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Evaluating Mode Effects in Mixed-Mode Survey Data
Using Covariate Adjustment Models

Jorre T.A. Vannieuwenhuyze1, Geert Loosveldt2, and Geert Molenberghs3

The confounding of selection and measurement effects between different modes is a
disadvantage of mixed-mode surveys. Solutions to this problem have been suggested in
several studies. Most use adjusting covariates to control selection effects. Unfortunately, these
covariates must meet strong assumptions, which are generally ignored. This article discusses
these assumptions in greater detail and also provides an alternative model for solving the
problem. This alternative uses adjusting covariates, explaining measurement effects instead of
selection effects. The application of both models is illustrated by using data from a survey on
opinions about surveys, which yields mode effects in line with expectations for the latter
model, and mode effects contrary to expectations for the former model. However, the validity
of these results depends entirely on the (ad hoc) covariates chosen. Research into better
covariates might thus be a topic for future studies.

Key words: Selection effects; measurement effects; back-door model; front-door model;
causal inference; opinion about surveys.

1. Introduction

Mixed-mode surveys are becoming increasingly popular for the collection of data from

general populations (De Leeuw 2005, Voogt and Saris 2005, Dillman et al. 2009b,

Vannieuwenhuyze and Loosveldt 2013). A mixed-mode survey is a survey in which data

from different sample units is collected by different (sets of) data-collection modes. These

include Computer-Assisted Personal Interviewing (CAPI), Computer-Assisted Telephone

Interviewing (CATI), Postal Self-Administered Questionnaires (Postal SAQs), or Web

Self-Administered Questionnaires (Web SAQs). The sample units can be defined either as

individual sample members in cross-sectional data, or as time points within individual

sample members in longitudinal surveys, so that each sample member is represented by

different units.

Sample units can be selected for the data collection modes in four ways. First, in a

sequential design, the modes are offered sequentially during a series of contact attempts.

Second, in a concurrent design, all the modes are offered simultaneously during the first

contact attempt and the sample members choose their preferred mode for responding.
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Third, in a comparative design, sample units are allocated to data-collection modes on

the basis of some stratifying characteristics (for example, different countries use different

modes in cross-national surveys, non-Internet households are approached by post instead

of a web questionnaire, or different modes are used during different waves in a

longitudinal survey). Fourth, in an allocative design, sample units are allocated to the

data-collection modes in an experiment-wise random manner (however, each sample

member can still choose whether or not to respond to the allocated mode).

Mixed-mode surveys are argued to have advantages over single-mode surveys because

they may produce lower selection error, that is, the error introduced by only observing a

small subset of the population instead of the entire population (De Leeuw 2005, Voogt and

Saris 2005). First, a mixed-mode survey may reduce systematic selection error (e.g.,

nonresponse error or coverage error) compared to a single-mode survey, because certain

members of the population might not be willing or able to respond to the mode used in the

single-mode survey, but might respond to an alternative mode in the mixed-mode survey. In

this case, the mixed-mode survey offers greater external validity than the single-mode survey.

Second, a mixed-mode survey might reduce random selection error (e.g., sampling error)

because some respondents may respond through a comparatively low-cost mode in a mixed-

mode survey whereas the data-collection cost per unit would be higher in a single-mode

survey. As a result, larger samples can be obtained within the same budget constraints. In this

case, the mixed-mode survey offers greater external reliability than the single-mode survey.

As a consequence of the lower selection error, mixed-mode surveys provide, on

average, samples that represent the population better compared to single-mode surveys,

and thus parameter estimates that are closer to the population parameter or have smaller

standard errors. However, it should be noted that the argument of lower selection error

starts from the assumption that people’s willingness to respond in a single-mode survey

would persist in a mixed-mode survey that includes the same mode. This assumption

might not hold in all situations because, for example, some studies observed lower

response rates in a concurrent web and postal mixed-mode design compared to its postal

only single-mode counterpart (Medway and Fulton 2012, Millar and Dillman 2011).

Nevertheless, this assumption is further considered true throughout this article and we

ignore situations where this assumption does not hold true.

Nevertheless, a necessary condition in order for mixed-mode surveys to obtain better

representing samples is a selection effect between the modes, which means that sample

units selected for the different modes differ on the variable of interest (Vannieuwenhuyze

et al. 2012). Indeed, if selection effects are absent, then an alternative single-mode design

will exist that uses the cheapest mode and provides data of equal external validity but

higher external reliability. Evaluating the advantage of mixed-mode surveys thus

primarily requires the estimation of selection effects. However, it must be noted that

selection effects alone are not sufficient, as will be discussed in Section 5.

Further, evaluating selection effects in mixed-mode data is difficult because they are

confounded with another type of mode effect: measurement effects (De Leeuw 2005,

Voogt and Saris 2005, Dillman et al. 2009b, Weisberg 2005). Measurement effects are

differences in measurement error accompanying the different data-collection modes

(Voogt and Saris 2005, Weisberg 2005). Measurement effects thus occur when the

answers given by the same respondents differ across the modes. As a consequence,
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differences between the respondents in the alternate mode groups may either be due to

differences in respondent characteristics (a selection effect) or to different measurement

of responses (a measurement effect). Measurement effects therefore not only complicate

the unbiased estimation of population parameters, but may also counteract the advantages

of selection effects with regard to data quality.

The confounding of selection and measurement effects in mixed-mode data overlaps

with a central theme of the causal inference literature (see, for example Morgan and

Winship 2009, Pearl 2009, Weisberg 2010), which offers two distinct covariate adjustment

models for disentangling selection and measurement effects and for obtaining unbiased

estimates of population parameters (Pearl 1995, 2009). The first model requires covariates

that capture selection effects, while the second model requires covariates that capture

measurement effects. To date, both models have scarcely been theoretically discussed in

literature relating to mixed-mode surveys. This article aims to fill the gap by providing a

thorough theoretical discussion of both models, including the requirements, assumptions,

advantages, and disadvantages.

The remainder of the article is structured as follows. Section 2 provides a brief

discussion of the causal inference framework, including an overview of formal definitions

of the mode effects. Section 3 provides a discussion of both covariate adjustment models

and describes the required assumptions and estimation processes. Section 4 provides

an illustration of the models using data from a survey about surveys. Section 5 finally

concludes the article with a number of important suggestions for future research.

2. The Problem of Counterfactuals

For simplicity, this article is restricted to situations with only two data-collection modes,

which we refer to as m1 and m2. Further, the article is also restricted to the estimation of the

population mean m on a variable of interest Y . Expansion into situations with more than

two modes and more complex parameters can be derived straightforwardly from the

following explanation, but may require more complex analysis frameworks.

The occurrence of measurement effects between modes means that the mode has a

causal effect on the variable of interest and that respondents would have responded

differently if different data-collection modes had been used. As a result, two potential

outcomes are theoretically defined for each sample unit in which each potential outcome

reflects the unit’s outcome on variable Y if one particular mode had been used for data

collection (Rubin 1974, Rosenbaum and Rubin 1983). In the general causal inference

literature, potential outcomes are traditionally represented on an aggregated level by two

different variables, so that each unit is represented by one data line (Holland 1986, Rubin

1974). In this article, by contrast, potential outcomes are represented on a disaggregated

level by two different data lines per unit, because such disaggregated representation better

allows for uniform definition of mode effects and model assumptions compared to the

traditional aggregated representation.

The full data thus includes two data lines per sample unit, where each unit’s first data

line reflects the potential outcome when mode m1 was used, and the second data line

reflects the potential outcome when mode m2 was used (see Table 1). The full data further

requires definition of two additional variables. First, it requires a variable D that indicates
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the distinction between the potential outcomes. This variable is further called the mode of

data collection and takes the value m1 or m2. Second, the full data requires a variable Gd

that indicates the mode for which a unit is actually selected whenever this unit is a sample

member of a mixed-mode survey with design d. This variable is further called the mode

group and also takes value m1 when the respondent answers by mode m1, and m2 when the

respondent answers by mode m2. It is important to stress that Gd is design specific. For

example, some people may prefer mode m2 over m1 in a concurrent design, but would

respond by mode m1 in a sequential design because they are unaware of the subsequent

mode m2.

Nonetheless, within observed mixed-mode data, only one data line is observed for each

respondent because, by definition, all respondents in mode group m1 complete the survey

by mode of data collection m1 instead of m2 and vice versa. Put differently, within mixed-

mode surveys, data lines where Gd and D take different values are not observed (Table 1).

For that reason, these data lines are called counterfactual (Galles and Pearl 1998,

Greenland et al. 1999), but these counterfactuals are, nevertheless, important for the

estimation of population means, selection effects, and measurement effects, as will be

shown below.

The main objective of a survey is to obtain the best possible estimate of the population

mean of the variable of interest. Ideally, the variable of interest is consistently measured

over the entire population by one particular mode, which acts as a benchmark. For

example, we can use mode m1 as the benchmark mode, because we believe mode m1 has a

negligible measurement error while mode m2 is considered to be a distorting mode. As a

consequence, the variable of interest is actually defined as ðYjD ¼ m1Þ and the population

mean is defined as mm1
¼ EðYjD ¼ m1Þ, that is, the mean outcome when the values of

all population members have been collected by mode m1. The variable ðYjD ¼ m2Þ, in

contrast, is a biased variable due to measurement error.

Using a mixed-mode design is believed to help obtain a sample that better represents the

population, because some population members would not have responded if only one

mode had been used, due to particular mode preferences or smaller possible sample sizes.

The mixed-mode design thus would provide a better estimate of mm1
. Nevertheless,

unbiased estimation of the population mean mm1
may still be difficult, because, by the law

Table 1. The full data includes two data lines per unit, one observed and one counterfactual

Unit U
Mode
group Gd

Mode of data
collection D

Potential
outcome Y

1 m1 m1 y1;m1
¼ observed

1 m1 m2 y1;m2
¼ counterfactual

2 m1 m1 y2;m1
¼ observed

2 m1 m2 y2;m2
¼ counterfactual

3 m2 m1 y3;m1
¼ counterfactual

3 m2 m2 y3;m2
¼ observed

4 m2 m1 y4;m1
¼ counterfactual

4 m2 m2 y4;m2
¼ observed

..

. ..
. ..

. ..
.
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of total expectation, it is the weighted sum of two conditional means where one mean

requires counterfactual data for estimation:

mm1
¼ mm1m1

tm1
þ mm1m2

tm2
; ð1Þ

where tg represents the unconditional probability PðGd ¼ gÞ, and mdg represents the

conditional mean EðYjD ¼ d;Gd ¼ gÞ. The conditional mean mm1m1
can be estimated from

observed mixed-mode data, but the conditional mean mm1m2
cannot be estimated without

additional assumptions because it requires counterfactual data.

Furthermore, the population mean in (1) also clarifies why the estimation of the

selection and the measurement effects is of primary interest for the evaluation of mixed-

mode data quality. The conditional selection effect on the mean is the difference between

the means of the people selected for modes m1 and m2 when all responses are measured by

the same benchmark mode m1:

Sm1
ðmÞ ¼ mm1m1

2 mm1m2
: ð2Þ

If this selection effect is zero, then mm1m2
would be equal to mm1m1

and to the population

mean mm1
. In this situation, the population mean can be estimated straightforwardly by a

single-mode design using mode m1, which means that a mixed-mode design would be

useless for increasing data quality compared to a single-mode design.

The conditional measurement effect on the mean is the difference between the means

measured by the two different modes m1 and m2 for the same people who are selected for

the distorting mode m2:

Mm1
ðmÞ ¼ mm2m2

2 mm1m2
: ð3Þ

If this measurement effect is zero, then mm1m2
would be equal to mm2m2

which can be

estimated straightforwardly from the observed mixed-mode data. Put differently, a zero

measurement effect would allow unbiased estimation of the population mean mm1
with

mixed-mode data, while a non-zero measurement effect would involve measurement bias

on the population mean estimate.

Like the population mean, neither selection nor measurement effects can be estimated

without additional assumptions because they require counterfactual data for the estimation

of mm1m2
. Indeed, the overall mode effect, which is the difference between the directly

estimable conditional means of both modes, does not provide any information about the

measurement and selection effects as it simply equals their difference, that is,

mm1m1
2 mm2m2

¼ Sm1
ðmÞ2 Mm1

ðmÞ:

Put differently, it is not clear to what extent this difference is caused by a selection effect

or a measurement effect. For that reason, selection effects and measurement effects are

said to be confounded (Morgan and Winship 2009, Pearl 2009).

3. Analysis Models and Assumptions

The previous section made clear that the evaluation of mixed-mode data and the

estimation of the population mean require estimation of mm1m2
, which cannot be estimated

directly because it requires counterfactual data. The task is to write down this mean in
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terms of quantities that can be estimated by observed mixed-mode data, but that require

analysis models with assumptions about relations between the variables. This section

discusses two possible analysis models which include covariate adjustment.

Before continuing, note that selection and measurement effects are also defined

by correlations between variables Y, Gd, and D (see Figure 1; Pearl 1995, 2009). First, Y

may relate to the mode group Gd due to unobserved common cause variables that

simultaneously affect the variable of interest and the mode group for which a respondent

is selected (as represented by curved bidirectional edges in Figure 1). The relationship

between Gd and Y thus reflects a selection effect as it implies differences in respondent

compositions between the mode groups. Second, by definition, Y is causally affected by

the mode of data collection D (as represented by straight unidirectional edges in Figure 1),

because the mode defines the measurement error in the response. The effect of D on Y thus

denotes the measurement effect between the modes.

In the full dataset, where the responses of all respondents are observed in both modes

m1 and m2, there is no relationship between D and Gd (Figure 1a) because two data lines

are theoretically defined for each respondent, one for each mode of data collection,

irrespective of the actual mode group for which the respondent is selected in the mixed-

mode survey. In the observed dataset, in contrast, the mode group Gd fully determines the

mode of administration D for every respondent (as represented by the double-lined edge in

Figure 1b) because all respondents in mode group m1 complete the survey by mode m1

instead of mode m2 and vice versa. As a result, Gd and D are equal and measurement and

selection effects are completely confounded.

One could easily proceed by either assuming a zero selection or a zero measurement

effect. A zero selection effect would mean that Gd and Y are unrelated (Figure 1c) and that

respondents are completely randomly selected for the different modes. Such random

selection overlaps with a proper experimental design and differences between both mode

groups would be caused entirely by measurement effects. Nevertheless, a zero selection

effect is not only unlikely but also unwanted as discussed in the previous section. A zero

measurement effect, in turn, would mean that D and Y are unrelated (Figure 1d), that both

modes come with equal measurement error, and that differences between both mode

groups are entirely caused by selection effects. Nevertheless, like a zero selection effect, a

zero measurement effect is very unlikely within mixed-mode surveys.

Instead of making improbable assumptions about zero selection and measurement

effects, the literature about causal inference suggests the inclusion of adjusting covariates

into the analysis model (Rosenbaum and Rubin 1983, Rubin 1974). Two types of

covariates can be distinguished, where one type controls for selection effects and the other

type controls for measurement effects (Pearl 1995, 2009). Both types are discussed in

detail throughout the next subsections, which list the required model assumptions and

show how both models allow the estimation of the counterfactual mean mm1m2
if the

assumptions hold true.

3.1. The Back-Door Model

The first analysis model with covariate adjustment involves the inclusion of a set of

covariates B, where B is argued to explain the selection effect as a common cause of Y and
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Gd (see Figure 1e). This model is called the backdoor model by Pearl (1995, 2009),

because it aims to capture ‘back-door’ correlations between the survey mode ðGdÞ and the

variable of interest (Y) which arise from common cause variables.

Nevertheless, the back-door model starts from two assumptions (Pearl 2009, Morgan

and Winship 2009). The first assumption is the ignorable mode selection assumption and

requires that B fully captures the selection effect between the modes or that Gd and Y are

Y

Gδ

D

(a) (b)

(c) (d)

(e) (f)

Measurement effect

Selection effect

Y

Gδ

D
Measurement effect

Selection effect

Y

Gδ

D
Measurement effect

Y

Gδ

D

Selection effect

Y

Gδ

D

B

Measurement effect

Y

Gδ

D
F

Selection effect

Fig. 1. Relationships between variables in mixed-mode data can be represented by causal graphs, where

straight unidirectional edges represent direct causal effects and curved bidirectional edges represent

correlations due to unobserved common causes (Pearl 1995, 2009). (a) In the full dataset, the mode group

ðGdÞ and mode of data collection (D) are independent, and no confounding between measurement and

selection effects occurs. (b) In a mixed-mode dataset, the mode group ðGdÞ and mode of data collection (D)

are equal (double line), and measurement and selection effects are completely confounded. (c) The selection

effect is zero when people are completely randomly selected for the different modes. The difference between

the mode groups then equals the measurement effect. (d) The measurement effect is zero when all modes

introduce equal measurement error. The difference between the mode groups then equals the selection effect.

(e) Back-door covariates B allow for unbiased estimation of population means by blocking or explaining the

selection effect. (f) Front-door covariates F allow for unbiased estimation of population means by blocking or

explaining the measurement effect
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independent after controlling for B (as represented by the lack of an edge between Gd and

Y in Figure 1e). If this assumption does not hold true, part of the selection effect is not

captured and the confounding problem remains. The second assumption is the mode-

insensitivity assumption and requires the absence of measurement effects on B or that D

and B are independent (as represented by the lack of an edge between both variables in

Figure 1e). If this assumption does not hold true, part of the measurement effect is

channelled through B and the confounding problem again remains. It should, however, be

noted that both assumptions cannot be empirically verified, as they refer to differences

between observable and counterfactual outcomes.

If both the ignorable mode selection assumption and the mode-insensitivity assumption

hold, it can be shown that the counterfactual meanmm1m2
can be rewritten as an expression of

quantities which can be estimated by observed data. For simplicity, let B be a discrete variable,

mdgb represent the conditional mean EðYjD ¼ d;Gd ¼ g;B ¼ bÞ, and pbjdg represent the

conditional probability PðB ¼ bjD ¼ d;Gd ¼ gÞ. The following result emerges:

mm1m2
¼

b

X
mm1m2b pb m1m2j

¼
X

b

mm1m2b pb m2m2j :

ð4Þ

The first step of (4) is an application of the law of total expectation. The second step follows

from both assumptions. Indeed, mm1m2b ¼ mm1m1b because Y ’ GdjðD;BÞ by the ignorable

mode selection assumption, and pbjm1m2
¼ pbjm2m2

because B ’ DjGd by the mode-

insensitivity assumption. As a result, implementing (4) into (1), (2), and (3) allows estimation

of the population mean, the selection effect, and the measurement effect once an appropriate

set of back-door variables is available:

mm1
¼

b

X
mm1m1b pb m1m1j tm1

þ pb m2m2j tm2

� �
;

Sm1
ðmÞ ¼

b

X
mm1m1b pb m1m1j 2 pb m2m2j

� �
;

Mm1
ðmÞ ¼

b

X
pb m2m2j mm2m2b 2 mm1m1b

� �
:

ð5Þ

Within the existing literature concerning causal inference, the back-door model

is widely known due to the seminal work of Rubin (2005, 1991, 1978, 1974).

Nevertheless, within Rubin’s framework, the ignorable mode-selection assumption is

formulated thoroughly, but the mode-insensitivity assumption is formulated less than

clearly by the mere requirement that covariates must be collected at baseline (that is

before treatment in an experimental study). As a result, within the existing literature

concerning mixed-mode survey data, the back-door model has already been widely

applied (see, for example Lugtig et al. 2011, Heerwegh and Loosveldt 2011, Jäckle

et al. 2010, Hayashi 2007, Fricker et al. 2005, Holbrook et al. 2003, Greenfield et al.
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2000), but most of these studies use sociodemographic variables as back-door

covariates. Such variables might easily be argued to be mode-insensitive, but they

might not sufficiently explain why different people are selected for the different modes

(Vannieuwenhuyze and Loosveldt 2013). Nonetheless, this issue is largely ignored

within existing studies. Future studies might therefore focus on the search for better

back-door covariates, such as paradata or survey questions asking for mode preferences

(see, for example Olson et al. 2012).

3.2. The Front-Door Model

The second analysis model with covariate adjustment involves the inclusion of a set

of variables F, where, in contrast to the back-door model, F is argued to explain the

measurement effect as an intermediate variable between Y and D (see Figure 1f). This

model is called the front-door model by Pearl (1995, 2009), because it aims to

capture ‘front-door’ correlations between the survey mode and the variable of interest

which arise from a direct causal effect of the survey mode (D) on the variable of

interest (Y).

Like the back-door model, the front-door model also starts from two assumptions

(Pearl 2009, Morgan and Winship 2009). The first is the exhaustiveness assumption and

requires that F fully captures the measurement effects between the modes or that D and

Y are independent after controlling for F (as represented by the lack of an edge between

F and Y in Figure 1f). If this assumption does not hold true, part of the measurement

effect is not captured and the confounding problem remains. The second assumption is

the isolation assumption and requires the absence of selection effects on F or that Gd

and F are independent (as represented by the lack of an edge between both variables in

Figure 1f). If this assumption does not hold true, part of the selection effect is

channelled through F and the confounding problem again remains. However, it should

be noted that as with the back-door model, both assumptions cannot be empirically

verified as they refer to differences between observable and counterfactual outcomes.

Similarly to the back-door model, if both the exhaustiveness assumption and the

isolation assumption hold true, it can be shown that the counterfactual mean mm1m2
can

be rewritten as an expression of quantities which can be estimated by observed data.

For simplicity, let F be a discrete variable, mdgf represent the conditional mean

EðYjD ¼ d;Gd ¼ g;F ¼ f Þ, and pf jdg represent the conditional probability

PðF ¼ f jD ¼ d;Gd ¼ gÞ. The following result emerges:

mm1m2
¼

f

X
mm1m2f pf m1m2j

¼
f

X
mm2m2f pf m1m1j :

ð6Þ

Once again, the first step of (6) is an application of the law of total expectation, while

the second step follows from both assumptions. Indeed, mm1m2f ¼ mm2m2f because Y ’

DjðGd;FÞ by the exhaustiveness assumption, and pf jm1m2
¼ pf jm1m1

because F ’ GdjD by

the isolation assumption. As a result, implementing (6) into (1), (2), and (3) allows

estimation of the population mean, the selection effect, and the measurement effect once
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an appropriate set of front-door variables is available:

mm1
¼

f

X
pf m1m1j mm1m1f tm1

þ mm2m2f tm2

� �
;

Sm1
ðmÞ ¼

f

X
pf m1m1j mm1m1f 2 mm2m2f

� �
;

Mm1
ðmÞ ¼

f

X
mm2m2f pf m2m2j 2 pf m1m1j

� �
:

ð7Þ

Even though the front-door model is analytically a mirror image of the back-door

model, it is hardly mentioned in the literature on causal inference and we have found no

mention to date in the literature on mixed-mode surveys. The front-door model requires

variables that explain why people respond differently in the different modes. Therefore,

front-door variables should try to measure, among other items, response burdens,

satisficing, acquiescence, or social desirability. Potential front-door variables might be

questions about, among others, survey pleasure or survey experiences (see, for example

Loosveldt and Storms 2008), or variables including information about the number of item

nonresponses or primacy and recency effects. For example, in Section 4, a question is

used about whether the respondents found answering the survey a pleasant or unpleasant

task. This variable provides results in line with expectations, even though it was selected

ad hoc because the data was not collected with the idea of using the front-door model.

The front-door model also therefore requires future research on the development and

operationalisation of better front-door covariates.

4. An Illustration Using Data from a Survey About Surveys

4.1. Data Collection

The application of the back-door and front-door models will be illustrated by using them in

connection with data from a survey concerning opinions about surveys, which was

organised in 2004 in Flanders, Belgium, by the Survey Methodology Research Group of

the Centre for Sociological Research, KU Leuven (Storms and Loosveldt 2005). The total

sample consisted of 960 Flemish people aged between 18 and 80, sampled from the

national register. A two-stage sampling procedure was used in which 48 communities

were first selected with probability proportional to size and with replacement.

Subsequently, 20 people were randomly drawn from each selected community. The

clustering within communities is taken into account in the analyses and the data is

weighted for differential nonresponse rates within the communities to preserve equal

cluster sizes. Within-cluster nonresponse is further assumed to be ignorable.

A sequential mixed-mode design was used to collect the data (Figure 2). Each sample

member was first contacted by post with an invitation to complete an enclosed paper

questionnaire. If a sample member did not return the postal questionnaire, a first reminder

was sent two weeks later and a second reminder accompanied by a new questionnaire was

sent four weeks after the first reminder. The postal survey phase lasted two months in total.

Sample members who did not return the paper questionnaire in due time were contacted by
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an interviewer at home to complete a face-to-face interview (i.e., CAPI). This face-to-face

follow-up was not made known to the sample members during the initial postal phase.

For simplicity, the analyses will only include those respondents who responded to all the

variables listed below. Only considering full responses, the initial postal phase reached a

response rate (¼ full response/total sample 2 not eligible) of 47.20%, which the face-to-

face follow-up increased to 63.04% (Figure 2). This response rate is relatively high for a

general population survey.

4.2. Variables

4.2.1. Variables of Interest

Mode effects are analysed on the means of six items, each measuring a certain dimension

of a short scale representing the respondents’ opinions about surveys (Loosveldt and

Storms 2008). These items include statements about whether surveys are useful, whether

surveys are a waste of people’s time, whether surveys stop people doing more important

things, whether surveys are boring for respondents, whether the respondent likes surveys,

and whether surveys are an invasion of privacy (Table 2). Respondents could indicate

agreement or disagreement with these statements on a 5-point Likert scale ranging from

‘completely disagree’ to ‘completely agree’. In the postal questionnaire, these answer

categories were listed horizontally in a table, but a ‘don’t know’/‘no opinion’ option was

not provided. In the face-to-face interviews, the response categories were read out by the

interviewer and presented vertically on a showcard, again excluding ‘don’t know’ and ‘no

opinion’ options. For the analyses, all items were rescaled so that high values indicate

positive opinions and low values indicate negative opinions.

Sample
N=960

Initial postal phase

Full response by post
N=447

Partial response by post
N=74

Nonresponse
N=426

Not eligible
N=13

Ftf follow-up phase

Full response by post
(after a ftf contact)

N=26

Partial response by post
(after a ftf contact)

N=8

Full response by ftf
N=124

Partial response by ftf
N=8

Nonresponse
N=211

Not eligible
N=49

Fig. 2. The survey about surveys used a sequential mixed-mode design starting with a postal phase and ending

with a face-to-face (ftf) follow-up
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The particular topic of the survey might be very likely to cause selection effects and

measurement effects on the means. First, there might be selection effects because

nonrespondents to the postal questionnaire are likely to be more negative about surveys

(Loosveldt and Storms 2008). The postal group data provide some evidence for this

expectation: the later a postal questionnaire was returned, the lower the mean opinion

score on all six opinion variables (table not included). Second, measurement effects are

also expected, because respondents interviewed face-to-face will probably tend to report

more positive opinions about surveys (Dillman et al. 2009a, Loosveldt and Storms 2008).

Indeed, the mere presence of the interviewer may lead respondents to give socially

desirable positive answers that do not reflect the respondents’ real opinions.

4.2.2. Back-Door Variables B

The back-door variables include a cross-classification of age and gender, educational

level, ownership of a personal email address, activity status, and the number of adults

(above 18 years of age), adolescents (between 12 and 18 years of age) and children (under

12 years of age) in the household. Age is divided into six categories, each spanning

a period of ten years (18-27, 28-37, 38-47, 48-57, 58-67, and 68-80). The variable

for educational level contains six categories: no qualification, primary school, lower

secondary, upper secondary, college (non-university), or university. Activity status

comprises eight categories: full-time employed, under 50% part-time employed, over 50%

part-time employed, unemployed, retired, homemaker, disabled, and ‘other’. The numbers

of other people in the household also constitute different categories: 1, 2, 3, 4, and 5 or

more adults, and 0, 1, and 2 or more adolescents or children.

These variables were chosen because they are very likely to be mode insensitive.

Measurement effects are unlikely to occur between a face-to-face interview and a postal

questionnaire on variables such as gender, age, the number of household members, or

ownership of an email address. Firm evidence for the mode sensitivity of educational level

and job-status variables is also lacking within existing literature, even though respondents

might tend to overstate their educational attainment and describe themselves as employed

when talking to an interviewer because they find these questions embarrassing (Lee and

Renzetti 1990, Tourangeau and Yan 2007).

The central question is whether these back-door variables fully capture the selection

effect on the variables of interest. Some insights can be provided by regression analysis

of the back-door variables on the mode group and the variables of interest. These analyses

Table 2. The survey about surveys includes six items/statements about surveys (Loosveldt and Storms 2008).

Each respondent could indicate agreement or disagreement with each statement on a 5-point Likert scale

(completely disagree, disagree, neither agree nor disagree, agree, completely agree)

Var. Description

Y1 ‘Surveys are useful ways of gathering information.’
Y2 ‘Most surveys are a waste of people’s time.’
Y3 ‘Surveys stop people doing more important things.’
Y4 ‘Surveys are boring for the persons who have to answer the question.’
Y5 ‘I do not like participating in surveys.’
Y6 ‘Surveys are an invasion of privacy.’
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indicate significant associations between educational level and the mode group, but no

significant associations between the back-door covariates and the variables of interest

except for the number of adults and the question about privacy (item Y6) (tables not

included). Although these associations therefore provide little evidence of possible

selection effects, they nevertheless neither prove the absence of selection effects nor prove

the capturing power of the back-door variables.

For the analyses, the set of back-door variables is transformed into one propensity

score variable (Rosenbaum and Rubin 1983, Little 1986, Little and Rubin 2002). The

respondents’ propensity scores of responding via the postal questionnaire instead of the

face-to-face interview are estimated by a maximum likelihood logistic regression model,

using the mode group as the dependent variable and the back-door variables as

independent variables. Subsequently, the estimated propensities are transformed into a

grouped variable by coarsening the propensity scores into five values determined by using

the 20th, 40th, 60th, and 80th percentiles as cut points. This coarsened propensity score

variable is further used as the back-door variable B.

4.2.3. Front-Door Variable F

As a front-door variable, a question is used which concerns the respondents’ experiences

during the survey. At the end of the questionnaire, the respondents were asked whether

they found answering the questions a pleasant or unpleasant task. The respondents could

select an answer from a 5-point Likert scale, comprising ‘very pleasant’, ‘pleasant’,

‘neither pleasant nor unpleasant’, ‘unpleasant’, and ‘very unpleasant’. The format of

this question in the postal questionnaire and the face-to-face interview was exactly the

same as the opinion about survey items. Because relatively few respondents marked

‘very pleasant’, ‘unpleasant’, and ‘very unpleasant’, the variable was dichotomised (‘very

pleasant’ and ‘pleasant’ versus ‘neither pleasant nor unpleasant’, ‘unpleasant’, and ‘very

unpleasant’).

It is very likely that the mode of data collection has a direct causal effect on responses

to the question about survey pleasure. The presence of an interviewer might intensify

a feeling of discomfort because the respondent participated although he or she did not

fully like the survey. Such a feeling of discomfort is resolved by adapting the reported

attitude towards the actual behaviour, that is, by providing a socially desirable answer.

Accordingly, the answers on survey pleasure from face-to-face respondents will be

positive and consistent with eventual participation. Survey pleasure, in turn, probably has

an effect on the reported opinion about surveys because people who report completing

the survey as a pleasant task will tend to report more positive opinions about surveys

in general.

The central question is whether this front-door variable fully captures the measurement

effects on the variables of interest. Some insights can be provided by regression analysis of

the mode group on the front-door variable and of the front-door variable on the variables of

interest. There is a significant association between the mode group and survey pleasure

(table not included). Moreover, even though the face-to-face mode includes more reluctant

population members, the face-to-face respondents report a significantly higher pleasure

compared to postal respondents. This observation may thus confirm the suggestion of

cognitive dissonance. Likewise, the associations between survey pleasure and the opinion
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items are always positive and also highly significant. These associations might thus

provide some evidence of possible measurement effects. Nevertheless, these analyses

neither prove the presence of measurement effects nor prove the capturing power of the

front-door variable.

4.3. Estimation Methods

The population means, selection effects, and measurement effects in (5) and (7) are

functions of means and proportions which can directly be estimated from the data. The

means are estimated by the SURVEYREG procedure in SAS, while the logits of the

cumulative versions of the proportions are estimated by the SURVEYLOGISTIC

procedure in SAS. These procedures take the clustered nature of the data into account as

well as the random sample size of the population subgroups (or domains; see Cochran

1977). These procedures further also provide the covariance matrices of the estimates.

The resulting estimates of the SURVEYREG and SURVEYLOGISTIC procedures are

maximum-likelihood estimates, which are known to be asymptotically normal with the

mean equal to the population parameter. The Delta method, which uses first-order Taylor-

expansions approximations (see Agresti 2002, Casella and Berger 2002, Lehmann 2001),

can then be used to derive estimates for the population mean, the selection effects, and the

measurement effects. In addition, the Delta method also provides approximate standard

errors of the population means, selection effects, and measurement effects estimates, and

proves that these estimates are also asymptotically normal.

4.4. Results

The results show remarkable differences between the back-door and the front-door models

with respect to the population mean estimates (Table 3). With the back-door model, the

means are always larger when measured by a postal questionnaire ðmpostÞ compared to

measurement by a face-to-face interview ðmftfÞ. With the front-door model, the opposite

trend is revealed. In contrast to the back-door model estimates, the front-door model

estimates are thus in line with the expectation that people represent themselves as more

positive about surveys in front of an interviewer due to social desirability bias.

Nevertheless, it must be noted that the differences between both modes are mostly small

(,0.100 on a 5-point scale).

With respect to selection effects, some differences are also found between the back-door

and the front-door models. Taking the face-to-face interview as the benchmark mode

(i.e., SftfðmÞ), the back-door model does not yield large and significant selection effects.

The front-door model, in contrast, does yield some significant negative effects. The

negative signs of these significant selection effects are also in line with expectations, as

they refer to more positive opinions of the postal respondents compared to the face-to-face

respondents. The largest selection effect is found on the item about whether the respondent

likes surveys (item Y5). This effect mounts up to 20.57, meaning that, on average,

postal respondents rate their liking of survey participation 0.57 higher than face-to-face

respondents on a 5-point scale.

Taking the postal questionnaire as the benchmark mode (i.e., SpostðmÞ), the back-door

model yields one significant negative selection effect for the item about whether surveys
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stop people doing more important things ðY3Þ, and the front-door model yields one

significant positive selection effect for the item about whether the respondent likes surveys

ðY5Þ. A positive selection effect means that people selected for the postal questionnaire are

more positive about surveys than people selected for the face-to-face survey when all data

has been measured by the postal questionnaire. The positive front-door estimate for item

Y5 is therefore again in line with expectations, because the face-to-face respondents were

nonrespondents to the postal questionnaire. The negative back-door estimate for item Y3,

in contrast, is contrary to expectations.

With respect to measurement effects, the differences between the back-door and front-

door models are even more striking. Taking the face-to-face interview as the benchmark

mode (i.e., MftfðmÞ), all back-door estimates are small and insignificant, but the front-door

estimates are highly significant and negative. Moreover, all front-door estimates are

negative and thus once again in line with expectations. Indeed, negative measurement

effects mean that people responding through a postal questionnaire would report more

positive opinions when surveyed in a face-to-face interview.

Table 3. The back-door and front-door models provide different estimates with respect to the population mean

(m), selection effects (S(m)), and measurement effects (M(m))

Effect
std.err. mftf mpost SftfðmÞ SpostðmÞ MftfðmÞ MpostðmÞ

Back-door model:
Y1 3.650*** 3.678*** 0.013 20.065 20.014 20.038

0.088 0.047 0.074 0.040 0.110 0.104
Y2 3.066*** 3.124*** 20.022 20.085 20.027 20.080

0.099 0.059 0.092 0.049 0.127 0.122
Y3 3.320*** 3.360*** 20.021 20.097* 20.053 20.065

0.094 0.054 0.103 0.045 0.141 0.111
Y4 2.991*** 3.058*** 20.068 20.065 20.038 20.095

0.094 0.052 0.073 0.043 0.113 0.112
Y5 2.660*** 3.015*** 20.155 20.066 0.180 20.401**

0.103 0.065 0.086 0.053 0.119 0.130
Y6 3.431*** 3.501*** 0.089 20.052 0.100 20.063

0.082 0.048 0.088 0.039 0.126 0.095
Front-door model:
Y1 3.678*** 3.569*** 20.119 0.073 20.146*** 0.100

0.070 0.093 0.094 0.122 0.033 0.063
Y2 3.098*** 3.034*** 20.175 0.028 20.181*** 0.033

0.089 0.106 0.125 0.141 0.042 0.073
Y3 3.348*** 3.223*** 20.153 0.076 20.186*** 0.109

0.075 0.088 0.102 0.116 0.039 0.063
Y4 3.023*** 2.928*** 20.225* 0.099 20.195*** 0.069

0.074 0.094 0.108 0.125 0.044 0.063
Y5 2.746*** 2.654*** 20.569*** 0.390** 20.234*** 0.055

0.095 0.099 0.133 0.133 0.050 0.072
Y6 3.482*** 3.361*** 20.156 0.125 20.146*** 0.114*

0.071 0.078 0.097 0.103 0.034 0.058

***: p, .001, **: p, .01, *: p, .05, the p-values refer to two-sided tests of the null-hypothesis ‘parameter¼0’.

For a description of the variables Y1 to Y6 , see Table 2.
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Taking the postal questionnaire as the benchmark mode (i.e., MpostðmÞ), the back-door

model yields one significant negative selection effect for the item about whether the

respondent likes surveys ðY5Þ, and the front-door model yields one significant positive

selection effect for the item about whether surveys are an invasion of privacy ðY6Þ. Once

again, the positive front-door estimate is in line with expectations and the negative

back-door estimate is not. Indeed, positive measurement effects here mean that people

responding in a face-to-face interview would report less positive opinions when surveyed

using a postal questionnaire.

Last, the results also show striking differences between the measurement effects

when the postal questionnaire and the face-to-face interview respectively are taken as

the benchmark mode ðMpostðmÞ and MftfðmÞÞ. This difference may point to an interaction

effect between measurement error and the mode group. People selected for the postal

questionnaire seem to have larger measurement effects between both modes compared to

people selected for the face-to-face interview.

4.5. Discussion of the Illustration

To summarise, within the data from the survey examined, there is some evidence of

selection effects between the modes, but the relevance of these selection effects may

depend on the variable of interest, the analysis model, and on which mode is taken as the

benchmark. Significant selection effects may point to a possible advantage of using mixed-

mode data collection instead of single-mode data collection. Nevertheless, this advantage

might not be guaranteed, because there is also evidence of measurement effects. These

measurement effects may counteract the advantage provided by selection effects.

In general, large differences in estimates are observed between the back-door model and

the front-door model. It should be emphasised that these differences are not caused by the

models themselves, but by the variables that are selected as back-door and front-door

covariates. It is very likely that the sociodemographic variables, which are used as back-

door covariates, lack sufficient power to explain selection effects on the variables of

interest. Further, it also remains unclear how much of the confounding of the selection and

measurement effects is reduced by the front-door covariates. Nevertheless, because the

front-door results were generally in line with expectations, the front-door covariates seem

to perform better than the back-door covariates within this illustration.

5. General Discussion

The main aim of this article was to discuss the use of back-door and front-door models

to disentangle selection and measurement effects and to estimate the population mean in

mixed-mode survey data. Within relevant existing literature, studies concerning mode

effect estimation chiefly use the back-door model, employing sociodemographic variables

to explain selection effects. However, such sociodemographic variables probably do not

meet the assumptions of the back-door model, which requires that the covariates both are

mode insensitive and fully capture the selection effects. The front-door model, by contrast,

remains largely unexplored within current literature regarding mixed-mode survey data.

This model requires covariates which are assumed to both be insensitive to selection

effects and fully capture the measurement effects between the modes.
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This article widens the focus beyond the mere theoretical discussion of both the back-

door and front-door models and aims to suggest a path for future research. Both the back-

door and front-door models are theoretically sound ways of estimating population means,

selection effects, and measurement effects, but the practical application of both models

might offer challenges because mixed-mode data fit within the framework of so-called

enriched data (Molenberghs et al. 2012). Enriched data, like, for example, incomplete

data, censored time-to-event data, random-effects models, latent classes, latent variables,

or mixture modelling, require strong and often empirically unverifiable assumptions. It is

therefore imperative to carefully assemble the broadest possible evidence for the

assumptions made in future studies on mixed-mode surveys. These future studies must,

however, take the following points into account.

First, actual research on proper back-door as well as front-door covariates is all but

nonexistent. Future research must start from other sources. A good source of candidates

for back-door covariates might be questions about mode preferences (see, for example,

Olson et al. 2012), whilst a good source of candidates for front-door covariates might be

questions about survey pleasure or survey experiences (see, for example, Loosveldt and

Storms 2008). Another possible source is paradata (see, for example, Kreuter et al. 2010)

for both back-door and front-door covariates, but unfortunately the availability of such

data might be very mode specific.

Second, the performance of back-door and front-door covariates largely depends on the

survey design and the variable of interest. Mode effect estimates depend on the survey

design through the mode group variable Gd, which is design specific. For example, the

selection effects and measurement effects in a concurrent mixed-mode design might be

different from those in a sequential design. As a consequence, different designs might

require different back-door or front-door covariates. Further, mode effect estimates

depend on the variable of interest because, for example, lower measurement effects are

expected for factual questions than for sensitive questions about opinions. Once again,

different kinds of variables of interest might require different back-door or front-door

covariates.

Third, there is a need for research on the consequences of departures from the

assumptions in both the back-door and the front-door models. Better knowledge of the

relationship between the assumptions and mode effects estimation bias might not only

help in selecting better covariates, but might also help in selecting optimal survey designs

for particular survey topics.

Fourth, even though the back-door and front-door models are presented as two separate

models, it should be noted that they can be integrated into the same analysis model. For

example, the mode-insensitivity assumption of the back-door model requires the absence

of measurement effects on the back-door covariates. Present measurement effects on back-

door covariates may, however, be captured by a proper set of front-door covariates. These

front-door covariates should not fully explain measurement effects on the variable of

interest, but only on the back-door covariates. Likewise, back-door covariates can be used

to capture present selection effects on front-door covariates and may guarantee the

isolation assumption of the front-door model. The possibility of complex models provides

additional opportunities for estimating mode effects and population means. Indeed, some

back-door and front-door covariates might not perform well when used separately, but
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may do a good job when combined into one analysis model. Nonetheless, it must also

be kept in mind that more complex models may lead to estimation and identification

problems.

Finally, it should be mentioned that in addition to the back-door and front-door models,

a third model exists which also allows for estimation of mode effects. This model makes

use of instrumental variables (Bowden and Turkington 1990, Angrist et al. 1996), but

requires more complex survey designs and does not allow for estimating all conditional

mode effects (Vannieuwenhuyze et al. 2012). Nevertheless, integration of the instrumental

variable model, the back-door model, and the front-door model may also provide

promising solutions.

Two remarks should be made in conclusion. First, this article describes the analysis of

mode effects when only two modes are involved. Nevertheless, both the front-door and

back-door models can also be applied when more than two modes are present. In that

situation, researchers can use two strategies. In the first, they calculate the selection effects

and the measurement effects between the benchmark mode and the other modes

separately. In the second, they compare the distorting modes all together at once with the

benchmark mode. This latter strategy is justified because the researcher may only be

interested in measurement by the benchmark mode, while the separate contribution of the

other modes to overall measurement bias is less important.

Second, it was stated in the introduction that the occurrence of selection effects is a

primary condition for mixed-mode surveys to be advantageous, but their occurrence is

nevertheless not a sufficient condition alone. Indeed, mixed-mode surveys involve higher

fixed costs in terms of administration and organisation. An increase in these fixed costs

might not be sufficiently compensated for by a decrease in the average cost per sample

member through using a mixed-mode design. Especially for small samples, mixed-mode

surveys might still not be advantageous over single-mode surveys even though selection

effects occur. A cost-benefit analysis comparing mixed-mode and single-mode designs

would be appropriate here. Such a cost-benefit analysis, however, first requires the

estimation of mode effects and might thus provide a good topic for future studies.
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Dropout Rates and Response Times of an Occupation
Search Tree in a Web Survey

Kea Tijdens1

Occupation is key in socioeconomic research. As in other survey modes, most web surveys
use an open-ended question for occupation, though the absence of interviewers elicits
unidentifiable or aggregated responses. Unlike other modes, web surveys can use a search tree
with an occupation database. They are hardly ever used, but this may change due to technical
advancements. This article evaluates a three-step search tree with 1,700 occupational titles,
used in the 2010 multilingual WageIndicator web survey for UK, Belgium and Netherlands
(22,990 observations). Dropout rates are high; in Step 1 due to unemployed respondents
judging the question not to be adequate, and in Step 3 due to search tree item length. Median
response times are substantial due to search tree item length, dropout in the next step and
invalid occupations ticked. Overall the validity of the occupation data is rather good, 1.7-7.5%
of the respondents completing the search tree have ticked an invalid occupation.

Key words: Job title; CAWI; occupation database; ISCO; paradata; time stamps;
respondent’s interest; respondent’s age and education; total survey dropout; validity.

1. Introduction

The increasing popularity of web surveys as a new mode of data collection has

fundamentally challenged traditional survey methodology. This article focuses on one

feature of web surveys, namely how web surveys can substitute the absent interviewer

for the survey question concerning occupations. Occupation is a key variable in

socioeconomic research, used in studies on labour force composition, social stratification,

gender segregation, skill mismatch, and many others. In web surveys the question about

occupation is judged risky, as is for example noted by Statistics Netherlands in an

exploration of the use of web surveys for their Labour Force Survey (Van der Laan and

Van Nunspeet 2009). The authors’ worries relate to, among others, breaks in the time

series in the measurement of occupations due to the use of different survey modes. They

aim to make improvements before using a web survey for their Labour Force Survey.

In September 2011, Eurostat organised a workshop on data collection for social surveys

using multiple modes, focusing on the measurement of occupations in web surveys among
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others. As in other survey modes, most web surveys use an Open-Ended Question (OEQ)

for the occupation question. Yet several drawbacks are associated with this OEQ, as will

be discussed in this article.

A unique feature of web surveys is that they allow for a closed survey question on

occupation, using a search tree and an underlying database of occupations. Despite this,

search trees are hardly used in web surveys, although recent techniques such as text string

matching, single page filtering and Application Programming Interface (API) as well as an

increasing use of multi-country surveys may favour the use of a closed survey question

in web surveys over that of an OEQ. This stresses the need for a data quality assessment

of occupation search trees in web surveys that is not available to date. This article

investigates the dropout rate, the response time and the validity of the ticked occupation in

a search tree in the continuous, worldwide WageIndicator web survey, using the World

database of occupations (WISCO) designed by the author for use in this web survey.

Section 2 reviews the ISCO international occupational classifications and the pros and

cons of the measurement of occupations in web surveys (CAWI) and in the three other

survey modes (PAPI, CATI, and CAPI). This section also details the WISCO search tree

and database of occupations. Section 3 reviews explanations for dropout rates and

response times, presents hypotheses and details the data used. The results of the analyses

concerning the dropout rates during search tree completion, the response time and

the validity of the occupation data are discussed in Section 4. The article ends with

conclusions and discussion (Section 5).

2. Reviewing the Measurement of Occupations

2.1. The ISCO Occupational Classification

A number of industrialised countries have their own occupational classifications, such

as the US, the UK, Germany, the Netherlands, and France. To facilitate cross-country

comparisons, Eurostat requires the National Statistical Offices of the EU countries to

deliver the occupation variable in their labour force data using the International Standard

Classification of Occupations (ISCO). For more than half a century the ISCO has been

issued by the International Labour Organisation (ILO), a United Nations organisation

(Hunter 2009). ISCO provides a hierarchical classification system with four levels. The

ISCO-08 update is increasingly being adopted worldwide. The European Union (2009) has

adopted ISCO-08 as its occupational classification.

In ISCO-08 job titles with the same set of tasks and duties performed by one person are

aggregated into 433 ISCO four-digit occupation units, which on the basis of similarities of

tasks and duties are grouped into three- and two-digit groups. In turn, the latter are grouped

into nine one-digit groups on the basis of four skill levels (Greenwood 2004). Although

Eurostat has gone to great effort to encourage cross-country discussions about coding

problems, an empirical underpinning of the similarity of occupation coding across

countries is still lacking. The more disaggregated the hierarchical level, the larger the

problem. Elias and McKnight (2001) identify several problems in multi-country datasets

and call for the harmonisation of survey questions, the adoption of common coding

procedures and a common understanding of the conceptual basis of ISCO, in particular its
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skill concept. They stress the need to undertake studies for validity testing of occupations

measurement. Apart from the Eurostat discussion platform for National Statistical Offices,

hardly any cross-country studies have investigated whether similar job titles are coded into

the same ISCO-08 four-digit level.

2.2. The Open Response Formats in PAPI, CATI, CAPI and CAWI

Many socioeconomic surveys, such as Labour Force Surveys (LFS) and Censuses, include

a question “What is your occupation?”, “What kind of work do you do?” or similar, using

either an open or a closed response format. Both formats can be used in all four survey

modes, but the Open-Ended Question (OEQ) is most often used. Ganzeboom (2010, p. 7)

advises using the open format, “because occupations are complicated”. Compared with the

variables education and industry, which are also mostly asked in an open response format,

the measurement of occupations is problematic given that in many countries the stock of

job titles may exceed 100,000 and that the occupational distribution has a very long tail,

challenging the number of categories in a coding index or lookup database. For example,

the state of Texas, USA, reported over 500,000 job titles in its job evaluation system

(Tippins and Hilton 2010). In the OEQ respondents report their job titles as they like,

implying that the data collector has to code the job titles according to a national or

international occupational classification. CAPI and CATI allow for field and office coding,

but PAPI and CAWI have to rely solely on office coding. (Semi-)automatic indexes can be

used to assign occupational codes.

The response to the occupation OEQ varies largely. Respondents tend to report their

job title in great detail, as they know it from their employment contract, a job evaluation

scheme, or a common understanding in the workplace, but they may also report highly

aggregated categories, such as ‘clerical worker’ or ‘teacher’, or unspecific categories, such

as ‘employee of department X’ or ‘senior supervisor’. In CAPI or CATI interviewers will

prevent ambiguous, crude or overly detailed responses, but in PAPI and CAWI this is

not the case. In CAWI the share of inadequate answers may be even larger than in PAPI,

taking into account the habit of web visitors to key in whatever they like. Ganzeboom

(2010) suggests coding crude titles in ISCO one- or two-digits, using trailing zeroes. He

concludes that office coding can lead to substantial percentages of unidentifiable responses

and to data at various levels of aggregation. This is confirmed in the World Values Survey,

a predominantly postal survey using office coding for the occupation variable. Its 1999

data for Belgium, the Netherlands, and the UK, selecting only respondents with

employment status employee or self-employed, reveals that for Belgium the occupation

variable is coded only at ISCO88 two-digit and for the Netherlands and the UK also

at three- and four-digit (two-digit: NLD 5%, GBR 8%; three-digit: NLD 22%, GBR 26%;

four-digit: NLD 72%, GBR 59%; missing BEL 2%, NLD 1%, GBR 6%). Hence the

measurement of various levels of aggregation is a much larger problem than the missing

values. Note that the data of the unemployed, who are more likely not to be able to report

an occupational title, have been excluded in these percentages. In the World Values

Survey in Belgium the occupations of the unemployed are coded at two-digit, whereas for

the Netherlands and the UK the question is not considered applicable for this group.
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Against the backdrop of the wide variety of job titles as well as the occupational

dynamics and the organisation specificity of job titles, it is not surprising that Elias (1997)

concludes that office coding of occupations is an inexact process. Similarly, Eurostat

(2009) states that inconsistencies are large for variables that require codification, such as

occupations. In an analysis of the misclassification of occupation descriptions in the US

Current Population Survey, Conrad and Couper (2008) find that the longer the occupation

description, the less reliably it is coded. Thus a number of arguments call for an

exploration of alternatives to the OEQ format.

2.3. The Closed Response Formats in PAPI, CATI, CAPI and CAWI

In a closed response format question, a tick list offers respondents a choice of occupational

titles for self-identification. This method can be used in all four survey modes. However,

in CATI the choice is limited to 5-7 categories that are inevitably highly aggregated.

Otherwise the respondents will not remember all items. PAPI allows for a choice of at

most 50 categories, because otherwise the printed questionnaire would exceed a

reasonable length. CAPI allows for slightly more categories when using show cards.

A limited set of choices may result in lower data quality, because it is difficult to assure

consistency in how respondents fit their own job titles into the highly aggregated

categories, introducing aggregation bias (De Vries and Ganzeboom 2008). This calls for a

decomposition of the task, as has been proven to lead to better judgements (Armstrong

et al. 1975).

CAWI allows for an almost unlimited choice of occupational titles. To navigate through

a large look-up database, a search tree with two or three steps is needed. This so-called

multipage filtering is a convenient way to collect data if a variable has too many possible

values to be presented on a single page (Funke and Reips 2007). For quite some years

now, job sites have used search trees to help web visitors to identify an occupation.

In CAWI, an extended search tree is advantageous because aggregation bias and

aggregation heterogeneity are prevented and unidentifiable; ambiguous or crude

occupational titles are absent. In addition, search trees can easily be applied in multi-

country and multi-language surveys, allowing for cross-country comparisons of highly

disaggregated occupational data while ensuring comparable survey operations. However,

a disadvantage of search trees is that they are cognitively demanding and time-consuming,

as will be discussed later.

2.4. The Web Survey’s Occupation Question

This article analyses the occupation data from the volunteer WageIndicator web survey

on work and wages, designed by the author (Tijdens et al. 2010). The survey is posted on

the national WageIndicator websites (www.wageindicator.org). These websites consist of

job-related content, labour law and minimum wage information, and a free Salary Check

presenting average wages for occupations based on the web survey data. The websites

receive millions of visitors because of their collaboration with media groups with a strong

internet presence. The first website and its web survey started in the Netherlands in 2001,

expanded to other EU member states from 2004 onwards, included countries outside the

EU and in other continents from 2006 onwards, and is operational today in 70 countries
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in five continents. In return for the free information provided, web visitors are invited

to complete the web survey with a lottery prize incentive. The web survey takes

approximately ten minutes to complete. Each web survey is in the national language(s) and

adapted to the peculiarities of the country. In 2010, 417,137 web visitors started and

134,960 completed the survey, hence a dropout of 68%.

In 2010, the web survey has 22 pages. Page 1 of the WageIndicator web survey asks

a question about employment status. The main options are employee, self-employed, and

unemployed. Pages 2a and 2b ask a few questions of respondents with and without a

job respectively. Page 3 asks about region. On pages 4-6, respondents self-identify their

occupation by means of a three-step search tree allowing them to navigate through the

WISCO multilingual database of occupations with more than 1,700 occupational titles

(one page per step). The database details occupations with a greater precision than

ISCO-08 four-digit by adding further digits. The closed response format is preferred over

an OEQ with office coding. Apart from preventing aggregation bias and aggregation

heterogeneity, an OEQ would have required a continuous and costly coding effort for

the 70 countries given the large numbers of observations. The long-term experience with

the web survey has revealed that respondents like to specify their occupational title, for

example supervisor, senior, junior, trainee and similar. To satisfy these respondents, page 7

has a radio button question with these extensions and an OEQ where respondents are

invited to add additional text about the occupational title ticked in the search tree. This text

data is analysed in Subsection 4.2.

The WISCO database aims to facilitate respondents’ easy but valid self-identification

of their job title. To do so, the 433 units in the four-digit ISCO-08 classification are

certainly too aggregated. A disaggregated list has to optimise between the demand to

include as many occupational titles as possible to facilitate valid self-identification and the

demand to be as brief as possible to reduce reading time. In WISCO, the aggregation level

of occupations is defined as follows: “An occupation is a bundle of job titles, clustered in

such a way that survey respondents in a valid way will recognize it as at their job title; an

occupation identifies a set of tasks distinct from another occupation; an occupation should

have at least a not-negligible number of jobholders and it should not have an extremely

large share in the labour force” (Tijdens 2010, p. 16). Following this definition, broad

occupational titles with large numbers of jobholders, such as clerk, teacher or nurse, are

broken down into disaggregated occupational titles. Where needed, some occupational

titles include a reference to industry or firm size, because the occupational coding does

not use auxiliary variables. Similarly, handicraft workers have been distinguished from

comparable manufacturing workers. For unskilled occupations, broad occupational titles

have been preferred, because job holders may perform several jobs in a short period. From

the next sections it can be concluded that the database of 1,700 unique occupational titles

is sufficiently detailed for the vast majority of respondents in a multi-country survey.

To navigate through the database, WISCO has a three-step search tree based on a

clustering of related occupations. The search tree’s first step consists of 23 items, using a

mixture of broad occupational groups and industry groups, such as ‘Agriculture, nature,

animals, environment’ or ‘Care, children, welfare, social work’. The second step specifies

the ticked item in the first step and the third step presents the list of occupations related to

the choice in the second step. Approximately one fourth of the occupations can be found
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through multiple search paths. Screenshots can be seen in Figure. 1, showing that in each

step the list of occupations is sorted alphabetically. Due to technical constraints, the web

survey uses a one page per step approach with back-and-forth buttons.

All occupational titles in the WISCO database are coded according to the four-digit

ISCO-08 classification with follow-up numbers. In reverse, all ISCO-08 four-digit

occupational units have at least one entry in the WISCO list of occupations. ISCO-08

has 27 residual (‘not elsewhere classified’) units, which are useful for office coding but

problematic in the case of self-identification. This problem has been solved by rephrasing

all 27 residual occupation units as ‘Occupational unit X, all other’ and sorting them at the

bottom of the appropriate third step of the search tree, assuming that respondents have read

all occupational titles in that particular step before deciding to tick the residual occupation.

For the multi-country WISCO database, translations by national labour market experts

have been preferred over translations by professional translators. The wording of the

occupational titles is kept brief, easy to understand, and hopefully unambiguous. Thus the

singular is preferred over the plural and beekeeper over apiarist. No different male and

female occupational titles have been used, apart from some countries where this was

considered necessary. Synonymous titles are not included as these might confuse

respondents. If national experts indicated that two distinct occupational titles were not

considered distinct in their country, one occupation was removed from the country list.

During the preparation of ISCO-08, the main discussions concerned the skill levels

assumed with the ISCO one-digit codes (Elias and Birch 2006). In the WISCO country

lists of occupations, this skill ambiguity is solved by adding skill requirements to the

occupational titles, when known and applicable. For example in Germany, the ‘Archivar/

in, Diplom (FH)’ has been distinguished from the ‘Archivar/in, Diplom (Uni)’ and the

‘Archivar/in, Fachschule’. Skill requirements have been added when national experts

Fig. 1. Screenshots of the pages 4-6 in the occupation survey question in the web survey; note that this figure

does not show the full list of 23 entries in Step 1 of 3. Source: WageIndicator Survey, UK
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indicated a need for it. This turned out to be only relevant in countries where the

educational system and the job market are firmly intertwined.

3. Dropout Rates and Response Time

3.1. Explanations for Dropout and Response Time

Given all the efforts to design a database of occupations and a search tree for respondents’

self-identification in a web survey, it is certainly important to ask what the response times

and dropout rates are, and which theories can explain these outcomes. In addition, how

well does the search tree allow respondents to identify their job title as an occupational

title from the list, according to the comments posted in an OEQ following the search tree?

This section reviews the theoretical explanations and the related hypotheses.

High dropout rates are a major shortcoming of web surveys, threatening data quality.

Many studies on dropout rates have been related to the use of progress indicators (e.g.,

Kaczmirek 2009; Callegaro et al. 2011), but some studies have detailed the impact of

respondents’ characteristics and survey characteristics on dropout. Dropout is a problem

when it is systematic. This might be the case when survey questions are suboptimally

formulated, the questionnaire is too lengthy, or other item and survey characteristics are

poor (Reips 2002). The support for the interest hypothesis is in line with the findings of

Heerwegh and Loosveldt (2006) that personalisation has a significant effect on the

probability of starting the web survey and on the probability of reaching and submitting

the final web survey page. Galesic (2006) finds in addition that the lower respondents

experienced the overall survey burden, the lower the dropout risk. Pages that required

more time to complete were followed by dropout more often. Using the German

Longitudinal Election Study, Blumenstiel et al. (2010) find that dropout is a function of

both respondents’ characteristics and page characteristics. Dropout rates are higher for

respondents with a lower level of education and in the case of open ended questions. In

summary, the length of the questionnaire items, the respondents’ level of education and

interest in the topic of the questionnaire influence dropout.

Response time has been the subject of increased attention in the survey methodology

literature over the last decade. Following the model for analysing survey response

proposed by Tourangeau et al. (2000), Yan and Tourangeau (2008) explain response time

in web surveys through question complexity and respondents’ working memory capacity.

They apply a cross-classification model for data from four web surveys in the USA with

27-61 questions. Concerning question complexity, the findings indicate that response

times are longer when there are more clauses in a question, more words per clause, larger

numbers of answer categories, and more factual and attitudinal questions compared to

demographic questions. For respondents’ working memory capacity, the authors conclude

that the response time is longer for less educated respondents, for older respondents,

and for respondents without previous web and survey experience. This is in line with

Malhotra’s (2008) finding that older respondents take significantly more time to complete

a questionnaire. A recent body of knowledge focuses on the impact of question clarity

on data quality, including response time. For example, investigating how easily and

consistently respondents understand text features in survey questions, Lenzer et al. (2010)
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show that the overall effect of seven text features on total response times is highly

significant.

This leads us to explore three hypotheses:

Hypothesis 1: We expect that the dropout rates in the occupation search tree are

affected by the length of the questionnaire items, operationalised as the

number of characters to be read in previous steps of the search tree, and

by the respondent’s interest in the occupation question, operationalised

as the relevance of the question for employed, self-employed and

unemployed respondents.

Hypothesis 2: We expect that the response time in each step of the search tree is

affected by the search tree item length, the respondent’s valid self-

identification, the respondent’s dropout in the next step, and the

respondent’s interest, age and education.

Hypothesis 3: We expect that the total survey dropout after the search tree is affected

by the response time in the search tree, the respondent’s valid self-

identification, and the respondent’s interest, age and education.

3.2. Data

For the analyses, a new dataset has been compiled, derived from the 2010 second quarter

WageIndicator web survey in the United Kingdom, Belgium (Dutch), Belgium (French) and

the Netherlands. These were the most recent data available at the time of the study. The

choice of the three countries was related to the author’s language capacities, needed to

investigate the respondent’s valid self-identification. The new dataset is compiled as follows.

. The web survey contributes data about the ticked items in the 1st, 2nd and 3rd step of

the occupation search tree, and the variables employment status, educational level,

age, and search tree and total survey dropout.

. The web survey contributes the text that respondents have keyed into the open question

following the search tree. The author has coded these responses and the results are

shown below. From this data a variable called ‘wrong match’ is derived, indicating that

respondents have keyed in an occupation in the open question other than that ticked in

the search tree to identify the validity of the respondent’s self-identification.

. The paradata contributes the time stamp for the start of the survey and three time

stamps for completion of the 1st, 2nd and 3rd step of the search tree; note that the

paradata measures the server-side time stamps, that in case of back-and-forth clicking

only the latest time stamps are recorded and that the number of back-and-forth clicks

is not recorded.

. The WISCO occupation database contributes the number of characters including blanks

and commas in the most efficient search paths for each ticked item in the 2nd and 3rd step,

assuming no further reading once respondents have identified their occupations; note that

the number of characters read due to back-and-forth clicking is not included.

The total number of observations is 24,811 respondents at the start of the survey, of which

22,990 have completed the survey questions before the search tree and 18,824 have

completed the search tree (Table 1). The large majority of respondents are based in
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the Netherlands, while smaller groups are from the UK and Belgium. Table 1 provides the

descriptive statistics concerning the personal characteristics of respondents. Note that

the survey question concerning employment status is asked preceding the search tree,

and that age and education are asked in pages following the search tree. Table 1 shows

that between 4 and 11% of the respondents are unemployed, mean age varies around

34 years, about one fifth is highly educated and one sixth has a low level of education.

4. Findings

4.1. Explaining Dropout Rates During Search Tree Completion

What explains the dropout rate in the occupation search tree? Table 2 shows that

the dropout rates in the 1st step of the search tree across the four country/language

Table 1. Means of respondents’ employment status and their education and age in four country/language

combinations

UK
Belgium
(French)

Belgium
(Dutch) Netherlands N

Employee Status
Employee 0.90 0.88 0.89 0.83 22,990
Self-employed 0.06 0.05 0.04 0.06 22,990
Unemployed 0.04 0.07 0.07 0.11 22,990

Age 35.6 33.2 34.4 35.9 13,194

Education level
Low education 0.14 0.17 0.12 0.10 11,449
Middle education 0.67 0.60 0.70 0.66 11,449
High education 0.19 0.23 0.18 0.24 11,449

N at entry search tree 1,611 1,515 2,278 17,586 22,990

Source: WageIndicator survey, Belgium, UK, Netherlands, 2010 second quarter.

Table 2. Percentages dropout in the three steps of the occupation search tree and percentages employees,

self-employed and unemployed, by country/language combination

UK
Belgium
(French)

Belgium
(Dutch) Netherlands

N at start survey 1,808 1,720 2,473 18,810
Dropout page 2 5.8% 7.3% 4.8% 4.6%
Dropout page 3 5.1% 4.6% 3.1% 1.9%
Dropout page 4 – occ Step 1 9.2% 10.5% 10.4% 14.0%
Dropout page 5 – occ Step 2 3.9% 2.4% 3.0% 2.3%
Dropout page 6 – occ Step 3 6.0% 3.0% 4.1% 4.2%
Dropout page 7 till end survey 38.1% 45.9% 37.2% 47.8%
Reached end survey 31.9% 26.2% 37.5% 25.2%

Total 100% 100% 100% 100%

Source: WageIndicator survey, Belgium, UK, Netherlands, 2010 second quarter (N¼24,811 observations at start

of survey).
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combinations vary between 9 and 14% and in the 2nd and in the 3rd step between 2 and

6%. Hence, almost one in five respondents drop out during search tree completion and

more than half of them do so in the 1st step. The table also indicates that the search tree

causes approximately one third of total survey dropout. In Hypothesis 1 it is assumed that

the dropout rate is dependent on the number of characters read in the most efficient search

path and on respondents’ interest in the occupation question. Table 3 shows that the

number of characters read in the three steps ranges between a minimum of 62-72 and a

maximum of 2,543-3,215 in the four combinations.

Binary logistic regression analysis is used to investigate dropout probabilities in each

step of the search tree (Table 4). In Step 1 of the search tree, being employed or self-

employed lowers the odds ratio of the dropout probability substantially with 88% and

90%, respectively, compared to the reference group of unemployed. In Step 2 and 3 no

significant employment status effects are noticed. Hence the dropout of the unemployed

respondents occurs in the 1st step of the search tree. By definition the number of characters

read in the 1st step is not available and thus not investigated. In the 2nd step no effect of the

number of characters read on the dropout is identified, but in the 3rd step a substantial

effect is found. The number of characters in the 1st and 2nd step increases the odds ratio of

the dropout probability with 0.1% and 0.2% respectively for each character read. So, for

example, if the text string has 100 additional characters the dropout rate at Step 3 increases

Table 3. Descriptive statistics of the number of characters read in Step 1, Step 2 and Step 3 of the search tree,

by country/language combination. IQR ¼ Inter Quartile Range, SD ¼ Standard Deviation.

N Min. Max. Median IQR Mean SD

UK

# characters read in Step 1 1,415 41 742 408 371 416.6 195.9

# characters read in Step 2 1,334 4 307 50 65 65.4 56.3

# characters read in Step 3 1,215 8 1760 133 195 201.9 235.8

# characters read in Step1þ2þ3 1,215 72 2543 644 343 676.8 316.5

Belgium (French)

# characters read in Step 1 1,297 43 824 309 434 366.8 239.8

# characters read in Step 2 1,246 4 305 82 96 100.7 68.9

# characters read in Step 3 1,189 6 2378 154 238 241.8 260.6

# characters read in Step1þ2þ3 1,189 62 2705 622 471 708.4 350.9

Belgium (Dutch)

# characters read in Step 1 1,968 46 826 300 435 355.0 241.6

# characters read in Step 2 1,883 6 283 79 94 89.1 61.4

# characters read in Step 3 1,768 6 2411 151 230 236.1 279.9

# characters read in Step1þ2þ3 1,768 67 3196 599 510 675.2 375.1

Netherlands

# characters read in Step 1 14,846 46 839 313 500 379.0 258.8

# characters read in Step 2 14,363 6 283 73 102 88.6 65.4

# characters read in Step 3 13,564 6 2456 153 214 227.4 253.9

# characters read in Step1þ2þ3 13,564 63 3215 625 505 690.0 362.1

Source: WageIndicator survey, Belgium, UK, Netherlands, 2010 second quarter
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10 plus 20%. Country controls have been included, but Table 4 reveals that country hardly

influences dropout, except for the UK in Step 3. In conclusion, these results confirm

Hypothesis 1. The dropout rates in Step 1 of the search tree are influenced by the

respondent’s interest and in Step 3 they are affected by the search tree item length.

4.2. Explaining Response Time During Search Tree Completion

Hypothesis 2 asks whether the response time in each step of the search tree is related to the

search tree item length or to the respondent’s valid self-identification, dropout in the next

step and respondent’s characteristics. To test Hypothesis 2, the response times for each

completed step in the search tree have been derived from the server-side time stamps.

Unfortunately, no time stamps are available for the last question before the start of the

search tree, hence no response time could be computed for Step 1. The response times

are measured in rounded seconds with a minimum of one second. Because response times

are skewed, the values have been normalised by taking their natural logs, following

discussions by Fazio (1990). Extreme outliers have been deleted by removing the

0.1% values in the long upper tail of the distribution. Table 5 shows that for the four

country/language combinations, the median response times are between 10 and 13 seconds

for the 2nd step and between 13 and 16 seconds for the 3rd step.

To measure respondent’s valid self-identification a ‘wrong-match’ indicator was

developed, based on the OEQ on survey page 7 asking if respondents want to add

additional information about the occupational title ticked in the search tree. In total, 4,020

respondents have keyed in relevant text in the OEQ (22.6% of the 17,782 who completed

the 3rd step of the search tree). Relevant text is defined as text that includes at least two

letters and is not a ‘no’ response to the question. Particularly in Belgium, this percentage is

relatively high (29.6% for BE(French) and 50.4% for BE(Dutch)), whereas it is almost

equal for the Netherlands and the United Kingdom (18.9% and 16.7% respectively). The

Table 4. Effect of employment status and number of characters in the search tree on the probability of dropping

out during search tree completion (0¼no dropout, 1¼dropout)

Step 1 Step 2 Step 3
Odds ratio Odds ratio Odds ratio

# characters in Step 1 (41–839) 1.000 1.001***
# characters in Step 2 (4–307) 1.002***
Employee1 .123*** 1.054 1.137
Self-employed1 .097*** .790 1.193
Country UK2 .991 1.345 1.524***
Country Belgium (French)2 1.065 .845 .724
Country Netherlands2 1.229* .763 1.004
Constant .792* .032*** .030***

22 Log likelihood 16805.52 5401.84 7771.6
N 22,990 19,524 18,824

Source: WageIndicator survey, Belgium, UK, Netherlands, 2010 second quarter

Reference categories: 1 Unemployed individuals; 2 Country Belgium (Dutch)

Significance levels: *** p, .001, ** p, .005; * p, .010
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author has compared the ticked occupational title and the answers in the text box, resulting

in a classification in six categories (Table 6). The category ADDITIONAL includes either

extended task descriptions or refers to composite jobs. An example is: ‘I am a secretary

with HR tasks’. Most text items fall into this category, demonstrating that the occupational

boundaries are not as distinct as the search tree and the occupational classification assume.

This problem could be solved by facilitating a second choice in the search tree.

An example of 50% MATCH is when the ticked title is ‘civil servant in a municipality’

and the text box states that the respondent has a clerical job. An example of IRRELEVANT

is ‘I like my job but not my boss’. The category GENERAL is used particularly in Belgium,

where respondents refer to the distinction between blue and white collar workers, which

is relevant in this country. The category WRONG reveals that the text includes another

occupation than the one ticked in the search tree, thus a wrong match between the search

tree data and the text question. The WRONG responses are not equally distributed over

the occupational titles in the search tree. The four titles with the most frequent WRONG

answers are ‘Craft or related worker, all other’, ‘Paramedical practitioner, all other’,

‘Process controller, all other’, and ‘Sales representative’. Similar to the ‘not elsewhere

classified’ occupations in office coding, in search trees in web surveys the category ‘all

other’ fills easily. For these four occupations, the search paths in the occupation database

need revision. In total 7.5% of OEQ respondents or 1.7% of respondents with a valid

response on the search tree could not identify their occupational title.

OLS regression analysis has been applied to investigate the response time, measured in

log seconds, in Step 2 and in Step 3 (Table 7). Model 1 estimates response time without

education and age and Model 2 does so with education and age. Two models are used

because the number of observations is higher for employment status (asked on page 1) than

for education and age (page 10) due to dropout during survey completion. The results

confirm Hypothesis 2. The response times in Steps 2 and 3 are indeed influenced by the

search tree item length: response times are significantly longer when more characters have

Table 5. Descriptive statistics of the response time in seconds for Step 2 and Step 3 in the search tree

N Minimum Maximum Median (IQR) Mean (SD)

UK
Response time Step 2 1,330 1 210 10 10 15.2 16.6
Response time Step 3 1,211 1 269 13 14 18.3 19.6

Belgium (French)
Response time Step 2 1,242 1 204 13 11 17.4 18.2
Response time Step 3 1,179 1 206 16 16 20.5 19.8

Belgium (Dutch)
Response time Step 2 1,887 1 187 11 10 16.7 18.2
Response time Step 3 1,762 1 235 14 14 19.6 21.9

Netherlands
Response time Step 2 14,321 1 223 11 10 16.1 16.6
Response time Step 3 13,510 1 287 14 13 19.0 20.9

Source: WageIndicator survey, Belgium, UK, Netherlands, 2010 second quarter
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to be read. For every additional character read in Step 2, the response time in Step 2 is

0.2% larger in both models. For every additional character read in Step 3, the response

time in Step 3 is 0.1% larger in both models. This effect is hardly noticeable for the

number of characters read in Step 1 affecting the response time in Step 2 and in Step 3, and

it is not noticeable for the number of characters read in Step 2 affecting the response time

in Step 3. The results also show that for the respondents who drop out in Step 3 the

response time in Step 2 is 17% higher, which is in accordance to the findings on the

dropout probabilities in the previous section. Finally the results show that the ‘wrong-

match’ respondents need substantially more time in both Step 2 and Step 3, as their

response time is 22% and 27% larger respectively (Model 1).

In contrast to expectation, Table 7 shows that the response time is not influenced by the

respondent’s interest in the occupation survey question: no significant difference between

the employed, self-employed and unemployed is found in any of the four models. It makes

sense that the unemployed are more likely to drop out in the 1st step, but if they do not,

there are no obvious reasons for why they would need more response time. As expected,

response times are significantly influenced by respondents’ age and educational

characteristics: the less educated need more time in Step 3, the highly educated need

less time in Steps 2 and 3, and for every additional year of age respondents need 7% more

time in Steps 2 and 3. The analyses are controlled for country, revealing that only

respondents in Belgium(French) need more time to complete Step 3.

Table 6. The categories and frequencies of responses to the OEQ question on occupation compared to the ticked

occupation

Match category Explanation
% of valid OEQ
after search tree

% of valid
response in
search tree

PERFECT Text and ticked occupational
title are similar

3.6 0.81

ADDITIONAL Text provides additional
information to ticked
occupational title

69.7 15.8

50% MATCH Text indicates that ticked
occupational title is not wrong,
but the search tree has better
alternatives

13.5 3.1

IRRELEVANT Text is irrelevant given ticked
occupational title

4.8 1.1

GENERAL Text refers to an aggregated
occupational title compared
to ticked occupational title

0.9 0.2

WRONG Text indicates that ticked
occupational title is wrong

7.5 1.7

100 22.6

(N ¼ 4,020) (N ¼ 17,782)

Source: WageIndicator survey, Belgium, UK, Netherlands, 2010 second quarter
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These results confirm most of Hypothesis 2. The response time increases with search

tree item length, with next-step dropout, with invalid self-identification, with higher age

and lower education, but it is not affected by employment status.

4.3. Explaining Survey Dropout from Search Tree Response Time

Six to seven in ten respondents do not complete the survey (Table 2). Hypothesis 3

assumes that the total survey dropout is influenced by the search tree response time and

valid self-identification, as well as by the respondent’s interest, age and education. Table 8

holds the results of a binary logistic regression analysis on the survey dropout for the

respondents who have completed at least the search tree on page 6 (Model 1) and the

education question on page 10 (Model 2).

Both models reveal that the time-consuming search tree does not influence total survey

dropout. Obviously, once the search tree hurdle is taken, its response time does not affect

total dropout. Model 2 reveals that being a ‘wrong-match’ respondent does not influence

the survey dropout, but having keyed in relevant text in the OEQ after the search tree

does decrease the odds ratio by 35%. Furthermore, Model 2 shows that the odds ratios

for the dropout probability increase by 54% for the less and decrease by 13% for the

highly educated compared to those with a middling educational level. Neither interest

(employment status) nor age affect survey dropout. In both models the country dummies

are significant, showing that the odds ratios increase for respondents from

Belgium(French) and from the Netherlands compared to those from Belgium(Dutch).

This shows the need for explanations beyond this article. In summary, Hypothesis 3 is not

Table 8. Effect of response time on the probability of dropping out at the end of the questionnaire (0¼no

dropout, 1¼dropout) after search tree completion (Model 1) and after completion of the education question

(Model 2)

Model 1 Model 2
Odds ratio Odds ratio

Response time Step 2 (log) 1.000 1.010
Response time Step 3 (log) 1.037 1.051
Wrong match according to OEQ (0,1) 1.101
Responded to OEQ (0,1) .645***
Employee2 .909 .857
Self-employed2 1.203 1.258
Education low3 1.540***
Education high3 .866***
Age (10–80) 1.001
Country UK1 1.196 .911
Country Belgium (French)1 1.869*** 1.489***
Country Netherlands1 1.821*** 1.513***
Constant 1.042 .582***

22 Log likelihood 22829.837 14345.539
N 17,610 10,676

Source: WageIndicator survey, Belgium, UK, Netherlands, 2010 second quarter

Reference categories: 1 Country Belgium (Dutch); 2 Unemployed individuals; 3 Education middle

Significance levels: *** p, .001, ** p, .005; * p, .010

Journal of Official Statistics38

Unauthenticated | 195.77.16.2
Download Date | 2/17/14 9:38 AM



confirmed with respect to the effects of the search tree response times, the valid self-

identification, interest and age. The respondent’s education and country do influence

survey dropout.

5. Conclusions and Discussion

Occupation is a key variable in socioeconomic research. Most surveys employ an open-

ended question with field or office coding, but problems are associated with this method.

The response to the OEQ includes very detailed and very crude occupational titles, and

hence the level of aggregation in the occupational classification may vary across

respondents. Unidentifiable or ambiguous responses cannot be coded, and this problem is

particularly associated with CAPI and CAWI survey modes. Coding is an inexact process

within countries and particularly across countries, hampering cross-country analyses.

Finally, coding efforts are costly, particularly in case of large-scale multi-country surveys.

For these reasons the continuous 70-country WageIndicator web survey with large

numbers of respondents does not apply an OEQ, but uses a closed format question for

which a three-step search tree and a multilingual database with 1,700 occupational titles

has been developed, assuming that respondents are able to self-classify their job title into

these occupational titles. Occupation search trees are hardly ever used in web surveys and

no information is available with respect to the performance of this survey tool. Search trees

are assumed to be cognitively demanding and time-consuming. To evaluate the data

quality of an occupation search tree, this article explores the dropout rates, the response

times and the validity of the ticked occupation from the 2010 second quarter

WageIndicator web survey in the United Kingdom, Belgium(Dutch), Belgium(French)

and the Netherlands.

The first conclusion is that the dropout rates during the occupation search are high, that

is, approximately 20%, which is about one third of total survey dropout. The study shows

that in the 1st step of the search tree the dropout probability increases substantially for the

unemployed respondents, who may judge the occupation question as not adequate for their

situation and hence display lower interest in completing the survey. The high dropout rates

in Step 1 may also reflect a cognitively demanding task for respondents, who are trying to

fit their job titles into highly aggregated categories. The study also shows that the dropout

rates in the search tree are influenced by search tree item length, because the number of

characters in the 1st and 2nd step increases the odds ratio of dropout in Step 3 with 0.1%

and 0.2% respectively for each character read.

The second conclusion is that the median response times are between 10 and 13 seconds

for the 2nd step and between 13 and 16 seconds for the 3rd step of the search tree (no data

is available for the 1st step). Response times are largest in Belgium(French) and smallest

in the UK. The logistic analysis show that the response time, measured in log seconds, is

affected by search tree item length, in Step 2 with 0.2% and in Step 3 with 0.1% for every

character read in the respective step. Respondents who drop out in Step 3 need 17% more

response time for Step 2 and respondents who ticked an invalid occupational title in the

search tree need 22% more time in Step 2 and 27% in Step 3. In line with earlier research,

the response times are higher for the less-educated and older respondents and lower for the

highly educated.
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The third conclusion is that the validity of the occupation data is rather good. For this

purpose, an open-ended question after the search tree asking for additional information

about the ticked occupation was compared with the ticked occupation. More than one fifth

of the respondents who completed the search tree used this OEQ. Only 7.5% of these

comments indicated that the respondents had not been able to self-identify their

occupational title. If all respondents who were unable to identify their occupation had

completed the OEQ, the percentage of invalid answers would have been 1.7. Thus the

invalid answers are between 1.7 and 7.5% of the respondents completing the search tree.

The OEQ reveals another problem. More than two thirds of the OEQ comments refer to

additional tasks in the job, suggesting that the occupational boundaries are not as distinct

as the search tree and the occupational classification assume. If generalised to all

respondents who completed the search tree, approximately 15% of them would have a

composite occupation with broader occupational boundaries than suggested in the

occupational title in the search tree.

Taking into account its substantial dropout rates and response times, a 3-page search

tree apparently is not an optimal response format for the occupation question in web

surveys, though recent techniques may in part solve the problems described. First, single

page filtering instead of a 3-page search tree most likely will reduce both dropout and

response time. Second, the use of text string matching (TSM) may do so even more. In an

experiment offering 48 possible values, Funke and Reips (2007) show that these dynamic

lists are feasible and that the response time is lower compared to radio buttons. Similarly to

search engines, TSM uses dynamic lists with either auto-completion or suggestions for

self-identification of occupation, drawing from the WISCO database of occupations.

In combination with a single page search tree, TSM may lead to better quality data.

If extended with a ‘suggest new entry’ box, the number of occupational titles in the

WISCO database could grow. If made accessible through an Application Programming

Interface (API), the tool could offer the research community a sound instrument for the

occupation question in web surveys. Increasing use of multi-country web surveys may

favour the use of a closed instead of an open survey question. The problem of the

composite occupations could be solved by allowing respondents to tick more than one

occupation in the search tree.

There are several limitations to this study. The data from only a limited set of

countries has been investigated; thus the findings cannot be generalised to all

industrialised countries, particularly because some country effects were found. The data

has drawbacks. For instance, the time stamps of the question before the search tree

were not available and no information was provided about the respondents’ back-and-

forth clicking in the search tree. Furthermore, the study did not investigate the validity

of the occupation variable through a multitrait-multimethod approach. Finally, the

results are based on a volunteer web survey, and a detailed comparison of the 2009

Netherlands WageIndicator data with a representative reference web survey has

demonstrated that there is obviously still a difficulty in quantifying the quality of a

nonprobability survey (Steinmetz et al. 2014). Hence the research results presented here

should be considered explorative rather than representative. However, given the

increasing popularity of web surveys and the urgent need to collect high quality

occupation data in these surveys, particularly in multi-country surveys, the study
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definitely improves insights into the do’s and don’ts of the occupation question for

web surveys.
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Can I Just Check: : : ? Effects of Edit Check Questions on
Measurement Error and Survey Estimates

Peter Lugtig1 and Annette Jäckle2

Household income is difficult to measure, since it requires the collection of information about
all potential income sources for each member of a household. We assess the effects of two types
of edit check questions on measurement error and survey estimates: within-wave edit checks
use responses to questions earlier in the same interview to query apparent inconsistencies
in responses; dependent interviewing uses responses from prior interviews to query apparent
inconsistencies over time. We use data from three waves of the British Household Panel Survey
(BHPS) to assess the effects of edit checks on estimates, and data from an experimental study
carried out in the context of the BHPS, where survey responses were linked to individual
administrative records, to assess the effects on measurement error. The findings suggest that
interviewing methods without edit checks underestimate non-labour household income in the
lower tail of the income distribution. The effects on estimates derived from total household
income, such as poverty rates or transition rates into and out of poverty, are small.

Key words: Dependent interviewing; validation study; record linkage; British household
panel survey; income; poverty.

1. Introduction

Household income is a key measure of social welfare and as such important for policy

analyses. Some surveys, such as the European Social Survey, ask one household member a

single question about their income: “Using this card, please tell me which letter describes

your household’s total income, after tax and compulsory deductions, from all sources? If you

don’t know the exact figure, please give an estimate.” Surveys for which income is a key

outcome measure more commonly ask a host of questions about each potential source of

income, including questions about receipt status, timing of receipt and amounts received.

Total income has to be computed from these questions and aggregated over all income sources

and all household members. In both cases, reporting on household income is a difficult task for

respondents. As a result, household income is likely to be measured with error and estimates

derived from it, such as poverty rates or income dynamics over time, may be biased.

In this article we assess the effects of edit check questions, which are incorporated into

the questionnaire to detect and correct potential reporting errors, on estimates derived
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from detailed questions about household income. We examine the effects of both within-

wave and cross-wave edit checks in the measurement of non-labour household income.

Within-wave edit checks use information collected earlier in the same interview to check

the consistency of answers. For example, respondents can be queried about sources they

have not reported, but for which they are likely to be eligible, judging from responses

given earlier in the interview (Pennell 1993). Cross-wave edit checks are specific to

longitudinal surveys. They use information provided in previous interviews to check the

longitudinal consistency of responses. For example, respondents can be queried about

sources they have reported in the past, but not in the current interview (see Jäckle 2009;

Mathiowetz and McGonagle 2000). Cross-wave edit checks are typically referred to as

‘dependent interviewing’ (DI) and we follow this convention.

The key question examined here is to what extent edit checks affect estimates of

household income and poverty. Previous studies evaluating the effects of DI have mainly

focused on measurement error in receipt status for individual income sources. These

studies have shown that some non-labour income sources are considerably underreported

and that DI improves reporting for non-labour income (Lynn et al. 2012). Other studies

have examined measurement error in the timing of receipt and shown that DI reduces

errors in monthly transition rates (Moore et al. 2009) and spell durations (Jäckle 2008).

The effects on monetary amounts have not been examined to our knowledge. Neither have

the effects on estimates related to total (household) income. Although the reduction of

error in individual survey questions can be substantial, it is not a priori clear what effect

this methodological improvement has on estimates that are derived from a series of

detailed questions about all components of household income.

We contribute to this literature by examining to what extent edit checks affect estimates

of household income, poverty rates and transitions into and out of poverty. For this

purpose we use three waves of the British Household Panel Survey (BHPS), in which both

within-wave edit checks and DI are used in a quasi-experimental way for the collection of

non-labour income data. The analyses of the BHPS data illustrate to what extent edit

checks affect estimates derived from income data. The BHPS data however do not allow

any conclusions about the effects of edit checks on measurement error and resulting biases

in estimates. We therefore complement these analyses using data from an experimental

study carried out in the context of the BHPS, which linked survey responses to individual

administrative records.

The results suggest that traditional methods of interviewing that do not use edit checks

for non-labour income sources underestimate household income in the lower tail of the

income distribution. Estimated poverty status and poverty transitions however hardly

change. The changes in estimates appear to reflect a reduction in measurement error in the

reporting and duration of receipt, thus reflecting an improvement of data accuracy.

2. Data

2.1. The British Household Panel Survey (BHPS)

The BHPS is a panel survey of the UK population that started in 1991 with a clustered and

stratified address-based sample of 5,500 households. All household members aged 16þ
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are interviewed annually and followed as long as they remain in the UK. The individual

response rates, conditional on response in the prior wave, are around 94% (RR1 – AAPOR

2011) in the waves we used for our analyses (Waves 15-17). All in all, 49.6% of the

original sample members with an interview at Wave 1 completed an interview in Waves

15-17 (Taylor et al. 2009). Proxy interviews were held with about 1% of sample members

in each wave and treated as missing data in our analyses.

Income data are collected in two sections of the questionnaire: one on labour earnings

and another on non-labour income (including state cash transfers, private pensions, private

transfers and investment income). Edit checks are only used for non-labour income and we

therefore focus on those questions. We do however include data about labour income to

assess the effects of edit checks on derived measures of total household income.

In the original version, respondents are shown a series of four showcards, listing 34

potential income sources, and asked which of these they have received during the

reference period. Fieldwork takes place between September and January each year.

Respondents are asked to report about the period since the start of fieldwork in the

previous year. This means that, depending on the month in which a respondent is

interviewed, the recall period covers between 12 and 16 months: “Please look at this card

and tell me if, since September 1st ,previous calendar year. , you have received any of

the types of income or payments shown, either just yourself or jointly?” For each income

source reported, respondents are then asked a series of follow-up questions about the

timing and amounts of receipt: “And for which months since September 1st ,previous

calendar year. have you received ,source.?”, “How much was the last payment of

,source. you received?”, and “What period did that cover?”

From 2005 the BHPS added within-wave edit checks for those cash transfers, for which

questions earlier in the same interview predict eligibility: Pension Credit, Disability

Benefits, Income Support, Jobseeker’s Allowance, Child Benefit and Housing Benefit. For

example, respondents above the state retirement age who have not reported a state pension

are asked “Can I just check, do you currently receive the State Retirement Pension?”

From 2006 onwards, reactive dependent interviewing (RDI) was added for all non-

labour income sources (listed in Subsection 2.4). Respondents are first asked the original

question. For any income sources reported in the previous but not the current interview,

they are asked a follow-up question: “Can I just check, according to our records you

have in the past received ,source. . Have you received ,source. at any time since

,date of interview.?” (see Jäckle et al. 2007).

Although the BHPS data are not experimental, the public release file identifies which

income sources were reported in response to the initial question, which in response to

the within-wave edit check, and which in response to the RDI follow-up question. This

enables a quasi-experimental comparison of the effects of the interviewing method on

responses and estimates.

2.2. The Experimental Validation Study

The experimental study was carried out using the former European Community Household

Panel (ECHP) low-income subsample for Great Britain. This sample was surveyed as part

of the BHPS (using the BHPS survey procedures and questionnaires) from 1997 until
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funding expired in 2001. In 2003 the sample was interviewed once more for methodo-

logical purposes. The experimental survey included a split-ballot experiment comparing

independent and dependent interviewing for various sections of the questionnaire. In

addition, respondents were asked for permission to link to their records on receipt of 17

different state cash transfer programmes held by the Department for Work and Pensions

(the department in charge of administering cash transfers). The transfer programmes

included Child Benefit, Housing Benefit, Working Families’ Tax Credit, different types

of Disability Allowances, Income Support, Jobseeker’s Allowance and State Pensions.

The response rate for the experimental survey was 89% (N¼1,033, RR1–AAPOR

2011), of which 77% gave consent for the record linkage (Jäckle et al. 2004), of which 74%

were successfully linked. A related study by Jenkins et al. (2006) found that households

that had reported receipt of means-tested state cash transfers in a previous wave of the

survey were more likely to consent to the data linkage, but that household income was not

related to consent. The linkage was performed independently five times using deterministic

(exact) matching on National Insurance Number (the UK social security number) or sex

with two or three out of date of birth, postcode, first line of address, first name, and family

name (see Jenkins et al. 2008 for details on the linkage methodology). Results for each

respondent were pooled to identify a single match. For 12 of the 14 respondents who were

matched to more than one person in the administrative records, the modal match (which

matched on at least three of the five criteria) was used as the correct match. The other two

cases were inspected visually to determine the correct match. Although some problems

with the linkage variables cannot be excluded, Jenkins et al. (2008) suggested that those not

linked were probably respondents who had not received state cash transfers during the time

frame of interest. The authors estimated that the true non-match rate was about one quarter,

since 29% of respondents never reported receiving any of the relevant state cash transfers

in any of the annual interviews between 1999 and 2003.

In the experimental survey, three versions of questions on non-labour income

components were randomly assigned: independent interviewing (INDI, N¼348

respondents of which N¼262 consented to the record linkage), reactive dependent

interviewing (RDI, N¼344 respondents of which N¼274 consented) and proactive

dependent interviewing (PDI, N¼341 respondents of which N¼263 consented). With PDI

respondents were reminded upfront of each source they had reported in the previous

interview, and asked whether they had received the source since. Since the BHPS uses RDI

for the income questions, the analyses presented here focus on the comparison of INDI and

RDI. The INDI version used the original BHPS question, as described in Subsection 2.1.

The RDI version had an added edit check question, again as described in Subsection 2.1.

Respondents in both experimental conditions were asked the same series of follow-up

questions, described in Subsection 2.1, about the timing and amounts of each income

source. The administrative records contain information about which of the 17 potential

state cash transfers listed above each respondent has received, including the exact start and

end dates of receipt and weekly amounts received. The data stem from the database system

used by the state to administer transfer payments and are generated in the process of

payments being made. This means that the administrative data reflect the actual dates and

amounts of payments and can therefore be considered high quality (except for Housing

Benefit data which are from decentralized databases and less reliable). A few transfer
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types included in the survey are not included in the records (Widowed Mother’s

Allowance, War Disability Pension, Council Tax Benefit). Some cash transfer types

(Disability Living Allowance, Child Benefit) are recorded as a single source, while the

survey collects separate information about different components (e.g., care component vs.

mobility component). For comparability, we derived variables from the experimental

survey data that reflect the data structure and definitions of the record data.

2.3. Comparability of the BHPS and Experimental Survey Data

Although the survey data from the experimental study and the BHPS are based on the same

design, there are several differences between the surveys which are relevant to our

analyses:

(1) Time frames: The BHPS data are from 2005, 2006 and 2007, while the experimental

survey data are from 2001 and 2003.

(2) Sample composition: the BHPS is a general population sample, while the

experimental survey data overrepresent low-income households and may be affected

by selection bias due to non-consent to linkage.

(3) Dependent interviewing method: the BHPS used RDI for all sample members in 2006

and 2007, while the experimental survey used INDI in 2001 and experimentally

allocated respondents to a DI treatment in 2003.

(4) Within-wave edit checks: the BHPS used within-wave edit checks for questions on

cash transfer receipt in 2005, 2006 and 2007 surveys, while the experimental survey

did not use any within-wave edit checks.

These differences between the survey data from the BHPS and the survey data in the

experimental validation study mean that it is not clear a priori whether the results from the

validation study are likely to apply to the BHPS survey. We report on additional analyses

we have carried out to verify the comparability of data from the two surveys in the

discussion in Section 4.

2.4. Data Description

For analysis purposes, we group the income sources into four components of non-labour

income: State cash transfers, private pensions, other transfers, and investments. This

grouping corresponds to the derived income components provided with the BHPS public

release file and consists of the following income components:

(1) State cash transfers: four types of national insurance pensions and tax credits, ten

types of disability-related cash transfers and tax credits, two types of income support,

Housing Benefit, Council Tax Benefit, Jobseeker’s Allowance, Child Benefit,

Maternity Allowance, Working Families’ Tax Credit, Child Tax Credit.

(2) Private pensions: three types of private pensions.

(3) Other transfers: education grants, sickness insurance, maintenance/foster allowance,

payments from trade unions/friendly societies, payments from absent family

members, other payments.

(4) Investment income: rent from boarders/lodgers, rent from other properties.
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Labour income also contributes to household income. We do, however, not examine this

component separately, because edit check questions were not used for the collection of

labour income data.

3. Results

3.1. Effects of Edit Checks on Survey Estimates

The number of income sources reported in the BHPS is documented in Table 1, for the

2005 survey (Wave 15), 2006 (Wave 16), and 2007 (Wave 17). In Wave 16, for example,

respondents reported receipt of a total of 8,170 state cash transfers when asked the original

BHPS question. Respondents for whom information collected earlier in the interview

suggested that they might be eligible for additional cash transfers were then asked the

within-wave edit check, whereupon they reported a further 165 sources. Finally, all

respondents were queried about sources they had reported in the previous interview using

the RDI edit check question, whereupon they reported a further 615 income sources. As

described in Subsection 2.1, the within-wave edit check questions were only used for state

cash transfers. For the other types of non-labour income only the RDI edit check was used.

The results suggest that RDI edit checks were more effective at increasing reporting of

income sources than within-wave edit checks. Depending on the type of income and the

survey year, about 1-2% of total income sources were reported in response to the within-

wave edit checks, whereas 5-12% were reported in response to RDI edit check questions.

The sample sizes in the experimental survey and validation data are documented in

Table 2. Of the sample allocated to INDI, 262 respondents consented to the linkage. These

respondents reported a total of 338 state cash transfers in the 2003 survey, while the

administrative records for these respondents, corresponding to the same time period, list

374 cash transfers. The fact that respondents in aggregate reported fewer income sources

in the survey than they received according to the records is a first indication of

underreporting. In contrast, respondents allocated to RDI reported 401 state cash transfers

with 407 recorded in the administrative data, suggesting that RDI improved the aggregate

reporting of income sources.

Table 1. Number of income sources reported in the BHPS

Cash transfers Pensions Other transfers Investment

Wave 15 INDI 8,088 1,717 426 274
WWEC 117 (1.4%) – – –

Wave 16 INDI 8,170 1,776 515 323
WWEC 165 (1.8%) – – –
RDI 615 (6.9%) 121 (6.4%) 55 (9.6%) 39 (10.8%)

Wave 17 INDI 7,895 1,846 501 302
WWEC 157 (1.8%) – – –
RDI 506 (5.9%) 94 (4.8%) 49 (8.9%) 42 (12.2%)

Notes: Number of respondents in Wave 15: 8,538; Wave 16: 8,484; Wave 17: 8,322.

INDI: independent interviewing, WWEC: within-wave edit check, RDI: reactive dependent interviewing.

Percentages represent the percent of total income sources of a given type reported in response to the WWEC

or RDI.

Journal of Official Statistics50

Unauthenticated | 195.77.16.2
Download Date | 2/17/14 9:38 AM



3.1.1. Effects on the Distribution of Household Income

To examine whether edit checks affect estimates of household income, we use Waves 15

to 17 of the BHPS. Table 3 shows estimates of the equivalised annual household income

distribution for the population of Great Britain. The estimates are based on all members of

surveyed households, adjusted for differences in household size using the McClements

equivalence scale (Taylor et al. 2009) and weighted for nonresponse. The first column

indicates the estimated cut-off points between percentiles of the income distribution,

including only amounts associated with income sources reported in response to the INDI

questions. The income measures based on INDI include imputed values if the receipt

status, amount received or dates of receipt are missing for any of the income sources

(Taylor et al. 2009). The second column indicates by how much the income percentile

changes when income sources reported in response to the within-wave edit checks are

included. For Waves 16 and 17, the third column indicates by how much the INDI estimate

changes if sources reported both in response to the within-wave edit checks and the RDI

follow-up questions are included.

Within-wave edit checks have a considerable effect, increasing estimated income

percentiles below median income, for example increasing household income for the fifth

percentile by 6% at Wave 16. RDI has an additional effect, increasing the fifth percentile

by a further four percentage points to 10%. The effects of RDI and edit checks are largest

for people in the lowest percentile, fall monotonically across percentiles, and are zero or

close to zero for all percentiles above the median. The effect on median income is small:

when sources reported in response to the within-wave edit checks are included, the

estimated median increases by less than 0.3% in each of the three waves, and by a further

1% at Waves 16 and 17 when responses to RDI are included.

Edit checks on non-labour income sources therefore increase estimates of household

income at the lower end of the income distribution, where non-labour income from cash

transfers, pensions, and other transfers represents a major component of total income. For

households with higher levels of income, these sources are less important, while non-

labour income from investments may contribute a large part of total income. Nonetheless,

the edit checks do not have any effect at the upper tail of the income distribution.

3.1.2. Effects on Estimated Poverty Rates

To examine whether edit checks affect estimated poverty rates, we again use Waves 15 to

17 of the BHPS. Replicating the official UK poverty definition, we define the poverty

threshold as 60% of median household income: any individual living in a household with

Table 2. Number of income sources in the experimental validation data

Experimental
treatment group

Cash transfers

in records in survey

INDI 374 338
INDIþRDI 407 401

Notes: INDI: independent interviewing, RDI: reactive dependent interviewing.

Based on 2003 survey.
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less income is classified as poor. Official poverty statistics use 60% of current income

to define the threshold for poverty (Brewer et al. 2009). We use annual income instead,

in order to examine the net effects of edit checks on all questions related to household

income, including questions about the timing of receipt during the year. In addition,

Böheim and Jenkins (2006) show that there are few differences between poverty indicators

based on current and annual income.

The results in Table 4 suggest that the edit checks somewhat reduce estimated poverty

rates, but the effects are small: both in Waves 16 and 17, adding responses to edit checks

and RDI reduced the poverty rate by 0.5 percentage points. Nonetheless, some individuals

are classified differently depending on the interviewing method. For example, in Wave 16,

4.2% of individuals are classified as ‘poor’ based on the INDI questions, and as ‘not poor’

when the income sources reported in response to the edit checks are added. Similarly,

the third column shows that 0.4% of individuals classified as ‘not poor’ with INDI are

classified as ‘poor’ when information from the edit checks is added. These are probably

households whose income is only just above the poverty threshold based on the INDI data,

and who did not report any additional income sources in response to the checks or RDI.

Since median income, and therefore also the poverty threshold, increases slightly when the

edit check responses are included, these respondents slip just below the poverty threshold.

3.1.3. Effects on Estimated Poverty Transitions

To examine whether edit checks affect the longitudinal consistency of poverty

classifications across waves, we again use BHPS data. Table 5 shows the transitions in

poverty status between Waves 15 and 16, and Waves 16 and 17, based on the INDI data

only, adding the within-wave edit check data, and further adding the RDI data. The edit

checks have little effect on transition rates in both wave pairs: in the INDI data about 76%

of individuals were living in non-poor households in both waves, 13% were poor in both

waves, around 5% entered poverty and a further 5% exited poverty from one wave to the

next. These estimates are similar when data from the within-wave edit checks and RDI are

added. The lack of effects is surprising, since we would have expected RDI to increase the

Table 4. Poverty rates (%)

Wave Interviewing method ‘Poor’
INDI: ‘poor’

Edit check: ‘not poor’
INDI: ‘not poor’

Edit check: ‘poor’

15 INDI 18.6 – –
INDIþWWEC 18.5 0.8 0.0

16 INDI 18.9 – –
INDIþWWEC 18.8 0.9 0.1
INDIþWWECþRDI 18.4 4.2 0.4

17 INDI 18.4 – –
INDIþWWEC 18.2 1.2 0.0
INDIþWWECþRDI 17.9 3.9 0.3

Notes: Based on all weighted BHPS enumerated household members, Wave 15: 11,700; Wave 16: 11,611;

Wave 17: 11,374. INDI: independent interviewing. WWEC: within-wave edit check. RDI: reactive dependent

interviewing.
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consistency of responses across waves, and by implication to reduce changes in household

income and resulting changes in poverty status across waves.

In sum, both within-wave edit checks and RDI increase estimates of household income

at the lower end of the distribution, but neither method has much effect on poverty

classifications or transitions. The next section examines whether the changes in household

income reflect an improvement in data accuracy.

3.2. Effects of RDI and Edit Checks on Measurement Errors

We use the validation data to examine various aspects of measurement error related to the

estimates presented in Subsection 3.1. We examine measurement error in receipt status,

amounts of income, duration of receipt, and transitions in receipt status between waves.

For each of these aspects we examine the extent of measurement error with independent

interviewing, and how this changes with RDI edit checks. Note that as described in

Subsection 2.1, RDI was only applied to questions about receipt, not to questions about

dates or amounts of receipt. The RDI edits on the receipt questions nonetheless affect

responses to the amounts and duration questions, since sources that are not reported by

default have zero amounts and durations associated with them. The analyses of the

experimental validation data are unweighted.

We expect the changes in responses with RDI to reflect a reduction in the various aspects

of measurement error, and therefore expect the changes in estimates in Subsection 3.1 to

reflect improvements in data accuracy.

3.2.1. Effects of RDI on Measurement Error in Receipt of Income Sources

We first examine the effect of RDI on measurement error in individual reports of non-

labour income receipt. We compare responses to the experimental survey with individual

register data. For each potential income source, we derive indicators of whether or not

the source was received at any point during the reference period. Separate indicators are

derived for the survey and the record data and used to classify all potential income sources

for each respondent: true negatives are income sources which were neither received

according to the survey, nor according to the records; true positives are income sources

which were received both according to the survey and the records; false negatives are

Table 5. Transition rates into and out of poverty (%)

Wave Transition type INDI INDIþWWEC
INDIþWWECþ

RDI

15-16 Persistent non-poor 76.3 76.4 –
Persistent poor 13.1 13.0 –
Transition into poverty 5.6 5.7 –
Transition out of poverty 4.9 5.0 –

16-17 Persistent non-poor 76.3 76.5 77.0
Persistent poor 13.2 13.2 12.9
Transition into poverty 5.0 4.8 4.8
Transition out of poverty 5.5 5.5 5.3

Notes: Based on all weighted BHPS enumerated household members, Wave 15-16:10,278; Wave 16-17: 9,692.

INDI: independent interviewing. WWEC: within-wave edit check. RDI: reactive dependent interviewing.
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income sources which were received according to the records, but not reported in the

survey; false positives are income sources which were not received according to the

records, but reported in the survey.

To account for the possibility that respondents may report income sources which are

recorded in the name of a different household member in the record data, income sources are

counted as ‘true positives’ if there is a record for the source in the name of another household

member. This was the case for 3% of income sources reported by the INDI sample, and 5% of

sources reported by the RDI sample. Table 6 indicates the number of potential income

sources which are classified as true/false positives/negatives. Assuming that the record data

represent the true values, we interpret ‘false negatives’ as indicators of underreporting, and

‘false positives’ as overreporting. The last two columns indicate the corresponding error

rates: the false negative rate is the number of false negatives as a proportion of sources

received according to the records; the false positive rate is the number of false positives, as a

proportion of the sources not received according to the records.

The results indicate that the main type of error is underreporting: with INDI 19.0% of

sources recorded in the records are not reported in the survey, while overreporting hardly

occurs (less than 1%). RDI reduces the false negative rate to 13.5% and does not have any

effect on overreporting. The increase in the reporting of income sources with RDI therefore

represents a reduction in net measurement error in receipt of non-labour income sources.

3.2.2. Effects of RDI on Measurement Error in the Amounts of Non-Labour Income

Second we test the effects of RDI on measurement error in the amount of income, again

comparing the survey reports to the individual records. For each source we derive

the amount of the last payment during the reference period according to the survey and

according to the records. The amounts are standardised to weekly amounts, for

comparability with the format in which they are recorded in the administrative data. We

then calculate the error in amounts of receipt as the difference between the survey and

the record. In the final step, we calculate the mean error over all cash transfers and

respondents. The analysis includes sources reported either in the survey, or the records,

or both. Housing benefits were excluded in this step as we found large irresolvable

consistencies between the records and survey data.

With INDI, weekly non-labour income is underreported by £4.60 on average

(95% confidence interval (CI) from 29.1 to 20.2). With RDI the error increases to £5.90

Table 6. Effect of RDI on measurement error in income receipt reported by individuals

Sample sizes (N) and row percentages (in brackets) Error rates (%)

True
negative

False
negative

False
positive

True
Positive

False
negative

rate

False
positive

rate

INDI 3257 (88.8%) 73 (2.0%) 26 (0.7%) 312 (8.5%) 19.0 0.8
RDI 3377 (88.0%) 58 (1.5%) 30 (0.8%) 371 (9.7%) 13.5 0.9

Notes: The sample includes all respondents (INDI¼262, RDI¼274), multiplied by 14 potential income sources.

Columns are defined in the text. INDI: Independent Interviewing, RDI: Reactive Dependent Interviewing.
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(95% CI from 29.9 to 21.9). This suggests that although RDI reduces underreporting of

receipt, it does not help respondents report the amounts received.

3.2.3. Effects of RDI on Measurement Error in Duration of Receipt

Third, to assess the effects of RDI on measurement error in reported duration of receipt,

we again compare the survey and administrative data. For each income source we

calculate the error as the difference between the number of months of receipt according to

the survey and the records. The analysis is restricted to receipt between September 1st

2001 and September 1st 2002, for comparability with the BHPS data. The base includes all

sources either reported in the survey, or recorded in the administrative data, or both, but

excludes true negatives. In the case of overreporting where a record exists in the name of a

different household member, the survey duration is compared to the record duration for the

other household member. We then calculate the mean error over all income sources and

respondents.

With INDI receipt is underreported by 1 month on average (95% CI from 21.4 to

20.4). With RDI the mean error is no longer significantly different from zero (95% C.I.

from 20.4 to 0.4). This suggests that RDI reduces measurement errors in reported

duration of receipt of cash transfers.

3.2.4. Effects of RDI on Measurement Error in Transitions of Cash Transfer Receipt

Across Waves

Fourth, we evaluate whether RDI reduces measurement error in reported transitions

of receipt across waves. We classify each potential income source for each respondent

according to the type of transition between the 2001 survey and the 2003 survey as

continued non-receipt, continued receipt, transition off receipt, and transition onto receipt.

Each potential income source is classified separately based on the survey data and the

record data. We then pool the results for all income sources and compare the transition

types derived from the survey and records to identify errors in transition classifications.

Overall, the transition type is misclassified for 4% of potential income sources with both

INDI and RDI. Since RDI was only used in the 2003 interview, the interviewing method

cannot have affected the wave 2001 status. Therefore Table 7 focuses on errors in the

classification of transition types, conditional on the 2001 status being reported correctly in

the survey. The rows indicate the respondents’ transition statuses (pooled over all potential

income sources) according to the records. The columns indicate the percentage of income

sources for which the 2003 status was misclassified in the survey, resulting in an error in

the transition type.

‘Continued non-receipt’ is reported well with INDI and not improved with RDI: the

error rates are 0.5% with both methods. With RDI more respondents are correctly

classified as having ‘continued receipt’: the error rates are reduced from 11.3% to 3.2%.

However, respondents who ‘transitioned onto’ cash transfer receipt are more likely to

be misclassified with RDI: the error rate unexpectedly increases from 20.4% to 38.6%.

Further investigation (not shown in the table) suggests that RDI respondents who

transitioned onto receipt are more likely to be misclassified as ‘continued non-receipt’.

This is a surprising finding, since non-receipt in the previous interview does not trigger any

RDI questions. ‘Transitions off’ cash transfer receipt tends to be reported correctly with
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INDI, but the number of transitions is very small. With RDI however 13.3% of transitions

are misclassified, mostly as ‘continued receipt’. This could be due to respondents falsely

confirming a receipt status presented to them from the previous interview. A potential

cause of the findings for transitions onto and off receipt might be found with the

interviewers. With DI designs, they might be more focused on reducing errors in continued

receipt than on picking up transitions onto and off receipt (Sala et al. 2009). Since the

number of transitions onto and off receipt is small, we would however interpret these

results with caution.

In sum, RDI reduces various aspects of measurement error in the reporting of state

cash transfers: RDI reduces underreporting of any receipt, of the duration of receipt within

one wave, and of continued receipt across waves. RDI does not reduce overall

misclassification rates in transitions, although the nature of misclassifications changes.

4. Discussion and Conclusion

4.1. Summary of Results

The motivation for this study was to examine what effect methodological innovations that are

expected to reduce measurement error have on substantive estimates. In this case, substantive

conclusions are affected by whether or not edit checks are used to collect income data.

Methodological studies designed to evaluate the effects of alternative data collection

methods on data quality often only examine answers to individual survey questions.

Evaluations of the impact on data quality however further need to relate to the actual uses of

the survey data. In this spirit, we examine the effects of within-wave edit checks and RDI on

derived estimates, and subsequently whether these effects reflect a decrease in measurement

error. For this purpose we exploit a unique combination of data sets: we use data from the

BHPS, a large-scale panel survey which has implemented within-wave edit checks and RDI

for questions on non-labour income components in a quasi-experimental way, and from an

experimental validation study based on the BHPS survey design.

We use the experimental study to assess the effects of RDI on different aspects of

measurement error, and the BHPS data to assess the effects of RDI and within-wave edit

Table 7. Effect of RDI on measurement error in transitions onto and off cash transfer receipt, conditional on

correct classification in the 2001 survey

INDI RDI

Transition in
Records

N mis-
classified

% mis-
classified N

N mis-
classified

% mis-
classified

Continued
non-receipt

3230 16 0.5 3348 15 0.5

Transition on 49 10 20.4 57 22 38.6
Continued

receipt
284 32 11.3 317 10 3.2

Transition off 16 0 0.0 15 2 13.3

Notes: The sample includes all respondents (INDI¼262, RDI¼274), multiplied by 14 potential income sources,

and excluding sources reported incorrectly in the first interview (INDI¼89, RDI¼99). INDI: independent

interviewing, RDI: reactive dependent interviewing.

Lugtig and Jäckle: Effects of Edit Check Questions 57

Unauthenticated | 195.77.16.2
Download Date | 2/17/14 9:38 AM



checks on estimates of household income and poverty. The results suggest that both the

within-wave edit checks and RDI increase estimates of total household income in the

lower tail of the income distribution. Neither method has much effect on estimated poverty

rates or estimated rates of transitions into and out of poverty. The increase in household

income reflects an increase in data accuracy: RDI reduces underreporting without

affecting overreporting; RDI reduces underreporting of months of receipt and reduces

erroneous transitions off income receipt and underreporting of continued receipt

across waves.

In our view, the effects of RDI on measurement error are considerable; for example, the

underreporting rate is reduced by about 29% compared to independent interviewing. The

effects on estimates of household income and poverty are arguably small. This suggests

that while within-wave edit checks and RDI may have large effects on measurement error

in responses to individual survey questions, the combined effects, in this case over

different survey items and different household members, may be small. This conclusion

may however be open to interpretation, since a reduction in the estimated poverty rate

by a mere 0.5 percentage points affects around 300,000 individuals in the population of

Great Britain.

4.2. Limitations

Our study has several limitations. First, we only examined the effects of edit checks on

non-labour components of household income. Non-labour income makes up almost 90%

of total gross household income for the lowest income quintile. The higher the quintile

however, the less important non-labour income is; non-labour income comprises 65% of

total income for the second income quintile, 39% for the third, 18% for the fourth and 9%

for the highest quintile (Brewer et al. 2009). We cannot draw conclusions about the likely

effects of the introduction of edit checks on labour income, because the nature of

measurement error in labour and non-labour income is quite different. With non-labour

income, measurement error is mainly in the form of underreporting: respondents fail to

report receipt of a source, and by default the amount received is set to zero. Overreporting

is rare (see Table 6 and Bound et al. 2001). With labour income, respondents are less likely

to underreport receipt, as they are unlikely to underreport being in work. Instead,

measurement error occurs in the amount of earnings. Errors tend to be negatively

correlated with true values and to cancel out across respondents (Bound et al. 2001). The

nature of measurement error has implications for the potential effects edit checks can have.

For non-labour income sources, we expect edit checks to reduce underreporting and

therefore to increase estimates of household income for households for which non-labour

income sources represent a major proportion of total income. This corresponds to our

findings. For labour income, we would expect edit checks on average to decrease the

earnings reported by those with low earnings, and to increase the earnings reported by

those with high earnings. As a result, we would expect estimates of household income to

change at both ends of the distribution, but because labour income comprises a larger part

of total income, we expect the largest changes for the higher quintiles. RDI edit checks

have been used to query changes in earnings in the Survey of Labour and Income

Dynamics (SLID). Hale and Michaud (1995) reported that 8.3% of respondents reported
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earnings that differed by more than ^10% and were then asked an RDI edit check. Two

thirds of respondents confirmed the change as true. The experimental study we use in

this article also included a test of RDI edit checks for earnings. In this study, 59% of

respondents reported a change in earnings larger than ^10% and were asked the edit

check. All but one confirmed that the change was true (Jäckle 2009). It is not clear from

these studies however what the effect of the edit check for amounts of labour income on

estimates of household income is.

Second, our validation study is limited in that it contains only data on state cash

transfers (and not on the other non-labour income sources for which RDI is used in the

BHPS), and in that the study contrasted only INDI and RDI (and did not use within-wave

edit checks). To check whether it is reasonable to assume that the findings from the

validation study also apply to the BHPS, to the other income sources, and maybe also to

the within-wave edit checks, we have carried out some further analyses (see Lugtig and

Jäckle 2011). We compared 1) the effects of RDI in the BHPS versus the validation

survey, 2) the effects of RDI on reporting of state cash transfers versus other non-labour

income sources in the BHPS, and 3) the effects of RDI versus within-wave edit checks in

the BHPS. The results suggest that the effects of the questioning method are similar for

these three comparisons. We therefore assume that the effects of RDI on measurement

error in the validation study are also likely to apply to the BHPS data. We further assume

that for those income sources for which we have no validation data, the changes in

responses also reflect a reduction in measurement error. Finally we assume that the

changes in responses due to the within-wave edit checks also reflect reduced measurement

error. As a result, we assume that the changes we find in estimates related to household

income represent improvements in data accuracy.

Third, in this article we do not investigate which specific types of income sources are

most likely to be misreported, or which types of respondents are most likely to

misreport. Lynn et al. (2012) examined the same validation study we use here and

reported error rates for the six most common state cash transfer programmes. Among

these, underreporting rates were highest for Incapacity Benefit (50%), followed by

Tax Credit (29%), Child Benefit (23%), Housing Benefit (17%), Income Support (11%),

and lowest for Retirement Pension (0%). Overreporting rates were between 0% and 2%

for all sources (rates derived from Table 3). Our own analyses for the same income

sources on the BHPS data suggested that the extent of underreporting was generally

lower and differences between individual sources were much smaller: underreporting

was highest for Housing Benefit (17%), followed by Income Support (8%), Incapacity

Benefit (7%), Tax Credit (5%), and lowest for Child Benefit (4%), and Retirement

Pension (4%).

Lynn et al. (2006), using the validation data, also examined which types of respondents

were most sensitive to RDI edit checks. Respondents who reported income sources only

in response to the edit check were less likely to be retired (or born before 1943) or living

with a spouse or partner, but more likely to be registered disabled than respondents who

reported receipt in response to the independent questions. The authors found no

differences by gender, whether in paid work, children in the household, qualifications,

general health, duration living at the address, regular car, or mobile phone use (Table 6 in

Lynn et al. 2006).
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4.3. Future Research

There are a number of issues, regarding both the effects of RDI and within-wave edit checks

and the mechanisms through which these methods work, which in our view warrant further

attention. Reactive and proactive DI have rarely been compared. The reason why RDI was

implemented in the BHPS was that this made it possible to maintain comparability with the

previous 15 waves of data collection, in which independent interviewing was used. The

responses given to the independent question can still be identified and for comparisons with

previous waves the responses to the reactive follow-up can be ignored.

Our ability to compare the effects of within-wave edit checks and RDI were limited by the

fact that they were always used in combination, with the edit checks always preceding the RDI

checks. With this design, the RDI edits seemed more effective at increasing the reporting of

income sources than the within-wave edit checks: depending on the wave and income type,

1-2% of total income sources were reported in response to the within-wave check, while

5-12% were reported in response to the RDI check. Their relative effects may be quite different

if compared individually or in different order. Since the edit checks do not require feeding

forward information from previous interviews, they can be used in cross-sectional surveys and

are cheaper to implement than RDI. Their use is however restricted to income sources for

which there are questions earlier in the questionnaire that are good predictors of eligibility.

The long-term effects of RDI have not been assessed. The ability of RDI to reduce

underreporting is limited by the fact that the respondent can only be reminded of income

sources reported in the past. Since RDI reduces underreporting in a given wave, this means

that in the following wave a larger proportion of recipients can be reminded of income

sources they have received in the past, increasing the effectiveness of RDI. As a result, over

time RDI may decrease measurement error more than it does in a single wave. The effects

of RDI across waves have not been assessed, as most previous studies have focused on the

wave when dependent interviewing was first introduced. The effectiveness of the reminders

depends on the quality of the first report and there is concern that dependent interviewing

may lead measurement error to be fed forward into future waves. In the case of reporting of

income sources, where the questions are about whether or not a source was received

(yes/no), this risk is somewhat reduced. If the previous wave report was wrong and the

respondent had underreported receipt, the RDI follow-up is not triggered in the following

wave. That is, RDI simply has no effect. If the previous wave report is wrong because the

respondent reported a source they had not actually received, the RDI follow-up would be

triggered, leading to a risk that the respondent may continue to overreport receipt. The

results of our validation study (see Table 6) however suggest that overreporting hardly

occurs. Therefore we would conclude that underreporting in the previous wave reduces the

effectiveness of RDI because the RDI check is not asked when it should be, but that

overreporting in the previous wave does not impact the effectiveness of RDI.

The extent of measurement error in independent survey questions is presumably affected by

the question format. The shortcut method of using showcards instead of separate yes/no

questions about the receipt of all potential income sources presumably leads to more

underreporting. On the other hand, the shorter interview time reduces respondent burden, which

could lead to less measurement error using the showcards. This trade-off between cost savings

in terms of questionnaire time and measurement error has not been assessed to our knowledge.

Journal of Official Statistics60

Unauthenticated | 195.77.16.2
Download Date | 2/17/14 9:38 AM



Finally, we have not touched on the question through which mechanisms RDI and edit

checks work, that is, which types of sources are most likely to be misreported, by which

types of respondents, and how the edit checks work for these different groups (see Lynn

et al. 2012; Pascale et al. 2009). We have also not touched on the question how these

methods could further be improved. Improvements could focus further on the reduction of

underreporting, but also on capturing new receipt. This could be done by extending the use

of within-wave edit checks by incorporating more factual questions into earlier sections

of the questionnaire that predict eligibility for income receipt. Measurement error in

household income was reduced by our study design, but there is room for further

reductions in error with potentially greater impact on substantive conclusions.
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Evaluation of Generalized Variance Functions
in the Analysis of Complex Survey Data

MoonJung Cho1, John L. Eltinge1, Julie Gershunskaya1, and Larry Huff1

Two sets of diagnostics are presented to evaluate the properties of generalized variance
functions (GVFs) for a given sample survey. The first set uses test statistics for the coefficients
of multiple regression forms of GVF models. The second set uses smoothed estimators of the
mean squared error (MSE) of GVF-based variance estimators. The smooth version of the
MSE estimator can provide a useful measure of the performance of a GVF estimator, relative
to the variance of a standard design-based variance estimator. Some of the proposed methods
are applied to sample data from the Current Employment Statistics survey.

Key words: Complex sample design; degrees of freedom; design-based inference;
model-based inference; quarterly census of employment and wages; superpopulation
model; U.S. current employment statistics (CES) survey; variance estimator stability.

1. Introduction

In the analysis of sample survey data, statisticians generally prefer to use variance

estimation and inference methods that account for the complex design used in the selection

of sample units. However, in some cases (especially those involving relatively small

domains or other specialized subpopulations), standard design-based variance estimators

may be unstable. For such cases, some analysts prefer to use “generalized variance

functions” estimators, in which one seeks to approximate the true design or design-model

variance as a function of known predictors X.

For some background on generalized variance functions for survey data, see Johnson

and King (1987), Valliant (1987) and the references cited therein. (Some of this literature

discusses other reasons for use of GVFs, for example, simplicity of use for secondary data

analysts. The remainder of this article will not consider these other reasons in further

detail.) Much of the GVF literature has focused on the variances of point estimators of

population proportions or population totals related to a binary outcome variable (see, e.g.,

Bureau of Labor Statistics 2006, pp. 189–193). The current article, however, considers the

more complex setting in which the point estimator of interest depends primarily on survey

variables that are not binary. For example, the Current Employment Statistics survey

q Statistics Sweden
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application in Subsection 2.1 and Section 5 depends on unit-level employment count

reports that may range from one to tens of thousands.

Following the introduction of an illustrative example and a development of notation and

prospective models in Section 2, this article develops two sets of diagnostic tools for

GVFs. First, Section 3 presents design-based estimators of the variance-covariance matrix

of the coefficient estimators for a GVF. The covariance-matrix estimators in turn lead to

construction of test statistics and confidence sets for the GVF coefficients under standard

large-sample conditions. Second, Section 4 develops diagnostics for the mean squared

error of a GVF as an estimator of the true design variance of a given point estimator. An

initial development reviews the relative magnitudes of error terms associated,

respectively, with pure sampling variability of the design-based variance estimators; the

deterministic lack of fit in the proposed GVF model; and the random equation error

associated with the GVF model. Subsection 4.4 characterizes the unbiased MSE

estimators of the GVF-based variance estimators in terms of the direct variance estimators.

Subsection 4.5 fits models of these MSE estimators; produces a smooth version of the

MSE estimators; and presents some simple methods of evaluating the relative magnitudes

of the sampling error and equation error terms. Section 5 applies the proposed diagnostics

to data from the U.S. Current Employment Statistics survey. Section 6 presents a

simulation study that evaluates the properties of GVF coefficient estimators and of the

related predictors of the true design variance. Section 7 summarizes the main ideas of this

article and outlines some possible extensions. In addition, Table 1 provides a summary of

the notation used in this article.

2. Illustrative Example, Background, Notation, and GVF Models

2.1. Illustrative Example: Subpopulation Total Estimators for the U.S. Current

Employment Statistics Survey

The CES survey collects data monthly on employment, hours, and earnings from nonfarm

establishments. Employment is the total number of persons employed full or part time in a

nonfarm establishment during a specified month. One important feature of the CES survey

is that complete universe employment counts of the previous year become available from

the Unemployment Insurance (UI) tax records on a lagged basis (Butani et al. 1997). U.S.

Bureau of Labor Statistics (2011, Ch. 2) describes the design features relevant to the

analysis of the historical data considered in this article.

The CES sample design uses stratified sampling of UI accounts. UI account is a cluster

that may contain a single or multiple establishment(s). An establishment is defined to be an

economic unit, generally located at a single place, which is engaged predominantly in one

type of economic activity. All establishments within a sampled UI account are included in

the sample. When establishments are rotated into the sample, they are retained for two

years or more. The strata are defined by state, industry, and the size class of UIs. The

sample units in areas within each stratum are sorted in a way ensuring that the number of

sampled units in each area is proportional to the area’s size (i.e., proportional to the

number of UIs in the frame for a given stratum).
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For this article, the survey variable of main interest is yjtk, defined to equal the total

employment reported by establishment k within domain j for reference month t. The

universe data, known as Quarterly Census of Employment and Wages (QCEW) data, are

used annually to benchmark the CES sample estimates to these universe counts (Werking

1997). Specifically, let xj0 equal the known QCEW employment total within domain j for

the benchmark month 0. In addition, let yjt equal the unknown true employment total

for domain j in month t. CES uses a “weighted link relative estimator” of yjt, computed as

Table 1. Description of notation

Notation Description

b index for elements of the coefficient vector g
B dimensionality of g
C dimensionality of v
D set of all j distinct domains
djt degrees of freedom associated with the design-based

distribution of Vpjt

d* degrees of freedom associated with the superpopulation
distribution of ðV*

pjtÞ
21Vpjt

dw degrees of freedom in the Wishart distribution for V̂ŵðĝÞ
hf smooth version of EfðV*

pjt 2 VpjtÞ
2jXjtg

i industry
j domain
njt number of responding sample UI accounts in domain

j at time t
p sample design
qjt equation error
rjt residuals with expectation Eðq2

jtjXjtÞ

R̂ growth ratio estimate

SE1 square root of ð2V̂
2

pjtÞ=ðdjt þ 2Þ

SE2 square root of ð2V*2
pjtÞ=d

t months from benchmark month
Vpjt design variance of ûjt

V̂pjt variance estimator based on the design

V*
pjt variance estimator based on the model

X vector of predictor variables for GVF model
y unknown true employment total
Z vector of predictor variables for the residual

Models (21) through (24)
g variance function parameters in Model ( f )
1jt sampling error V̂pjt 2 Vpjt

hjt error term in Model (22)
ujt finite population quantity
uj jt superpopulation analogue of ujt

ûjt point estimator of ujt

j superpopulation index
ŝ2

e residual mean squared error terms
v variance function parameters
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the product,

ŷjt ¼ xj0R̂jt;

where R̂jt is an estimator of the relative employment growth that took place from

benchmark month 0 to the current month t. Specifically,

R̂jt ¼
Yt

t¼1

R̂
*

jt;

where R̂
*

jt ¼
P

k[sjt
wkyjk;t21

� �21P
k[sjt

wkyjkt, sjt is the matched sample of establishme-

nts in domain j that report positive employment in both months t 2 1 and t, and wk is

the sampling weight of establishment k. Note especially that R̂jt equals the product of t

separate estimators of one-month change. Consequently, under regularity conditions, one

may anticipate that R̂jt and ŷjt may have design variances that are increasing functions of t.

For more detailed information on the weighted link relative estimator, see BLS Handbook

of Methods (2011) and Gershunskaya and Lahiri (2005). For data used in this article, the

benchmark month (t ¼ 0) is March 1999 and our sample data will lead to employment

estimates for each month from January through December 2000 (t ¼ 10 to t ¼ 21).

The primary CES design goal is to satisfy the precision requirements specified for the

national estimates. However, there is strong substantive interest in finer domains which are

defined by geographic characteristics and industrial classifications. For example, the data

analyses in Section 5 focus on estimates of total employment for 430 domains defined by

the intersection of metropolitan statistical area (MSA) with industry, for example, durable

goods manufacturing in the St. Louis MSA or wholesale trade in the Charleston MSA.

Within these domains, effective sample sizes become so small that the standard design-

based estimators are not precise enough to satisfy the needs of prospective data users

(Eltinge et al. 2001). It is necessary to have stable estimators of VðŷjtÞ for the finer

domains. Consequently, we considered the use of GVF methods to produce domain-level

variance estimators that would be more stable than direct design-based variance

estimators.

2.2. Background and Notation

Let ujt be a finite population mean or total for period t, and let ujjt be a superpopulation

analogue of ujt where j is the domain index. For example, in the CES survey, domains are

the combinations of industries and areas, and are generally studied for a sequence of

months t ¼ 1; : : : ; T . In addition, let ûjt be a point estimator of ujt; and define Vpjt ¼

VpðûjtÞ to be the design variance of ûjt. Throughout this article, the subscript “p” denotes

an expectation or variance evaluated with respect to the sample design. The GVF models

the variance of a survey estimator, Vpjt, as a function of the parameter ujt and possibly

other variables (Wolter 2007, sec. 7.2). A common specification is

Vpjt ¼ f ðXjt;gÞ þ qjt; ð1Þ

where Xjt is a vector of predictor variables potentially relevant to estimators of Vpjt, qjt is a

random univariate “equation error” with the mean 0, and g is a vector of B-dimensional

variance function parameters which we need to estimate. Note especially that qjt
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represents the deviation of the true design variance Vpjt from its modeled value f ðXjt;gÞ.

One generally would view the error term qjt as arising from the superpopulation model that

generated our finite population.

In some GVF applications, one may consider functions f ð�Þ that depend on the domain-

specific parameter ujt and may also consider cases for which some predictors Xjt are

unknown and replaced by estimated terms, say X̂jt. However, these cases did not arise in

the CES application considered here, so this article will limit its attention to forms of the

Model (1) with known predictors Xjt.

In general, it is not possible to observe the true design variance Vpjt. Instead it is possible

to compute an estimator V̂pjt ¼ V̂pðûjtÞ based on, for example linearization or replication-

based methods. Consequently, Model (1) must be supplemented with the decomposition

V̂pjt ¼ Vpjt þ e jt; ð2Þ

where e jt is a random term that reflects sampling error in the estimator V̂pjt. Under the

assumption that V̂pjt is design unbiased for Vpjt, the error term e jt has design expectation

equal to zero. The distinction between the equation error in Model (1) and the sampling

error in Model (2) has been considered in other settings for analysis of experiments

with replicates (e.g., Draper and Smith 1998, p. 47) and measurement error models (e.g.,

Fuller 1987).

Our CES applications will use a special form of Model (1) on the logarithmic scale,

ln ðVpjtÞ ¼ Xjtgþ q*
jt; ð3Þ

where q*
jt is a general error term with mean equal to zero; Appendix C provides some

related details. A relatively simple form of Model (3) that incorporates factors related to

domain size (xj0), number of respondents (njt) and distance from benchmark month 0 to

the reference period (t) is:

ln ðVpjtÞ ¼ g0 þ g1 ln ðxj0Þ þ g2 ln ðnjtÞ þ g3 ln ðtÞ þ q*
jt: ðf 1Þ

To estimate the parameters of Models (2) and (3), let D be the set of all J distinct domains

(area-industry combinations) and for each j [ D, let Djt be the set of responding sample

establishments in domain j for month t. In addition, let Yj be a T £ 1 vector with t-th

element ln ðV̂jtÞ and define the ðJ�TÞ £ 1 vector Y ¼ ðY 01;Y
0
2; : : : ;Y

0
JÞ
0. Similarly, let Xj

be a T £ B matrix with t-th row Xjðt; :Þ equal to the predictors used for the specified GVF

model. Also, define the ðJ�TÞ £ B matrix X ¼ ðX 01;X
0
2; : : : ;X

0
JÞ
0 and B £ 1 vector

g ¼ ½g1; : : : ; gB�
0. For example, under the Model ( f1), Xjðt; :Þ ¼ ½1; ln ðxj0Þ; ln ðnjtÞ; ln ðtÞ�

and g ¼ ½g0; g1; g2; g3�
0. Then one may compute the ordinary least squares estimator of the

coefficient vector in (3) as

ĝ ¼ ðX 0XÞ21X 0Y: ð4Þ

2.3. GVF Models

We used the logarithms of direct variance estimators V̂pjt from the survey as the dependent

variables in GVF models. The CES data we considered were from reference year 2000,

and direct estimators, V̂pjt of Vpjt, were computed from Fay’s variant of the balanced

Cho et al.: Evaluation of Generalized Variance Functions in the Analysis of Complex Survey Data 67

Unauthenticated | 195.77.16.2
Download Date | 2/17/14 9:38 AM



half-sample replication method with adjustment term K ¼ 0.5. For general background on

balanced half-sample replication and Fay’s method, see Wolter (2007, Ch. 3) and Judkins

(1990). For sampling within a given industry, the CES uses eight size classes. For variance

estimation, the CES combines the three largest size classes (6, 7 and 8). So there are six

size-based variance strata within each area-industry domain.

We assume that V̂pjt is a design-unbiased estimator for Vpjt, i.e., EpðV̂pjtÞ ¼ Vpjt. Let njt

be the number of responding sample UI accounts within the domain j and month t. In this

article, we consider only domains with at least twelve reporting UI accounts. There are 430

area-industry combinations in our CES data. Each area-industry combination has data

from January to December of the year 2000. For the current analysis, we considered data

from the six industries described in Table 2. For areas with a substantial amount of mining

activity, CES produces separate employment estimates for the mining and construction

industries respectively. For other areas, CES produces a single employment estimate for

the combined mining and construction industries. For the 430 domains considered here,

the mean number of reporting sample UI accounts was 475. For the CES application, this

article will consider three special cases of Model (1) on a logarithmic scale. First, note that

Model ( f1) from Subsection 2.2 constrains both intercepts and slopes to be constant across

industries and areas. A generalization that allows the intercepts to vary across industries is:

ln ðVjtÞ ¼ g0ið jÞ þ g1 ln ðxj0Þ þ g2 ln ðnjtÞ þ g3 ln ðtÞ þ q*
jt; ðf 2Þ

where i( j ) represents the industry i that is represented in a specific domain j. A further

generalization that allows all coefficients to vary across industries is:

ln ðVjtÞ ¼ g0ið jÞ þ g1ið jÞ ln ðxj0Þ þ g2ið jÞ ln ðnjtÞ þ g3ið jÞ ln ðtÞ þ q*
jt: ðf 3Þ

Thus, Model ( f3) allows interaction between the industry classification and the predictors

xj0, njt and t. Note that in the notation of the general expression (1), Models ( f1) through

( f3) involve only predictors X determined by the respondent count njt, the time lag t and

the terms xj0. In contrast with GVFs used for binary outcome variables (e.g., Johnson and

King 1987), Models ( f1) through ( f3) do not use the population parameters ujt as scale

factors. Instead, our models use the known benchmark total xj0 as the scale-factor

predictor. Also, for each industry considered in Model ( f3), we used data from twelve

months and from two to 131 areas, as specified in Table 2. In addition, Wolter (2007,

Sec. 7.3) and others have noted the importance of fitting GVF models for groups of

Table 2. Number of metropolitan areas (MSAs) and UIs in each

industry

Industry description MSAs Sample UIs

1 Mining 2 549
2 Mining and construction 36 22,359
3 Construction 61 54,552
4 Durable manufacturing 131 76,150
5 Nondurable manufacturing 100 50,717
6 Wholesale trade 100 58,424
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statistics ûjt for which a “common model” will hold. Model ( f1) uses a common model for

all domains ( j ), while Model ( f3) has distinct coefficient vectors g for each industry i. In

other words, Model ( f1) uses a single large “group” while Model ( f3) allows each industry

to be a separate group.

3. Estimation and Inference for Coefficients in a GVF Model

3.1. Point Estimation Methods

For each of Models ( f1) through ( f3), we computed estimators ĝ of the coefficients g

through ordinary least squares (OLS) regression of ln ðV̂jtÞ on the corresponding vector of

predictors. In principle, one could consider alternative coefficient estimators based on

weighted least squares or generalized least squares approaches. However, the efficiency

gains from these alternative approaches, if any, would depend on the covariance structure

of the error terms; details will not be considered in the current article. See Valliant (1987)

for a discussion of conditions under which weighted least squares estimation may be

preferred to ordinary least squares estimation for GVFs.

3.2. Design-Based Variance Estimation for GVF Coefficients

We obtain an estimator V̂pðĝÞ of the variance of the approximate distribution of ĝ from an

extension of standard estimating equation approaches for complex-survey estimators

(Binder 1983). Then the estimator ĝ in Expression (4) can be rewritten as the solution of

the estimating equation,

0 ¼ ŵðgÞ

¼ X 0Y 2 X 0Xg

¼
j[D

X
ŵj�ðgÞ;

where ŵj�ðgÞ ¼ X 0jðYj 2 XjgÞ. In addition, let ŵjbðgÞ be the b-th element of ŵj�ðgÞ and let

ŵ�bðgÞ be the b-th element of ŵðgÞ. The Taylor expansion of ŵðgÞ at g ¼ g*, where g* is

the population parameter value, leads to:

0 ¼ ŵðĝÞ

¼ ŵðg*Þ þ ŵð1Þðg*Þðĝ 2 g*Þ þ R;

where ŵð1Þðg*Þ ¼
›ŵðgÞ

›g

���
g¼g*

and R is a B £ 1 vector with b-th element equal to

221ðĝ 2 g*Þ
0 ›2ŵ�bðgÞ

›g›g 0

���
g¼g**

� �
ðg 2 g*Þ for some g** with g** 2 g*j j , ĝ 2 g*j j. Thus,

ŵðg*Þ ¼ 2ŵð1Þðg*Þðĝ 2 g*Þ2 R: ð5Þ

Under regularity conditions, the second term on the right-hand side of Expression (5) is

of a smaller order of magnitude than the first term. Consequently, an estimator of the
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variance-covariance matrix of the approximate distribution of ĝ is

V̂ðĝÞ ¼ ŵð1ÞðĝÞ
� �21

V̂ ŵðĝÞf g ŵð1ÞðĝÞ
� �� 	21

; ð6Þ

where ŵð1ÞðĝÞ ¼ ›ŵðgÞ
›g

���
g¼ĝ

and V̂ ŵðĝÞf g is an estimator of the variance of ŵðĝÞ,

evaluated at the point g ¼ ĝ.

3.3. Application to the Current Employment Statistics Program

Let T be the total number of months covered by the data; for the CES design, T ¼ 12. Then

ŵð1ÞðĝÞ ¼ 2
j[D

XXT

t¼1

X 0 jtX jt:

In addition, under the CES design, selection of sample units is essentially independent

across domains. However, due to the CES design and estimation methods, estimators

within a domain may be strongly correlated across consecutive months. Consequently, an

estimator for the middle term in Expression (6) is

V̂ ŵðĝÞf g ¼ V̂
j[D

X
ŵjðĝÞ

0
@

1
A

¼ J 2V̂ J 21

j[D

X
ŵjðĝÞ

0
@

1
A

¼ ðJ 2 1Þ21J
j[D

X
ŵjðĝÞ2 �ŵðĝÞ
� �

ŵjðĝÞ2 �ŵðĝÞ
� �

0;

ð7Þ

where �ŵ¼ J 21
P

j[D ŵjðĝÞ. Note that the final equality in Expression (7) uses the

independence across domains j and accounts for correlation across periods t. Under

regularity conditions (e.g., Korn and Graubard 1990) dwV̂ðĝÞ is distributed approximately

as a Wishart random matrix on dw degrees of freedom and matrix parameter VðĝÞ.

4. Comparison of the Direct and GVF Methods in Prediction of the True Variance

4.1. Decomposition of Differences of V̂pjt 2 V*
pjt

Once we have selected and estimated a specific GVF Model ( f ), it is useful to evaluate the

properties of the resulting predictors of Vpjt: Suppose that a model-fitting method (e.g.,

ordinary least squares, perhaps on a transformed scale; or nonlinear least squares) leads to

the coefficient point estimator ĝ, and define the resulting variance terms,

V*
pjt

def
f ðXjt; ĝÞ: ð8Þ

Appendix C presents two options for specific ways in which to incorporate parameter

estimators into the adjusted predictors V*
pjt. The data analysis for this article will use a

fairly conservative predictor V*
pjt. Note that V*

pjt is based on the general model (1) given
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on the original variance scale. Under the variance function model (1), error model (2)

and the definition of V*
pjt in Expression (8), V̂pjt 2 Vpjt ¼ e jt, and V*

pjt 2 Vpjt ¼

f ðXjt; ĝÞ2 f ðXjt; gÞ þ qjt þ EðqjtÞ2 EðqjtÞ
� �

. Consequently, we may decompose the

difference V̂pjt 2 V*
pjt as

V̂pjt 2 V*
pjt ¼ ðV̂pjt 2 VpjtÞ2 ðV*

pjt 2 VpjtÞ

¼ e jt þ {qjt 2 EðqjtÞ}þ EðqjtÞ2 { f ðXjt; ĝÞ2 f ðXjt; gÞ}:
ð9Þ

In Equation (9), e jt is a pure estimation error in the original V̂pjt estimates with Eðe jtÞ ¼ 0;

{qjt 2 EðqjtÞ} is a random equation error; and EðqjtÞ represents the deterministic lack-of-fit

in our model attributable, for example, to omitted regressors or a misspecified functional

form. The last term in Equation (9), {f ðXjt; ĝÞ2 f ðXjt; gÞ}, is a parameter estimation error

attributable to the errors ĝ 2 g.

Exploratory analysis of the adequacy of our estimated values, V*
pjt, may focus on the

magnitude of the prediction errors V*
pjt 2 Vpjt

� �
, relative to the errors V̂pjt 2 Vpjt


 �
, in the

original estimators V̂pjt. If E V*
pjt 2 Vpjt

� �2

is smaller than the variance of V̂pjt, then we

would prefer V*
pjt. In addition,

dðXjt; gÞ
def

E½{f ðXjt; ĝÞ2 Vpjt}
2jXjt; g�

may vary across values of Xjt with dðXjt; gÞ ,, VpðV̂pjt 2 VpjtÞ only in some cases. In this

case, we might prefer V*
pjt for some, but not all values of Xjt.

4.2. Properties of the Direct Estimator V̂pjt

We evaluate error sizes in terms of conditional expected squared error. In keeping with

standard evaluation of design-based variance estimators, assume that for positive djt,

EpðV̂pjtjVpjtÞ ¼ Vpjt; VpðV̂pjtjVpjtÞ ¼
2V2

pjt

djt

: ð10Þ

The moment properties (10) would hold if V21
pjt djtV̂pjt followed a x2ðdjtÞ distribution.

However, the current article will assume that V̂pjt follows a lognormal distribution that in

general would allow somewhat greater modeling flexibility; see Appendix B for related

comments. Note that

EpðV̂
2

pjtjVpjtÞ ¼ {EpðV̂pjtÞjVpjt}
2 þ VpðV̂pjtjVpjtÞ

¼ V2
pjt þ

2V2
pjt

djt

¼ d21
jt ðdjt þ 2ÞV2

pjt:

ð11Þ

Consequently from (11), an unbiased estimator of VpðV̂pjtjVpjtÞ is:

V̂pðV̂pjtjVpjtÞ ¼ ðdjt þ 2Þ212V̂
2

pjt: ð12Þ

Six employment size classes were used for stratification for our CES survey example,

so the data analysis in Section 5 will use djt ¼ 6. In addition, sample sizes within
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employment class generally were large enough for each t that stratum-level sample means

were considered to follow an approximate normal distribution.

4.3. Properties of the GVF Estimator V*
pjt

Now consider the properties of V*
pjt, and the conditions under which V*

pjt may have a

smaller mean squared error than V̂pjt. In the general case,

Vpjt 2 V*
pjt ¼ qjt 2 {f ðXjt; ĝÞ2 f ðXjt; gÞ}: ð13Þ

To simplify the discussion, assume that the product (J�T) is increasing without bound.

This would occur with, for example, increases in the number of geographical areas or the

number of time periods. For example, the CES application uses data from 430 area-

industry combinations and 12 time periods, so the product J�T is relatively large. Then,

under mild regularity conditions on the function f ð�Þ,

E½{f ðXjt; ĝÞ2 f ðXjt; gÞ}
2jXjt� ¼ Op{ðJ�TÞ21}; ð14Þ

while the domain-specific term E q2
jtjXjt

� �
does not necessarily decrease as the product

(J�T) increases. For example, result (14) generally holds for each of Models ( f1)-( f 3)

because these models do not include terms ujt; include only known predictors Xjt; and

involve errors ĝ 2 g that are Op{ðJ�TÞ21=2}. Under result (14) and additional technical

conditions,

E{ðV*
pjt 2 VpjtÞ

2jXjt} ¼ Eðq2
jtÞ þOp{ðJ�TÞ21} ð15Þ

and the leading term Eðq2
jtÞ will generally be of larger magnitude than the Op{ðJ�TÞ21}

term associated with the error f ðXjt; ĝÞ2 f ðXjt; gÞ. Consequently, our task of evaluation of

the approximate mean squared error of V*
pjt simplifies to an evaluation of the expected

square of qjt.

4.4. Diagnostics for Comparison of V̂pjt And V*
pjt

We do not observe qjt directly, but we can estimate its expected square through the

following steps. First, note from Expression (9) that

V̂pjt 2 V*
pjt ¼ e jt þ qjt 2 {f ðXjt; ĝÞ2 f ðXjt; gÞ}

and so

V̂pjt 2 V*
pjt

� �2

¼ e2
jt þ q2

jt

þ {f ðXjt; ĝÞ2 f ðXjt; gÞ}
2

þ 2qjt f ðXjt; ĝÞ2 f ðXjt; gÞ
� �

þ 2e jt qjt 2 {f ðXjt; ĝÞ2 f ðXjt; gÞ}
� 	

:

ð16Þ

Under condition (14), the conditional expectation E {f ðXjt; ĝÞ2 f ðXjt; gÞ}
2jXjt


 �
is small

relative to Eðq2
jtjXjtÞ. Under additional mild conditions, the conditional expectations

E 2qjt f ðXjt; ĝÞ2 f ðXjt; gÞ
� ���Xjt

� 	
and E 2e jt qjt 2 {f ðXjt; ĝÞ2 f ðXjt; gÞ}

� 	��Xjt


 �
are small
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relative to E q2
jtjXjt

� �
, so

E V̂pjt 2 V*
pjt

� �2

jXjt

� 

8 VpðV̂pjtjVpjtÞ þ E q2

jtjXjt

� �
: ð17Þ

Expressions (9) and (16) lead to two general conclusions regarding diagnostics for V*
pjt.

First, due to distinctions between Vðe jtÞ and Eðq2
jtÞ, care is required in the interpretation of

standard regression diagnostics when applied to GVF models like the general model (1), or

the specific models ( f1) through ( f3). For example, the customary regression mean

squared error, ŝ2
e , is an estimator of the sum Vðe jtÞ þ Eðq2

jtÞ. In addition, under regularity

conditions, the customary squared coefficient of variation, R 2, satisfies the approximate

relationship,

1 2 R2 8 Vðe jtÞ þ Eðq2
jtÞ þ ðJ 2 1Þ21

XJ

j¼1

f ðXjt; ĝÞ2 V̂�
n o2

( )21

Vðe jtÞ þ Eðq2
jtÞ

n o
;

ð18Þ

where V̂� ¼ J 21
PJ

j¼1V̂jt. Under an ideal fit for Model (1), Eðq2
jtÞ would be

approximately equal to zero, but 1 2 R2 would not necessarily be close to zero,

due to the presence of Vðe jtÞ in the numerator of Expression (18). Thus, relatively small

values of R 2 by themselves do not necessarily indicate a poor fit for GVF Model (1).

Similar comments apply to other regression goodness-of-fit diagnostics used for GVF

models.

Second, to address these limitations, it is useful to consider estimators of Eðq2
jtjXjtÞ and

related diagnostics that adjust for the effects of Vðe jtÞ. In particular, Expression (12) is

an unbiased estimator of the first term on the right-hand side of Expression (17).

Consequently, we may define a direct estimator of Eðq2
jtjXjtÞ to be

rjt
def

V̂pjt 2 V*
pjt

� �2

2ðdjt þ 2Þ212V̂
2

pjt: ð19Þ

Note that rjt is a random variable with properties that depend on the distributions of both

the equation error term qjt and the sampling error term e jt. For example, if Eðq2
jtjXjtÞ ¼ 0,

then the leading terms of a Taylor expansion of rjt would have an expectation equal to

zero. Similarly, if Eðq2
jtjXjtÞ is not large relative to Eðe2

jtjXjtÞ, then there is a substantial

probability that a given value of rjt is less than zero. These results are similar to properties

of unadjusted estimators of “between group” variance terms in standard variance

component models. For example, for the data analysis detailed in Section 5, approximately

36% of the rjt values were less than zero.

Consequently, in assessment of Eðq2
jtjXjtÞ, use of smoothed versions of rjt would generally

be preferred. For example, one could extend the standard variance-component literature on

“restricted maximum likelihood” (REML) estimation (e.g., Patterson and Thompson 1971;

Corbeil and Searle 1976; and Harville 1977). However, a detailed extension of REML

methods to the current setting is beyond the scope of the current work. Instead, the next

subsection presents a relatively simple regression approach to estimation of Eðq2
jtjXjtÞ.
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4.5. Model Fitting for Conditional Expected Squared Equation Error

In general, one may consider a model

Eðq2
jtjXÞ ¼ Zjtvþ hjt

¼
XC

c¼1

Zcjtvc þ hjt

ð20Þ

for the conditional expectation of q2
jt, where Zjt ¼ ðZ1jt; : : : ; ZCjtÞ is a 1 £ C vector of

predictors (generally functions of ujt;Xjt and g); v ¼ ðv1; : : : ;vCÞ
0 is a C £ 1 column of

fixed regression coefficients; and hjt is a random error term arising from the underlying

superpopulation model. Let rj be a T £ 1 vector with t-th element rjt and define the

ðJ�TÞ £ 1 vector r ¼ ðr 01; r
0
2; : : : ; r

0
JÞ
0. Similarly, let Zj be a T £ C matrix with t-th row

Zjðt; :Þ equal to the predictors used for the specified model. Also, define the ðJ�TÞ £ C

matrix Z ¼ ðZ 01;Z
0
2; : : : ;Z

0
JÞ
0. Define v̂ ¼ ðZ 0ZÞ21Z 0r. See Appendix A for development

of the variance estimators and inferential statistics for v̂. Finally, define an estimator of

EðrjZÞ by

ĥf ¼ Zv̂: ð21Þ

For example, in keeping with the general approach to error analysis in variance function

models (e.g., Davidian et al. 1988), a quadratic function version of Model (20) is

Vðqjtjujt;Xjt; gÞ ¼ v0 þ v1f ðXjt; gÞ þ v2 f ðXjt; gÞ
� �2

þhjt; ð22Þ

where EðhjtÞ ¼ 0. Under approximation (15) and Model (22), the relative variance of the

prediction error Vpjt 2 V*
pjt is

RelVar Vpjt 2 V*
pjtjXjt

� �

8 f ðXjt; gÞ
� �22

V Vpjt 2 V*
pjt

� �

8 f ðXjt; gÞ
� �22

v0 þ f ðXjt; gÞ
� �21

v1 þ v2 þ f ðXjt; gÞ
� �22

hjt:

ð23Þ

When condition (14) does not hold, one could consider an expansion of Model (22) to

account for predictors of the additional components of RelVar Vpjt 2 V*
pjtjXjt

� �
. For a

given function f ðXjt; gÞ, we may consider a model to produce a smooth version, hf ðXjt;vÞ,

of the conditional expectation, E{ðV*
pjt 2 VpjtÞ

2jXjt}, such that:

E V*
pjt 2 Vpjt

� �2

jXjt

� 

¼ hf ðXjt;vÞ þ hjt:

For example, Expression (22) leads to

rjt ¼ v0 þ v1V*
pjt þ v2V*2

pjt þ ajt; ð24Þ

where we substitute the observed values V*
pjt for the unknown quantities f ðXjt; gÞ, and ajt is

a remainder term. In addition, it is of interest to consider the reduced form of Model (24)
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in which v0 ¼ 0 ¼ v1:

�V*22rjt ¼ �V*22V*2
pjtv2 þ �V*22ajt; ð25Þ

where �V* ¼ J 21
PJ

j¼1V*
pjt. For example, under Model (24), Zjðt;�Þ ¼ ½1;V

*
pjt;V

*2
pjt� and

v ¼ ½v0;v1;v2�
0 where j is the number of domains, and C ¼ 3 is the number of

coefficients in (24). Similarly, for Model (25), Zjðt;�Þ ¼ V*2
pjt

h i
and C ¼ 1.

4.6. A Degrees-of-Freedom Interpretation of Prediction Error Properties

Application of the ideas in Appendix B indicate that under Model (22), the term

f ðXjt; gÞ
� �21

d*
jtVpjt ð26Þ

has the same first and second moments as a x2
d*

jt

random variable where

d*
jt ¼ 2 RelVarðVpjt 2 V*

pjtÞ
n o21

8 f ðXjt; gÞ
� �22

v0 þ f ðXjt; gÞ
� �21

v1 þ v2 þ f ðXjt; gÞ
� �22

hjt

h i21

2:

ð27Þ

In addition, under Model (24), results presented in Appendix B indicate that

2 V*22
pjt ĥf

� �21

is an estimator of Expression (27) provided the error difference V*22
pjt ajt 2

V*22
pjt hjt is small. Thus, the degrees-of-freedom attributable to the error term qjt may in

general depend on the function f ðXjt; gÞ and thus vary across domains.

However, under the reduced Model (25), if the remainder term ajt is small, then

d*
jt 8 v21

2 2; ð28Þ

that is, the degrees-of-freedom term d*
jt is approximately constant and can be estimated on

the basis of the estimated coefficient v2 from the reduced Model (25).

5. Data Analysis

5.1. Estimation for GVF Model Coefficients

For the CES example introduced in Section 2, Tables 3 through 5 report coefficient

estimates, standard errors and inferential statistics for Models ( f 1) through ( f 3)

respectively. The reported standard errors equal the square root of the variance estimates

Table 3. Coefficient estimates and inferential statistics for Model ( f1)

Intercept ln ðxj0Þ ln ðnjtÞ ln ðtÞ
g0 g1 g2 g3 R2 ŝ2

e

EST. 21.43 1.16 0.22 1.17 0.52 1.31
s.e. 0.66 0.09 0.12 0.07
tg 22.17 12.77 1.78 16.72
meff 5.45 9.87 10.63 1.02
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computed from Expression (6). In addition, the design-based test statistic for the

coefficient gb is:

tgb
¼ V̂pðĝbÞ
� �21=2

ĝb:

Recall that Model ( f1) has coefficients that are constant across all industries, Model ( f2)

allows different intercept terms across industries and Model ( f3) allows all coefficients to

vary across industries. Also, note that Models ( f1) through ( f3) all include both lnðxj0Þ and

lnðnjtÞ. In general, subpopulations with a larger benchmark employment, xj0; will tend to

receive larger initial sample sizes and thus also have larger numbers of respondents, njt,

in month t. Consequently, ln ðxj0Þ and ln ðnjtÞ will tend to be positively correlated across

our 430 domains j. However, inclusion of both predictors allowed us to account for the

effects of the changes in numbers of respondents across months. In Table 3, the positive

coefficient on ln ðnjtÞ is an outcome of this positive association between ln ðxj0Þ and ln ðnjtÞ:

On the other hand, after incorporation of industry-specific intercept terms in Models ( f2)

and ( f3), the estimated coefficients for ln ðnjtÞ are negative.

In addition, the final rows of Tables 3 through 5 present “misspecification effect” ratios

for each of the estimated coefficients. In a slight extension of the ideas in Skinner (1986),

define the misspecification effect ratio for the coefficient estimator ĝb as:

meffmb ¼
sef m;complexðĝbÞ

sef m;directðĝbÞ

� �2

; ð29Þ

where sef m;complexðĝbÞ is the estimated standard error of the ordinary least squares

coefficient estimator ĝb computed with Expression (6) for model f m; and sef m;directðĝbÞ is

the corresponding standard error obtained directly from ordinary least squares results,

without any adjustment for the correlation across V̂pjt terms induced by the CES design and

estimation methods. For cases in which meffmb is greater than one, direct use of unadjusted

errors from ordinary least squares regression output will lead to confidence intervals for ĝb

that are too narrow and that have coverage rates below their nominal levels. As one would

expect in the analysis of data with relatively strong correlation over time, Table 3 reports

misspecification effect ratios that are substantially greater than one for the coefficients

g0; g1 and g2: For g3 (the coefficient of the lnðtÞ predictor), the misspecification effect

ratio is close to one. Tables 4 and 5 display qualitatively similar patterns for their

misspecification effect ratios, with the exception of the coefficients for Industry 1. This

industry had data for only two MSAs, while Industries 2 through 6 had data for 36, 61, 131,

100 and 100 MSAs, respectively.

Table 4. Coefficient estimates and inferential statistics for Model ( f 2)

Intercept
ln ðxj0Þ ln ðnjtÞ ln ðtÞ

g01 g02 g03 g04 g05 g06 g1 g2 g3 R 2 ŝ2
e

EST. 23.98 23.28 23.44 24.85 24.89 24.26 1.70 20.57 1.25 0.61 1.06
s.e. 1.08 0.65 0.66 0.72 0.73 0.71 0.11 0.15 0.07
tg 23.68 25.03 25.23 26.76 26.74 25.99 16.06 23.86 17.93
meff 9.53 6.22 6.13 6.72 6.00 6.81 11.77 12.19 1.26
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In applying the residual-analysis methods developed in Section 4 and Appendix C,

we used the estimators

V*
pjt; f m

¼ exp Xj; f m
ĝf m
þ 221ŝ2

e; f m

� �

where Xj;f m
and ĝf m

are respectively the vectors of predictor variables and ordinary least

squares coefficient estimators for a given model m, with each of Models ( f 1) through ( f 3)

considered separately. In addition, ŝ2
e;f m

is the residual mean squared error from the ordinary

least squares regression fit for model m. See Karlberg (2000) for related comments.

5.2. Goodness-of-Fit Measures for the GVF Models

To evaluate the goodness-of-fit of our GVF models, note first that Tables 3, 4 and 5 present

the aggregate measures R 2 equal to 0.52, 0.61 and 0.62 for Models ( f1) through ( f3),

respectively; and the corresponding residual mean squared error terms ŝ2
e are 1.31, 1.06

and 1.04, respectively. Thus, in a summary evaluation of fit across all domains, Model ( f2)

is somewhat better than ( f1), but ( f3) is only marginally better than Model ( f2). In keeping

with the comments following Expression (17), interpretation of R 2 and ŝ2
e values warrants

careful consideration of the effect of Vðe*
jtÞ. Specifically, applications of the residual-

analysis methods from Section 4 indicate several important ways in which Model ( f3) may

provide a better fit than Models ( f1) or ( f2) for the CES data.

First, for each of Models ( f1) through ( f3), Table 6 reports the results of standard Wald

test statistics for the null hypothesis H0 : v0 ¼ 0 ¼ v1:

W ¼ v̂0; v̂1


 �
V̂{ðv̂0; v̂1Þ

0}
� 	21

ðv̂0; v̂1Þ
0;

where v̂ ¼ v̂0; v̂1; v̂2

h i 0
is computed through an ordinary least squares fit to Model

(24) with V̂ðv̂0; v̂1Þ computed as shown in Appendix A. In addition, v̂ and V̂ðv̂Þ are based

on data from a total of 430 area-industry combinations. Application of the quadratic

form ideas reviewed in Appendix A, with d ¼ 430 2 1 ¼ 429 and p ¼ 2, indicates

that (W/429){(429 2 2 þ 1)/2} has approximately a noncentral F distribution with 2 and

429 2 2 þ 1 ¼ 428 degrees of freedom and with noncentrality parameter

W0 ¼ ðv0;v1Þ V{v̂0; v̂1Þ
0}

� 	21
ðv0;v1Þ

0. In our example, all test statistics from Models

Table 6. Wald test of v0 ¼ v1 ¼ 0 for Model (24).

(Reference value: 6.00 at a ¼ 0.05)

First phase model f 1 f 2 f 3

Test statistics 3.22 2.63 3.13

Table 7. Degrees of Freedom (d*) among

Models ( f ) given Model (24) with v0 ¼ v1 ¼ 0

Model f 1 f 2 f 3

v2 0.484 0.216 0.004
se(v2) (0.053) (0.048) (0.001)
d* 4.13 9.25 468.77
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( f1) to ( f3) were smaller than the reference value, F{2;428}ð2Þð429Þ=428 ¼ 6:00, at

a ¼ 0:05.

Table 7 reports the estimates v̂2 and their standard errors computed under the reduced

form of Model (25) with the constraints v0 ¼ 0 ¼ v1. Note that Model ( f3) has large

estimated values for d* ¼ v̂21
2 2, while Models ( f1) and ( f2) have much smaller estimated

values for d*.

Second, we computed the terms rjt from Expression (19) for each of Models ( f1) through

( f3) respectively. Figure 1 presents a plot of the resulting rjt against the corresponding

predicted values lnðV*
pjtÞ for Model ( f3). The grey circles display the plot of rjt, an

approximately unbiased estimator of the mean squared error of V*
pjt, against lnðV*

pjtÞ; and the

solid black circles display the values of ĥf 3
, the smoothed version of rjt based on Expression

(21) computed for the reduced Model (25). Figure 1 also includes results from a

nonparametric regression method known as locally weighted regression (loess) with a span of

0.1. For general background on loess methods, see Cleveland and Grosse (1991). Note that the

loess-smoothed estimates are relatively close to the corresponding values of ĥf 3
in Figure 1.

Similar plots were produced for Models ( f1) and ( f2) but are not shown in the article.

For the relatively simple Model ( f1), the resulting plot indicates that ĥf 1
, the estimator of

Eðq2
jtjXjtÞ, is relatively large for large values of lnðV*

jtÞ, reflecting a potential lack of fit for

Model ( f1) in this upper range. For ( f2), which is a more refined model than ( f1), the

corresponding values of ĥf 2
are not as large as ĥf 1

for high values of lnðV*
jtÞ, indicating a

somewhat better fit of ( f2). In addition, for cases with positive values of rjt, we plotted

12 14 16 18

−2.0e+15

0.0e+00

2.0e+15

4.0e+15

6.0e+15

8.0e+15

1.0e+16

1.2e+16

log(Vstar)

r jt

hf3

Loess(span=0.1)

Fig. 1. Three overlaid plots of estimates of E q2
jtjXjt

� �
against ln V

*

pjt

� �
based on Model ( f 3). The grey circles

present rjt based on Expression (19). The grey line presents loess-smoothed values of rjt with span ¼ 0.1. The

solid black circles present values of hf 3 computed from the reduced Model (25)
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points of lnðrjtÞ against lnðV*
pjtÞ for Model ( f3) (again not included here). A loess-smoothed

line (span ¼ 0.1) drawn through the plotted points was roughly consistent with a linear

relationship between lnðrjtÞ and lnðV*
pjtÞ. Furthermore, for all values ( j,t), the computed

values ĥf 1
, ĥf 2

and ĥf 3
were all greater than zero, thus addressing the negative individual

values of rjt noted in Subsection 4.4.

Figure 2 plots three measures of uncertainty in prediction of the true design variance

Vpjt. The first measure, SE1, equals the square root of 2V̂
2

pjt

� �
=ðd þ 2Þ; which is an

unbiased direct estimator of the variance of the prediction error V̂pjt 2 Vpjt under the

moment condition (10). The second measure, SE2, equals the square root of 2V*2
pjt

� �
=d,

where V*
pjt is computed under Model ( f1). Under Model ( f1) and condition (10),

2V*2
pjt

� �
=d is approximately unbiased for the variance of the prediction error V̂pjt 2 Vpjt.

Thus SE2 may be considered as a smoothed version of SE1. The third measure,
ffiffiffiffiffiffi
hf 1

p
, is an

estimator of the standard deviation of the equation error term qjt under Model ( f1) and the

conditions outlined in Section 4. In Figure 2, the curve for lnð
ffiffiffiffiffiffi
hf 1

p
Þ falls slightly above

the curve for ln (SE2), which indicates that under the relatively simple Model ( f1), use

of the GVF will lead to an estimated standard error for prediction of Vpjt that is slightly

larger than the standard error of V̂pjt as a predictor of Vpjt. Figures 3 and 4 present the

corresponding plots of ln (SE1), ln (SE2) and ln ð
ffiffiffiffiffi
hf

p
Þ against ln ðV*

pjtÞ for Models ( f2) and

( f3), respectively. Note that in Figure 3, the curve for ln ð
ffiffiffiffiffiffi
hf 2

p
Þ is slightly below the curve

for ln (SE2), while in Figure 4, ln ð
ffiffiffiffiffiffi
hf 3

p
Þ is substantially below ln (SE2).

12

18

16

14

12

10

8

14 16 18

Log (vstar)

log (SE1)

log (SE2)

log (  hf1)

Fig. 2. Plot of ln (SE 1) (grey circles), ln (SE 2) (grey triangles) and ln ð
ffiffiffiffiffiffi
hf 1

p
Þ (black squares) against ln V

*

pjt

� �

for the reduced form (25) of the regression model for the error terms rjt . Here, SE 2,
ffiffiffiffiffiffi
hf 1

p
and V

*

pjt are all based

on Model ( f 1)
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Figure 5 displays plots of
ffiffiffiffiffi
hf

p
against lnðV*

pjtÞ where both
ffiffiffiffiffi
hf

p
and lnðV*

pjtÞ are

computed separately for each of Models ( f1) through ( f3). For relatively large values of

lnðV*
pjtÞ, the curve for ( f3) is substantially below the curves for ( f 1) and ( f 2). Thus,

Figures 2 through 5 indicate that for prediction of the true variances Vpjt; under the

specified conditions, use of Model ( f3) is substantially better than use of either Models

( f1) or ( f2), or use of the directly computed terms V̂pjt. Finally, note that all figures present

data for the same area-industry-month combinations from the calendar year 2000.

Consequently, some common outlier patterns appear in several of the figures. For

example, Figure 1 displays three large positive outliers corresponding to ln ðV*
pjtÞ values

approximately equal to 14.5. These three points represent three consecutive months for

one specific area-industry combination. Similar three-point outlier patterns for the same

area-industry combinations appear in Figures 2 through 4.

6. A Simulation Study

6.1. Design of the Study

To evaluate the properties of ĝ and V*
pjt, we carried out a simulation study based on the

following variables produced for each of R ¼ 1,000 replicates.

12

8

10

12

14

14

16

16

18

18
log(Vstar)

log(SE1)
log(SE2)
log(  hf2 )

Fig. 3. Plot of ln (SE 1) (grey circles), ln (SE 2) (grey triangles) and ln ð
ffiffiffiffiffiffiffi
hf 2

p
Þ (black squares) against ln V

*

pjt

� �

for the reduced form (25) of the regression model for the error terms rjt . Here, SE 2,
ffiffiffiffiffiffiffi
hf 2

p
and V

*

pjt are all based

on Model ( f 2)
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First, we computed the fixed values

f 1jt ¼ g0 þ g1 ln ðxj0Þ þ g2 ln ðnjtÞ þ g3 ln ðtÞ ð30Þ

based on the numerical values of the coefficient vector g for Model ( f1) presented in

Table 3 for all 5,160 combinations of domain j and month t considered in Section 5.

Second, we generated the normal ð0;s2
q*
Þ random variables q*

jtðrÞ for the 5,160 cases with

s2
q*

defined by Expression (C.6) using values of dq specified in Table 8. We then computed

VpjtðrÞ ¼ expð f 1jt þ q*
jtðrÞÞ:

In addition, we generated ûjtðrÞ as independent normal ðxj0;VpjtÞ random variables and

generated e*
jtðrÞ as independent normal ð0;s2

e*
Þ random variables with s2

e*
defined by

Expression (C.5) with de ¼ 6. We then computed

V̂pjtðrÞ ¼ VpjtðrÞ expðe*
jtðrÞÞ:

Based on the 5,160 vectors V̂pjtðrÞ;Xjt


 �
, where Xjt ¼ 1; lnðxj0Þ; lnðnjtÞ; lnðtÞ


 �
, we

carried out ordinary least squares regression of lnðV̂pjtðrÞÞ on Xjt to produce the coefficient

vector estimate ĝðrÞ; the term ŝ2
ðrÞ equal to the regression mean squared error; the term

ŝ2
q*ðrÞ

defined by Expression (C.6); and the predicted variances V**
pjtðrÞ defined by

Expression (C.9). In addition, we computed the confidence intervals for ujt,

ûjtðrÞ ^ tde ;12a=2 V̂pjtðrÞ


 �1=2
ð31Þ

12

8

10

12

14

14

16

16

18

18
log(Vstar)

log(SE1)
log(SE2)
log(  hf3 )

Fig. 4. Plot of ln (SE 1) (grey circles), ln (SE 2) (grey triangles) and ln ð
ffiffiffiffiffiffi
hf 3

p
Þ (black squares) against ln V

*

pjt

� �

for the reduced form (25) of the regression model for the error terms rjt . Here, SE 2,
ffiffiffiffiffiffi
hf 3

p
and V

*

pjt are all based

on Model ( f 3)
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based on the direct variance estimates V̂pjtðrÞ; and

ûjtðrÞ ^ tdq;12a=2 V**
pjtðrÞ

� �1=2

ð32Þ

based on the GVF predictors V**
pjtðrÞ, where td;12a=2 is the upper 1 2 a=2 quantile of a t

distribution on d degrees of freedom. Finally, taking averages over the R replicates, we

computed estimates

R21
XR

r¼1

ĝðrÞ 2 g

 �

ð33Þ

of the biases of the coefficient estimates;

n21R21
XR

r¼1

X12

t¼1

X430

j¼1

Vpjt

 !21

n21R21
XR

r¼1

X12

t¼1

X430

j¼1

DpjtðrÞ

 !
ð34Þ

the aggregate relative bias of the predictors V**
pjtðrÞ where DpjtðrÞ ¼ V**

pjtðrÞ 2 Vpjt, and

n ¼ J £ T ¼ 430 £ 12 ¼ 5; 160;

n21R21
XR

r¼1

X12

t¼1

X430

j¼1

V21
pjt DpjtðrÞ

 !
ð35Þ

0.0e+00

2.0e+07

4.0e+07

6.0e+07

8.0e+07

1.0e+08

1.2e+08

f1

f2

f3

12 14 16 18
log(Vstar)

h

Fig. 5. Three overlaid plots of
ffiffiffiffiffi
hf

p
against ln V

*

pjt

� �
. In the top curve (dark grey circles), both

ffiffiffiffiffiffi
hf 1

p
and

ln V
*

pjt

� �
are based on Model ( f1) for ln V

*

pjt

� �
. In the middle curve (light grey triangles), both

ffiffiffiffiffiffi
hf 2

p
and ln V

*

pjt

� �

are based on Model ( f 2). In the bottom curve (black crosses), both
ffiffiffiffiffiffi
hf 3

p
and ln V

*

pjt

� �
are based on Model ( f 3).

In all curves,
ffiffiffiffiffi
hf

p
is based on the reduced Model (25) for rjt .
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the average domain-specific relative bias of V**
pjt; and the coverage rates and mean widths

for the confidence intervals (31) and (32).

We repeated these steps for the eight values of dq ¼ 4; 6; 8; 16; 30; 60; 120 and 400.

Results are displayed in Table 8.

6.2. Numerical Results

The first two columns of Table 8 present the selected values of dq and the corresponding

values of s2
q*

based on Expression (C.6). Note that the value dq ¼ 4 corresponds

approximately to the value of d* for Model ( f1) in Table 7; and the value of dq ¼ 400 is

slightly less than the value of d* for Model ( f3) in Table 7.

The next four columns of Table 8 present the bias terms as given in Expression (33),

with the corresponding simulated standard deviations placed in parentheses. Note that the

bias terms are all small relative to the coefficient values in Table 3 and relative to the

reported standard deviations.

The next two columns report the relative bias values given by Expressions (34) and (35),

respectively. Note that the aggregate bias terms (34) are relatively small for all cases;

while the relative bias terms (35) are fairly large for dq ¼ 4, and decline to values close to

zero as dq increases. The ninth through twelfth columns report coverage rates and mean

widths for nominal 95% confidence intervals (31) and (32), respectively. Note that all

coverage rates exceed the nominal value of 0.95.

For dq ¼ 4, the intervals (31) based on V̂pjt have a mean width approximately 17% less

than the intervals (32) based on V*
pjt. This is not surprising, since in this case de is greater

than dq. For dq ¼ 6, the intervals (31) and (32) have approximately the same mean width.

As dq increases in the remainder of Table 8, mean widths of the intervals (32) became

progressively smaller relative to the widths of the interval (31). This reflects the increasing

efficiency of V**
pjt relative to V̂pjt as dq increases with de held equal to 6. We observed

similar patterns in comparisons of the quantiles of the widths of the confidence intervals

(31) and (32); details are omitted here in the interest of space.

In addition, we produced month-specific forms of the final six columns of Table 8, and

explored the numerical results for possible time effects. In results not detailed here, we did not

identify any substantial time effects for the relative-bias results related to Expressions (34)

and (35), nor for the coverage rates of confidence intervals for ujt based on Expressions (31)

and (32), respectively. As one would expect from the positive coefficient g3 in Expression

(30), the widths of the intervals (31) and (32) did increase over time, but for a given value of

dq, the relative widths of intervals (31) and (32) remained approximately the same.

7. Discussion

7.1. Summary of Ideas and Methods

This article has considered two related approaches to the evaluation of generalized

variance functions for the analysis of complex survey data. First, an extension of standard

estimating equation methods led to design-based variance estimators for the coefficient

estimators of a GVF model. This in turn led to design-based inferences for these

coefficients, as illustrated by the CES example in Tables 3 through 5. For many of the

Cho et al.: Evaluation of Generalized Variance Functions in the Analysis of Complex Survey Data 85

Unauthenticated | 195.77.16.2
Download Date | 2/17/14 9:38 AM



coefficients considered in Tables 3 through 5, the numerical values of the misspecification

effect ratio (29) were substantially greater than one. Thus, in inference for the CES

example, it was important to use the design-based variance estimator from (6) instead of

the customary variance estimates obtained directly from standard OLS output. Second,

additional conditions on the equation error terms qjt led to approximations for the mean

squared error of the GVF-based estimators V*
pjt. A regression model for these MSE terms

allowed the comparison of the predictive precision of the GVF V*
pjt with the direct design-

based variance estimators V̂pjt. Application of this second set of analyses in Tables 6 and 7

and in Figures 1 through 4 allowed the identification of some specific GVFs with smaller

MSEs than V̂pjt for our CES data.

7.2. Possible Extensions

In closing, we note several possible extensions of the current work. First, we have focused

on modeling of the variance of sampling error alone. In some work with small domain

estimation, there is also interest in modeling of the variances of prediction errors, which may

include components of both sampling error and model error. Second, one may develop

additional diagnostics that are specifically focused on evaluation of the effect of GVF lack of

fit on specific statistics, that is, confidence intervals for finite population means or variance-

based weights in construction of weighted least squares estimators. Third, in keeping with

the comments at the end of Subsection 4.4, one could consider estimators of Eðq2
jtjXjtÞ based

on restricted maximum likelihood methods from the variance component literature. Fourth,

Valliant (1987) explored questions regarding use of ordinary least squares or weighted least

squares methods in estimation of the coefficients of a GVF model. It would be useful to

extend his approach to the context defined in the current article, especially for estimation of

the coefficients of the hf models like (24) and (25). Fifth, the numerical work in this article

used the assumption that the equation errors qjt and estimation errors e jt followed lognormal

distributions. One could consider extensions of this work to cases in which qjt and e jt follow

chi-square distributions or other distributions in the gamma family. Finally, the simulation-

based evaluations in Section 6 used values q*
jtðrÞ; e

*
jtðrÞ and ûjtðrÞ generated from independent

normal distributions. As suggested by a referee, one could carry out related simulation work

by expanding the available CES data into a fixed finite population, and then drawing

multiple stratified samples from that population.

Appendix A

Development of the Variance Estimator V̂ðv̂Þ

Subsection 3.2 developed variance estimators V̂ðĝÞ for the GVF coefficient estimators ĝ:

To develop a similar estimator for the variance of the approximate distribution of v̂, define

r, Z, J and C as in Subsection 4.5. Under regularity conditions, v̂ follows approximately a

multivariate normal distribution with mean v and variance-covariance matrix Vðv̂Þ.

An estimator of Vðv̂Þ is

V̂ðv̂Þ ¼ ŵð1Þðv*Þ
� �21

V̂ ŵðv̂Þf g ŵð1Þðv*Þ
� �

0
� 	21

;
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where ŵð1Þðv*Þ ¼
›ŵðvÞ

›v

��
v¼v*
¼ Z 0Z. For Model (20),

v̂ ¼ ðZ 0ZÞ21Z 0Y

ŵðv̂Þ ¼ Z 0Y 2 Z 0Zv̂

V̂ ŵðv̂Þf g ¼ ðJ 2 1Þ21J
j[D

X
ŵjtðv̂Þ2 �ŵðv̂Þ
� �

ŵjtðv̂Þ2 �ŵðv̂Þ
� �

0

and �ŵðv̂Þ ¼ J 21

j[D

X
ŵjtðv̂Þ:

Under additional regularity conditions, dV̂ðv̂Þ follows approximately a Wishart d;Vðv̂Þ

 �

distribution. Standard arguments (e.g., Korn and Graubard 1990) indicate that for a fixed

p £ C dimensional matrix A, if we define the quadratic form

W ¼ Av̂ð Þ0 AV̂ v̂ð ÞA 0
� 	21

Av̂ð Þ;

then ðW=dÞ{ðd 2 pþ 1Þ=p} has approximately a noncentral F distribution with p and

ðd 2 pþ 1Þ degrees of freedom and noncentrality parameter W0 ¼

Avð Þ0 AV v̂ð ÞA 0
� 	21

Avð Þ:

Appendix B

Ad Hoc “Degrees of Freedom” Measures for Estimation and Prediction Errors Under

Variance Function Models

Numerical work in this article uses the assumption that the errors qjt and e jt follow

lognormal distributions. However, direct statements about the moments of qjt and e jt may

be somewhat difficult to interpret. Consequently, it is useful to provide the following ad

hoc “degrees of freedom” measures related to the moments of qjt and e jt.

Let A be a positive random variable with finite positive mean and variance. Then under

a standard approach (e.g., Satterthwaite 1941 and Kendall and Stuart 1968, p. 83), the

random variable {EðAÞ}21dA has the same first and second moments as those of a x2
d

random variable, where we define the “degrees of freedom” term

d ¼ {VðAÞ}212{EðAÞ}2: ðB:1Þ

Specifically, for the random variables Vpjt and V̂pjt defined in Expressions (1) and (2),

{f ðXjt; gÞ}
21dqjt

Vpjt has the same first and second moments as a x2
dqjt

random variable,

where

dqjt
¼ {VðqjtÞ}

21 2{f ðXjt; gÞ}
2: ðB:2Þ

Similarly, conditional on Vpjt, Vpjt


 �21
de jt

V̂pjt has the same first and second moments as a

x2
de jt

random variable, where

de jt
¼ Vðe jtjXjtÞ
� �21

2 Vpjt


 �2
: ðB:3Þ
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Appendix C

Predictors V*
jt of the Design Variance Vjt Under Lognormal Models for Equation Error

and Estimation Error

Under the model defined by Expressions (2) and (3), define e*
jt ¼ ln ðV̂jtÞ2 ln ðVjtÞ and

assume that

q*
jt , Nð0;s2

q*
Þ ðC:1Þ

and

e*
jt , N 0;s2

e*


 �
: ðC:2Þ

Then routine calculations show that

EðVjtjXjtÞ ¼ exp Xjtgþ 221s2
q*

� �
: ðC:3Þ

Let ŝ2
e be the customary mean squared error term from the regression of lnðV̂pjtÞ on Xjt

under the model defined by Expressions (2) and (3). Under additional regularity

conditions, ŝ2
e is a consistent estimator for the sum s2

q*
þ s2

e*
.

If one does not have satisfactory information about the estimation-error variance term s2
e*

,

then one may consider use of the predictor

V*
pjt ¼ exp Xjtĝþ 221ŝ2

e


 �
: ðC:4Þ

Expression (C.4) provides a predictor of the true variance Vpjt that is conservative in the

sense that EðV*
pjtÞ will tend to be larger than EðVpjtÞ. To develop a less conservative

predictor of Vpjt, suppose that under Expression (B.3), the term de jt
is known (up to a

reasonable level of approximation) and equals the constant de for all j and t. Additional

calculations for the moments of the lognormal distribution then show that

s2
e*
¼ C 1; 221de


 �
ðC:5Þ

where Cða; bÞ is the C function with arguments a and b (Abramowitz and Stegun 1972,

p 258). Similarly, under the lognormal model (C.1), define dq ¼ {VðqjtÞ}
212{EðVjt}

2,

then

s2
q*
¼ C 1; 221dq


 �
ðC:6Þ

In addition, define the function cðdÞ ¼ C 1; 221d

 �

. Expression (C.5) then leads to the

estimators

ŝ2
q*
¼ ŝ2

e 2 s2
e*

ðC:7Þ

and

d̂q ¼ c21 ŝ2
q*

� �
ðC:8Þ
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Finally, based on substitution of ĝ for g and ŝ2
q*

for s2
q*

in Expression (C.3), define the

predictor

V**
pjt ¼ exp Xjtĝþ 221ŝ2

q*

� �
: ðC:9Þ
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A Convenient Method of Decomposing the Gini Index by
Population Subgroups

Tomson Ogwang1

We propose a convenient method of estimating the within-group, between-group, and
interaction components of the overall traditional Gini index from the estimated parameters of
underlying “trick regression models” involving known forms of heteroscedasticity related to
income. Two illustrative examples involving both real and artificial data are provided. The
issue of appropriate standard error of the subgroup decomposition is also discussed.

Key words: Subgroup decomposition; Stochastic approach; Gini index; pseudo-Gini.

1. Introduction

Subgroup decomposition of inequality measures entails determining the proportion of

observed inequality that is accounted for by the within-group, between-group, and in some

cases the interaction component. Analysis of the trends of overall inequality and its

components aids policy makers in devising appropriate inequality-reduction strategies.

Kanbur (2006) articulates the policy significance of such decompositions and Radaelli

(2010) provides a comprehensive survey of the literature on Gini subgroup decomposition.

In the 1960s, Bhattacharya and Mahalanobis (1967) and Rao (1969) decomposed the

traditional Gini index by population subgroups into within-group and between-group

components. The two-component decomposition strategy is valid if the subgroup income

ranges do not overlap, that is, the richest income-receiving unit (individual, household) in

the subgroup with a lower mean income class is not richer than the poorest income-

receiving unit in any subgroup with a higher mean income. Subsequently, Pyatt (1976),

Silber (1989) and Sastry and Kelkar (1994) decomposed the Gini index by population

subgroups into within-group, between-group, and interaction (overlapping) components.

In the traditional three-component subgroup decomposition, the within-group component

is zero when there is no income inequality within each of the subgroups; the between-

group component is the value of the Gini index when the income-receiving units in each

subgroup receive the subgroup mean income; and the interaction component indicates the

degree of income overlap between the subgroups. The three-component approach to Gini

subgroup decomposition is more appealing than its two-component counterpart since it

also applies when some subgroup income ranges do overlap. Because of this appeal, the
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development of convenient ways of conducting three-component decompositions of the

Gini index and the search for alternative ways of viewing the three components continue.

Pyatt’s, Silber’s and Sastry and Kelkar’s subgroup decompositions of the Gini index

employ matrix formulations that are not easily amenable to empirical implementation

using linear regression methods. Yao and Liu (1996) and Yao (1999) proposed convenient

ways of conducting these decompositions using spreadsheets without invoking any

regressions. The stochastic approach considered by Ogwang (2000, 2004, 2006, 2007) and

Giles (2004) provides a simple way of computing the Gini index from the estimated

parameters of an underlying regression model with a known form of heteroscedasticity

related to income. The purpose of this article is to exploit the simplification provided by

the stochastic approach for purposes of conducting three-component subgroup

decomposition of the traditional Gini index.

The methodology considered in this article has three major advantages. First, it provides

a new way of viewing the within-group, between-group and interaction components of the

traditional Gini index. For example, the interpretation of the between-group and

interaction components of the overall Gini as weighted averages of their respective

pseudo-Ginis has not previously been featured in the literature on subgroup decomposition

of the Gini index. The concept “pseudo-Gini” as used in the context of Gini subgroup

decomposition is explained in Section 3, where its interpretation and its similarity to the

same concept as used in the context of income source decompositions are also explained.

Second, from a practical perspective, the proposed method provides a new and convenient

way of computing the three aforementioned components using widely available regression

software packages. Third, the calculations and decomposition processes involved are quite

transparent, which facilitates understanding.

The format of the rest of the article is as follows. In Section 2 we provide a brief

overview of the stochastic approach to the overall Gini index. In Section 3 we derive the

salient results that are needed in order to extend the stochastic approach for purposes of

subgroup decomposition of the Gini index. In Section 4 we describe the actual empirical

implementation of the stochastic approach for Gini subgroup decomposition. The salient

issues surrounding the estimation of appropriate standard errors of the Gini subgroup

decompositions are discussed in Section 5. Section 6 provides two illustrative examples

using both real and artificial data and Section 7 forms the conclusion.

2. The Stochastic Approach to the Gini Index

Let y1; y2; : : : ; yn be the individual incomes of n income-receiving units (individuals,

households) which are arranged such that y1 # y2 # : : : # yn, and hence the ranks of y1

and yn are 1 and n, respectively. Tied incomes are assigned the average of the ranks they

would get without ties.

For purposes of subgroup decomposition of the Gini index using the stochastic

approach, it is convenient to utilize the following formula considered by Ogwang (2007)

Ĝ ¼ ð1=nÞĝ ð1Þ

where ĝ is the weighted least squares (WLS) estimator of g in the “trick regression model”

i* ¼ gþ ui where i* ¼ ð2i 2 n 2 1Þ; i ¼ 1; 2; : : : ; n, assuming that the errors ui are
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heteroscedastic of the form Eðu2
i Þ ¼ s2=yi (equivalently, ĝ is the ordinary least squares

(OLS) estimator of g in the transformed model i*
ffiffiffiffi
yi
p
¼ g

ffiffiffiffi
yi
p
þ ui

ffiffiffiffi
yi
p

where the

transformed errors ui
ffiffiffiffi
yi
p

are homoscedastic under the assumed heteroscedastic structure).

Note that under the stipulated heteroscedastic structure, Equation (1) yields accurate point

estimates of the Gini index regardless of the number of observations. This is because under

this heteroscedastic structure, the WLS estimator of g in Equation (1) divided by n is, in

fact, the usual Gini statistic.

3. Extending the Stochastic Approach to Gini Subgroup Decomposition

Suppose that n income-receiving units are classified into k mutually exclusive and

exhaustive subgroups by, for example, gender, age, race, education, occupation or region.

The k subgroups are arranged in ascending order of their subgroup mean incomes but the

incomes in each subgroup can be in any order. Subgroups with identical mean incomes are

first merged into one subgroup.

To facilitate the exposition of subgroup decomposition of the Gini index,

let nj, j ¼ 1, 2, : : : , k denote the number of income-receiving units in the

subgroup with the jth smallest mean income, in which case n ¼
Pk

j¼1nj. Let

yij, i ¼ 1; 2; : : : ; nj; j ¼ 1; 2; : : : ; k denote the income of the ith income-receiving

unit in the subgroup with the jth smallest mean income and �yj ¼ ð1=njÞ
Pnj

i¼1yij, the mean

income in the same subgroup.

With respect to the income ranks, let rij; i ¼ 1; 2; : : : ; nj; j ¼ 1; 2; : : : ; k denote the

rank of yij in relation to the incomes of all the n ¼
Pk

j¼1nj income-receiving

units in all the k subgroups. Also, let r 0ij; i ¼ 1; 2; : : : ; nj; j ¼ 1; 2; : : : ; k denote the

rank of yij in relation to the incomes of only the nj income-receiving units in the subgroup

with the jth smallest mean income. Finally, let ~rijð j ¼ 1; 2; : : : ; k; i ¼ 1; 2; : : : ; njÞ

denote the rank of yij in relation to the incomes of all the n ¼
Pk

j¼1nj income-receiving

units, assuming that yij ¼ �yj (i.e., all the income-receiving units in each subgroup are

assumed to receive the mean income for that subgroup).

To facilitate the exposition of subgroup decomposition of the Gini index by

exploiting Equation (1), it is also necessary to define the following three rank

vectors: r*
ij¼2rij 2n21ði¼1;2; : : : ;nj; j¼1;2; : : : ;kÞ; r* 0

ij ¼2r 0ij 2nj 21 ði¼1;2; : : : ;nj;

j¼1;2; : : : ;kÞ and ~r*
ij¼2~rij 2n21ði¼1;2; : : : ;nj; j¼1;2; : : : ;kÞ. It is easy to verify that

rij*¼ 2r 0ij 2nj 21
h i

þ2 rij 2 r 0ij

� �
þðnj 2nÞ; i¼1;2; : : : ;nj; j¼1;2; : : : ;k: ð2Þ

Equation (2) can be conveniently rewritten as

r*
ij¼ r* 0

ij þ2ðrij 2 r 0ijÞþðnj 2nÞ; i¼1;2; : : : ;nj; j¼1;2; : : : ;k: ð3Þ
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Since the subgroups are arranged in ascending order of their mean incomes and in the

absence of any subgroup mean income ties

~ri1 ¼ ðn1 þ 1Þ=2; i ¼ 1; 2; : : : ; n1; ~rij ¼
Xj21

i¼1

ni

" #
þ ðnj þ 1Þ=2;

i ¼ 1; 2; : : : ; nj; j ¼ 2; : : : ; k

ð4Þ

(i.e., ~ri1 ¼ ðn1 þ 1Þ=2; ~ri2 ¼ n1 þ ðn2 þ 1Þ=2; ~ri3 ¼ n1 þ n2 þ ðn3 þ 1Þ=2; etc.).

Also,

~r*
i1 ¼ ðn1 2 nÞ; i ¼ 1; 2; : : : ; n1; ~r*

ij ¼
Xj21

i¼1

2ni

" #
þ ðnj 2 1Þ;

i ¼ 1; 2; : : : ; nj; j ¼ 2; : : : ; k

ð5Þ

(i.e., ~r*
i1 ¼ ðn1 2 nÞ; ~r*

i2 ¼ 2n1 þ ðn2 2 nÞ; ~r*
i3 ¼ 2n1 þ 2n2 þ ðn3 2 nÞ; etc.).

Substituting ðn1 2 nÞ ¼ ~r*
i1; i¼ 1;2; : : : ;n1; ðnj 2 nÞ ¼ ~r*

ij 2
Pj21

i¼12ni; i¼ 1;2; : : : ;nj;

j¼ 2; : : : ;k from Equation (5) into Equation (3) and rearranging the terms yields

r*
ij ¼ r* 0

ij þ ~r*
ijþ 2r_*

ij; i¼ 1;2; : : : ;nj; j¼ 1;2; : : : ;k ð6Þ

where r_*
i1¼ðri1 2 r 0i1Þ; i¼ 1;2; : : : ;n1 and r_*

ij¼ rij 2 r 0ij 2
Pj21

i¼12ni

� �
; i¼ 1;2; : : : ;nj;

j¼ 2; : : : ;k: The overall Gini index is given by

Ĝ¼
1

n

Xnj

i¼1

Xk

j¼1
r*

ijyij

Xnj

i¼1

Xk

j¼1
yij

ð7Þ

Substituting r*
ij, given by Equation (6), into Equation (7) yields

Ĝ¼
1

n

Xnj

i¼1

Xk

j¼1
r* 0

ij yij

Xnj

i¼1

Xk

j¼1
yij

þ
1

n

Xnj

i¼1

Xk

j¼1
~r*
ijyij

Xnj

i¼1

Xk

j¼1
yij

þ
2

n

Xnj

i¼1

Xk

j¼1
r_*

ijyij

Xnj

i¼1

Xk

j¼1
yij

: ð8Þ

The first, second, and third terms on the right-hand side of Equation (8) are the within-

group component (ĜW ), the between-group component (ĜB), and the interaction

component (ĜI), respectively, of the Gini index. It turns out that the within-group,

between-group and interaction components are weighted averages of the within-group

Ginis, the between-group pseudo-Ginis, and the interaction pseudo-Ginis, respectively.

The concept “pseudo-Gini” as used in this article refers to a numerical quantity which is

computed using a Gini-like formula as an intermediate step in computing the between-

group component of the overall Gini (in the case of the between-group pseudo-Gini) or the

interaction component of the overall Gini (in the case of the interaction pseudo-Gini).

Fei et al. (1978) and Shorrocks (1982) also use the concept “pseudo-Gini” in a similar

manner, but in the context of income-source decompositions of the Gini index. As will be

seen below, the subgroup decomposition pseudo-Ginis pertain to the various population
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subgroups whereas the income-source decomposition pseudo-Ginis pertain to the various

income sources.

For the within-group and between-group components in Equation (8), the weights are

equal to the product of the subgroup population shares and the corresponding income

shares; for the interaction component, the weights are equal to twice the product of the

subgroup population shares and the corresponding income shares. To see these results,

we note that the within-group component can be written as

ĜW ¼
Xk

j¼1

pjsjĜWj; j ¼ 1; 2; : : : ; k ð9Þ

where pj ¼ nj=n is the population share of group j; sj ¼
Pnj

i¼1yij

� �
=
Pnj

j¼1

Pk
j¼1yij is the

income share of group j; and

ĜWj ¼
1

nj

Xnj

i¼1
r*
0

ij yijXnj

i¼1
yij

; j ¼ 1; 2; : : : ; k

is the within-group Gini for group j; the between-group component can be written as

ĜB ¼
Xk

j¼1

pjsjĜBj; j ¼ 1; 2; : : : ; k ð10Þ

where pj and sj are defined in Equation (9) and

ĜBj ¼
1

nj

Xnj

i¼1
~r*
ijyijXnj

i¼1
yij

; j ¼ 1; 2; : : : ; k

is the between-group pseudo-Gini for subgroup j. Note that 0 # ĜB # 1 even though some

between-group pseudo-Ginis may be negative as explained below; and the interaction

component can be written as

ĜI ¼ 2
Xk

j¼1

pjsjĜIj; j ¼ 1; 2; : : : ; k ð11Þ

where pj and sj are defined in Equation (9) and

Ĝij ¼
1

nj

Xnj

i¼1
r_ij*yijXnj

i¼1
yij

; j ¼ 1; 2; : : : ; k

is the interaction pseudo-Gini for group j. Note also that 0 # Ĝ1 # 1 even though some

interaction pseudo-Ginis may be negative as explained below.

Before discussing the empirical implementation of the proposed method, it behooves us

to clarify the interpretation of the between-group and interaction pseudo-Ginis as defined

in Equations (10) and (11), respectively. Since the income shares and population shares in

Equations (10) and (11) cannot be negative, and 0 # ĜB; ĜI # 1, a positive/negative

between-group pseudo-Gini for a particular subgroup indicates that the subgroup makes a

positive/negative contribution to the between-group component. Likewise, a positive/
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negative interaction pseudo-Gini for a particular subgroup indicates that the subgroup

makes a positive/negative contribution to the interaction component. It should be noted

that the pseudo-Ginis for the income source decompositions, as discussed by Fei et al.

(1978) and Shorrocks (1982) among others, like those for the subgroup decompositions,

can be positive or negative. With respect to the income source Gini decompositions, a

positive/negative pseudo-Gini for a particular income source indicates that the source

makes a positive/negative contribution to overall income inequality.

The issue of why the between-group pseudo-Gini or its interaction counterpart may be

negative also deserves an explanation. A careful inspection of Equation (9) reveals that

the transformed ranks, r*
0

ij; j ¼ 1; 2; : : : ; nj, which are used in the computation of Ĝwj, are

identical to the transformed ranks which are used in the calculation of the Gini index

for the jth subgroup. Hence, Ĝwj; j ¼ 1; 2; : : : ; nj, must lie between 0 and 1. Since

the transformed ranks, ~r*
ij; j ¼ 1; 2; : : : ; nj, in Equation (10), which are used in the

computation of ĜBj, are different from the transformed ranks used in the calculation of the

Gini index for the jth subgroup, there is no guarantee that ĜBj will lie between 0 and 1 even

though a Gini-like formula is used in its computation. Likewise, since the transformed

ranks, r_*
ij in Equation (11), which are used in the computation of Ĝlj, are different from the

transformed ranks used in the calculation of the Gini index for the jth subgroup, there is

also no guarantee that Ĝlj will lie between 0 and 1 even though a Gini-like formula is used

in its computation. In the illustrative example provided below, negative between-group

and interaction pseudo-Ginis are obtained.

4. Empirical Implementation

First we create the seven rank vectors rij, rij
0, ~rij, rij* , rij*

0, ~rij* and r_ij*.

4.1. The Overall Gini Index

An inspection of Equation (7) reveals that the overall Gini index is given by

Ĝ ¼ ð1=nÞĝ ð12Þ

where ĝ is the WLS estimator of g in the model r*
ij ¼ gþ u*

ij, i ¼ 1; 2; : : : ; nj;

j ¼ 1,2, : : : ,k, assuming that the errors, u*
ij, are heteroscedastic of the form

E u*
2

ij

� �
¼ s2=yij.

4.2. The Within-Group Component

An inspection of the first expression on the right-hand side of Equation (8) reveals that the

within-group component is given by

Ĝw ¼ ð1=nÞĝw ð13Þ

where ĝw is the WLS estimator of gw is the model r*
0

ij ¼ gw þ u*
0

ij , i ¼ 1; 2; : : : ; nj;

j ¼ 1,2, : : : ,k, assuming that the errors, u*
0

ij , are heteroscedastic of the form

E u*
02

ij

� �
¼ s2=yij.
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4.3. The Between-Group Component

An inspection of the second expression on the right-hand side of Equation (8) reveals that

the between-group component is given by

ĜB ¼ ð1=nÞĝB ð14Þ

where ĝB is the WLS estimator of gB in the model ~r*
ij ¼ gB þ ~u*

ij, i ¼ 1; 2; : : : ; nj;

j ¼ 1; 2; : : : ; k, assuming that the errors, ~u*
ij, are heteroscedastic of the form

E ~u
*2

ij

� �
¼ s2=yij.

4.4. The Interaction Component

An inspection of the third expression on the right-hand side of Equation (8) reveals that the

interaction component is given by

ĜI ¼ ð2=nÞĝI ð15Þ

where ĝI is the WLS estimator of gI in the model r_*
ij ¼ gI þ u_*

ij, i ¼ 1; 2; : : : ; nj;

j ¼ 1; 2; : : : ; k, assuming that the errors, u_*
ij, are heteroscedastic of the form

E u_
*2

ij

� �
¼ s2=yij.

Two points about these subgroup decompositions are noteworthy. First, ĝ ¼ ĝw þ ĝBþ

2ĝI and Ĝ ¼ ĜW þ ĜB þ ĜI . Second, the heteroscedastic structures for the regressions

underlying Ĝ, ĜW , ĜB and ĜI are similar.

5. Standard Errors of the Gini Subgroup Decompositions

When reporting estimates of the inequality measures and their decompositions, it is also

important to report estimates of their standard errors or confidence intervals to facilitate

hypotheses tests about their significance. The case for reporting standard errors of

inequality measures as well as their decompositions seems strong given that large standard

errors may arise even though the number of income-receiving units is large, as pointed out

by Maasoumi (1994).

In the case of the overall Gini, four types of standard errors have been employed in the

literature, namely the asymptotic standard errors (e.g., Cowell 1989; Davidson 2009), the

bootstrap (e.g., Dixon et al. 1987; Mills and Zandvakili 1997; Davidson 2009), the

jackknife (e.g., Yitzhaki 1991; Karoly 1992; Ogwang 2000), and WLS/OLS (e.g., Giles

2004). However, most Gini subgroup decomposition proposals so far do not consider the

issue of appropriate standard errors of the relevant components, which is surprising given

that the standard errors or confidence intervals of the decompositions of other inequality

measures, such as the Generalized Entropy class of measures, are widely reported in the

literature. For example, Mills and Zandvakili (1997), Biewen (2002), and Gray et al.

(2003) report bootstrap standard errors of the subgroup decompositions of several

inequality measures, but they do not report the standard errors of the decompositions of the

Gini index. Mussard and Richard (2012) is a rare paper that reports confidence intervals of

the Gini decompositions.

Although OLS/WLS standard errors of the decompositions could also be obtained from

the estimated standard errors of the parameters of the underlying regressions following
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Giles (2004), we do not recommend doing so in light of the inadequacies associated with

using OLS/WLS-based Gini standard errors raised by Modarres and Gastwirth (2006),

Ogwang (2004, 2006); Davidson (2009) and Langel and Tillé (2013), among others, in the

context of the overall Gini. These inadequacies arise because OLS/WLS standard errors

are based on ordered observations that are not independent even when the income series is

independent identically distributed. Although ordering does not affect point estimates of

the decompositions, it affects the OLS/WLS-based standard errors. To circumvent this

problem, the use of resampling methods (e.g., the bootstrap or jackknife) in conjunction

with the stochastic approach to obtain the standard errors of the decompositions is

recommended, provided that these methods are applied correctly. For example, Davidson

(2009) has noted, in the context of the overall Gini, that bootstrap standard errors can be

reliable if applied correctly. More recently, Langel and Tillé (2013) demonstrated that

jackknife standard errors of the Gini index can also be reliable if the randomness of the

income ranks is properly taken into account by recalculating the ranks each time an

observation is dropped in the computation of the jackknife standard error.

Shao and Tu (1995) provide a comprehensive overview of the bootstrap and jackknife

techniques in general. Davidson (2009) describes the bootstrap and jackknife approaches

to estimating the standard errors and confidence intervals of the overall Gini index. Since

that jackknife confidence intervals of the subgroup decompositions of the Gini index are

reported in one of the illustrative examples below, we provide a brief description of the

jackknife approach to the computation of the standard errors of the subgroup

decompositions. Let ĜW ðn; kÞ, ĜBðn; kÞ and ĜIðn; kÞ denote the estimates of the within-

group, between-group and interaction components, respectively, of the Gini index based

on the remaining ðn 2 1Þ observations after deleting the kth observation. Also, let
�GW ðnÞ ¼ n21

Pn
k¼1ĜW ðn; kÞ, �GBðnÞ ¼ n21

Pn
k¼1ĜBðn; kÞ and �GIðnÞ ¼ n21

Pn
k¼1ĜIðn; kÞ

be the means of all the ĜW ðn; kÞ; k ¼ 1; 2; : : : ; n, ĜBðn; kÞ; k ¼ 1; 2; : : : ; n, and

ĜIðn; kÞ; k ¼ 1; 2; : : : ; n, respectively. The jackknife standard errors of the within-

group, between-group and interaction components of the Gini index are given by

SEðĜW Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n 2 1

n

� �Xn

k¼1

ĜW ðn; kÞ2 �GW ðnÞ
� �2

s
;

SEðĜBÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n 2 1

n

� �Xn

k¼1

ĜBðn; kÞ2 �GBðnÞ
� �2

s
and

SEðĜIÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n 2 1

n

� �Xn

k¼1

ĜIðn; kÞ2 �GIðnÞ
� �2

s
; respectively:

6. Illustrative Examples

Example 1: Artificial Data

We first utilize a simple dataset comprising the incomes of n ¼ 7 individuals which are

broken down into three subgroups with different mean incomes (i.e., k ¼ 3) to illustrate
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the steps involved in the empirical implementation of the proposed method. Silber (1989)

and Sastry and Kelkar (1994) used the same data to demonstrate their Gini subgroup

decomposition methods. The incomes constituting the first, second, and third subgroups

are {(1,3); mean income ¼ 2}, {(1,4,7); mean income ¼ 4}, and {(6,10); mean

income ¼ 8}, respectively. As mentioned above, the subgroups are arranged in ascending

order of their mean incomes, in which case n1 ¼ n3 ¼ 2 and n2 ¼ 3.

Table 1 shows the required ranks and their transformations, using the computational

procedures and notations described in Sections 3 and 4. Non-zero entries for r_*
ij in the last

column of the table indicate the existence of a non-zero interaction component since there

is an overlap in the income ranges for the first and second subgroups. Table 2 summarizes

the empirical results. It is apparent from the table that, apart from rounding errors,

ĝ ¼ ĝw þ ĝB þ 2ĝI and Ĝ ¼ ĜW þ ĜB þ ĜI .

Table 3 compares our decomposition results with previous results based on the same

dataset. The table indicates that our decomposition results are identical to Silber’s (1989)

results. However, Sastry and Kelkar’s (1994) estimates of the between-group and

interaction components differ from ours. The difference between Sastry and Kelkar’s

results and our results arises because Sastry and Kelkar assign the income-receiving units

their original ranks in the computation of the between-group component.

According to our results, between-group inequality accounts for most of the observed

inequality and the interaction term accounts for the smallest percentage of total inequality.

Another notable aspect of Table 3 is the numerical equivalence between our subgroup

decomposition and Dagum’s (1997) decomposition. Specifically, our between-group and

interaction components are numerically the same as Dagum’s net contribution between

population subgroups ðGnbÞ and the contribution of the income intensity of transvariation

between subgroups ðGtÞ, respectively. Hence, Dagum’s approach to Gini subgroup

decomposition only differs from the traditional approach in the interpretation of

some components.

Example 2: Real Data

The methodology described above is also applied to the data on the total pre-tax post-

transfer incomes, in Canadian dollars, of a random sample of 4,883 persons, derived from

the Canadian Census 2006 Public Use Micro data Files.

Table 1. Computing the required ranks and their transformations*

Group (i ) yij rij r 0ij ~rij r*
ij r*

0

ij ~r*
ij r_*

ij

1 1 1.5 1 1.5 25 21 25 0.5
1 3 3 2 1.5 22 1 25 1
2 1 1.5 1 4 25 22 0 21.5
2 4 4 2 4 0 0 0 0
2 7 6 3 4 4 2 0 1
3 6 5 1 6.5 2 21 5 21
3 10 7 2 6.5 6 1 5 0

*n1 ¼ n3 ¼ 2; n2 ¼ 3; n ¼ 7; k ¼ 3; r
*

ij ¼ 2rij 2 n 2 1; r
* 0

ij ¼ 2r 0ij 2 nj 2 1; r~
*

ij ¼ 2r~ij 2 n 2 1; r_
*

i1 ¼ ðri1 2 r 0i1Þ;

i ¼ 1; n1 ¼ 2 and r_
*

ij ¼ rij 2 r 0ij 2
Pj21

i¼1ni

� �
; i ¼ 1; 2; : : : ; nj; j ¼ 2; k ¼ 3:
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The fact that Canada has one of the highest per capita immigration rates in the world

provides a strong case for studying the income differentials between immigrants and

nonimmigrants in Canada. One of the common goals of such studies is to examine the

factors that influence the intertemporal changes in income inequality between immigrants

and nonimmigrants.

In this illustrative example, we consider a breakdown of the data into three

nonoverlapping subgroups by immigration status (i.e., nonpermanent residents,

nonimmigrants and immigrants). According to the 2006 Census definitions, nonimmi-

grants are people who are Canadian citizens by birth; immigrants are people who were,

or had ever been, landed immigrants in Canada prior to the day of the 2006 Census; and

nonpermanent residents are people from other countries who, at the time of the 2006

Census, held a work/study permit or claimed refugee status, as well as their family

members living in Canada.

To provide some insights into the nature of the income distributions pertaining to the

various subgroups, in Table 4, we report some relevant descriptive statistics pertaining to

these subgroups and the full sample. The table indicates positive skewness of the

distributions for all income ranges, as would be expected. Another notable feature of

Table 4 is the significant overlap in the income ranges. Specifically, the income range

[0,110000] for the nonpermanent resident subgroup, with the lowest mean income, lies

entirely within the income range [0, 866340] for the immigrant subgroup, with the second

lowest mean income, which in turn lies entirely within the income range [0,1285600] for

the nonimmigrant subgroup, with the highest mean income. As mentioned above, the

interaction component of the Gini index is non-zero if there are overlaps in the income

ranges of some of the population subgroups, which is obviously the case in the present

example. In fact, given the large overlaps in the income ranges under consideration,

we would also expect the contribution of the interaction component to the overall Gini

index to be large and statistically significant.

Table 2. Computing the overall Gini index and its decompositions*

Gini Equation ĝ ĝW ĝB ĝI Ĝ ĜW ĜB ĜI

Overall 12 2.625 0.375

Within 13 0.563 0.080

Between 14 1.875 0.268

Interaction 15 0.094 0.027

* n ¼ 7; Ĝ ¼ ĝ=n; ĜW ¼ ĝW=n; ĜB ¼ ĝB=n and ĜI ¼ 2ĝI=n.

Table 3. Comparing decomposition methods

Method Overall Within group Between group Interaction

Silber (1989) 0.375 0.080 0.268 0.027
Sastry and Kelkar (1994) 0.375 0.080 0.205 0.089
Dagum (1997) 0.375 0.080 0.268* 0.027**
Present proposal 0.375 0.080 0.268 0.027

*and ** denote estimates of Dagum’s (1997) Gnb and Gt, respectively.
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In order to gauge the extent of the overlap, we applied the computational procedures

described in Sections 3 and 4 above to the 2006 Census data, the results of which are

reported in Table 5. Several features of the table are particularly noteworthy. First, the

estimate of the overall Gini index turns out to be 0.520 and is statistically significant at the

conventional five percent level of significance, since the estimated 95 percent confidence

interval does not include zero. Second, the estimates of the within-group, between-group

and interaction components turn out to be 0.329, 0.007 and 0.184, respectively. However,

only the within-group and interaction component estimates turn out to be statistically

significant at five percent level of significance. The confidence interval for the between-

group component turns out not to show statistical significance at five percent level of

significance, since the associated 95 percent confidence interval includes zero.

It is also apparent from Table 5 that within-group inequality accounts for most of the

observed inequality, followed by the interaction component, which is in turn followed by

the between-group component. Owing to the huge overlap in the income ranges for the

three subgroups, as mentioned above, it is not surprising that the contribution of the

interaction component is larger than that of the between-group component. Clearly, these

results are informative with respect to the nature of the observed income inequality and are

consistent with the descriptive statistics reported in Table 4.

Another positive aspect of the approach adopted in this article is its ability to provide a

more detailed breakdown of the subgroup decompositions to also include the contributions

of the various subgroups to overall inequality as well as their standard errors. The issue of

the contributions of the various subgroups to overall inequality has so far been largely

ignored in the literature on Gini subgroup decomposition, which focuses more on the

Table 4. Income descriptive statistics by population subgroups (Canadian 2006 Census data)*

Subgroup Mean Median Min Max Skewness
Excess
Kurtosis

Nonpermanent
residents

26,487 13,000 0 110,000 1.1641 0.21446

Immigrants 33,338 21,000 0 866,340 7.4692 82.00
Nonimmigrants 34,410 25,000 0 1,285,600 8.6455 180.67
All groups 34,102 24,000 0 1,285,600 8.3156 147.43

* The incomes are measured in Canadian dollars.

Table 5. Gini subgroup decomposition results (Canadian 2006 Census data)

Component Point estimate 95 percent confidence interval*

Within-group 0.3288 (0.3134 to 0.3442)
Between-group 0.0073 (20.0140 to 0.0285)
Interaction 0.1837 (0.1509 to 0.2165)
Overall 0.5198 (0.4998 to 0.5398)

* The confidence intervals were constructed using the computed jackknife standard errors. To conserve space, the

results of the intermediate computational procedures as described in Sections 3, 4 and 5 are not reported but are

available from the author on request.
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jĜ
B

j
þ

2
p

js
jĜ
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jĜ

B
j
¼

0
.0

0
7

3
;

an
d

th
e

to
ta

l
co

n
tr

ib
u
ti

o
n

o
f

th
e

in
te

ra
ct

io
n

co
m

p
o

n
en

t
¼

2
P

3 j¼
1
p

js
jĜ
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breakdown of the overall Gini index into the within-group, between-group and interaction

components. Table 6 provides a two-way breakdown of the Gini subgroup

decompositions. It is apparent from the entries in the table that the nonimmigrant

subgroup makes the highest contribution to the observed inequality even though it has the

lowest degree of within-group inequality, with an estimated Gini index of 0.511. Also, the

nonpermanent resident subgroup makes the lowest contribution to overall inequality, yet it

has the lowest degree of within-group inequality, with an estimated Gini index of 0.602.

These results demonstrate one area of similarity between Gini subgroup decomposition,

which also provides information on the contributions of the various population subgroups

to overall inequality, and Gini income source decomposition, which provides information

on the contributions of the various income sources to overall inequality.

The results presented in Table 6 confirm the possibility of negative between-group or

interaction pseudo-Ginis as already alluded to above. For example, the table shows that

both the immigrant and nonpermanent resident subgroups contribute negatively to

between-group inequality, whereas the nonimmigrant subgroup is the sole negative

contributor to the interaction component. In this regard, it is interesting to note that the

nonpermanent resident and immigrant subgroups that contribute negatively to the

between-group component are the ones whose income ranges fall entirely within the

income range for the nonimmigrant subgroup, whose contribution to between-group

inequality turns out to be positive. Furthermore, the nonimmigrant subgroup for which part

of the income range does not overlap with the income ranges of the other two subgroups

makes a negative contribution to the interaction component. Clearly, Table 6 illustrates the

bidimensional nature of Gini subgroup decomposition, which could be fully exploited in

future empirical studies. Specifically, it shows that Gini subgroup decomposition does not

only entail a breakdown of overall inequality into within-group, between-group and

interaction components but also a breakdown of the contributions of each subgroup to

overall inequality, which is akin to the breakdown in income source decompositions.

7. Concluding Remarks

In this article we have extended previous literature in which the regression approach is

used to construct the overall Gini index to provide a new way of viewing and decomposing

the overall Gini index by population subgroups into within-group, between-group and

interaction components. The methodology proposed entails specifying certain underlying

“trick regression models” with known heteroscedastic structures related to income.

Although the stochastic approach proposed in this article provides accurate point

estimates of the within-group, between-group and interaction components of the Gini

decompositions, it would not be adequate to use the associated OLS/WLS standard errors

owing to the problems mentioned in Section 5. In light of this difficulty, the use of

jackknife or bootstrap standard errors of the subgroup decompositions is recommended.

Finally, we believe that this article demonstrates how the pseudo-Ginis that are

computed in the intermediate stages of the subgroup decompositions of the Gini index can

provide very useful insights into the contribution of each population subgroup to the

within-group, between-group and interaction components of overall inequality and hence

the total contribution of each subgroup to overall inequality.
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Disclosure Risk from Factor Scores

Jörg Drechsler1, Gerd Ronning2, and Philipp Bleninger3

Remote access can be a powerful tool for providing data access for external researchers. Since
the microdata never leave the secure environment of the data-providing agency, alterations of
the microdata can be kept to a minimum. Nevertheless, remote access is not free from risk.
Many statistical analyses that do not seem to provide disclosive information at first sight can
be used by sophisticated intruders to reveal sensitive information. For this reason the list of
allowed queries is usually restricted in a remote setting. However, it is not always easy to
identify problematic queries. We therefore strongly support the argument that has been made
by other authors: that all queries should be monitored carefully and that any microlevel
information should always be withheld. As an illustrative example, we use factor score
analysis, for which the output of interest – the factor loading of the variables – seems to be
unproblematic. However, as we show in the article, the individual factor scores that are
usually returned as part of the output can be used to reveal sensitive information. Our
empirical evaluations based on a German establishment survey emphasize that this risk is far
from a purely theoretical problem.

Key words: Remote data access; confidentiality; statistical disclosure control; factor analysis.

1. Introduction

The scientific community relies heavily on high quality data for the empirical validation of

proposed theoretical models. However, data collection is an expensive and laborious task

and thus it is prudent to use data which have already been collected by others, albeit for

different reasons. Public administrations, governmental agencies and other state

institutions gather valuable information on all aspects of society and there are huge

benefits to be gained from broad access to these data. The crucial point is how to grant this

access without violating the confidentiality guarantees given to survey respondents. Most

microdata sets are collected under a pledge of confidentiality and therefore cannot be

released unrestrictedly. Statistical analyses via remote access seem to offer both

preservation of confidentiality and unlimited use of data. In a remote access system as we

define it, the analyst uses his or her desktop computer to connect to a server on which the

confidential microdata are stored. He or she can submit any query to the server, which runs

the requested analysis of the microdata and returns the results to the user if the requested

q Statistics Sweden

1 Institute for Employment Research, Statistical Methods, Regensburger Str. 104, Nuremberg 90478, Germany.
Email: joerg.drechsler@iab.de
2 University of Tuebingen, Mohlstraße 36, 72074 Tuebingen, Germany. Email: gerd.ronning@uni-tuebingen.de
3 GfKSE, Nuremberg, Germany.
Acknowledgments: This research was partially supported by the “InfinitE” project funded by the German
Federal Ministry of Education and Research. We thank the three referees for their valuable comments, which
helped to improve the quality of the article.

Journal of Official Statistics, Vol. 30, No. 1, 2014, pp. 107–122, http://dx.doi.org/10.2478/jos-2014-0006

Unauthenticated | 195.77.16.2
Download Date | 2/17/14 9:38 AM

http://dx.doi.org/10.2478/jos-2014-0006


output does not violate any confidentiality restrictions. The microdata never leave the

secure environment of the server. However, to guarantee that the provided output does not

reveal any confidential information, the list of allowed queries is generally limited in

practice. The remote access solutions that have been implemented so far either define a list

of queries that are not allowed (any command that is not on the list can be requested) or

explicitly state which queries can be submitted.

An example of the first approach is the system implemented at the Cross-National Data

Center in Luxembourg, known as LISSY (Cross-National Data Center in Luxembourg

2012a), which accepts code written for the software packages SAS, STATA or SPSS. Jobs

can be submitted either per e-mail or via a job submission interface. The system does not

restrict the list of allowed queries in advance. Instead, “certain syntax and comments will

trigger system security alerts” (Cross-National Data Center in Luxembourg 2012b), which

may terminate the job. The system will only return ASCII output, that is, no graphical

output of any form will be provided. A more advanced version of the approach is also

planned in the U.S. (Lucero et al. 2011).

An example of the second approach is implemented at the National Center for Health

Statistics (NCHS) (Research Data Center of the National Center for Health Statistics

2012a). The NCHS system, which is called ANDRE, only accepts code written for the

software packages SAS or SUDAAN. Other software packages, such as SPSS or R, can

only be used on-site. Furthermore, the list of possible procedures and options is limited in

advance and some procedures will automatically be adapted to avoid disclosure (Research

Data Center of the National Center for Health Statistics 2012b). Finally, the website states

that “[o]utput results that pose a disclosure risk will be suppressed” without any further

information as to how such an output is identified. This kind of approach has also been

implemented in Australia (O’Keefe and Good 2008). The Australian Bureau of Statistics

provides an online tool called TableBuilder “which enables users to create tables, graphs

and maps of Census data” (http://www.abs.gov.au/websitedbs/censushome.nsf/home/

tablebuilder). Another online tool called DataAnalyser which additionally allows running

a number of standard regression models will also be implemented soon (http://www.abs.

gov.au/websitedbs/D3310114.nsf/home/AboutþDataAnalyser).

However, even though the list of allowed queries is generally limited in a remote access

setting to avoid disclosure from simple attacks like maximum queries, some attacks are

harder to detect, especially if these attacks are based on multivariate analysis. One of the

more prominent examples is the disclosure risk from linear regression. Gomatam et al.

(2005) describe two possible strategies that an intruder with background knowledge about

some of the survey respondents can apply to obtain any sensitive information contained in

the data set regarding these survey respondents. Bleninger et al. (2011) further formalize

these strategies and apply them to a German establishment survey. They find that very

limited background information is sufficient to obtain exact information on sensitive

attributes in the data set. Since the risks from linear regression are well known in the SDC

community, the current implementations of remote access already take measures to ensure

that these strategies cannot be applied. However, this highlights the essential dilemma of

the remote access environment: Possible intruder strategies need to be known in advance

to enable the implementation of counterstrategies. Restricted remote access following the

second approach described above is an attempt to circumvent this dilemma by only
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allowing computations that are considered safe under all circumstances. However, as a

consequence, the set of allowed queries will be very limited and many users will find this

set too restricted to answer their respective research question. Thus, for most researchers

full remote access is the only viable solution. In this context, full remote access would

mean that only those queries that are known to be disclosive would be prohibited.

However, implementing such a fully automated approach would mean that all potentially

risky queries are known in advance so that the number of suppressed queries can be kept

to a minimum. This is an ambitious goal and it is not clear whether this goal can ever

be achieved.

While the risks from releasing microlevel information of the original data are

obvious, it is less obvious that microlevel information is a byproduct of several data

analysis tools and that this byproduct might pose a risk although the final output of

interest might not be problematic. Regression procedures provide microlevel output

such as fitted values or residuals, and model-fitting checks, such as Q-Q plots or Cook’s

distance, provide information on the individual level at least for the outliers (arguably

the most interesting individuals for an intruder). Although at first sight it seems

impossible to learn anything about the reported microdata values from these diagnostic

plots, Sparks et al. (2008) illustrate the risks that might result if these analytics tools are

provided in a remote access system without further restrictions. For this reason, the

remote access system that is planned for the U.S. will, for example, provide Q-Q plots

that are based on synthetic data. Sparks et al. (2008) also suggest a number of additional

protective measures that can be taken to avoid these kinds of disclosures and argue that

no information on the individual level should be released in general. To our knowledge,

all agencies that have implemented a remote access environment so far have followed

this advice.

In this article we provide another example of why monitoring the output of any analysis

and suppressing all microlevel information is generally a good strategy. Factor analysis is

very popular in the social sciences since it can be applied in a wide range of explorative

and confirmatory tasks and it would be a severe drawback of remote access if this kind of

analysis was not possible. On the other hand, as we will illustrate in this article, there is a

risk of disclosure if unrestricted factor analysis is allowed. However, this risk can easily be

avoided if the individual factor scores are not revealed to the analyst. Since researchers

will usually only be interested in the factor loadings for the different variables included in

the model, we do not see any disadvantages in not providing the individual factor scores. If

information on the individual factors is considered necessary, graphical displays of the

winsorised data could be provided akin to the disclosure prevention measures described in

Sparks et al. (2008).

The remainder of the article is organized as follows: Following a brief description of

factor analysis methods, we provide a short overview of different estimation procedures

for factor scores. Section 4 demonstrates that there is a risk of disclosure for all these

approaches if a set of variables could be identified in the data set that is uncorrelated with

the variable to be disclosed, henceforth called the variable of interest. The empirical

example in Section 5 shows that such a correlation structure is not uncommon in practice

and once the “appropriate” set of variables is selected, it is possible to estimate the true

values for every record in the data set very precisely for the variable of interest. The data
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for this empirical illustration are taken from the IAB Establishment Panel, a survey

conducted by the Institute for Employment Research (IAB) in Germany. The article

concludes with some final remarks.

2. Some Basic Facts on Factor Analysis

Factor analysis and the closely related method of principal components are widely used in

all fields of social science, in particular in psychology and sociology where “latent”

variables, such as ability and satisfaction, are modelled frequently. More recently, the

method has also been employed in modern time series analysis when factor-augmented

vector autoregression models (FAVAR) are considered (see, for example, Stock and

Watson 2002). The aim of the approach is to reduce the empirical information from a large

set of continuous variables to a small set of (latent) factors. In the following we describe

the basic concept briefly. A detailed description can be found in any standard textbook on

the topic (see, for example, Press 2005).

Consider a set of m random variables h ¼ ðh1;h2 : : : ;hmÞ
0 with

E½h� ¼ mh; cov½h� ¼ Shh

for which n observations are available leading to the ðn £ mÞ data matrix

Y ¼ ð y1; y2; : : : ; ymÞ. The factor model seeks to explain the m variables by a set of

p , m “common factors” f ¼ ð f 1; f 2; : : : ; f pÞ
0 through the linear model

h 2 mh ¼ Lf þ u; ð1Þ

where L is the ðm £ pÞ factor-loading matrix and u is an m-dimensional vector of “specific

factors” with

E½u� ¼ 0; cov½u� ¼ C ¼

c1

. .
.

cm

0

BBB@

1

CCCA:

Since the factors are assumed to be orthogonal with cov½f� ¼ Ip, where Ip is the identity

matrix of dimension ð p £ pÞ, as well as independent of u, we obtain what is called the

“fundamental equation”

Shh ¼ LL 0 þC:

Let F be the ðn £ pÞ-matrix of realized factor scores which is related to the data matrix

Y by the equation (McDonald and Burr 1967, p. 384)

Y 2 M ¼ FL 0 þ U; ð2Þ

which implicitly defines the ðn £ mÞ matrix M by

M ¼ in^m 0h:

Here in is an n-vector of ones and ^ denotes the Kronecker product, that is, the

corresponding mean from the vector mh is subtracted from each observation in Y in (2).
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We will call (2) the “empirical factor model”, whereas (1) will be called the “theoretical

factor model”.

If the estimated matrix L has a block-diagonal structure, particular factors can be

related to a subset of the vector h, which helps to interpret these factors. However, it is

well known that this estimated matrix is not unique: Take any ðm £ mÞ orthogonal

matrix W and it will by definition satisfy WW 0 ¼ Im. Keeping this in mind, we can

rewrite (1) as

h 2 mh ¼ ðLWÞðW 0fÞ þ u;

where L* ¼ LW would represent the factor-loading matrix and f* ¼ W 0f the vector

of factors. The multiplication of the factor-loading matrix by any orthogonal matrix

is called rotation of this matrix. Usually, the matrix W is chosen such that for each

factor the loading on a subset of variables is as large as possible and the loading

on the remaining variables is as small as possible, so that a “simple structure” is

obtained which facilitates the interpretation of factors. One way to achieve this is to

find the orthogonal matrix that maximizes the variance of the squared factor loadings.

This is the well-known varimax criterion (see, for example, Press 2005 Ch. 10.6

for details).

3. Estimation of Factor Scores

This section provides a short review of the four different approaches that are discussed

in the literature for obtaining factor scores (see Ronning and Bleninger 2011 for a more

detailed review that also presents the derivations for all estimators). In the following we

assume that the factor-loading matrix L is known or rather has been estimated in an

earlier step indicated by the symbol , placed above the relevant quantities. Hence, the

resulting estimates of f depend on the method by which the factor-loading matrix was

determined. In all cases ~L may represent either the original or the rotated factor-

loadings. We will only present the results for the empirical model (2) as this will be the

relevant model for our disclosure risk evaluations in the following sections. Derivation

of the results for the theoretical model (1) is straightforward.

3.1. Least Squares Solution

The empirical factor model (2) can be seen as a regression model with unknown matrix F

which can be estimated by least squares. The resulting estimator is

F̂LS ¼ ðY 2 MÞ ~Lð ~L 0 ~LÞ21: ð3Þ

Note that the transpose of F̂LS is just the standard OLS estimate from linear regression.

Horst (1965) seems to have been one of the first to use this approach (McDonald and Burr

1967, p. 386).
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3.2. Bartlett’s Method

Considering the nonscalar structure of the covariance matrix C, a generalized least squares

formula seems more appropriate:

F̂BA ¼ ðY 2 MÞ ~C21 ~Lð ~L 0 ~C21 ~LÞ21: ð4Þ

Note that in this case the matrix C also has to be determined in advance. This method

has been proposed by Bartlett (1937). Fahrmeir et al. (1996, pp. 648, 690) remark that

(4) can be regarded as a maximum likelihood estimator when normality for h is

assumed. Non-normally distributed variables in h lead to quasi-maximum likelihood

estimation of loadings and scores, still being asymptotically normally distributed and

consistent.

3.3. Thomson’s Method

The method is attributed to both Thomson (1939) and Thurstone (1935). Thurstone

(1935) derived the factor scores by requiring that the estimated factor score f̂j be as

close to the “true” factor score f j as possible for j ¼ 1; : : : ; p. He considers the linear

estimator

f̂j ¼ a 0jðh 2 mÞ

for which the mean-squared error should be minimized with respect to the vector aj

(see Ronning and Bleninger 2011 for details). With this approach, the factor scores in

the empirical model are given by:

F̂TH ¼ ðY 2 MÞ L̂L̂ 0 þ Ĉ
� �21

L̂: ð5Þ

3.4. Principal Component Analysis

Of course, the principal component approach can also be used to estimate the factor scores:

If we consider the spectral decomposition of the covariance matrix

Shh ¼ QQ Q 0;

the principal components pj; j ¼ 1; : : : ;m, are given by the matrix

�
p1; p2; : : : ; pm21; pm

�
¼ P ¼ YQ ¼

�
Yq1; Yq2; : : : ; Yqm21;Yqm

�
;

where the columns qj are the characteristic vectors of the covariance matrix, whereas

the diagonal matrix Q contains the characteristic values. Usually, only the principal

components corresponding to the largest characteristic values are used since they

represent maximum variation. The matrix P can be seen as the matrix of estimated

factors, that is,

F̂PC ¼ P: ð6Þ

For more details see any textbook on multivariate analysis, such as, Press (2005).
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4. Disclosure Risk from Factor Analysis

In this section we will illustrate scenarios in which the factor scores disclose sensitive

information. We show analytically that a severe risk of disclosure exists if at least one

variable can be identified in the data set that is (almost) uncorrelated with the variable of

interest. As we show later in the empirical example (Subsection 5.3), potential variables

can be selected by inspecting the correlation matrix.

For concreteness, let us assume that h1 is the variable of interest so that the covariance

matrix has the following block diagonal structure:

Shh ¼
s11 00

0 S22

 !
ð7Þ

where S22 is the ðm 2 1Þ £ ðm 2 1Þ covariance matrix of the remaining m 2 1 variables.

Clearly, this leads to a factor-loading matrix with one factor “loading” only on the first

variable and the remaining p 2 1 factors having zero loading weight on this variable. Note

that this implies

ðL 0LÞ21 ¼
1 0 0

0 ðL 02L2Þ
21

 !
ð8Þ

where L2 is the m £ ð p 2 1Þ loading matrix of the remaining p 2 1 variables.

Substituting (8) into (3) for the least squares solution and into (4) for Bartlett’s method,

we obtain identical results regarding the uncorrelated variable (the derivations are

presented in the Appendix)

FLS ¼ FBA ¼ 1�

y11 2 m1

..

.

yn1 2 m1

0
BBB@

1
CCCA

��������
f 2; f 3; : : : ; f p21; f p

0
BBB@

1
CCCA:

Therefore, for both the least squares solution and Bartlett’s method, the first factor f 1 is

identical (up to an additive constant) to the data vector y1 and it will be easy for the

intruder to derive the values for y1 at least approximately, since computing the mean of a

variable will usually be allowed in a remote access environment. Note that only the first

factor f 1 is identical for the least squares solution and for Bartlett’s method. The estimated

factors for j ¼ 2; : : : ; p will generally differ for the two methods. For the solution of

Thomson/Thurstone we obtain a slightly different result (again, derivations are presented

in the Appendix):

FTH ¼
1

1þ c1

�

y11 2 m1

..

.

yn1 2 m1

0
BBB@

1
CCCA

��������
f 2; f 3; : : : ; f p21; f p

0
BBB@

1
CCCA:
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The results show that in this case the estimated factor f 1 not only differs by an

additive constant, but the multiplicative factor 1=ð1þ c1Þ also has to be taken into

account. If c is small or the estimate of c used in the computation is available, disclosure

risk is high.

Finally, for the principal component approach one of the characteristic values, say uj,

equals s11. The corresponding characteristic vector must then satisfy qj ¼ ð1 0: : :0Þ0.

Therefore, the corresponding principal component is given by

pj ¼ Yqj ¼ y1;

so that in this case the data vector y1 is exactly reproduced by the principal

component. It should be noted, however, that uj is not necessarily the largest characteristic

value (see Ronning and Bleninger 2011 for a formal proof). Since usually only the

principal components corresponding to the largest characteristic values are used in

practice, extracting the vector for components corresponding to small characteristic

values might be suspicious and agencies might prevent some attacks based on this

approach if only the components corresponding to the largest characteristic values can

be retrieved.

As a final remark, we try to shed some light on the question of what influence the

m 2 1 “remaining” variables in the factor model have on the accuracy of the results.

Most importantly, whenever at least one variable highly correlated with the variable of

interest is included in the factor model, there will be no eigenvector loading on the

variable of interest alone and no disclosure will be possible. Clearly, if the correlation

with the variable of interest is exactly zero for all variables included in the set of

variables in m, the theoretical results above imply exact reproduction of the vector y1

no matter how many additional variables are included in the set of variables in m. In

this case, one variable would be sufficient and adding variables that are (even slightly)

correlated with the variable of interest will decrease the level of accuracy. In practice,

the correlation is never exactly zero, as illustrated in Table 1 from our empirical

example in Section 5. However, it would still make sense in terms of prediction

accuracy to only pick the variable with the lowest correlation with the variable of

interest. Nevertheless, it might generally be advantageous from the perspective of an

intruder to include some additional variables in the model to avoid submitting queries

that look overly suspicious. In this case it would be the best strategy to pick a

predefined set of variables, say eight to ten, consisting of those variables with the

lowest empirical correlation with the variable of interest. This is the strategy we follow

in our empirical evaluations in the next section.

5. Empirical Evidence

5.1. The Data

The IAB Establishment Panel is a nationwide annual survey of establishments in

Germany conducted by the Institute for Employment Research (IAB). It includes

establishments with at least one employee covered by social security and contains

business-related facts (e.g., management, business policy, innovations), a large number
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of employment policy-related subjects (e.g., personnel structure, recruitment, wages and

salaries) and a range of background information (e.g., regional information, industrial

sector). For further information see Fischer et al. (2009) and Kölling (2000). The IAB

collects the data under the pledge of confidentiality. Additionally, German law restricts

the release of data from public administrations to avoid the disclosure of sensitive

information. Therefore, direct access to the survey is only granted to external researchers at

the IAB’s research data center (RDC). The RDC, which was established in 2004, provides

researchers with access to microdata for noncommercial empirical research in the fields of

social security and employment. Most of the surveys conducted at the IAB and samples

from the administrative data of the Federal Employment Agency are available for on-site

analysis (see Heining 2009 or http://fdz.iab.de for further details).

Researchers can also submit queries to the RDC that are run on the original data by

the staff of the RDC (remote execution). In this case the results are reported back to the

researchers only after the output has been carefully checked for confidentiality violations

(if the researcher analyzes the data onsite, only the results that are intended to be used

outside of the rooms of the RDC will be checked). Finally, some surveys are also

available as scientific use files (unlike public use files, scientific use files are only

available to the scientific community). Currently, all confidentiality checks are performed

manually, so the attack described in this article would be detected. Nevertheless, as

remote access is seen to be the future for data providers, we use the data set to illustrate

that unrestricted factor analysis in a remote access setting would be problematic in terms

of disclosure risk.

For our empirical evaluations we use the cross-section from the year 2007 of the survey.

All missing values in this data set are replaced by single imputation and treated as

observed values. See Drechsler (2011) for a description of the imputation of the missing

values in the survey. The sensitive variable to be disclosed is the turnover from an

establishment’s sales after taxes, that is, the revenue. Thus, we exclude all establish-

ments that do not report turnover, such as nonindustrial organizations, regional and

local authorities and administrations, financial institutions and insurance companies.

The remaining data set includes 12,814 fully observed establishments.

5.2. Estimation of Factor Loadings

Since the very skewed distribution of the turnover variable generates some outliers among

the factor scores, we transform the variable according to

lgturni ¼ logðturnoveri þ 1Þ; ð9Þ

where turnoveri is the turnover in euros for establishment i. The 1 is added to ensure that

all values are strictly positive before the log transformation, because some establishments

report a turnover of zero. The transformed variable is approximately normally distributed,

leading to approximately unbiased and consistent maximum likelihood estimation of the

corresponding loadings and scores for Bartlett’s method.

In order to successfully apply the disclosure attack outlined above, we need to identify

variables that are (almost) uncorrelated with this variable. It should not be difficult for an

intruder to obtain this information because correlation matrices are not usually considered
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to provide a high risk of disclosure. Table 1 lists the eight variables that we use in the

factor scores model together with their empirical correlation with the log turnover

(rðlgturnÞ).

Of course the assumption of zero correlation underlying the results in Section 4 is

unrealistic for real data settings, but the correlations in Table 1 are small and we will see that

the originally reported turnover can still be estimated almost exactly with this scenario.

Usually, factor analysis starts by inspecting the eigenvalues of the covariance matrix

or correlation matrix to determine the number of factors p to be used in the model. Only

the largest eigenvalues are selected with the understanding that the variability of Y is

sufficiently explained by this subset. Based on the correlation matrix both the Kaiser

criterion (Kaiser 1958) and the scree test (Fahrmeir et al. 1996) would suggest selecting

p ¼ 4 for our set of variables. However, inspecting the eigenvalues is not helpful in our

setting since we need to make sure that the factor that loads on the variable of interest

alone is also included in the model. As noted earlier, it can be shown that the relevant

eigenvalue need not be one of the largest eigenvalues (see Ronning and Bleninger 2011 for

more details). Therefore, the intruder should choose a large p # m and examine all

estimated factors. Alternatively, he or she could simply try alternative values of p. We

found the ideal number of factors by evaluating the full range of possible factors. The

loading matrix for p ¼ 4 (after rotation based on the varimax criterion) is presented in

Table 2 and it is obvious that in this case the third factor loads primarily on turnover and

thus this factor model is ideally suited for a disclosure attack.

Table 2. Rotated Matrix ~L of estimated loadings

Factor 1 Factor 2 Factor 3 Factor 4

lgturn. 0.0202 0.0360 0.9867 0.1406
inv. 20.0046 0.0019 0.0326 0.1888
asp. 0.0002 0.0051 0.0105 20.0167
vac.w.1 0.9879 0.0134 0.0267 0.0487
vac.w.2 0.9325 0.0090 0.0089 0.0673
vac.em. 0.0796 0.0742 0.0853 0.2194
sub. 0.0166 0.7933 0.0719 20.0100
sub.50 0.0041 0.9958 0.0088 0.0471

Table 1. Variables used in the factor scores model

Variable r ðlgturn; yjÞ

Turnover from sales after taxes on the log scale (lgturn.) 1.0000
Investments in IT (inv.) 0.0587
Total number of civil servant aspirants (asp.) 0.0082
Total number of vacant positions for workers (vac.w.1) 0.0536
Number of vacancies for workers reported to employment

agency (vac.w.2)
0.0374

Number of vacancies for qualified employees reported to employment
agency (vac.em.)

0.1193

Employees with wage subsidies (sub.) 0.0984
Employees over 50 with wage subsidies (sub.50) 0.0513
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5.3. Estimation of Factor Scores

In the next step, we estimate the matrix of factor scores ^F based on the rotated loadings

from Table 2. For purpose of brevity, we limit our evaluation to Bartlett’s (4) and

Thomson’s (5) solution. We note that the least squares solution and principal component

analysis will provide similar results. Once we have estimated the score values, we obtain

the estimated values for the transformed turnover variable by adding its mean to all the

factor scores based on the assumption that the mean of the (transformed) variable is

available in remote access. To approximate turnover on the original scale, we transform

the obtained values according to

^turni ¼ exp dlgturnlgturni

n o
2 1:

We note that the transformation will lead to a small bias in the estimated turnover since

in general Eðlogð yiÞÞ – logðEð yiÞÞ. To evaluate how close the resulting estimate is to the

reported turnover, we use the difference between reported and estimated turnover relative

to the reported turnover

di ¼
^turni 2 turnoveri

turnoveri

; i ¼ 1; : : : ; n:

The two leftmost panels in Figure 1 show scatter plots of these differences for Bartlett’s

(left panel) and Thomson’s method (middle panel) respectively. In the scatter plots, the

establishments are sorted in ascending order based on the number of employees.

Looking at the scatter plots, we find that using Bartlett’s method the estimated turnover

is very close to the true turnover for almost all establishments. The relative difference d is

less than 0.5% for 99.3% of the establishments.

For Thomson’s method, we notice that the relative differences are generally larger than

for Bartlett’s method (note that the scale of d differs between the scatter plot for

Thomson’s method (middle panel) and the scatter plots for Barlett’s method (left panel)

and Thomson’s method after correction (right panel)). More than 40% of the estimated
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Fig. 1. Relative differences di between the true turnover and the turnover estimated from the factor scores

obtained through Bartlett’s method and Thomson’s method with/without correction. Establishments are sorted in

ascending order based on the number of employees.

Drechsler, Ronning, and Bleninger: Disclosure Risk from Factor Scores 117

Unauthenticated | 195.77.16.2
Download Date | 2/17/14 9:38 AM



turnovers differ by more than 1% from the true value and the difference can be up to 80%.

We also find a trend in the relative differences. The turnover derived from the factor scores

overestimates the true turnover for the smallest establishments. This effect is decreases

continuously and the turnover is underestimated for large establishments. This is not

surprising if we note that we obtained our estimate for turnover by adding the sample mean

to the factor scores without correcting for the multiplicative factor 1=ð1þ c1Þ. Thus,

assuming that y1 is the transformed turnover according to (9) and ŷ1 is its estimate based

on Thomson’s method without correction, the difference between the two quantities is

given by

ŷ1 2 y1 ¼
c1

1þ c1

m1 2 y11

..

.

m1 2 y1n

0
BBB@

1
CCCA; ð10Þ

which will be positive for all establishments with a turnover that is smaller than the

average turnover and negative for the rest. Since turnover is highly correlated with

establishment size, we observe a negative trend for the relative difference when going

from the smallest establishments to the largest. If an estimate for the specific factor ~c1 is

available, we can correct the estimator for the reported turnover. The right panel in Figure 1

presents the results based on the corrected estimate. The relative difference d again is close

to zero for almost all establishments, with 99.0% of the establishments, having a relative

difference of less than ^0.5%. In fact, the estimated turnover never differs by more than

^8.9% from the true turnover. Thus the risk of disclosure is comparable to the risk when

Bartlett’s method is applied.

6. Conclusions

There is an increasing demand among researchers for access to microdata that have

been collected under the pledge of confidentiality. One promising approach to granting

access without violating confidentiality guarantees is remote access. However, even

though the researcher never has direct access to the underlying microdata, the approach

is not free from the risk of disclosure. In our article we have illustrated this risk for a

specific analysis that is commonly used in the social sciences: factor analysis. Even

though factor analysis is used for information reduction and the potential risk of

disclosure is anything but obvious, we showed analytically that individual microlevel

values could be obtained exactly for any variable for which a set of covariables can be

identified that are uncorrelated with the target variable. This result holds irrespective of

the method used to estimate the factor scores. Of course, zero correlation is unrealistic

in practice but our empirical example illustrates that a very close approximation of the

microlevel values could be obtained even if a small correlation exists between the

target variable and the other variables used in the factor model.

It is important to note at this point that by applying the procedure outlined in this article,

the intruder will only obtain a full vector of estimated microlevel values. Even if these

estimates are very close to the true values, this will not necessarily lead to disclosure if

the intruder is not able to link this information to individual units in other databases.
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Still, most legislation requires that no individual information be released to the public,

no matter whether a direct link is possible or not. Furthermore, it is often easy to attribute

some of the obtained values to specific units, such as the largest turnover in the data set,

for example.

Finally, we wish to stress that it is not the aim of this article to call for more

restrictive data access. Factor analysis is a useful and widely used method that should be

available to researchers in a remote access system. We only wish to raise awareness of

the fact that this kind of attack is possible if no countermeasures are taken. Once

identified, these attacks can be prevented easily by not reporting individual factor scores,

since applied analysts are not usually interested in these scores. Following Brandt et al.

(2010), who provided general guidelines for output checking when data are

disseminated, the factor loadings of the different variables can be considered “safe”

outputs that can be released without restrictions. The individual factor scores, on the

other hand, should be classified as “unsafe”, and extra measures are necessary if these

scores are to be provided. Simply checking the correlation between the factor scores and

the variables in the data set, for example, could be a useful tool for avoiding disclosure.

The factor scores can be suppressed if the bivariate correlation with any variable in the

data set is higher than an agency-defined threshold, say 0.995. Alternatively, preventive

measures, such as providing only graphical displays of the winsorised factor scores

or other measures akin to the measures suggested by Sparks et al. (2008), could be

implemented. Finally, as suggested by one of the referees, output perturbation could

also be applied. As the name indicates, this approach guarantees confidentiality by only

perturbing the output of the queries; the underlying microdata are not altered. This

approach has been discussed for other query types such as survival analysis (see, for

example O’Keefe et al. 2012) and the original setup for 1-differential privacy (Dwork

2006) was also developed around this idea. Identifying the best perturbation approach

when providing individual factor scores would be an area for future research. The aim

of this article was more generally to illustrate that data providers granting access to

sensitive data should be aware that there are many ways to obtain sensitive information

without direct access to the microdata using standard analyses, and not all of them

are obvious.

Appendix. Derivations of the Factor Scores if One Variable is Uncorrelated With the

Other Variables in the Model

The Least Squares Solution

FLS ¼ ðY 2 MÞ
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1 0 0
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Bartlett’s Method
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¼ ðY 2 MÞ
c21

1

C21
2

0
@

1
A

1 0 0

0 L2

 !
1 00

0 L2

 ! 0

c21
1

C21
2

0
@

1
A

1 0 0

0 L2

0
@

1
A

21

¼ ðY 2 MÞ
c21

1 0
0

0 C21
2 L2

0
@

1
A

c21
1 0

0

0 L
0

2C
21
2 L2

0
@

1
A

0
@

1
A

21

¼ ðY 2 MÞ
1 0 0

0 C21
2 L2 L 02C

21
2 L2

� �21

0

@

1

A

0

@

1

A

¼ 1·

y11 2 m1

..

.

yn1 2 m1

0
BBB@

1
CCCA

��������
f 2; f 3; : : : ; f p21; f p

0
BBB@

1
CCCA

The Solution of Thomson/Thurstone
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Kölling, A. (2000). The IAB-Establishment Panel. Journal of Applied Social Science

Studies, 120, 291–300.

Lucero, J., Freiman, M., Singh, L., You, J., DePersio, M., and Zayatz, L. (2011). The

Microdata Analysis System at the U.S. Census Bureau. SORT, Special Issue: Privacy in

Statistical Databases, 77–98.

McDonald, R. and Burr, E. (1967). A Comparison of Four Methods for Constructing

Factor Scores. Psychometrika, 32, 381–401. DOI: http://www.dx.doi.org/10.1007/

BF02289653

O’Keefe, C., Sparks, R., McAullay, D., and Loong, B. (2012). Confidentialising Survival

Analysis Output in a Remote Data Access System. Journal of Privacy and

Confidentiality 4. Available at: http://repository.cmu.edu/jpc/vol4/iss1/6 (accessed

January 17, 2014).

O’Keefe, C.M. and Good, N.M. (2008). A Remote Analysis Server – What Does

Regression Output Look Like? In Privacy in Statistical Databases, J. Domingo-Ferrer

and Y. Saygin (eds), vol 5262 of Lecture Notes in Computer Science. New York:

Springer, 270–283.

Press, S. (2005). Applied Multivariate Analysis: Using Bayesian and Frequentist Methods

of Inference, (2nd edn). New York: Dover Publications.

Drechsler, Ronning, and Bleninger: Disclosure Risk from Factor Scores 121

Unauthenticated | 195.77.16.2
Download Date | 2/17/14 9:38 AM

http://www.lisdatacenter.org
http://www.lisdatacenter.org
http://www.lisdatacenter.org/data-access/lissy/best-practices/
http://www.lisdatacenter.org/data-access/lissy/best-practices/
http://www.dx.doi.org/10.1007/s10182-010-0136-z
http://www.dx.doi.org/10.1007/s10182-010-0136-z
http://www.dx.doi.org/10.3790/schm.129.1.133
http://www.dx.doi.org/10.1214/088342305000000043
http://www.dx.doi.org/10.1214/088342305000000043
http://www.dx.doi.org/10.1007/BF02289233
http://www.dx.doi.org/10.1007/BF02289653
http://www.dx.doi.org/10.1007/BF02289653
http://repository.cmu.edu/jpc/vol4/iss1/6


Research Data Center of the National Center for Health Statistics (2012a). Available at:

http://www.cdc.gov/rdc/B2AccessMod/ACs230.htm (accessed January 17, 2014).

Research Data Center of the National Center for Health Statistics (2012b). Available at:

http://www.cdc.gov/rdc/Data/B2/SASSUDAANRestrictions.pdf (accessed January 17,

2014).

Ronning, G. and Bleninger, P. (2011). Disclosure Risk From Factor Scores. Technical

Report, IAW Discussion Papers 73. Available at: http://www.iaw.edu/w/IAWPDF.

php?id¼886&name¼ iaw_dp_73.pdf (accessed January 17, 2014).

Sparks, R., Carter, C., Donnelly, J., O’Keefe, C., Duncan, J., Keighley, T., and McAullay, D.

(2008). Remote Access Methods for Exploratory Data Analysis and Statistical

Modelling: Privacy-preserving Analytics. Comput Methods Programs Biomed, 91,

208–222. DOI: http://www.dx.doi.org/10.1016/j.cmpb.2008.04.001

Stock, J. and Watson, M. (2002). Forecasting Using Principal Components From a Large

Number of Predictors. Journal of the American Statistical Association, 97, 1167–1179.

DOI: http://www.dx.doi.org/10.1198/016214502388618960

Thomson, G. (1939). The Factorial Analysis of Human Ability. London: University of

London Press.

Thurstone, L. (1935). The Vectors of Mind. Chicago: University of Chicago Press.

Received May 2012

Revised April 2013

Accepted September 2013

Journal of Official Statistics122

Unauthenticated | 195.77.16.2
Download Date | 2/17/14 9:38 AM

http://www.cdc.gov/rdc/B2AccessMod/ACs230.htm
http://www.cdc.gov/rdc/Data/B2/SASSUDAANRestrictions.pdf
http://www.iaw.edu/w/IAWPDF.php?id=886&name=iaw_dp_73.pdf
http://www.iaw.edu/w/IAWPDF.php?id=886&name=iaw_dp_73.pdf
http://www.iaw.edu/w/IAWPDF.php?id=886&name=iaw_dp_73.pdf
http://www.iaw.edu/w/IAWPDF.php?id=886&name=iaw_dp_73.pdf
http://www.dx.doi.org/10.1016/j.cmpb.2008.04.001
http://www.dx.doi.org/10.1198/016214502388618960


Disclosure-Protected Inference with Linked Microdata
Using a Remote Analysis Server

James O. Chipperfield1

Large amounts of microdata are collected by data custodians in the form of censuses and
administrative records. Often, data custodians will collect different information on the same
individual. Many important questions can be answered by linking microdata collected by
different data custodians. For this reason, there is very strong demand from analysts, within
government, business, and universities, for linked microdata. However, many data custodians
are legally obliged to ensure the risk of disclosing information about a person or organisation
is acceptably low. Different authors have considered the problem of how to facilitate reliable
statistical inference from analysis of linked microdata while ensuring that the risk of
disclosure is acceptably low. This article considers the problem from the perspective of an
Integrating Authority that, by definition, is trusted to link the microdata and to facilitate
analysts’ access to the linked microdata via a remote server, which allows analysts to fit
models and view the statistical output without being able to observe the underlying linked
microdata. One disclosure risk that must be managed by an Integrating Authority is that one
data custodian may use the microdata it supplied to the Integrating Authority and statistical
output released from the remote server to disclose information about a person or organisation
that was supplied by the other data custodian. This article considers analysis of only binary
variables. The utility and disclosure risk of the proposed method are investigated both in a
simulation and using a real example. This article shows that some popular protections against
disclosure (dropping records, rounding regression coefficients or imposing restrictions on
model selection) can be ineffective in the above setting.

Key words: Confidentiality; remote analysis; record linkage; statistical disclosure control.

1. Introduction

Large amounts of microdata are collected by data custodians in the form of censuses and

administrative sources. Often, data custodians will collect different information on the

same individual. Many important questions can be answered by linking microdata

collected by different data custodians. For this reason, there is very strong demand from

analysts, within government, business and universities, for linked microdata. However,

many data custodians are legally obliged to ensure the risk of disclosing information about

a person or organisation is acceptably low. For simplicity, in the rest of this article it is

assumed that there are only two data custodians and the linked microdata are the result of

linking two sets of microdata collected by the two data custodians. Potential analysts of
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the linked microdata are the two data custodians and noncustodians (e.g., academics,

members of the public). There are two reasons the disclosure risks are significantly greater

if an analyst of the linked microdata is also a data custodian. First, because data custodians

commonly collect name and address, any additional information that can be inferred about

a record on the microdata it collected, can be directly associated with the person who

provided it. Second, a data custodian can use information on the linked microdata

collected to disclose information about a person or organisation on the linked microdata

that was collected by the other data custodian.

There has been some work in the literature on managing the disclosure risks from

analysts who are also data custodians. When unique identifiers, such as name and address,

are available, record linkage techniques (see Herzog et al. 2007) are frequently used to

identify records belonging to the same individual. Secure Record Linkage (SRL) (see, for

example, Churches and Christen 2004) suggests a way in which a third party can link

microdata without each data custodian disclosing the identity of nonlinked records to the

other data custodian and without the data custodians revealing any sensitive information to

the third party. The data custodians attach a unique record identifier to their microdata

(e.g., random number) and agree on a common way of encrypting the linking variables,

which are sent to the third party to perform the record linkage. The third party links the

microdata and returns the record identifiers of the linked pairs to the data custodians.

Therefore, each data custodian could identify the names and addresses of the people who

were linked, which in turn could disclose sensitive information (e.g., knowing a person’s

record has been linked to an unemployment register discloses the person is unemployed).

For many data custodians, such as the Australian Bureau of Statistics (ABS), revealing

such information would be a breach of their legal obligations and would mean that SRL is

not a viable option. If instead the third party was allowed access to linking variables (e.g.,

name and address), the linkage could be of much higher quality, since clearly unencrypted

linking variables are more useful in identifying matches than encrypted linking variables.

It would be interesting to study the extent to which encryption of linking variables reduces

the quality of the linkage.

Once the linked pairs are determined, each data custodian will need to ensure that any

statistical output from the linked microdata has an acceptable disclosure risk. Secure

computation algorithms allow data custodians to compute matrix operations, such as those

involved in regression, from linked microdata without sharing individual records (see, for

example, Karr et al. 2009). Among the major limitations of this approach are that it relies

on SRL, allows only datacustodians to analyse the microdata (i.e., non-data custodians

cannot perform analysis) and that it is currently limited to a certain set of models.

Alternatively, Kohnen and Reiter (2009) consider the novel problem of how data

custodians, without sharing sensitive variables, can together produce synthetic linked

microdata for public use. Limitations of this approach are that synthetic data can be time

consuming to produce and that it can be hard to guarantee that the synthetic data do not

distort some important relationships.

In contrast to the above approaches discussed in the literature, this article considers a

more practical and straightforward approach to managing disclosure risk from linked

microdata. In particular, this article considers the presence of a so-called Integrating

Authority (IA) that is trusted to perform the following roles:
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1. Link microdata collected by two data custodians.

2. Maximise the inherent utility or value of the linked microdata. This may include

application of consistent standards and classifications, statistical editing and

imputation.

3. Allow analysts to access the linked microdata in order to fit models.

4. Ensure the level of disclosure risk of the regression output is acceptable to the data

custodians.

The IA is allowed to observe the microdata collected by the data custodians. The data

custodians do not mask the microdata they provide to the IA in any way. The data

custodians not only have access to the microdata they provided to the IA but, as analysts,

they also have access to the regression output released by the Integrating Authority.

There are at least three benefits to an IA. First, the IA manages the complexity involved

in linking microdata and managing disclosure risk – this is important since many data

custodians do not have the specialised capability in, for example, standardising linking

fields, editing and imputation, record linkage and data access. Second, since the IA

observes the linking fields, it is possible to conduct a clerical review on the set of links and

to refine the method of record linkage. This essential task appears impractical when

linking fields are encrypted. Third, a more optimal trade-off between disclosure risk and

the utility of the analysis is possible. With an IA, only the disclosure risk of the regression

output needs to be managed; under the alternatives mentioned above, the disclosure risk

must be managed from record linkage to construction of the regression output itself.

There are some major potential disadvantages of the IA framework. First, some data

custodians may be prohibited by law, from disclosing information to any another

organisation. This would mean the IA framework would not apply. Second, fulfilling the

role of an IA is potentially a costly exercise. This may lead the IA to pass this cost burden

onto analysts by charging a substantial fee for access. Moreover, it is the IA that decides

how to fulfil its roles in any given situation. For example, the IA decides which variables to

include on the linked microdata and how analysts will access the linked microdata (e.g.,

public use file or via a remote server, as discussed below). These decisions may suit some

analysts but not others.

Once the record linkage step is completed by the IA, its next step is to facilitate access to

the microdata. In this article, the IA releases regression output via a remote analysis server

(see Reiter 2002, Gomatam et al. 2005, Sparks et al. 2008, Lucero and Zayatz 2010).

A simple model for a remote server is:

1. An analyst submits a query, via the Internet, to the analysis server.

2. The analysis server processes the analyst’s query on the linked microdata. The

statistical output (e.g., regression coefficients) is modified or restricted in order to

ensure the risk of disclosure is acceptably low.

3. The analysis server sends the modified output, via the Internet, to the analyst.

One key protection against disclosure afforded by remote analysis is that the analyst

is restricted from viewing the microdata. However, an analyst may attempt to use the

regression output to infer the value of variables on the linked microdata. Such attempts are

commonly called data attacks. Once the value of these variables is inferred, the attacking
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analyst can attempt one of the well-understood methods of disclosure (e.g., attribute

disclosure through linkage); for a review see Shlomo (2007). The IA can provide analysts

with disincentives to conducting attacks in the first place. For example, analysts could be

required to sign confidentiality agreements to access to the remote server. If the agreement

is violated by an analyst, access to the server could be revoked.

This article is about how an IA can manage the risk of a data custodian successfully

attacking the linked microdata. A data custodian’s attack would involve using the

microdata it supplied to the IA and the regression output released by the remote server to

infer the value of variables about a person or organisation that were collected by the other

data custodian. Data custodians will commonly collect name and address, which means if

such an attack is successful, the value of any variables that are inferred could be directly

attributed to the person or organisation who provided that information. In other words,

disclosure occurs automatically after a successful attack.

The problem of managing the disclosure risk of regression output released via a remote

server has been the subject of significant recent attention in the literature. The literature on

this problem focuses on the situation where there is a single data custodian responsible for

managing access to its microdata (i.e., unlinked microdata). In the case of remote analysis

for model fitting, most effort has been directed at linear regression. Gomatam et al. (2005)

considered imposing restrictions to stop analysts reconstructing coefficients for a sensitive

linear model, an example of which is a model with highly accurate predictions of a

sensitive characteristic (see Bleninger et al. 2010 for an empirical investigation). Taking

a completely opposite approach, Dwork and Smith (2009) describe the concept of

differential privacy, which imposes no restrictions but instead relies on perturbation of

statistical output alone to manage the disclosure risk. Many authors have considered

imposing both restrictions and perturbation (e.g., Sparks et al. 2008); this article takes such

an approach. One limitation of a remote server is that analysts are restricted to using the set

of statistical analysis procedures that are supported by the remote server. This article only

briefly mentions the more moderate disclosure risk of attacks made by noncustodians

since, as mentioned, there is a considerable literature on this problem.

Section 2 describes how a data custodian may attack the linked microdata when the

remote server naively releases standard regression output for models that are fitted to

binary data. Section 3 proposes simple protections that an IA can implement in a remote

server to reduce the success rate of these attacks. Section 4 evaluates the utility and

disclosure risk of the proposed approach in a real situation and in a simulation. Section 5

makes some final comments.

2. Attacks Without Any Protection

This section describes how a data custodian can attack the linked microdata if the remote

server naively releases standard regression output. Consider an IA linking microdata

collected by two data custodians, referred to as A and T. Data Custodian A is the attacker

and Data Custodian T is the target.

This article makes the assumption that all links between records are correct (i.e., each

pair of records that are linked correspond to the same person or organisation) and that the

name and address of all linked records are known to Data Custodian A. In practice, linkage
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is rarely perfect and it is well known that errors arising during the linkage process provide

some level of protection against disclosure (see Ch. 18 in Herzog et al. 2007). From the

perspective of managing disclosure risk, the assumption that linkage errors do not arise

is conservative.

Many authors distinguish between variables that are sensitive (e.g., income) and those

that are not sensitive, where only the risk of disclosing sensitive variables needs to be

managed. However, the legislation that guides how the Australian Bureau of Statistics, and

many other data custodians, manages disclosure risk does not distinguish between

sensitive and nonsensitive variables.

Let D be a set of records from the linked microdata comprising n records: a binary

outcome variable y and a vector of K binary covariates x. For the ith record, define ð yi; xiÞ

where xi ¼ ðx1i; x2i; : : : ; xki; : : : ; xKiÞ
0 and i ¼ 1; : : : ; n. Data Custodian T collected

y and the KT column vector xT and Data Custodian A collected the KA column vector

xA so that x ¼ ðx ¼ (x0T, x0A)0Þ0 and K ¼ KT þ KA. In other words, if we define X ¼

ðXT ;XAÞ ¼ ðx1; : : : ; xi; : : :xnÞ
0, Data Custodian T supplied y ¼ ð y1; : : : ; yi; : : : ; ynÞ

0

and the n £ KT matrix XT and Data Custodian A collected the n £ KA matrix XA.

Therefore we may now write D ¼ ðy;XÞ.

An attack by Data Custodian A involves using regression output released by the remote

server and XA to infer the value of one or more elements of ðy;XT Þ. Therefore, for the

purposes of this article, if a variable on the linked microdata is collected by both data

custodians (e.g., a linking variable), it is defined as a covariate in xA.

In general, a good strategy for Data Custodian A’s attack on a record involves ensuring

xA, used in the calculation of the statistical output, uniquely identifies the target record on

the linked microdata. This ensures there is 1–1 mapping between the target record’s value

of xA and name and address. As Data Custodian A collected XA, this could readily be

achieved.

Noncustodians present much less of a disclosure risk. Firstly, since they do not have

access to XA, they can only use the statistical output released by the remote server in an

attack. Secondly, even if an attack was able to reconstruct ð yj; xjÞ, attributing the jth record

to a person or organisation is more difficult without name and address (see Skinner and

Shlomo 2008).

Subsections 2.1, 2.2 and 2.3 describe attacks using standard regression output, including

estimates of regression coefficients, estimates of their variance and test statistics,

respectively.

2.1. Regression Coefficients

The standard estimate of the regression coefficient b for models fitted to binary variables

(e.g., logistic regression, linear regression), denoted by b̂, is obtained by solving the score

equation

Scðb;DÞ ¼ 0; ð1Þ

where ScðbÞ ¼ Six
0
ið yi 2 miÞ and mi ¼ gðx 0ibÞ for some link function g. It is well known

that fitting a model toD is equivalent to fitting a model to the C counts contained in the

vector n, where n ¼ {nc : c ¼ 1; : : : ;C} and nc is the number of records belonging to the
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cth pattern in ð y; xÞ (see McCullagh and Nelder 1989). As an aside, if y was instead a

multinomial response with M categories, the appropriate score function would involve

M 2 1 equations of the form of (1). A multinomial response model fits into the framework

developed here, but for simplicity we do not consider it further.

This section shows how Data Custodian A can attack ðy;XT Þ – this involves using

b̂ and XA in an attempt to infer the value of one or more elements of ðy;XT Þ.

2.1.1. Solving the Estimating Equations from a Single Model

Consider Data Custodian A substituting b̂ into (1) and then attempting to solve for some

elements of ðy;XT Þ. If the number of patterns in xA is CA, Data Custodian A’s attack can

exploit the following:

1. The K constraints imposed by b̂ through (1)

2. Knowledge of XA

3. ðy;XT Þ has only binary elements.

This attack can be as simple as conducting a grid search. Other more sophisticated search

techniques could also be used. Of course this search could be more targeted if, for instance,

Data Custodian T were to release frequency counts of y or xT to the public. For example,

the ABS, as potential Data Custodian T, releases frequency counts from its Census

microdata after the counts have been perturbed by a small amount.

2.1.2. Solving Estimating Equations from Multiple Models

This attack involves fitting different models to the same set of data values inD (i.e., the

same set of records and variables) by:

1. Changing the dependent variable

2. Changing the link function (e.g., linear, logistic and probit)

3. Transforming variables (e.g., creating an interaction term).

The regression coefficients for each fitted model impose additional constraints on ðy;XT Þ

via (1). The idea behind this attack is to impose sufficient constraints so that Data

Custodian A can solve for one or more elements of ðy;XT Þ.

Example 1: Solving for all unknowns. Denote the data values in D by

Z ¼ ðX; yÞ ¼ ðz1; : : : ; zi; : : : ; znÞ
0, where zim to be the mth element of zi. Consider

Data Custodian A fitting the mth model where the outcome variable for the ith record is

yðmÞi ¼ zim and the covariate for the ith record is xðmÞi , which is obtained by dropping zim

from zi. Denote the standard estimate of the regression coefficients from the mth model

by b̂ ðmÞ and denote m̂ðmÞi ¼ gðxðmÞ
0

i b̂ ðmÞÞ. Data Custodian A’s attack involves solving for one

or more elements of ðy;XT Þ given XA, b̂ ðmÞ and the constraint

Six
ðmÞ
i ðy

ðmÞ
i 2 m̂

ðmÞ
i Þ ¼ 0; ð2Þ

for m ¼ 1; : : : ;M. Clearly, as M increases so does the number of constraints.

Example 2: Solving for unknowns in one estimating equation. Continuing Example 1,

consider the lth estimating equation in (2) when Data Custodian A fits M models such

that yðmÞi ¼ yi and the lth element of xðmÞi is by definition xil, for all m ¼ 1; : : : ;M.
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Further consider that Data Custodian A collected xl so that it knows which H ¼ Sixil

records contribute to the lth estimating equation. The constraint imposed by the lth

estimating equation in (2) reduces to

Si;xil¼1yi 2 Si;xil¼1m̂
ðmÞ
i ¼ 0;

for m ¼ 1; : : : ;M. This imposes M constraints on the H £ ðKT þ 1Þ unknowns for the

H records contributing to the lth estimating equation. This number of unknowns could

be considerably less than Example 1. An extreme example is when H ¼ 1, which means

there are ðKT þ 1Þ unknowns and M constraints.

Example 3: Imposing more constraints by creating a new variable. If Data Custodian A

collected the variable t, it could repeat the attack in Example 1 or 2 but where yi is replaced

with ynew;i ¼ yiti for all i. By imposing the additional constraint ynew;i ¼ 0 if ti ¼ 0, Data

Custodian A can focus on solving yi for only records with ti ¼ 1. This additional constraint

could considerably reduce the number of unknowns.

2.1.3. Counts

Consider if Data Custodian A regresses y on x ¼ xA and aims to infer T ¼ Sixi
0yi, which

are counts of y in the margins of x. Given b̂ and (1), this is straightforward since

T ¼ Sixi
0mi. The disclosure risks of frequency counts are well known (see, for example,

Shlomo 2007). Counts of one would lead to disclosure. Counts of one can also be obtained

through differencing, as discussed below.

2.1.4. Differencing

A standard differencing (see, for example, Gomatam et al. 2005; Shlomo 2007) attack

involves fitting the same model to two sets of records that are identical except that one

record is dropped from one of the sets. Data Custodian A can be sure only the target record

is dropped if the dropping condition uniquely identifies the record and if it collected all the

variables in the dropping condition. Differences in the estimated regression coefficients

from the two models can be used in an attempt to infer the values of the dropped record’s

variables.

Example 4: Differencing attack by dropping a record. Consider if Data Custodian A

wants to infer yr, the value of y for rth record. Data Custodian A can fit a linear regression

model with x ¼ xA before and after dropping the rth record. Denote the value of the

estimated regression coefficients before and after dropping the rth record by bo and boðrÞ,

respectively. Also denote yðrÞ and XðrÞ by y and X after removing the rth row, respectively.

Since Data Custodian A knows bo, boðrÞ, XðrÞ and X, it can calculate So ¼ X 0Xbo ¼ X 0y

and SoðrÞ ¼ X 0ðrÞXðrÞboðrÞ ¼ X 0ðrÞyðrÞ and take the difference SoðrÞ 2 So ¼ xr
0yr. Since yr is

the only unknown, Data Custodian A can infer it directly.

2.1.5. Fishing

Fishing attacks involve fitting two models that are only different in one small way. Of

interest is whether the two sets of coefficients are the same or whether they are different;

how the coefficients change is not of interest. An example is given below.
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Example 5: Fishing by slightly changing the definition of a variable. Consider linked

microdata where Data Custodian A collected a variable for small area geography and age

in single years and Data Custodian T collected a sensitive variable. Data Custodian A

would know if there was one record in a particular small area with age equal to 100 years

and may seek to infer the value of the sensitive characteristic for the record. Data

Custodian A could fit two models to the records in the small area which are exactly the

same, except that the first includes a binary covariate that takes the value one when age is

between 40 and 100 and the sensitive characteristic is present and the second model

includes a binary covariate that takes the value one when age is between 40 and 99 and

the sensitive characteristic is present. If the regression coefficients from these two models

are different, Data Custodian A infers that the 100-year-old has the condition; otherwise

Data Custodian A infers that the 100-year-old does not have the condition.

2.2. Estimated Variance of Regression Coefficients

The estimated variance of b̂ is ^Varðb̂;DÞ ¼ ðX 0V̂XÞ21, where V̂ is diagonal with ith

element v21 ›m=›h
� �2

evaluated at x ¼ xi and b ¼ b̂, v is the variance function for the

model, and h ¼ x0b. Given b̂,^Varðb̂;DÞ can impose up to KðK 2 1Þ=2 constraints on X.

These constraints could be exploited to assist with an attack on estimated regression

coefficients. Consider the simple linear regression model where dVarVarðb̂;DÞ ¼ f̂ðX 0XÞ21

which, after taking the inverse and multiplying by released dispersion parameter f̂, gives

the table of counts X 0X ¼
X
0

T XT X
0

T XA

X
0

AXT X
0

AXA

0

@

1

A. Many of the attacks in Subsection 2.1 (e.g.,

differencing attacks and fishing) can be used against dVarVarðb̂;DÞ. They are not discussed

further here.

2.3. Other Statistical Output

Regression analysis would normally include exploratory data analysis, use of test statistics

and graphical plots to assess the model fit. Univariate and multivariate exploratory

analysis involving binary variables will often involve frequency counts, which are well

known to be a disclosure risk (see references below). Such work goes beyond the scope of

this article, but will form the subject of future work.

Statistics used to assess model fit or goodness-of-fit (see Hosmer and Lemeshow 2000),

say t ¼ tðb̂;DÞ, are functions of the microdata D and an estimate of b. Again, many of

the attacks in Subsection 2.1 (e.g., differencing attacks and fishing) can be used against t.

They are not discussed further here.

Graphical diagnostics are frequently used to assess model fit. The disclosure risk of

plotting record-level values is high and has been considered by many authors (see O’Keefe

and Good 2009 and O’Keefe et al. 2012). Consider if a remote server releases b̂ and a plot

which shows that the predicted value for a record is p. Given x has only binary elements,

there will in general be only a single value of x such that p ¼ mðxÞ. Furthermore, if the

record has a unique value for xA on the linked microdata, then Data Custodian A can infer

xT for the person about which the record relates.
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3. Attacks in the Presence of Protections

This section proposes some simple protections against the attacks described in the

previous section. The objective of these protections is to significantly reduce the likelihood

of a successful attack while making a small impact on the utility of the analysis.

Subsections 3.1 and 3.2 consider protections by imposing a general set of restrictions and

by introducing uncertainty into regression coefficients, respectively. Subsection 3.3

considers attacks on estimated regression parameters in the presence of these protections.

Subsections 3.4 and 3.5 describe protections for the variance of the estimated regression

parameters and for diagnostic test statistics, respectively.

3.1. Protection: Imposing General Restrictions

Several restrictions are suggested below. These restrictions do not necessarily defend

against a particular attack, but are designed to significantly hinder attacks while resulting

in only a minor reduction in utility. When designing a set of restrictions to manage

disclosure risk, it quickly becomes clear that a series of legitimate regression models could

be indistinguishable from a sophisticated data attack. Therein lies the challenge: not

restricting the former while thwarting the latter. This challenge is discussed in detail by

Cox et al. (2011).

Some analysts may have good reasons for fitting a model which is not permitted by the

set of restrictions below. The IA could decide to relax some restrictions if: the analyst

promises to fit a small number of predefined models (this could be verified by the IA); if

the IA believes errors, such as incorrect or missed links, in the linked microdata provide

substantial protection; or if the analysis has high utility. For obvious reasons, the IA would

be more willing to relax restrictions for analysts who are not data custodians, as long as

they promise not to share the regression output publically.

If the IA is not willing to relax one or more restrictions so that an analyst may fit a

particular model, the IA may provide the analyst with an alternative mode of access to the

linked microdata. One example would be for the IA to provide the analyst with the C

counts required to fit the model, though the counts will almost certainly need to be

carefully perturbed to manage the risk of disclosure.

Some possible general restrictions include:

(a) Limit the number of model covariates, K, by imposing the restriction that K , 30.

Models with a large number of covariates may impose considerable constraints on

unknowns. In very few cases would legitimate analysis be impacted by this restriction.

(b) Impose a minimum number of observations or covariate patterns by imposing the

restrictions n $ 50 and C . 50. This restriction aims to ensure a minimum number of

unknowns. Remembering that C is the number of counts to which the model is fitted,

C # 2K effectively means that K . 5.

(c) Adjusted R 2 squared , 0:95 (see also Gomatam et al. 2005). Other cut-off values

can be considered. Inferential disclosure occurs when a model’s prediction of a

sensitive variable, y, is highly accurate and all covariates for the target record are

known (e.g., x ¼ xA). This restriction is designed to prevent inferential disclosure.

This protection will rarely be required since accurate predictions of binary outcomes
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are rare. (Aside: inferential disclosure is fundamentally based on model assumptions.

Some would argue that inferences which rely on model assumptions cannot lead

to disclosure, because there is uncertainty about whether the model assumptions

are true.)

(d) Each variable in the model must be non-zero for at least ten records. As all variables

are binary this means Sixik $ 10 and Sið1 2 xikÞ $ 10 for all k, Siyi $ 10 and

Sið1 2 yiÞ $ 10. This provides some protection against attacking a single estimating

Equation (see Example 2) by ensuring there will be a minimum of ten unknowns.

(e) ðC 2 CAÞ $ 10K. This ensures that there are ten times the number of unknown counts

than there are constraints imposed by the estimating equation.

(f) New variables may only be created by multiplying two variables originally on the

microdata as long as both variables were collected by the same data custodian. This

restriction aims to prevent a data custodian from, almost arbitrarily, reducing the

number of unknowns as in Example 3.

(g) Exclude variables from the linked file if they have limited analytic value. This limits

the potential prior knowledge a data custodian can use in attacks. This decision must

be made by the IA after consultation with potential analysts.

(h) Restrict variables which are naturally only useful as model covariates (e.g., marital

status, age, sex, geography) from being dependent variables. This will hamper

attempts to solve the estimating equation by changing the choice of dependent

variable (see point 1 in Subsection 2.1.2). See also Gomatam et al. 2005 for another

justification for this restriction.

It makes sense to impose data custodian-specific restrictions (e.g., see (e) above) because

the disclosure risk naturally depends upon which data custodian is performing the attack.

For data custodian-specific restrictions to make sense it must be assumed that there is

restricted (e.g., to publications) sharing of regression coefficients between data custodians

and that data custodians are aware of what regression coefficients they are able to share.

What if this assumption is not realistic? The implication is that if one data custodian

is restricted from fitting a model then all data custodians and non-data custodians must

be restricted from fitting the model. In other words – restriction for one means restriction

for all.

While the details are not within the scope of this article (for details see O’Keefe and

Chipperfield 2013), the IA will need to decide what restrictions, if any, to place on

subsetting records (i.e., defining the records inD). If there is no restriction on subsetting,

a data custodian may be able to arbitrarily target records to drop in differencing attacks.

On the other hand, the flexibility of subsetting is very important since it allows analysts

to make inferences about a specific population of interest.

If the number of models that are fitted is allowed to be arbitrarily high, the

corresponding set of constraints may be such that an attacking data custodian can solve the

estimating equation. Therefore it is worth mentioning a basic indicator of the risk of this

attack succeeding. Consider when Data Custodian A fits its mth model to CðmÞ counts,

where CðmÞ is the same as C but for the mth model and CAðmÞ is the same as CA but for the

mth model. Consider LA ¼ SmLAðmÞ, where LAðmÞ ¼ C21
ðmÞCAðmÞ. The numerator of LAðmÞ is

the number of constraints Data Custodian A can impose on the CðmÞ counts (see point 2 in
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Subsection 2.1.1) to which the mth regression model was fitted. When LA . 1 there are

potentially more constraints than unknown counts, at which point the IA could perhaps

audit the models fitted by Data Custodian A. Refining this indicator and developing similar

indicators for other attacks would be an interesting line of future work.

3.2. Protection: Introducing Uncertainty into the Released Regression Coefficients

Two simple ways of introducing uncertainty into regression coefficients are now

mentioned. The first protection is that a different random sample of records is dropped (see

Sparks et al. 2008) for every distinct model that is fitted. Specifically, for each

k ¼ 1; : : : ;K, one record with xk ¼ 1 is randomly selected and dropped from D. This

means K records will be dropped. DenoteDdrop to beD after dropping records in this way.

Estimates of regression coefficients will not be biased by dropping records in this way,

since it does not affect the distribution of y conditional on x. As many applications

involving linked microdata have a large number of records, dropping records in this way

will generally only have a small impact on the accuracy of estimates. Note that dropping a

completely random sample of records for every model fitted (see Sparks et al. 2008)

provides limited protection in the present setting. Consider dropping 50 randomly selected

records as a protection against the attack in Example 2, where n ¼ 50,000 and H ¼ 5 so

that xk ¼ 1 for only five records. Since it is unlikely that xk ¼ 1 for any of the dropped

records, it is equally unlikely that the attack in Example 2 will be affected by dropping

records in this way.

The second protection involves adding noise (for a review see O’Keefe and Chipperfield

2013) to the RHS of (1). Consider the estimator b̂* of b, obtained by solving

Scðb;DdropÞ ¼ E*; ð3Þ

where the microdata used in the regression areDdrop notD, E* ¼ ðE*
1; : : : ;E

*
k ; : : : ;E

*
KÞ
0,

E*
k ¼ fu*

k , f is a scaling factor for the perturbation that needs to be set by the integrating

authority and u*
k s are independently generated variables from the uniform distribution on

the range (21,1). Other distributions can be considered. The regression coefficients b̂ are

perturbed via E*. The value for f is best determined through empirical investigation and

simulation, which is discussed below. The distribution for u*
k is bounded so that the impact

of perturbation is bounded. The contribution of a record to the kth estimating equation is

in the range (21,1), which is also the range of the perturbation, u*
k . As many attacks attempt

to uncover the values of variables for a single record, this is arguably a minimum degree

of perturbation.

The distribution of the perturbations in E* are independent so that VarðE*Þ is a diagonal

matrix. The joint distribution of E* across different models should also be independent

with an important exception: the same values of E* should be used if exactly the same

model is fitted. This condition stops estimation of b̂ by fitting exactly the same model a

number of times and averaging over the b̂*s.

3.3. Attacks Using the Released Estimated Regression Coefficients

Here we revisit the attacks of Section 2 in the presence of the protections mentioned above.

It is assumed here that f and the rules for dropping records are in the public domain.
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3.3.1. Solving the Estimating Equation

Define b̂ ðmÞ* to be the same as b̂ ðmÞ except that it is obtained by solving (3) rather than (1).

Consider solving the estimating equation in Example 1 but where the regression

parameter, b̂ ðmÞ* instead of b̂ ðmÞ, is released. Define DðmÞdrop to be D after randomly

dropping records for the mth model. Data Custodian A’s attack now involves finding, over

all possible subsets DðmÞdrop of D, a unique solution for one or more elements of y given

2f1 # Si[DðmÞ
drop

xðmÞi ðy
ðmÞ
i 2 m̂*ðmÞ

i Þ
n o

# f1; ð4Þ

for m ¼ 1; : : : ;M, where m̂*ðmÞ
i ¼ gðxðmÞ

0

i b̂*ðmÞÞ and 1 is a K vector of 1s.

The protection provided by perturbation and dropping records depends upon the many

possibly interacting factors implicit in (4). This makes it difficult to make any general

conclusions about the protections they provide against disclosure. Clearly, the protection

provided by perturbation is driven by f. When looking at (4), it is clear that as f increases

the interval becomes wider and the probability of a unique solution (i.e., disclosure)

becomes smaller. The method of dropping records would ideally prevent strict constraints

being imposed on the terms in (4). If y ¼ 1 for 99% of records, then an attack could

assume, with high probability of being correct, that y ¼ 1 for all dropped records.

Making this assumption would impose a further constraint on the unknown values of y –

in particular, if the first element of x was a constant, then the first element of

A ¼ Si[DðmÞ
drop

xðmÞi yðmÞi in (4) would be constant over m. The first element of A could no

longer be assumed to be constant if there was some uncertainty about how many records

were dropped (e.g., instead of dropping one randomly selected record with xk ¼ 1, drop

1; 2; : : : ; or T randomly selected records with xk ¼ 1 with probability 1=T).

3.3.2. Counts

Consider how b̂* protects against estimating T ¼ Si[Dx
0

i yi. If Data Custodian A regresses

y on x ¼ xA, it can compute T̂* ¼ Si[Dxim̂
*
i , where m̂*

i ¼ gðx
0

i b̂
*Þ. Data Custodian A

knows the minimum and maximum value for the counts in T are given by the

corresponding elements of Tmin ¼ T̂* 2 ðfþ KÞ1 and Tmax ¼ T̂* þ f1, respectively.

The ‘K’ in the expression for Tmin reflects the fact that Data Custodian A knows that up to

K records could be dropped from each estimating equation.

3.3.3. Differencing

Consider how perturbation protects against differencing attacks on counts (see Example 4),

assuming for the moment that no records are randomly dropped (i.e., Ddrop ¼ D).

Consider if Data Custodian A regresses y on x ¼ xA before and after dropping the rth

record. Accordingly define DðrÞ, TðrÞ ¼ Si[DðrÞx
0

i yi, T̂
*

ðrÞ ¼ Si[DðrÞxim̂
*
iðrÞ, where

m̂*
iðrÞ ¼ gðx

0

i b̂
*

ðrÞÞ, and b̂
*

ðrÞ to be exactly the same as D, T, T̂* and b̂*, respectively,

except that they are computed after the rth record is dropped. Data Custodian A can

compute an estimate of x
0

ryr by

DðrÞ ¼ T̂* 2 T̂
*

ðrÞ: ð5Þ
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If any element of DðrÞ has magnitude greater than 2f, Data Custodian A can infer that

yr ¼ 1. It is also not hard to see that if yr ¼ 0 this differencing attack will never succeed.

This means the success rate of this attack depends upon the probability that y ¼ 1 for the

target records. It is also not hard to see that, as K increases and f decrease, the probability

of this attack succeeding increases.

Now consider the same differencing attack but where records are randomly dropped, as

discussed previously. DenoteDðrÞdrop to be the result of randomly dropping records from

DðrÞ. Now b̂* and b̂
*

ðrÞ are calculated from Ddrop and DðrÞdrop instead of D and DðrÞ,

respectively. Of course, the IA does not reveal which records are dropped so thatDðrÞdrop

andDdrop are not known to Data Custodian A. Accounting for this uncertainty, it is easy to

show if any element of DðrÞ has magnitude greater than 2fþ K (the difference between

Tmin and Tmax), Data Custodian A can infer that yr ¼ 1.

3.3.4. Fishing

Randomly dropping records as described above provides an effective protection against

fishing attacks since, for every distinct model that is fitted, a different random sample of

records is dropped. This will mean, continuing with Example 5, that the regression

coefficients for the two models will be different whether or not the 100-year-old has the

condition. Only if the same model is fitted repeatedly (i.e., the chosen link function, the set

of records, and dependent and independent variables are all the same) should the same set

of records be dropped. Otherwise this protection can be removed by averaging.

3.4. Variance of Estimated Regression Coefficients

Given the perturbation and model distributions are independent, the sandwich estimator

for the variance of b̂* is

dVarVar b̂*;Ddrop

� �
¼dVarVar b̂;Ddrop

� �
þ ðX 0V̂XÞ

21

dropVar*ðE
*ÞðX 0V̂XÞ

21

drop; ð6Þ

The first term in (6) is the estimated variance of the standard estimator of b obtained from

solving (1), but based onDdrop rather thanD. An analytic expression for the first term is

ðX 0V̂XÞ
21

drop, where ðX 0V̂XÞdrop is X 0V̂X but based on Ddrop rather than D. Alternatively

the first term can be calculated fromDdrop using the Bootstrap or Jackknife (see Chambers

and Skinner 2003 p. 105). The second term in (6) measures the variation due to

perturbation where it is easy to show, using the variance of the Uniform distribution, that

Var*ðE
*Þ is diagonal with kth element var*ðfu*

kÞ ¼ f2=3. The analyst can make valid

inferences about b using b̂* and (6), without knowing anything about the perturbation

itself. It is interesting to note that the first and second terms of (6) are Oðn21Þ and Oðn22Þ

respectively, which means that the impact of perturbation on variance is small.

Using the same reasoning as in Subsection 2.2, releasing (6), where the first term is

computed analytically, would represent a high risk of disclosure. Instead consider

computing the first term using the Jackknife. Denote u as the analytic variance estimate of

b̂ and denote û as the corresponding Jackknife variance estimate of u. The Jackknife

estimate has a level of uncertainty due to the process, denoted by v, of allocating selection

units to replicate groups. In particular, the coefficient of variation of û due to this process is

CVv û
� �

< 2ðR 2 1Þ21, where R is the number of replicate groups, CVvðûÞ ¼ VarðûÞû22
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(see Shao and Tu 1995, p. 196) and m=n is negligible. As long as R is not too large, this

uncertainty in û will mask u. This means that computing the first term in (6) using the

Jackknife will mask the entire RHS of (6). For example, if the Jackknife standard error

estimate is 0.2 and is based on R ¼ 50, a 95% confidence interval for the estimate is

ð0:31; 0:46Þ.

It is difficult to see how (6) could be used in a differencing attack or be used to impose

any constraint that would be useful to help solve the estimating equation. Since (6) is based

on Ddrop it is protected from fishing attacks. A further protection is to release only

the diagonal elements of (6) so that only the variances of the regression coefficients are

released.

3.5. Other Statistical Output

Given b̂* instead of b̂ is released, it makes sense that an analyst would be interested in

t * ¼ tðb̂*;DdropÞ rather than t. The statistic t * for the adjusted R2, leverage, dispersion

parameter and the Hosmer Lemeshow and chi-squared statistics will have their usual

interpretation (i.e., replacing b̂ and D with b̂* and Ddrop does not affect their

interpretation).

Since b̂* is not a likelihood estimator, it is not strictly valid for b̂* to be used to evaluate

likelihood-based diagnostic statistics. However, it is easy to show that it is approximately

valid to do so in large samples. Standard likelihood-based test statistics (e.g., Likelihood

Ratio Test and Deviance Test) involve evaluating the model log-likelihood lðb̂jDÞ, where

b̂ is the standard ML estimator and D are the microdata used to fit the model. Using a

second order Taylor Series approximation to lðbjDÞ centred around b̂ and noting

b̂* ¼ b̂þ ðX 0V̂XÞ21E*, it follows that lðb̂*jDÞ < lðb̂jDÞ2 321trace{ðX 0V̂XÞ21} which

means for large n that lðb̂*jDÞ < lðb̂jDÞ. Furthermore, if the number of dropped records

is small then lðb̂*jDDropÞ < lðb̂jDÞ. For large n, this means that a standard likelihood-

based test statistic evaluated at b̂* and Ddrop is approximately the same as a standard

likelihood test statistic (i.e., t * < t). This approximation is verified in empirical

evaluations.

In small samples, it may be worthwhile to adjust some statistics to make them valid.

For example, the standard Wald Test statistic is tW ¼ b̂ 0ðX 0V̂XÞ21b and is distributed as

chi-squared with K degrees of freedom. The adjusted Wald statistic is

t*
W ðb̂

*;DdropÞ ¼ b̂*
0

ðX 0V̂XÞ
21

drop þ ðX
0V̂XÞ

21

dropVarðE*ÞðX 0V̂XÞ
21

drop

h i
b̂*;

and is chi-squared with K degrees of freedom.

The only protection of t * from attacks is that it is calculated fromDdrop rather thanD.

To be consistent with the protections given to regression parameters (see Subsection 3.2),

consider the perturbed statistic

t ** ¼ t * þ eðtÞu*; ð7Þ

where eðtÞ bounds the maximum influence that a record on the microdata has on the

statistic t, and u* is a random variable sampled from the uniform distribution on the range

(21,1). If the same model is fitted then the same value for u* must be generated (cf.

averaging over E* s). All the attacks discussed previously on regression parameters can be
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reformulated to be attacks on diagnostic statistics, t **. For reasons of space these are

not mentioned.

For example, in the case of the dispersion parameter for a logistic regression, ideally

f̂* ¼ ðn 2 KÞ21Sið yi 2 m*
i Þ

2v21ðm̂*
i Þ would be released. Since eðfÞ < n21, the released

dispersion parameter f** ¼ f* þ eðfÞu* ¼ f* þ Oðn21Þ, which means that perturbation

will only have a small impact. Moreover, it is easy to show, using first-order Taylor Series

approximations, that for many test statistics t ** ¼ t þ Oðn21Þ – implying that the

difference between the standard and released statistics will be small. This is verified in a

limited empirical study.

For statistics used in hypothesis testing, only the ranged p-value for the test statistic, t **,

should be reported, rather than the value of the test statistic and the degrees of freedom.

The degrees of freedom for t and t ** for the above mentioned test statistics are the same,

using as justification the fact that f** < f. Sparks et al. (2008) suggest reporting the

p-values in the ranges ½0; 0:001Þ, ½0:001; 0:01Þ, ½0:01; 0:05Þ, ½0:05; 0:1Þ and ½0:1; 1Þ.

The challenge of confidentialising graphical output, including exploratory data analysis,

in remote analysis systems is discussed by Sparks et al. (2008) and by many other authors

(for a review see O’Keefe and Chipperfield 2013). This however, has not considered the

risks from linked data. This is an interesting and useful avenue for future work.

4. Evaluation of Risk and Utility of a Remote Server: Linking the Australian

Census to the Migrants Database

The ABS Census of Population and Housing provides economic and social information

about migrants living in Australia. However, there are certain questions of great interest

about migrants that the Census data alone cannot answer. One key question is how migrant

visa class, assigned prior to arrival in Australia, is related to post-arrival social and

economic outcomes. The different visa classes include family, humanitarian, skilled,

onshore and other. Answering such a question is made possible through linking the Census

with the Department of Immigration and Citizenships (DIAC) Settlement Database (SDB)

which collects visa class. These answers would assist with the future development and

evaluation of immigration programs and support services for migrants.

The Census 2006 microdata are made up of more than 20 million records. The reference

period for the Census is 8 August 2006. For this study, the SDB had a reference period

from 1 January 2000 to 8 August 2006 (Census night) and contained the records of

861,000 persons who, during that period, were granted visas to live permanently in

Australia. DIAC provided the SDB to the ABS for the purpose of linking it with the

Census. The variables used to probabilistically link records on the SDB and Census were

age (in years), month and day of birth, marital status (five categories), sex, country of

birth, year of arrival, religion, main language and small area geography. About 530,000

records were linked. For the purposes of this study, the linked file includes select Census

variables, the SDB variable visa class and the linking variables age, marital status, sex,

country of birth, year of arrival, main language and small area geography. For the purpose

of this study we assumed that the linking variables religion and month and day of birth

were not included on the linked data. This means DIAC would have access to seven

variables and small area geographic information on the linked microdata. If more SDB
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variables were included on the linked microdata, the disclosure risk would likely be

greater than that measured below.

In this study the ABS is the IA and Data Custodian T and DIAC is Data Custodian A.

The ABS, as an IA, is planning to release the SDB Census-linked microdata through its

remote server. The ABS is legally obliged to ensure that the risk of disclosing information

about a particular person is unlikely. This legislation (Census and Statistics Act 1905) does

not distinguish between sensitive and nonsensitive variables and does not make a special

provision for trusted analysts. (The case study here is an example of a general strategy

of the ABS to link its Population Census to microdata collected by select government

departments. Details on the legal framework behind an IA in Australia can be found on the

ABS website).

Subsection 4.1 considers the utility of modelling with and without the protections of

Section 3, and Subsection 4.2 considers the disclosure risk in a high-risk scenario.

4.1. Empirical Evaluation of Utility

While there are many possible research questions, one of particular importance to policy

makers is to what extent migrants have difficulty finding employment after they arrive in

Australia and how this is related to visa class. A useful way to answer such a question is to

fit a regression model to employment with a range of covariates, including visa class.

Tables 1 and 2 give the results of fitting such a model to two populations- the first is all

migrants living in the Australian Capital Territory (ACT) and the second is all migrants

living in the ACT who arrived after 2001, respectively. The set of restrictions of

Subsection 3.2 did not prevent the models being fitted.

The results show that b̂* with f ¼ 1 (remembering that f controls the magnitude of the

perturbation) and the standard estimator b̂ were very similar. As mentioned above, the

standard errors of b̂* can be computed by using either an analytic or Jackknife expression

for the first term in (6). Tables 1 and 2 show that the difference between the two variance

estimates is generally small and tends to be larger for coefficients of covariates that have a

low frequency. Consequently, the tests for the statistical significance of the regression

coefficients were almost identical whether they were based on b̂* with Jackknife standard

errors or b̂ with analytic standard errors. The one exception was in Table 1, where the

coefficient 55 , age , 64 was not statistically significant at the 95% level after the

protections were applied. Coefficients of covariates with a low frequency tend to be more

influenced by perturbation of the score function. Tables 3 and 4 illustrate that the standard

and released diagnostics statistics are very similar. Overall, this section illustrates that the

protections had only a small impact on inference.

4.2. Simulated Evaluation of Risks

This section simulates attacks that could be conducted by an analyst with access to the

SDB. The aim of such simulated attacks is to infer the value of one or more Census

variables, using statistical output released by the remote server and the SDB. While the

simulation does not involve use of the DIAC Census-linked microdata, it aims to replicate

the possible attacks on the linked microdata. The benefit of simulation is that it is
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possible to readily construct a situation that both is realistic and presents a high risk of

disclosure.

The ABS, as an IA, would not reveal to data custodians which records were linked (e.g.,

in the Census-SDB linkage only 530,000 of the 861,000 SDB records were linked).

However, it is assumed in this simulation that the attacker could identify a specific

subpopulation of records that are very likely to be linked correctly. For example, in the

Census-SDB linkage it may be inferred that certain subpopulations of records (e.g.,

proficient in English and high level of education) have a very high chance of reliably

reporting linking variables, and so are likely to be linked correctly to their corresponding

Census records.

4.2.1. Simulated Subpopulation

Assume the attacker fits models to a subpopulation of the linked microdata of size n ¼ 30

or 50 records. This subpopulation could be defined in terms of small area geography,

available on the SDB. Given the previous assumption, the attacker knows the exact set of

records in the subpopulation. To make this simulation realistic, the attacker chooses to use

eight variables on the linked microdata: small area geography to define the subpopulation

of size n, the six other remaining SDB variables (see above), denoted by x, and one Census

variable (e.g., employment), denoted by y. In the notation of Section 2, the attacker knows

X and seeks to infer yi for some or all i. The variables for records in the subpopulation were

independently generated 200 times in the following way:

. Each record has a unique covariate pattern in x. Since x has dimension six, there are

26 ¼ 64 possible covariate patterns, of which n ¼ 30 or 50 are randomly selected for

the subpopulation.

. Sy ¼ Siyi ¼ 3; 6 where y is generated from the logistic model 1=ðexpð2hiÞÞ,

hi ¼ 1:6þ x1i 2 1:5x2i þ 1:3x3i 2 0:8x4i þ 1:3x5i þ 0:9x6i þ ei and the ei s are

independent standard normal random variables. These model parameters were chosen

arbitrarily but to be within the range of those in Tables 1 and 2 and to generate the

desired range in Sy.

Table 4. Impact of Statistical Disclosure Control on Diagnostic Statistics (ACT and

Year of Arrival Prior to 2001)

Statistic Standard (t) 95% interval for t **

Dispersion, f 0.93 (0.91, 0.94)
R 2 square 0.18 (0.18, 0.19)
Likelihood Ratio 257 (,0.001) (240, 261) (,0.001)c

conly the ranged p-value is released.

Table 3. Impact of Statistical Disclosure Control on Diagnostic Statistics (ACT)

Statistic Standard (t) 95% interval for t **

Dispersion, f 0.93 (0.92, 0.93)
R 2 square 0.18 (0.18, 0.18)
Likelihood Ratio 1052 (,0.001) (1035, 1057) (,0.001)c

conly the ranged p-value is released.
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Since each value for x is unique and SDB contains the name and address for every

record, disclosure automatically occurs if the attacker who has access to the SDB is able to

infer the value of yi for any xi. This is because there is a 1-1 correspondence between xi

and name and address for all i.

The ABS releases frequency counts from its Census microdata via its remote server.

While a small amount of noise is added to these counts before they are released, it is

frequently assumed in this simulation that Sy is in the public domain. This is a strong

assumption since, as mentioned above, such counts are perturbed by a small amount.

In reality, it is unlikely all of the above conservative assumptions made for this

simulation will be true. As a result, the disclosure risks would in reality be significantly

lower than those measured in this section.

4.2.2. Attacks Using Regression Coefficients

The effectiveness of two attacks were measured on the 200 independently simulated

subpopulations. It was interesting to see how the success of an attack was influenced by

whether the remote server released:

. b̂. This effectively means there is no (N) protection.

. b̂*ðDÞ computed from (3) but using D instead of Ddrop. The protection is from

perturbation (P) of the score function.

. b̂*ðDdropÞ computed from (3). The protection is from perturbation and dropping a

single randomly selected record (O,P), where O denotes dropping.

The first attack was Solving the Estimating Equation (SEE) (see Example 1 and

Subsection 3.3). When the remote server uses the O and P protections, SEE involved

finding all possible values for y that are solutions to (4) given Sy, X and b̂*ðmÞ for

m ¼ 1; : : : ;M. Disclosure occurred for record j if, across all possible solutions, the

value for yj was always unique. Table 5 gives the proportion of SEE attacks that were

successful in a range of scenarios. For example, Table 5 shows that when n ¼ 50 and

there were no protections, all values in y were disclosed in every one of the 200

simulated subpopulations from only a single model; if instead the P protection was used

with f ¼ 1, the success rate fell to 2%. A summary of the findings from Table 5 are

described below.

. Releasing b̂ was a high disclosure risk. The risk was 100% when y was the dependent

variable.

. As f increased the success rate reduced. However, the P protection on its own did not

reduce the success rate to zero.

. The success rate increased as M, the number of fitted models, increased.

. The O protection on its own did not reduce the success rate.

. If only the P protection was used, uncertainty in Sy (see 6c in Table 5) did not seem to

provide much protection.

. If both the P and O protections were used, the disclosure risk was zero.

The second attack was Differencing Counts (DC) (see Subsection 2.1.3 and

Subsection 3.3). The target record for a differencing attack was chosen completely at
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random. Table 6 shows that the proportion of differencing attacks that were successful

when protections N, P and (P and O) were used was 100%, 5% and 0% respectively.

For the results in Table 5, LDIAC ¼ 0:5 (see Subsection 3.1 where A ¼ DIAC) for fitting

a single model and LDIAC ¼ 3:5 when seven models were fitted. By contrast, for the

models in Tables 1 and 2, LDIAC ¼ 0:001 and 0.002 respectively; these values are

considerably smaller since most variables in the model were not SDB variables and the

sample size was larger. Interesting further work would identify the optimal value for LDIAC

to trigger an audit by the ABS. If LDIAC . 1 was to trigger such an audit, the audit would

readily identify that the fitted models have the distinctive feature of the SEE attack (see

Subsection 2.1.2). Remedial action could then be taken by DIAC and ABS to prevent

further attacks.

The ABS, as an IA, could consider dropping variables from the linked microdata that

are common to Census and SDB. If a common variable has limited analytic value, the

ABS, as the IA, should consider dropping it from the linked microdata. This is particularly

the case if a common variable is useful in uniquely identifying a record. Dropping such

variables will limit the prior knowledge, and hence the effectiveness, of an attack.

5. Discussion

Modern advances have allowed vast amounts of microdata to be collected by data

custodians. With increasing sophistication of policy makers and the consequent demand

for more detail, linking such microdata across data custodians is becoming increasingly

important. While the benefits to society of allowing access to linked microdata are

significant, data custodians need to ensure that allowing access is unlikely to result in the

disclosure of information about a particular person or organisation. The Australian Bureau

of Statistics (ABS) is playing a lead role in developing a framework for the integration of

Australian Commonwealth data. The role of an Integrating Authority (IA) is to maximise

the inherent value of Commonwealth data to society, to facilitate access to the linked data

and to ensure disclosure risk is acceptable. The ABS is developing infrastructure in the

areas of record linkage and remote analysis to support its goal to become the lead IA

in Australia.

This article proposes a set of protections that an IA can apply to statistical output from

linked microdata. The evaluations show that the protections prevent disclosure in a high-

risk scenario and have only a small impact on inferences for analysis involving moderate

sample sizes. The method in the article can be readily extended to three or more data

custodians. Importantly, this article shows that some popular protections against

disclosure (e.g., dropping records, rounding regression coefficients or imposing

restrictions on model selection) are perhaps not as effective as previously thought.

Table 6. Differencing Attack

Defence Sy Success Rate (%)

N 30 100
P 30 5
O,P 30 0
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There is a need to extend the approach here to include analysis of continuous variables.

Extensions to multilevel models is also important, since linked administrative data are

often longitudinal in nature or contain a natural hierarchy.
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The Relative Impacts of Design Effects and Multiple
Imputation on Variance Estimates: A Case Study with the

2008 National Ambulatory Medical Care Survey

Taylor Lewis1, Elizabeth Goldberg1, Nathaniel Schenker1, Vladislav Beresovsky1,

Susan Schappert1, Sandra Decker1, Nancy Sonnenfeld1, and Iris Shimizu1

The National Ambulatory Medical Care Survey collects data on office-based physician care
from a nationally representative, multistage sampling scheme where the ultimate unit of
analysis is a patient-doctor encounter. Patient race, a commonly analyzed demographic, has
been subject to a steadily increasing item nonresponse rate. In 1999, race was missing for
17 percent of cases; by 2008, that figure had risen to 33 percent. Over this entire period, single
imputation has been the compensation method employed. Recent research at the National
Center for Health Statistics evaluated multiply imputing race to better represent the
missing-data uncertainty. Given item nonresponse rates of 30 percent or greater, we were
surprised to find many estimates’ ratios of multiple-imputation to single-imputation estimated
standard errors close to 1. A likely explanation is that the design effects attributable to the
complex sample design largely outweigh any increase in variance attributable to missing-data
uncertainty.

Key words: Health survey; missing data; item nonresponse; fraction of missing information.

1. Background

The National Ambulatory Medical Care Survey (NAMCS) has been administered by the

National Center for Health Statistics (NCHS) since 1973. While aspects of the sample

design and survey instrument have evolved over the past twenty-five years, its objective

has always been to collect and disseminate nationally representative data on office-

based physician care. The ultimate sample unit is a doctor-patient encounter, drawn

systematically from the terminus of a multistage, clustered sample design. Like many

other surveys, the NAMCS is not immune to the potentially detrimental effects of missing

data. As Figure 1 demonstrates, the (unweighted) item nonresponse rate for patient race,

one of the most analyzed demographics, increased appreciably between 1999 and 2008.

Such nonresponse on race has been experienced in the context of other NCHS health care

surveys as well. For example, Kozak (1995) found that hospitals participating in the

National Hospital Discharge Survey underreported race to varying degrees.
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Groves et al. (2002, Sec. 1.2) cited three issues that can arise with missing data due to

nonresponse: (1) biases in point estimators; (2) inflation of the variances of point

estimators; and (3) biases in customary estimators of precision. In this article, we focus on

the third issue, and in particular the extent to which multiple imputation (Rubin 1987)

results in estimates of precision that differ from those under single imputation in the

context of the NAMCS with missing data on race.

Variance estimates for situations such as ours have been explored by Li et al. (2004),

who used a bootstrap re-imputation scheme adapted to complex surveys (Shao and

Sitter 1996) to account for missing-race uncertainty in the 2000 NAMCS. Li and her

colleagues observed a few instances where the bootstrap re-imputation suggested standard

errors should be inflated by up to 30%, but concluded most estimates necessitated an

inflation of 6% or less. Their findings quelled concerns for a while, but as one can infer

from Figure 1, the item nonresponse rate for race in the 2000 NAMCS was roughly half

where it stood in 2008.

This article reports on research conducted at NCHS, using data from the 2008 NAMCS,

to assess whether multiple imputation would better reflect the missing-data uncertainty

than single imputation, which is currently used in the NAMCS, in light of the recent

nonresponse rates of about 30% on race. Using a model-based imputation method with

predictors similar to those used in the 2008 NAMCS cell-based procedure, we compared

results under multiple imputation to those under single imputation, and we found that the

increase in the estimated standard errors with multiple imputation tended to be small. We

concluded that the extremely large design effects (Kish 1965) for estimates involving race

tended to transcend the additional missing-data uncertainty that would be reflected by

multiple imputation. This is discussed with the help of some basic theory partitioning the

overall estimated variance increase into a component attributable to the complex survey

design and a component attributable to missing-data uncertainty.

Section 2 of the article provides an overview of the NAMCS sample design and

describes the imputation method used in our study. In Section 3, we present the major

results from the comparison of multiple imputation with single imputation. Section 4

concludes the article with a brief discussion pointing out limitations and suggestions for

further research.
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Fig. 1. Patient Race Item Nonresponse Rate Trend in the National Ambulatory Medical Care Survey,

1999 – 2008.
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2. Data and Methods

2.1. NAMCS Sample Design

As previously noted, the NAMCS employs a multistage, clustered sample design. The

primary sampling units (PSUs) consist of either single or grouped counties (or their

equivalent), derived from a probability subsample of 112 PSUs from the 1985–1994 National

Health Interview Survey (NHIS) design period. Within these PSUs, lists of non-federally

employed physician practices obtained from the American Medical Association and

American Osteopathic Association are stratified into fifteen specialty groups. A sample of

physician practices is then selected from each stratum and randomly allocated into 52

subsamples, each corresponding to a week within the data collection period, the calendar year.

NCHS contracts with the U.S. Census Bureau to collect the patient visit information

from sampled practices. Prior to their assigned one-week collection period, field

representatives (FRs) meet with the physician or, more commonly, the physician’s

administrative staff, and analyze the expected count of pending patient visits. Based on

this information, a systematic sampling interval is determined and utilized such that

approximately thirty visits are selected over the course of the week. FRs try to recruit and

train office staff to collect the sampled visits’ data in real time, but more than half of the

patient record forms (PRFs) are filled out by the FR using maintained patient files after the

weeklong data collection period has concluded.

According to the 2008 NAMCS public-use data file documentation (NCHS 2009), a

total of 3,319 physicians were selected, of whom 1,090 were ruled ineligible. Aside from

having retired, common causes for ineligibility include a physician practicing in an

institutional setting or as part of an emergency department outpatient facility. Of the 2,229

eligible physicians, 1,334 were contacted and agreed to participate, although 201 saw no

patients during the data collection period randomly assigned. In the end, data were

collected for 31,146 distinct visits. This number includes data from a supplemental sample

of community health centers (CHCs) drawn with assistance from the Health Resources

Services Administration and the Indian Health Service, of which a portion involved visits

to non-physicians (e.g., nurse practitioners). Non-physician visits are excluded from the

public-use file, which explains why the number of visits contained in the 2008 NAMCS

public-use file (28,741) is fewer than analyzed in this article.

To compensate for the differential patient visit selection probabilities and physician-

level nonresponse, a four-step weighting procedure yielded a final set of weights that can

be used to better represent the target population. For more details on the weighting

process, refer to Section I.K of NCHS (2009).

In addition to unit nonresponse caused by the fact that not all sampled physicians

participate, the NAMCS is subject to item nonresponse in the returned PRFs. Some

variables are more susceptible to missingness than others. Whereas most items’ nonresponse

rates are less than five percent, Section I.I.3 of NCHS (2009) lists specific rates for variables

where the item nonresponse rate exceeds that threshold. Patient race has one of the highest

rates: Of the 31,146 visits in the 2008 NAMCS, it is unknown for 10,149, or 32.6%.

The PRF extracts ethnicity and race from the physician records in accordance with

the two-item format standardized by the U.S. Office of Management and Budget (1997).
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The first item records whether the patient is Hispanic or Latino. Regardless of the response

to the first, the second is a mark-all-that-apply with five races listed. A typical

categorization for analysis breaks responses into six groups, cases where one and only one

race was selected and a catch-all for individuals identifying with two or more races.

Although we did investigate the imputation models’ impact on the first question and the

six racial categorizations, many are rare and yielded unstable estimates and standard

errors. Because of this and for brevity purposes, we report a simplified, three-level race

breakout: patients identified as white only, black only, or any other race (whether singly or

in combination with white or black).

2.2. Imputation Methods

In this section we discuss the cell-based method used to impute missing race in the 2008

NAMCS, and contrast it with a model-based procedure that we felt was better suited to

quantify the additional uncertainty reflected by multiple imputation. We also detail how

we accounted for features of the complex sample design using this model-based approach.

The single-imputation method used in 2008 was based on a SASw macro developed by

Valverde and Marsteller (2007) that imputes missing race using a hybrid approach falling

somewhere between a hot- and cold-deck (Andridge and Little 2010) and what Kalton and

Kasprzyk (1986) term hierarchical imputation. When race is missing, the macro works

dynamically to search for a donor on up to twenty-five matching criteria. For instance, the

first criterion is to select a patient race randomly from a pool of donors within the same

survey year, three-digit diagnosis code (see Section II.A.28 of NCHS 2009), and patient

ZIP code. If no match can be found, the macro seeks a record of the same diagnosis code

and patient ZIP code, but from the previous year’s data.

Simply running the macro more than once to generate multiple imputations would not

be prudent, since it ignores the imputation model’s uncertainty. Rubin (1987) terms such a

procedure improper (pp. 112–128). Rubin and Schenker (1986) offer the approximate

Bayesian Bootstrap (ABB) as a way to perform proper multiple imputation in the cell-

based setting. The ABB is akin to independently drawing a set of regression parameters

from the posterior predictive distribution of an explicit imputation model prior to drawing

each set of imputations. It was not immediately evident, however, what effect the

hierarchical nature of the imputation macro would have on the theory underlying the ABB.

We considered applying a bootstrap re-imputation scheme of the sort proposed by Efron

(1994) and adapted to complex survey designs by McCarthy and Snowden (1985) and

Shao and Sitter (1996), in the spirit of analyses undertaken by Li et al. (2004). In the end,

we deemed a model-based multiple-imputation procedure most directly amenable to

quantifying the increase in estimated variance in transitioning from single to multiple

imputation.

The model-based procedure, sequential regression multivariate imputation

(Raghunathan et al. 2001), was implemented using IVEware (http://www.isr.umich.edu/

src/smp/ive/), free SAS-callable software developed by the Institute for Social Research at

the University of Michigan, capable of imputing continuous, semicontinuous, categorical,

and count variables. It uses an iterative algorithm which cycles through the variables with

missing data, imputing the missing values of each variable conditional on the other
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variables (Raghunathan et al. 2001). By imputing each variable in turn using those that

came before or after, it builds interdependence among the data. Another useful feature is

the ability to bound imputations within a specified range, something utilized in this and

other NCHS imputation projects (e.g., Schenker et al. 2011).

In determining which covariates to include in the model-based procedure, we began by

incorporating those utilized in the cell-based procedure and, based on input from subject

matter experts, added variables we anticipated would help explain the missing data pattern

and race itself, including patient age, sex, urban/rural indicator based on metropolitan

statistical area (MSA), physician specialty group, reason for visit, natural logarithm of

time spent with physician, and an indicator of who entered data into the PRF.

In addition to as many known covariates as possible, Rubin (1996) asserts imputations

should be conditional on the sample design: “Minimally, major clustering and

stratification indicators and sample design weights (or estimated propensity scores of

being in the sample) should be included in imputation models” (p. 478). Indeed, a

simulation by Reiter et al. (2006) exposes severe biases that can result from excluding such

indicator variables when they explain the underlying mean function, even if the

missingness mechanism is fully captured.

Nearly all the matching criteria in the cell-based method are at a finer level than PSU

(i.e., ZIP codes generally lie within PSU boundaries). For the model-based method, we

tried to include stratum and PSU indicators and sample weights as prescribed, but

encountered convergence issues for the logistic regression parameters that did not cease

until the PSU indicators were omitted. Reiter et al. (2006, p. 148) warn of such a problem:

In some surveys the design may be so complicated that it is impractical to include

dummy variables for every cluster. In these cases, imputers can simplify the model for

the design variables, for example collapsing cluster categories, or including proxy

variables (e.g., cluster size) that are related to the outcome of interest.

As a compromise, we incorporated local race distribution information from the U.S.

Census Bureau’s American FactFinder tool (http://factfinder2.census.gov/main.html).

Specifically, we created two variables to house Census 2000 estimated proportions of

non-Hispanic whites and non-Hispanic blacks at the ZIP code tabulation area level. For a

portion of the cases (roughly 10%), patient ZIP code was unavailable. Where possible, we

substituted physician practice ZIP code. For the remaining 3% of cases without a patient or

physician ZIP, the race distribution variables were imputed, using IVEware’s bounding

feature to ensure proportions remained within [0, 1]. Kozak (1995) used a similar method

at the county level, reporting: “Although not exact, the population distribution of a county

appeared useful as a general indicator of the racial distribution of discharges from a

hospital in the county” (p. 4).

2.3. Multiple-Imputation Inferences

In this section we introduce notation and formulas pertinent to inferences from multiply-

imputed data as well as a few related metrics facilitating comparisons to singly-imputed

data. Instead of a missing value being filled in once, multiple imputation calls for a missing

value to be imputed M times (M $ 2). In our study with the 2008 NAMCS, M ¼ 5.
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Each of the m ¼ 1, : : : , M completed (observed plus imputed) datasets are analyzed

individually and a particular quantity and its variance can be estimated through Rubin’s

(1987) straightforward combination rules given below.

If we let Q̂mdenote the m th completed-dataset estimate of a quantity Q, the quantity’s

overall multiple-imputation estimate is simply the average of the M estimates,

�QM ¼
1
M

M

P
Q̂m.

Let Um denote the m th completed-dataset estimated variance for Q̂m. The multiple-

imputation estimated variance is the average of the M completed-dataset variances,

UM ¼
1
M

M

P
Um, plus a term reflecting the between-imputation variance of the estimate,

BM ¼
M

P Q̂m2 �QM

� �2

M21
.

After a finite imputation correction factor 1þ 1
M

� �
is applied to the between-imputation

variance component, the overall multiple-imputation variance formula is given by

TM ¼ UM þ 1þ
1

M

� �
BM : ð1Þ

A useful metric with a simple interpretation is the ratio of a quantity’s multiple-

imputation estimated standard error to its average single-imputation counterpart,

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TM=UM

q
: ð2Þ

The degree to which R exceeds 1 represents the percent increase in the estimated

standard error attributable to multiple imputation.

Another related quantity is the fraction of missing information (FMI) (Rubin 1987,

sec. 3.3; Wagner 2010), which can be approximated by the between-imputation variance

component over the total variance,

FMIapprox ¼ 1þ
1

M

� �
BM=Tm: ð3Þ

Although the FMI typically depends to some extent on the percent of observations

missing, it also depends on the analysis of interest and the extent to which the imputation

model is predictive of the missing values. For example, if the imputation model is highly

predictive, the FMI will tend to be substantially smaller than the item nonresponse rate.

3. Results

In an attempt to gauge the magnitude of missing-data uncertainty unaccounted for by

single imputation, we calculated the ratio of multiple-imputation to average single-

imputation estimated standard errors – Equation (2) in Subsection 2.3 – across a

multitude of domains. For brevity, we present results from only a subset of those domains:

the overall race distribution and the distribution by United States region, age group, and

whether the patient has been diagnosed as diabetic. The estimated standard error ratios and

other statistics related to these estimates are tabulated in Appendix.
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The ratios for all domain estimates are plotted against their respective percent of

observations missing in Figure 2. Most ratios exceed 1.0 only slightly, and just two surpass

1.1. These figures are in line with what was reported by Li et al. (2004), despite the patient

race item nonresponse rate nearly doubling since the 2000 NAMCS data analyzed therein.

Intuition might lead one to expect the standard error ratios to increase with a higher item

nonresponse rate. However, the plot exhibits no such trend. At least for the data at hand,

the percent of missing observations alone does not predict the increase in estimated

standard errors after multiply imputing. Estimates subject to 30% or more missingness are

apparently no more severely underestimating the missing-data uncertainty by singly

imputing than estimates with less than 30% missingness.

We followed numerous leads to explain the phenomenon, but most proved futile.

For instance, we hypothesized the lopsided distribution of race might have triggered a

software glitch. However, other than convergence issues discussed in Section 2, we

concluded that IVEware performed soundly. As we will now discuss, the most reliable

determinant of a small standard error ratio was found to be a large design effect in the

underlying estimates.

Kish (1965, p. 193) defines a design effect as the ratio of the estimate’s variance

incorporating the complex design to the variance under a simple random sample of the

same size

deff ¼
var complexðQ̂Þ

var SRSðQ̂Þ
: ð4Þ

The quantity we report in this article could perhaps more aptly be termed the

misspecification effect, as it is the estimated variance accounting for the complex design

features (i.e., stratification, clustering, and weights) over the estimated variance ignoring

those features. Nonetheless, because these two terms are often colloquially exchanged for

one another, we retain the more frequently utilized phrase.
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Fig. 2. The Relationship between the Percent of Observations Missing and the Ratio of Multiple-imputation

(MI) to Average Single-imputation (SI) Estimated Standard Errors for Select Domain Estimates of Patient Race

in the 2008 National Ambulatory Medical Care Survey.
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Figure 3 illustrates the inverse relationship between the estimated standard error

ratio and estimated design effect for the 2008 NAMCS data. Estimates with a larger

design effect are clearly associated with a smaller increase in estimated standard error

after multiple imputation. In one of Reiter et al.’s (2006) simulations a similar

observation was made, where the multiple-imputation estimated standard error, even

in the presence of a 30% item nonresponse rate, was only slightly larger than the

complete data estimated standard error (i.e., the estimated standard error that would

be obtained in the absence of nonresponse). The authors reason that the complex

design “makes the within-imputation variance a dominant factor relative to the

between-imputation variance. That is, the fraction of missing information due to

missing data is relatively small when compared to the effect of clustering” (p. 146).

Figure 3 demonstrates this concept over a range of design effects, using real data.

Note that the x-axis scale was truncated at a design effect of 50 to allow for a clearer

visualization of the patterns we wished to highlight. Although the truncation omits the

two data points in the Appendix with the largest design effects – 70.38 and 97.34 –

it does not substantively alter any of our observed patterns and conclusions. (A similar

truncation is applied in Figure 4.)

Mentioned previously, an alternative gauge of missing-data uncertainty is the FMI

(Wagner 2010). In fact, reproducing Figure 3 with FMIapprox of expression (3) on the

vertical axis (not shown here) tells the same story. As the design effect increases,

FMIapprox tapers. This occurs because the two metrics are monotonically related – our

ratio of estimated standard errors is 1 2 FMIapprox

� �21
2.

To further elucidate the relative impact of the design effect we can partition the

increase in estimated variance into two components, that attributable to the complex

sample design and that attributable to missing-data uncertainty as measured by using
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Fig. 3. The Relationship between the Average Completed-dataset Estimated Design Effect and the Ratio of

Multiple-imputation (MI) to Single-imputation (SI) Estimated Standard Errors for Select Domain Estimates of

Patient Race in the 2008 National Ambulatory Medical Care Survey.
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multiple rather than single imputation. Specifically, we can conceptualize the term UM

in Equation (1) as being the product of UMðSRSÞ, the average completed-data-set

variance assuming simple random sampling, and deff. Therefore, the approximate

variance increase due to both the complex design and missing-data uncertainty can be

written as

DM ¼ UMðSRSÞ* ðdeff Þ þ 1þ
1

M

� �
BM 2 UMðSRSÞ: ð5Þ

The proportion of DM attributable to missing-data uncertainty is simply the between-

imputation term over the increase, or 1þ 1
M

� �
BM=DM , whereas the proportion attributable

to the complex design is the complement about 1, or 1 2 1þ 1
M

� �
BM=DM . We

acknowledge, however, that this might not account perfectly for the two sources of

increase, because the complex sample design could also affect the between-imputation

term, BM .

Figure 4 demonstrates the relationship between the design effect and the percent of the

variance increase attributable to missing-data uncertainty as measured by multiple

imputation. The pattern mirrors that appearing in Figure 3. In the presence of a larger

design effect, the variance increase is dominated by the component attributable to the

complex sample design. The figure suggests that, despite item nonresponse rates

often exceeding 30%, a design effect of 10 or greater limits the impact of

missing-data uncertainty to generally no more than 5% of the overall variance increase.

Put another way, the portion of variance attributable to the complex design in these

settings is at least 95% / 5% ¼ 19 times greater than the portion attributable to missing-

data uncertainty.
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Another way to evaluate the relative increase in estimated variance due to the use

of multiple rather than single imputation is to consider what the relative increase

would be if the design effect were equal to 1. To approximate the answer, we fitted

Lowess smoothers (Cleveland 1979), not shown here, to the data in Figure 3 with a

variety of bandwidths that were large enough to avoid major jaggedness in the fitted

curves. Extrapolating the curves to a design effect of one suggested a ratio of

multiple-imputation to single-imputation estimated standard errors in the range of 1.08

to 1.1. Since, as mentioned earlier, the ratio equals ð1 2 FMIapproxÞ
21

2, it follows that

the suggested range for FMIapprox is 14% to 17%. This range is consistent with a

nonresponse rate of about 30% and an imputation model that is partially, not fully,

predictive of the missing values.

4. Discussion

In this article, we presented results from a case study in which we evaluated the potential

impact on estimated variances if a multiple-imputation strategy were adopted to handle

instances of missing patient race in the 2008 NAMCS. The NAMCS sample design

involves features such as clustering and highly variable analysis weights that result in

extremely large design effects for estimates involving race. In these settings, we found

multiple imputation increased estimated variances only modestly. Revisiting our key

analytic quantity, the ratio of estimated standard errors in Equation (2), we can reason that

as M goes to infinity, the ratio can be rewritten as

R <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
BM

UM

s

: ð6Þ

With a large design effect, the within-imputation component, UM , tends to be large

relative to the between-imputation component, BM , pulling the ratio towards 1.

At least among the domains investigated, the item nonresponse rate itself was not found

to be predictive of the increase in estimated variance after multiply imputing the missing

data. Even when the percent of imputed observations tops 30%, a large design effect can

render multiple-imputation estimated standard errors only slightly greater than their

single-imputation counterparts. For this reason, together with the increased complexity

that multiple imputation poses to the typical NAMCS data user, it was decided to maintain

a single-imputation approach for the NAMCS for the time being.

Despite the growing class of techniques available to compensate for missing data,

the best way to handle nonresponse is to design data collection protocols preventing it

from occurring in the first place (Lohr 1999). In mid-2009, NCHS raised FR

awareness of the increased patient race item nonresponse rate, stressing the

demographic’s importance for analyses. The intervention appears to have been

effective, as the item nonresponse rate for race dropped to 24% in the 2009 NAMCS

and to 23% in the 2010 NAMCS. Albeit still high by many standards, at least the

trend in Figure 1 has begun to reverse course.

Our study is not without limitations. For one, the domains analyzed herein are coarse in

nature. It seems plausible that design effects may be attenuated for racial distributions
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estimated for finer domains, which could produce scenarios where the proportionate

increase in estimated variance due to using multiple imputation is larger than is reflected

in this study.

Another limitation is that focus was restricted to only one variable, despite the fact

that the NAMCS collects data on hundreds of other variables pertaining to the visit.

In addition to feedback from NAMCS data users that patient race is a frequently

utilized demographic, as previously mentioned, it is also subject to one of the highest

item nonresponse rates. Although not presented here, we investigated another variable

of key analytic interest, time spent with the physician, which was also susceptible to a

high level of item nonresponse (26%) in the 2008 NAMCS. Similar findings were

observed. Due to large design effects in the domains analyzed, multiple imputation

increased estimated standard errors only slightly. As noted on page 18 of NCHS

(2009), the item nonresponse rate for most other variables is 5% or less, so these are

naturally of less concern.

A final limitation, noted in Subsection 2.2, is that we used a “compromise” method

to reflect the features of the complex sample design in our imputation model. Had

we accounted for those features perfectly, our results might have changed somewhat.

However, we believe that our case study demonstrates an actual phenomenon for

multiple reasons. First, variables related to the design features were included in the

model. Second, as mentioned in Section 3, our case study yields results consistent

with simulations reported in Reiter et al. (2006). Finally, if the survey clustering were

more fully reflected in the imputation model, a likely result would be imputed values

that are more differentiated, that is, less homogeneous, across the clusters. This

might very well increase the design effects for each dataset completed by imputation,

which, all else being equal, would accentuate the phenomenon displayed by our

case study. Development of methods for reflecting design features parsimoniously in

imputation models, such as by using random effects, is an important area for future

methodological research.

Recent changes to the NAMCS sample design may prompt a re-evaluation at some point

in the future. Beginning with the 2012 NAMCS, PSUs are no longer comprised of

geographically clustered units. Instead, the universal list of physician offices is stratified

by state and a sample selected within each, so the physician office now serves as the PSU.

To the extent this new sample design alters the variability of weights or the heterogeneity

of PSUs with respect to patient race, the magnitude of the design effects could change.

Aside from more empirical analyses such as the one discussed in this article, a

simulation study and further theoretical research could foster a better understanding of the

relationship between the design effect and the between-imputation component of

variability reflected by multiply imputing missing data. Of particular interest would be

to determine if and how the relationships we observed are moderated by how predictive

the imputation model is and/or by alternative patterns of nonresponse.
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Jennifer Madans, Kirsten Miller, Aaron Maitland, and Gordon Willis (Eds). Question

Evaluation Methods: Contributing to the Science of Data Quality. Hoboken, NJ: John Wiley &

Sons, Inc. 378 pp. 2011. Paperback: ISBN 9781118037003, price USD 64.20. E-pub: ISBN

9781118036983, price USD 52.99.

Website Q-Bank: http://wwwn.cdc.gov/qbank/

This book grew out of an interdisciplinary workshop on question evaluation methods and

has as its goal to bring together knowledge from leading experts across different methods.

The book consists of seven sections, or rather seven extended chapters, as each section

contains a primary chapter describing a specific method and one or two shorter discussion

chapters.

The first section opens with an excellent overview by Jack Fowler on behavior coding as

a tool for evaluating survey questions. This chapter describes how behavior coding of

interviewers and respondents is done and presents empirical evidence of its significance. It

concludes with an outline of how this method should be fitted into question evaluation

protocols and presents a well chosen reference list including key references in this field.

The Fowler chapter provides an introduction to the novice in behavior coding and a good

summary for those who have some experience with question evaluation. The two response

chapters are aimed at the more advanced researcher. Nora Cate Schaeffer and Jennifer

Dykema present a conceptual framework on how the interaction between respondent and

interviewer affects data quality. They also present two very interesting summary tables

(Tables 3.1 and 3.2) on the empirical associations between interviewers’ and respondents’

behavior and measurement quality. They then introduce the reader to conversation

analysis as a tool and illustrate this with excerpts from the Wisconsin longitudinal study.

Alisu Schoua-Glusberg broadens the discussion and focuses on the sociocultural context in

which the survey interview takes place. Her remarks concern behavior coding as an

evaluation tool, but are equally worthwhile for other question evaluation methods, such as

cognitive interviews. As international, cross-cultural, and multilingual studies take on a

greater importance in the modern world (cf. Harkness et al. 2010), researchers should

realize that respondents will have different degrees of familiarity with the survey process;

q Statistics Sweden
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in developing and pretesting survey questions, differences in communication styles in

different cultural groups should be taken into account.

The second section on cognitive interviewing opens with a chapter by Kristen Miller,

who gives a theoretical review of development of cognitive interviewing and describes a

new integrative paradigm for question development and testing. This chapter is clearly

intended for the knowledgeable and methodologically interested reader and is not meant as

an introduction to cognitive interviewing. Those seeking such an introduction should read

Willis’s (2005) book first. The following two chapters by Gordon Willis and by Fred

Conrad are critical rejoinders, and like the Miller chapter their discussion is aimed at

cognitive survey methodologists.

Question evaluation and cognitive survey methodology are often seen as more

qualitative approaches, but the next sections prove that this view is incorrect. Statistical

modeling provides us with powerful tools for investigating measurement error and

evaluating questionnaires. These quantitative methods are used in phase two of

questionnaire evaluation. In phase one, the questionnaire is developed and pretested using

more qualitative approaches, for example, expert evaluation and cognitive interviewing.

The improved questionnaire is then implemented in an actual survey, ideally a field test.

In their chapter (Section 7) Brian Harris-Kojetin and James Dahlhamer describe what

field tests are and the importance of collecting additional data, such as interviewer

feedback. They illustrate this with examples from US federal statistical surveys. Field tests

are fairly common in daily survey practice. Less common are the use of Multi-Trait Multi-

Method (MTMM) matrices and specific experiments to collect data for quantitative

questionnaire evaluation. Section five is devoted to split-sample experiments as a tool

for collecting data for question evaluation. Jon Krosnick starts with a brief review of the

experimental method and provides several insightful examples of methodological

experiments on question wording, formats, and context. These are relatively large-scale

field experiments aimed at quantitative analysis. Johnny Blair adds to this an outline for a

more qualitative cognitive interview experiment. Theresa de Maio and Stephanie Wilson

expand on this by emphasizing the importance of integrating a qualitative and quantitative

approach. To quote: “this mixed-method approach allows us to understand what survey

questions are actually measuring, and make better decisions about which questions to field”.

Section six on the multitrait-multimethod approach deals with a special kind of

experimental setup and its analysis. In his introductory chapter, Duane Alwin first

describes the MTMM design as an approach to systematically collect data and gives a

historical overview starting with the work of Campbell and Fiske in psychology and of

Andrews in sociology and survey research. The concepts of reliability and validity in

MTMM and in classical test theory are clearly explained and trait validity versus construct

validity is discussed. Special attention is given to the role of memory in MTMM designs

and recent applications of the MTMM approach. This chapter is a mixture between

data collection and data analysis; data collected according to an MTMM design are by

default analyzed using a Structural Equation Modeling (SEM) approach. In his response to

Alwin, Peter Mohler gives an extended example of an MTMM study from the European

Social Survey.

After the collection of large-scale quantitative data, be it through a regular survey,

a specially designed field test, or a specific (experimental) design, there are various
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statistical methods that provide powerful tools for quantitative questionnaire evaluation.

For instance, the previously mentioned SEM approach can also be used to carry out

multigroup comparisons and investigate measurement equivalence across different

cultural or national groups (Vandenburg and Lance 2000; Hox et al. 2010). In cases where

multiple items are used to measure one well-defined construct, Item Response Theory

(IRT) is a promising analysis tool. Section three opens with a brief but informative chapter

on Item Response Theory (IRT) and how it can be applied to questionnaire evaluation.

IRT modeling focuses on scales that measure an underlying construct, using multiple

items and a strict psychometric model. Bryce B. Reeve introduces the principle of IRT and

illustrates how it can be applied in evaluating and refining questionnaires. He then

introduces Computer Adaptive Testing (CAT) where a combination of qualitative pretest

methods, such as expert evaluation and cognitive testing, and quantitative data analysis

is used to produce an item bank with IRT-calibrated items. In CAT a respondent is then

presented with an item in the middle range and an estimate is made of the person’s scale

score based on the response; then another item based on this estimate is selected from the

item bank, and the process is repeated until the desired precision is reached. CAT allows

for short questionnaires, adapted to the person’s ability, with the desired precision. This

is illustrated with PROMISS (Patient-Reported Outcomes Measurement Information

System). In his rejoinder, Ronald Hays provides the reader with additional examples of the

use of IRT in question evaluation. He also emphasizes that IRT analysis is extremely

useful for detecting problematic items and building libraries of well-performing items, but

that qualitative methods are needed to understand why an item performs badly. The next

rejoinder by Clyde Tucker et al. is less a discussion of IRT and more an introduction to

Latent Class Analysis (LCA) as a tool for questionnaire evaluation. In LCA an attempt is

made to find an underlying latent categorical nominal or ordinal variable (latent classes)

that explains the relationship between a number of observed variables. This is well

illustrated with an example where LCA is used to classify respondents into good, fair, and

poor reporters of expenditures.

Latent Class analysis (LCA) is then further introduced in section four by Paul Biemer

and Berzofsky. In their conclusion they state that LCA is challenging for a novice. Their

chapter proves them right; it requires more advanced statistical knowledge than the other

chapters. Biemer and Berzofsky present the reader with a statistical introduction to LCA,

its assumptions, and how to handle some common statistical problems. Together with the

examples in the previous chapter it gives a good impression of how LCA can be used in

questionnaire evaluation and in discovering response tendencies. In her rejoinder, Frauke

Kreuter summarizes a comparison of different traditional questionnaire testing techniques

(e.g., expert evaluation) and LCA; she also offers good guidelines on how test material and

analysis results should be incorporated into question banks. Finally, Janet Harkness and

Timothy Johnson go beyond LCA analysis as such, addressing issues in question design

and pretesting that are somewhat neglected in general discussion, such as context effects.

Reasons to buy this book: Renowned experts from different disciplines introduce and

discuss qualitative and quantitative methods of questionnaire evaluation. The methods

introduced go beyond standard question evaluation methods such as expert evaluation and

cognitive interviewing and focus on the collection and analysis of quantitative data

for questionnaire evaluation. The quality of the contributions is high. The book is
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accompanied by the very worthwhile Q-bank website (http://wwwn.cdc.gov/qbank/).

Q-bank goes beyond more traditional question banks, providing the reader with an online

database of questions that have been evaluated as well as their accompanying question

evaluation reports.

Reasons not to buy this book: Although the book aims at a wide audience, not

all chapters are easily accessible. Due to the format, a large introductory chapter followed

by shorter rejoinders, the discussion aims at experts in the field. It is the well-edited

proceedings of a multidisciplinary workshop and still reads as such.

In sum: I am glad I have read the book. I will certainly use (parts of) it in teaching

advanced courses in survey methodology and it is a good accompaniment to the well-

known earlier book by Presser et al. (2004). Both books should be in the library of survey

researchers and statisticians in the private sector, government and academia, and the

library of my institute now has both. However, if you have to advise a master or graduate

student with limited monetary resources and have to choose one, I would recommend the

book by Presser et al. as introduction.
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Erratum

Erratum concerning the article “Are They Really Too Busy for Survey Participation?

The Evolution of Busyness and Busyness Claims in Flanders” by Anina Vercruyssen,

Bart Van de Putte, and Ineke Stoop published in Journal of Official Statistics, Volume 27,

Number 4, 2011, pp. 619–632.

The unusually high odds ratio for the SCV 2002 dummy variable in Model 2 of Table 5

in the article is caused by the age of the 2002 survey respondents being missing from the

merged data file with the data of the three surveys – an unfortunate error. The statistical

analysis with the correct data file shows that the models actually provide even better

support for our hypotheses. In contrast to Table 5 in the article, the effects of free time on

week/workdays on busyness claims are robust (Table 5). We now also find significant and

robust effects for claims of temporary busyness (Table 6), whereas the old table did not

have any effects. In other words, there is stronger support from the data that respondents’

doorstep statements on time pressure are true.

Corrected version of pages 627-629

Is this co-occurring decrease in leisure time and increase statements of (temporary)

busyness coincidental, or is there truth behind the time concerns of respondents? Table 5

shows that those respondents who have less free time on work/week-days are indeed

significantly more likely to have busyness claims and claims of temporary busyness, even

when controlling for the interviewer effects, employment status (as an indicator of

objective busyness), socio-demographic variables and possible interviewer effects. As for

the interviewer effects, none of the variance components were significant (Table 5,

Table 6). Both Table 5 and 6 also show that respondents who have a paid job are

significantly more likely to make busyness statements and statements of temporary

busyness. These results are in line with the literature on time and combination pressure:

Those with a job are those who can experience combination pressure alongside to time

pressure. These results show that the opportunity cost hypothesis and the bad timing

hypothesis seem to apply for the SCV surveys.

5. DISCUSSION

The aim of this study was to determine whether the proclaimed increase in time and

combination pressure in Western societies affects survey participation by investigating

busyness claims (“too busy”, “have no time”) and statements of temporary busyness

(“come back at another time”) as statements made to decline survey participation. We

found that these busyness related doorstep reactions increased significantly since 2002 in

the investigated SCV surveys in Flanders (APS, 2002; 2005; 2007) and that the use of such

reactions seems to be associated with a higher likelihood of also being a final refuser in

these Flemish surveys. Moreover, we found that there is truth to these busyness claims:

respondents with less free time are significantly more likely to state they are too busy or

have no time, even after controlling for other indicators of time and combination pressure

q Statistics Sweden
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Table 6. Two-level logistic regression for predicting claims of temporary busyness with objective indicators of

busyness, controlling for interviewer effects

Model 1 Model 2

Temporarily busy
Odds
ratio Sig.

Random
component Sig

Odds
ratio Sig.

Random
component Sig.

Level 1 predictors
Intercept 0.181 *** 1.821 n.s. 0.202 *** 2.357 n.s.
Free time

work day
0.961 *** 0.001 n.s. 0.982 * 0.001 n.s.

Free time
non-work day

0.998 n.s. 0.003 n.s. 0.998 n.s. 0.004 n.s.

Paid job 1.119 ** 0.054 n.s.
Age 1.001 n.s. 0.000 n.s.
Sex 1.044 n.s. 0.067 n.s.
Cohabiting 0.960 n.s. 0.342 n.s.
Children 1.020 n.s. 0.355 n.s.
Level 2 predictors
SCV 2002 0.931 n.s.
SCV 2005 0.927 n.s.
N level 1 3552 3552
N level 2 297 179

Note: *p#0.05, **p#0.01, ***p#0.001; n.s. ¼ not significant.

Table 5. Two-level logistic regression for predicting busyness claims with objective indicators of busyness,

controlling for interviewer effects

Model 1 Model 2

Busy
Odds
ratio Sig.

Random
component Sig.

Odds
ratio Sig.

Random
component Sig.

Level 1 predictors
Intercept 0.076 *** 2.162 n.s. 0.079 *** 1.762 n.s.
Free time

work-day
0.947 *** 0.007 n.s. 0.979 * 0.026 n.s.

Free time
non-work day

1.014 n.s. 0.015 n.s. 1.003 n.s. 0.022 n.s.

Paid job 1.358 *** 0.451 n.s.
Age 1.005 n.s. 0.000 n.s.
Sex 1.273 n.s. 0.137 n.s.
Cohabiting 0.888 n.s. 0.835 n.s.
Children 1.042 n.s. 0.543 n.s.
Level 2 predictors
SCV 2002 1.098 n.s.
SCV 2005 1.077 n.s.
N level 1 3552 3552
N level 2 297 174

Note: *p#0.05, ***p#0.001; n.s. ¼ not significant.
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such as employment status and having children. The same is found for claims of temporary

busyness (“come back at another time”).

These results suggest that when sample units claim they are too busy or have no time, or

when they express to the interviewer that he/she needs to come back at another time, it can

be a genuine signal of busyness that needs to be taken into account in order to try to find a

more suitable moment for participation in data collections. It also indicates that for these

“converted” initial negative participators with busyness claims in the SCV surveys, the

Newtonian hypothesis could be the most fitting: although they seem to be genuinely

busier, these busy sample units still somehow find the time to participate regardless if a

more convenient moment is found. As for the statements of temporary busyness, we also

found an effect of lack of time on week/workdays. The latter also points to chronic

busyness but does not really allow us to determine whether there also was a temporary

moment of extra busyness when the specific reaction to come back at another time as

response to the survey request was uttered.
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