y expl[u]] [y expl[u]]

1
Hellinger VX= WWax—=y) 1—=[2 [yll —u]™?] 2[y[l —u]™’]
Poisson 1'Wy[ylog[}] —y +x] 1= yll—u™ [y[1—ul?]
Alternative x— Y)W '(x—y) 1 - [{]2 [y[l — u] 7] %[y[l —u] 3]

Quadratic
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ad(xly)/ox = WdV(x|y) is composed of well-defined elementwise invertible functions
on the x vector. In other words, the ith element d " (x|y); only contains information from X;
and y; not x; or y;. We also assume d M(x, x) = 0. It’s clear that x*(x|y), I(x]y), and D(x]y)
are each examples of d(x|y) (see Table 2 for these and two more from Deville and Sirndal
1992). We take W to be a symmetric and invertible weight matrix.

In order to minimize d(x|y), subject to constraints g(x) = ¢, we use the method of
Lagrange multipliers (see, for example Stewart 2011). When such a solution x exists, the
derivatives Wd m(xly) are parallel to the columns in Dy(x), the derivatives of each of the
k constraints. The k X 1 vector N scales for the differences in magnitude of these parallel
vectors. Symbolically,

WdV(xly) = Dy(x)N, (1
or equivalently,
dV(xly) = W'D (x)\.

Since d V(x|y) = u is an elementwise invertible operation on x producing the vector u, the
inverse function h(u) = x exists and is also elementwise. Together with g(x) = q, we
obtain the following estimating equations

x = h[W D, (x)A]

q = g(A[W™'Dy(x)\]). 2

Two properties become apparent from (1) and (2):

Lemma 1. The solution X to (2) is invariant to the choice of the scalar a # 0 in
Wew = aW 4.

Example: 1f we are using (x — yYW(x — y) or 100(x — y)W(x — y) as the deviance
d(x]y), we will get the same solution x.

Lemma 2. The solution X to (2) is invariant to the rotation of constraints Lg(x) = Lq for
full rank square rotation matrix L.

Example: In a two-way table, if we constrain all row and column totals, we have one
redundant constraint. Ignoring any one row or column total gives the same solution x.

Proof. Both properties come from A being a dummy variable, an intermediate value used
to solve for x. This property implies an invariance to one-to-one transformations.
In Equation (1), using «W is equivalent to using § = o~ '\ as the multiplier. Likewise,
rotating Lg(x) will lead to the derivative D,(x)L/, which is equivalent to using the rotated
multiplier p = L'\, O

Now consider partitioning y’ = [y, y’] and x’' = [x__,x/] indexed by the set s
of size ny and its complementary set —s of size n_;. Define the selection operator
8(s) = [0, ,,In,]" such that y, = &'y. The weight matrix W is also partitioned

corresponding to s and —s:

W, W,
W=lw ow,
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Set values in W corresponding to the set s equal to 0:

Wa Onfonx ‘|

Om Xn— Om Xng

|

Then the Moore-Penrose generalized inverse of W, is

-1
_ Wa Onﬂ><nJ
W, =

0m><tpT On;an

Two more properties of the estimating equations (1) and (2) are now available:

Lemma 3. For the estimating equations in (2) we add additional equality constraints of
the form x; = y,. The following implementations give equivalent solutions for X_:

o Augment the constraint targets "' = [q',y'] and the corresponding equations
g" = [g(x), x'8].
e Keep the original q and g(x) and substitute W = Wy and W~ = W, .

Lemma 4. For the estimating equations in (2) we add additional equality constraints of
the form X, = z, for arbitrary values 7, # y,. If W is diagonal (W,) or block-diagonal
(W, = 0,,_xn,), the following implementations give equivalent solutions for X_:

e Augment the constraint targets q* = [q,z;] and the corresponding equations
g*'(x) = [g(x),x'8].
o Keep the original q and g(x) and substitute y, = 7, W = Wy, and W~ = W, .

Proof. See Appendix A for details. (|

2.3.  User Interaction

The goal of this proposed framework is to provide an interface between an informed
analyst (or metamodel) and an automated ‘“optimal” procedure which minimizes a
deviance measure as described above. The choice of deviance measure will likely be made
based on the application area and current conventions (i.e., the discrimination information
for raking problems). A default weight matrix W may be a function of estimated variances
based on a sample design or a specified model. As we have mentioned in our example in
Subsection 1.1, knowledge of the process may be more difficult to fully and directly
incorporate into the initial estimation procedures, thus motivating the need for an analyst
to make adjustments.

We may expect the user to have limited control over the original y and the necessary
constraints ¢, leaving only the W to be adjusted. However, the user is free to provide
additional constraints by augmenting A and g(x). From Lemmas 3 and 4, several of these
augmentations can be implemented by changing y and W, thus preventing an increase in
the dimension of the estimating equations (2).

e The user wishes to protect some y, from changing. Some values may be the result of
previously published data and are therefore ineligible for adjustment.
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e The user sets x; = 7, # ;. The user may wish to replace some dubious values or force
changes in a direction opposite of the default procedure.

e The user reduces the changes to y, without fixing the x, values. From Lemma 1, we
know that choice of scalar a 7 0 in aW has no impact on x. However, multiplying
subsets of W by a will affect x:

1 1
-W, —W
o A/ b
We=|
W, W,

N
For a > 1, the values of x_; stray further from y_,, thus absorbing more change.

The sets {s} and {—s} must be chosen carefully when using W, to avoid singularities.
Since they are equivalent to adding more constraints to ¢, we may inadvertently create a
constraint on x which conflicts with g(x) = q. A finite choice of «, which provides weaker
protection, can be used without this problem. Furthermore, W, and « may be used together
by establishing more than one partitioning set {s}.

This system provides a good compromise between an automated approach which
ignores important expert knowledge for a specific subset x,, and a completely manual
process which may use ad hoc methods to fill in the complementary x _; values where
knowledge is limited.

3. Implementation with Newton’s Method

Given x, we can use Newton’s method to iteratively solve for the A satisfying the second
line of (2). We then update x and iterate the process until convergence. Denote hD@) =
oh(u)/du as the matrix of derivatives. Since h(u) is an elementwise function on u,
h @) = (h P[u]) where & P[u] is a vector of elementwise derivatives of dh(u;)/du;.
Applying one chain rule for nested function gives:

dg(hlul)/ou = (h'V[u]) D (hlu)).
Then applying another chain rule for a change of variables:
ag(h[BX])/oN = B'(hV[BA]) D (h[BA)),

where B is an arbitrary matrix. Let B = Wleg(x). For a given x’, Newton’s method
becomes:

N =N+ [D’g(xi)W_'<h“) (W'D, (x)N]) D, (h [W‘IDg(x")xﬁ])} -

I 3)
x (a— g(h[W 'DxN]) ).
We update x; in an outer loop to satisfy the first line of (2):
X = n[WD,(x)N]. )

After convergence, the estimate x will be the same regardless of rotation (Lemma 2).
However, rotations of the constraints may lead to different intermediate values for
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(3) and (4). By updating n = L'\ using Lg(-), Lq, and D,(-)L/, we will get the same
final solution, but different x’ and M before convergence.

3.1. Linear Constraints

For linear constraints, 4(u) will eliminate the need to iterate (4) for every d(x|y). For the
quadratic deviance x*(x|y), the inner loop (3) is one step, thus leading to the closed form
solution

x=y+ W AAW'A")"I(q — Ay). (3)

This result is common in the econometrics and engineering literature (Green 2000; Pizzinga
2010), where the y are least squares estimates of regression coefficients and W is their
covariance matrix. The linear case with diagonal W, for the quadratic and discrimination
information deviances is available in the survey literature discussed above.

3.2. Alternatives to Newton’s Method

We have presented a Newton method above to provide a general approach that can
utilize different deviance measures and can accommodate both linear and nonlinear
constraints. Many alternatives to Newton methods exist for specific optimization
problems. In the survey literature, alternatives for solving the estimating equations (2)
tend to be specific to one deviance measure and /inear constraints. For example, iterative
proportional fitting (IPF) is a popular way to impose linear restrictions on the cells of a
multiway table using the discrimination information deviance. Software for IPF include
the R function “loglin” and the SAS subroutine “ipf”. The function “apop_rake” in the
Apophenia library (http://apophenia.info/) implements IPF in a low-level programming
language.

We emphasize Newton’s method for two main reasons. Firstly, Newton’s method is
applicable to more general classes of constraints, deviance functions, and data structures.
It is not limited to linear constraints on multiway tables, but can apply simple (i.e.,
continuously differentiable) nonlinear constraints to any data set that can be represented as
an array. Secondly, the procedures of Subsection 2.3 for incorporating user input via the
modification of W and g(x) are readily implemented with Newton’s method. Choosing
between methods may depend on software availability, the experience of the user, and the
size and nature of the data set. However, the properties of the solutions (see the Lemmas
above) and the use of a user framework come from the estimating equations (2) and
therefore hold regardless of the manner in which a solution was obtained (IPF, Newton’s
method, stochastic search, etc.).

Within our proposed Newton method there are alternatives to using A(u). Let h,(u) be
a function of u given x satisfying h,(d (l)(x)) = x. The inverse need not be true:
d V(hy(n)) # u. Obviously A(u) is a special case of hy(u). For the Poisson deviance, we
choose hy(u) = [xu + y] with h;l)[u] = X, which is not a function of u. For this choice of
hy(u), for linear constraints, we need an outer loop (4), but not an inner (3) loop for A. See
Appendix B for details. Since both the i(u) and the A (u) approaches lead to the same
solution at convergence, preference between the two methods may lie in interpretability of
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the intermediate steps. For example, we prefer /,(u) for the Poisson deviance, because the
steps are the same as for the quadratic deviance, but with (x)W ! replacing the W ~"'. Thus
we can minimize the Poisson deviance by iteratively using the methods for the quadratic
deviance. Using h(u) for the Poisson deviance recreates the pseudo-empirical maximum
likelihood estimator (Chen and Sitter 1999) since the solution X is invariant to choosing
1= —A. Chen et al. (2002) give an alternative iterative Newton method for linear
constraints using this estimator.

4. Deming and Stephan (1940) Revisited

We revisit a classic example of raking by using our generalized techniques on the data set
from Deming and Stephan (1940). The observed data (Table 3) are cell counts N;;in a two-
way table with margins N; and N jforrowsi € 1, .. .,6 and columnsj € 1, . . .,4. The
constrained margins M; and M; are the targets g. The grand totals N..= M.. by
coincidence and need not be true in general. The objective is to find cell counts M;; that are
closest to N;; in terms of deviance, while satisfying the marginal constraints.

Although Deming and Stephan assert that their method of iterative proportional fitting
(IPF) minimizes the least squares deviance x(x|y), IPF actually minimizes the
discrimination deviance D(x|y) (Deville and Sdrndal 1992). We can obtain the estimates
that minimize x*(x|y) in one step (5) and use iteration (3) to obtain estimates minimizing
I(x|y) and D(x]y). As it turns out, the estimates are quite close across the three deviance
measures.

Using the discrimination deviance, we wish to compare the original results to those
from two hypothetical user actions (Figure 3). For the default choice, it seems that the row
margins are dominant (rows are all 4+ or all —) and that most change occurs in the first
column (darkest).

e The user specifies two cells (M3,; = 1,516 and Ms,4, = 160) and prevents these from
changing. These are changes in the opposite direction from the default. Therefore the
rest of the values in those rows and columns must take on more change (darker) and
may switch direction (— to + or + to —).

e The user down-weights columns 3 and 4 by a factor of a = 5. This allows the values
in these columns to absorb more change and thus provides a weak protection for

Table 3. Data from Deming and Stephan (1940). Margin targets
increase (light) and decrease (dark)

i\j 1 2 3 4 N;. M;
1 3,623 781 557 313 5,274
2 1,570 395 251 155 2,371
3 1,553 419 264 116 2,352
4 10,538 2,455 1,706 1,160 15,859
5 1,681 353 171 154 2,359
6 3,882 857 544 339 5,622

22,847 5,260 3,493 2,237 33,837
22,877 5,285

<Z

33,837

~.
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L

°
Fig. 3. Heat Maps using the Discrimination Measure: (left to right) Original Data, Default Changes, User Set

Changes (M3, and Ms,,), and Reweighted Changes (M_; and M_4). White to black increases counts or size of
change. Signs (—/4) show direction of change

B
o o A WN
a A W N

o o A WN

columns 1 and 2. We notice that the general pattern of changes is similar to the
default, but columns 3 and 4 are darker and columns 1 and 2 lighter compared to the
original solution. This confirms that we have indeed shifted more change onto the last
two columns.

4.1. Implementation
First we stack y by rows:
Y = [Ni=1,Ni=2, Ni=3,Ni=4, Ni=s, Ni=¢]".

Then we formulate ¢, remembering to remove one redundant constraint M ; (Lemma 2
assures us that any choice of row or column margin will do):

q= [MlnMZJM343M44aM543M643M.23M.33M.4]I-

Next we construct A, which is simply a table of 1s and Os. (Table 4 shows the transpose A”).
For example, the 2nd column of A, (row of A’) corresponds to x, = M,,,. This cell is
involved in the first constraint M = Zj M ; and the seventh constraint M , = Zi M;,,so
the corresponding values in A have 1s. The rest of the entries for x, are 0s. We use
W = (y)" ' for x*(xly) and W, = L., the identity matrix, for /(x]y) and D(x|y). For fixing
values, we construct W, and W, with zeros for setting M3,; = 1,516 and Ms,, = 160. For
down-weighting values, we pre- and postmultiply W by a diagonal matrix with 1 for
columns 1 and 2 and \/m for columns 3 and 4.

5. Simulated Survey Example

We now provide more detail for the motivating example in Subsection 1.1, in which data
occur in triplets of numerator (n), denominator (d), and the ratio (r) of the two. At each
level of aggregation (individual, regional, national), we only need to focus on two of the
three. It is often the case that we have already set (and published) triplets at a higher level
of aggregation (national totals) and now wish to set triplets at lower levels constrained to
be consistent when aggregated. For example, we would need the totals for n and d to sum
to the higher level totals. In the context of the methods discussed above, we can do this in
at least two ways:
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Table 4. Value of A’ for Deming and Stephan (1940) data

# Xy i=1 i=2 i=3 i=4 i=5 i=6 j=2 j=3 j=4
1 My, 1 0 0 0 0 0 0 0 0
2 My, 1 0 0 0 0 0 1 0 0
3 Mus 1 0 0 0 0 0 0 1 0
4 Myg 1 0 0 0 0 0 0 0 1
5  Muy, O 1 0 0 0 0 0 0 0
6 Mgy O 1 0 0 0 0 1 0 0
7 Masy O 1 0 0 0 0 0 1 0
8  Musy O 1 0 0 0 0 0 0 1
9 Mgy, O 0 1 0 0 0 0 0 0
10 Mg, O 0 1 0 0 0 1 0 0
11 Mgss O 0 1 0 0 0 0 1 0
12 Mgs O 0 1 0 0 0 0 0 1
13 Mgy, O 0 0 1 0 0 0 0 0
14 My, O 0 0 1 0 0 1 0 0
15 My O 0 0 1 0 0 0 1 0
16 Mys O 0 0 1 0 0 0 0 1
17 Mgy, O 0 0 0 1 0 0 0 0
18 Mg, O 0 0 0 1 0 1 0 0
19 Mg O 0 0 0 1 0 0 1 0
20 Mgq O 0 0 0 1 0 0 0 1
21 Mgy, O 0 0 0 0 1 0 0 0
2 Mgy O 0 0 0 0 1 1 0 0
23 Mgs O 0 0 0 0 1 0 1 0
24 Mgy O 0 0 0 0 1 0 0 1

e We can focus on adjusting n and d leading to linear constraints

q= Zl’li,Zdi = Ax.

e We can focus on adjusting d and r leading to nonlinear constraints

!

q= Zl’id,', Zdl = g(X)

i

We can motivate the first method based on simplicity. However, the second method
appeals to us if there is more intuition for r than n. It may also be the case that r is more
independent of d than n is. For example, agricultural agencies publish total production (n),
harvested area (d), and yield per area (r) for major crops. Focusing on production n
may be overemphasizing constraints on area d. In addition, there is much scientific and
commodity knowledge about the values for yield r.

We consider a simulated set of triplets for i = 1, . . ., 20 artificial regions which grow
soybeans. Based on published values for the U.S. (www.nass.usda.gov), we choose a
symmetric distribution of soybean yields ranging between 15—55 bu/acre and a skewed
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distribution for harvested area over a 20-fold range with units in either the 100s (county) or
1,000s (state) of acres.

e Simulate 20 values for d; ~ [Unif (1.0%?%)} :

e Simulate 20 values for r; ~ N(u = 35, o = 10) independently of d,.
e Calculate n; = d; X r; for each value.

The resulting data were shown in Table 1. The target values for constraints were arbitrarily
chosen such that the target total for n and d were 95% and 103% respectively of the
observed totals.

5.1. A Hypothetical User Experience

A hypothetical user wants to constrain the triplets data from Table 1 with the option of
imposing adjustments based on experience and judgment. The user has experience with
raking, so decides to use the discrimination deviance. The nonlinear formulation is new
to the user, so both it and the linear approach are run in parallel to compare the results.
The actions of the user are summarized as a flowchart in Figure 4.

The user begins with the default solutions from our motivating example above
(Figure 1), but then realizes that regions 1, 3, 10, 12, and 14 are only sampled annually and

Default setting:
no user input

User intervention

User fixes
annual regions:

—| 1,3,10,12,14

Path1
Path2
User sets some
ratios:
2,5,16 User sets all
ratios

User reweights:
2,5,8,9,
11,13,16

Fig. 4. Process flow of user decisions and estimates for the triplets data set
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have not been sampled in the current survey. Instead, the most recent valid values have
been passed forward. These have already been published and are therefore not eligible to
be changed. To protect these values, the user adds Os into the corresponding entries of the
weight matrix W. The procedure is run again and new values are produced.

Now the user looks at the yield ratios r more carefully and compares them to the survey
estimates. Historically, the survey gives high quality estimates for this ratio. If possible,
the user would like to keep these ratios fixed. The user decides to take two different paths
and explore their impact (Figures 5 and 6):

Path 1: The user sets ratios (rounded to the integer) for regions 2, 5, and 16. Several
regions change more than the user can comfortably justify. Regions 2, 5, 8, 9, 11, 13,
and 16 are reweighted (a = 5) to absorb more change from the other regions. The
heat maps confirm that adjustments are now more concentrated (darker) in these
regions.

Path 2: The user fixes all ratios and is surprised to see that the linear and nonlinear
approaches give identical results. By setting all r, both r and n are eliminated from
adjustment, producing two linear constraints on d. Regions with higher yield r have
harvested area d decreased, whereas those with lower yield have harvested area

N A WN =

S0 WWONOORWN =
11

12
13
14
15
16
17 A
18
19

20

Num Den Ratio Num Den Ratio Num Den Ratio
ND 1 ND 1 ND
2 R 2 Ro
ND 3 ND 3 ND
4 4
5 R 5 - Ro:
6 - 6 —
7 4 7 A
8 - 8 - o
9 4 9 4 o
ND 10 — ND 10 ND
11 A 1 4 o
ND 12 A ND 12 + ND
13 13 o
ND 14 H ND 14 — ND
15 — 15 —
16 — R 16 — Ro
17 A 17 4
18 — 18 —
19 H 19 H
20 — 20
Num Den Ratio Num Den Ratio Num Den Ratio
ND 14 ND 1 A ND
h d 2 4 R 2 Ro
- ND 3 ND 3 ND
B 4 4
e 5 - R 5 Rot
_ 6 6
- 7 7 4
— 8 8 o
1 9 9 o
ND 10 ND 10 ND
1" 1" o
ND 12 ND 12 ND
13 13 o
ND 14 ND 14 ND
15 15 —
| -] 16 R 16 Ro:
17 17
18 18 —
19 19 H
20 20

Fig. 5. Heat Maps for Path 1 (using discrimination deviance) for linear (top row) and nonlinear (bottom row)
approaches. User successively adds constraints (left to right): Fixing annual regions (ND), setting yield ratios
(R), reweighting to redistribute («)
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Num Den Ratio Num Den Ratio Num Den Ratio
1 ND 1 ND 1 ND
2 2 R 2
3 ND 3 ND 3 ND
4 4 R 4
5 5 R 5 —
6 6 R 6 -
7 7 R 7 A
8 8 R 8 |
9 9 R 9 4
10 10 ND 10 — ND
n n R 1
12 12 ND 12 H ND
13 13 R 13 A
14 14 ND 14 — ND
15 15 R 15 —
16 16 R 16 |
17 17 R 17 A
18 18 R 18 —
19 19 R 19 H
20 20 R 20

Fig. 6. Heat Maps for Path 2 (using discrimination deviance). Linear (left) and nonlinear (right) approaches
converge when the user sets all yield ratios (center). Num and Den fixed (ND), Ratio set (R)

increased. Thus the overall production n has been decreased, but the overall
harvested area d has been increased to simultaneously meet both aggregate targets.

5.2.  Implementation Details

To implement the process above, we define y’' = [nj,d},r{] as the stacked set
of unconstrained values. We seek the corresponding stacked constrained values x' =
[n.,d.,r.] whose aggregate values satisfy the target ' = [120,237.35, 3,935.33, 30.55].
For the linear approach, we use the numerator and denominator directly: y; = [n’y, d;],
x) = [n),d}], and q; = [120,237.35, 3,935.33]. Depending on the user’s choices, the A
matrix varies (Table 5). For the default settings, A is simply two rows of indicators, with 1
where an element of X, is present in the sums {Z ni, > d,} and 0 otherwise. For Path 1,
the user sets some r;. Then for the total »_ n;, the term r;d; replaces some n;. Thus the
corresponding entries in A are O for n; and r; for d;. Path 2 has a similar A matrix except
with more r; present. No adjustment to A is needed for jointly fixing the pairs {n;, d;} for
i=1,3,10, 12, 14. For these cases, we construct W, and W, with corresponding zeros.
We suggest using W = (y) " for x2(xly) and W, = Ly, for I(x|y) and D(x]y).

For the nonlinear approach, we directly adjust denominator and ratio: y/, = [d’y, r’y],
x), = [d},r.], but still use the total production and harvested area as the targets
q; = [120,237.35, 3,935.33]. We define g(x) = [rdy, 1'dx]". Then

ry 1

D= 14 o

For the nonlinear case, fixing ratios r; introduces more zeros into W, and W . Setting
values for r; will change the initial y,,; (as opposed to changing A for the linear approach).

6. Conclusions and Future Work

In this work, we have provided an overview of constrained estimation and solutions for
several common deviance measures based on first principles. While these tools are useful,
our main goal was to use them to motivate a framework in which an analyst and a default
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Table 5. Values of A’ for Triplets Example
Default Path 1 Path 2

#oxy  Yom oy.di Yom >odi Yomp Y. d;
I m 1 0 1 0 1 0
2 m 1 0 0 0 0 0
3 n3 1 0 1 0 1 0
4 g 1 0 1 0 0 0
5 ns 1 0 0 0 0 0
6  ng 1 0 1 0 0 0
7 n 1 0 1 0 0 0
& ng 1 0 1 0 0 0
9 ng 1 0 1 0 0 0
10 nyo 1 0 1 0 1 0
11 nyy 1 0 1 0 0 0
12 n, 1 0 1 0 1 0
15 ns 1 0 1 0 0 0
16 nj6 1 0 0 0 0 0
18 ng 1 0 1 0 0 0
19 nyo 1 0 1 0 0 0
21 4, 0 1 0 1 0 1
22 d2 0 1 1) 1 1) 1
23 ds 0 1 0 1 0 1
24 d, 0 1 0 1 ra 1
25 d5 0 1 Is 1 Is 1
26 dg 0 1 0 1 re 1
27 d, 0 1 0 1 ry 1
28 dy 0 | 0 | re 1
29 dy 0 1 0 1 ro 1
30 dy O 1 0 1 0 1
31 dl] 0 1 0 1 i 1
32 dy, 0 1 0 1 0 1
33 d13 0 1 0 1 ri3 1
34 dyy 0 1 0 1 0 1
35 d15 0 1 0 1 s 1
36 dlé 0 1 e 1 e 1
37 d17 0 1 0 1 r7 1
38 d18 0 1 0 1 rig 1
39 dlg 0 1 0 1 IAT) 1
40 d20 0 1 0 1 0 1

optimal procedure interact, allowing the user to input extra knowledge to create optimal
“user-constrained” results. We demonstrated this framework on a classic raking example
with linear constraints in the form of margins. We then examined two different approaches
to a standard survey problem of constraining aggregate totals and ratios, one implying
linear constraints and the other nonlinear ones. Overall, these methods provide a



392 Journal of Official Statistics

framework from which to build an interface between automated model processes and
expert knowledge via an analyst or metamodel.

We have deliberately avoided discussion of expectations and variances. It should be
clear that y is often stochastic with an estimated distribution (perhaps just a mean and
variance). However, W can be a function of y (as is often the case for the quadratic
measure). More importantly, the user’s choice of q, e, and z, (and whether or not to use the
default settings) is undoubtedly related to both y and external information. Thus the
distribution of x has connections to both y and the decision process of the analyst. Tools
for finding asymptotic variance estimates when the y are sampling weights are already
available in the literature for calibration (Deville and Sédrndal 1992; D’ Arrigo and Skinner
2010) and would require minor modifications to apply to our setting. However, modeling
the uncertainty associated with the decision process of the analyst might first involve
implementing these methods and capturing and exploring their behavior. We feel that the
framework here is sufficient to begin this process. Data-mining and decision science
methods may then be able to construct larger metamodels which incorporate more of these
sources of variability.

Appendix A. Justification of W

Instead of focusing on solving for A and x (see Subsection 2.2), we assume this is possible
and consider the question of whether to modify q or W to enforce additional equality
constraints X, =y, or X, = z, where x' = [x'_,x/] and y’ = [y’_,,y}] are partitioned and
Z, # Yy, is arbitrary.

One option is to augment the q vector: q*' =[q’,y'] (or q*' =[q’,z}]). The
corresponding g(x) is augmented g*’(x) = [g(x)’,x'8]. Then D,(x) is also augmented
Dy(x) = [D,(x), 8]. We would then use dV(xly) = W_IDZ(X))\* (with N*" =[N, 9'])
and q~ to solve for x.

Another option is to change the W or W ' matrices. Since setting equalities for x;
should reduce the dimensions of the problem, introducing Os into W may also work. We
partition W accordingly and use W, and W, as defined in Subsection 2.3. Note that W
and o are related by the following:

W, =W ' —Wl§awW '8 edwW
This can be verified using the block inverse formulas to confirm
W= (W, — (W (W W,

where
(W™, (W},

-1 __
W= lwy, wy,

A.l.  Proof of Lemma 3

This scenario occurs when a user decides that some of the y, need to be protected and are
kept unchanged during the constraint process. We will show that the W, and the D;(x)
methods lead to equivalent solutions for x; = yi.
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Starting with the D,(x) equations:

dD(xly) = W'D ()N
dV(xly) = W™ 'Dy(x)\ + W~ '8
§dV(xly) =0,, = §W D, (x)\ + §W 67
n=—(@W '8 'F W 'D,(x)\.

Then plugging m back in:
dV(xly) = W'D\
=W 'D,x)A — W '§FW 18 '§W 'D,(x)A
=Wy D,(x)A
This is the same as substituting W, for W ! in the default (no user input) setting.

Not only does the W, approach give the same results as the D;(X) approach, it also
reduces dimensions instead of increasing them:

dD(xly) = WyDg(x)\
{dD(xly)} (WD)} A
Onx Ona

Thus we only need to keep track of n_ equations and k constraints for the W, approach
instead of n equations and k 4 ng constraints with the D;(x) approach.

A.2.  Proof of Lemma 4

Now let us consider the case that x; = z, for some arbitrary z; # y,. There are at least two
ways to proceed:

e Create y*' = [y’_, /] and use the W, approach as in the previous section.
e Keep y and set q*/ = [q’, z] with g*'(x) = [g(x)’,x6].

We begin with the second option and explore the conditions under which the two are
equivalent. For convenience, define dV(x,ly;) = {dV(x]y)},. Also note that
dV(x,lzs) = 0,,.
Starting with the D,(x) equations:
dV(xly) = W‘ID;(X))\*
dVxly) = W D,(x)A + W~ 18n
§dV(xly) = dV(z,ly;) = W 'D,(x)N + §'W '8y
n=@W '8 '[dD(z,ly,) — §W 'Dy(x)A].
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Then
dV(xly) = W'D\

=W DA+ W '8EW '8)"'[dV(z,ly,) — §W D (0A]
= WD, 0N+ W 'a(@W '8 'dV(xly)

(WL, (W1 !
= W, D, (0N + dV(ly;).

N

When W is diagonal W, (or block-diagonal with Wy, =0, ,): {W ™'}, =0, , . Then
{dVxly)} ;= W, ' {D,x)} _,\. So solving dV(xly) = W’ID;(X))\* for x_, is
equivalent to solving dV(x|]y*) = Wy D,(x)N. We would prefer the y* method because
it allows us to use W, to reduce dimensions.

When W is more generally symmetric and invertible (as for the quadratic deviance), we
may get two distinct estimates for x_; from the D;(x) and W, approaches. Each approach
gives an optimal solution to a set of constraints and slightly different deviance functions.
The W, approach ignores d M (z,lyy), the discrepancy between y, and z. Whereas the
D;(X) method uses the off-diagonal blocks of W to incorporate this term.

Appendix B. Justification of &, (u) for Poisson Deviance

To obtain the x which minimizes I(x|y) subject to the constraint g(x) = q, we derive
alternate estimation equations:

dV(xly) = W, 'Dy(x)\

[
X —y={X)u
X =y+(xu

q =gy + ).

Then hy(u) = [y + xu] with 2" (u) = (x).
Substituting /4(u) and h;l)(u) into (3) and (4), we get an inner iteration

. . A X A N .11
N =N 4 [D'g(x’)W;‘<x1> D, (y+ <x'>W;1Dg(x')x§)}

X (q—g(y+ <xi>W;1Dg(xi))t§))
and an outer iteration
Xt =y + (xHW, D, (x)\;.

We suggest XAO =y and )\8 = 0 as good initial values, with )\? = N\;— from the previous
iteration of x".
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For the linear case g(x) = Ax, the inner loop (3) is one step, eliminating A:
X =y + (OW, A (AW, )A) (g - Ay).

We suggest starting with x° = y since that will give an x' which minimizes x*(x|y) when
W=(y) 'W,.
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Rapid Estimates of Mexico’s Quarterly GDP

Victor M. Guerrero'?, Andrea C. Garcia', and Esperanza Sainz'

This work presents a procedure for creating a timely estimation of Mexico’s quarterly GDP
with the aid of Vector Auto-Regressive models. The estimates consider historical GDP data
up to the previous quarter as well as the most recent figures available for two relevant indices
of Mexican economic activity and other potential predictors of GDP. We obtain two timely
estimates of the Grand Economic Activities and Total GDP. Their corresponding delays are at
most 15 days and 30 days respectively from the end of the reference quarter, while the first
official GDP figure is delayed 52 days. We follow a bottom-up approach that imitates the
official calculation procedure applied in Mexico. Empirical validation is carried out with both
in-sample simulations and in real time. The mean error of the 30-day delayed estimate of total
GDP is 0.13% and its root mean square error is 0.67%. These figures compare favorably with
those of no-change models.

Key words: Flash estimates; macroeconomic forecasts; mean square error; timely estimates;
time series forecasts; VAR models.

1. Introduction

The National Institute of Statistics and Geography, Statistics Mexico (SM) for short,
releases quarterly figures of Mexico’s Gross Domestic Product or GDP (referred to as PIBT
in Spanish) 50-52 days after the end of the reference quarter. In order to analyze the state of
the economy in a timely fashion, we propose an estimate delayed no more than 30 days. Our
proposal combines the three most important official sources of information: a) the historical
record of subsectors of PIBT from the quarterly System of National Accounts (SNA); b) the
most recent monthly figures in the databases of the Index of Global Economic Activity
(IGAE in Spanish) and the Monthly Index of Industrial Activity (IMAI in Spanish); and
c) some general exogenous indicators, mostly from official sources. Section 2 provides
more detailed information on IMAI and IGAE.

Our procedure comes as a response to users’ demand of timely data for decision making,
a need evidenced by the 2008 world financial crisis. In fact, most users prefer timely
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estimates, even at the expense of precision. Rapid estimates are also called “flash
estimates” or “timely estimates” and many international meetings have taken place in order
to discuss different issues and technicalities related to this topic, the trade-off between
timeliness and precision being of utmost relevance. These meetings have been organized in
Ottawa (May 2009), Scheveningen (December 2009) and at the Eurostat headquarters in
Luxembourg (September 2010). Some of the most important recommendations that came
out of those meetings can be summarized as follows: 1) national statistical agencies should
provide rapid estimated figures that make use of official information; 2) such figures should
be released at the latest with a 30-day delay; 3) to gain credibility with the users, the
estimates should be obtained without relying on a specific economic theory; and 4) the
estimation procedure should follow essentially the same approach that is used to calculate
the final official figures (see, for instance, Kuzin et al. 2010, Mazzi and Montana 2009,
Mazzi et al. 2009, Mustapha and Djolov 2010 and UNECE Secretariat 2009).
The following methods have been used to carry out timely estimation:

i) Bridge equations that relate high frequency data (say monthly) with low frequency
(say quarterly) data; for example, Klein and Sojo (1989) predicted quarterly US GDP
data from monthly indicators and from disaggregated forecasts of demand
components, thus obtaining the total GDP forecast by aggregation. Some other
applications of bridge equations appear in Riinstler and Sédillot (2003), Baffigi et al.
(2004), Zheng and Rossiter (2006), and Diron (2006).

i) MIDAS (Mixed Data-frequency Sampling) models that use data with different
frequencies of observation, as in Ghysels et al. (2004) and Clements and Galvao
(2008), or as in Zadrozny (1990).

iii) Diffusion indices that capture the information of a large number of variables by means
of a small number of unobserved common factors, as in Klein and Sojo (1989), who
used this technique to obtain a single indicator from a set of 25 monthly indicators.
Some other examples are those of Forni and Reichlin (1998) and Stock and Watson
(2002). An explanation of this methodology can be found in Armah and Swanson
(2008).

iv) Dynamic factor models proposed originally by Geweke (1977) and employed
recently by Forni et al. (2005) and Aruoba et al. (2009).

v) Forecast combination that averages forecasts of GDP growth obtained with different
regression models, as in Kitchen and Monaco (2003).

We decided not to use method (ii) due to the decisions the analyst has to make when
applying it, such as parameterization of the polynomial coefficients involved, appropriate
choice of the number of lags and whether or not an autoregressive structure is required (e.g.,
Clements and Galvao 2008). Besides, the nonlinear estimation procedure involved also
imposes a computational burden, since we require a method to be applied to a large number
of variables in just one day.

Similarly, methods (iii), (iv) and (v) were discarded because we need an estimate of
growth for the three Grand Activities, not just for Total PIBT, in order to enhance the
possibilities of analysis. Further, the behaviors of these activities differ markedly, as was
verified by Mexican data, and therefore have to be estimated separately. Thus we have
chosen bridge equations with a bottom-up approach. This is in accordance with the SNA and
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approaches the estimation from the side of the use of goods and services, thus contrasting
with the demand side approach used in the US to calculate flash estimates (see Katz 2006).
Moreover, the bridge equations are not used here to link high frequency with low frequency
data; instead we propose to use them to link databases with less coverage (IGAE and IMAI)
to another one with more coverage (PIBT), though both contain monthly data. The fact that
these three databases contain monthly data will be discussed further in Section 2. Since the
original databases lack timely information, we resort to time series models to forecast the
unobserved variables at the subsector level. Model adequacy is checked using standard
econometric tests and predictive ability is analyzed by way of simulations with real time data
vintages, as indicated by Koenig et al. (2003). The simulations are carried out with the
estimates derived by aggregation to Grand Economic Activities and Total PIBT.

Section 2 presents the decisions made to solve the modeling and forecasting problems
that arise because of the large number of subsectors under consideration. We also consider
some features of the databases, timeliness and coverage being essential. Section 3
describes the statistical methods employed, particularly the VAR models. In Section 4 we
illustrate the application of our method to a group of sectors of tertiary activities. Here, the
databases contain the vintage available as of April 2010. We also show some results of the
historical simulations and briefly analyze the estimates of the three Grand Activities and
Total PIBT. This section also provides an update of the results currently obtained in real
time. Section 5 contains some comments and conclusions that focus on the logistics of
routine application of the method. The main conclusion of this work is that it is feasible to
use reliable and rapid estimates of Mexico’s PIBT, one with a 15-day delay and another
one delayed at most 30 days, as recommended by the international statistical community.
Comparing these estimates to naive no-change forecasts, we found the former significantly
more accurate. The estimation procedure is relatively easy to use and we consider it
applicable in other countries that also need rapid GDP estimates.

2. Grouping of Subsectors and Data Availability

In Mexico, PIBT is calculated by aggregating the monthly Gross Value Added (GVA) of
all classes of economic activity into the GVA of sub-branches, then going up from sub-
branches to branches, to subsectors, to sectors, to Grand Activities and finally to total
GVA. Then the monthly GVA values are added to the quarter to obtain PIBT. Our
approach attempts at mimicking the official calculation of PIBT as closely as possible, as
recommended in international seminars. However, we start at the subsector level and use a
set of decision criteria that allows us to group subsectors as objectively as possible. The
classification of economic activities corresponds to production of final goods and services
in the country and covers all economic, productive and nonproductive activities,
regardless of their profit motives. From here on, we use PIBT and quarterly GVA
interchangeably.

According to the North American Industrial Classification System (NAICS) there are
1,051 different classes of economic activity, but only 737 of them are present in Mexico.
These classes are grouped into 500 subbranches, 256 branches, 79 subsectors, 20 sectors
and three Grand Activities. Due mainly to data availability, at the outset of this study it was
decided to start the estimation at the subsector level, that is, estimating the data for groups
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of subsectors (the grouping employed is shown in Appendix A). Three groups correspond
to primary activities, nine to secondary activities and 17 to tertiary activities. Those groups
of activities will be considered as variables whose outcome will be estimated using
statistical models. Instead of the word “estimate” we could have used “forecast”, but we
retain “estimate” as this is the word preferred by the statistical community and it reflects
the fact that our estimates are not only based on historical data.

The following criteria are used to group the subsectors:

(a) Subsector share of total value of the sector (or Grand Activity in some cases), for example
the livestock subsector was considered as an individual variable because it represents
about 35% of the GVA of primary activities, although less than 2% of total GVA.

(b) Impact that the subsector may have on other subsectors; a case in point is mining
services. This was taken as a separate variable because it comprises the drilling of wells,
an activity that has a direct impact on the subsectors “oil and gas” and “construction of
civil engineering works”.

(c) Awvailability of information useful to estimate the subsectors. Several manufacturing
subsectors were grouped into one because they lack timely information individually.

(d) Existing relations between different subsectors, such as in the tertiary activities
“corporation management and firms” and “businesses support, waste management
and remediation services”, which are fundamentally related to business activities.

PIBT covers 94% of annual GDP; exceptions are only series reported annually. PIBT
differs from IGAE and IMALI in that it is expressed in monetary units (constant pesos at
2003 prices), whereas IGAE and IMALI are released as indices with the base year 2003. For
internal purposes, SM generates the IGAE and IMAI databases expressed as GVA at
constant prices. We use such monthly disaggregated information as well as some other
monthly variables described below. The IMAI database includes industrial activities
of sectors 21 to 33 of the NAICS (2007), that is, all secondary activities. Since there is a
42-day gap between the release of information and the month being reported, we can
anticipate the figure of PIBT with a 12-day delay using data on two out of the three months
of the quarter, estimating month three using time series models.

The IGAE database complements that of IMALI to achieve almost total coverage of PIBT,
since it covers all the subsectors that appear in Appendix A except for the few subsectors
indicated there. Besides this, IGAE comprises either one or two months of a quarter and its
figure is released 57 days after the end of the month of reference. Its coverage is close to 90%
of that of PIBT and it provides timely figures before the end of every quarter. Hence, its
database can be used to predict PIBT with a 27-day delay when two months of IGAE are
available for a quarter. The models that use these data are known as ¢2 models, while i2
models refer to the use of only one month of IGAE and one month of IMAI (or equivalently
two months of IGAE, one of which is incomplete). Figure 1 shows the coverage of the
databases and the release dates for a given year “a”; there we see that IMAI has nearly 30%
coverage of PIBT, while IGAE’s coverage fluctuates around 90%. The IMAI data appears
42 days after the end of a month, for example the figure of November(a-1) is published in
January of year “a” and that of October(a) is published in December of year “a”. Similarly
the IGAE figures are released 57 days after the end of the reference month, except for
October whose figure is released in January.
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Fig. 1. Months of publication of IMAI, IGAE and PIBT data for a given year “a”

An i2 estimate makes use of 40% of the basic information available on PIBT (30%
coming from IGAE and 10% from IMAI), so that we actually have to estimate 60% of the
Total PIBT unavailable 12 days after the end of the quarter. Similarly, a c2 estimate uses
2 months of IGAE, that is, 60% of the basic information on PIBT, and therefore we only
need to estimate the remaining 40% unavailable 27 days after the end of the quarter. This
of course makes a c2 estimate more reliable than the corresponding i2 estimate. Some
other official databases and information systems provide potential predictors of the
variables leading to the PIBT estimate. They are: Monthly Business Opinion Survey;
System of Composite Coincident and Leading Indicators; Consumer Confidence Survey;
Trade Balance; and National Occupation and Employment Survey. Another source of
information employed is that of the Central Bank of Mexico, as well as some other
domestic sources. Finally, the models included dummy variables to capture the effect of
such events as Easter, the 2009 swine flu epidemics (AHIN1), a leap year, and level shifts
due to annual revisions and benchmarking, as recommended by the International
Monetary Fund (see Bloem et al. 2001). A schematic view of the steps followed each
quarter to obtain the estimates from both Models i2 and c2 can be seen in Appendix B.

3. Statistical Models and Analysis

The basic tool that we used to generate forecasts is a VAR model, which can be deemed a
reduced form representation of a structural equation system without assuming that an
economic theory underlies it. Thus we use these models to capture the empirical



402 Journal of Official Statistics

regularities in the historical record of the multiple time series under consideration, as well

as the interdependencies of the endogenous variables it comprises. Moreover, we

emphasise here the well-known predictive ability of a VAR model (see Liitkepohl 2005).
A finite order VAR model can be written as

H(B)Z[ - AOD[ + A]X; +.. .+ AqX[—q + a; (31)
where Z, = (Zi,, . .., Z,) is a column vector of k endogenous variables observed at
timesr =1, ..., N, II(B) = I, — II,B — . . . — II,B” is a matrix polynomial of order
p <, I is the identity matrix of order k and II,, ..., II, are constant parameter

matrices, defined as

T Tz e Tk
M2l i ... Tk
IT; = forj=1,...,p. (3.2)
Tkt T2 .- Tkk
The vector D, = (Dy,,. . .,D;,)’ contains the deterministic elements, such as the
constant and dummy variables for events with potential predictive ability on Z,, while
X,,...,X,, are vectors of lagged (¢ = 0) exogenous variables and Ay, ..., A, are

constant matrices. Finally, {a,} is assumed to follow a white noise vector process
distributed as a, ~ Ng(0y, X,), where %, is a symmetric matrix with diagonal elements
Var(a;;) = o% and off-diagonal elements Cov(a;, a;,) = o0;j, withi,j = 1,. . ., kandj # i.

We assume the process is second order stationary and estimate the model by Ordinary
Least Squares. We use it to generate optimal, in the sense of minimum Mean Square Error
(MSE), linear forecasts conditional on the historical informationZ = (Z, . . .,Zy)’, thatis,

E(ZN+1|Z):H1ZN +...+ HpZN.H—p‘l' (3 3)
AODN+] + A1XN+1 +...+ AqXNJrl—q

where the observations of the exogenous variables are assumed to be known. Thus the MSE
matrix of the one-step-ahead forecast is

MSE[E(Zy+1|2)] = Var(ay+11Z) = Z,. 3.4

Building VAR models in practice requires first deciding the expression of the variables
that will enter the model, bearing in mind that they must be stationary. In our context, the
data is seasonally unadjusted, since that is the type of data used to calculate PIBT and it was
decided beforehand that a natural expression for the variables had to be like annual (month
on month) relative variations, since that is how economic growth is usually interpreted in
Mexico. Besides, using seasonally adjusted data would have prevented us from using VAR
models, since seasonal adjustment procedures are known to induce noninvertibility of the
theoretical models to be employed (see, for instance, Maravall 1993). Hence, it only
remained to check whether that transformation produced stationary variables or whether an
additional monthly difference had to be used.
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Rather than using unit root tests, we decided to apply the monthly difference to all the
variables already expressed as annual variations. This decision was taken because the
outcomes of these tests are affected by the presence of deterministic effects and structural
changes, as indicated by Enders (2003, ch. 4). In our case it was unclear which effects had
to be considered, and such effects change as time goes by. Furthermore, the size and power
of individual unit root tests are sensible to the presence of error autocorrelation in the
model employed by the test (since the first order autoregressive coefficient and its standard
error cannot be estimated appropriately in that case).

Thus, rather than performing unit root tests before building the VAR model, we decided
to apply the same degree of differencing to all the variables in the system to be modeled. It
is clear that this procedure may produce over-differencing, but this is not as serious a
problem as that of under-differencing when the model is built for forecasting purposes. In
fact, Sanchez and Pefia (2001) argue in favor of over-differencing rather than under-
differencing when using autoregressive models to generate forecasts. Thus, once the
model was estimated we checked that the roots of the corresponding determinantal
equation were outside the unit circle. A final and very important argument to support our
decision is that we were looking for a generic transformation to be applied to all the
variables in the different VAR models, because the process is required to be easy to use in
routine applications (every quarter) by the personnel at SM.

Therefore, the variables enter the VAR model expressed in general as

IGAE IGAE
Z, = DO'®4Ey, = % - % (3.5)
—12 —13
where O'4F is the originally observed variable at time ¢, coming from the IGAE database,
O0'““Ey is its annual variation and DO '““*V, is the monthly difference of the annual
variation. It should be clear that we need to apply this transformation to the data in order to
build the model, but once the required forecast is obtained we can go back to the original
scale with ease by simply applying the inverse transformation. To determine the value p of
Model (3.1) we applied sequential likelihood ratio tests. Thus we tested H: the order is p
vs. Hy: the order is p-1, with p = 4 as the initial value. We discarded those variables
whose estimated coefficient was not significant at the 5% level and checked for no error
autocorrelation with the Ljung-Box multivariate statistic Q%*.

We considered a univariate equation for AGRIC, because this sector follows a pattern
completely different from the other economic activities. Data for this sector refers to an
agricultural period that starts in October, while the previous agricultural period ends in
March of the following year, so that an overlap of six months occurs between two
consecutive agricultural periods. This feature is explained by the fact that the Autumn-
Winter cycle begins in October and finishes in March of the next year. Harvest usually
begins in December and ends the next September. The sowing of the Spring-Summer cycle
begins in April and ends in September of the same year, while the first harvest starts in
June and finishes in March of the next year.

The model employed is given by

DAGRICV'AE = @y + ¢ DAGRICV'%F + . . . + ¢,, DAGRICV'AE
(3.6)
+ BlDlJ +...+ ,BrDr,t + ‘)/IXL, +...+ %Xs,t + &
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with DAGRICV "“** being the change of the annual variation of AGRIC, with data from
the IGAE database. We employed bridge equations to link variables coming from the
IGAE database with the monthly GVA for the subsectors with missing data (see Appendix A).
The typical form of a bridge equation is

~ IGAE
O =ap+ a0, +BiDi +...+BD i +vXi,+...+vXy+e (37

where OV is the monthly GVA variable and (A):GAE is the predicted IGAE variable from the
VAR model; the as, Bs and ys are parameters to be estimated and r is the number of
deterministic variables (D) such as trend, seasonality and dummies for calendar effects and
interventions. Moreover, s is the number of exogenous or predetermined variables (X) with
respect to O?VA, such as indicator variables of annual level shifts, as well as autoregressive
(AR) and moving average (MA) terms. Furthermore, {&,} is a sequence of zero-mean non-
autocorrelated random errors, in order for Ordinary Least Squares to apply. By using bridge
equations we imply that the data for the three months of each quarter have to be estimated.

The statistical models produce forecasts that are considered optimal if they are unbiased
and the h-period ahead forecast error behaves as an MA(h-1) model, with h = 1,2, . ..
(see Diebold 2001, ch. 11). For the VAR models we first obtained the optimal linear
forecast with Expression (3.3) and applied the inverse transformation of (3.5) to obtain the
forecast in the original scale. The expression used for c2 models is

Ok = OKfy (2 + O O} (3.8)

in which case only one month has to be predicted. For i2 models, two months must be
predicted and the corresponding expressions are

OV = O (Zyy + OI9AE JOIFAE ) and
3.9)

AIGAE  _IGAE [ 5 ~IGAE |, |GAE
Onya = OyZio(Zv+2 + Oy /ONZYT)-

The forecast is valid for the original variable from the IGAE database in which case
01(\},11; = (A)f\?ff for h = 1, 2, when the IGAE database does not lack information on any
subsectors. Otherwise, the forecasts from (3.8) and (3.9) are used in the bridge equation
(3.7) to obtain the monthly GVA forecast for each month of the quarter. Appendix B
provides a schematic view of the estimation procedure employed.

To validate the forecasting ability of our procedure, we carried out nine in-sample
simulations (called historical in Appendix C) as well as one out-of-sample (in real time)
simulation and analyzed their forecast errors. These were the only possible simulations
that could be performed due to data availability. We decided to use a rolling rather than a
recursive procedure and produced “the actual forecasts one could make with the model as
time progresses” as recommended by Fair and Shiller (1990, p.376). Thus a six-year
rolling window of data was used to estimate the VAR models, because in Mexico there is
an approximate six-year cycle in the economy induced by the Presidential elections. Based
on this decision we assigned relevance to the most recent information, while still using a
sufficiently long stream of data for large sample results to be applicable.
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SM provided data only from the year 2003 onwards, because there was a change of base
in that year (PIBT data before 2003 had the base year 1993) and this change of base year
involved a new classification of products and activities. There was also an update in
concepts and procedures, particularly in the information and communication technology
sector. These facts ruled out the possibility of joining the old and new PIBT series (we
should recall that we required a complete database, including all subsectors). Appendix C
shows the dates associated with the data vintages employed and the type of estimates
obtained with those databases. We should also stress that the VAR models and bridge
equations generate forecasts of the monthly variables, while the purpose of our procedure
is to obtain forecasts of PIBT. Thus what really matters is to evaluate the quarterly
forecasts, not the monthly ones.

The following forecast errors refer to the estimated PIBT (that is, O"BTy obtained
as the average of the monthly GVA figures of the quarter, including the monthly
forecasts. In simulation j, the one-quarter-ahead forecast error with origin in quarter 7;

is defined as

~ PIBT .
erp1 =075 = Oy forj=1,...,J. (3.10)

Note that 7; is applicable to quarters, while the subindex ¢ applies to months. We
used the following summary measures of forecast errors:

Mean Error (ME) : ME(e;) = Z]f:]eml /J (3.11)
Root Mean Square Error (RMSE): RMSE(e;) = Z,J: &) (3.12)
S
Z':leT/“

Theil’s U statistic : U = J 5 (3.13)

ZJ <0PIBT — OPIBT )

=1 Ti+1 Tj+1,nc
PIBT

where the alternative naive forecast involved, Op Y} .. is obtained on the assumption of
no-change in the monthly difference of its annual variation, so that it consists of the average
of its three monthly values, each of which is calculated as
GVA GVA AIGAE IGAE IGAE

o, = 0,j+k,12(D0 Vi+ OlAE | JOISAE )fork =1,2,3. (3.14)

This expression serves to calculate the no-change one-month-ahead forecast with origin
in month ¢ forj = 1, ..., Janditis similar to that in (3.8) except that Zis now assumed
to fluctuate about its mean and is therefore replaced by its average for the corresponding
six-year period, DO '“4EV . The ratio of variables from the IGAE database available before

the end of the quarter indicates the annual change, while the 12-period lagged GV A variable
signals the level of the series. In summary, the no-change forecast of PIBT is obtained as

3
Oijli{m = Zk:I ng@,nc/S (3 15)

We do not report the Mean Absolute Error because it provides essentially the same
information as the RMSE, as indicated by Granger (1996). A check of predictive ability
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can be done with the Mincer-Zarnowitz regression (see Diebold 2001, ch. 11) to verify that
all the information in the dataset employed to obtain the forecast was employed efficiently,
that is,

~ PIBT ,
ere1 = Mo+ mOp oy +ug, forj=1,....J, (3.16)

with uz,+1 a non-autocorrelated random error with mean zero and constant variance for all
T;. Forecast optimality is fulfilled when 1y = 7, = 0.

Another check that can be applied when an alternative forecast exists, as in the present
case with the no-change forecast, can be obtained using the regression

OFBY = 10y 1y + 107 4 e +tir forj =1, .. J, (3.17)
with uz,4; a random error term, possibly heteroscedastic and autocorrelated. Thus we
employed Newey and West’s (1987) correction to obtain robust estimates of the standard
errors. Now, a forecast-encompassing test is useful to determine whether one of the two
forecasts incorporates all the relevant information, as suggested by Fair and Shiller (1990),
although Equation (3.17) corresponds to Diebold’s (2001, ch. 11) model specification.
Thus, if v, =1 and v, = 0, the proposed forecast incorporates the information of the
no-change forecast, and the opposite occurs when v; = 0 and v, = 1. For other values of
v; and v, it is sensible to combine the two forecasts because they both add information.

4. Numerical Illustration

To illustrate the results obtained with the proposed methodology, in what follows we
describe its application to a group of subsectors of Tertiary Activities, with the database
available on April 27, 2010 that includes two sets of monthly data on IGAE (January and
February 2010) so that the sample size covers data from 2004:03 to 2010:02 (N = 72).

4.1 Model Estimation Results

The estimation results shown in Table 1 pertain to the c2 model VAR31 that includes four
endogenous variables of the tertiary sector: COMER (Trade, including sectors 43—46 of
NAICS), TRANS (Transportation, with subsectors 481-488), MENS (Messaging,
subsectors 491-492) and ALMAC (Warehousing services, subsector 493). Model
estimation was carried out using the computer package EViews7 (Econometric Views
version 7, Quantitative Micro Software). Due to the large number of estimated parameters
appearing in the VAR models (e.g., in the VAR31 model there are 14 coefficients in each
of the four equations, eight of which are associated with the lagged endogenous variables,
plus the constant and five coefficients associated with the exogenous variables) we
summarize the estimation results in Table 1. Here we can see the order of the VAR model
(p) as well as the significance achieved by the (transformed) variables in the left column
that explain the variability of the (transformed) variables in the upper row.

In Table 1 we see that COMER explains MENS (at the 5% significance level) and
ALMAC (at the 10% level), but it is not explained by any endogenous variable in the
system. The significance levels of the endogenous variables come from F tests for all the
lags of the variable under consideration. TRANS explains TRANS, MENS and ALMAC
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Table 1. Estimation results of model VAR31 (with the Aprl0c2 database)

p=2 COMER TRANS MENS ALMAC
COMER - —- ok *
TRANS —- ok sk sk
MENS - * ok -
ALMAC - —- — ok
ITDEMD skkok skksk kk .
BCEV(-1) - —- * ok
SEPUGV(-1) ok ok * -

R (%) 71.3 69.6 50.8 41.7
G, 0.04 0.02 0.07 0.05
Q*: Lags (p-value) 12 (0.07) 16 (0.13) 20 (0.29) 24 (0.39)

Notes: *:#* indicates significant at the 1% level, #* at the 5% level, * at the 10% level and —- non-significant at the
10% level.

(with the indicated significance levels) and is explained by itself and MENS; MENS
explains TRANS and MENS, and is explained by COMER, TRANS and MENS; ALMAC
serves only to explain its own behavior, and is also explained by COMER and TRANS.
The exogenous variables are: ITDEMD (annual difference of the Tendency Indicator of
Domestic Demand, coming from the Monthly Business Opinion Survey), which explains
all the endogenous variables except ALMAC; ICPFPD(-3) (annual difference of the
Producer Confidence Indicator for the Future Economic Situation of the Country, also
coming from the Business Opinion Survey), which explains all the endogenous variables
with its lag of order 3; BCEV(-1) (annual variation of the Trade Balance Exports lagged
one period), which explains MENS and ALMAC; and SEPUGV(-1) (annual variation of
the Public Sector Budget Expenditures), which explains three of the four endogenous
variables with its first lag.

The lower part of Table 1 shows the percent determination coefficients (lying between
41.7% and 71.3%), the residual standard error for each equation (lying between 0.02 and
0.07), and the last row presents the joint Ljung-Box Q* statistics for different lags,
together with their p-values, indicating no residual autocorrelation at the 5% significance
level. We remark that timely data coming from opinion surveys were found very useful to
explain the endogenous variables in the VAR models employed. In this illustration, the
exogenous variables ITDEMD and ICPFPD come from the Business Opinion Survey.

Figure 2 shows time series plots of the transformed series (DCOMERYV, DTRANSV,
DMENSYV and DALMACYV) together with their corresponding forecasts for March 2010.
These plots allow us to visualize a reasonably stationary behavior of the transformed series.

The corresponding plots in the original scale appear in Figure 3. Data for months
2004:03 through 2009:12 come from the monthly GVA database. COMER_GVA,
MENS_GVA and ALMAC_GVA are estimated directly with model VAR31 and their
corresponding data from the IGAE database is shown for the period 2010:01-2010:02,
while the value for 2010:03 is estimated. On the other hand, for TRANS_GVA we show
the estimated values obtained by way of a bridge equation for 2010:01-2010:03. These
plots allow us to see that the series do not have a constant level and therefore are in need of
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Fig. 2. Monthly transformed variables of model VAR31 from 2004:01 to 2010:02 and estimate for 2010:03

the suggested transformation (the monthly difference of the annual variation) to become
approximately stationary. A fall in the level is clearly seen in the upper panels during the
last months of 2008 and is less pronounced in the lower panels.

For the VAR31 model, only TRANS requires a bridge equation because subsectors 485
and 488 lack data in the IGAE database, as seen in Appendix A. Figure 4 is useful for
appreciating the difference between the series coming from the IGAE and PIBT databases.
TRANS_IGAE is the series estimated by the VAR model and contains data up to February
2010, while TRANS_GVA has data up to December 2009 only. Thus, it is necessary to
transfer the forecast information from the former to the latter with the aid of a bridge
equation that includes a constant, the estimated variable TRANS_IGAE, a dummy variable
to account for a level change in year 2005 (A2005) and a moving average term of order 12,

TRANS, " = 60,989,103 + 1.18TRANS, """ — 7,844, 12842005, + 0.85MA(12)
4.79) (40.43) (—4.52) (25.15)
@.1)

¢ statistics appear in parenthesis and indicate significance at the 1% level. Moreover, we
obtained R* = 97.6%, 6, = 5,109,454 and the Ljung-Box statistic Q*: Lags ( p-value)
12(0.43), 16(0.30), 20(0.06) and 24(0.09), so that there is no evidence of inadequacy.

In the same way as for the VAR31 model, we estimated the VAR11 model with its
bridge equation and the autoregressive equation for the variable AGRIC, the VAR21 and
VAR22 models that do not need bridge equations, and the VAR32, VAR33 and VAR34
models with their respective bridge equations.



Guerrero et al.: Rapid Estimates of Mexico’s Quarterly GDP

1,500,000,000

1,400,000,000

1,300,000,000

1,200,000,000

1,100,000,000

1,000,000,000

14,000,000

12,000,000

10,000,000

8,000,000

650,000,000

COMER_GVA(Est)
—— COMER_GVA

625,000,000

600,000,000

575,000,000

550,000,000

525,000,000

1 500,000,000

CHN L 2 {2 T (T A2 (O T 1 A2 [ TN (1A

LI L | [ Y B
2004 2005 2006 2009 010

2007 2008

MENS_GVA(Est)

409

TRANS_GVA(Est)
—— TRANS_GVA

O T 1 VA AV | VA VA | 1 A VA (1 1 [ VA (I V1 A2 (1|

2004 2005 2006 2007

2008

2009  |2010

ALMAC_GVA(Est)

— MENS_GVA 3,000,000 —— ALMAC_GVA
2,500,000
2,000,000
1 1,500,000
(T T (I TRV (R TITIN\Y2 ( TTN V2 (T T (V[ TRNTT (R LI\ O TV (TN TV [ TR T 1V [ TV (R TRV (R
2004 2005 2006 2007 2008 2009 |2010) 2004 2005 2006 2007 2008 2009 [2010

Fig. 3. Variables of the VAR31 model and estimated values in the original scale

4.2 Forecast Evaluation

Evaluation of forecast ability of our procedure was done by simulating using the databases
available at the time of reference and using the two models, i2 and c2. Thus nine historical
simulations were carried out for quarters 2008:1 through 2010:1, as well as one further
simulation in real time for quarter 2010:II. Appendix C shows the estimation schedule of
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the simulations and the applicable models. The simulation results are shown in Tables 2
and 3 for the three Grand Economic Activities and Total PIBT.

The original data was expressed in thousands of pesos, but the data appearing in the tables
is expressed in millions of pesos for clarity of exposition. In Table 2 we see that the ME of
Model c2 for Primary Activities is slightly lower than that for Model i2. By looking at the
RMSE we can also state that precision is better for Model c2, but the percent estimation
errors in Table 3 show that the RMSEs are too high for both models. For Secondary
Activities we see in Table 2 that the ME is slightly lower for Model i2 than for Model c2 and
the RMSE is also slightly better for Model i2, but the percent estimation errors are
essentially the same for both models. This is to be expected, since the IMAI and IGAE
databases contain basically the same information for Secondary Activities. What should be
emphasized is that the RMSEs for Secondary Activities are substantially lower than those

Table 2. Simulation results for each of the Grand Economic Activities and Total PIBT. Millions of pesos
at 2003 value

Primary Secondary

Quarter Observed Errors Observed Errors
data i2 model  c2 model data i2 model  ¢2 model
2008:1 285,391 —16,980 —19,271 2,653,576 —41,547 —45,492
2008:11 338,570 7,830 —1,500 2,729,747 —24411 — 11,889
2008:11T 295,822 —17,491 9,803 2,672,789 —3,965 —3,295
2008:1V 360,094 18,874 6,317 2,624,089 36,581 52,829
2009:1 301,210 —24,260 —4812 2,427,509 16,123 22,026
2009:11 360,655 —13,316 —3,593 2,457,649 21,659 17,450
2009:111 301,831 7,230 909 2,532,108 —42,667 — 42,667
2009:1V 370,113 28,222 29,415 2,591,980 —6,816 -6,816
2010:1 282,657 10,121 5,923 2,547,287 8,149 7,733
2010:11 365,391 12,528 —1,330 2,664,219 33,376 33,362
ME —- 2,276 2,186 —- — 352 2,324
RMSE —- 16,236 12,036 —- 27,299 29,735

Tertiary Total PIBT

2008:1 5,269,578 —29,332 —35,628 8,208,545 —87,859 —100,390
2008:11 5,448,525 —51,630 36,656 8,516,842 —68,211 23,268
2008:111 5,527,957 27,345 18,389 8,496,567 15,888 24,897
2008:1V 5,496,849 —111,122 —49,285 8,481,031 —55,666 9,861
2009:1 4,861,519 124,571 70,840 7,590,238 116,434 88,054
2009:11 4,894911 29,160 —75,585 7,713,215 37,503 —61,727
2009:111 5,285,423 128,653 82,286 8,119,362 93,217 40,529
2009:1V 5,373,928 85,390 34,587 8,336,021 106,796 57,186
2010:1 5,093,032 32,344 67,047 7,922,976 50,613 80,703
2010:11 5,288,196 —48,668 —67,993 8,297,805 —22,764 —55,961
ME —- 18,671 8,131 —- 18,595 10,642

RMSE —- 77,619 57,617 —- 73,390 61,203
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Table 3.  Simulation results for the Grand Economic Activities. Percent estimation errors

Primary Secondary Tertiary Total PIBT

Quarter i2 c2 i2 c2 i2 c2 i2 c2
model model model model model model model model
2008:1 -595 —-6.75 —-157 —-171 —-056 —-068 —107 —122
2008:11 231 —-044 —-089 —-044 —-0095 0.67 —0.80 0.27
2008:111 —2.53 331 —-0.15 -—-0.12 0.49 0.33 0.19 0.29
2008:1V 5.24 1.75 1.39 201 —-202 —-090 —0.66 0.12
2009:1 —-8.05 —1.60 0.66 0.91 2.56 1.46 1.53 1.16
2009:11 —-3.69 —1.00 0.88 0.71 060 —1.54 049 —0.80
2009:111 2.40 030 —169 —1.69 2.43 1.56 1.15 0.50
2009:1V 7.63 795 —026 —0.26 1.59 0.64 1.28 0.69
2010:1 3.58 2.10 0.32 0.30 0.64 1.32 0.64 1.02
2010:11 343 —0.36 1.25 125 —-092 —-129 —-027 —0.67
ME 0.44 0.53 0.00 0.10 0.39 0.16 0.25 0.13

RMSE 4.92 3.62 1.05 1.14 1.49 1.12 0.91 0.77

for Primary Activities and there is no appreciable estimation bias. For Tertiary Activities,
both the ME and the RMSE are higher for Model i2 than for Model c2, because the latter
model includes more timely information than the former. Again, there does not seem to be
any estimation bias (an appropriate statistical test is applied below), and the RMSE of Model
c2 is reasonably low and comparable with that obtained for Secondary Activities.

Finally, both ME and RMSE for Total PIBT are larger for Model i2 than for Model c2.
Precision and lack of bias are better for this variable than for each of the Grand Activities
considered separately in both absolute and relative terms. Furthermore, by looking at the
MEs we conclude that Primary Activities is the variable with highest estimation bias
although nonsignificant at the 5% level, as shown by the test applied below. Moreover, the
RMSE:s allow us to appreciate that the Primary Activities estimate has a much lower
precision than the other two activities. By contrast, the Total PIBT results are deemed
successful because the RMSE for Model c2 is relatively low (0.77%) and there is no
estimation bias (0.13%) as compared with each of the Grand Activities.

Some other comparisons of the estimation results are made in the following section. In
order to test for significant estimation bias we used Equation (3.16) and obtained the results

Table 4. Checking for the absence of bias with the Mincer-Zarnowitz equation applied to each of the Grand
Economic Activities (in millions of pesos at 2003 value)

Model  Statistic Primary Secondary Tertiary Total PIBT
i2 Mo —10,611 330,100 1,029,767 1,141,379
t —0.17 1.55 2.72 2.77
My 0.0398 —0.1276 —0.1931 —0.1378
t 0.20 —1.55 —2.67 —2.73
c2 Mo —5,766 329,555 392,617 493,897
t —0.13 1.37 0.91 0.98
il 0.0245 —0.1265 —0.0733 —0.0592

t 0.18 —1.36 —0.89 —0.96
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in Table 4 for each of the Grand Activities and Total PIBT. Model i2 estimates are
significantly biased (at the 5% level, since the critical point of a student’s ¢ distribution with
8 degrees of freedom is 2.31) for Tertiary Activities and Total PIBT, so that the i2 model
underestimates these two variables (about 0.39% and 0.25%, respectively). It should be
stressed that Model c2 does not produce significant bias for any economic activity.

4.3 Comparison with the Forecasts from the No-Change Model

In order to validate the precision results empirically, we consider an alternative estimation
procedure based on a very simple competing model. In fact, we consider a no-change model
for the monthly differences of the annual rates of growth. The IGAE database employed for
this very simple model contains two complete months of data, and hence they are
comparable only with the results provided by the c2 model. In Table 5 we show the results
for the three Grand Economic Activities and Total PIBT with the no-change model.

Table 5.  Simulation results with the no-change model for each of the Grand Economic Activities. Millions of
pesos at 2003 value

Primary Activities Secondary Activities

Quarter Observed Error Error % Observed Error Error %
2008:1 285,391 3,767 1.32 2,653,576 —178,393 —2.95
2008:11 338,570 4,035 1.19 2,729,747 38,839 1.42
2008:111 295,822 12,915 4.37 2,672,789 —8,215 —0.31
2008:1V 360,094 44,103 12.25 2,624,089 140,673 5.36
2009:1 301,210 —8,154 —2.71 2,427,509 5,603 0.23
2009:11 360,655 —9,269 —2.57 2,457,649 —32914 —1.34
2009:111 301,831 —4,985 —1.65 2,532,108 40,818 1.61
2009:1V 370,113 12,420 3.36 2,591,980 77,218 2.98
2010:1 282,657 —9,728 —3.44 2,547,287 54,376 2.13
2010:11 365,391 3,049 0.83 2,664,219 24,444 0.92

ME —- 4,815 1.29 —- 26,245 1.01

RMSE —- 16,055 4.61 —- 63,094 2.41

Tertiary Activities Total PIBT

2008:1 5,269,578  — 81,622 —1.55 8,208,545 — 156,248 —1.90
2008:11 5,448,525 14,957 0.27 8,516,842 57,831 0.68
2008:111 5,527,957 25,033 0.45 8,496,567 29,733 0.35
2008:1V 5,496,849 361,597 6.58 8,481,031 546,373 6.44
2009:1 4.861,519  —49,445 —1.02 7,590,238 —51,996 —0.69
2009:11 4,894.911 —10,121 —0.21 7,713,215 —52,304 —0.68
2009:111 5,285,423 165,520 3.13 8,119,362 201,353 2.48
2009:1V 5,373,928 113,003 2.10 8,336,021 202,641 2.43
2010:1 5,093,032 113,771 2.23 7,922,976 158,418 2.00
2010:11 5,288,196  —25,151 —0.48 8,297,805 — 17,659 —-0.21

ME —- 62,754 1.15 —- 91,814 1.09

RMSE —- 139,483 2.58 —- 209,671 2.50
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By comparing the MEs of Table 5 with those of Table 2 we see that the no-change
model yields higher ME values, indicating a tendency to underestimate PIBT. Moreover,
the RMSEs are also higher for the no-change model than for the proposed procedure,
lending empirical support to the latter in terms of statistical efficiency. These conclusions
are more clearly seen when the errors are expressed as percentages. The no-change
estimates for Primary Activities are particularly bad for quarters 2008:1I1I, 2008:1V (with a
12.25% error that was considered inadmissible), 2009:1V and 2010:1. For Secondary
Activities, the particularly bad estimates (those with errors greater than 2%) correspond to
quarters 2008:1, 2008:IV, 2009:IV and 2010:I, with 5.36% being the highest error.
Similarly, for Tertiary Activities the estimation errors greater than 2% appeared in
quarters 2008:1V, 2009:111, 2009:1V and 2010:1, with 6.58% as an extremely large error.

We again considered the 2% threshold for Total PIBT and obtained larger estimation
errors in the same quarters as before, the largest being 6.44%. The worst estimate provided
by the no-change model is that for quarter 2008:1V, which may be due to the worldwide
financial crisis. In Table 6 we can see the Theil’s U statistics of our procedure against the no-
change model. All these statistics are less than unity, indicating a preference for our
procedure as being better for Total PIBT than for each of the Grand Economic Activities.
Thus, in terms of precision our proposed procedure is better than the no-change model.

Even though Table 6 shows a clear superiority of our procedure, it was deemed
convenient to verify that all the relevant information was employed, otherwise we would
be able to improve on the estimation by combining the two estimates at hand. To that end
we used the encompassing test based on Equation (3.17). Table 7 shows the estimation
results of that equation for each of the Grand Economic Activities. There, we confirm that
the proposed procedure contains the information provided by the no-change model, since
the corresponding calculated ¢ statistics with eight degrees of freedom for that model are
smaller than the critical point at the 5% significance level (2.31), except for tertiary
activities. On the contrary, the ¢ statistics for the c2 model are all significant at the 5%
level. Thus, the naive model does not contribute any useful information to the estimation
in our procedure and there is no reason to combine the two estimates. Notice that the
7; values for Secondary Activities and Total PIBT are very close to unity, which is to be
expected for a good estimate; in fact, when we tested the hypothesis Hy: v; = 1, we did not
reject it in any of the four cases (even in the extreme case of Primary Activities the
t statistic took on the value 1.33).

4.4 Comparing the Estimation Errors Against PIBT Revisions

In order to judge the magnitude of the estimation errors we compare them with the
revisions of PIBT carried out each subsequent quarter at SM. In Tables 8 to 11 we show the

Table 6. Root mean square errors and Theil’s U statistics to compare the proposed procedure with the
no-change model. Grand Economic Activities in millions of pesos at 2003 value

Method Primary Secondary Tertiary Total PIBT
Proposal 12,035.8 29,735.5 57,617.0 61,203.0
No-change 16,055.4 63,093.6 139,483.0 211,247.3

Theil’s U 0.56 0.22 0.17 0.09
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Table 7. Validating the predictive ability of the proposed procedure. Grand Economic Activities

Model Statistic Primary Secondary Tertiary Total PIBT
c2 7y 0.69 0.99 0.85 1.03
VS. t 2.09 4.02 14.74 10.51
No- 1) 0.32 0.01 0.16 —0.03
change t 0.98 0.03 2.67 —0.32

revisions as well as its difference in percentage terms (Revision %). In Mexico, PIBT is
also subjected to other revisions (e.g., every year), but the quarterly revisions are the most
important for an analysis of the current state of the economy. Hence, we compare those
revisions with the estimates coming from the c¢2 model.

Tables 8 to 11 show a systematic pattern in which the first revision is smaller than the
second one and the second revision in turn is smaller than the third one, except in quarter
2009:1I for Primary Activities and quarter 2009:1 for Total PIBT. In these tables we see
that in a given year the following revisions are made:

Quarter I: I; = Rev;(I), , = Rev;(I;) = Revy(I), s = Revi(l,) = Rev,(I;) =
Rev;(1);

Quarter II: II; = Rev(Il), II, = Rev;(II;) = Rev,(Il); and Quarter III: III; =
Rev,(I1D).

Thus, we have six one quarter behind revisions (revisions of type Rev(X), with X a
given quarter), three two quarter behind revisions (revision of type Rev,(X)) and one three
quarter behind revision (revision of type Rev;(X)). This way, for the years and quarters in
our sample we have 13 type Rev,(X) revisions, six type Rev,(X) and two type Revj (X),
from which we obtain the summary of results shown in Table 12. The differences
attributable to revisions are expressed as percentages in order to compare them with the
estimation errors of our procedure.

In Table 12 we see that all the MEs are positive, indicating that revisions tend to
increase the GVA for all the economic activities. A similar pattern was seen for the
estimation errors for both i2 and c2 models (see Tables 2 and 3). We also see that higher
percentage revisions occur for Primary Activities and for Secondary Activities, both in

Table 8. PIBT revisions in subsequent quarters after publication. Primary Economic Activities. Millions of
pesos at 2003 value

Quarter  Observed First Revision  Second Revision Third  Revision
data revision % revision % revision %

2008:1 285,391 285915 0.18 286,298 0.32 297,083 4.10
2008:11 338,570 342,337 1.11 356,568 5.32 —- —-
2008:1IT 295,822 298,967 1.06 —- —- —- —-
2008:1V 360,094 —- —- —- —- —- —-
2009:1 301,210 301,451 0.08 299,714 —0.50 297,247 —1.32
2009:11 360,655 366,265 1.56 362,506 0.51 —- —-
2009:1I1 295,419 296,961 0.52 —- —- —- —-
2009:1v 370,113 —- —-
2010:1 282,657 281,669  —0.35 —- —- —- —-
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Table 9. PIBT revisions in subsequent quarters after publication. Secondary Economic Activities. Millions of
pesos at 2003 value

Quarter  Observed First Revision Second Revision Third Revision
data revision % revision % revision %
2008:1 2,653,576 2,654,331 0.03 2,658,227 0.18 2,694,726 1.55
2008:11 2,729,747 2,730,294 0.02 2,778,339 1.78 —- —-
2008:111 2,672,789 2,712,285 1.48 —- —- —- —-
2008:IV 2,624,089 —- —- —- —- —- —-
2009:1 2,427,509 2,429,546 0.08 2,429,901 0.10 2,416,358 —0.46
2009:11 2,457,649 2,459,517 0.08 2,453,219 —0.18 —- —-
2009:01 2,532,108 2,522,487 —0.38 —- —- —- —-
2009:1V 2,591,980 —- —- —- —- —- —-
2010:1 2,547,287 2,547,909 0.02 —- —- —- —-

terms of MEs or RMSEs. However, the reasons for such revisions are different: for
Primary Activities there is a lack of data and any new piece of information may
substantially change what was already published, while for Secondary Activities there is a
great deal of timely data and the database is continually updated.

We can also observe an increase in the percentages by going from one quarter behind
revisions to two quarter behind and three quarter behind revisions. Nevertheless, since there
are more one quarter behind revisions than other types of revisions, we cannot trust all of
them equally and thus we prefer to look at the present results only as indicative of what
should be studied more deeply in future work focusing on revisions of PIBT. By looking at
the RMSEs in Table 12 we appreciate a decrease in magnitude from Primary Activities to
Total PIBT as in Tables 2 and 3. Moreover, the proportion of the third revision with respect
to the estimation error of our procedure is 0.8 for Primary Activities, 1.0 for Secondary
Activities, 0.4 for Tertiary Activities and 0.7 for Total PIBT, so that our estimates are as
precise as the third revision for Secondary Activities. Similarly, our estimates for Primary
Activities are slightly less precise than the third revision; the same thing happens with Total
PIBT, and the lowest precision occurs when estimating Tertiary Activities.

Table 10. PIBT revisions in subsequent quarters after publication. Tertiary Economic Activities. Millions of
pesos at 2003 value

Quarter  Observed First Revision Second Revision Third Revision
data revision % revision % revision )
2008:1 5,269,578 5,268,424 —-0.02 5,259,868 —-0.18 5,277,294 0.15
2008:11 5,448,525 5,441,312 —-0.13 5,458,024 0.17 —- —-
2008:1I1 5,527,957 5,537,215 0.17 —- —- —- —-
2008:1V 5,496,849 —- —- —- —- —- —-
2009:1 4,861,519 4,874,842 0.27 4,885,200 0.49 4,892,965 0.65
2009:11 4,894,911 4,900,607 0.12 4,913,207 0.37 —- —-
2009:11T 5,192,144 5,198,930 0.13 —- —- —- —-
2009:1V 5,373,928 —- —- —- —- —- —-
2010:1 5,093,032 5,093,048 0.00 —- —- —- —-
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Table 11. PIBT revisions in subsequent quarters after publication. Total PIBT. Millions of pesos at 2003 value

Quarter  Observed First Revision Second Revision Third Revision
data revision % revision Y% revision %

2008:1 8,208,545 8,208,671 0.00 8,204,393 —0.05 8,269,103 0.74
2008:I1 8,516,842 8,513,943 —0.03 8,592,930 0.89 —- -
2008:II1 8,496,567 8,548,467 0.61 —- —- —- —-
2008:IV 8,481,031 —- —- - —- -
2009:1 7,590,238 7,605,840 0.21 7,614,814 032 7,606,570 0.22
2009:11 7,713,215 7,726,389 0.17  7,7289,320 0.20 —- —-
2009:111 8,019,672 8,018,378 —0.02 —- —- —- —-
2009:IV 8,336,021 —- -
2010:1 7,922,976 7,922,626 —0.00 —- —- —- —-

4.5 An Update for Quarters 2010:11I to 2011:1V

Since the procedure has been applied in a routinely manner, the results in Tables 13 and 14
complement those of Tables 2 and 3. The ME and RMSE measures in the new tables
were obtained with data from 2008:I to 2011:IV and show a decrease of the RMSE for
Model c2, especially for Total PIBT (from 0.77% in Table 3 to 0.67% in Table 14). These
results lend further empirical support to our suggested procedure.

5. Final Comments

The proposed estimation procedure starts every quarter as soon as the IMAI and IGAE
data is released, 12 and 27 days after the end of the reference quarter respectively. In order
to do this, the exogenous variables already have to be updated in the databases and once
the data is in the form required by the models it is possible to estimate them with a six-year
rolling window of data. The underlying assumptions of the models have to be verified and
their specifications changed if necessary. The first models to be estimated for a given
quarter are of type i2 and their most recent specifications are those of the c2 models for the
previous quarter. Therefore, the i2 specification incorporates three additional months of
data, during which time the economic system may have undergone abrupt changes,
whereas the c2 specification is simpler because it is carried out only 15 days after the most
recent i2 estimation and only a few data updates occur.

Table 12.  Summary of the quarterly percent revisions for the Grand Economic Activities

Revision type Primary % Secondary % Tertiary % Total PIBT %
ME
Rev(X) 0.59 0.19 0.08 0.13
Revy(X) 1.36 0.48 0.23 0.35
Rev3(X) 1.39 0.55 0.40 0.48
RMSE
Rev(X) 0.86 0.58 0.15 0.25
Revy(X) 2.77 0.99 0.32 0.50

Rev;(X) 3.04 1.14 0.47 0.54
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Table 13. Simulation results for each of the Grand Economic Activities and Total PIBT. Millions of pesos

at 2003 value
Primary Secondary
Quarter Observed Errors Observed Errors
data i2 model  c2 model data i2 model  c2 model
2010:11T 298,073 449 —8,796 2,688,324 —7,349 — 7,060
2010:1vV 371,926 15,708 7,261 2,718,258 946 114
2011:1 287,045 — 13,557 191 2,684,995 32,940 32,905
2011:11 328,311 —19,067 —17,529 2,750,829 —892 — 837
2011:11T 311,353 9,631 —4,593 2,772,088 11,652 11,651
2011:1V 337,429 —36,673 —6,579 2,799,920 23,620 23,623
ME —- -1,297 =511 —- 3,587 5,227
RMSE —- 17,443 11,041 —- 24,092 25,823
Tertiary Total PIBT
2010:11T 5,507,938 112,567 44,867 8,494,335 105,667 29,011
2010:1V 5,666,809 7,913 —21,707 8,756,994 24,567 — 14,332
2011:1 5,362,853 68,021 29,238 8,334,892 87,404 62,335
2011:11 5,507,979  —12,689 —42,741 8,587,119 —32,649 —61,107
2011:11T 5,746,740 11,340 21,791 8,830,181 32,623 28,850
2011:1V 5,880,205 33,607 2,001 9,017,554 20,554 19,046
ME —- 25,467 7,173 —- 26,507 10,639
RMSE —- 70,280 49,271 —- 68,840 54,383

The procedure does not allow calculation of variances for the estimates, because model
estimation is not carried out simultaneously but for separate groups of variables. An

important line of future work would consider solving this deficiency. Another possibility

for future methodological research that may improve the forecasting ability of the models

lies in recognizing that the transformations applied to stationarize the series are monotonic

Table 14. Simulation results for the Grand Economic Activities. Percent estimation errors

Primary Secondary Tertiary Total PIBT

Quarter i2 c2 i2 c2 i2 c2 i2 c2
model model model model model model model model
2010:1I11 0.15 —295 —-027 —-0.26 2.04 0.81 1.24 0.34
2010:1V 4.22 1.95 0.03 0.00 0.14 —0.38 0.28 —0.16
2011:I —4.72 0.07 1.23 1.23 1.27 0.55 1.05 0.75
2011:1I -581 —-534 -003 -003 -023 -078 —-038 —0.71
2011101 3.09 —148 0.42 0.42 0.20 0.38 0.37 0.33
2011:1V —10.87 —1095 0.84 0.84 0.57 0.03 0.23 0.21
ME —-0.60 —0.28 0.14 0.20 0.49 0.14 0.33 0.13
RMSE 5.26 3.34 0.92 0.99 1.33 0.95 0.84 0.67
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and nonlinear. Thus, by back-transforming to the original scale we induce some bias in the
estimation that may be corrected, at least approximately, as in Guerrero (1993). Recently,
Ghysels (2012) generalized the MIDAS approach to a Vector Auto-Regressive (VAR)
setting and since such an approach is in line with ours, we should try it in future work.

The main conclusion of this work is that not only can we obtain timely estimates of
Mexico’s PIBT, but the resulting estimates are reasonably precise, as indicated by the
comparison criteria employed. It is also clear that the 15-day delay estimate of Secondary
Economic Activities PIBT is more precise than the estimates of the other two Grand
Economic Activities. With a 30-day delay, the estimate of Secondary Activities remains
reasonably precise and we can also obtain a good estimate of Tertiary Economic
Activities. However, there is room for improvement in the Primary and Tertiary Activities
estimates and some additional effort has to be made to obtain more useful and timely
information for the sectors involved in those activities. Thus, we advise SM to make some
extra effort to improve the data collection in the agriculture sector and design opinion
surveys to collect anticipatory data in the commerce and service sectors.

An advantage of the indirect approach employed here is that we could improve on the
estimation of one of the Grand Activities without any need to modify the estimation of the
other two. Nevertheless, it should be emphasized that the estimate of Total PIBT is
reasonably good and better than each of the Grand Economic Activities estimates
considered separately, both for the 15-day and 30-day delay estimation. The people in
charge of operating the timely estimation system must be alert to the possibility of having
access to more timely data and to some other useful indicators not yet employed by the
models considered in this work in the future.
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Appendix A. Grouping of Subsectors, With NAICS Codes. Taken from INEGI (2007)

Primary Activities

AGRIC (111) — Agriculture
GANAD (112) — Animal breeding and production
FOPEC* (113-115) — Forestry, logging, fishing and hunting

Secondary Activities

EXPYG (211) — Oil and gas extraction
MINER (212) — Mining
SEMIN (213) — Services related to mining
ELAGA (221-222) — Electric power generation, water and gas supply
CONST (236-238) — Construction
FDPYC (324) — Manufacturing of products derived from petroleum and coal
INQUI (325) — Chemical industry
FETRA (336) — Transportation equipment manufacturing
MANUF (311-316, 321-323, 326-327, 331-335, 337, 339) —
Other manufacturing activities

Tertiary Activities

COMER (43-46) — Trade

TRANS* (481-488) — Transportation

MENS (491-492) — Messaging

ALMAC (493) — Warehousing services

TELEC* (511-512, 515-516, 518-519) — Mass media communication
OTELE* (517) — Other telecommunications

SEFIN* (521-524) — Financial and insurance services

SEINM* (531-533) — Real estate services and goods rental

SEPRO* (541) — Professional, scientific and technical services
CONED* (551, 561-562) — Head offices and business support services
SEDUC (611) — Educational services

SESAL* (621-624) — Health care and social assistances services
SEREC (711-713) — Recreation services

SEHOR (721-722) — Temporary accommodation services

SEOT* (811-814) — Other services

ACGOB* (931) — Government activities

SIFMI - Financial intermediation services indirectly measured

#*These variables lack information on some subsectors and require the use of bridge equations.
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Appendix B. Estimation Procedure Employed for Models i2 and c2 in a given Year “a”

Qur I [ Qur I [ Qur II [
Feb Mar Apr

IMALI Jan(a)
IMAI Febw |

rl

N
g
§IMAI Apr(a)
N
O —
]MAI May(a)
g
PIBT v i1 S
g
T —
]MAI Aug(a)
s}
Q
PIBT Qu 11i(a)

JEIBT Qtr IV(a-1)
(—l [PIBT ow 10/ IGAE war 0
o

=

rl

Model i2 Model c2 Model i2 Model c2 Model i2 Model c2 Model i2 Model c2
PIBTQIrIV(a—l) PIBTQMV(.\J) PIBTQ(H(.\) PIBTQ"I(:A) PIBTQ"H(u) PIBTQI{H(u) PIBTQUHI(.\) PIBTerlH(u)
A8
Date base | Estimated Date base Estimated
Model used months Model used months
Primary | ARIL IGAE,,,,, | Feb, Mar Primary | ARI! IGAE,, | Mar
Activities | VARI1* | IGAE,, | Feb, Mar Activities { VARII* ¢ IGAE,,, | Mar
Secondary VAR21 IMAIL,,,, | Mar Secondary VAR21 IGAE,,,, | Mar
Activities | VAR IMAL_, | Mar Activities i VAR22 IGAE, | Mar
VAR31* | IGAE, . | Feb, Mar VAR3I* ¢ IGAE,, | Mar
Tertiary | VAR32* | IGAE, | Feb, Mar Tertiary | VAR32* { IGAE,, | Mar
Activities | VAR33* IGAE, | Feb, Mar Activities VAR33* IGAE,,,, | Mar
VAR34* [IGAE, [ Feb, Mar VAR34*  { IGAEg,, | Mar
< <
Bridge equations (regression l$ Estimation Bridge equations (regression l$ Estimation

models) for specific variables in*  of PIBT,, 1, models) for specific variables in*  of PIBT

Appendix C. Estimation Schedule for the Simulations (Historical and in Real Time)

Simulation Data available Estimation Model type PIBT
No. and type date estimate

1 IMAI Apr/17/08 i2 2008:1
Historical IGAE Apr/29/08 c2

2 IMAI Jul/17/08 i2 2008:1I
Historical IGAE Jul/29/08 c2

3 IMAI Oct/17/08 i2 2008:111
Historical IGAE Oct/29/08 c2

4 IMAI Jan/16/09 i2 2008:1V
Historical IGAE Jan/28/09 c2

5 IMAI Apr/17/09 i2 2009:1
Historical IGAE Apr/28/09 c2

6 IMAI Jul/17/09 i2 2009:11
Historical IGAE Jul/28/09 c2

7 IMAI Oct/16/09 i2 2009:111
Historical IGAE Oct/28/09 c2

8 IMAI Jan/12/10 i2 2009:1V
Historical IGAE Jan/27/10 c2

9 IMAI Apr/12/10 i2 2010:1
Historical IGAE Apr/27/10 c2

10 IMAI Jul/12/10 i2 2010:11

Real time IGAE Jul/27/10 c2
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Statistical Analysis of Noise-Multiplied Data Using Multiple
Imputation

Martin Klein' and Bimal Sinha®

A statistical analysis of data that have been multiplied by randomly drawn noise variables in
order to protect the confidentiality of individual values has recently drawn some attention. If
the distribution generating the noise variables has low to moderate variance, then noise-
multiplied data have been shown to yield accurate inferences in several typical parametric
models under a formal likelihood-based analysis. However, the likelihood-based analysis is
generally complicated due to the nonstandard and often complex nature of the distribution of
the noise-perturbed sample even when the parent distribution is simple. This complexity
places a burden on data users who must either develop the required statistical methods or
implement the methods if already available or have access to specialized software perhaps yet
to be developed. In this article we propose an alternate analysis of noise-multiplied data based
on multiple imputation. Some advantages of this approach are that (1) the data user can
analyze the released data as if it were never perturbed, and (2) the distribution of the noise
variables does not need to be disclosed to the data user.

Key words: Combining rules; confidentiality; rejection sampling; statistical disclosure
limitation; top coded data.

1. Introduction

When survey organizations and statistical agencies such as the U.S. Census Bureau release
microdata to the public, a major concern is the control of disclosure risk, while ensuring
fairly high quality and utility in the released data. Very often some popular statistical
disclosure limitation (SDL) methods such as data swapping, multiple imputation,
top/bottom coding (especially for income data), and perturbations with random noise are
applied before releasing the data. Rubin (1993) proposed the use of the multiple
imputation method to create synthetic microdata which would protect confidentiality by
replacing actual microdata by random draws from a predictive distribution. Since then,
rigorous statistical methods to use synthetic data for drawing valid inferences on relevant
population parameters have been developed and used in many contexts (Little 1993;
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Raghunathan et al. 2003; Reiter 2003, 2005; Reiter and Raghunathan 2007). An and Little
(2007) also suggested multiple imputation methods as an alternative to top coding of
extreme values and proposed two methods of data analysis with examples.

Noise perturbation of original microdata by addition or multiplication has also been
advocated by some statisticians as a possible data confidentiality protection mechanism
(Kim 1986; Kim and Winkler 1995, 2003; Little 1993), and recently there has been a
renewed interest in this topic (Nayak et al. 2011; Sinha et al. 2012). In fact, Klein,
Mathew, and Sinha (2013), hereafter referred to as Klein et al. (2013), developed
likelihood-based data analysis methods under noise multiplication for drawing inference
in several parametric models. They provided a comprehensive comparison of the above
two methods, namely, multiple imputation and noise multiplication. Klein et al. (2013)
commented that while standard and often optimum parametric inference based on the
original data can be easily drawn for simple probability models, such an analysis is far
from being close to optimum or even simple when noise multiplication is used. Hence
their statistical analysis is essentially based on the asymptotic theory, requiring
computational details of maximum likelihood estimation and calculations of the observed
Fisher information matrices. Klein et al. (2013) also developed a similar analysis for top-
coded data, which arise in many instances such as income and profit data, where values
above a certain threshold C are coded and only the number m of values in the data set
above C are reported along with all the original values below C. These authors considered
statistical analysis based on unperturbed (i.e., original) data below C and noise-multiplied
data above C instead of completely ignoring the data above C, and again provided a
comparison with the statistical analysis reported in An and Little (2007), who carried out
the analysis based on multiple imputation of the data above C in combination with the
original values below C. In this article, we use the term mixture data, to refer to a data set
in which values below a cut-off C are unperturbed, and values above C are perturbed via
noise multiplication.

In the context of data analysis under noise perturbation, if the distribution generating the
noise variables has low to moderate variance, then noise-multiplied data are expected to
yield accurate inferences in some commonly used parametric models under a formal
likelihood-based analysis (Klein et al. 2013). However, as noted by Klein et al. (2013), the
likelihood-based analysis is generally complicated due to the nonstandard and often
complex nature of the distribution of the noise-perturbed sample even when the parent
distribution is simple (a striking example is analysis of noise-multiplied data under a
Pareto distribution, typically used for income data, which we hope to address in a future
communication). This complexity places a burden on data users who must either develop
the required statistical methods or implement these methods if already available or have
access to specialized software perhaps yet to be developed. Circumventing this difficulty is
essentially the motivation behind this current research, where we propose an alternate
simpler analysis of noise-multiplied data based on the familiar notion of multiple
imputation. We believe that a proper blend of the two statistical methods as advocated
here, namely, noise perturbation to protect confidentiality and multiple imputation for ease
of subsequent statistical analysis of noise-multiplied data, will prove to be quite useful to
both statistical agencies and data users. Some advantages of this approach are that (1) the
data user can analyze the released data as if it were never perturbed (in conjunction with
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the appropriate multiple imputation combining rules), and (2) the distribution of the noise
variables does not need to be disclosed to the data user.

The article is organized as follows. An overview of our proposed approach based on a
general framework of fully noise-multiplied data is given in Section 2. Techniques of
noise imputation from noise-multiplied data, which are essential for the proposed
statistical analysis, are also presented in Section 2. This section also includes different
methods of estimation of variance of the proposed parameter estimates. Section 3 contains
our statistical analysis for mixture data. Details of computations for the normal and
lognormal models are outlined in Section 4. An evaluation and comparison of the results
with those under a formal likelihood-based analysis of noise-multiplied data (Klein et al.
2013) is presented in Section 5 through simulation. It turns out that the inferences obtained
using the methodology of this article are comparable with, and just slightly less accurate
than, those obtained in Klein et al. (2013). Section 6 presents a disclosure risk evaluation
of the proposed method, discusses the benefits of the proposed method in comparison with
synthetic data, and outlines how to extend this approach to multivariate data. Section 7
provides some concluding remarks, and the Appendices A, B and C contain proofs of some
technical results.

2. Methodology for Fully Noise-Multiplied Data

2.1. General Framework

Suppose yi, . . .,y, ~ iid ~ f(y|0), independent of ry,...,r, ~ iid ~ h(r), where
0= (6, .. .,Op)’ is an unknown p X 1 parameter vector, and A(r) is a known density
(free of @) such that h(r) = 0 if » < 0. It is assumed that f( y|0) and h(r) are the densities
of continuous probability distributions. Define z; = y; X r; for i = 1, . . ., n. Let us write
y=01,.. sy r=(, ... ,r,andz= (21, . . ., Zn)-

We note that the joint density of (z;, ;) is

8, ril0) =f (f | 0) hryyr; !,
and the marginal density of z; is

g(zil0) = Jof(iilﬂ)h(w)wldw. (1)

As clearly demonstrated in Klein et al. (2013), standard likelihood-based analysis of the
noise-multiplied sample z in order to draw suitable inference about a scalar quantity
0O = Q(0) can be extremely complicated due to the form of g(z;|0), and the analysis also
must be customized to the noise distribution A(r). Instead, what we propose here is a
procedure to reconstruct the original data y from reported sample z via suitable generation
and division by noise terms, and enough replications of the recovered y data by applying
multiple imputation method. Once this is accomplished, a data user can apply a simple and
standard likelihood procedure to draw inference about Q(6) based on each reconstructed y
data as if it were never perturbed, and finally an application of some known combination
rules would complete the task.
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The advantages of the suggested approach, blending noise multiplication with multiple
imputation, are the following:

1. to protect confidentiality through noise multiplication — satisfying data producer’s
desire,

2. to allow the data user to analyze the data as if it were never perturbed — satisfying
data user’s desire (the complexity of the analysis lies in the generation of the imputed
values of the noise variables; and the burden of this task will fall on the data
producer, not the user), and

3. to allow the data producer to hide information about the underlying noise distribution
from data users.

The basic idea behind our procedure is to set it up as a missing data problem; we define the
complete, observed, and missing data, respectively, as follows:

x.={@,r), -, @1}, Xobs = {21, -+ -3 2Zu}s Xmis = {F1, - . o 1)

Obviously, if the complete data x. were observed, one would simply recover the original

datay; =z;/r;, i =1, ..., n, and proceed with the analysis in a straightforward manner
under the parametric model f(y|@). Treating the noise variables ry, . . ., r, as missing
data, we impute these variables m times to obtain

x0 = {(m,rlm), .. .,(zn,r::(/))}, j=1,...,m. (2)

From x*/) we compute

N () . _ 21 Zn .
y' ) = {y, Do .,y,’;”)} = { IR W} ji=1,...,m. 3)
r n
The statistical agency would then release the m imputed data sets y™, . . . y*™ and

each data set y*(/) would be analyzed as if it were a random sample from f(y|@). Thus,
suppose that n(y) is an estimator of Q(6) based on the unperturbed data y and suppose that
v = v(y) is an estimator of the variance of n(y), also computed based ony. Often n(y) will
be the maximum likelihood estimator (MLE) of Q(), and v(y) will be derived from the
observed Fisher information matrix. One would then compute 7; = n(y*)) and
vj = v(y*), the analogs of 1 and v, obtained from y*/’, and apply a suitable combination
rule to pool the information across the m simulations.

At this point two vital pieces of the proposed methodology need to be put together:
(1) imputation of r from z, which would be the responsibility of the statistical agency; and
(2) combination rules for n; and v; from several imputations, which the data user would
apply in order to analyze the released data. We discuss these two crucial points in
Subsections 2.2 and 2.3, respectively.

2.2.  Imputation of the Noise Variables

In this subsection we describe two procedures that a statistical agency can use to impute r
from z. Following Wang and Robins (1998), we refer to these two methods as the Type A
and Type B imputation procedures.
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Type A Imputation Procedure. Under the Type A procedure, the imputed values of

ry, ...,r, are obtained as draws from a posterior predictive distribution. We place a
noninformative prior distribution p(€) on 6. In principle, sampling from the posterior
predictive distribution of ry, . . ., r, can be done as follows:

1. Draw 0" from the posterior distribution of @ given zj, . . ., z,.

2. Draw rj, . . ., r, from the conditional distribution of ry, . . .,r, given zi, . . ., 2,

and 0= 0"

The above steps are then repeated independently m times to get ("), ... ri0),
j=1,...,m.

Notice that in step (1) above we use the posterior distribution of @ given z;, . . .,z, as
opposed to the posterior distribution of @ given y;, . . ., y,. Such a choice implies that we

do not infuse any additional information into the imputes beyond what is provided by the
noise-multiplied sample z and the knowledge of the noise-generating distribution A(r).
Step (2) above is equivalent to sampling each r; from the conditional distribution of 7;
given z; and @ = @". The pdf of this distribution is

£ @i/l 0)h(ryyry!
[of (@) )]0 h(w)o ™ dw

h(rilz;, 0) = 4)

The sampling required in step (1) can be complicated due to the complex form of the
joint density of zj, . . ., z,. Certainly, in some cases, the sampling required in step (1) can
be performed directly; for instance, if 0 is univariate then we can obtain a direct algorithm
by inversion of the cumulative distribution function (numerically or otherwise). More
generally, the data augmentation algorithm (Little and Rubin 2002; Tanner and Wong
1987) allows us to bypass the direct sampling from the posterior distribution of 0 given
Z1, . . ., 2. Under the data augmentation method, we proceed as follows. Given a value
0 of @ drawn at step 7:

L. Draw 1"V ~ h(rlz;, 00) fori=1, .. . n;

II. Draw 6D ~ p(Bly“*) where y+V = ((z;/r{™"), . . ., (zu/r*D)), and p(Oly)
is the posterior density of @ given the original unperturbed data y (it is the functional
form of p(6|y) which is relevant here).

The above process is run until 7 is large and one must, of course, select an initial value 6’
to start the iterations. The final generations (r{", . . .,7®) and 8% form an approximate

draw from the joint posterior distribution of (ry, . . ., r,) and 6 given (zy, . . .,z,). Thus,
marginally, the final generation (r(lt), ce ”51[)) is an approximate draw from the posterior
predictive distribution of (ry, . . ., r,) given (z1, . . ., Z,). This entire iterative process can

be repeated independently m times to get the multiply imputed values of the noise
variables. The data augmentation algorithm presented here is equivalent to Gibbs
sampling. The goal here is to sample from p(r, 6]z), the joint posterior distribution of (r, 6)
given z. Letting p(r|z, 8) denote the conditional density of r given z and 6, and letting
p(0|z, r) denote the conditional density of @ given z and r, we note that the (r + 1)th step of
a Gibbs sampler would sample from the full conditionals such that »“*D ~ p(r|z, 8©) and
0D ~ p(0|z,r"*), and would continue until convergence. Alternate sampling from
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these two full conditional distributions is equivalent to steps I and II of the data
augmentation algorithm.

Sampling from the posterior distribution p(8ly) in step (II) above will typically be
straightforward, either directly or via an embedded Markov chain Monte Carlo step. Under
the data augmentation algorithm, we still must sample from the conditional density
h(r|z, 0) as defined in (4). The level of complexity here will depend on the form of £( y|6)
and A(r). Usually, sampling from this conditional density will not be too difficult. The
following result provides a general rejection algorithm (Devroye 1986; Robert and Casella
2005) to sample from A(r|z, @) for any continuous f(y|@), when the noise distribution is
Uniform (1 — €, 1 + €), that is, when

1
hiry=—, 1—e=r=1+e, (@)
2€

where 0 < € < 1.

Proposition 1  Suppose that f{y|0) is a continuous probability density function, and let
us write f(y|0) = c(0)g(y|0) where ¢(0) > 0 is a normalizing constant. Let M =
M(0, €, z) be such that

q(§|0> = Mforallr € [1 — €, ]

where 'y = y(z,€) > 1 — €. Then the following algorithm produces a random variable R
having the density

q((z/r)|O)r~!

hu(rlz, ) = 7 4G/ w)|0w do’

l—e=r=v.

L. Generate U, V as independent Uniform(0, 1) and let W = " /(1 — )V "1
II. Accept R = Wif U = M 'q((z/W)|8), otherwise reject W and return to step (I).

The expected number of iterations of steps (I) and (Il) required to obtain R is

Mllog(y) — log(l — €)]
7 (/0o do

The proof of Proposition 1 appears in Appendix A.

Remark 1. The conditional density of y; given z; and 0 is
fGilOhGi/yy;
Jof (/o) Oh(w)o " do’

SOl OhG:/y)(=yi ")
[5f (@] ) O~ 'do’

if0<z <oo, 0<y <o,

f(yilzi, 0) = (6)

if —o0o<z<0, —o0<y <O.

Drawing r; from the conditional density h(r;|z;, 0°) defined in (4) and setting y; = z;/r} is
equivalent to drawing y; directly from the conditional density f(y;|z;, @) in the sense that
given z; and 0, the variable z;/r; has the density f(yilz;, 67).
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Remark 2. As to the choice of 6 ), one can choose moment-based estimates (Nayak
et al. 2011).

Remark 3. We have tacitly assumed in the above analysis that the posterior distribution
of the parameter 6, given noise-multiplied data z, is proper. In applications, this needs to
be verified on a case by case basis because the posterior propriety under the original datay,
which may routinely hold under many parametric models, may not guarantee the same
under z when an improper prior distribution for 0 is used. We refer to the technical report
Klein and Sinha (2013) for an example. The same remark holds in the case of the posterior
distribution of 0, given the mixture data. We have verified the posterior propriety in our
specific applications for fully noise-multiplied data and mixture data in Appendices B
and C, respectively.

Type B Imputation Procedure. In this procedure there is no Bayesian model
specification. Instead, the unknown parameter 6 is set equal to émle (z), the MLE based on
the noise-multiplied data z, which can often be computed via the EM algorithm (Klein
et al. 2013). The imputed values of the noise variables are then randomly drawn such that

i~ h(rlzi, Oue(@), for i=1,....n. (7
The above sampling is repeated, independently, m times to obtain (rj(j), o9,
j=1,...,m. If h(r) is the uniform density (5), then Proposition 1 can be used to

implement the sampling in (7).

2.3.  Combination Rules for Analyzing the Released Data

We now present methods for analyzing the released datay™", . . ., y*_ Naturally, under
the proposed methodology, analysis of the released data would usually be the
responsibility of the data user. The analysis involves first analyzing each y*/) as if it
were a random sample from f(y|60), and then suitably combining the results across
j=1,...,mto obtain final inference. We first present the combination rules of Rubin
(1987), which should yield valid inferences when the agency uses the Type A method to
impute the noise variables. Rubin’s (1987) combination rules often work well, and are
simple to apply; however, they may not be optimal, and hence we also consider alternative
methods of Wang and Robins (1998).

Rubin’s (1987) Rule for Type A Imputation. We assume here that the released
data (3) are obtained using the Type A imputation procedure. The multiple imputation
estimator of Q is

1 m
n,, — — is 8
= ;:1 M ®)
and the estimator of the variance of 17, is

1
Tm = (1 +_>bm + ‘_)ma (9)
m

where b, = (1/(m — 1))2;”:1(1” — 7m)* and ¥,, = (1/m)Y ", v;. The point estimator
M, and its variance estimator 7,, can now be used along with a normal cut-off
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point to construct a confidence interval for Q. We can also use a ¢ cut-off point
based on setting the degrees of freedom equal to (m — 1)(1 + a,;l)z where
an = (1+m b,/

Wang and Robins’s (1998) Rule for Type A Imputation. Once again we assume that
the released data (3) are obtained using the Type A imputation procedure. Let

i=1

denote the MLE of @ computed on the jth imputed data set y*/) under the model f (y|0).
The multiple imputation estimator of 0 is 6, = (1/ m)Z_;.":loj. By Wang and Robins
(1998),

Jn(Bs = 05N, [0, V4], asn— ,

where Vo = I3L + (1/m)I T + (1 /m)J' TN, J = Iid 7' = (I — Iows)I. ', and where 1.
and I, are the p X p matrices defined by

[ ([ (02%0g f(»10) [ (97 1ogg(zl0)
= ()= ((S5507))) o

Let S (yf(j ), éj) denote the p X 1 score vector, with its /th element defined as

o log f(v|0) : .
Slﬂ(yl(j) 0) :g.g)#@yly:y,ﬂ*mﬁ:éf’ = 1, e, Pyl = 1, e ny ] = 17 e,y

and let S:j (y:(j ), éj) denote the p X p matrix whose (I, ')th element is defined as

it o 00,00 y:yf”),ﬂzﬂj’

L'=1,...,p,i=1,...,n,j=1,...,m.

A consistent variance estimator V, is obtained by estimating I, by
= N0 d= - Y s 6 2
c_%Z cjs LJ__;; U(yl ) ])a ( )
and estimating /., by

fovs = an(m— 1)2 Z [ *(') 0 ( f(‘i),éi/) +Si ( (") 0 ) ( (/) 0)}

i=1 j#j'=1

(13)

For any given Q(6), the variance of the multiple imputation estimator Q( éA) is obtained by
applying the familiar 6-method, and Wald-type inferences can be directly applied to obtain
confidence intervals.

Wang and Robins’s (1998) Rule for Type B Imputation. We now assume that the
released data (3) are obtained using the Type B imputation procedure. Let éj be defined
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by (10). The multiple imputation estimator of @ is 05 =1 /m)z;iléj. By Wang and
Robins (1998),

Jn(Bs — )5N,[0, V], as n— oo,
where Vp =11+ (/mI T =1 + (1 /mI "I, — Iows)I. ' with I, and I, defined
in (11). A consistent variance estimator Vg is obtained by estimating /.. using (12) and
estimating I, using (13). For any given Q(6), the variance of the estimator Q(0p) is
obtained by applying the familiar 6-method, and Wald-type inferences can be directly
applied to obtain confidence intervals.

Remark 4. Wang and Robins (1998) provide a comparison between the Type A and
Type B imputation procedures, and compare the corresponding variance estimators with
Rubin’s (1987) variance estimator T,,. Their observation is that the estimators V4 and
Vs are consistent for V, and Vp, respectively; and the Type B estimator 05 will
generally lead to more accurate inferences than éA, because for finite m, Vp <V,
(meaning V4 — Vjp is positive definite). Under the Type A procedure and for finite m,
Rubin’s (1987) variance estimator has a nondegenerate limiting distribution; however,
the asymptotic mean is V), and thus 7, is also an appropriate estimator of variance (in
defining Rubin’s (1987) variance estimator, Wang and Robins (1998) multiply the
quantity b,, by the sample size n to obtain a random variable that is bounded in
probability). The variance estimator 7,, would appear to underestimate the variance if
applied in the Type B procedure because under the Type B procedure, if m = oo, then
T,, has a probability limit that is smaller than the asymptotic variance Vp (when
m=o0, Vo =V =1,!). However, under the Type A procedure, if m = co then T,, is
consistent for the asymptotic variance V4. We refer to Rubin (1987) and Wang and
Robins (1998) for further details.

3. Methodology for Mixture Data

Recall that the term mixture data in our context refers to a data set in which values
below C are unperturbed and values above C are perturbed using noise multiplication.
In this section we discuss the analysis of such data following the procedure outlined
earlier, namely, by (i) suitably recovering the y-values above C via use of
reconstructed noise terms and the noise-multiplied z-values along with or without their
identities (below or above C), and (ii ) providing multiple imputations of such y-values
and methods to appropriately combine the original y-values and reconstructed y-values
to draw inference on Q.

Let C > 0 denote the prescribed top code so that y-values above C are sensitive
and hence cannot be reported/released. Given y = (yi, .. .,yn), r=(1,...,1),
z=(z1, . ..,2,) Where z; = y; Xr;, we define x = (x1, . . .,x,) and A= (A, ... A)
with A; =I(y; = C) and x; = y; if y; = C, and = z; if y; > C. Inference for 0 will be
based on either (i) {(x1,A;), .. .,(x;,A,)} or (ii) just {xi, .. .,x,}. Under both the
scenarios, which each guarantee that the sensitive y-values are protected, several data sets
of the type (], . . .,y;) will be released along with a data analysis plan. We describe
below the imputation and data analysis plans under both the scenarios.
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Case (i). Here we generate r; from the reported values of (x; A; = 0) and compute
y; = x;/r;. Of course, if A; = 1 then we set y; = y;. Generation of r; is done by sampling
from the conditional distribution h(r;|x;, A; = 0, 0) of r;, given x;, 0, and A; = 0, where

S(i/rd|O)hriyr!

h il iuAizovo =
(rilx ) (x/C) (i) @) | Oh(@)o- e

Xi
for 0 < r; < 14
or i< G (14)

(Klein et al. 2013) Note that the support of the above conditional distribution is such that
ri € (0,(x;/C)), and thus, if A; =0, then y; = (x;/r]) > C. That is, when y; > C, the
privacy-protected data point y; has the desirable property that it will also be greater than C.
When the noise distribution is the uniform density (5), then (14) can be written as

F(xi /0!
min (/O (/) O) 0~ dew

1—€

hy(rilxi, A; = 0, 0) =

15)
. [Xi
forl —e=r = mln{E,l—i—e},

and Proposition 1 provides an algorithm for sampling from the above density (15).

Regarding choice of 0, we can proceed following the Type B method (Section 2) and
use the MLE of 6 (émle) based on the data {(x;,Aq), . . .,(x,,A,)}. This will often be
direct (via EM algorithm) in view of the likelihood function L(0|x, A) reported in Klein
et al. (2013) and reproduced below:

(xi/C)

1-A;
h
L(Blx, 8) = Hf(xllonA“ 7(%10) ™24 ] . (16)
i=1

Alternatively, following Type A method discussed in Section 2, r “-values can also be
obtained as draws from a posterior predictive distribution. We place a noninformative
prior distribution p(0) on @, and sampling from the posterior predictive distribution of
ri, .. .,r, can be done as follows:

1. Draw 0 from the posterior distribution of @ given {(x;,4A,), . . ., (x,,A,)} using the
likelihood L(@|x, A) given above.
2. Draw rf for those i = 1, . . ., n for which A; = 0, from the conditional distribution

(14) of r;, given x;, A; = 0, and 6= 0"

As mentioned in Section 2, the sampling required in step (1) above can be complicated
due to the complex form of the joint density L(0|x, A). The data augmentation algorithm
(Little and Rubin 2002; Tanner and Wong 1987) allows us to bypass the direct sampling
from the posterior distribution of @ given {(x;,Ay), . . ., (x,, Ay}

Under the data augmentation method, given a value 8 of @ drawn at step t:

L. Draw A" ~ h(rlx;, A; = 0,0®) for those i = 1, . . ., n for which A; = 0.
II. Draw @¢*D ~p(0|y(1’+1), o)D) where WY = %, /"D when A; =0, and
yft+1) = x; otherwise. Here p(@|y) stands for the posterior pdf of 0, given the original

data y (only its functional form is used).
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The above process is run until 7 is large and one must, of course, select an initial value ©
to start the iterations.

Case (ii). Here we generate (rf*, Aj) from the reported values of (x, .. .,x,) and
compute y; = (x[/rf*) if A} =0,and y;" = x;, otherwise, i = 1, . . ., n. This is done by
using the conditional distribution g(r, 8lx, ) of r and A, given x and 6. Since
g(r, 8|x, @) = h(r|x, 5, 8 X s(8|x, 0), and the conditional Bernoulli distribution of A,

given x and 6, is readily given by
Y(8=1|x,0) = Pr{A =1|x, 0}
fxl0)I(x < O)

= IC - (17)
fElOI(x < C)+1(x > 0) [/ f((x/r)|@)h(r)r—1dr

(Klein et al. 2013), drawing of (rf*, Af) given x; and @, is carried out by first randomly
selecting Af according to the above Bernoulli distribution, and then randomly choosing
ri*if A} = 0 from the conditional distribution given by (14).

Again, in the above computations, following Type B approach, one can use the MLE of

0 (via EM algorithm) based on the x-data alone whose likelihood is given by

n xi/C Xi .
Lol =[] |0 < 0 + I > O)JO £ (CH10) ey ~ar

i=1

(18)

(Klein et al. 2013). Alternatively, one can proceed as in Type A method (sampling
ri", .. .,ry from the posterior predictive distribution) by plugging in @ = 0" that are
random draws from the posterior distribution of 6, given x, based on the above likelihood
and choice of prior for 0. As noted in the previous case, here too a direct sampling of 0,
given x, can be complicated, and we can use the data augmentation algorithm suitably
modified following the two steps indicated below.

r§t+1)’A§t+l)

(t+1)

i s

1. Starting with an initial value of @ and hence 6 at step 7, draw (
h(r, 8|x;, ). This of course is accomplished by first drawing AY*" and then r
in case ATV = 0.

2. Atstep ( + 1), draw 8“*" from the posterior distribution p(8[y{*", . . ., y(*D) of
0, where "tV = x; if A"V = 1, and y{"*V = x;/F" TV if AYTD = 0. Here, as before,
the functional form of the standard posterior of 6, given y, is used.

In both case (i) and case (ii), after recovering the multiply imputed complete data
y O y*™ using the techniques described above, methods of parameter estimation,
variance estimation, and confidence interval construction are the same as those discussed
in Section 2 for fully noise-multiplied data. Naturally, in case (i) when information on the
indicator variables A is used to generate y “-values, data users will know exactly which
y-values are original and which y-values have been noise-perturbed and de-perturbed.
Of course, this need not happen in case (ii), thus providing more privacy protection with
perhaps less accuracy. Thus the data producer (such as the Census Bureau) has a choice
depending upon to what extent information about the released data should be provided to
the data users.
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4. Details for Normal and Lognormal Data

In this section we provide some details of the proposed methodology for normal and
lognormal populations. Similar details for the exponential population appear in the
technical report Klein and Sinha (2013).

4.1. Normal Data

We consider the case of a normal population with uniform noise, that is, we
take f(y|0) = (1/(av2m) exp[—(1/Q2a?))(y — w)*], — o0 <y < o0, and we let h(r) be
the uniform density (5). We place a standard noninformative improper prior on (u, o?):

1
p(,o?)oc—, —0<p<o0 <o’ < oo, (19)
o

The posterior distribution of (u, o) given y is obtained as p(u, o2|y) = p(ula?,y)p(oly)
where

-1 2 2
@) ~ P25 ey ~ N<y, ‘T—>7 20)
infl n

with = (1/m)> 7,y and s2 = (1/(n — 1))>_,(y; — )* (Gelman et al. 2003). The
conditional density h(r|z, 0) as defined in (4) now takes the form

exp[—(1/Qo))(z/r) — Wlr”!
LS exp [—(1/Qo2)((z/0) — pHo~do
We apply Proposition 1 to obtain an algorithm for sampling from this conditional density
of r; given z;.

h(rlz, 6) = l—esr=l+e. 1)

Corollary 1 The following algorithm produces a random variable R whose density is (21).

L. Generate U, V as independent Uniform(0, 1) and let W = (1 + €)' /(1 — €)" L.
IL. Accept R=W if U < exp[(—1/Q0>)(z/W — w)?1/M, otherwise reject W and
return to step (I).
If 7 > 0 then the constant M is defined as

M =M, o’ €.2)

1
exp [_T‘Z(Z/(I—FE)_M)Z]a if u=z/(1+e),
NI if5/(1+€) < p<z/(-o),
exp [—m(z/(l—f)—ﬂf]a ifu=z/(1—e.
and if z < 0 then

M = M(p,0°,€,2)

1
eXp [_W(Z/(l_e)_ﬂ’f]a if/J,SZ/(l_E),
), ifz/(1 —e)<pu<z/(1+e),
1
exp [_F(Z/(I-FG)_M)Z], ifp=z/(1+e).
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The expected number of iterations of steps (I) and (II) required to obtain R is
M[log(l +€)— log(l — €)]
T exp[—(1/Qo))(/ @) — o 'de’
In the case of mixture data, the conditional density (14) now becomes

exp[—(1/Q2o*)x/r — w*Ir™"
IO exp [~ (1/Qo)(/0 — wPlo~lde’

h(rlx,A=0,0) =

(22)
1 = 7r< mi { 1+ }
€ = = min €
C’ ’

and a simple modification of Corollary 1 yields an algorithm to sample from this pdf.

4.2. Lognormal Data

We next consider the case of the lognormal population: f(y|@) = (1/ (yo/21))
exp[(—1/Qa?))(logy — w)?], 0 = y < o0. We define a prior distribution on (i, o?) as
in (19). The posterior distribution of (u, o 2) is then given by (20) upon replacing each y;
by log(y).

Customized noise distribution for fully perturbed data. Let us take the noise
density as:

h(r) = exp {—%@rz(logr+§2/2)2},0<r<oo, (23)

1
ré2ar
where 0 < ¢ < o0, and E(R) = 1 and Var(R) = e — 1. We note that h(r) is a lognormal
density such that R ~ h(r) < log (R) ~ N(—£%/2, £). It then follows that h(r|z, €) is also
a lognormal density such that

§2 52 52 0.252
R ~ h(r|z, 0) < log(R) ~ N{—? e {log(z)—F?— ;L], 0274'52} 24)

Uniform noise distribution. Suppose we take the noise distribution to be uniform as
defined in (5). Then the conditional pdf (4) takes the form

exp[—(1/2a?))(log (z/r) — w)?]
e exp — (1/Qa)(log (/@) — widw’

We apply Proposition 1 to obtain an algorithm for sampling from this conditional density
of r; given z;.

h(rlz, 0) = l—e=sr=1+e¢€ (25)

Corollary 2 The following algorithm produces a random variable R whose density
is (25).

I. Generate U, V as independent Uniform(0, 1) and let W = (1 + e)V/(l —e)V L
II. AcceptR=WifU = Wz 'exp[—(1/(202))(log (z/W) — w)*1/M, otherwise reject
W and return to step (I).
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The constant M is defined as

M=M(p,07,€,2)

1+ 6z exp —%ﬂ(log(Z/(lJre))—M)Z} ffer= =z/(1+e),

21

—{ o |-t ifz/(1+e)<er " <z/(1—e),

o 2
(1—e)z 'exp —ﬁ(log(z/(l—@)—u)z} ifelt 7 =z/(1—e).

The expected number of iterations of steps (I) and (II) required to obtain R is
M[log(1+€)— log(l —€)]
e Texp[—(1/Q?)(log(e/w) — P ldw’

In the case of mixture data, the conditional density (14) now becomes

exp[—(1/Q2a?))(log (x/r) — w)*]
min(/ON oxp [—(1/202))(log (x/@) — w)*ldw’

h(rlx,A=0,0) =
(26)

X
l—e=r=mi {—,1 },
€ r min C + €

and a simple modification of Corollary 2 yields an algorithm to sample from this pdf.

5. Simulation Study to Assess Accuracy of Inference

We use simulation to study the finite sample properties of point estimators, variance
estimators, and confidence intervals obtained from noise-multiplied data. We consider the
cases of normal and lognormal populations in conjunction with uniform and customized
noise distributions as far as possible, as outlined in Section 4. The results for the
exponential population are similar to the normal and lognormal, and appear in the
technical report Klein and Sinha (2013). One may expect that the simpler method of data
analysis proposed in this paper may lead to less accurate inferences than a formal
likelihood-based analysis of fully noise-multiplied and mixture data. However, if the
inferences derived using the proposed methodology are not substantially less accurate,
then the proposed method may be preferable, in some cases, because of its simplicity. Thus
the primary goals of this section are essentially to (1) compare the proposed methods
with the likelihood-based method reported in Klein et al. (2013), and (2) to assess and
compare the finite sample performance of Rubin’s (1987) estimation methods with those
of Wang and Robins (1998) under our settings of fully noise-multiplied and mixture data.

Each of the tables discussed below is based on a simulation with 5,000 iterations and
m = 5 imputations of the noise variables generated at each iteration. We choose m = 5
because this is a fairly small number of imputations which may be conveniently used in
practice. In each of the 5,000 iterations, five independent runs of the data augmentation
algorithm, each having 50 iterations, are used to obtain the Type A imputations. Some
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exploratory analysis indicated that 50 iterations of the data augmentation algorithm
provided an adequate approximation in the chosen simulation settings. All results are
obtained using the statistical computing software R (R Development Core Team 2011).

5.1.  Fully Noise-Multiplied Data

Table 1 provides results for the case of a normal population when the parameter of interest
is either the mean w or the variance o%; and Table 2 provides results for the case of a
lognormal population when the parameter of interest is either the mean e #+0?/2 or the .95
quantile e **+1437_ For each distribution we consider samples sizes n = 100 and n = 500,
but we only display results for the former sample size. Each table displays results for
several different methods which are summarized below.

UD: Analysis based on the unperturbed data y.

NMI10UIB: Analysis based on noise-multiplied data with i(r) defined by (5), € = .10,
and using the Type B imputation method and the associated combining rules of
Wang and Robins (1998).

NMI10UIA1: Analysis based on noise-multiplied data with A(r) defined by (5), € = .10,
and using the Type A imputation method and Rubin’s (1987) combining rules with
the normal cut-off point for confidence interval construction.

NM10UIA2: Analysis based on noise-multiplied data with A(r) defined by (5), € = .10,
and using the Type A imputation method and Rubin’s (1987) combining rules with
the ¢ cut-off point for confidence interval construction.

NMI10UIA3: Analysis based on noise-multiplied data with A(7) defined by (5), € = .10,
and using the Type A imputation method and the associated combining rules of
Wang and Robins (1998).

NMIOUL: Analysis based on noise-multiplied data with h(r) defined by (5), € = .10,
and using the formal likelihood based method of analysis of Klein et al. (2013).

NMI10CIB, NMI10CIA1, NM10CIA2, NMI10CIA3, NM10CL: These methods are
defined analogously to the methods above, but A(r) is now the customized noise
distribution (23) (for lognormal data); the parameters & and & appearing in A(r) are
chosen so that if R ~ h(r), then Var(R) = (ez)/3, the variance of the Uniform
(I — €, 1 + e€) distribution with € = 0.10.

The remaining methods appearing in these tables are similar to the corresponding
methods mentioned above after making the appropriate change to the parameter € in
the referenced Uniform(1 — €, 1 + ¢€) distribution. For each method and each parameter
of interest, we display the root mean squared error of the estimator (RMSE), bias of
the estimator, standard deviation of the estimator (SD), average over simulation runs of the
estimated standard deviation of the estimator (S/]\)), empirical coverage probability of
the associated confidence interval (Cvg.), and average length (over simulation iterations)
of the corresponding confidence interval relative to the average length of the confidence
interval computed from the unperturbed data (Rel. Len.). In each case the nominal
coverage probability of the confidence interval is 0.95. For computing an estimate of the
standard deviation of an estimator, we simply compute the square root of the appropriate
variance estimator. For computing the estimator m(y) and variance estimator v(y) of
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Subsection 2.2, we use the maximum likelihood estimator and inverse of observed Fisher
information, respectively. All results shown for unperturbed data use Wald-type
inferences based on the maximum likelihood estimator and observed Fisher information.
The following is a summary of the simulation results of Tables 1-2.

1. In terms of RMSE, bias, and SD of point estimators, as well as average confidence
interval length, the proposed methods of analysis are generally only slightly less
accurate than the corresponding likelihood-based analysis.

2. In terms of coverage probability of confidence intervals, the multiple imputation-
based and formal likelihood-based methods of analysis yield similar results.

3. We consider Uniform(l — €, 1 + €) noise distributions with € = 0.1, 0.2, and 0.5,
or equivalent (in terms of variance) customized noise distributions. Generally, for
noise distributions with € = 0.1 and 0.2, the proposed analysis based on the noise-
multiplied data results only in a slight loss of accuracy in comparison with that based
on unperturbed data. When the noise distribution has a larger variance (i.e., when
e = (0.5) we notice that the bias of the resulting estimators generally remains small,
while the SD clearly increases. When the parameter of interest is the mean, the noise-
multiplied data with e = 0.5 still appear to provide inferences with only a slight loss
of accuracy compared with the unperturbed data. In contrast, when the parameter of
interest is the normal variance as in the right-hand panel of Table 1, the loss of
accuracy in terms of SD and hence RMSE appears to be more substantial when €
increases to 0.5. We refer to Klein et al. (2013) for a detailed study of the properties
of noise-multiplied data.

4. We observe very little difference in the bias, SD, and RMSE of estimators derived
under the Type A imputation procedure versus those derived under the Type B
imputation procedure.

5. In each table, the column SD provides the finite sample mean of each of the multiple
imputation standard deviation estimators (square root of variance estimators)
presented in Section 2. Thus we can compare the finite sample bias of Rubin’s (1987)
standard deviation estimator of Subsection 2.2 with that of Wang and Robins’s
(1998) standard deviation estimators of Subsection 2.3 under our setting of noise
multiplication. We find that the mean of both of Wang and Robins’s (1998) standard
deviation estimators is generally larger than the mean of Rubin’s (1987) standard
deviation estimator. From these numerical results it appears that we cannot make any
general statement about which estimators possess the smallest bias, because none of
these estimators uniformly dominates the other in terms of minimization of bias.
With a larger sample size of n = 500 (results not displayed here), we find that all
standard deviation estimators have similar expectation; this statement is especially
true for the normal case. With the sample size of n = 100 we notice in Table 1 that
the mean of Rubin’s (1987) SD estimator is slightly less than the true SD while both
of Wang and Robins’s (1998) estimators have a mean slightly larger than the true SD.
We should point out that this slight negative bias of Rubin’s (1987) SD estimator is
most likely due to the fact that the SD estimator based on the original data is itself
slightly downward-biased. In the lognormal case, for the sample size n = 100 of
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Table 2, we notice that Rubin’s (1987) estimator is nearly unbiased for the true SD
while Wang and Robins’s (1998) estimators tend to overestimate the true SD more
substantially.

6. When the customized noise distribution is available (e.g., exponential and lognormal
cases), the results obtained under the customized noise distribution are quite similar
to those obtained under the equivalent (in terms of variance) uniform noise
distribution.

7. For confidence interval construction based on Rubin’s (1987) variance estimator, the
interval based on the normal cut-off point performs very similarly to the interval
based on the 7 cut-off point.

8. The data augmentation algorithm, used by the Type A methods to sample from the
posterior predictive distribution of r, given the noise-multiplied data, appears to
provide an adequate approximation.

5.2.  Mixture Data

We now study the properties of estimators derived from mixture data as presented in
Section 3. Table 3 provides results for the case of a normal population, and Table 4
provides results for the case of a lognormal population. The parameters of interest in each
case are the same as in the previous subsection, and the top-coding threshold value C is
set equal to the 0.90 quantile of the population. The methods in the rows of Tables 3—4
are as described in the previous subsection, except that each ends with either .i or .ii to
indicate either case (i) or case (ii) of Section 3, respectively. The conclusions here are
generally in line with those of the previous subsection. Below are some additional
findings.

1. Rubin’s (1987) SD estimator in this case tends to exhibit very little bias.

2. Generally we find here that the noise multiplication methods yield quite accurate
inferences, even more so than in the case of full noise multiplication; this finding
is expected since with mixture data only a subset of the original observations are
noise-perturbed.

3. As expected, the inferences derived under the case (i) data scenario (observe (x, A))
are generally more accurate than those derived under the case (ii) data scenario
(observe only x), but for the noise distributions considered, the differences in
accuracy generally are not too substantial.

6. Further Evaluations and Extensions

6.1. Disclosure Risk Evaluation

In this section we report the results of a numerical study designed to give an indication of
the amount of disclosure protection provided by the proposed methodology. To be
specific, we determine how tightly the m draws y;»k(l), Ce y,.*(m) are centered around the
true value y;, and how well the average and median of these m draws approximate the true

value y;. We consider both the fully noise-multiplied data and mixture data scenarios.
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Case of Fully Noise-Multiplied Data. Tables 5 and 6 report the results of the numerical
study for evaluating the disclosure risk in the case of full noise multiplication. In Table 5,
f(¥10) is the lognormal density as in Subsection 4.2 with u =0, o> = 1, and the table
shows, for a few selected y; values, the corresponding z; values, and a summary of the
distribution of the associated values of yf(l), e yf(m). The z-values are shown for the
cases of the uniform noise density (5) with € = 0.1, 0.2, and 0.5; and the minimum, 1st
quartile, median, mean, 3rd quartile, and maximum of the associated values of
yf(l), A ,yf(m) are displayed for two cases: m = 5 and m = 5,000. While such a large
value as m = 5,000 may not be used in practice, we consider this large m in order to obtain
an accurate picture of the distribution of released values of yf“), e y;‘(”‘). Of course for
the case m = 5, the minimum, 1st quartile, median, 3rd quartile, and maximum are simply
the ordered values of y?(]), C ,yf(s), respectively. Furthermore, results for both the Type
A and Type B imputation methods for y*-values are shown in the table. Table 6 reports
similar results for lognormal except that instead of uniform, we use the customized noise
distribution for lognormal data as defined in Subsection 4.2, with variances matching those
of the Uniform(l — €, 1 + €) density with € = 0.1, 0.2, and 0.5. The following is a

summary of the results of Tables 5 and 6.

1. As the variation in the noise distribution A(r) increases (i.e., as € increases), the
dispersion in yf(l), . .,y:f(m) also increases. Therefore, as one would expect, the
amount of privacy protection provided by this method increases with the variance of
the noise-generating distribution.

2. Generally, even for large m, one does not recover the original y; by averaging or
computing the median of the imputed copies yf(l), RN yf(m). Usually we find that
the noise-multiplied observation z; is contained between the 1st and 3rd quartiles of
y;k(l), e y;k(m), but interestingly, the y; value may not be contained between these
quartiles. In fact, when € is small, the distribution of the y;k(l), c ,yf(m) values tends
to be concentrated around z; and not y;. However, when the noise multiplication
results in a large perturbation as in the bottom row of Table 6 where y; = 18.21 and
z; = 31.32, then we find that the distribution of y,-*(l), A ,yi*(m) is shifted downward
toward y;, yet still the original value of y; = 18.21 is not contained between the 1st
and 3rd quartiles of y,-*(l), . .,yi*(m). This finding gives some indication that the
method does provide some correction of an extreme z; value, while at the same time
does not disclose the original y; value.

3. Comparing the results of the Type A and Type B imputation procedures, we find
them to be quite similar.

4. The results for the uniform and customized noise distributions are similar, although
the uniform noise does tend to give a slightly larger interquartile range of
y;-k(”, . .,yf(m) than the customized noise, thus providing perhaps slightly more

privacy protection.

Case of Mixture Data. Table 7 reports the results of the numerical study for evaluating
the disclosure risk in the case of mixture data. The population density f (y|6) is again the
lognormal density as in Subsection 4.2 with uw = 0, o = 1, the top-coding threshold is
C = 3.60 which is the 0.90 quantile of the population density (rounded to two decimal
places), and the table shows, for three particular y; values, the corresponding x; value, and
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distribution of the associated values of yi*(l), . .,y;-k(m). In this table, the x-values are
shown for the cases of the uniform noise density (5) with € = 0.1, 0.2, and 0.5; and the
minimum, 1st quartile, median, mean, 3rd quartile, and maximum of y;k(l), e y:f(m) are
displayed for the cases m = 5 and m = 5,000. Results are shown for both cases (i) and
(i) of Section 3 and for both the Type A and Type B imputation methods. Most of the
findings here are similar to those of the case of full noise multiplication. Below is a
summary of findings from Table 7 which highlights the similarities and differences in

privacy protection between cases (i) and (ii) of Section 3.

1. The first part of the table shows results when the y-value is y; = 5.71, which is, of
course, greater than the top-coding threshold C = 3.60. It happens here that each of
the displayed noise-multiplied values is also larger than C. Therefore, based on each
of the x-values shown, we know with certainty that A; = O (that is, the conditional
probability (17) equals 0), and hence the case (ii) method will always impute this
particular A; value correctly. Here, the properties of the replications yl’f(l), R ,y;‘(”‘)
for both cases (i) and (ii) are similar to each other and similar to those noted for the
full noise multiplication case (replications not centered at y;, dispersion increasing
with €, etc.). Note that the imputations under case (i) may be of slightly higher
quality, since the estimate of @ (either posterior draw or MLE) needed to generate the
imputations may be of higher quality when based on case (i) data.

2. The second part of the table shows results when y; = 3.75, which is again greater
than C = 3.60, but each of the displayed x-values happen to fall in the interval
((1 — €)C, C). When the x-value falls in this interval, the indicator A; cannot be
determined from x; with certainty (that is, the conditional probability (17) does not
equal O or 1). Therefore, the case (ii) method will sometimes (with a probability
governed by (17)), impute A, by the value one, and hence release the noise-multiplied
data point as the y*-value. Here it is interesting to look at the € = 0.50 case where
x; = 1.94 because in this case we see a large difference between the results in cases
(i) and (ii). In case (i) we use the information that A, =0 when generating
imputations, and hence the released y#*-values are more similar to the original
y-value. In case (ii) we do not have this knowledge about the true value of A;. Since
the noise-multiplied observation is fairly small, A; is often imputed as 1 in case (ii).
Therefore, under case (ii), the noise-multiplied data point is often directly released in

the replications y?(1)7 e yf(m) and a user who sees these data would not

immediately know if the value repeated several times in the released y:-‘(l), c ,y;‘('")
was the original y; or its noise perturbed version.

3. The third part of the table shows results with y; = 3.56. In this case, the y-value is
less than the top-coding threshold C = 3.60, while each of the x-values happen to
fall in the interval ((1 — €)C, C). Therefore, the value of A; cannot be determined
with certainty from x; (the conditional probability (17) does not equal O or 1). Thus,
the case (ii) method sometimes imputes A; by 0, and in these cases the released y*
will not be equal to the original y-value, since it will be divided by a random draw
from (14). In this situation, unlike the situation described in item (2) directly above,
the value repeated several times in the replications yf(l), N yf(m) for case (ii) is
the original observation, not its noise-perturbed version. In this case, the case
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(i) method, which uses knowledge of A; = 1, always sets the released y*-value to
the true value of y.

6.2.  Comparison with Synthetic Data

The methodology developed in this article is designed to enable statistical agencies to
release privacy-protected data that can be readily analyzed by data users. The methods of
(partially) synthetic data developed in Reiter (2003) are designed for the same purpose,
and hence a comparison of our methodology with that of Reiter (2003) is in order.
A general criticism of noise multiplication is that a proper statistical analysis of noise-
multiplied data is complicated for data users. The results of this article show how to
remedy this criticism by making the analysis as simple (for the data user) as the analysis of
synthetic data (we showed that Rubin’s (1987) combining rules can be used here, and these
rules are only slightly different from those of Reiter (2003)). Since the methodology of this
article gives very similar results to the full likelihood-based analysis of noise-multiplied
data developed in Klein et al. (2013), we believe that the pertinent comparison is that of
synthetic data versus noise multiplication, assuming a valid data analysis is performed in
both cases. Such a comparison, in terms of data quality, is precisely the topic of Klein et al.
(2013). We note that synthetic data certainly has benefits, as it has been thoroughly studied
in recent years, and successfully applied to complex multivariate data sets. At the same
time, the methodology of this article can be extended to multivariate data as outlined in the
subsection below. An advantage of noise multiplication over synthetic data is that noise
multiplication allows the statistical agency to precisely control the quality of the released
data, and also the level of privacy protection, through the choice of h(r). For instance,
when A(r) is the uniform density (5), the extensive numerical results of Klein et al. (2013)
show, for some univariate parametric models, precisely how to select € so that the quality
of inferences are equivalent to, less than, or greater than, the quality of inferences derived
under synthetic data. Indeed, the ability to choose A(r) provides the statistical agency with
a very fine level of control over the data quality and privacy protection, and such an
explicit tuning mechanism is not present in standard synthetic data methodology. Further
privacy guarantees under noise multiplication can be made, for instance, by taking h(r)
to be a density such as

1

hry=——-—,ifre(l1—€6,1-9U+E1+e), 27
2(e — &

where 0 < £ < € < 1. Notice that the noise density (27) implies that the noise multiplier

ris always a distance £ away from 1, and hence we are guaranteed that the relative distance

between the original observation y and noise-multiplied observation z is |[(z — y)/y| > &

6.3. Extensions for Multivariate Data

So far in this article we assumed that the original data, y;, . . .,y,, consist of a set of
n independent random variables whose support is a subset R. In this section, we outline
an extension of our methodology to the case of multivariate and fully noise-multiplied
data. In the multivariate case, we assume that the original data consist of yi, . . .,y,,
a set of n independent k X 1 dimensional random vectors. Thus we suppose that
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Yi, - - Y0 ~ iid ~ f(y|0), independent of ry, . . ., r, ~ iid ~ h(r) where f(y|0) and h(r)
are densities of continuous probability distributions whose support is a subset of R¥. As
before, @ = (0, . . ., 6,) is an unknown p X 1 parameter vector, and now A(r) is a known
density such that i(r) = O if any component of the vector r is less than zero. Writing
yi= i, .. .,va)andr; = (ry, . . ., ri), the fully noise-multiplied data are now defined
by zi, . . .,z where z; = (zi1, - - -, 2ik) = (VitFilys - - -, YViklik), L= 1,, . . . n.
The joint density of (z;, r;) is
Zil Zik

g(ziarila) :f<7 c

il ik

k
0) h(ra, - ra) [Hr,ﬂ],
=1

the marginal density of z; is

* * [z Zik
g(zlle):J J f(_77_
0 0 Wij1 Wik

and hence the conditional density of r; given z; is

k
0)]1((1),‘17 - .,w,-k) [H w;]‘|dw,’1. . .da)l'k7

=1

f(Gi/riD), - G/ ria) | OA(rit, . .. rig) [Hllerﬁl}

5 St o, /ol Ohn, ..o |11 07 |don.. den
28)

h(ri|Zi; 0) =

The complete, observed, and missing data are defined, respectively, as
xC= {(zl7r1)7 A 'a(zll7rn)}7 x0b8= {zla A -7zn}7 xmis = {r17 . ~7rn}-

The noise vectors ry, . . .,r, are imputed m times to obtain
X0 = { <Z1,r1 j )7 3 .,(zn,r,,(-’))}

_ *(J) *(J) *(J) #(J) s __
_{(le7---7zlk)7<r1]] ;'”ar]kj )7-"7(Zn17"'aznk)a(rn1] a"'?rnkj )}7.]_17"'5’"7

and the privacy-protected data are obtained as

y*(J): {yl(j)7"'7yZ(J)}:{(yl(lj)a"'7y1](¢j))7'"?(yn(lj)?"'vyngcj))}

(29)
_{(le Zlk) <an an)} ]_1 k
—_— Tj)""’Tj‘) g ooy Tj)""’Tj) 3 —_— PICICICY .
1 Tk s Tk

The methods of Subsection 2.2 can be used to impute the noise vectors, and the methods of
Subsection 2.3 can be used to analyze the privacy-protected data given in (29).
Conceptually, the methods of Subsections 2.2 and 2.3 can be readily applied to
multivariate data. For instance, a data user wishing to draw inference about the correlation
between y;; and y;» would set Q(0) = Corr( y;1,y2|0), and apply methods of Subsection 2.3.
For the statistical agency generating the imputations, there is perhaps one extension
needed in applying the methods of Subsection 2.2, because when generating the
imputations (either Type A or Type B), instead of sampling from the univariate
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conditional density (4), we must now sample from the k-dimensional multivariate
conditional density (28). In the univariate case we used Proposition 1 to extract samples
from (4) when one takes the noise-generating density to be (5). In the multivariate case, a
generalization of Proposition 1 can be used to sample random vectors from (28), when the
noise-generating distribution is the following k-dimensional uniform density (which is a
straightforward generalization of (5)):

]’l(h,...,l‘k) ,fOI‘(?‘],...,I"k)E[l_61714—61])("')([1_Ek,]—f-Ek]7 (30)

_ 1
TokTTE
2k [ &

where 0 < €,...,6, < 1. The generalization of Proposition 1 is stated below as
Proposition 2; the proof is similar to that of Proposition 1 and hence is omitted.

Proposition 2 Suppose that f(y|0) is a continuous probability density function of a
k-dimensional distribution, and let us write f(y|0) = c(0)q(y|0) where c¢(0) > 0 is a
normalizing constant. Let M = M(0, €y, . . ., €,z) be such that

31 Tk
q{ —» - - - —
r Ik

Then the following algorithm produces a random vector (Ry, . . ., Ry) having the density

0) = Mforall(ry, ..., 1)

e[l —e,14+e]X---X[1— €1+ €l

hU(rh E -a”kler . ')Zk)a)

) a(i/r), - G /rolO)[ T 7]

Fe T o, G oolOTT o der. . do

)

for(ri, .. .,r) €[l —€, 1+ ]X--- X[l — €, 1+ €l
I. Generate U, Vi, . ..,V as independent Uniform (0, 1) and let W; = (1 + el)v’/
(1— el)vlflforl= 1,...,k
II. Accept (R, ...,Rp) =Wy, ..., W) if U=M'q((zi/W1), .. .,(z%/Wpl6),
otherwise reject the vector (Wy, . . ., W) and return to step (I).
The expected number of iterations of steps (1) and (Il) required to obtain (R, . . ., Ry) is
1
MHLI log { s e,}
1—- €]

e g@ o, - @/ o0l8) [Hllewl’l}dw] . daoy,

Remark 5. In this section we briefly outlined the multivariate extension for the case of
fully noise-multiplied data; that is, where y, . . .,y, ~ iid ~ Y and each component of Y
requires protection from disclosure. We note that the methodology outlined in this section
allows one to use different levels of privacy protection for each component of ¥ through
the choice of €y, . . ., € in (30). Other scenarios are certainly possible; for instance, it
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may be that Y = (Y, Y5, Y3) where the variable Y; must always be protected, Y, requires
protection only if it exceeds a fixed threshold C > 0, and Y3 does not require any
protection. We intend to address such issues in a future communication.

7. Concluding Remarks

There are perhaps two rigorous ways of producing privacy-protected data: multiple
imputation and noise perturbation. Klein et al. (2013) show that the likelihood-based
method of analysis of noise-multiplied data can yield accurate inferences under several
standard parametric models and compare favorably with the standard multiple imputation-
based analysis methods of Reiter (2003) and An and Little (2007). Since the likelihood of
the noise-multiplied data is often complex, one wonders if an alternative simpler and fairly
accurate data analysis method can be developed based on such kind of privacy-protected
data. With precisely this objective in mind, we have shown in this article that a proper
application of multiple imputation leads to such an analysis. In implementing the proposed
method under a standard parametric model f(y|@), the most complex part is generally
simulation from the conditional densities (4) or (14), and this part would be the
responsibility of the data producer, not the data user. We have provided Proposition 1
which gives an exact algorithm to sample from (4) and (14) for general continuous f ( y| @),
when A(r) is the uniform distribution (5). Moreover, we have seen that in the lognormal
case under full noise multiplication, if one uses the customized noise distribution, then the
conditional density (4) takes a standard form from which sampling is straightforward.
Simulation results based on sample sizes of 100 and 500 indicate that the multiple
imputation-based analysis, as developed in this article, generally results in only a slight
loss of accuracy in comparison to the formal likelihood-based analysis. Our simulation
results also indicate that both the Rubin (1987) and Wang and Robins (1998) combining
rules exhibit adequate performance in the selected sample settings. We have also reported
some additional numerical results for evaluating the amount of privacy protection offered
by the method. These results showed that one does not recover the original observation
simply by averaging the multiply imputed copies of the original value.

In conclusion, we observe that, from a data user’s perspective, our method does require
a knowledge of the underlying parametric model of the original y-data so that efficient
model-based estimates can be used to analyze the reconstructed y *-values. In this article
we assumed that the model used by the agency to multiply impute the original data,
namely f (y|@), is the same model adopted by the data user to analyze the released data.
However, in practice this may not be the case (see Meng 1994 and Robins and Wang 2000
for a discussion of possible consequences of model misspecification). In any event,
modeling by data users, if necessary, will be based on the released y “-values, and not on
the noise-multiplied z-values. It is expected that the sampling behaviors of y-values and
y “-values would be similar. This is in the same spirit as in the case of synthetic data usage
where a data user will either be informed about the original model or try to build up a
reasonable model based on the released synthetic data. We should also point out that in
practice, most data sets have a complex multivariate structure. We briefly outlined how
our methodology can be extended to multivariate data. In a future communication we
intend to investigate the robustness of the multiple imputation-based analysis to
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discrepancies between the imputation and analysis models, and to further develop the
multivariate extensions of the proposed method.

Appendix A

Proof of Proposition 1. This is a rejection sampling algorithm where the target density
hy(rlz, @) is proportional to Sireer(r) = q((z/r)|O)r ', 1 — € =r =, and the instru-
mental density is Sinse(r) = 7' /(log(y) — log(1 —€)), 1 —€ = r = v. To fill in the
details, first note that since f( y| 0) is continuous in y, it follows that ¢((z/r)| @) is continuous
as a function of r, on the interval [1 — €, y], and thus the bounding constant M exists. Then
we see that

slarget(r)
Sinste (1)

= Llog (7 — log (1~ €)lq(>10) = [log () ~ log(1 — )W, (31)

for all » € [1 — €, y]. Note that the cumulative distribution function corresponding to
Sinsu(r) 15 Sinse(r) = (log (r) = log (1 — €)/(log(y) — log(1 — €)), l —e =r =,
and the inverse of this distribution function is S| (u) = y*/(1 — €)', 0 =u=1.
Thus, by the inversion method (Devroye 1986), step (I) is equivalent to inde-
pendently drawing U ~ Uniform(0,1) and W from the density sj,(7). Since
M’lstarge[(W)/([log (y) — log(1 = )lsinse(W)) = q(z/wl|0)/M, step (1) is equivalent
to accepting WifU = M’lslarget(W)/([log (y) — log (1 — €)]sinstr(W)), which is the
usual rejection step based on the bound in (31). Finally, we use the well-known fact
that the expected number of iterations of the rejection algorithm is equal to the
bounding constant in (31) times the normalizing constant for Sgrged(r), i.€

[log(y) — log(1 — &)IM/[[|__q((z/ )| O)» ' dw].

Appendix B

Here we provide proofs of the posterior propriety of 6, given the fully noise-multiplied
data z, for normal and lognormal distributions.

Normal distribution. Here g(z|@) oc (1/0) [ exp[—((z/r) — w)?/a»)(h(r)/r)dr. Writ-
ing down the joint pdf of z1, . . ., z,, it is obvious that upon integrating out u with respect
to (wrt) the Lebesgue measure and o wrt the flat or noninformative prior, we end up with
the expression U(z) given by

—n—=8

Y 2
n _,@i/r)
UG) = JJ ;i_z_ (Z:—lnz /) h(ril): :f:r")drl. .,

where 6 = 0. To prove that U(z) is finite for any given z, note that

n Z,n: (@i/ri)’ ; 2>1 o ]’
[Z B — 22,,1< - .)—5{,—1‘72}

=172 n
for any pair (z1, z2; 1, 72), Assume without any loss of generality that z; > z,, and note that
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[(z1/r1) — (z2/r2))* = [(z1/22) — (r1/r2)]> X Z3r; 2. Then under the condition
h(r)

J —dr=K; < oo, J PO (e h(ry)drdry = Ky < 00, (32)
r r r=ry

U(z) is bounded above by
z —2(n+38)
Uz) = 2"k} 2 {—‘ - 1} U r O G h(ry)drdrs | < oo
ZZ FI=r

In particular, when R ~ Uniform(1 — €, 1 4 €), the above condition is trivially satisfied!

Lognormal distribution. Here g(z|@) oc (1/z0) [exp[—(log(z/r) — w)?/QoHh(r)dr.
Writing down the joint density of zj, . . ., z,, and putting u = log (z/r), it is obvious that
upon integrating out u wrt the Lebesgue measure and o wrt the flat or noninformative
prior, we end up with the expression U(z) given by

n —2(n+96)
U@ = J : j [Z (i — u)Z] h(r) - h(rdr - dr,
i=1

r Tn

where 6 = 0. To prove that U(z) is finite for any given z, note as in the normal case that
when z; > 7z, (without any loss of generality),

n 1 1 1 2
[; (ui — 171)2] = E,; (i — uj)2 = 5(“1 - M2)2 = 3 [log (%) — log <:_;>]

=2[=()]

for r; < r,. Hence U(z) is always finite, since fr1<r2 h(rph(ry)dridry, < oo.

Appendix C

Here we provide proofs of the posterior propriety of , given the mixture data, for normal
and lognormal distributions. We consider two cases depending on the nature of mixture
data that will be released.

Case (i): Nature of data {(x1,A1), -, (x,, A}

Normal distribution. Given the data {(x;,A}), . . ., (x,, Ay}, let Iy = {i: A; = 1} and
Io = {i: A; = 0}. Then the normal likelihood L(@|data), apart from a constant, can be
expressed as

o — w?

L(6|data) oc o " | exp —Z 552
g

i€l

((xi/c) ) — w)? .
x HJ exp(— ((‘xl/rl) ) ) h(:[)l(xi > 0)dr, | .

2
€150 20 i
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It is then obvious that upon integrating out w wrt the Lebesgue measure and o wrt the flat
or noninformative prior, we end up with the expression U (data) given by

2
(xi/¢) (in + Z(XMV,’))
U(data)zHJ I(x; > 0) Zx +Z - it icn h(r;) dr.

i€1pJ 0 i€l i€l i n Ti

—n—=a

Writing v; =x;/r; for iEly, the expression W(data)=3} X2+ ZlEIo x2/r?
— (ZE,I X + Zie,o(x,-/r,-) /n is readily simplified as [S? + S% +rs(x; — X)) 1(r + )7 !
where r and s are the cardinalities of /; and o, respectively, and (X, 57) and (Xo,S5) are
the sample means and variances of the data in the two subgroups /; and /,, respectively.

When I, is nonempty, an obvious lower bound of W(data) is S? 1/ (r + ), and if I; is
empty, W(data) = S% /n. In the first case, U(data) is finite whenever f(x' C)(h(r) /r)dr < o
for i € Ij. In the second case, we proceed as in the fully noise-perturbed case for normal
and conclude that U (data) is finite under the conditions stated in (32) except that the
bounds of r; in the integrals are replaced by x;/C. In particular, for uniform noise
distribution, the conditions trivially hold.

Lognormal distribution. Proceeding as in the normal case with u = log(x/r), and
breaking up the sum in the exponent into two parts corresponding to /; and /,, we get the
finiteness of corresponding U(data) under noninformative priors of w and o when the noise
distribution is uniform.

Case (ii): Nature of data (x, . . .,x,).
Normal distribution. Upon carefully examining the joint pdf of the data x, given by (18),
let us split the entire data into three mutually exclusive sets:

L={i:x;<0), L={i:0<x<C), Iy={i:x>C}.

It is now clear from standard computations under the normal distribution that whenever /;
is non-empty, the posterior of (u, o) under a flat or noninformative prior of (u, o) will be
proper. This is because the rest of the joint pdf arising out of I; and I5 can be bounded under
a uniform noise distribution or even under a general /(.) under very mild conditions, and
the retained part under /; will lead to propriety of the posterior. Likewise, if I; is empty
but /3 is non-empty, we can easily bound the terms in /,, and proceed as in the fully noise-
perturbed case for data in I3 and show that the posterior is proper. Lastly, assume that
the entire data fall in I,, resulting in the joint pdf L(6|data € I,) as a product of terms
of the type

(xi/¢) (x;/c)
f(xil6) +J ( |0) hr) 4. < J [f(xilﬂ)c —I—f( |0> h(”)] dr;
0 ri 0 X(1)

l 1

where x() = min (x;). Let us now carefully check the product of the above integrands
under the normal distribution, which will be first integrated wrt (u, o) under a flat or
noninformative prior, and later wrt the noise variables which we take to be iid uniform.
Obviously this product will be a sum of mixed terms of the following two types which are
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relevant to check the propriety of the resultant posterior:

n 1 Xi g
o Texp 552 Z(Xi_,U«)z‘f‘Z(;_M)

iIeJ i€J,

where J; and J, form a partition of {1,. . ., n}. It is now immediate that the terms of the
first type (standard normal theory without any noise perturbation) will lead to a proper
posterior of (u, o). Likewise, from our previous computations under the fully noise-
perturbed case, it follows that the terms of the second type will also lead to propriety of the
posterior of w and o under a uniform noise distribution.

Lognormal distribution. Proceeding as in the normal case above by replacing x/r by
u = log (x/r), we get the posterior propriety of u and o under flat or noninformative priors
when the noise is uniform. We omit the details.
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Sabine Hider, Michael Héider, and Mike Kiihne (Eds). Telephone Surveys in Europe: Research
and Practice. Berlin: Springer-Verlag, 2012. ISBN 978-3-642-25410-9, 326 pp, €139.05.

The goal of Telephone Surveys in Europe is to provide a European perspective on the
subject matter. The authors acknowledge the size and impact of American literature’s
contribution to the topic area but emphasise the distinctiveness of Europe and the need to
consider the impact of cultural differences from the USA. This provides the motivation
and key focus for the book.

The book is divided into five parts, covering: the development of telephone surveys in a
selected number of European countries; associated sampling solutions; issues around
weighting and nonresponse; data quality and finishes with recommendations. A useful
summary of the book’s contents and objectives is provided at the start of the book.

Part one of the book provides a collection of views and research evidence focused on
the development of the design and implementation of surveys across Europe. The
geographical and individual infrastructure of the respective countries covered within the
book is used as an explanation of how surveys have developed. Researchers and national
scientific institutions provide perspectives from Russia, the Netherlands, Switzerland,
Finland, Italy, Portugal and the UK.

In Chapter 1, the Russian contribution to the book provides an interesting overview of
how and why face-to-face surveys have continued to dominate in Russia, despite the rapid
expansion of landline and mobile coverage. The author cites the impact of geography,
availability of technology, political landscape and culture on dominant modes of data
collection. Consideration is given to the challenges of producing adequate samples for
telephone surveys due to landline coverage and lack of a national telephone register. While
this makes for an interesting read, it was neither apparent at whom this level of detail is
aimed nor where the information could be usefully applied.

Chapter 2 from the Netherlands was easy to read and informative. The author,
Beukenhorst, provides a clear explanation of the popularity of face-to-face interviewing
and the emergence of telephone interviewing. This provided a nice contrast to the scene set
for the previous chapter in Russia, where telephone penetration had not reached the levels

© Statistics Sweden
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of the Netherlands, and the later chapter from Finland, where attitudes to mobile phone
registration differed from the other countries presented within the book.

An interesting debate is presented by Beukenhorst around the possibility of an increase
in satisficing from those respondents who answer a mobile phone when on the move as
well as issues around associated bias. This was quite thought provoking.

The contribution from Switzerland (Chapter 3) sets out some unique country-specific
elements of telephone surveys, but in general a similar picture to that in other countries is
presented. It was reassuring to find such commonalities across countries. However, it
would have been good to see the key points from each chapter combined into a succinct
position across Europe and contrasted with the USA. There are some good points made
within part one of the book, but these are buried under detailed information that at times
feels quite repetitive.

Contributions of particular note were those from Beukenhorst around satisficing
(Chapter 2); Poggio and Callegaro’s assertion of mobile and internet access rather than
ownership as a better indicator of survey response (Chapter 6); Vicente and Reis’s
discussion of respondent distraction and multitasking when using a mobile phone and
differences in completion rates (Chapter 7).

Part two of the book is divided into three chapters that look at the difficulty of contacting
people by phone, sampling frames from a market research perspective, and mobile- and
landline-onlys in dual-frame-approaches. The aim of Chapter 8 is to determine the
potential bias caused by variations in accessibility and inclusion in telephone directories.
Social integration, political opinion and sociodemographic characteristics are considered.
The authors present a well thought-out and executed piece of research that utilises two
large Swiss surveys (the ESS and EVS) and the EVS nonrespondent survey. A measure of
the thoroughness of this work is the acknowledgement of the impact of the quality of
questions on analysis. The authors use the reliability of questions across all modes to help
inform which variables to include in their analysis; this serves as an important reminder to
the reader. The results from the analysis are clearly illustrated through a series of tables
and figures throughout the chapter.

Chapter 8 makes for an informative, well-written read that stimulates both thoughts and
questions. A reasonable critique of the strengths and weaknesses of the work is provided.
The authors provide the acronyms rather than providing the full survey title for the
surveys. It would have been useful for the surveys’ full titles to have been provided to
enable readers to find out more about these surveys to further critique this work. While the
book itself sets out to inform the methodology on telephone surveys, this chapter provides
a nice platform for the debate on mixed mode data collection.

Similarly, Chapter 9 considers characteristics of respondents, but this time in relation to
respondent mobile network connection and type of contract. The authors discuss the
sampling frames and parameters of five European countries based on market research.
This is where the book would have benefited from stronger links to earlier chapters. The
discussion around the challenges of using telephone directories and random digit dialling
is quite limited compared to some of the earlier discussions in part one of the book.

The introduction of weighting to the book begins with a discussion from Germany on
the benefits of weighting for unequal inclusion and nonresponse using a dual frame
sample. The chapter is clearly written and draws on research presented in an earlier
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chapter. Reasons behind the methodology, the process of review and refinement and final
conclusions make for an informative read.

The aim of the final part of the book is to make recommendations based on information
in earlier chapters. However, the links between the last three chapters and earlier
contributions is at times quite tenuous. Chapter 17 introduces a new concept of reciprocity
based on the author’s experimental work. This chapter links to earlier parts of the book, in
that respondent reluctance to participate in surveys is raised. However, the discussion
around this important topic is limited to the initial contact with respondents. This is
followed by a discussion around the statistical and cost-related problems of an “optimal”
dual frame approach to sampling and data quality. This chapter (Chapter 18) nicely sums
up discussions from previous chapters, although it provides a further option rather than any
firm conclusion from earlier discussions. The concluding chapter again introduces a new
dimension rather than drawing together the proceeding chapters with a detailed account of
an approach to fieldwork management.

The authors note that the book is written for “scientists and practitioners who deal with
theory and application of telephone surveys in academic and market research”. It would be
helpful if the audience for this book were clearly identified and the structure appropriately
tailored. There would also be great benefit from providing cross references between
chapters to help the flow for the reader.

There are some useful contributions in this book but it appears to be more of a
compendium of research findings. On average each chapter is approximately eight pages
in length; this does not give the sort of depth required by survey professionals. Given the
way the book is organised, it provides a useful compendium of research findings and
discussions that may be useful to “career young” professionals looking for a general
overview of telephone survey methodology.

Jayne Olney
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Telephone: 01633 456291
Email: Jayne.Olney @ons.gov.uk
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