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Letter to the Editor

Probabilistic Population Forecasts for Informed Decision Making

Demographic forecasts are inherently uncertain. Nevertheless, an appropriate description

of this uncertainty is a key underpinning of informed decision making. In recent decades,

various methods have been developed to describe the uncertainty of future populations

and their structures, but the uptake of such tools amongst the practitioners of official

population statistics has been lagging behind. In this letter we revisit the arguments for the

practical uses of uncertainty assessments in official population forecasts, and address their

implications for decision making. We discuss essential challenges, both for the forecasters

and forecast users, and make recommendations for the official statistics community.

Probabilistic Population Forecasts Revisited

Demographic forecasts are concerned with the future population size and structure by sex,

age and possibly also some other attributes of interest, such as region of residence, marital

status, household type, or other.

As stated by Jan M. Hoem (1973, 9), “the chief purpose of making a population

forecast : : : is to contribute to improved planning and better decisions”. However, the

history of error in population forecasts is as old as the history of these forecasts themselves

(Hajnal 1955). Hence, an appropriate description of the forecasting uncertainty is a key

aspect of informed decision making. Recognising this, in the early 1970s a small, yet

influential group of statistical demographers, becoming increasingly uneasy with the

continuing use of deterministic variant ‘projections’, already suggested that probability

distributions should be used to describe the forecast uncertainty (e.g., Keyfitz 1972). At

that time, however, it was noted that the available technical resources would not stand up

to the task in a general case (Hoem 1973).

The times have changed. Over the past four decades, the methods of statistical

demography have been developing very rapidly, especially in the area of stochastic

population forecasting at the national level. Increasingly, more arguments and suggestions

have been put forward for applying these methods in practice. To mention a few examples:

Alho and Spencer (1997) argued that probability distributions would allow the users to
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prepare appropriate contingency plans. Tuljapurkar (1992), de Beer (2000) and Bijak

(2010) have recommended taking advantage of decision theory, allowing for different –

possibly asymmetric – objective or loss functions of the forecast users. Lee (1998) added

the possibility of making derived forecasts, where population predictions could be

integrated with economic ones, as well as the analysis of conditional forecasts, with some

sources of uncertainty removed.

Despite these methodological developments and recommendations, probabilistic

population forecasting methods have been incorporated into official statistical practice

only in a handful of countries – chiefly in the Netherlands and New Zealand. Ambitious

plans laid out at the US Census Bureau a decade ago (Long and Hollmann 2004) have

since been mothballed. Progress was additionally hampered by the lack of established

methodology for forecasting subnational populations or disaggregating the forecasts by

various groupings of interest (household position, labour market status, etc.). To our

knowledge, there have been hardly any policy applications of formal decision analysis or

similar techniques, with the notable exception of Alho et al. (2008).

However, a major step forward was taken on July 11, 2014 (World Population Day),

when the UN Population Division for the first time issued official probabilistic population

projections for all countries, using the methodology of Raftery et al. (2012). These were

the basis for the article of Gerland et al. (2014), which argued that the world population

is unlikely to stop growing this century – a probabilistic statement. This attracted

considerable media coverage, much of which showed an understanding of the probabilities

reported (e.g., Carrington 2014; Schiermeier 2014). We expect this to spur a revival of

interest in official probabilistic forecasting of populations. Anticipating this revival, we

want to reopen the discussion on the potential advantages and obstacles of producing and

using the probabilistic population forecasts.

Challenges and Open Questions

Current practice in official population forecasting is not sufficient. Deterministic forecasts

based on single numbers are bound to fail, and to surprise their end users time and again.

Probabilistic forecasts, with probability distributions describing possible outcomes, can

prepare the user for such outcomes. However, a very important aspect of the single-

number forecasts is that they are easy to grasp in cognitive terms. Hence, to aid decisions,

probability distributions need to be summarised in an appropriate way that will be useful

for the users and correspond with their requirements.

Our basic premises are as follows. First, there is a need for an analytical framework for

supporting policy and planning decisions under uncertainty, especially where there are

some real concerns which can be expressed as losses – economic losses, or other, such as

reputational. Second, deterministic scenarios can be misleading, have a zero probability

under any continuous probability measure (or very close to zero in other cases), and are

problematic to aggregate or compare with each other. They also attempt to answer a

tautological question – what would happen under certain assumptions – when the real

policy-relevant question is: what will happen (Keyfitz 1972; Hand 1994). Of course,

a precise answer to this question is impossible, and probabilistic forecasts – similarly to

deterministic scenarios – also depend on a number of assumptions, but they explicitly
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state the forecaster’s belief as to how probable those conditions are. Third, probabilistic

forecasts not only attend to the relevant question about the future, but also contain precise

warnings about the uncertainty. We consider this to be an ethical virtue.

Various reasons have been put forward for a meagre uptake of probabilistic methods in

official uses. Lutz and Goldstein (2004, 3–4) cite four arguments: a “misleading sense of

precision” regarding probability ranges; the “mechanistic” nature of many forecasts,

chiefly based on time series; technical and conceptual complexities and difficulties

involved in making such forecasts; and a lack of skilled workforce at the statistical

offices. Ten years later, however, while the official statistical agencies may still face

technical, statistical, and computational challenges related to probabilistic forecasting,

the goalposts have been moved. In our view, the above reservations can now be largely

addressed, thanks to advances in methodology and statistical training, and the key

contemporary challenges can be found elsewhere. Four of them are discussed in more

detail below.

The first challenge is the user attitude towards forecasting uncertainty and towards risk

in general. Uncertainty can be either perceived as a “curse” – lack of knowledge about the

future; or as a “blessing” – if dealt with properly, this is additional information that can

help us make better decisions. In particular, there is still a lack of clarity surrounding what

can be gained – or lost – by using probabilistic forecasts in practice. Besides, the way

uncertainty is dealt with also depends on the risk attitude of the users (Kahneman 2011),

with options ranging from downplaying uncertainty for the sake of efficiency or potential

gains, to preparing for the ‘worst-case’ scenarios under high risk aversion. As Kahneman

(2011, 263) has put it, “an unbiased appreciation of uncertainty is a cornerstone of

rationality, but it is not what people and organizations want.”

The second challenge results from the specificity of various user needs and

circumstances. The horizons for forecasts, projections, and decisions differ; so do the

potential consequences of these decisions, as well as the level of risk aversion of the

decision makers. The choice between a few predefined variants is not sufficient, as they

are unlikely to correspond to user needs, especially if only offered at national level. On

the other hand, offering decision support via probabilistic forecasts requires striking a

delicate balance between what is needed by the users and what can be realistically

offered by the forecasters. Examples range from local investment decisions, in the case

of subnational forecasts (NZIER 2014), to macroeconomic policy issues, such as the

sustainability of pension and other social security systems (Alho et al. 2008). Such

decisions usually have long term and potentially very costly consequences, so it is all

the more important to base them on a comprehensive analysis of potential forecast

errors.

The third challenge is how to deal with information – specifically, statistical data and

inferences made on their basis – which may be either incomplete or superfluous, and

possibly conflicting. Here, the role of prior beliefs and expert judgement comes to the fore,

and an appropriate approach to elicitation becomes crucial (O’Hagan et al. 2006). The

same applies to eliciting from the users their attitudes to risk and loss or utility functions,

which approximate the decision setting – the relative losses of underpredicting or

overpredicting the parameters of interest (see Bijak 2010). The key questions are: what are

the practical implications of probabilistic forecasts, and, if the forecasts are wrong, what is
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at stake? Elicitation requires caution, especially as the perceptions of concepts such as

probability, utility, or loss are not uniform. Besides, cognitive biases have to be considered

here – especially overconfidence and illusion of certainty, which are a subconscious way

of avoiding the cognitive effort of processing more information than just single-point

predictions or guesses (Kahneman 2011; Raftery 2014).

Finally, the fourth challenge is related to validation, the calibration and testing of

probabilistic forecasts, chiefly through comparing them with known outcomes (Alho and

Spencer 1997). Even though this aspect is more technical, it is a crucial complement for

some other challenges, in particular attitudes: to appreciate the role of uncertainty, the

users need to trust that it is calculated correctly. Here, the main question concerns the

aim of probabilistic forecasting: is it to describe the predictive uncertainty, or to

minimise it, which can be misleading? Alternatively, as suggested by Gneiting et al.

(2007), a compromise could be to minimise uncertainty for a well-calibrated model,

where the expected (ex ante) and observed (ex post) empirical frequencies of events

match each other. In such models, events with predicted 50% probability would happen

half of the time on average, the events with 90% probability would occur nine out of

ten times, and so on.

Where Next? Practical Recommendations

To address the challenges mentioned above, the starting point could be to change the

discourse about uncertainty from just a lack of knowledge, to a more realistic and nuanced

view. In that regard, the discussion about uncertainty could be reframed as being about

confidence, or additional knowledge or information. Besides, being explicit and

transparent about the forecasting uncertainty can be also associated with such virtues as

honesty, humility, and trust.

This approach has already proved successful in the aviation industry, contributing to

a substantial increase in safety levels in the recent decades. One of the underpinning

cultural changes that the aviation community has witnessed was a shift from a reactive

and punitive blame-for-error model to a “just culture”. This concept can be defined as

“a culture in which front line operators and others are not punished for actions,

omissions or decisions taken by them that are commensurate with their experience and

training, but where gross negligence, wilful violations and destructive acts are not

tolerated” (EUROCONTROL 2014), and explicitly recognises the role of uncertainty as

an inherent part of operations. Importantly, by allowing an honest discussion about

errors, this model allows for learning from the mistakes, and helps prevent them in the

future.

In order to convince the users and producers of population forecasts of the added value

of an analysis of uncertainty, and to overcome some institutional inertia, the experience

of other areas and disciplines could be looked at. Probabilistic forecasting has been

successfully developed, for example, in some aspects of meteorology and climatology,

aviation, and macroprudential economic regulation. In these areas, techniques of

communicating uncertainty to the users and the general public are also being researched.

This experience and expertise could be used in population forecasting. Similarly,

population forecasts are a crucial input for many policy areas, for example with respect to
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such structural measures as pension reforms. Given that population is often used as an

exogenous variable in the macroeconomic system, its forecasts will be helpful in

supporting decisions regarding the endogenous policy variables, such as interest rates.

In particular, the meteorological community has been grappling with issues surrounding

uncertainty in weather forecasts for over a century (WMO 2008). Unlike in the case of the

aviation industry, with its high level of regulation and entry barriers, the users of weather

forecasts are much more diverse. The recent Guidelines on Communicating Forecasts

Uncertainty (WMO 2008) offer several arguments for communicating uncertainty to the

users. Besides the clear applicability for decision making, increasing users’ confidence

that the forecasts are a result of an honest, objective, and scientific endeavour, and besides

managing the users’ expectations, it is also pointed out that uncertain weather forecasts

simply reflect the state of the science (WMO 2008). This point is even more important in

demography and other social domains, where, thanks to human agency and ingenuity, we

do not know (and will be never able to know exactly) what drives the individual decisions

on, for example, whether and when to have children or to migrate, or the reasons why some

people die earlier than others, or why the different demographic processes change over

time. In that sense, probabilistic forecasts provide an important epistemological statement

about the limited state of knowledge in population sciences – and about the limits of

forecasting more generally.

Addressing the second challenge requires bespoke approaches, with forecasts tailored

to the specific needs of different types of users and different audiences (Raftery 2014).

There are vast differences between high-level, longer-term, strategic decision making, and

practical, more immediate, operational-level planning, which requires quantitative input

for decisions (Bijak 2010). In that respect, full probabilistic forecasts offer a general

solution, from which the specific options can be derived. Some users (and uses) may

require no point forecasts or estimates at all. And if scenarios are needed, they can be

obtained from trajectories based on quantiles from predictive distributions. Finally,

conditional probabilistic forecasts, assuming that some variables are known, can help

answer policy-relevant “what-if” questions. Interactive, versatile online tools might help

the users here. In any case, the user appreciation of the benefits of probabilistic forecasts

can help the official statistical agencies justify the resources needed for their development.

Tailoring the predictions, and eliciting the relevant information, such as prior beliefs,

expert judgement, or loss functions, requires interaction with users. The prerequisites

here involve an open, two-way dialogue, with frequent exchange of information between

forecasters and users. This exchange can become routine if the forecasts are periodically

updated, as is often the case with official population forecasts. Some of the related

challenges can be overcome by appropriate methods of communication, such as the use of

visualisations (Spiegelhalter et al. 2011). This aspect would benefit from wider insights

from cognitive science on such issues as statistical literacy, education, and training, not

only related to the end users of forecasts, but also the general public (see also Kahneman

2011). Similarly to the case of weather forecasting, this is especially important for

nonspecialist users, who may benefit particularly from appropriate visualisations,

interactive online tools, and similar materials.

Not surprisingly, more methodological research on a number of technical issues is

required. In particular, there is need to design an appropriate framework for calibrating
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whole time series of observations. Besides, for rare events, there may not be enough

observations to properly calibrate the extremes (tails) of the distributions (see e.g., Taleb

2007). In such cases, exploration of methods and techniques of risk management can be

promising, whereby future events are classified according to a combination of their

probability and impact. As mentioned above, there is also a need to develop a wider range

of methods for the types of forecasts that play the greatest role in actual policy and

expenditure decisions, for example at the subnational level.

However, in order to achieve a paradigm shift in practical applications of probabilistic

population forecasts, the focus should not be on methods, but rather on possible impacts

and consequences of decisions. In such a way, the ongoing change of methodological

perspective in demographic forecasting, from deterministic point forecasts through variant

scenarios to probabilistic predictions, would continue incrementally towards interactive

decision support at a variety of levels of policymaking – from national to subnational, in

parallel with the methodological developments for the latter. Of course, as a prerequisite,

various sources of uncertainty need to be acknowledged and combined in the forecasts,

ideally within a joint and coherent framework, such as the one offered by Bayesian

statistics.

The challenges of the practical uses of probabilistic forecasts are important, but they are

now well recognised and are not insurmountable. The methodology is ripe, and insights

from other areas of application are encouraging. In many other areas, the concepts of

uncertainty and risk have already entered the language and practice of the decision makers

and other forecast users. As for population forecasts, several pioneer countries, as well as

the United Nations Population Division, have also taken up to the challenge. We hope this

trend continues – where there’s a will, there’s a way.
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Using Auxiliary Sample Frame Information for Optimum
Sampling of Rare Populations

Martin Barron1, Michael Davern1, Robert Montgomery1, Xian Tao1, Kirk M. Wolter1,

Wei Zeng1, Christina Dorell2, and Carla Black2

We investigate disproportionate stratified sampling as a possibly efficient method of
surveying members of a rare domain in circumstances in which there is no acceptable list of
members. In this work, we assume that information is available at the sampling stage to
stratify the general-population sampling frame into high- and low-density strata. Under a fixed
constraint on the variance of the estimator of the domain mean, we make the optimum
allocation of sample size to the several strata and show that, in comparison to proportional
allocation, the optimum allocation requires (a) a smaller total sample size but (b) a larger
number of interviews of members of the rare domain. We illustrate the methods using
information about American consumers maintained by market-research companies. Such
companies are able to develop lists of households that are thought to have a defined attribute
of interest, such as at least one resident in a user-specified age range. The lists are imperfect,
with false positives and negatives. We apply an age-targeted list to the National Immunization
Survey (NIS), conducted by the Centers for Disease Control and Prevention, which targets the
relatively rare population of children age 19–35 months. The age-targeted list comprises the
high-density stratum and the rest of the survey’s sampling frame comprises the low-density
stratum. Given the optimum allocation, we demonstrate potential cost savings for the NIS in
excess of ten percent.

Key words: Optimum allocation; cost model; variance; disproportionate stratification;
rare population; age-targeted list; telephone surveys; National Immunization Survey.

1. Introduction

Surveys of rare populations are common in a variety of scientific fields. For example,

health surveys often target low-prevalence domains, such as people with a specific disease,

a specific chronic condition, a special healthcare need, or people who have received

specific healthcare services. While in general there is no universally accepted demarcation

between rare and nonrare, we have in mind possible rare domains that comprise less than

ten percent of the general population.
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We consider the problem of sampling when two circumstances are true: (1) no

acceptable sampling frame exists for the rare domain of interest, henceforth denoted

by D, and (2) an acceptable sampling frame does exist for the general population and

auxiliary information is available at the time of sampling that enables the survey

statistician to partition this frame into high- and low-density strata. The former are

presumed to have higher prevalence rates (also called the eligibility rate) of the rare

population than the latter. A sample is selected from each stratum; a brief screening

interview is administered to persons in the sample to ascertain membership in D; and then

members receive the main survey interview and nonmembers are not interviewed.

Practical applications of this problem may encounter a range of eligibility rates in the

various strata. Throughout this article, we use the labels high density and low density

simply to indicate that one or more strata have higher eligibility rates, perhaps much

higher, than the other strata, not to imply any absolute level of eligibility.

One example of this sampling problem occurs when a list (possibly quite imperfect,

reflecting false positives and false negatives) of members of D exists and is available at the

time of sampling. The list itself may be considered the high-density stratum and all persons

represented on the general sampling frame and not on the list may be considered the low-

density stratum. A second example occurs when the sampling frame is stratified by census

variables that are thought to be associated with membership in D. Such examples may

become increasingly important in the future as cost pressures on surveys mount.

Our main aim in this article is to develop a method of disproportionate stratification in

which the high-density strata are sampled at higher rates than the low-density strata. We

examine whether the use of different sampling rates can result in lower data-collection costs

than when the same sampling rate is used across the entire sampling frame. Aspects of this

sampling problem have been treated previously by Sudman (1972), Waksberg (1973), and

Kalton and Anderson (1986). Kalton (2009) arrived at the general conclusion that

disproportionate stratification can reduce cost only when three conditions are true: (a) the

prevalence rates in the high-density strata are much higher than those in the low-density

strata, (b) the high-density strata contain a substantial portion of the overall rare domain D,

and (c) the per-unit cost of the main data collection must be high relative to the cost of

screening. Valliant et al. (2014) study the use of stratification of address-based samples of

households in which the strata are defined by auxiliary information from commercial sources.

Our specific aims are to give a precise definition of the method of disproportionate

stratification and demonstrate the optimum design and its sample sizes within this class

(Section 2), to describe certain information available from market-research companies that

can be used for implementation of such stratification (Section 3), and to illustrate the optimum

design and select market-research information using an age-targeted list applied to the

National Immunization Survey (NIS), a project conducted on an ongoing basis by the Centers

for Disease Control and Prevention to measure the vaccination status of young children

(Section 4). The article closes with a brief summary and recommendations (Section 5).

2. Methods for an Optimum Allocation

Two notions of optimality are standard in survey sampling: first, one can fix the variance

of a key survey statistic of interest and design the sample to minimize the cost of data
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collection, or second, one can fix the cost of data collection and design the sample to

minimize the variance of the key statistic. Both notions of optimality lead to a similar

relative allocation of the sample size across the several strata (Cochran 1977). We will

focus on the first notion of optimality, and comment briefly on the second notion at the end

of this section.

We consider a sampling design in which there are L strata indexed by h, and, without

loss of generality, take the eligibility rate of the rare domain D to be decreasing from h ¼ 1

to h ¼ L. Simple random samples are taken from each of the strata, resulting in the

selection of some members of the rare domain and some nonmembers.

A brief screening interview is conducted to determine the members of D, followed by

the main interview of such members. In this section, we consider the ideal circumstance of

complete response, while in Section 4 we give an illustration in which nonresponse does

occur. Furthermore, throughout the article, we assume that domain membership can be

ascertained without error in the screening interview. This setting is in contrast with some

survey applications in which reporting, coding, or definitional problems can result in

erroneous classifications of sampling units as in D or not in D.

We let cscr denote the cost (or hours) per screening interview and cinv the cost (or hours)

per main interview. We let nh be the number of completed screening interviews and mh the

number of completed main interviews in stratum h. Moreover, we let rh ¼ NDh=Nh denote

the population eligibility rate (size of the rare domain D as a proportion of the size of the

sampling frame) in stratum h and r ¼
Pl

h¼1 Whrh ¼ ND=N the overall eligibility rate

across the entire sampling frame, where Wh ¼ Nh=N is the proportion of units on the

sampling frame that are classified in stratum h.

Total expected survey costs can be expressed by

T ¼
Xl

h¼1

cscrnh þ cinvE mhf g
� �

¼
Xl

h¼1

thnh ; ð1Þ

where th ¼ cscr þ cinvrh is the average combined cost per unit in the sample. On average,

each unit in the sample incurs its own cost of screening plus a fractional share of the cost of

the main interview, where the fraction is the eligibility rate. For simplicity, we have

omitted fixed costs from the model, because they have no bearing on the optimum

allocation. Also for simplicity, we have assumed that the per-unit costs are identical in the

two strata. The methods extend directly to the case where the cost components vary by

stratum, such as when response rates vary by stratum.

We assume the main aim of the survey is to estimate the mean of the rare domain, say

R ¼ Y=X, where Yhi is the variable of interest for members ðh; i Þ of the rare domain and is

zero for nonmembers, Xhi is 1.0 for members of the rare domain and is zero for

nonmembers, and Y and X are the population totals of these variables. We let R̂ ¼ Ŷ=X̂ be

the standard ratio estimator of R, where Ŷ ¼
PL

h¼1

Pnh

i¼1dhiyhi is the estimated domain total

of the variable of interest, X̂ ¼
PL

h¼1

Pnh

i¼1dhixhi is the estimated total number of members

of the rare domain, and dhi ¼ Nh=nh is the design weight for all i ¼ 1; : : : ; nh and

h ¼ 1; : : : ; L.

Assuming that finite population correction terms can be ignored and that the means and

variance components are of similar value in the various strata, the Taylor series
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approximation to the variance of the estimator is given approximately by

Var R̂
� �

_¼
S2

r2

XL

h¼1

W2
hrh

nh

; ð2Þ

where S2 is the variance component among members of the rare domain. Kalton and

Anderson (1986) give a similar expression for this variance. An alternative exact

expression for the variance can be given in lieu of (2) in the event that the variance

components differ from stratum to stratum.

Given the foregoing, the classical optimum allocation (Cochran 1977) of the sample to

the two strata, which minimizes cost subject to a constraint on the variance, is given by

no
h ¼ ahno ; ð3Þ

where

ah ¼
Wh

ffiffiffiffi
rh
p

=
ffiffiffiffi
th

p

XL

h 0¼1
Wh 0

ffiffiffiffiffi
rh 0
p

=
ffiffiffiffiffi
th 0
p ; ð4Þ

no ¼
S2

V or 2

XL

h¼1

Wh

ffiffiffiffi
rh

p ffiffiffiffi
th

p Xl

h¼1

Wh

ffiffiffiffi
rh

p
=
ffiffiffiffi
th

p
; ð5Þ

and V o is the specified fixed constraint on the variance. The sample size within a stratum is

proportional to the size of the stratum and to the root of the eligibility rate in the stratum,

and inversely proportional to the root of the per-unit cost of data collection in the stratum.

The expected number of interviews of members of the rare domain is

mo ¼
Xl

h¼1

no
hrh ¼

S2

V or 2

Xl

h¼1

Whrh

ffiffiffiffi
th

p

ffiffiffiffi
rh
p

 !
XL

h¼1

Whrh

ffiffiffiffi
rh
p

ffiffiffiffi
th

p

 !

; ð6aÞ

and the minimum total cost under the optimum allocation is

T o ¼
S2

V or 2

Xl

h¼1

Wh

ffiffiffiffi
rh

p ffiffiffiffi
th

p
 !2

: ð6bÞ

An alternative sampling design that is used in many surveys involves the selection of the

sample without regard to the high- and low-density strata, or effectively the selection of

the sample from the sampling strata using proportional allocation. The sample sizes

required to achieve the variance constraint are

n
p
h ¼ Whnp ð7Þ

np ¼
S2

V or 2

Xl

h¼1

Whrh ; ð8Þ
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the expected number of interviews of members of the rare domain is

mp ¼
S2

V or 2

Xl

h¼1

Whrh

 !2

; ð9aÞ

and the total cost given this allocation is

T p ¼
S2

V or 2

Xl

h¼1

Whrh

Xl

h¼1

Whth : ð9bÞ

A measure of the cost savings associated with the optimum allocation is the ratio of total

costs T o=T p, where the superscripts “o” and “p” signify optimum and proportional

allocation, respectively. This ratio is guaranteed to be less than or equal to 1 by

construction. If the eligibility rates are homogeneous, that is, rh ¼ r, for all h, then the ratio

is equal to 1. Cost can be reduced relative to proportional allocation when the eligibility

rates are variable and there are high-density strata of non-negligible size.

In comparing optimum and proportional allocations when variance is fixed, two

inequalities are true: (i) no=np # 1 and (ii) mo=mp $ 1. Because T o=T p # 1; the ratio of

sample sizes is no=np # cscr þ cinvr p=cscr þ cinvr o, where r p ¼
Pl

h¼1 Whrh ¼ r and

r o ¼
Pl

h¼1 ahrh. Inequality (i) follows from the fact that r o $ r p. Applying the Cauchy-

Schwarz inequality to (6) and (9) gives inequality (ii).

Summarizing the results for fixed variance, the optimum allocation results in cost

savings relative to proportional allocation; it requires a smaller total sample size but a

larger number of interviews of members of the rare domain than does proportional

allocation. The optimum allocation involves disproportionate sampling, it creates a

weighting effect, and it therefore requires more interviews to achieve the fixed variance.

Briefly, for fixed cost, the variance-minimizing optimum allocation is given by (3)

and (4), where no ¼ T o
Pl

h¼1 Wh
ffiffiffiffi
rh
p

=
ffiffiffiffi
th

p� �
=
Pl

h¼1 Wh
ffiffiffiffi
rh
p ffiffiffiffi

th

p� �
. Consider the special

case cscr ¼ 0, cinv ¼ 1, and T o ¼
Pl

h¼1 nhrh, which corresponds to fixing the expected

sample size in the rare domain D. For this case, the optimum allocation is proportional

allocation with no ¼ T o=r.

3. Market-Research Lists for Stratification

Market-research companies have developed proprietary databases containing demo-

graphic, behavioral, and consumer information on people and households throughout the

world. These data can be used as the basis for the stratification used in Section 2. Even

though the specific details of their construction are proprietary, it is known that the

databases are compiled from product registrations, store loyalty programs, credit-card

purchases, cable-television viewing, internet searching, smartphone applications, coupon

redemptions, mobile health devices, voter registration databases, publicly available real-

estate transactions, as well as many other sources. And while the data from market-

research companies are not always accurate at the individual case level (Pasek et al. 2014),

they may still be useful for stratifying a survey sampling frame of the general population

into high- and low-density strata for households or people who have the rare characteristic

of interest. Using the lists provided by market-research companies containing names,

telephone numbers or addresses (depending on the sampling frame used), the sampling
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statistician can divide the sampling frame into two or more strata based on whether the

market-research company has associated the name, telephone number or address with a

specific rare trait or characteristic of interest (domain D).

The general approach of stratifying the sampling frame into high- and low-density strata

is not limited to lists provided by market-research companies. For example, if a team of

researchers was interested in studying asthma among children using an address-based

sample frame, they might be able to obtain a high-density list of addresses from

administrative data of children on Medicaid (Medicaid is a government health-insurance

program for needy people in the U.S.) with asthma-related prescriptions. The low-density

stratum would be comprised of all remaining addresses. And there could be combinations

with one high-density list coming from a state Medicaid agency of addresses of child

beneficiaries with asthma-related prescriptions, a second list coming from a market-

research company that identifies households likely to have children, and a third low-

density frame of all remaining addresses not on either of the two high-density lists. Other

applications of this method could entail using voter registration lists as the high-density

frame for an address-based sample of likely voters for a local election, and the low-density

frame could be all the remaining addresses. Market-research companies and

administrative data sources offer ample opportunities to take advantage of this kind of

methodology, as many lists are available to stratify the sampling frames into high-density

and low-density strata that presumably have differing eligibility rates for members of the

rare domain D. Lists used for stratification could target information on age, race, ethnicity,

people who purchased and registered specific products (e.g., insulin pumps or asthma

prescriptions), disease registries, voter registration lists, and lists of households who

redeem specific coupons.

The methods presented in the foregoing section for sampling and interviewing members

of a rare domain therefore have application to at least two related problems:

1. A comprehensive sampling frame exists, which contains information that permits the

population to be partitioned into two or more sampling strata that vary in their

density of the rare domain, D.

2. There are initially two (or more) sampling frames: one containing a complete list of

the overall population, and one (or more) containing only a subset of the first list that

is rich in members of the rare domain, D. By matching the second list(s) to the first, a

revised sampling frame can be obtained that identifies two or more sampling strata:

cases on the second list (the high-density stratum) and cases not on the second list

(the low-density stratum).

The lists used to stratify the sampling frame (e.g., an age-targeted list from a market-

research company or Medicaid enrollment data on likely asthma patients) are subject to

error, including the telephone numbers or addresses of households that do not actually

have the rare attribute (false positives), and excluding the telephone numbers or addresses

of households that do have the attribute (false negatives). Due to their origin in the market-

research field, some lists may be skewed towards more affluent households that have

landline telephone numbers, register automobiles, and buy things on credit. As long as the

entire population of D is covered by at least one of the lists or sampling strata, there is no

bias in estimators of population parameters of interest.
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4. Application: The National Immunization Survey

As an illustration of the method of disproportional sampling, we apply the concept of age

targeting to the design of the National Immunization Survey (NIS). The NIS uses two

phases of data collection to obtain information for a large national probability sample of

young children: a random-digit-dialing (RDD) telephone survey designed to identify

households with children between 19 and 35 months, followed by a mail survey of the

vaccination providers of the children identified in the household survey (called the

Provider Record Check), which obtains provider-reported vaccination histories for the

children. At the close of the telephone interview the interviewer asks the respondent, the

child(ren)’s parent or guardian, for consent to contact providers and for their names and

addresses, and the Provider Record Check is conducted only for children for whom oral

consent is given. Data from the Provider Record Check yield each child’s number of doses

for each of eleven vaccines. These counts are compared to the recommended number of

doses for each vaccine (CDC 2010) to determine whether the child is up to date (UTD).

The NIS is designed to produce direct, sample-based estimates of vaccination coverage

rates (UTD children as a proportion of all age-eligible children) within each of 56

estimation areas, consisting of 46 whole states, six large cities, and four rest-of-state areas

(CDC 2012b). The estimation areas are the primary sampling strata in the NIS sampling

design. A dual-frame RDD sampling design is used within each estimation area. The

landline RDD sample has been conducted since 1994, while the cell-phone RDD sample

was introduced in the fourth quarter of 2010.

The NIS deploys a new and independent RDD sample every calendar quarter.

Vaccination coverage rates, R, are estimated using the combined sample from an annual

time period. The estimator within a given estimation area is a ratio of the form R̂ ¼ Ŷ=X̂,

where Ŷ ¼
P

i[sc
WiYi is an estimator of the total number of children who are UTD with

respect to a given vaccine, X̂ ¼
P

i[sc
WiXi is an estimator of the total number of age-

eligible children, sc is the set of children for whom the NIS interview (including PRC) is

complete within the annual time period, Yi is an indicator variable signifying whether the

i th child is UTD, Xi ¼ 1 for age-eligible children and ¼ 0 for all other units in the

population, and Wi is the survey weight taking into account the probability of selection,

adjustments for both household and provider nonresponse, and calibration to known

population counts. See the NIS Data User’s Guide (CDC 2012b) for a description of the

methods of weighting.

The population domain studied in the NIS is considered to be rare. In 2011 only about

18 percent of the resolved telephone numbers in the landline sample were working

residential numbers and two percent of the completed screening interviews resulted in

finding eligible children age 19–35 months. Given the rarity of the domain, it is reasonable

to examine whether it would be possible to gain cost efficiency by using a disproportionate

sampling design within high- and low-density sampling strata within each estimation area.

In what follows, we work with age-targeted lists of landline telephone numbers

compiled by Marketing Systems Group (MSG) from consumer databases maintained by

the marketing-research companies InfoUSA, Experian, Acxiom, and Targus. MSG and

other vendors have the capability to produce lists that target various age ranges. We have

conducted research for the NIS using lists targeted at ages 0–5 and 0–17 and find that both
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lists yield similar results. We report the results of our investigation of the list that targets

households with someone age 0–17. Because the large NIS screening sample is also used

for a companion survey of American adolescents aged 13–17 years, called the NIS-Teen,

we report the results of our investigation of the list that targets households with someone

age 0–17. This list should support the needs of both the NIS and the NIS-Teen. However,

we continue this brief illustration only for the NIS sample. Because age-targeted lists are

not available for cell phones, we work only with the landline sample in this illustration.

In some applications of consumer databases in sampling rare populations, it may be

possible to classify the units in the overall population into three strata: (i) in the targeted

domain, (ii) not in the targeted domain, and (iii) domain status indeterminate. For the

current application, however, we were only able to classify telephone numbers into two

categories: on or not on the age-targeted list.

Because the NIS is an important national healthcare survey that must represent the entire

population of age-eligible children to the greatest extent feasible, we use the age-targeted

list for stratification purposes rather than for purposes of restricting the sampling frame. The

set of all telephone numbers on the landline sampling frame that are also on the list shall be

deemed the high-density stratum (h ¼ 1), and the set of all other numbers on the landline

sampling frame that are not on the list shall be deemed the low-density stratum ðh ¼ 2Þ, with

L ¼ 2. We observe that some market-research surveys that target consumers in a specific

age range may choose to restrict the sampling frame by selecting the sample solely from an

age-targeted list. This practice saves screening costs while incurring potentially large errors

of undercoverage (failing to represent persons actually in the age range but not on the list).

Our approach aims to achieve both complete representation of the population and some

efficiency in data collection through the use of disproportionate sampling.

We illustrate the optimum allocation in terms of the annual sample size for a single,

typical estimation area. A strategy of oversampling (undersampling) the high-density

(low-density) stratum will tend to result in both (i) a higher observed eligibility rate in the

sample and more productive data-collection operations, and (ii) a weighting effect (due to

disproportionate sampling) in the estimation of population parameters of interest and,

therefore, a larger sample size to maintain variance at a fixed level. A key question before

us is to what extent total data collection cost can be reduced as the net effect of these two

factors, one of which tends to decrease cost while the other tends to increase it.

We determine the optimum allocation under the following ideal assumptions: (a) that

there is no nonresponse in the household or provider surveys, (b) that each household in

the landline population of households is connected to one and only one landline, and (c)

there is at most one child aged 19–35 months in the household. If the methods cited here

were used in actual practice, the sample sizes would have to be adjusted for these various

factors.

The model for data collection costs is (1), where L ¼ 2 and nh is the sample size of

households in stratum h. The per-unit cost components, th, reflect numerous features of the

NIS design, including the cost per telephone number for obtaining the age-targeted flag,

the cost per telephone number for sample preparation and sending advance letters; the cost

per telephone number for the screening interview (including both resolution of residential

telephone number status and age screening); the cost per incentive given; and the cost per

age-eligible household for the main interview and the PRC. The per-unit cost components
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must be loaded with both the costs directly expended on completed cases and a pro-rata

share of the costs of all efforts expended on unproductive cases, for example, households

and providers that break off or otherwise fail to complete the survey. We have analyzed

recent NIS cost data and determined that the ratio of the per-unit cost components is

t1=t2 ¼ 5:1. Thus the per-unit cost of data collection in the high-density stratum is about

5 times the per-unit cost in the low-density stratum. This result is to be expected, because,

as we will show, the overall eligibility rate is much higher in the high-density stratum, and

therefore this stratum requires more interviewing effort than does the low-density stratum.

The vaccination coverage rates in the high- and low-density strata are quite similar,

usually differing by only one or two percentage points. Thus, given the foregoing

assumptions, the variance of the estimated vaccination coverage rate, R̂, is given

approximately by (2), where rh is the overall eligibility rate within stratum h

(encompassing both the age-eligibility rate and the rate of working residential numbers

among the resolved telephone numbers in the selected sample), r is the overall eligibility

rate across both of the sampling strata within the estimation area, Wh ¼ Nh=N is the

proportion of landlines on the area-specific sampling frame that are classified in stratum h,

S2 ¼ Rð1 2 RÞ is the variance component in the domain of age-eligible children.

With the cost and variance models in hand, the optimal allocation of the total sample

size to the two sampling strata within an estimation area is given by (3) and (4) and the

total sample size by (5).

We estimate the overall eligibility rates and population proportions using NIS data from

the third and fourth quarters of 2010 (henceforth referred to as Q3–Q4 2010). Since we

actually conducted the NIS in these two quarters, we know which of the selected landline

telephone numbers were associated with a household with a resident child in the eligible

age range, and we have since been able to determine retrospectively which of the selected

landline numbers were on the age-targeted lists in those quarters. The overall eligibility

rates and population proportions are given in Table 1.

While the overall eligibility rate is not high in absolute terms in either stratum, the rate

in the high-density stratum is relatively much higher than the rate in the low-density

stratum. The rate in the high-density stratum is almost 14 times greater than that in the

low-density stratum, and about 58 percent ¼ r1W1=r1W1 þ r2W2 of the population of

age-eligible children is classified in the high-density stratum. While the statistics presented

in Table 1 are at the national level, we will take them to be appropriate for calculating the

optimum allocation for a single, typical estimation area.

The Centers for Disease Control and Prevention have specified that the NIS sample size

in an estimation area shall be large enough so that the coefficient of variation of the

estimated vaccination coverage rate is 7.5 percent when the true rate is 50 percent. Thus,

we can take V o ¼ 0:001406 as the value of the fixed variance. When the true vaccination

coverage rate is 0.50 (or 50 percent), the variance component for eligible children is

S2 ¼ Rð1 2 RÞ ¼ 0:25:

Plugging the foregoing parameter values into (3), (4), and (5) gives the optimum

allocation to the high-density stratum, no
1 ¼ 3; 824, the low-density stratum, no

2 ¼ 22; 875,

and the total sample size no ¼ 26; 699, which are cited in Table 2. The optimum allocation

is expected to result in 320 completed interviews in the estimation area, with 223 in the

high-density stratum and 97 in the low-density stratum.
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The ratios of the optimum sample sizes and the optimum sampling fractions are

displayed in Table 3. Optimality calls for the high-density stratum to be sampled at a rate

1.64 times the rate of sampling in the low-density stratum. While the ratio of the

population sizes is about 0.10, the ratio of the sample sizes is about 0.17.

By comparison, if we were to use the sampling design that actually was used for the

NIS, which is essentially a proportional-allocation design, the corresponding total sample

sizes given our assumptions would be those that appear in Table 4. The same sampling

precision can be achieved in two different ways: (a) use of the current design, or (b) use of

the optimum-allocation design. The latter design requires about 11,266 fewer telephone

numbers in the released sample, because we have oversampled the high-density stratum

that has the higher eligibility rates. However, the optimum-allocation design introduces a

disproportionate allocation of the completed interviews and a corresponding weighting

effect, and thus it requires about 15 more completed interviews to achieve the specified

level of precision.

Our methods may be contrasted to those of Srinath et al. (2004), who previously tested

the use of the Experian list for improving the efficiency of NIS sampling. They determined

a method of sample allocation to minimize the variance of the estimated vaccination

coverage rate subject to fixed sample size, and concluded that the estimator suffers from a

loss of precision due to the weighting effect. From our work in Sections 2 and 3, it is clear

that the optimum allocation, which involves disproportionate sampling, requires more

interviews to maintain a constant level of precision. It is also clear that optimum allocation

can maintain precision while reducing data-collection costs, at least for the age-targeted

lists studied here.

Plugging the expected sample sizes in Table 4 into the cost model, we find that the ratio

of data-collection costs, T o=T p, is about 0.87. The optimum allocation is expected to save

about 13 percent in data-collection costs relative to the current NIS design for the landline

Table 1. Overall eligibility rates and population proportions at the national level: NIS Q3–Q4 2010

Parameter
Low-density

stratum, h ¼ 2
High-density

stratum, h ¼ 1

Overall landline
RDD sampling

frame

Eligibility Rate, rh 0.30% 4.10% 0.65%
Proportion of the Landline

RDD Sampling Frame, Wh

0.9075 0.0925 1.0000

Table 2. Optimum allocation and expected sample sizes in a typical estimation area to minimize total cost

subject to the specified variance constraint (7.5 Percent coefficient of variation for the estimated vaccination

coverage rate)a

Landline RDD sample
components

Low-density
stratum, h ¼ 2

High-density
stratum, h ¼ 1

Total landline
sample size

Sample size, no
h 22,875 3,824 26,699

Eligible households with
complete NIS interview

97 223 320

a The sampling sizes are computed using the national rates in Q3–Q4 2010.
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RDD sample. This percentage translates into considerable potential cost savings across 56

estimation areas per year. Most telephone surveys do not have, and thus do not bear the

costs of, a second phase of data collection like the PRC. To test our methods in this more

common setting, we repeated all of the calculations in this section assuming no PRC costs,

and found that the resulting cost savings relative to proportional allocation amount to

about 15 percent.

5. Summary

In this study of the use of disproportionate stratification for sampling a rare domain D, we

made a number of assumptions, including that (a) the sampling frame covers a general

population that contains both members and nonmembers of the rare domain; (b) domain

membership is not known at the time of sampling; (c) the sampling design involves simple

random sampling within two or more strata that vary in the density of the rare domain;

(d) the parameter of interest is the mean of the rare domain; (e) the estimator of the domain

mean is the standard ratio estimator; (f) classification of sampling units in or out of the rare

domain based on the screening interview is conducted without error; (g) the cost of data

collection arises as in (1); and (h) the variance of the ratio estimator can be represented by

(2). We focused on the optimum allocation of the sample size to the several strata when

one’s object is to minimize the cost of data collection subject to a constraint on the

variance of the ratio estimator (we also briefly treated the optimization problem when the

object is to fix cost or to fix the number of interviews achieved for members of the rare

domain). We find the optimum allocation to a stratum is proportional to the size of the

stratum and to the root of the eligibility rate in the stratum, and is inversely proportional to

the per-unit cost of data collection in the stratum. Given our assumptions, the optimum-

allocation design, which oversamples the high-density stratum, introduces no bias into the

Table 3. Ratios of population sizes, optimum aample sizes, and sampling fractions

W1=W2 ¼ high-density population size/low-density population size 0.1019
no

1=no
2 ¼ high-density sample size/low-density sample size 0.1672

f o
1=f o

2 ¼ high-density sampling fraction/low-density sampling fractiona 1.6406
a The sampling fraction is f o

h ¼ no
h=Nh.

Table 4. Expected sample sizes within a typical estimation area to achieve the specified variance constraint (7.5

percent coefficient of variation for the estimated vaccination coverage rate) for two allocation regimes

Landline RDD
sample
components

Expected sample
size given

current
NIS design

Expected sample
size given

optimum-allocation
design

Difference in
expected

sample size
(current design

minus optimum-
allocation design)

Sample size, no
h 37,965 26,699 11,266

Eligible households
with complete
NIS interview

305 320 215
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ratio estimator of the domain mean. Because the optimum-allocation design, by definition,

minimizes the cost of data collection, it must result in non-negative cost savings relative to

a proportional-allocation design. The cost savings could be small unless (a) the eligibility

rates in the high-density strata are much higher than those in the low-density strata; (b) a

substantial portion of the rare domain is classified in the high-density strata; and (c) the

per-unit cost of the main interview is high relative to the screening cost. While the

optimum-allocation design potentially saves cost, it does so through disproportionate

sampling of the strata, which creates a weighting effect. Thus it actually requires more

completed interviews than does the less efficient proportional-allocation design.

We illustrated the optimum-allocation design using the NIS, in which the rare domain is

children 19–35 months and the parameters of interest are vaccination coverage rates for

this domain. Results for the NIS are limited to the age-targeted lists obtained from the

MSG vendor for the period Q3–Q4 2010.

Other surveys operating in future time periods and targeting different domains of

interest should test the lists available to them. The method of disproportional stratification

is broadly applicable to lists available from market-research companies as well as those

derived from administrative data sources. Examples include targeted lists of people or

households defined by age, race, ethnicity, income, disease registry, health insurance

claims data, and voter registration status.

In deciding whether to use the optimum-allocation design, the survey statistician should

be mindful of any secondary objectives for the rare-population survey, other than those

embodied in the optimized objective function. For estimating other population parameters

of interest, such as means for crosscutting domains, the optimum-allocation design could

result in a decrease in sample size and an increase in the standard error of the estimator.

These issues should be tested before the decision to implement the optimum design is

taken.
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Response Burden in Official Business Surveys:
Measurement and Reduction Practices of National

Statistical Institutes

Mojca Bavdaž1, Deirdre Giesen2, Simona Korenjak Černe3, Tora Löfgren4, and

Virginie Raymond-Blaess5

Response burden in business surveys has long been a concern for National Statistical Institutes
(NSIs) for three types of reasons: political reasons, because response burden is part of the total
administrative burden governments impose on businesses; methodological reasons, because
an excessive response burden may reduce data quality and increase data-collection costs; and
strategic reasons, because it affects relations between the NSIs and the business community.
This article investigates NSI practices concerning business response burden measurement and
reduction actions based on a survey of 41 NSIs from 39 countries. Most NSIs monitor at least
some burden aspects and have implemented some actions to reduce burden, but large
differences exist between NSIs’ methodologies for burden measurement and actions taken to
reduce burden. Future research should find ways to deal with methodological differences in
burden conceptualization, operationalization, and measurement, and provide insights into the
effectiveness and efficiency of burden-reduction actions.

Key words: Administrative burden; data collection; establishment surveys.

1. Introduction

The Fifth Principle of the United Nations’ Fundamental Principles of Official Statistics

(United Nations 1994, 2014) explicitly requires the data source to be selected “with regard

to quality, timeliness, costs and the burden on respondents.” Response burden in official

business surveys is thus not a new issue. It has long been a concern for National Statistical

Institutes (NSIs) (e.g., Sunter 1977; Astin 1994; Willeboordse 1997; Hedlin et al. 2005) for

three types of reasons: political, methodological and strategic. The political reasons stem
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from the fact that administrative burdens imposed on businesses by legislation, which

include mandatory statistical reporting, decrease the competitiveness of businesses by

unproductively engaging their resources. Many countries have therefore implemented

programs focused on reducing administrative burdens (OECD 2009). Examples of such

programs include the Paper Work Reduction Act of 1980 in the United States and the

President’s Executive Order 13610 of May 10, 2012 to all US government agencies;

Canada’s Red Tape Reduction Commission (Red Tape Reduction Commission 2012); the

EU 2007–2012 Action Programme for Reducing Administrative Burdens (European

Commission 2007); and the EU Regulatory Fitness Programme (European Commission

2012b). The methodological reasons for concern about response burden are based on the

growing evidence that excessive burdens may lead to problematic survey response

behavior with potential consequences for data quality, especially nonresponse, late

response, or measurement errors (see, for instance, Hedlin et al. 2005; Bavdaž 2010;

Giesen 2012; Jones 2012; Lorenc et al. 2013; and Berglund et al. 2013). Perception of a

survey task may even be more relevant in this context than the objective burden (e.g.,

Willeboordse 1997; Hak et al. 2003; Jones et al. 2005). Closely related to these

methodological reasons are the strategic reasons, because good relations between NSIs

and the business community have spillover effects in the whole field of official statistics.

Businesses are an important stakeholder for NSIs because of their double role as reporting

units and users of official statistics (Lorenc et al. 2012).

1.1 Burden Concept and Measurement

Despite its long presence and broad relevance, response burden is a vague concept. A

politician may have in mind the total costs imposed on the whole business community, a

manager may think of the time people take away from business tasks, a methodologist may

focus on the feeling that a respondent experiences when confronted with a mandatory

survey, and so on. Willeboordse (1997) defines response burden along four bipolar

dimensions. First, he distinguishes between objective (actual) and subjective (perceived)

response burden with regard to the choice of measurement perspective. Actual response

burden means the money and/or time it takes to comply with data requests, and perceived

burden refers to the respondents’ assessment of how burdensome they find it to comply

with the data request. Second, the concept may only refer to the burden itself (i.e., gross

burden) or be broadened to consider the advantages of responding that reduce the amount

of burden (i.e., net burden) for the unit. Third, the concept of response burden may concern

the mere completion of the questionnaire (i.e., minimalistic burden) or include

accompanying activities such as studying the instructions, data retrieval, and follow-up

calls (i.e., maximalistic burden). Fourth, the concept may relate to the burden initially

placed upon and, in an ideal world, expected from businesses (i.e., imposed burden) or to

the burden that businesses bear de facto considering their actual response behavior (i.e.,

accepted burden). In an ideal world, all units would respond in a timely and accurate way;

in reality, some units discard survey requests, others provide inaccurate data, and so on.

Moreover, different units of observation and various levels of aggregation may be

relevant for different purposes. To illustrate the methodological challenges of burden

measurement, Figure 1 shows relations between business units (BU; arranged in size
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classes from small to large) and respondents (R) in two surveys (Survey A and Survey B).

Small and also some medium-sized businesses typically hire accounting firms for all

reporting (including statistical) matters. A single respondent may thus complete several

questionnaires of the same survey for several businesses (see the left-most respondent

involved in Survey A on behalf of several business units). By contrast, the same survey

may involve several respondents at a large business (see the right-most group of

respondents involved in Survey A for a large business unit). Two kinds of nesting are thus

present that challenge the selection of the unit of observation: nesting business units within

respondents and nesting respondents within business units. The scenario becomes loaded

when surveys are added because the same respondent may be involved in more than one

survey for either several businesses or a single business (see the middle group of

respondents involved in both Survey A and Survey B).

The reality is more complex because surveys differ in their burden-relevant aspects

(e.g., periodicity, questionnaire length, and data availability) and may involve other people

in the response process in addition to respondents (e.g., data providers and authorities; see

Bavdaž 2010). The same person can also have different roles in different surveys. Further

complications relate to determining the relevant timeframe, delineation and dynamics of

business units, changes in personnel involved in the response process, selection of the

appropriate respondent for reporting burden data, and the timing and mode of collecting

burden data.

The purpose of response burden monitoring ultimately determines what burden

indicator (e.g., total or spread; actual or perceived) is relevant and at what level. The total

actual burden at the national level may serve as a basic indicator of the total amount,

progress, and outcome of national programs for administrative burden reduction. The total

actual burden per survey may be considered when evaluating costs versus benefits of

(new) statistical data. The spread of the total actual burden across business units, the total

actual burden imposed on a business unit in a period of time, and the spread of a unit’s

burden in time may be useful when minimizing the impact that official surveys have at the

business level. The burden that a respondent perceives in a specific survey task may

contribute to better questionnaire design. Although perceptions are an inherent part of an

individual, an indicator of perceived burden at a more aggregated level (a business unit, a

survey, the national level) may provide greater insight because official surveys also “give

rise to irritation and the perceived burden of statistics is often higher than the real burden”

(European Commission 2012a, 33).

Business units (BU)
from small to large

Survey A

Survey B

Respondents (R)

BU1

R1 R2 R3 Rj RK

BU2 BU3 BUi BUN...

... ...

...

Fig. 1. Relations between business units (BU) and respondents (R) in two surveys
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1.2 Research Problem and Research Questions

Although the Ninth Principle of the European Statistics Code of Practice specifies that “the

statistical authority monitors the response burden and sets targets for its reduction over

time” (European Commission 2011), the guidelines for burden conceptualization,

measurement, and reduction are rather general (cf. Eurostat 2009; European Statistical

System 2012) and do not offer solutions to methodological challenges. Therefore NSIs are

relatively flexible and independent, but are also quite solitary in selecting conceptual

definitions of response burden, tackling measurement issues, and prioritizing burden-

reduction actions. With so many possible conceptual and operational differences, any

comparison (e.g., across NSIs) becomes at least questionable, if not invalid, which

obstructs insights into the matter and its improvement.

Our study thus aimed to provide a systematic review of the state of affairs at NSIs to

help NSIs to better understand their position in comparison with other NSIs, learn from

other NSIs and set priorities for actions. The study attempted to answer the following

research questions:

1. How do NSIs measure response burden caused by business surveys?

2. What actions do NSIs use to reduce the response burden caused by business surveys?

3. What is known about the effectiveness of these burden-reduction actions?

4. Which, if any, are the differences between NSIs in their approaches to response

burden?

Section 2 of this article describes the research method, Section 3 presents results according

to the research questions, and Section 4 concludes with a discussion and summary of the

findings. For the bibliography of all available documentation on response burden from our

literature search including references of unpublished documents, see supplementary

material on the JOS website (Supplemental_material_Bibliography_Bavdaz_et_al).

2. Research Method

A stepwise approach was used to answer the research questions. First, an extensive

literature search was carried out for the period 2006–2010 (for more details, see Giesen

and Raymond-Blaess 2011). This review did not find much (comparable) information

about response-burden issues across NSIs and it was expected that many relevant reports

would not be publicly available or updated to reflect the latest situation. A survey was thus

conducted in the second step.

2.1 Questionnaire

Based on the literature review, a questionnaire was developed (see Appendix 2) that aimed

to provide an overview of response-burden measurement (Part A) and reduction (Part B),

and to identify any reports (additional to the ones found in our literature search)

documenting response-burden measurement, response-burden reduction actions, and the

effects of response-burden reduction actions.

The draft questionnaire was first reviewed by project and external experts, then revised,

pretested at the NSIs of the Netherlands, Norway, Slovenia, and Sweden, and once again
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revised. The pretests showed two main challenges. First, respondents did not have an

overview of all types of burden-reduction actions within their NSIs. For example,

knowledge of questionnaire design and knowledge of sampling and estimation strategies

were typically in separate departments. Therefore, attempts were made to establish

presurvey contact with all NSIs to inform them about the survey and find the best

respondent or response coordinator. Second, specifying the scope of a burden reduction

action created conceptual problems (e.g., whether to refer to the number of surveys or

businesses or respondents) and practical ones (e.g., how to treat surveys of different

periodicities and lengths). Priority was given to overview rather than detail, and so the

decision was made to focus on surveys and to ask for the proportion of surveys to which an

action was applied using an ordinal scale:

. None: in none of our business surveys,

. Some: in some, but less than 50%,

. Most: in 50% or more, but not all,

. All: in all of our business surveys.

When developing questions about the response-burden measurement methods, four

dimensions of response burden as defined by Willeboordse (1997) were taken into

account:

. Objective (or actual) vs. subjective (or perceived) (Questions A1–A5 and A6–A8),

. Gross vs. net (Question A13),

. Imposed vs. accepted (Questions A5.3 and A5.2),

. Maximalistic vs. minimalistic (Question A4.a).

We asked whether the actual burden is calculated traditionally as time spent (Dale and

Haraldsen 2007), in monetary costs as in the Standard Cost Model (European Commission

2009), or both. The perceived legitimacy of the survey request is probably an important

aspect of how businesses perceive response burden (Dale and Haraldsen 2007), and so we

also asked if NSIs had conducted any studies on how businesses perceive their

organization. Furthermore, we asked about any registration of the NSI’s response burden

imposed on individual businesses and about any national registers of response burden

caused by the government.

To assess which actions NSIs use for reducing response burden in business surveys, a

list of possible reduction actions based on the literature review was created, but it only

included those actions expected to be used by several NSIs and easy to capture with a

single question; an open question was used to capture other actions (Question B5). Among

two sets of questions, the first set referred to the last five years (2006–2010) and asked in

what proportion of the NSIs’ business surveys (none, some, most, or all surveys) the

following actions had been implemented: reduction in sample sizes, reduction in the data-

collection frequency, reduction in the number of requested items, and reduction in the

number of recontacts with businesses (Question B1). The second set of questions referred

to the current situation and asked for a list of thirteen statements to assess to which part of

the NSIs business surveys (none, some, most, or all surveys) each statement applied. These

statements were grouped by the use of alternatives to traditional data collection (Question

B2), methods that make completing the questionnaire easier (Question B3), and actions
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that can improve communication and respondents’ relationships to business surveys by

attending to their needs (Question B4).

2.2 Survey Implementation

A letter with an invitation to participate in the web survey was sent to 45 NSIs in 43

countries covering all NSIs of the European Statistical System, (potential) candidate

countries, and prominent NSIs in four non-European countries (see the list in Appendix 1).

We included a request for relevant literature as an attachment to the invitation letter. We

listed the literature we had already found related to that specific NSI (if any) and asked

respondents to send us (references to) any other reports they could share with us. We

specifically indicated that we were interested in any reports that describe the effects of

burden-reduction actions on, for example, burden and data quality. This call for reports

was also included as a question in the survey.

The web survey was online from November 2010 until February 2011. We saw that 41

of 45 NSIs from 39 of 43 countries responded. The achieved sample thus included 30 of

the 31 NSIs in EU and EFTA countries, five of eight NSIs from (potential) candidate

countries, and all six NSIs from non-European countries. Most of them responded

electronically (a paper version was produced for others when requested) and after being

sent reminders. For a few NSIs, we had to follow up contacts by telephone or email in

order to clarify their answers or attempt to get substantive answers instead of “don’t

know.” Our discussions with respondents revealed that it was sometimes challenging for

them to answer our survey questions for all business surveys at their institute, especially

because burden-measurement practices can vary over surveys and information about them

does not seem to be located in a single place.

2.3 Analysis

The analysis consisted of various types of descriptive analysis. A cluster analysis aimed at

identifying groups of NSIs with similar approaches to burden measurement and reduction.

It was based on six binary variables describing the presence (or absence) of a specific

practice:

. Actual response burden is measured in the five-year period studied (2006–2010),

. Perceived response burden is measured in the five-year period studied (2006–2010),

. Actual response burden is measured annually in the five-year period studied

(2006–2010),

. Database on response burden for each business unit is kept by the NSI,

. Samples are coordinated and/or rotated (survey holidays) for all or most surveys,

. Electronic versions of self-completion questionnaires are available for all or most

surveys.

The presence of a practice is considered positive: measurement of actual and perceived

burden suggests NSIs’ awareness of the problem; annual measurement of actual burden and

a database at the business level indicate the possibility of monitoring and managing the

burden; sample coordination and/or rotation for all or most surveys points to the use of more
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advanced statistical methods for burden reduction in a systematic way; and electronic

questionnaires for all or most surveys suggest the adoption of modern technology.

After performing tests of several clustering methods, the clusters were identified using

Ward’s hierarchical clustering method (Ward 1963) based on the squared Euclidean

distance for binary data. Analyses were done in R (R Core Team 2014) with the package

cluster (Maechler et al. 2014). Comparisons of the clustering results were based on

functions from the R-packages fpc (Hennig 2014) and e1071 (Meyer et al. 2014).

The survey answers were treated as confidential unless the information was already in

the public domain.

3. Results

3.1 Measurement of Response Burden

The majority of NSIs surveyed measure actual burden (i.e., the money and/or time it takes

to comply); 34 out of 41 NSIs answered “yes” to the question: “In the last five years,

2006–2010, has the actual response burden incurred by businesses to comply with survey

requests of your organization been calculated?” Nearly half of them (20) did this annually.

Several NSIs that measure actual burden explained that this was only done for certain

surveys; for example, some EU surveys or all mandatory surveys. Our follow-up contacts

revealed that at least one respondent had interpreted our question as whether total response

burden was calculated (for all survey requests). This lack of clarity in the question

phrasing may have caused some other NSIs to answer “no” even though in fact they did

carry out some kind of burden measurement. The reality might thus be slightly better than

the results suggest.

NSIs measure perceived burden (i.e., respondents’ assessments of how burdensome

they find it to comply with the survey requests) less frequently: only twelve out of 41 NSIs

measured perceived burden in the five-year period studied, most of those had also

measured actual burden. Two-thirds of those measuring perceived burden did it every

year. 17 NSIs reported that they had conducted studies on businesses’ perception of the

usefulness of statistics.

3.1.1 Measurement of Actual Response Burden

Out of 34 NSIs 16 calculated actual burden in time costs only and the same number of

NSIs calculated both time and monetary costs, often by multiplying the time spent

responding to surveys by an average wage rate. Some other NSIs also mentioned similar

approaches, such as a monitoring system for the mean number of questionnaires filled in

per business in a given time period.

NSIs reported using several types of data sources to calculate actual response burden.

The most popular were data provided by survey respondents (29 NSIs) and expert

estimates (25 NSIs). 13 NSIs used qualitative studies to assess the costs of complying.

Other data sources were also reported: the frequency with which a business was drawn in

samples (a practice also mentioned by other countries in some surveys); adjusted data from

a previous survey; and interview time.
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Of the 29 NSIs that used burden data provided by survey respondents, 14 collected it

from subsamples and 21 collected it at the same time as the survey data they related to.

Often, NSIs used several types of data sources to calculate response burden (the maximum

reported by a single NSI was four different types of data sources).

Table 1 shows which potential sources of burden were explicitly included in the

calculation of actual burden. For example, 18 NSIs included administrative tasks, 16 NSIs

included record formation, and 13 NSIs included recontacts as part of the burden. These

results suggest that response burden was operationally defined and measured in very

different ways. Large discrepancies were further confirmed when comparing individual

combinations of these sources. Only eight NSIs took into account all six sources of burden

given in Table 1 and seven NSIs included all these sources except recontacts with

businesses. Other NSIs reported using several different combinations of these sources. The

most consistently used were the top three sources in Table 1 (filling in the questionnaire;

retrieving, collecting and compiling requested information; and reading questions and

instructions), which 25 NSIs reported they included in the calculation of actual burden. The

other aspects of burden mentioned were “out-of-pocket costs/external costs” and “sixteen

standard activities based on the standard cost model” (SCM Network 2005, 26–27).

An important difference in burden measurement is whether all questionnaires dispatched

or only those returned are taken into account. 13 out of 34 NSIs measuring burden

considered only the number of dispatched questionnaires and eleven NSIs only the number

of returned questionnaires, whereas six NSIs considered both. A combination of both figures

was used in some NSIs that indicated the use of different methods for different surveys.

Ireland, on the other hand, does in fact publish two response-burden figures, one according

to the Standard Cost Model (with the assumption of full compliance) and another one for the

responding units only (Central Statistics Office 2012). The burden can also be estimated for

nonrespondents (e.g., time taken to reach the decision not to respond).

3.1.2 Registers of Response Burden

Sixteen out of forty-one NSIs reported that they had a database (a register) of the burden

imposed on each business unit. New Zealand used it to monitor burden (“respondent

Table 1. Potential sources of burden explicitly included in the calculation of actual response burden (N ¼ 33;

one institute with an actual burden measurement is missing)

Sources of actual response burden Yes No Don’t know

Filling in the questionnaire. 31 1 1
Retrieving, collecting, and compiling the information

requested.
28 4 1

Reading questions and instructions. 25 6 2
Administrative tasks (e.g., coordination) involved in

survey completion.
18 10 5

Record formation specifically done for reporting
obligations.

16 12 5

Recontacts with businesses about the data
provided.

13 16 4

Other sources of response burden. 3 18 12
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load”) at the business level (Merrington et al. 2009). For each business they calculated the

response burden and compared it to the relevant load thresholds for a business of that size.

If businesses were unfairly burdened they were given some relief (e.g., participation in

fewer surveys).

Moreover, in some countries registers were kept at the national level in order to monitor

and/or reduce burden caused by all government surveys. These registers may be seen as a

complement to NSIs’ actual burden measurements. Such registers were reported by

nine NSIs, such as the Statistical Clearing House (www.sch.abs.gov.au) in Australia, the

Office of Management and Budget (Office of Information and Regulatory Affairs 2006) in

the United States, and the Brønnøysund Register Centre (www.brreg.no) in Norway.

3.2 Burden-reduction Actions

Seventeen burden-reduction actions were assessed in the survey to ascertain the proportion

of business surveys in which these actions had been applied. The arithmetic mean number

of actions applied by the surveyed NSIs to at least some of their business surveys was

twelve. One NSI had implemented none of the proposed actions and four NSIs had

implemented 16 of the 17 proposed actions.

Figure 2 shows the extent to which the analyzed burden-reduction actions were present

among the NSIs surveyed and how many of them applied these actions to at least half of

their surveys. Burden-reduction actions that were more widely present across the NSIs

tended to be more widely used within NSIs. Respondents could contact a help desk (Help

desk) in nearly all NSIs and for a majority of surveys. Electronic versions of self-

completion questionnaires (E-qnr), help for respondents on a website (Website help), and

information on the concrete use of the statistical output based on the survey request

(Concrete use) were also widely used, but around a third of NSIs surveyed still applied

them to less than half of their surveys. Questionnaires were also widely tested with

respondents (Qnr testing), but only around half of the NSIs surveyed used this testing in

the majority of their surveys.

Some burden-reduction actions were present in at least 30 out of 41 NSIs surveyed, but

they were not applied as often to the majority of surveys at these NSIs: sample

coordination and/or rotation (Sample coord ) was applied in the majority of surveys by

only 13 NSIs, and register data replaced (part of) the data collection in the majority of

surveys by nine NSIs (Register data). Despite their presence in more than 30 NSIs, only

six NSIs applied the following three burden reduction actions to the majority of surveys:

using smaller sample sizes (Smaller samples), requesting fewer survey items (Fewer

items), and allowing nonautomatic fixed format files such as Excel (Excel ).

Burden-reduction actions that were hardly ever or never used in the majority of surveys

even when they were present in an NSI included: preprinting data from previous reporting

periods in the questionnaire (Preprinting), fewer recontacts with businesses (Fewer

recontacts), reduction of the data collection frequency (Less frequently) and the possibility

of using automatic extraction from the businesses’ administrative systems (XBRL). By

contrast, of 19 NSIs that used a survey calendar to inform businesses of forthcoming

survey requests (Survey calendar), as many as 14 used the calendar for the majority of

surveys. Around half of the NSIs surveyed also used account managers for contacts with
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large businesses (Account manager) and personalized feedback for respondents

(Feedback), but only about ten NSIs used those actions in the majority of surveys.

The open question containing a request to report any other unspecified reduction action

yielded many responses. Some of them could be assigned to the themes of responses to the

closed-ended questions. For example, some respondents interpreted the use of register data

as something different to the use of administrative data. Appendix 3 gives an overview of

the remaining other reduction actions and the number of times they were mentioned. It

must be kept in mind that these actions are probably used at more NSIs, but these were not

followed up in this study.

3.3 Effectiveness of Burden-reduction Actions

In response to our request for reports on the effects of burden-reduction actions, twelve

NSIs sent us one or more reports about their efforts to reduce response burden. Some of

these reports describe the development of response burden over time and, sometimes,

separately for specific surveys. Examples of such publicly available reports are
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PreprintingFewer recontacts
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Fig. 2. Presence and prevalence of burden-reduction actions in NSIs surveyed (N ¼ 41). Note: For complete

descriptions of labels see Appendix 2, Questions B1–B4.
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Fröhlich et al. (2012) and Central Statistics Office (2012). However, very few publicly

available studies investigate the effects of specific actions on response burden (Giesen and

Raymond-Blaess 2011). Some exceptions are Ojo and Ponikowski (2010), who carried out

a simulation study to explore the effects of dependent sampling, a method aiming at

reducing response burden on the precision of estimates; a technical report by the

Hungarian Statistical Office (2004) that describes a study on the expected effects of

proposed burden-reduction measures on respondents and data users; and a study by

Statistics Belgium (2010) that specifically states the effects of burden-reduction actions

both in terms of response burden and in staff costs before and after implementation.

3.4 Approaches to Response Burden

Hierarchical clustering revealed three clusters (see Appendix 4 for details of cluster

identification). The smallest cluster had approximately a quarter of the NSIs and the two

other clusters had each about half of the remaining NSIs (see Table 2). The differences

among clusters are particularly large with regard to the measurement of perceived

response burden (in Cluster 2 all NSIs have already done it compared to only 29% of all

NSIs) and much more moderate when it comes to the measurement of actual response

burden (the proportion of NSIs in Cluster 1 that have already done it is 63%, compared to

83% overall).

NSIs in Cluster 1 (N ¼ 16) manifested the most modest activities related to response

burden issues. This cluster contains all NSIs that carried out none, one, or two of the six

activities studied. About two-thirds of NSIs in this cluster measured the actual response

burden in some way in the five-year period studied and less than half of them did it

annually. The other four activities were present in a maximum of two NSIs. The defining

Table 2. Cluster sizes and proportions of NSIs within clusters with a specific practice considered in clustering

Cluster 1
(N ¼ 16)
Modest

response
burden

activity %

Cluster 2
(N ¼ 10)

Awareness of
perceived
response
burden %

Cluster 3
(N ¼ 15)
Actual

response
burden in
focus %

Total
(N ¼ 41) %

Actual response
burden measured

63 90 100 83

Perceived response
burden measured

13 100 0 29

Actual response burden
measured annually

25 50 73 49

NSI database on
response burden

13 20 80 39

Sample coordination
and/or rotation for all
or most surveys

0 60 47 32

Electronic questionnaires
for all or most surveys

6 80 93 56
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characteristic of this cluster is that none of its NSIs applied sample coordination and/or

rotation to the majority of their surveys.

NSIs in both Cluster 2 (N ¼ 10) and Cluster 3 (N ¼ 15) showed much more activity

with regard to response burden compared to Cluster 1 because they reported between three

and five of the six activities. However, they had a different focus. NSIs in Cluster 3

concentrated on actual response burden. They all measured it in some way in the five-year

period studied and the majority measured it annually, but none of them measured

perceived response burden. By contrast, measurement of perceived response burden may

be considered as the defining characteristic of Cluster 2, because all of its NSIs measured

the perceived burden in some way in the observed five-year period. The other larger

difference between Cluster 2 and Cluster 3 relates to response-burden databases. The

majority of NSIs in Cluster 3 kept such a database, whereas only a minority of NSIs in

Cluster 2 did. A closer look at the NSIs in Cluster 2 reveals that half of these NSIs applied

sample coordination and/or rotation to the majority of their surveys and at the same time

reported having no response-burden database. It is possible to claim that even these NSIs

were practically ready for burden management, because burden registration is just a step

away if a system infrastructure for sample coordination is already in place.

4. Discussion

Our study aimed to provide an overview of the situation regarding response-burden issues,

focusing on Europe but with some extra-European countries included. It became clear

during data collection that these issues cannot be covered in great detail because the data

on burden-measurement and -reduction actions were either scattered around the NSIs or

nonexistent. Most NSIs did not have a central person or department coordinating burden-

measurement and burden-reduction actions. Notable exceptions were the Ombudsman for

response burden at Statistics Canada (Sear 2011) and the Respondent Advocate at

Statistics New Zealand (Statistics New Zealand 2008). Therefore it cannot be excluded

that some actions were underreported and that the reality might be slightly better than the

results suggest.

A closer inspection of burden measurement revealed that there were large differences in

methodologies between NSIs and also within NSIs. These differences referred to the

conceptual and operational definitions (e.g., monetary burden versus time burden,

inclusion of recontacts and nonrespondents), type and number of data sources used,

calculation procedures, and so on. Some differences might be negligible for the burden

level (e.g., inclusion of nonrespondents when the response rate is high) but others quite

substantial (e.g., recontacts in a complex survey with many questionable items). These

methodological differences reflect differences in both the purpose and quality of burden

measurement. In order to address the political reasons for burden measurement it might be

sufficient for an NSI to consistently use current measurement through time, thus tracking

only changes in the level of actual burden, which is quite low when presented in relative

terms (e.g., compared to other administrative burdens). Comparisons for methodological

or strategic reasons based on methodologically different indicators within an NSI and

across NSIs are, however, much more problematic because they focus on burden levels
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(e.g., acceptable levels of actual burden per business, levels of perceived burden that affect

a respondent’s behavior in a survey, effects of a certain burden reduction action, etc.).

Our study results also indicate that most NSIs surveyed actively engage in activities

related to response burden. The great majority of NSIs surveyed had – in accordance with

the European Statistics Code of Practice – measured actual response burden in the five-

year period studied, nearly half of them annually. These NSIs seemed prepared to respond

to political pressures because they had a means of monitoring the actual burden imposed

on businesses at the national level that is typically at the heart of political debates. Some

NSIs also had policies guiding their burden-reduction activities. However, actions that

directly reduce actual burdens imposed on businesses were not so widely applied within

NSIs, regardless of whether they were common across NSIs (e.g., fewer survey items

requested and smaller sample sizes) or less common (e.g., fewer recontacts with

businesses and reduction of data-collection frequency). The highest prevalence was noted

for register data replacing (part of) data collection, which nonetheless was still not

common.

When analyzing burden-reduction actions, the first impression was that the NSIs really

focused on strategic reasons and tried to establish and/or improve their relations with the

business community by offering help and explaining how the collected data would be

used. These actions were probably relatively easy to implement because they did not

require much change in the work organization. Other actions likely required greater

interventions because they demanded redesigned processes (e.g., electronic versions of

self-completion questionnaires), a redesigned information system (e.g., sample

coordination and/or rotation, survey calendar) or a broader knowledge (e.g., account

managers for contacts with large businesses). Among these actions, the NSIs surveyed

performed best on the electronic versions of self-completion questionnaires, probably

because of other government initiatives for electronic reporting (e.g., on taxes), expected

cost savings and business pressures. If the NSIs wanted to manage actual burden well –

that is, to monitor its amount and spread over time – they first needed burden data per

business over time. Such databases or registers were, however, set up in less than half of

the NSIs surveyed, although a few NSIs might be close to having registers of this kind

because they possessed the infrastructure for survey coordination.

Some actions mentioned above could also be understood as methodologically motivated

burden-reduction actions, especially when considering the perceived burden, such as

offering electronic versions of questionnaires, offering help, and explaining the reasons for

survey requests (addressing the “irritation” burden, see High Level Group of Independent

Stakeholders on Administrative Burdens 2009). Less than a third of the NSIs surveyed,

however, measured the perceived response burden. Given that the survey questionnaire is

the essential instrument of data collection and the main “source” of any kind of burden,

and that the European Statistics Code of Practice explicitly prescribes systematic testing of

questionnaires prior to the data collection, it was expected that testing questionnaires with

respondents would be common across NSIs. A surprising finding was that half of the NSIs

surveyed used testing with respondents in less than half of their surveys. However, some

NSIs also had other initiatives that promised to make a questionnaire’s completion easier,

such as designing survey questions to be as close as possible to accounting categories,

regularly reviewing questionnaires, testing web-questionnaire usability, and so on.
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Given the burden-reduction actions implemented, the NSIs surveyed seemed to work

simultaneously on political, strategic, and methodological reasons. Our study does not

reveal how or why the NSIs decided on their combinations of implemented actions.

Variations among the NSIs in these combinations may partly be caused by structural

differences such as legal limitations (particularly with respect to getting access to

administrative data) or other government initiatives, and by the human, technological, and

financial resources available. They probably also reflect the fact that little is known about

the effects of various response-burden reduction actions on response burden, data quality,

and (net) costs for NSIs. Some burden-reduction actions have an obvious effect on actual

response burden (such as substituting direct data collection with administrative sources),

but even for these the effects on both actual burden and (net) costs are not often measured

or publicized. Furthermore, there is little evidence for other actions, and there is even less

evidence about effects on perceived response burden, data quality, and (net) costs for

NSIs.

This lack of data is quite surprising for an information producer in the era of big data

and omnipresent demands for improved efficiency. This overview of the situation might

stir the NSIs to start collecting evidence in order to understand their own positions better.

The overview discusses actions used at the time of data collection and indicates to what

extent most of these actions were present and used in the NSIs surveyed, thus establishing

a common reference or “norm”. Every NSI can now better compare itself to other NSIs.

Such benchmarking then urges the NSIs to respond by at least reconsidering, if not

improving, their own activities (see Triantafillou 2007). The best-performing NSIs may be

encouraged to fill the remaining gaps and the underperforming NSIs to reach the

“average”. Benchmarking can be supported by the cluster-analysis results, which

suggested marked disparities in approaches to response burden among the NSIs surveyed.

Some differences between the NSIs might be attributable partly to the diverse institutional

environments in which they operate. These diverse institutional environments represent

different levels of red tape, social responsibility, business friendliness, information

disclosure, access to modern technology, and so on, but also different historical

backgrounds. The situation seemed especially challenging for the NSIs of some smaller

countries. These NSIs in particular may benefit from sharing knowledge on response

burden among the NSIs in order to avoid reinventing the wheel.

4.1 Future Work and Research

It seems that successful management of response burden requires different disciplines

within an NSI to work together; at least experts from statistical units, methodology, data

collection, and communication should be involved. A central location for measuring and

managing response burden seems an efficient way to facilitate and stimulate such

cooperation within and across NSIs. It should also result in more data for benchmarking

purposes, but these data can only be useful if they are comparable.

Methodological differences in burden conceptualization, operationalization, and

measurement might be dealt with, to a certain extent, by estimating the effects of these

differences on the results. Current knowledge on these issues is, however, limited. We

therefore call for more research in order to better understand what concepts are relevant for
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what purpose, what sources of burden are (empirically) important in what context, what

data sources are reliable, how often to measure the burden, how to measure the perceived

burden of a single respondent and multiple respondents, and so on.

A longer-term objective, although one not easy to achieve, should be to attain some

harmonization of burden definitions, measurement, and indicators with the purpose of

allowing direct comparisons without corrections. Moreover, new indicators might be

developed to quantify the burden per data point collected. The 2007 Handbook for

Monitoring and Evaluating Business Survey Response Burden could be used as a starting

point. A standardized framework, however, requires active dissemination and follow-up;

the active involvement of Eurostat and other international organizations would certainly

be helpful for such processes (see also Giesen et al. 2011).

We also recommend that NSIs first of all document and monitor their burden-reduction

initiatives better, and share their knowledge both within and between NSIs. We also

recommend more studies comparing burden-reduction action alternatives or at least

describing the “before and after” situation to be able to make better decisions about

priority actions. In order to make well-informed decisions, a step forward in the research

into business survey data-collection methodology is indispensable. This research should

take into account that it may not be easy to change the opinions and behavior of

respondents to business surveys, who already have established routines and attitudes

concerning NSI survey requests. The research into effects of burden-reduction actions

should include both novice and experienced respondents and should monitor long-term

effects. Furthermore, it seems advisable to design studies that can detect how business

characteristics such as size class, type of industry, and past response behavior affect their

reactions to burden-reduction actions. It may well be that NSI actions can be more

effective and efficient if tailored to these characteristics.
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Appendix 1: List of Targeted NSIs (N 5 45) With An Indication of Nonresponse

NSIs of the EU and EFTA Countries (2714 5 31 Units; 1 Nonrespondent)

1. Austria: Statistik Austria

2. Belgium: Statistics Belgium

3. Bulgaria: National Statistical Institute

4. Cyprus: Statistical Service of Cyprus

5. Czech Republic: Czech Statistical Office

6. Denmark: Statistics Denmark

7. Estonia: Statistics Estonia

8. Finland: Statistics Finland

9. France: National Institute of Statistics and Economic Studies (INSEE)

10. Germany: Federal Statistical Office

11. Greece: National Statistical Service of Greece

12. Hungary: Hungarian Central Statistical Office

13. Iceland: Statistics Iceland

14. Ireland: Central Statistics Office Ireland

15. Italy: Italian National Institute of Statistics (ISTAT)

16. Latvia: Central Statistical Bureau of Latvia

17. Liechtenstein: Office of Statistics

18. Lithuania: Statistics Lithuania

19. Luxemburg: National Institute of statistics and economic studies (STATEC)

20. Malta: National Statistics Office

21. Netherlands: Statistics Netherlands

22. Norway: Statistics Norway

23. Poland: Central Statistical Office

24. Portugal: Statistics Portugal

25. Romania: National Institute of Statistics

26. Slovakia: Statistical Office of the Slovak Republic

27. Slovenia: Statistical Office of the Republic of Slovenia

28. Spain: National Statistics Institute

29. Sweden: Statistics Sweden

30. Switzerland: Swiss Federal Statistical Office

31. United Kingdom: Office for National Statistics

NSIs of the (potential) Candidate Countries (8 Units; 3 Nonrespondents)

1. Albania: Institute of Statistics

2. Bosnia and Herzegovina: Agency for Statistics of Bosnia and Herzegovina

3. Croatia: Central Bureau of Statistics

4. FYROM: Statistical Office of Macedonia

5. Kosovo: Statistical Office of Kosovo

6. Montenegro: Statistical Office of Montenegro (MONSTAT)
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7. Serbia: Statistical Office of the Republic of Serbia

8. Turkey: Turkish Statistical Institute

Non-European NSIs (6 Units; no Nonrespondents)

1. Australia: Australian Bureau of Statistics

2. Canada: Statistics Canada

3. New Zealand: Statistics New Zealand

4. USA: Bureau of Labor Statistics

5. USA: Census Bureau

6. USA: National Agricultural Statistics Service

Appendix 2: Web Survey Questionnaire

Note: Labels for burden-reduction actions given in bold in brackets in questions B1-B4

were added for easier interpretation of Figure 2 and did not appear in the questionnaire.

Part A: Measurement of Response Burden

A1. ** A1 Help text: Businesses ¼ organizations that produce goods and services for

profit. Actual response burden ¼ the money and/or time it takes to comply with

survey requests. **

This question is about actual response burden. We define actual response burden as

the money and/or time it takes to comply with survey requests.

In the last five years, 2006–2010, has the actual response burden incurred by

businesses to comply with survey requests of your organization been calculated?

** 1 choice only, no empty **

1. Yes ! A2

2. No ! A5

3. Don’t know ! A5

A2. Has the actual response burden been calculated in time spent, monetary costs or

both?

** 1 choice only, no empty **

1. In time costs only

2. In monetary costs only

3. Both in time spent and monetary costs

4. Don’t know

A3.a In the last five years (2006–2010), have the following kinds of data have been used

to calculate the actual response burden of businesses?

** 1 choice only, no empty **
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A3.b Please briefly describe the other data used to calculate the actual response burden of

businesses.

** Large memo field **

A4.a In the last five years (2006–2010), which potential sources of response burden have

been explicitly included in the calculation of businesses’ actual response burden?

** 1 choice only, no empty **

A4.b Please briefly describe the other sources of response burden used to calculate the

actual response burden of businesses.

** Large memo field **

A5. For the last five years (2006–2010), which of the following statements are true for

the methods used to calculate the actual business response burden due to survey

requests of your organization?

** 1 choice only, no empty **

Estimates from staff/experts. Yes/No/Don’t know

Qualitative studies assessing the costs of
complying (for example observation of respondents
completing the questionnaire).

Yes/No/Don’t know

Information provided by respondents in surveys
(for example through an additional survey
question on time taken to complete
questionnaire).

Yes/No/Don’t know

Other data** if Other data ¼ yes then A3.b ** Yes/ No/Don’t know

Record formation specifically done for
reporting obligations.

Yes/No/Don’t know

Administrative tasks (e.g., coordination)
involved in survey completion.

Yes/No/Don’t know

Reading questions and instructions. Yes/No/Don’t know

Retrieving, collecting and compiling
requested information.

Yes/No/Don’t know

Filling in the questionnaire. Yes/No/Don’t know

Recontacts with businesses about the data provided. Yes/No/Don’t know

Other sources of response burden** if Other
sources ¼ yes then A4.b **

Yes/No/Don’t know
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A6. ** A6 Help text: Perceived response burden ¼ the respondents

assessment/qualification of how burdensome the survey request is. **

This question is about perceived response burden. We define perceived response

burden as the respondents’ assessments of how burdensome they find it to comply

to the survey requests. This could be measured by questions on how time

consuming and/or burdensome they think the survey questionnaire is.

In the last five years, 2006–2010, has the perceived response burden of business

respondents caused by your survey requests been measured in some way?

1. Yes ! A6

2. No ! A9

A7. Has the perceived response burden of business respondents caused by your data

requests been measured at least once a year in the last five years (2006–2010)?

1. Yes

2. No

3. Don’t know

A8. Are the data on perceived response burden of businesses collected at the same time

as the survey data they relate to?

1. Yes

2. No

3. Don’t know

A9.a Do you have any additional information about the calculation and measurement of

business response burden that would help us understand your practices? Further on

in this questionnaire you can give references to any documents you might be able to

share on response-burden measurement.

1. Yes

2. No ! A10

Actual response burden is calculated each year. Yes/No/Don’t know

Actual response burden is based on the number
of businesses that respond to survey requests.

Yes/No/Don’t know

Actual response burden is based on the total number
of survey requests sent out (including nonresponse).

Yes/No/Don’t know

Data used for actual response burden calculation
are based on information provided by samples
of business-survey respondents.

Yes/No/Don’t know

Data on actual response burden are collected
at the same time as the survey data they
relate to (integrated or attached to survey request).

Yes/No/Don’t know
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A9.b ** If A9.a ¼ yes then A9.b

Please put any additional information on the calculation and measurement of

business response burden below.

Large memo field

A10. Does your organization keep a database on response burden for each business unit?

By this we mean a register-like database that contains information on the total

response burden for each business.

1. Yes

2. No

3. Don’t know

A11. In your country, is there an authority or register that records survey requests posed

on businesses by your organization as well as by other governmental organizations?

** 1 choice only, no empty **

1. Yes

2. No A13

3. Don’t know A13

A12. What is the name of the authority or register that records data requests by

government organizations?

** Medium sized memo field **

A13. In the last five years, 2006–2010, has any study been done on how businesses

perceive your organization – either in their capacity of data providers, data users or

both? Please include any studies on businesses’ perceived usefulness of statistics.

** 1 choice only, no empty **

1. Yes

2. No ! A15

3. Don’t know

A14. Please describe how the data on businesses’ appreciation of your organization have

been collected. Any related documents about this you can share with us can be

mentioned in question A16.

** large memo field **

A15. Can you help us find any recent (2005–2010) reports on how your institute

measures business response burden and/or the businesses’ appreciation for your

institute. As an attachment to the invitation letter for this survey we included a list

of papers we already found for your organization (if any).

Please enter any (other) references to reports below or send the reports to

rbsurvey@cbs.nl or to Deirdre Giesen, Divison of Methodology and Quality, Room

1C33, PO Box 4481, 6401 CZ Heerlen, The Netherlands.
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A16. Who has answered the questions above on the measurement of response burden?

Name: – – – –Noempty

Function: – – – –Optional field

Specific domain of expertise: – – – –Optional field

Department: – – – –Optional field

E-mail: – – – –Noempty, email check

Telephone number: – – – –Noempty

A17.a Who should we contact in your organization for additional information on the

measurement of response burden?

** 1 choice only, no empty **

† Same person as mentioned in previous question yes/no

† Other person(s) yes/no

A17.b If Other person(s) is yes than A17b

Please mention name, telephone number, e-mail address and, if applicable, specific

domain of expertise of the person(s) we can contact for additional information on

the measurement of response burden in your organization.

Large memo field

Part B Reduction of Response Burden

The goal of the following questions is to assess which practices national statistical

institutes use that can reduce response burden in business surveys.

B1 In the last five years (2006–2010), in which part of your business surveys have the

following actions been implemented?

** 1 choice only, no empty **

† None: in none of our business surveys

† Some: in some, but less than 50%

† Most: in 50% or more, but not all

† All: in all of our business surveys

Reduction of sample size(s). (Smaller samples) none/some/most/all/don’t know

Reduction of the frequency of data collection.
(Less frequently)

none/some/most/all/ don’t know

Reduction of the number of requested items in
survey requests. (Fewer items)

none/some/most/all/ don’t know

Reduction of the number of recontacts with
businesses. (Fewer recontacts)

none/some/most/all/ don’t know
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B2 Currently, to which part of your business surveys does each statement below apply?

** 1 choice only, no empty **

† None: to none of our business surveys

† Some: to some, but less than 50%

† Most: to 50% or more, but not all

† All: to all of our business surveys

B3 Currently, to which part of your business-survey questionnaires does each

statement below apply?

** 1 choice only, no empty **

† None: to none of our business-survey questionnaires

† Some: to some, but less than 50%

† Most: to 50% or more, but not all

† All: to all of our business-survey questionnaires

B4 Currently, to which part of your business surveys does each statement below apply?

** 1 choice only, no empty **

† None: to none of our business surveys

† Some: to some, but less than 50%

Register information has replaced (part of)
the data collected from businesses.
(Register data)

none/some/most/all/don’t know

(Part of) the data can be provided by
automatic extracted files from the
businesses’ administrative systems, for
example XBRL. (XBRL)

none/some/most/all/don’t know

(Part of) the data can be provided by
non-automatic fixed format files, for
example excel files. (Excel)

none/some/most/all/don’t know

Samples are coordinated and/or rotated
(survey holidays). (Sample coord)

none/some/most/all/don’t know

Data of previous reporting periods are preprinted
in the questionnaires (e.g., dependent
interviewing). (Preprinting)

none/some/most/all/ don’t know

Questionnaires have been tested with respondents
to assess how well they understand the
questionnaire and are able to provide
the data. (Qnr testing)

none/some/most/all/ don’t know

Electronic versions of self-completion
questionnaires are available. (E-qnr)

none/some/most/all/ don’t know
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† Most: to 50% or more, but not all

† All: to all of our business surveys

B5 Has your organization conducted any other activities to reduce response burden for

business surveys? If so, please describe below.

Large memo field

B6 Can you help us find any recent (2005–2010) reports on how your institute aims to

reduce businesses’ response burden? We are particularly interested in any studies

on the effects of these activities on response burden and data quality.

As an attachment to the invitation letter for this survey we included a list of papers

we already found for your organization (if any).

Please enter any (other) references to reports below or send the reports to

rbsurvey@cbs.nl or to Deirdre Giesen, Divison of Methodology and Quality, Room

1C33, PO Box 4481, 6401 CZ Heerlen, The Netherlands.

B7a Have the above questions on response-burden reduction been answered by the same

person who answered the questions on response-burden measurement?

Yes/no

If No Then B7b

Who answered the questions on response-burden reduction?

Survey requests are included in a survey calendar
that gives businesses an overview of which
surveys they can expect from your
organization. (Survey calendar)

none/some/most/all/don’t know

Respondents can contact a help desk if they have
questions about a survey (e.g., a specific phone
number and/or e-mail address). (Help desk)

none/some/most/all/don’t know

Respondents can find help on a website
(for example frequently asked questions).
(Website help)

none/some/most/all/don’t know

Information is provided on the concrete use
of the statistical output based on the survey
request. (Concrete use)

none/some/most/all/don’t know

Respondents can receive personalized
statistical feedback. (Feedback)

none/some/most/all/don’t know

The contacts with large businesses are managed
by a single account manager.
(Account manager)

none/some/most/all/don’t know
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Name: – – – – Noempty

Function: – – – – optional field

Specific domain of expertise: – – – – optional field

Department: – – – – optional field

E-mail: – – – – Noempty, email check

Telephone number: – – – – Noempty

B8a Who should we contact in your organization for additional information on

response-burden reduction?

† same as person mentioned in previous question

† someone else

If someone else Then B8b

Please mention name, telephone number, e-mail address and, if applicable, specific

domain of expertise of the person(s) we can contact for additional information on

the reduction of response burden in your organization.

Large memo field

Closing message

Appendix 3: Other Burden-reduction Actions Reported by NSIs Surveyed

Policies outside and within the NSIs
† Better coordination across public agencies and authorities (3x)
† Seeking access to administrative data (3x)
† Policy not to collect data if information is available in administrative data (3x)
† Program of data collection split in two chapters, direct data collection

and usages of administrative data from other government bodies (1x)
† Policy not to ask for the same information in different questionnaires (1x)
† ‘No gold-plating’ rule – implementing minimum requirements only (2x)
† ‘One-in, one-out’ rule (1x)
† Load Threshold Policy: proactive relief to businesses in accordance to size (1x)

Methods to make a questionnaire’s completion easier
† Regular monitoring/reviewing of questionnaires to detect problems

of respondents (3x)
† Testing usability of electronic web-based data collections (1x)
† Offering questionnaires in multiple modes (2x)
† Prefilling questionnaires with administrative data (1x)
† Redesign of questionnaires to align them as far as possible with the Profit &

Loss and Balance Sheet account entries (1x)
† Establishment of Accounting Practices Unit that seeks to reconcile survey

questions with business record keeping (1x)
† Establishment of response-improvement research staff to do research on

questions (1x)
† All questionnaires can be downloaded and sent back electronically through a

public website (1x)
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Appendix 4: Clustering

After testing various clustering methods, Ward’s hierarchical clustering method was

selected because it offered the most meaningful interpretations of the results obtained.

Several permutations of unit ordering were compared in order to observe the effect of unit

ordering on clustering results. At lower levels (with many small clusters) all results mostly

matched. At higher levels, three main groups with some differences were mostly detected.

The best clustering result was identified based on the criterion-function value (the

within sum of squares), some other theoretical measurements for cluster validation––

especially the silhouette plot, the average silhouette width, and the height of aggregation in

the hierarchical tree (Kaufman and Rousseeuw 1990; Everitt et al. 2001)––and

cluster interpretability. The criterion-function values (the within sum of squares) ranged

from 64.02083 to 75.45125. The solution presented here, with three well-separated

clusters, had the smallest obtained criterion-function value (64.02083) and offered a

meaningful interpretation of the clusters. These clusters with 16, ten, and 15 NSIs can be

seen clearly in the graphical presentation of the aggregation procedure (dendrogram) in

Figure A1 (the plot was cropped at the bottom where NSI names appear for confidentiality

reasons).

Actions to improve communication and relationship with respondents
† Development of special shorter questionnaires for small businesses (2x)
† Reduction of the level of detail asked on a number of questionnaires (1x)
† Interaction between data collectors and respondents via ICT and Internet

in order to complete questionnaires aiming at efficiency of the data-capture
process (1x)

† Website developed specifically for businesses, both as respondents and users (1x)
† Accept a copy of the balance sheet of the annual account instead of filling in SBS

questionnaire (1x)
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Fig. A1. Dendrogram of 41 NSIs, using six selected variables and obtained using Ward’s hierarchical

clustering method based on squared Euclidian distance for binary data.
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The silhouette plot shows how well each individual unit fits into the cluster. The

silhouette plot and the values of the average silhouette width of the clusters in Figure A2

suggest that units fit somewhat better in the larger two clusters compared to the smallest

cluster.
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Statistical Estimators Using Jointly Administrative and
Survey Data to Produce French Structural Business

Statistics

Philippe Brion1 and Emmanuel Gros2

Using as much administrative data as possible is a general trend among most national statistical
institutes. Different kinds of administrative sources, from tax authorities or other administrative
bodies, are very helpful material in the production of business statistics. However, these sources
often have to be completed by information collected through statistical surveys. This article
describes the way Insee has implemented such a strategy in order to produce French structural
business statistics. The originality of the French procedure is that administrative and survey
variables are used jointly for the same enterprises, unlike the majority of multisource systems,
in which the two kinds of sources generally complement each other for different categories of
units. The idea is to use, as much as possible, the richness of the administrative sources
combined with the timeliness of a survey, even if the latter is conducted only on a sample of
enterprises. One main issue is the classification of enterprises within the NACE nomenclature,
which is a cornerstone variable in producing the breakdown of the results by industry. At a given
date, two values of the corresponding code may coexist: the value of the register, not necessarily
up to date, and the value resulting from the data collected via the survey, but only from a sample
of enterprises. Using all this information together requires the implementation of specific
statistical estimators combining some properties of the difference estimators with calibration
techniques. This article presents these estimators, as well as their statistical properties, and
compares them with those of other methods.

Key words: Structural business statistics; administrative data; multisources device.

1. Introduction

Using administrative data to produce official statistics is a big challenge for National

Statistical Institutes (NSIs). Concerning business statistics, a lot of administrative sources

are often available, and NSIs are using them more and more in an intensive way.

A European ESSnet has been working on finding common ways for their use. However,

an information collection carried out in 2009–2010 about existing practices among

NSIs shows that various contexts do exist, especially concerning the legal basis underlying

the use of administrative data, and the cooperation with administrative data holders

(Costanzo 2011).

If we now consider the case of structural business statistics, the strategies of the different

NSIs vary greatly, from the simple use of statistical surveys (without any use of
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administrative sources) to the complete replacement of survey data with administrative

sources. In between, a lot of NSIs use intermediate systems, combining administrative and

survey data.

This article describes the French strategy adopted by Insee (National Institute of

Statistics and Economic Studies) in order to build a new process of producing structural

business statistics. As mentioned in Costanzo (2011), concerning the use of administrative

data for business statistics, France is considered to have a specific model, highly centralized,

due to a business register (SIRENE) that serves both administrative and statistical purposes.

This model makes the use of administrative data concerning enterprises easier than in other

countries, particularly due to the fact that each administration uses the same unit and the

same ID number for the enterprises, which is the SIRENE ID number.

France has been using tax files to produce structural business statistics for a long time

(Grandjean 1997). The richness of these files, composed of annual income statements sent

by enterprises to the tax authorities, is very interesting, since the files provide detailed

information about the accounting characteristics of all French businesses. However, for a

long time, these files were available too late to answer certain needs, such as the supplying of

preliminary results before the end of October of year (n þ 1) for the European Structural

Business Statistics (SBS) regulation. Furthermore, they did not provide information for all

kinds of needs. Thus a statistical survey, limited to a sample of enterprises, was conducted at

the same time: this statistical survey was the basis for the preliminary results sent to

Eurostat, as the administrative data were used for the definitive results sent later.

This double system had a significant drawback, however: the two sources sometimes

told different stories, even at a highly aggregated level. Using two different sources led,

obviously, to the possibility of conflicting results. Here, one of the most important reasons

identified related to the classification of enterprises within the NACE nomenclature.

The two sources do not obtain the same quality of information for this variable

(see Subsections 2.1 and 2.2 below), tax files being mainly based on the value of the

code within the register, which cannot be updated in a continuous way for all enterprises.

Since the results by industry are very important for structural business statistics, the

divergences of the two systems were particularly problematic.

Hence a new system of production of French Structural Business Statistics, named

ESANE (as Elaboration des Statistiques ANnuelles d’Entreprises), has been implemented

to unite the two previous systems in just one, taking advantage of each of their

characteristics (Brion 2011).

The originality of this device is that within it, variables obtained in the two sources

(administrative files, statistical survey) are used jointly for the same enterprises, especially

for classifying them within the NACE. By contrast, in many other systems, at least in

European countries (ESSnet on administrative data 2011), the two sources generally

complement one another for different categories of enterprises (for example, the statistical

survey being limited to large enterprises, and the administrative data used for small and

medium units).

This article is mainly dedicated to the questions of statistical estimators used in the

device. The next section of the article provides a quick overview of the system. The

following section is dedicated to the characteristics of the estimators that have been

implemented. In Section 4, some other aspects of the system are mentioned briefly.
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2. The French System of Structural Business Statistics

2.1. An Intensive Use of Administrative Data Combined With a Survey

The French system is mainly based on two administrative sources, completed by a survey.

It is based upon a central administrative source: the annual statements of benefits sent by

enterprises to the tax authorities (Chami 2010), containing accounting variables (between

500 and 1,000 according to the size of the enterprise). It should be noted that French

statistical law makes Insee’s access to these files possible. This material is very rich, since

it concerns every unit of the three millions of enterprises under the scope of business

statistics. Of course it cannot be used directly, mainly for two reasons:

. it has to be checked, because of missing data, or of multiple declarations: hence work

is done by Insee to impute missing data (Deroyon 2013) and to deal with multiple

declarations,

. not all information needed to produce the structural business statistics is available in

these files, and additional information has to be obtained elsewhere.

A second interesting source is composed of the annual social security returns of the

enterprises to the administration, giving information about employees and wages.

Using these two sources helps lessen the statistical burden on enterprises, but some

additional information has to be collected to answer some of the users’ needs. This is done

through a statistical survey, because the required information is not available in

administrative files. One cornerstone variable in particular is obtained thanks to the

survey: the detailed breakdown of the enterprise’s turnover according to its different

activities. This information, among others, is needed at a very detailed level for the

national accounts. Since only a “rough breakdown” – between production, sales and

services – of the total turnover of the enterprise is available in the tax files, one main part

of the statistical survey questionnaire is dedicated to this question: enterprises are asked to

fill out a table giving the value of the turnover of each industry they are performing.

Other variables are collected through the survey, concerning restructuring of

enterprises, data about nonsalaries, and other specific topics related to the economic

sectors (relative to professional expenses, or to other specific aspects such as, for example,

the number of trucks for road transportation). This survey is limited to a sample of

enterprises (Haag 2010).

2.2. The Business Register and the Classifying of Each Enterprise Using the

Nomenclature of Activities

As mentioned above, the French business register, SIRENE, serves both administrative

and statistical purposes. The use of its ID number is mandatory for each French

administration, and this makes the use of administrative files for statistical purposes very

easy. In this way, there is no problem of undercoverage of the register.

Every French enterprise has, within SIRENE, a “principal activity code” named APE

(in French Activité Principale de l’Entreprise), classifying it within the French NAF

nomenclature of activities, which is derived from the European NACE. In this article, this
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value is named APEreg. At the time of the creation of the enterprise, this value is coded by

SIRENE clerks, according to the firm declaration.

However, this value is not necessarily updated in a continuous way for all French

enterprises, especially for the numerous small ones. Some enterprises send information to

modify the value of this code, but this is not the case for all of them. So directly using the

value available in the register for producing statistics may raise quality-related questions:

economic sectors are changing, for example, during the last years some enterprises have

been moving from industry to the trade sector. The statistics that could be produced

directly using the values of the code within the business register would not properly

represent these changes.

Through the statistical survey, we obtain updated and rather objective information on

the different activities conducted by the surveyed enterprises: each enterprise fills out a

table giving a breakdown of its turnover according to the different activities it is

performing, and an algorithm is then used to calculate an updated value of the APE code

(using the breakdown of the turnover by activities as a proxy for the breakdown of value

added of these activities, which should be, from a theoretical point of view, the basic

information to classify the enterprise). This updated value, referred to in this article as

APEsurvey, may differ from the initial value of the register, and is only available for some

of the enterprises, namely those that are surveyed. In the end, it is introduced into the

business register, and may be used for the next drawing of samples; however, it cannot be

fed back into the register and then used directly in the current survey as an auxiliary

variable for statistical purposes (for example for calibration), since the partial updating of

the register would lead to some bias.

2.3. An Original Kind of Database

Using administrative and survey data jointly leads, in a simplified presentation, to an

incomplete rectangular data base (Figure 1). In this figure, rows represent enterprises

and columns variables. The right part contains variables obtained through the

administrative sources (mainly accounting variables), and the left part variables

obtained through the statistical survey. This survey uses a sample stratified according to

the activity and the size of the enterprises. The stratification variable used for the

activity is obviously APEreg, and the size is based on the number of employees. The

sampling rates are different according to the size of the enterprise, and the take-all

stratum (generally defined as more than 20 employees) contains the largest enterprises.

The white area dominating the left part represents unobserved data (since in the

sampled stratum only 85,000 enterprises are surveyed from the population of almost

three million units).

This data base, where sampling weights exist for the left part only, is not easy to use,

compared to an administrative data base (without sampling weights) or to a survey data

base (with data limited to the sampled units, with sampling weights).

It should be noted concerning the classifying of the enterprise within the nomenclature

of activities that two values may coexist in the database: the value of the register APEreg,

available for all three million enterprises, and the value of the updated APEsurvey, which

exists only for the units of the survey.
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3. The Statistical Estimators Used to Produce the Structural Business Statistics

3.1. What Kinds of Statistics Do We Want to Produce?

Structural business statistics have to give an appropriate picture of the population of

enterprises, mainly concerning accounting variables (such as the turnover, the value

added, the investments, etc.), but also characterizing enterprises by the industry to which

they belong.

In this way, many of the produced statistics do not result from one variable only, but

from a combination of two (or more) variables: a quantitative variable combined with a

qualitative variable.

For example, if we consider the total turnover of an economic sector A, the quantity to

estimate is:

i[U

X
TurnoverðiÞ1IAPE¼AðiÞ;

where 1IAPE¼AðiÞ is the indicator variable relative to the classifying of enterprise i in

industry A (or sector: in this article we use sometimes the wording sector, understood as

economic sector, not institutional sector referring to the system of national accounts), and

U is the global population of enterprises.

The variable “turnover” is available in the tax files, while for the activity code the

survey provides fresher and richer information than the register (even if a value does exist

in the register).

Other kind of statistics are produced, for example statistics based only on survey variables

but the following sections of the article focus mainly on the multisource statistics presented

above, since sector-based statistics are one of the main results of the device.

Administrative dataVariables measured
using survey
questionnaire

Sampled stratum of the
statistical survey: 85,000

enterprises
Take-all stratum of

the statistical
survey: 75,000

enterprises

Total number of
enterprises in the
scope: 2.9 million

Fig. 1. ESANE, the multisources device for the French business statistics
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3.2. Different Possible Methods

The objective is to rely, as much as possible, on the exhaustiveness of administrative

sources, which concern hundreds of variables. This material has to be used jointly with the

information available in the statistical survey, conducted on the sample of enterprises,

particularly the up-to-date activity code.

Two “families” of methods may be considered:

. mass imputation (Kovar and Withbridge 1995), taking into account the observations

of the sample to generate values for the white part of the rectangle of Figure 1; in

particular, it is necessary to generate an updated APE code for each enterprise of the

population (that means approximately three million enterprises),

. inference using specific statistical estimates.

Methodological studies have been conducted to compare the two kinds of methods (Brion

2007, performed on past data in NACErev1. It should be noted that Kroese and Renssen

(2000) present some elements on the mass imputation method that are similar to those of

(Brion 2007)). More precisely, the imputation method that has been evaluated consisted of

imputing an updated value of the APE code for the nonsampled units by using

probabilities of moving from the economic sector in which the enterprise is classified

within the register to another sector, these probabilities being estimated on the sample for

categories belonging to the same “four-digit” level within the register.

The first thing to note is that the mass imputation method leads to some potential bias in

the way it is proposed here. The methodological studies have quantified the value of this

bias as far from negligible: more precisely, for the trade sector, composed of 119 different

values of the code APE, 15 have a potential bias with the proposed imputation method that

is more, in absolute value, than ten percent of the total to estimate.

Then, in order to compare the mass imputation method with other estimates, the mean

square error of every method needs to be computed: for the mass imputation method, its

variance needs to be evaluated and to be added to the square of the bias that has been

evaluated previously. The mass imputation method is compared to a difference estimator,

which is unbiased, and close to the final estimators used in ESANE that are presented in

next section (Brion 2007). Results show that, for the global trade sector, the root mean

square error of the difference estimator is approximately half of the root mean square error

of the mass imputation estimator. A comparison at a lower level of the nomenclature (four

digits of the NACE) has been found that for 13 classes mass imputation was better, as for

100 classes the difference estimator was better. For this reason, it was decided to abandon

the idea of using the mass imputation method. However, the question of the different kinds

of methods to use to produce official statistics remains open (see for example Little 2012

and Brion 2012a).

Then, concerning “classic” statistical estimates, two usual strategies may be considered:

1. Only using the data coming from the units in the sample (and taking into account

both survey and administrative variables for these units). This is a minimum

approach, because it does not exploit the exhaustiveness of the administrative

sources, which is consequently unsatisfactory.
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2. Using calibration techniques (Deville and Särndal 1992) to improve the efficiency of

the estimators. Here, the exhaustiveness of the administrative sources is used to

modify the sampling weights according to calibration equations involving some of

the administrative variables. This approach, which is an extension of the general

regression estimator, will lead to a better precision of estimates for variables linked

to the calibration variables.

In theory, this strategy allows us to take into account all information available in the

administrative sources by computing a calibration estimator which takes into account all

administrative variables. However, the huge number of fiscal variables (over 500) makes

this approach totally impracticable: the calibration procedure (if it converges, which is

clearly not guaranteed: indeed, with so many variables, even the regression estimator,

which is a special case of calibration estimator, can be incomputable, due to colinearity

problems for example) will lead to some negative and/or overly extreme weights, which

will induce unrealistic sector-based estimates for some economic sectors, especially at a

detailed level.

To avoid these problems, another strategy could be to take into account the information

available in the administrative sources “variable by variable” and “sector by sector”, by

computing a simple regression estimator for each fiscal variable and each sector.

For a fiscal variable Z and a sector A, such a sector-based estimator would be:

Ẑ
A

reg ¼
s

XZi1IAPEsurvey¼AðiÞ

pi

þ b̂Z;A
U

X
Zi1IAPEreg¼AðiÞ2

s

XZi1IAPEreg¼AðiÞ

pi

2

4

3

5

¼ Ŷp þ b̂Z;A X 2 X̂p

� �
ð1Þ

with Yi ¼ Zi1IAPEsurvey¼AðiÞ and Xi ¼ Zi1IAPEreg¼AðiÞ;

pi is the inclusion probability of unit i;
1IAPEreg¼AðiÞ is the indicator variable using the value of the APE code within the

register;

1IAPEsurvey¼AðiÞ is the indicator variable using the value of the APE code obtained

through the statistical survey;

b̂Z;A is the coefficient of the simple regression of Y on X (the subscript Z,A reminds

us that this coefficient depends at the same time on the fiscal variable Z and on the

sector A).

It should also be noted that this regression estimator can also be formulated as a

weighting estimator with weights wi
Z,A that are different for each fiscal variable and each

sector. This differs from the “classical” calibration estimator that leads to a single weight

for each sampling unit regardless of the fiscal variable or sector.

Such an estimator allows us to produce sector-based estimates for all fiscal variables and

all “sectoral” levels by systematically taking into account the exhaustiveness of the

administrative sources. Unfortunately, such an approach is not appropriate to the context
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of ESANE. And consequently, these regression estimators are not used in the final system.

Indeed, statistics produced in the ESANE device are subject to many consistency

constraints, both “vertical” – consistency between estimations concerning different levels

of hierarchically nested nomenclature – and “horizontal” – consistency between

estimations relating to variables linked by accounting relationships – that the estimation

method has to respect. However, the approach detailed above is not linear, because the

b̂Z;A coefficients – or the weights wi
Z,A if the estimator is formulated as a weighting

estimator – change with the fiscal variable Z and the sector A, and consequently this

approach does not ensure that the consistency constraints in the ESANE method would be

respected.

Let us take, for example, three fiscal variables U,V and W linked by the accounting

relationship W ¼ U þ V and a group G of the NACE Rev.2 divided into two classes G1

and G2. We can compute the three sector-based estimators according to Formula (1):

Û
G

reg ¼
s

XUi1IGroup survey¼GðiÞ

pi

þ b̂U;G
U

X
Ui1Igroup reg¼GðiÞ2

s

XUi1Igroup reg¼GðiÞ

pi

2

4

3

5

V̂
G

reg ¼
s

XVi1IGroup survey¼GðiÞ

pi

þ b̂V;G
U

X
Vi1Igroup reg¼GðiÞ2

s

XVi1Igroup reg¼GðiÞ

pi

2

4

3

5

Ŵ
G

reg ¼
s

XWi1IGroup survey¼GðiÞ

pi

þ b̂W;G
U

X
Wi1Igroup reg¼GðiÞ2

s

XWi1Igroup reg¼GðiÞ

pi

2

4

3

5

But as b̂U;G – b̂V;G – b̂W;G, Ŵ
G

reg is not equal to Û
G

reg þ V̂
G

reg, even if we have Wi ¼

Ui þ Vi for each unit i.

And in the same way, we can compute for variable U the sector-based estimator for

sectors G, G1 and G2:

Û
G

reg ¼
s

XUi1IGroup survey¼GðiÞ

pi

þ b̂U;G
U

X
Ui1Igroup reg¼GðiÞ2

s

XUi1Igroup reg¼GðiÞ

pi

2

4

3

5

Û
G1

reg ¼
s

XUi1IClass survey¼G1ðiÞ

pi

þ b̂U;G1

U

X
Ui1IClass reg¼G1ðiÞ2

s

XUi1IClass reg1¼G2ðiÞ

pi

2

4

3

5

Û
G2

reg ¼
s

XUi1IClass survey¼G2ðiÞ

pi

þ b̂U;G2

U

X
Ui1IClass reg¼G2ðiÞ2

s

XUi1IClass reg¼G2ðiÞ

pi

2

4

3

5

The same causes produce the same effects, as b̂U;G – b̂U;G1 – b̂U;G2, Û
G

reg is not equal to

Û
G1

reg þ Û
G2

reg.

Another strategy is hence proposed: using combined statistical estimates mixing the

principles of the difference estimators (Särndal et al. 1992) and the calibration techniques.

This third option is detailed in the next section of the article.
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3.3. The Statistical Estimators for Sector-Based Estimates at the Group

(and Upper) Level

The idea is to start from the standard Horvitz-Thompson estimator and to use the

exhaustiveness of the administrative sources to improve its efficiency as much as possible

while keeping to all the consistency constraints of the ESANE device. In practice, as we

have to deal with unit nonresponse, the “starting point” is in fact not the Horvitz-

Thompson estimator but the reweighted-expansion estimator, with weights adjusted for

unit nonresponse thanks to the response homogeneity groups method RHG.

First, as the turnover is a core variable – highly correlated with both turnover

breakdown and the main accounting variables of the device such as value added –, we can

use calibration techniques to modify the RHG-adjusted weights according to calibration

equations involving turnover by sector. More precisely, the equations used here are:

i[R

X
wiTðiÞ1IAPEreg¼AðiÞ ¼

i[U

X
TðiÞ1IAPEreg¼AðiÞ

i[R

X
wi1IAPEreg¼AðiÞ ¼

i[U

X
1IAPEreg¼AðiÞ

8
>>><

>>>:

where:

. wi is the calibrated weight of each enterprise i of the sample of respondents R,

. 1IAPEreg¼AðiÞ is the indicator variable using the value of the APE code within the

register,

. T(i ) is the value of the turnover of enterprise i in the tax files.

That is, we perform calibration on the total turnover and the number of enterprises by

sector for each sector A of the ESANE device. In practice, this calibration is generally

performed at the “3-digits” level of the sectoral classification, in order to limit the range of

changes of the weights.

The calibration on the sectoral total of turnover permits us to improve the accuracy of

sector-based estimates for all variables correlated with the turnover, while the calibration

on the number of enterprises by sector aims to avoid too much distortion concerning the

estimation of numbers of enterprises by sectors.

This calibration estimator thus incorporates all information available in the tax sources

for the turnover variable, but, as previously stated, it does not allow the exhaustiveness of

the administrative sources to be taken into account for other variables. In order to

compensate for this drawback, we can use the principle of difference estimation and

consider the following “combined estimator” for sector-based estimates relating to any

administrative variable Z, such as turnover, value added, investments and so on:

Ẑ
A

diff ¼
i[R

X
wiZi1IAPEsurvey¼AðiÞ þ

i[U

X
Zi1IAPEreg¼AðiÞ2

i[R

X
wiZi1IAPEreg¼AðiÞ ð2Þ

This estimator, based on the existence of two APE codes – the one of the register

(APEreg), available for all units, and the one derived from the survey (APEsurvey), known

only for the sample –, allows us to use all information available in the administrative
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sources for the variable Z while keeping to all the linear consistency constraints of the

ESANE device because of its linearity.

Indeed, if we consider again the example of three fiscal variables U,V and W linked by

the accounting relationship W ¼ U þ V and a group G of the NACE Rev.2 divided into

two classes G1 and G2, we can compute the three sector-based estimators according to

Formula (2):

Û
G

diff ¼
i[R

X
wiUi1IGroup survey¼GðiÞ þ

i[U

X
Ui1IGroup reg¼GðiÞ2

i[R

X
wiUi1IGroup reg¼GðiÞ

V̂
G

diff ¼
i[R

X
wiVi1IGroup survey¼GðiÞ þ

i[U

X
Vi1IGroup reg¼GðiÞ2

i[R

X
wiVi1IGroup reg¼GðiÞ

Ŵ
G

diff ¼
i[R

X
wiWi1IGroup survey¼GðiÞ þ

i[U

X
Wi1IGroup reg¼GðiÞ2

i[R

X
wiWi1IGroup reg¼GðiÞ

and we have:

Û
G

diff þ V̂
G

diff ¼
i[R

X
wiUi1IGroup survey¼GðiÞ þ

i[R

X
wiVi1IGroup survey¼GðiÞ

þ
i[U

X
Ui1IGroup reg¼GðiÞ þ

i[U

X
Vi1IGroup reg¼GðiÞ

2
i[R

X
wiUi1IGroup reg¼GðiÞ þ

i[R

X
wiVi1IGroup reg¼GðiÞ

" #

¼
i[R

X
wi

Wi

Ui þ Við Þ
|fflfflfflfflffl{zfflfflfflfflffl}

1IGroup survey¼GðiÞ þ
i[U

X

Wi

Ui þ Við Þ
|fflfflfflfflffl{zfflfflfflfflffl}

1IGroup reg¼GðiÞ

2
i[R

X
wi

Wi

Ui þ Við Þ
|fflfflfflfflffl{zfflfflfflfflffl}

1IGroup reg¼GðiÞ

¼ Ŵ
G

diff

In the same way, for variable U we can compute the sector-based estimator for Sector G,

G1 and G2:

Û
G

diff ¼
i[R

X
wiUi1IGroup survey¼GðiÞ þ

i[U

X
Ui1IGroup reg¼GðiÞ2

i[R

X
wiUi1IGroup reg¼GðiÞ

Û
G1

diff ¼
i[R

X
wiUi1IClass survey¼G1ðiÞ þ

i[U

X
Ui1IClass reg¼G1ðiÞ2

i[R

X
wiUi1IClass reg¼G1ðiÞ

Û
G2

diff ¼
i[R

X
wiUi1IClass survey¼G2ðiÞ þ

i[U

X
Ui1IClass reg¼G2ðiÞ2

i[R

X
wiUi1IClass reg¼G2ðiÞ
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and we have:

Û
G1

diff þ Û
G2

diff ¼
i[R

X
wiUi

1IGroup survey¼GðiÞ

1IClass survey¼G1ðiÞ þ 1IClass survey¼G2ðiÞ
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

þ
i[U

X
Ui

1IGroup reg¼GðiÞ

1IClass reg¼G1ðiÞ þ 1IClass reg¼G2ðiÞ
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

2
i[R

X
wiUi

1IGroup reg¼GðiÞ

1IClass reg¼G1ðiÞ þ 1IClass reg¼G2ðiÞ
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼ Û

G

diff

Moreover, as the variables Zi1IAPEsurvey¼AðiÞ and Zi1IAPEreg¼AðiÞ are usually well

correlated and indeed often almost identical, this difference estimator is particularly

appropriate to the ESANE device, and generally permits us to improve the quality of

sector-based estimates.

It should be noted that the principle of difference estimation is used here in an

unconventional way: indeed, in the conventional difference estimator (Särndal et al.

1992), the same set of auxiliary variables is used to perform estimation for all variables;

conversely, in our combined estimator, the auxiliary variable Zi1IAPEreg¼AðiÞ depends at

the same time on the administrative variable Z and on the sector A and is consequently

suited to the considered sector-based estimation.

Let us finally conclude with two comments on the relevance and the impact of

calibration in our combined estimator. First, with calibrated weights, the combined

estimators coincide with the calibrated estimators at the level of the nomenclature used for

the calibration equations for the sector-based estimates relating to variables “turnover”

and “number of enterprises”. This gives coherence between statistics based on the

administrative variables and estimates based on variables available only in the survey –

obtained with the calibrated estimator. Finally, the use of calibrated weights in the

combined estimator leads to improvements in the accuracy of sector-based estimates when

Zi1IAPEsurvey¼AðiÞ2 Zi1IAPEreg¼AðiÞ is correlated with Ti1IAPEreg¼AðiÞ or 1IAPEreg¼AðiÞ.

3.4. A Quantitative Comparison of the Different Methods

In this section, we assess the impact of the methodological improvements implemented

in the new system, namely the combined use of calibration techniques and difference

estimators, for sector-based estimates at the “three-digit” (and above) level of the

NACE Rev.2 classification. For this purpose, we consider the three following

estimators:

. the reweighted-expansion estimator, with weights adjusted for unit nonresponse

thanks to the response homogeneity groups method (named RHG),

. the calibrated estimator stemming from the calibration step performed in the ESANE

device, which is equivalent to the GREG estimator using as auxiliary information the

total turnover and the number of enterprises by sector, for each sector at the three-

digit level of the sectoral classification (named GREG),

. and the combined estimator described in the previous section (named Esane).
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Let us first note that, under the RHG model, these three estimators are unbiased – the

reweighted-expansion estimator – or asymptotically unbiased – the GREG estimator and

the Esane estimator. Consequently, we focus here on comparing the accuracy of these

three estimators, measured by their coefficient of variation (CV).

To compute the coefficients of variation relating to the reweighted-expansion estimator,

we use a self-made SAS macro which analytically computes variance, taking into account

the stratified sampling design of the survey and the unit nonresponse adjustment using the

RHG model.

The coefficients of variation relating to the GREG estimator are obtained by computing

the variance of the reweighted-expansion estimator for the total of the residuals derived

from the weighted least squares regression of the variable of interest Yi1IAPEsurvey¼AðiÞ on

calibration variables.

Finally, the coefficients of variation relating to the Esane estimator are obtained by

computing the variance of the reweighted-expansion estimator for the total of the residuals

derived from the weighted least squares regression of the variable of interest

Yi1IAPEsurvey¼AðiÞ2 Yi1IAPEreg¼AðiÞ on calibration variables.

We focus on a small group of core variables of the ESANE device: number of

enterprises, turnover, salary, value added, gross operating profit, total assets, total

liabilities and gross investments in tangible goods. Table 1 gives the result of this

comparison for the six main production sectors covered by the ESANE device.

These results show that, at a global level, the Esane estimator gives better results than

the two other estimators. At a more detailed level, the Esane estimator improvement

performs better, as shown in Figures 2 and 3. These figures compare the different possible

strategies for all variables and main sectors. They show that GREG performs better than

RHG, and ESANE generally better than GREG.

But the improvement differs, obviously, depending on the relationship between the

studied variable and the variables involved in the calibration procedure, especially with

turnover, as Figures 4 and 5 show: for the variable “value added”, the calibration step leads

to an improvement of the estimators’ accuracy, since the value added is positively

correlated with the turnover; the “difference estimation” step leads to an another

improvement of the estimators’ accuracy, of the same order of magnitude as that of the

calibration step.

Conversely, for the variable “gross investments in tangible goods”, the improvement of

the combined estimator is much more important. This is due to the richness of the tax file,

which is used in the combined estimator, thanks to the principle of difference estimation,

but not in the other methods – since, in the ESANE device, only the turnover and the

number of enterprises by sector is used in the calibration equations. The link between the

turnover and the investments is relatively weak, compared to the link between the value

added and the turnover.

This first global assessment of an improvement of estimates’ accuracy due to the

combined use of calibration techniques and difference estimators to produce the sector-

based estimates in the ESANE device is confirmed by the comparison of sector-based

estimates’ CV at the three-digit level of the French nomenclature, presented in Figure 6

(Table 2 in the Appendix gives the means and quintiles corresponding to these box plots).

Indeed, the new statistical estimators generally lead to an average reduction of the CV, and
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improve the accuracy of estimators in more than 80% of cases. Conversely, for the

remaining 20%, the RHG estimator performs better than the ESANE one.

3.5. The Statistical Estimators for Sector-Based Estimates at Finer Levels

As indicated in the previous section, the implemented methods use the richness of the

whole administrative data, and correct the problems of misclassifying some units within

the registers.

However, these combined estimators have also some limits: particularly, they do not

guarantee to always produce positive values, and can consequently lead to negative

estimates even if all individual data for the variable of interest are positive. This proves
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Fig. 2. Comparison of RHG and GREG coefficients of variation, estimations relating to the six main production

sectors and the eight variables presented in Table 1
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Fig. 3. Comparison of GREG and Esane coefficients of variation, estimations relating to the six main

production sectors and the eight variables presented in Table 1
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problematic, especially when it concerns variables for which negative aggregates make no

economic sense, like turnover or salary.

In practice, this kind of problematic situation appears only when the estimation is

relating to too small a domain, either because very few enterprises are concerned by the
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Fig. 4. Coefficients of variation of the three estimators (RHG, GREG, ESANE) for the estimation of the total of

the value added by main economic sector
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Fig. 5. Coefficients of variation of the three estimators (RHG, GREG, ESANE) for the estimation of the total of

the gross investments in tangible goods by main economic sector
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variable of interest (like the variable “Sumptuary costs and expenses”), or mostly because

the estimation is performed at fine levels of industry disaggregation. Indeed, as the

industry disaggregation becomes finer, the amount of misclassification becomes larger,

and simultaneously, the sample size available in finer-level cells to estimate this

misclassification becomes smaller. Under these conditions, the difference estimators are

not robust, and the change of the APE code of a single enterprise with a large value of one

variable and/or a big sampling weight may create problems in the above formula, leading

to negative values.

From a theoretical perspective, these negative estimates are not really problematic.

Indeed, they merely reveal direct estimates’ lack of precision when domain sample sizes

are too small, a problem that would not necessarily appear so obviously when using

classical methods: for such small domains, the RHG or calibrated estimators would have a

very large variance, and when using administrative data directly with approximate values

of the APE code coming from the register – available for all units but not necessarily

up-to-date –, we would have a large bias.

However, these negative estimates constitute a practical drawback for the production

of results at fine levels of industry disaggregation. To avoid being faced with a lot of

potentially negative estimates for small domains, it has been decided to adjust the strategy

concerning the estimators:

. For sector-based estimations at the “group” level (three digits of the NACE Rev.2

classification) and higher levels, the difference estimator presented in 3.3 is used.

Indeed, at these relatively highly aggregated levels, we have very few “wrongly”

negative estimates – less than 0,1% of all the group estimates – and they concern

only variables of minor interest, such as the “Sumptuary costs and expenses”. So we

can deal with this problem by not publishing these rare negative estimates.

70
50
40
30

20

10

0.3

1

C
V

 E
SA

N
E

/C
V

 R
H

G

0.01

Number of enterprises Turnover Salary Value added Total assetsGross operating profit Total liabilities Gross investments in
tangibles goods

Fig. 6. Box plots of the ratio between sector-based Esane estimators’ CVs and CVs relating to sector-based

RHG estimators at the “group” (three-digit) level (using Esane’s 2010 data)

Note: for a given variable, the diamond refers to the mean of the ratios.
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. For sector-based estimations at more detailed levels, we differentiate the

“elementary” variables – that is, variables which are only components and never

the result of accounting relationships – from the other variables:

– For a given elementary variable Y, the group-level estimate is prorated to a finer

level according to the structure of the elementary variable stemming from the

survey. More precisely, for a group G and a finer area D , G, the total of Y on the

area D is estimated by:

Ŷ
D

prorated ¼ Ŷ
G

diff

i[R

X
wiYi1Iarea survey¼DðiÞ

i[R

X
wiYi1IGroup survey¼GðiÞ

– For the other variables, the estimates result from the accounting relationships

applied to the appropriate elementary variables estimates (see Gros 2012a for

more details).

By construction, such a strategy ensures both positive estimates and consistency between

the different estimates in the ESANE device, and these “prorated estimators” remain

asymptotically unbiased. On the other hand, they use the administrative data less

intensively at an individual level than the difference estimators, so we can expect more

mixed performances in terms of accuracy. This expectation is confirmed by the

comparison of sector-based estimators’ CV at the five-digit level of the French

nomenclature, presented in Figure 7 (Table 3 in the Appendix gives the means and

quintiles corresponding to these box plots).

As we can see, at this fine level of industry disaggregation, the prorated estimators

indeed lead to mixed results in terms of accuracy: they perform better than the RHG

estimators only half of the time. In fact, neither of the two estimators is statistically better

than the other, but the prorated estimator has the advantage of preserving the consistency

of group-level estimates and finer-level estimates.

4. Other Issues

The new system was implemented in 2009, and at the present time has produced results for

five years. Besides the questions of estimators that have been presented above, some other

issues were raised.

First, the data editing of this composite material is complex. It has been divided into

subprocesses, each one dedicated to one source (administrative or survey): this choice

was made mainly to keep some flexibility in case of changes in one source, for example if

the content of the tax files is modified. Moreover, the calendar of the deliveries of the

different files is not the same: the return of the statistical survey questionnaires is spread

over a long period, between March and October n þ 1 concerning data of year n, while for

tax data there are only a few deliveries, each one containing a large number of enterprises.

Then, a step comparing the survey and the administrative data helps to achieve a cross

validation of each source. More precisely, the value of the turnover, as its “rough

breakdown” (between production, sales and services), is available in the two sources
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(survey and tax files), and the most important differences have to be checked by the clerks.

This step is a very innovative part of the new system (Gros 2012b).

Questions were also raised concerning the scope of the business statistics. Using

administrative and survey data jointly helped to revisit the choices made to define this

scope. The scope is based on criteria available in the business register, such as the APE

code and the legal status of the enterprise. Observing how the records of the tax files

behaved relatively to the scope defined a priori helped to define choices concerning some

specific categories of enterprises more precisely (Brion 2012b).

Mainly, the questions raised came back to the definition of the enterprise. In the

European definition, an enterprise is the “smallest combination of legal units, that is, an

organisational unit producing goods or services, which benefits from a certain degree of

autonomy in decision making, especially for the allocation of its current resources”. At the

present moment, using a device mainly based on the legal units shows some limitations,

and Insee is working to take the concept of enterprise into account better in the device:

a second step concerning the renewing of the structural business statistics will consist in

integrating these aspects, and some studies have shown that it will have general

consequences for the significance of the statistics (Béguin et al. 2012). What is presented

here concerns only the national part of the enterprise (sometimes named truncated

enterprise) in the case of a multinational enterprise.

To conclude, we think that combining administrative and survey data leads to a

strengthening of the quality of the produced statistics through the mutual improvement of

the two kinds of sources. Moreover, in the presented device, the combined statistical

estimators are intended to use every kind of information as much as possible. They show

better statistical characteristics than other estimators, but in some cases this may go hand

in hand with more complexity than in the case of the use of a single source.
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Fig. 7. Box plots of the ratio between sector-based Esane estimators’ CVs and CVs relating to sector-based

RHG estimators at the lower-class (5-digit) level (using Esane’s 2010 data). Note: for a given variable, the

diamond refers to the mean of the ratios

Journal of Official Statistics606

Unauthenticated
Download Date | 1/7/16 1:07 PM



Appendix

Table 2. Means and quintiles of the ratio between sector-based Esane estimators’ CVs and CVs relating to

sector-based RHG estimators at the “group” (three-digit) level (using Esane’s 2010 data)

Number of

enterprises Turnover Salary

Added

value

Gross

operating

profit

Total

assets

Total

liabilities

Gross

investments

in tangible

goods

Mean 0.78 0.68 0.65 0.78 0.94 1.00 0.98 1.70

Max 2.20 2.26 3.36 6.34 12.37 19.61 18.84 71.30

Q99 1.89 1.97 3.04 5.13 7.81 13.92 18.06 48.11

Q95 1.02 1.02 1.37 1.80 1.99 3.04 3.10 5.10

Q90 0.99 0.97 1.07 1.12 1.45 1.46 1.36 1.88

Q75 0.93 0.89 0.89 0.92 0.97 0.94 0.92 0.92

Median 0.81 0.73 0.68 0.72 0.78 0.71 0.72 0.52

Q25 0.63 0.47 0.41 0.46 0.45 0.43 0.41 0.17

Q10 0.46 0.24 0.20 0.19 0.20 0.17 0.12 0.05

Q5 0.37 0.11 0.13 0.08 0.03 0.08 0.05 0.02

Q1 0.17 0.00 0.03 0.00 0.00 0.02 0.00 0.01

Min 0.16 0.00 0.02 0.00 0.00 0.00 0.00 0.00

Table 3. Means and quintiles of the ratio between sector-based Esane estimators’ CVs and CVs relating to

sector-based RHG estimators at the “under-class” (five-digit) level (using Esane’s 2010 data)

Number of

enterprises Turnover Salary

Added

value

Gross

operating

profit

Total

assets

Total

liabilities

Gross investments

in tangible

goods

Mean 0.96 0.91 1.00 1.16 1.79 1.38 1.41 2.64

Max 17.34 2.26 10.01 65.83 93.75 37.01 34.79 88.32

Q99 1.50 1.72 3.56 4.43 19.09 14.10 17.32 41.70

Q95 1.11 1.14 1.50 1.60 3.57 2.82 2.96 7.74

Q90 1.06 1.06 1.15 1.35 2.32 1.70 1.72 3.40

Q75 1.01 1.00 1.04 1.07 1.23 1.09 1.10 1.31

Median 0.96 0.96 0.98 0.97 0.99 0.99 0.98 1.00

Q25 0.87 0.83 0.86 0.83 0.77 0.85 0.83 0.82

Q10 0.68 0.62 0.63 0.61 0.54 0.59 0.58 0.47

Q5 0.59 0.46 0.46 0.50 0.36 0.39 0.33 0.20

Q1 0.33 0.25 0.12 0.16 0.16 0.14 0.10 0.02

Min 0.11 0.06 0.02 0.07 0.08 0.05 0.04 0.01
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First Impressions of Telephone Survey Interviewers

Jessica Broome1

Survey nonresponse may increase the chances of nonresponse error, and different
interviewers contribute differentially to nonresponse. This article first addresses the
relationship between initial impressions of interviewers in survey introductions and the
outcome of these introductions, and then contrasts this relationship with current viewpoints
and practices in telephone interviewing. The first study described here exposed judges to
excerpts of interviewer speech from actual survey introductions and asked them to rate twelve
characteristics of the interviewer. Impressions of positive traits such as friendliness and
confidence had no association with the actual outcome of the call, while higher ratings of
“scriptedness” predicted lower participation likelihood. At the same time, a second study
among individuals responsible for training telephone interviewers found that when training
interviewers, sounding natural or unscripted during a survey introduction is not emphasized.
This article concludes with recommendations for practice and further research.

Key words: Survey; telephone; nonresponse; interviewer.

1. Introduction and Background

Survey nonresponse has the potential to bias survey estimates (Groves et al. 2004). It has

been demonstrated that telephone interviewers vary substantially in their response rates

(Oksenberg and Cannell 1988). Identifying vocal characteristics and techniques of more

successful telephone interviewers (i.e., those with higher overall response rates) may

impact data quality by allowing for more targeted screening and training of interviewers

with the aim of reducing nonresponse.

Literature from both survey methodology (Oksenberg et al. 1986) and telemarketing

(Ketrow 1990) has found that a pleasing or attractive voice in the initial seconds of a phone

call is imperative in extending the interaction. Further, Ketrow (1990) discusses the

importance of giving an initial impression of competence, and Oksenberg and colleagues

(Oksenberg et al. 1986; Oksenberg and Cannell 1988) found that judges’ ratings of phone-

interviewer competence based on brief recorded excerpts were positively associated with

the interviewers’ success. This is not to imply that in survey interview introductions,

having a pleasing, competent-sounding voice in the opening statement is enough to

guarantee success. However, an interviewer voice that gives listeners a positive first
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impression may lead to a longer conversation, thus increasing the likelihood of

participation.

Nonresponse to telephone surveys has been increasing steadily over the past 25 years

(Curtin et al. 2005). Declining response rates have the potential to increase nonresponse

error (Groves et al. 2004; Teitler et al. 2003). Further, nonresponse rates vary by

interviewer (Morton-Williams 1993; Oksenberg and Cannell 1988; O’Muircheartaigh and

Campanelli 1999; Snijkers et al. 1999). Uncovering the characteristics and tactics of

successful interviewers can help to reduce nonresponse, either by using vocal and

personality characteristics as hiring criteria or by training interviewers to adopt

characteristics or tactics which have been shown to lead to increased success.

In contrast to face-to-face interviewers, telephone survey interviewers have just two

primary tools that are under their control in their efforts to persuade answerers to

participate: what they say (speech) and how they say it (vocal characteristics). A small

body of literature (e.g., Sharf and Lehman 1984; Oksenberg et al. 1986; Oksenberg and

Cannell 1988; Groves et al. 2007; Conrad et al. 2013) finds relationships between vocal

characteristics of interviewers in telephone-survey introductions and interviewer success

in obtaining interviews. In general, successful interviewers have been ones who spoke

louder (Oksenberg et al. 1986; Oksenberg and Cannell 1988; van der Vaart et al. 2005) and

with more falling intonation (Sharf and Lehman 1984; Oksenberg and Cannell 1988).

In addition, success has been shown to be correlated both with higher mean fundamental

frequency (Sharf and Lehman 1984) and higher perceived pitch (Oksenberg et al. 1986), as

well as variable fundamental frequency (Sharf and Lehman 1984; Groves et al. 2007) and

variable pitch (Oksenberg et al. 1986). The terms “pitch” and “fundamental frequency” are

often used interchangeably, but a necessary distinction is that fundamental frequency is an

acoustic measure of vocal-chord vibrations, while pitch is a listener’s perception of

frequency or how “high” or “low” a voice sounds.

Three recent studies have found nonlinear relationships between success and rate of

speech (Groves et al. 2007; Steinkopf et al. 2010; Benkı́, Broome, Conrad, Groves and

Kreuter 2011): contacts with speech that is either overly slow or overly fast tend to be less

successful. Benkı́ et al. (2011) found that contacts with interviewer speech in the range of

3.34–3.68 words per second were the most likely to be successful.

One critical question concerns what underlies these associations; what is it about an

interviewer who speaks at a particular rate or with more variable pitch that leads to

success, especially given the limited amount of exposure an answerer has to the

interviewer’s voice before deciding whether or not to participate? Oksenberg et al. (1986,

99) emphasized the importance for an interviewer to have a voice that potential

respondents find appealing in the first few seconds of a survey interview introduction

context, stating that “if vocal characteristics lead the respondent to perceive the

interviewer as unappealing, cooperation will be less likely.”

Two dimensions of person perception, warmth and competence, have been shown to be

relevant to the development of first impressions of others across a range of contexts (Asch

1946; Fiske, Cuddy, and Glick 2007; Kelley 1950; Rosenberg, Nelson, and Vivekanathan

1968). Several studies in the literature on interviewer vocal characteristics (Oksenberg

et al. 1986; van der Vaart et al. 2005) suggest that ratings of personal characteristics on

these dimensions of person perception are associated with both interviewer response rates
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and vocal characteristics. These studies involved collecting ratings of several interviewer

personality characteristics, which were then successfully reduced to two dimensions

interpretable as “warmth” and “competence.” Characteristics on the “warmth” dimension

included being cheerful, friendly, enthusiastic, polite, interested in her task, and pleasant

to listen to. Oksenberg et al. (1986) and van der Vaart et al. (2005) found correlations

between high ratings on the warmth dimension and vocal characteristics, including

variation in pitch, higher pitch, and a faster rate of speech, suggesting that listeners’

impressions of interviewer personality are based, at least in part, on physical (acoustic)

attributes of interviewers’ voices. Characteristics composing the “competence” dimension

included being self-assured, educated, intelligent, and professional. Van der Vaart et al.

(2005) found that interviewers rated highly on “competence” characteristics tended to

have lower pitch.

Importantly, Oksenberg et al. (1986) and Van der Vaart et al. (2005) found that high

ratings on a “warmth” dimension correlated with ratings of judges’ willingness to

participate. This aligns with Morton-Williams’s (1993) finding that warm or “likable”

interviewers increased perceived benefits to potential respondents and improved

participation rates, and also with Cialdini’s (1984) “Liking” Principle of Compliance:

people are more likely to comply with a request from someone they like.

Further, Cialdini (1984) suggests a compliance heuristic based on the principle of

authority; requests from an authoritative speaker are more likely to be honored than

requests with less authority. Impressions of authoritative characteristics such as

competence and confidence, in turn, have been shown to be associated with interviewer

success (Oksenberg et al. 1986; Oksenberg and Cannell 1988; Steinkopf et al. 2010).

While a small body of literature explores the relationship between interviewer vocal

characteristics and impressions, there are clearly challenges to conducting research in this

area. For example, the independent variables used are judges’ ratings of an interviewer’s

vocal characteristics. When such ratings are collected in person, small sample sizes tend to

be the norm; for example, two early studies (Oksenberg et al. 1986; Oksenberg and

Cannell 1988) were each based on six recordings. Studies with larger numbers of judges,

such as those by Huefken and Schaefer (2003), with 51 judges, Steinkopf et al. (2010),

which used 56 judges, and Van der Vaart et al. (2005), with twelve judges, were based on

the work of student (rather than professional) interviewers, limiting the applicability of

findings. Finally, dependent variables assessed in existing studies are either interviewers’

historical response rates, judges’ own willingness to comply, or judges’ beliefs that

“someone” will comply; no study has yet associated vocal characteristics with actual

contact outcomes.

The aim of the exploratory studies described in this article was to see whether first

impressions, formed in the initial seconds of a telephone interviewer’s introduction, are an

important component in determining the outcome of a survey introduction. This article

will address several questions concerning first impressions of telephone interviewers:

- Which first impressions are most predictive of a successful outcome?

- How do relationships between first impressions and success compare with

practitioners’ ideas about what makes a successful interviewer?
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The first hypothesis addressed in this article (h1) is that interviewers who are perceived

more positively and less negatively in the initial seconds of a contact by judges will have

greater success, as measured by contact outcome.

The second hypothesis (h2) is that the characteristics that practitioners perceive as

important to interviewer success will parallel those characteristics that predict actual

cooperation.

This article reports results from two studies. The “Listeners’ Study” elicited ratings of

interviewer personality characteristics in audio-recorded telephone introductions from five

surveys. The raters (or “listeners”) were internet-survey panel members who answered

questions after listening to brief excerpts of interviewer speech from real (not staged)

telephone-survey introductions. Having a large number of raters, combined with the use of

real contacts conducted by professional interviewers for which the actual outcome is

known, is unique in studies on interviewer voice. Another novel element of this study is

that, in order to explore whether practitioners focus on the attributes of interviewer speech

that are most related to the outcome of survey invitations, results from the Listeners’ Study

are contrasted with those from a web survey of practitioners who hire and train telephone

interviewers. In this “Practitioners’ Study,” practitioners were asked which characteristics

of interviewers they consider in hiring and training.

This article concludes with a discussion of implications for practice, as well as

suggestions for future research in this area.

2. Data and Methods

The data described in this section are drawn from two web surveys. The “Listeners’ Study”

was a survey among 3,403 adult, English-speaking members of an internet-survey panel.

The “Practitioners’ Study” was a smaller survey of 44 survey practitioners who are

responsible for the hiring and training of survey interviewers in academic, government,

and for-profit survey organizations.

2.1. Listeners’ Study: Selection of Contacts

The recordings used in the listeners’ study were selected from 1,380 audio-recorded

telephone-survey introductions. These introductions, conducted by 100 interviewers, were

from five telephone surveys that were audio recorded for another project. In this project,

all contacts associated with selected households, regardless of who the interviewer was,

were included in the dataset (Benkı́ et al. 2011; Conrad et al. 2013). Contacts by 49

different interviewers with ranging lengths of tenure and response rates varying over the

course of their tenure at University of Michigan from .07–.21 are included in this dataset.

The recordings were classified into five outcomes: “agree,” where the answerer

cooperates and agrees to participate; “refuse,” where there is an explicit refusal

(for example, “I will not take the survey. Please do not call again”); “scheduled callback,”

where the interviewer either schedules a time to call back or asserts that she will call again;

“hang up,” where the answerer hangs up but never clearly refuses; and “other.”

The listeners’ study uses excerpts from these recorded introductions (referred to

hereafter as “contacts”) from three of the five studies. To facilitate comparisons

(particularly in analyses of vocal characteristics such as pitch), only introductions by
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female interviewers were selected. Contacts in which the answerer hangs up during or

directly following the interviewer’s first speaking turn were excluded, using the rationale

that these are “hard-core nonrespondents” who are determined not to become respondents,

and the interviewer has no opportunity to use her voice or speech to convince them

otherwise.

Because listeners were asked to make judgments about the interviewer’s personality,

contacts had to contain enough speech to make these determinations. The minimum

amount of speech required for inclusion was a statement of name and affiliation. Finally,

contacts were omitted if the interviewer asked for a particular person by name, indicating

that the interviewer had already spoken at length to someone in the household, and the

persuasion process was likely to be quite different.

Applying these criteria to the 1,380 contacts resulted in 283 recordings from the Survey

of Consumer Attitudes, or SCA (n ¼ 168); the National Study on Medical Decisions, or

NSMD (n ¼ 110); and the Mississippi Community Study, or MCS (n ¼ 5).

These 283 contacts form the basis of the listeners’ study. 118 (42 percent) had an

outcome of “agree” and 165 (58 percent) had an outcome of “refuse.” Listeners were not

told the likelihood of either outcome.

2.2. Listeners’ Study: Description of Stimulus and Lines of Questioning

The listeners’ study used online presentation of audio recordings of telephone-survey

invitations to elicit listeners’ judgments about telephone interviewers’ personality

characteristics. In this study, 3,403 members of an online survey panel listened to

interviewer speech from the contacts described above. The stimuli to which listeners were

exposed consisted of brief introductory statements by the interviewer, such as: “Hello, my

name is and I’m calling from the University of Michigan about our survey

on .”

Each listener heard excerpts from five contacts randomly selected from the corpus

described above, which contained 283 introductions by 49 different interviewers. It was

possible for some listeners to hear multiple introductions by one interviewer, and for

others to hear five different interviewers. Interviewers had between 1 and 23 contacts in

the dataset, with an average of 5.8 contacts. While the same group of five contacts could

conceivably be heard by multiple listeners, assignment and order of excerpts were random

so as to avoid context effects from presenting excerpts in set groups or a set order.

For each of the five contacts, listeners were asked to rate the interviewer on twelve

characteristics (confident, competent, professional, knowledgeable, enthusiastic, pleasant

to listen to, friendly, natural sounding, genuine, scripted, irritating, and uncertain), using a

scale from 1 (not at all) to 6 (extremely). These are referred to as “characteristic ratings”

below. Many of these traits have been shown to be related to interviewer success in the

literature (Oksenberg and Cannell 1988; van der Vaart et al. 2005).

2.3. Listeners’ Study: Preparation of Contacts

After selecting the interviewer speech to be used, the recording was amplified to use the

full range of sounds that a recorded voice would make. Amplification was maintained at

the same level for all contacts, thus making all contacts comparable in volume. Finally, to
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preserve interviewers’ anonymity, the interviewer’s name in each contact was replaced

with a quarter-second-long tone. For consistency, this was done even in the few cases

where the interviewer only said her first name.

2.4. Listeners’ Study: Data Collection and Respondent Descriptives

Data collection was conducted by a commercial vendor, Lightspeed Research (http://

www.lightspeedresearch.com/). 15,000 invitations were sent to a stratified random

sample of members of Lightspeed’s own 1.3 million-member volunteer online panel.

(All sample members had a known chance of being invited; the list of invitees was

stratified by gender, age and region in an attempt to attain representativeness of the US

population on these variables.) This panel is recruited using a variety of sources, including

opt-in email, co-registration, e-newsletter campaigns, and placements of banner

advertisements. Panelists receive regular survey invitations. While the panel does not

perfectly mirror the gender distribution of the US population according to Census data

(32% of panelists are male, compared to 49% in the population), the respondents to the

listeners’ survey were more representative in terms of gender. Respondents were evenly

divided between males (49%) and females (51%). One-third (33%) were aged 60 or older,

while 20% were 50–59, 18% were 40–49, 17% were 30–39, and 12% were 18–29. 88%

of respondents were white (compared to 68% in the general population), and 81% had at

least some college education (compared to 55% of the national population, according to

the 2010 US Census). These discrepancies can be considered a limitation of the study.

This study was fielded August 12–18, 2011. Panel members were screened to ensure

that they were 18 years of age or older (as would be any eligible respondents to the surveys

represented by these contacts), and that they characterized their ability to understand

spoken English as “excellent” or “good.” This screening criterion was deemed necessary

for listeners to be expected to make personality judgments about the interviewer based on

brief speech clips.

After their eligibility for the study was determined, listeners were exposed to an

“introductory” audio clip and asked to identify one of the words in the clip. The purpose of

this exercise was threefold: first, to ensure that listeners were using a computer with

working audio; second, to familiarize them with the type of audio they would be hearing

during the survey; and third, as a quality-control check to ensure that listeners could

sufficiently distinguish words in the contact. 126 potential listeners were screened out at

this stage; 3,403 listeners completed the survey.

While the mean exposure length of contacts was 10.32 seconds, the range was wide:

from 2.3 to 49.2 seconds. To roughly match the burden on listeners and ensure that none

received multiple long contacts, contacts were stratified into five groups based on logical

length categories. There were between 45 and 70 contacts in each length category,

resulting in more ratings for some contacts than others; the mean number of ratings by

length category ranged from 49 to 76. Each listener was exposed to a set of five

introductions, each consisting of one randomly selected contact from each length category.

For each contact, listeners rated the interviewer on the twelve characteristics discussed

above.
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2.5. Practitioners’ Study

As mentioned above, a second study was conducted among individuals responsible for

hiring and training telephone interviewers. A questionnaire was created to assess these

practitioners’ ratings of the importance of various behaviors and attributes to telephone

interviewers’ success, as well as to understand their current focuses in hiring and training

telephone interviewers. The final survey was programmed in the online survey tool

Qualtrics.

A sampling frame was developed that relied on personal contacts of the author, as well

as on a list of all members of the Association of Academic Survey Research Organizations

(AASRO), which, although not a complete listing of academic survey institutions, was

fairly comprehensive and readily accessible. The final sample consisted of 113 individuals

at 108 organizations, including two government, 92 academic, three non-profit and eleven

for-profit organizations. Two weeks after the initial invitation was sent, a reminder email

was sent to all members of the original frame with working email addresses, with the

exception of those participants who had already provided their email addresses

(respondents were given the option to provide their email addresses if they wished to

receive a copy of the results), and those sample members who had requested no further

contact.

The survey was completed by 44 respondents between June 5 and July 12, 2011,

resulting in a 42% response rate. This response rate is sufficient for the purposes of this

study, which was not to uncover precise estimates but rather general trends among

practitioners. Further, variation in the organizational characteristics (number of CATI

stations and number of interviews conducted in 2010) of those who did respond reduces

the chances of nonresponse bias.

Respondents represented a wide range of organizations in size and workload. The

median number of CATI stations in respondent organizations was 25, but the number of

stations ranged from nine to 450. Close to half (42%) of respondents reported that their

organization had conducted fewer than 5,000 telephone interviews in 2010, while an equal

percentage reported that their organization had conducted 10,000 or more interviews.

Respondents reported that, on average, 81% of the interviews their organizations

conducted were for government, academic, or non-profit organizations, 15% were for

for-profit organizations, and 2% were for “other” organizations (2% were not sure).

To qualify for the study, practitioners had to have responsibility for hiring and/or

training telephone interviewers. Of the 44 respondents, 41 indicated responsibility for

hiring interviewers and 40 indicated responsibility for training interviewers.

3. Results

3.1. Listeners’ Study: Characteristic Ratings

3.1.1. Description of Ratings

The listeners’ study asked for ratings of twelve characteristics of interviewers from five

contacts per listener on a six-point scale (1 ¼ not at all to 6 ¼ extremely). Each contact

was rated by at least 30 listeners. Analyses were conducted at the contact level; for each
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contact, a mean rating across all listeners who heard it was calculated for each

characteristic. The mean of all contact-level means, as well as the minimum and maximum

mean for each characteristic, are reported. The mean ratings for each characteristic across

contacts ranged from 2.50 to 3.89, as shown in Table 1.

Ratings for all nine positive characteristics were highly correlated, as shown in Table 2,

indicating that an overall impression of positivity drives judgments.

In addition, a factor analysis, using ratings of all characteristics except scriptedness,

revealed that only one factor, explaining 86% of total variance, had extremely high

loadings for all nine positive characteristics. The method of principal factors was used to

extract factor scores. The overall Kaiser-Meyer-Olkin measure of sampling adequacy,

which gives a measure of how much each item is correlated with the others, was 0.92.

Ratings of “uncertain” and “irritating” were highly correlated with each other (.71), but

ratings of “scripted” were not highly correlated with ratings of any other characteristic.

The mean correlation between scripted and positive characteristics was .01.

3.1.2. Characteristic Ratings As Predictors of Contact Outcome

It was hypothesized (h1) that when ratings of nine positive interviewer characteristics

(enthusiastic, friendly, natural, genuine, pleasant to listen to, confident, professional,

competent, and knowledgeable) were high and ratings of three negative characteristics

(irritating, uncertain, and scripted) were low, a contact would be more likely to result in

cooperation than when the positive characteristics were rated lower and the negative

characteristics were rated higher.

This hypothesis was partially supported. Twelve bivariate logistic models were

constructed, all accounting for the multilevel structure of this dataset (contacts nested

within interviewers). For all of these models, the dependent variable was coded as

y ¼ 1 (agree) or y ¼ 0 (refusal). The equation for these models can be written as

log(pagree/1 2 pagree) ¼ a þ b1x1 þuj, where pagree denotes the probability of

cooperation; a is an intercept; x1 represents the mean rating of a characteristic

Table 1. Description of characteristic ratings

Characteristic

Mean of
contact-level
means (sd)

Minimum
contact- level
mean rating

Maximum
contact-level
mean rating Spread

Confident 3.62 (.56) 1.77 4.63 2.86
Professional 3.70 (.52) 1.85 4.73 2.88
Pleasant to listen to 3.54 (.46) 2.13 4.49 2.36
Competent 3.67 (.50) 1.90 4.67 2.77
Knowledgeable 3.61 (.49) 2.13 4.75 2.62
Natural sounding 3.65 (.41) 2.35 4.47 2.12
Enthusiastic 3.43 (.50) 2.25 4.51 2.26
Genuine 3.59 (.39) 2.41 4.45 2.04
Scripted 3.78 (.31) 2.70 4.67 1.97
Friendly 3.89 (.38) 2.84 4.62 1.78
Uncertain 2.70 (.50) 1.83 4.55 2.72
Irritating 2.50 (.35) 1.73 3.51 1.78
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(for example, scriptedness) across all listeners who rated the contact; and uj represents the

random, unobserved effects of interviewers.

Of these twelve models, only the model for scripted had a significant coefficient

(b ¼ 21.05, standard error ¼ .40, z ¼ 22.59, p ¼ 0.010), indicating that perceptions of

the interviewer as more scripted decrease the likelihood of a contact’s success. These

results persisted when the models controlled for the length of exposure, and also when

only the contacts with the longest exposure lengths (at least ten seconds) were analyzed.

A model was constructed which predicted contact outcome using the factor score

described above and the contact’s mean scriptedness rating, while controlling for

recording length and accounting for clustering by interviewer. The equation for this model

was log(pagree/1 2 pagree) ¼ a þ b1x1 þ b2x2 þ b3x3 þ uj, where pagree denotes the

probability of cooperation; a is an intercept; x1 represents the contact’s factor score;

x2 represents the mean rating of scriptedness across all listeners who rated the contact;

x3 represents the length of the recording; and uj represents the random, unobserved effects

of interviewers. As Table 3 shows, only scriptedness was a significant predictor in this

model (z ¼ 22.65, p ¼ 0.008); the factor score was not, indicating that initial impressions

of scriptedness, but not of any other characteristic, are important to a contact’s outcome.

In summary, there was no support for the hypothesis that positive characteristics would

predict a successful outcome. But a negative characteristic, scriptedness, was negatively

associated with success, with contacts where interviewers are less scripted being more

successful than those who were rated as more scripted. Agreement with the survey request

exhibits almost no variation across interviewers after accounting for other factors

including scriptedness, but substantial variation across contacts; in contacts where the

interviewer is not considered scripted, agreement is more likely.

3.2. Comparison Between Listeners’ and Practitioners’ Surveys

Hypothesis 2 was that practitioners’ views of what makes a successful interviewer would

align with the characteristics which were found to predict contact success in the listeners’

study. To some degree, this is the case; practitioners recognize “how genuine the

interviewer sounds” and “the ability to respond to concerns expressed by potential

respondents” as important to an interviewer’s response rate, acknowledging that

interviewers should not sound robotic during their introductions. However, practitioners

appear conflicted; while they recognize the need for a genuine-sounding interaction

between interviewer and answerer, they also emphasize the need for interviewers to follow

a script, with 48% saying “an interviewer’s ability to follow a script during an

Table 3. Coefficients in model predicting cooperation

Coefficient SE Z P

Factor score 2 .017 .12 20.14 0.89
Scriptedness rating 21.07 .40 22.65 0.008
Length of recording .016 .02 .98 0.33

Standard deviation of random interviewer effects: .0000227

Variance of random interviewer effects: 5.0625E-10

Intraclass correlation coefficient: 1.53881E-10
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introduction” is extremely important, and 38% rating it as somewhat important.

Practitioners rank “an interviewer’s ability to ‘ad lib’ or deviate from a script during an

introduction” as slightly less important to an interviewers’ success. On the other hand,

results from the listeners’ study indicated that impressions of scriptedness are, in fact,

detrimental to the success of contacts, with lower ratings of scriptedness found in

successful contacts; indeed, scriptedness is the only characteristic that matters to listeners.

Further, of the 18 elements tested (shown in Table 4), the one judged by survey

practitioners as most important to an interviewer’s success in obtaining interviews was

“the initial impression an interviewer gives to sample members.” This “initial impression”

may well include an interviewer’s degree of scriptedness; however, this finding shows that

emphases differ between practitioners and listeners, as findings from the listeners’ survey

indicate that, aside from scriptedness, no ratings of interviewer characteristics based on

early impressions can predict success on a given contact.

Far more important than an ability to “ad lib”, according to practitioners, were traits

such as competence, professional demeanor, and confidence – ratings of which were not

predictive of actual contact-level outcome.

Among practitioners responsible for training telephone interviewers, just 15% reported

that “developing a personalized or nonscripted introduction” is a primary focus of their

organization’s interviewer training, while 44% reported that it is not a focus at all.

(Practitioners were shown a list of 13 items and given the instruction, “For each of the

following, please indicate if it is a primary focus, a secondary focus, or not a focus at all in

telephone-interviewer training.”) “Following introductory scripts,” by contrast, was a

primary training focus in the vast majority (78%) of organizations surveyed. This

emphasis on following introductory scripts contrasts with the finding in the listeners’ study

that higher ratings of scriptedness predict less success at the contact level.

These results demonstrate a disconnect between listeners and practitioners. While

listeners’ judgments of scriptedness are predictive of a contact’s success (indeed, this is

the only rated characteristic associated with success), practitioners place less emphasis on

reducing scriptedness and more on other impressions conveyed by interviewers.

4. Conclusions, Applications, and Discussion

This exploratory research has found that survey practitioners believe that initial

impressions of an interviewer are important to that interviewer’s success. By contrast,

most ratings of interviewer traits such as competence, confidence, and professionalism

based on a brief exposure are not predictive of the ultimate outcome of the conversation.

One exception to this is ratings of scriptedness, which are significant predictors of contact

outcome; indeed, scriptedness is the only rated component of a first impression to predict

success. This may be attributable to scriptedness being the most noticeable of all

characteristics rated, overwhelming characteristics such as friendly and professional in the

initial seconds of an introduction. However, practitioners emphasize the importance of

“following a script,” even though this practice might actually harm interviewers’ chances

of obtaining a completed interview.

This can be applied to survey practice, as an emphasis on decreasing the scripted or

unnatural nature of survey introductions may well serve to improve interviewer
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performance. Currently, most practitioners train and encourage interviewers to follow a

script and, to a lesser degree, emphasize “ad libbing” during an introduction. It appears

that practitioners recognize the importance of not sounding scripted; however,

unscriptedness is admittedly difficult to train and measure.

Recommendations for interviewer training can be made based on these results.

Specifically, interviewer response rates may benefit from an emphasis in interviewer

training on speech that is as natural and unscripted as possible, through the use of

intonation patterns and word selection. Interviewers can be exposed to contacts with both

high and low ratings of scriptedness to make the difference clear.

While interviewers may be required to mention particular points in their introduction or

even to follow a verbatim introductory script, they should be trained to sound as

conversational as possible, particularly at the start of their introduction. Both

Houtkoop-Steenstra and van den Bergh (2000) and Morton-Williams (1993) found that

interviewers who were allowed to adapt their introductory script had greater success.

Beyond the introduction, the issue of standardized interviewing, and what departures

from verbatim interview scripts can mean for data quality, is the subject of much debate.

Schober and Conrad (1997; Conrad and Schober 2000) found clear evidence that

“conversational” interviewing, or allowing interviewers to use any means necessary to

convey question meaning, can enhance data accuracy. Nevertheless, “reading the

questions exactly as worded” is a tenet of interview administration which is upheld and

enforced in most survey organizations, and it is clear from results of the practitioners’

study that standardized interviewing skills are a high priority in nearly all organizations.

Because emphasizing the need to read questions in a standardized manner may seem to

conflict with emphasis on less-scripted delivery of introductions, interviewers need to be

trained to “wear two hats.” In training, it needs to be made explicit to interviewers that

there are two distinct (but, arguably, equally important) elements of the phone component

of their job, each requiring a different style of speech and interaction. In the introductory

or persuasive portion, scriptedness may be a liability, and the ability to “think on one’s

feet” to respond to answerers is an asset. In contrast, in the interviewing portion, deviating

from a script may have ramifications for data quality, or at the very least will represent a

lack of adherence to the organization’s procedures. Interviewers should be trained to

“switch gears” between these two speech styles, and perhaps even be encouraged to

acknowledge to respondents that their delivery of the questions will sound different from

their introduction.

Finally, additional research could further these findings. Interviewer-level analyses,

such as a larger study collecting ratings of characteristics for a greater number of contacts

per interviewer to measure the impact of ratings on overall success rates, is recommended.

Replicating the listeners’ study using a greater number of contacts by the same

interviewers may shed light on those interviewer characteristics or behaviors across

multiple contacts that lead to greater success.
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Quarterly Regional GDP Flash Estimates by Means of
Benchmarking and Chain Linking

Ángel Cuevas1, Enrique M. Quilis2, and Antoni Espasa3

In this article we propose a methodology for estimating the GDP of a country’s different
regions, providing quarterly profiles for the annual official observed data. Thus the article
offers a new instrument for short-term monitoring that allows the analysts to quantify the
degree of synchronicity among regional business cycles. Technically, we combine time-series
models with benchmarking methods to process short-term quarterly indicators and to estimate
quarterly regional GDPs ensuring their temporal and transversal consistency with the National
Accounts data. The methodology addresses the issue of nonadditivity, explicitly taking into
account the transversal constraints imposed by the chain-linked volume indexes used by the
National Accounts, and provides an efficient combination of structural as well as short-term
information. The methodology is illustrated by an application to the Spanish economy,
providing real-time quarterly GDP estimates, that is, with a minimum compilation delay with
respect to the national quarterly GDP. The estimated quarterly data are used to assess the
existence of cycles shared among the Spanish regions.

Key words: Benchmarking; chain linking; national accounts; regional accounts; GDP flash
estimates.

1. Introduction

Business cycle analysis and the short-term monitoring of a national economy can be

substantially improved if an explicit regional dimension is taken into consideration. In this

way, the diffusion of the aggregate (or national) cycle can be analyzed in detail:

identifying leading/coincident/lagged regions, detecting common and specific shocks and

so on. The relevance of this added geographical dimension is especially important both for

large or medium-sized countries as well as for countries with decentralized systems that

allow specific economic policies to be applied. Of course, the quarterly regional estimates

that we present below are also very useful for regional governments.

The Regional Accounts (RA) are annual data and in this context we here propose a

methodology for estimating quarterly Gross Domestic Product (GDP) time series at the

regional level, providing a new instrument for short-term monitoring that allows us to

gauge the degree of synchronicity and the identification of shared and idiosyncratic shocks

to different regions.

q Statistics Sweden

1 Macroeconomic Research Department, Independent Authority for Fiscal Responsibility, José Abascal n8 2,
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Our methodology ensures the consistency of these quarterly regional GDPs with the

national quarterly GDP, taking into account the chain-linking procedures that underlie

its compilation. Note that the same principles of volume estimation using chain-

linked indices have been used in our analysis and we have applied the same

procedures of seasonal and calendar adjustment used by the Quarterly National

Accounts (QNA).

Structural consistency is also ensured, since the quarterly regional GDPs are consistent

with their annual RA counterparts. The fact that both QNA and RA share the same

National Accounts (NA) framework provides the base for the consistency obtained in our

analysis. In this way, we can use the quarterly regional estimates to derive structural

measures at the regional level.

The modeling approach is highly reliant on a set of regional high-frequency indicators.

These indicators provide the ultimate basis used by the model to generate GDP according

to time-series techniques ranging from univariate ARIMA models to multivariate

dynamic-factor models. The set of indicators and models are homogeneous across regions,

ensuring the comparability of the results.

The methodology has three main stages:

1. Processing of the high-frequency indicators available at the regional level and

estimation, for each region, of a synthetic index that combines the available short-

term information.

2. Temporal disaggregation and interpolation of annual regional GDP using the

indicators processed in Step 1.

3. Balancing of these initial quarterly estimates in order to ensure transversal

consistency with national quarterly GDP, at the same time preserving the temporal

consistency achieved in the previous stage.

It is worth emphasizing that, from an operational perspective, early estimates of quarterly

regional GDPs may be available with a minimum delay with respect to the national

quarterly GDP release, the so-called “GDP flash estimate”. Thus the national figure may

have timely regional counterparties, enhancing the informational content of analysis

carried out at the aggregate level.

The main contributions of our article are:

- A methodology for obtaining quarterly estimates of GDP for all the regions in a

country, derived in a consistent way with the official available data provided by the

NA, both RA and QNA.

- Early (or flash) estimates of quarterly GDP at the regional level that may be released

at the same time as the national GDP.

- Transversal consistency is compliant with the chain-linking methodology,

circumventing its nonadditive features in the balancing step.

The article is organized as follows. The second section outlines the modeling approach,

going into detail on its main steps. A complete and in-depth application of the

methodology using Spanish data appears in section three. Finally, in the fourth section,

we present our conclusions and future lines of research.
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2. Modeling Approach

In this section we present the main steps of the proposed methodology. The modeling

approach consists of three basic steps: (i) seasonal adjustment of regional short-term raw

indicators and construction of synthetic indicators for each region by means of factor

analysis, (ii) initial quarterly estimates of regional GDP provided by benchmarking and

(iii) enforcement of the transversal constraint that links the regional quarterly GDPs with

their national counterpart.

This aggregation constraint must be consistent with the chain-linking procedure used to

compile quarterly GDP at the national level, dealing with the nonadditivity issue in an

appropriate way. We now turn to examine the three stages in more detail; however, to

simplify the exposition, we first present the required information set.

2.1. Information Set

The model requires as input three elements that vary according to their sampling

frequency (annual or quarterly), their spatial coverage (regional or national) and their

method of compilation (NA or short-term indicators).

The variables of the system are: regional GDPs ( y), national GDP (z), and regional

short-term indicators in their original or raw form (xr). Upper-case letters refer to annual

variables, while lower-case letters refer to quarterly variables. Let T ¼ 1,..,N be the

annual (low-frequency) index, t ¼ 1,..,4 the quarterly index within a natural year and

j ¼ 1,..,M the regional (cross-section) index.

Hence, Y ¼ {YT, j: T ¼ 1,..,N; j ¼ 1,..,M} is a NxM matrix comprising the annual

regional GDPs that play the role of temporal benchmarks of the system. Aggregation of

the regional GDPs generates the GDP at the national level. Note that, aggregation is

performed according to the chain-linking methodology.

Variable z is a nx1 vector comprising the observed quarterly GDP provided by the QNA,

being n the number of quarterly observations satisfying n $ 4N. This figure is available

more timely than the regional data and shares with them the corresponding annual GDP

volume index:

ZT ¼
1

4 t[T

X
zt;T ð1Þ

For example, taking 2011 as a reference, the QNA released its first estimate of 2010:Q4

on February, 11 while the RA released its first estimate of 2010 on March, 24. Both

estimates share the annual figure for 2010 implicitly provided by the QNA by means of

temporal aggregation of the four quarters of 2010.

Finally, xr is a nxM matrix comprising the observed raw quarterly indicators that

operate as high-frequency proxies for the regional aggregates Y. As will be explained later,

we work with the seasonally and calendar-adjusted indicators (x) instead of the raw

indicators (xr).

Only the indicators x are observed at the three dimensions of the system: T (annual

index), t (quarterly index) and j (regional index). Therefore, they provide the interpolation

basis for Y (across the quarterly dimension t) and z (across the regional dimension j ).
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In other words, our objective is to estimate y using x as interpolators and consistently with

both Y and z.

Table 1 sets out the relationship among the inputs (Y, z and x) and the output ( y) of the

system for a simplified case with two regions (M ¼ 2) and two years (T ¼ 2). The first

year is complete while the second year is incomplete (i.e., the last two quarters are not

available for x and z and the annual figure for Y is not available either).

In this simplified example, we want to estimate the first year’s quarterly regional GDPs

yj,t,1 consistently with their annual counterparts Yj,1 and satisfying the transversal

constraint that links the regional GDPs with the national GDP zt,1 each quarter. The annual

constraints do not apply during the second year since Yj,2 are not available. Thus the only

binding constraint is the transversal constraint.

2.2. Processing Short-Term Indicators

Typically, short-term regional economic indicators are compiled in raw form by the

statistical agencies. However, the volume GDP used for short-term monitoring at the

national level is calculated in two ways: using raw indicators or using seasonal and

calendar-adjusted indicators. Since seasonal and calendar effects could be quite different

between indicators and the macroeconomic aggregates, the second procedure for the

calculation of the GDP seems more reliable. Usually these GDP figures are referred to as

seasonal and calendar adjusted.

In order to ensure the homogeneity between both sources of information, regional raw

indicators and seasonally adjusted quarterly national GDP, we apply an ARIMA model-

based correction that filters out the raw data from seasonal and calendar effects, if they are

present. The procedure has been implemented using the TRAMO-SEATS program, see

Gómez and Maravall (1996) and Caporello and Maravall (2004). Formally:

xj;t;T ¼ VðB;F;cjÞ xrj;t;T ð2Þ

where xrj,t,T is the raw short-term indicator; V() is the Wiener-Kolmogorov filter

symmetrically defined on the backward and forward operators B and F and cj are the

Table 1. Information set of the model: Quarterly GDP tracker (x), Annual Regional GDP (Y), quarterly

National GDD (Z) and Quarterly Regional GDP (y), which is the variable to be estimated.

Region 1 Region 2 Nation

Year Quarter x1 y1 Y1 x2 y2 Y2 Z

1 x1,1,1 y1,1,1 x2,1,1 y2,1,1 z2,1,1

1 2 x1,2,1 y1,2,1 x2,2,1 y2,2,1 z2,2,1

3 x1,3,1 y1,3,1 Y1,1 x2,3,1 y2,3,1 Y2,1 z2,3,1

4 x1,4,1 y1,4,1 x2.4,1 y2,4,1 z2,4,1

2 1 x1,1,2 y1,1,2 x2,1,2 y2,1,2 z2,1,2

2 x1,2,2 y1,2,2 x2,2,2 y2,2,2 z2,2,2

3
4

Note: bold variables are temporal constraints (Y) or transversal constraints (z).
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parameters of the filter derived consistently with those of the ARIMA model for xrj,t,T,

see Gómez and Maravall (1998a, 1998b) for a detailed exposition of the model-based

approach used by TRAMO-SEATS.

If the indicators are available at the monthly frequency, seasonal adjustment is

performed on the monthly series. The resulting series are temporally aggregated to the

quarterly frequency.

We have used TRAMO-SEATS because it is the method used by the Spanish National

Statistical Institute (NSI) to adjust GDP to seasonal effects. Of course, the choice of the

seasonal adjustment procedure depends on the official method used by the NSI to produce

the GDP figures. In countries where X12-ARIMA is the official procedure, this should be

also the choice for seasonally adjusting the short-term indicators.

In practice, several short-term economic indicators are used to monitor and estimate

regional GDPs. These indicators are individually processed according to (2) and then

linearly combined, producing a composite indicator that will be used as the high-frequency

proxy for regional GDPs. As will be explained in the third section, we use factor analysis

to estimate a synthetic indicator for each region because it provides an objective and

simple way to combine the available indicators.

2.3. Initial Quarterly Regional GDP Estimation

Preliminary estimates of quarterly GDP at the regional level are compiled using

benchmarking techniques (see Di Fonzo 1987, 2002 and Proietti 2006 for an in-depth

exposition). These techniques play an important role in the compilation practices of QNA

around the world (see Eurostat 1998 and Bloem et al. 2001).

We have considered several benchmarking procedures for deriving the preliminary

GDP estimates: Chow and Lin (1971), Fernández (1981), Santos-Silva and Cardoso

(2001) and Proietti (2006). All of them hinge upon a dynamic linear model that links the

(observable) high-frequency indicator with the (unobservable) regional GDP. (To keep the

notation simple we have omitted the regional index j ).

yt ¼ f yt21 þ b0 xt þ b1 xt21 þ ut ð3Þ

The innovation u follows an AR(1) process:

ut ¼ rut21 þ at ð4Þ

Finally, the random shock that drives the innovation u is the Gaussian white-noise process:

at , iid Nð0; vaÞ ð5Þ

The model includes a temporal constraint that makes y quantitatively consistent with its

annual counterpart Y:

Y ¼ Cy ð6Þ

C is the temporal aggregation-extrapolation matrix defined as:

C ¼ ðIN^cjON;n2sNÞ ð7Þ

where N is the number of low-frequency observations, ^ stands for the Kronecker product,
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c is a row vector of size s which defines the type of temporal aggregation and s is the

number of high-frequency data points for each low-frequency data point. If

c ¼ [1,1, : : : ,1] we would have the case of the temporal aggregation of a flow, if

c ¼ [1/s,1/s, : : : ,1/s] the case of the average of an index, and if c ¼ [0,0, : : : ,1], an

interpolation would be obtained. In our case, s ¼ 4.

Extrapolation arises when n . sN. In this case, the problem can be solved easily by

simply extending the temporal aggregation matrix by considering new columns of zeroes

which do not distort the temporal aggregation relationship and that do not pose any

difficulty to the inclusion of the last n-sN data points of the indicators in the process of

estimating y.

The different benchmarking methods depend on the values of the parameters in (3) and

(4) according to Table 2.

The methods of Chow-Lin and Fernández place the dynamics in the innovation, which

may follow a stationary AR(1) process (Chow-Lin) or a nonstationary I(1), random-walk

process (Fernández). Litterman (1983) proposes a methodology close to those of

Chow-Lin and Fernández. However, the empirical and Monte Carlo evidence show that its

performance is sometimes disappointing. This is due to the flatness of the implied

likelihood profile and, therefore, the corresponding observational equivalence in a wide

range of values for its dynamical parameter, see Proietti (2006). On the other hand, the

methods of Santos Silva-Cardoso and Proietti place the dynamics in the variables y and x,

treating the innovation as a purely random shock. Gregoir (1994) and Salazar et al. (1994)

also propose methods in which the dynamics of y and x play an explicit role.

The estimation of the parameters and the unobserved time series y is performed by

maximizing the implied log-likelihood profile of the low-frequency model. The low-

frequency model incorporates the temporal aggregation constraints [2.6] and [2.7]. This

optimization is performed by means of a grid search on the stationary domain of f or r and

pinning down the values of b and s that maximize the log-likelihood function conditioned

on the selected value for f or r (see Bournay and Laroque 1979 for an in-depth

exposition). The computations have been carried out using the functions written in Matlab

by Abad and Quilis (2005).

2.4. Balancing in a Chain-Linking Setting

The estimates derived in the previous step do not verify the transversal constraint that

should relate them to the national quarterly GDP, satisfying the same type of relationship

that links annual regional GDPs and annual national GDP. We solve the problem by

Table 2. Benchmarking methods

Parameter

Method f b1 r

Chow-Lin 0 0 (0,1)
Fernández 0 0 1
Santos Silva-Cardos (0,1) 0 0
Proietti (0,1) – 0 0
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applying a multivariate balancing procedure, in particular a multivariate extension of the

Denton (1971) method. This extension can be expressed in matrix form (as in Di Fonzo

1990 and Di Fonzo and Marini 2003), as well as in state-space form (see Proietti 2011).

In this article we have adopted the former approach, using the functions written in Matlab

by Abad and Quilis (2005).

This balancing method depends on the formulation of additive constraints. However,

volume indexes compiled according to the chain-linking methodology are nonadditive, see

Bloem et al. (2001) and Abad et al. (2007). Fortunately, we can transform the chain-linked

measures in order to write them in an additive form and then use the powerful machinery

of balancing procedures to ensure transversal and temporal consistency. Finally, we can

express the results in the initial chain-linked format by reversing the transformation.

The constraint that links regional and national quarterly volume GDP is:

zt;T ¼
X

j

Wj;T21

yj;t;T

Yj;T21

 !

ZT21 ð8Þ

where zt,T is the national quarterly volume GDP, Wj,T21 is the weight of region j in year

T 2 1 and yj,t,T is the quarterly volume GDP of the jth region. Weights are computed

using GDPs valued at current prices, see Abad et al. (2007) for a complete derivation.

Finally, ZT and Yj,T are the annual counterparts zt,T of and yj,t,T.

After some algebraic manipulations, we can express the constraint in additive form:

rt;T

zt;T

ZT21|ffl{zffl}
¼

wrj;t;T

X

j

Wj;T21

yj;t;T

Yj;T21

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼
j

X
wrj;t;T ð9Þ

In (9), the relationship between the national ratio rt,T and the weighted regional ratios

wrj,t,T is additive.

Plugging the initial estimates derived according to (3)–(7) into (9), we obtain the

preliminary, unbalanced estimates:

wr*
j;t;T ¼ Wj;T21

ŷj;t;T

Yj;T21

ð10Þ

The balanced and temporally consistent time series wr **
j,t,T are the output of the following

constrained quadratic optimization program:

wr *
MIN ðwr ** 2 wr *Þ0D 0Dðwr ** 2 wr *Þ s:t: H wr ** ¼ Re ð11Þ

being:

H ¼
1‘

M ^ In

IM ^ C

" #

and Re ¼
z

WR

" #

where 1M is a column vector of ones and WR is the annual counterpart of the weighted

regional ratios written in matrix form.

In program (11), the objective function reflects the volatility of the discrepancies

between the quarter-to-quarter growth rates of the balanced series and those of the
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unbalanced ones. After some mathematical manipulation, an explicit expression can be

derived:

wr ** ¼ wr * þ ðD 0DÞ21H 0½HðD 0DÞ21H 0�21ðRe 2 Hwr *Þ ð12Þ

The interpretation of Equation (12) is straightforward: the quarterly balanced series are the

result of adding a correction factor to the unbalanced series. This correction factor derives

from the distribution of the discrepancy between the preliminary unbalanced estimates and

the constraint series Re.

Once we have obtained the consistent weighted ratios, we can reverse the

transformation (9) to derive the final estimates of the quarterly regional GDP in volume

terms:

y**
j;t;T ¼ wr**

j;t;T

Yj;T21

Wj;T21

ð13Þ

In this way, the estimates of quarterly GDP derived in the previous equation are

quantitatively consistent in their time dimension (taking as benchmark their annual

regional counterparts) and in their cross-section dimension (generating the GDP provided

by the QNA by regional aggregation). We should also emphasize that the consistency

extends to the methodological dimension too, since the chain-linking procedures currently

used by the NA have been properly taken into account. Finally, using time-series methods

to project the basic short-term indicators, we can derive nowcasts (or flash estimates) of

regional quarterly GDP in a timely manner.

As a summary, Figure 1 presents a picture of the complete procedure. The diagram

emphasizes the binding constraints and the homogeneous processing of information at

the regional level. Note that the box labeled “balancing” embeds the dechaining and

GDP1,T GDPM,TSynthetic indicator sac1,t,T Synthetic indicator sacM,t,T

Benchmarking Benchmarking

Preliminary GDP1,t,T Preliminary GDPM,t,T

National GDPt,T

BALANCING

Final GDP1,t,T Final GDPM,t,T

GDP1,T
GDPM,T

Temporal constraints Cross-section constraint

Fig. 1. Schedule of Steps 2 (Benchmarking) and 3 (Balancing). Note: national variables in bold. Quarterly

index t goes from 1 to 4; annual index T goes from 1 to N and regional index j goes from 1 to M
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rechaining steps required to circumvent the nonadditive features of the chain-linked

volume indexes.

2.5. Comparison with Other Approaches

Table 3 compares our methodology with related approaches along six dimensions: high-

frequency model, role of constraints (temporal and transversal), explicit consideration of

chain linking, mixing data frequencies (e.g., annual and quarterly data) and computational

approach.

Di Fonzo (1990) presents a methodology closely related to ours. We have expanded his

approach to cope with the issue of chain linking and focus the results upon flash estimation

and benchmarking. Di Fonzo and Marini (2005) may be considered a variant of Di Fonzo

(1990) in which balancing plays also a critical role.

In addition, Proietti (2011) is also a close reference. He generalizes the Di Fonzo (1990)

model to take into account integrated random-walk innovations and deals with the issue of

nonadditivity posed by the chain-linking volume indexes implicitly, arranging the

measurement equations to consider a statistical discrepancy. His computational approach

relies on Kalman filtering of the state-space representation of the model. By contrast, our

approach is matrix-oriented, following Di Fonzo (1990).

Spatial correlation plays an important role due to the fact that short-term regional

indicators are closely related and the estimation of regional GDPs at the quarterly

frequency depends also on the national quarterly GDP (Step 3: balancing).

However, our procedure is oriented towards the temporal disaggregation of regional

aggregates, at the same time preserving the cross-section consistency with the national

quarterly GDP rather than the spatial disaggregation of national totals taking the

information contained in the regional indicators as the basis for interpolation. The last

approach is used by the so-called spatial Chow-Lin procedure that adapts the Chow-Lin

method to the spatial nature of the data and may be used to distribute a grand total into its

spatial components at a given point in time (see Vidoli and Mazziotta 2012 and Polasek

and Séllner 2010 among others). This procedure is very flexible and can be used to

disaggregate national, regional or provincial totals into their spatial components (regions,

provinces or areas), but does not consider explicitly the temporal constraints that are the

hallmark of the NA, both regional and quarterly, and of our procedure.

Finally, we want to emphasize that our approach is focused on the estimation of

(unobservable) quarterly regional GDPs rather than on the forecasting of the (observable)

annual regional GDPs. To ensure the comparability and homogeneity of those estimates,

our procedure hinges upon the temporal and cross-section consistency in the same way as

implemented in the NA. The reliance on mimicking the NA limits the selection of

indicators as well as the modeling approach. Lehmann and Wohlrabe (2012) present a

detailed forecasting exercise at the regional level, using a variety of models and a large set

of indicators with different spatial coverage.

3. Case Study: A System of Flash Regional Quarterly GDP Estimates for Spain

In this section we present the main results of a system of regional quarterly GDP flash

estimates for the Spanish economy, following the modeling approach previously outlined.
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3.1. Selection of Monthly Regional Indicators

This subsection details the indicators that have been selected for model estimation. The

selection process was carried out under the premise that indicators should be available in

a timely fashion and should provide a synthetic measure of each of the regional

economies.

The criterion for choosing these variables is the consideration of the regional

counterpart of all the indicators used in the compilation of the QNA (see Álvarez

1989, Martı́nez and Melis 1989, INE 1993 and Álvarez 2005). To fulfil this goal, we

have prepared a set of monthly regional indicators that provides a fairly

comprehensive basis for analyzing and monitoring GDP at the regional level. This

set offers a high-frequency approximation to the behavior of the main macroeconomic

aggregates: gross added value (industry, construction, and services), consumption,

external trade and employment. The selected indicators, with a brief description of

them, are:

. IPI: Index of Industrial Production.
* Units: Index number.
* Source: National Statistical Institute (Instituto Nacional de Estadı́stica, INE).
* Starting date: 1995.01.
* Back-calculation: combining data from 1990 base (1995.01–2002.01) and 2005

base (2002.01–2011.12), using the oldest period-on-period rates of growth to

retropolate the newest base.

. LIC: Municipal construction licenses. Total area to build.
* Units: square meters.
* Source: Ministry of Public Works (Ministerio de Fomento).
* Starting date: 1995.01.
* Back-calculation: Data for Basque Country (Paı́s Vasco) during the period

1995.01–1997.12 have been back calculated using the average of the remaining

regions as indicator. Some specific missing data (Basque Country -2008.08- and

Navarra -2009.12-) have been interpolated using the program TRAMO.

. PER: Overnight stays in hotel establishments.
* Units: Number of overnight stays.
* Source: National Statistical Institute (Instituto Nacional de Estadı́stica, INE).
* Starting date: 1995.01.
* Back-calculation: The series have been homogenized since 1998.12 by means of

univariate intervention analysis in order to correct the methodological change

introduced in 1999.01.

. IAS: Services sector activity indicator.
* Units: Index number. Valuation at current prices.
* Source: National Statistical Institute (Instituto Nacional de Estadı́stica, INE).
* Starting date: 2005.01.
* Deflated using the Consumer Price Index (CPI) for services (house rentals

excluded).
* Missing data since 1995.01 have been estimated using the static factor derived

from the indicators that start in 1995.01 as regressor.
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. ICM: Retail sales index.
* Units: Index number. Valuation at current prices, gas stations excluded.
* Source: National Statistical Institute (Instituto Nacional de Estadı́stica, INE).
* Starting date: 2001.01.
* Deflated using the CPI for services (house rentals excluded).
* Missing data since 1995.01 have been estimated using the static factor derived

from the indicators that start in 1995.01 as regressor.

. MAT: Car registrations.
* Units: Registrations.
* Source: Traffic department (Dirección General de Tráfico, Ministerio del Interior).
* Starting date: 1995.01.

. EXP: Exports of goods.
* Units: Euros, valuation at current prices.
* Source: External trade statistics, Ministry of Economy and Competitiveness.
* Starting date: 1995.01.
* Deflated using the national exports unit value index.

. IMP: Imports of goods.
* Units: Euros, valuation at current prices.
* Source: External trade statistics, Ministry of Economy and Competitiveness.
* Starting date: 1995.01.
* Deflated using the national imports unit value index.

. AFI: Social security system: registered workers.
* Units: persons.
* Source: Labor department (Ministerio de Empleo y Seguridad Social).
* Starting date: 1995.01.

The short-term indicators, in order to be consistent with the QNA data (as mentioned in

Section 2), have been seasonally and calendar adjusted.

3.2. Regional Synthetic Indexes

To combine the information contained in the individual monthly indicators in an efficient

and operative way, we have calculated a synthetic indicator for each region. In order to

convey an idea of the correlation between the individual indicators and the estimated

synthetic indicator (common factor), Table 4 shows the loading vectors, estimated by

means of principal components factor analysis.

We have to note how loadings vary depending on the predominant activities in which

each region specializes. Since two of the indicators (IAS and ICM) have been completed

using the common factor estimated from the remaining indicators, their correlations with

the common factor estimated with the balanced panel are overestimated to a certain extent.

This fact complicates the exact quantification of their role. However, their economic

relevance (IAS for the whole services sector and ICM for private consumption)

recommends their inclusion in the estimation of the regional GDP trackers.

The corresponding monthly regional synthetic indicators are temporally aggregated to

the quarterly frequency.
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3.3. National Accounts Data: Regional Accounts and Quarterly National Accounts

Apart from the monthly regional indicators mentioned above, regional annual GDPs

in chained-volume indices are provided by the RA according to ESA-95 conventions and

they are available for the time span 1995–2011. The cross-section dimension includes

17 regions (Comunidades Autónomas) plus two autonomous cities that will be jointly

considered, giving M ¼ 18, a NUTS-2 regional breakdown according to Eurostat’s

classification.

Finally, the quarterly transversal constraint is the Spanish quarterly volume GDP

provided by the QNA. This variable is compiled seasonally and calendar adjusted.

3.4. Empirical Results

Using the abovementioned data for the period 1995.01 – 2012.12 we can compare now the

final results obtained using the different benchmarking techniques mentioned in section

two (Fernandez, Chow-Lin, Santos Silva-Cardoso (SSC for brevity), Proportional Denton

and Proietti) in order to select the most appropriate in terms of correlation and volatility.

Table 5 shows the summary results obtained with the different methods. Starting with

the composite indicators derived by factor analysis for each region in the first stage, we

apply different benchmarking methods and compare the different results obtained after

final balancing. In order to summarize the results, we present the average correlation of the

quarterly growth rate of GDP finally estimated by region with the initial composite

indicator and the average standard deviation of the quarterly growth rate of GDP finally

estimated by region.

This table shows that there seems to be a trade-off relationship between correlation and

volatility (except in proportional Denton, which shows high volatility and low

correlation). The Fernández and Chow-Lin methods are closest to the evolution of the

indicator, without assuming a more complex structure in the errors, as is the case with SSC

and Proietti.

Based on these results, we have decided to choose either the Fernández or the Chow-Lin

method, because we think it is more important to be as faithful as possible to the

information contained in the indicators, despite having higher volatility. Additionally,

this is the method currently suggested for the compilation of the Spanish QNA

(see Quilis 2005).

Regarding the distinction between the Fernández or Chow-Lin method, the results of the

exercise show an innovational parameter with Chow-Lin close to 1 (approximately

0.98–0.99 in most cases), so under this situation both methods are practically equivalent.

With the aim of analyzing both the duration and the date of entry and exit of the

recession in each region, Table 6 presents the evolution of the estimated year-on-year rates

Table 5. Comparison of methods (quarterly rates of growth)

Fernandez Chow-Lin SSC Denton Prop. Proietti

Average Standard Deviation 0.821 0.858 0.731 0.843 0.744
Average Correlation 0.767 0.776 0.683 0.670 0.736
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of growth in the quarterly frequency; for the exercise performed with the Chow-Lin

method, for example.

The table shows how the crisis has affected regions unevenly. For example, we can

place the bulk of the recession between the fourth quarter of 2008 and the first quarter of

2010. Most of the regions fell into recession at the same time but not all of them left it

simultaneously; this is the case of regions such as Andalucı́a, where the contractionary

period is particularly long. We can see that many regions fall back into recession after the

first quarter of 2012.

In relation to the variance of these results, Figure 2 shows the different box plots of the

year-on-year rates of growth in the quarterly frequency for the different regions:

We observe a greater presence of outliers in periods of recession than in periods of

expansion. This is partly due to the longer duration of the latter, rendering the median less

representative for recessionary quarters. At the same time, the highest rate of variability is

not linked to the larger size (GDP weight) of the region (see Appendix 1).

The temporal dimension of the data allows us to appreciate a reduction in volatility after

2003, although this is a property inherited from the annual data published by the RA (see

Figure 3):

Finally, in order to clarify the importance of the balancing procedure on the final

estimate, an exercise on two regions has been carried out: one with a large size (Cataluña)

and other with a small size (La Rioja). This exercise is trying to reveal whether a small

region can seriously change its initial estimate of quarterly GDP with the final balancing.

Initial or preliminary estimates do not take into account the information contained in the

national quarterly GDP. Those initial estimates are modified to be consistent each quarter

with the quarterly national GDP, reflecting the fact that the national data is the transversal

aggregation of the regions.

The difference between the initial and the final estimates reflects the balancing

procedure that ensures the transversal constraint and preserves, for each region, the

temporal consistency with the Regional Accounts.
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8

CAT MAD AND VAL PV CYL GAL CAN CLM ARA MUR BAL AST NAV EXT CANT RIO

Fig. 2. Box plot: annual growth rates by region in quarterly frequency, sorted according to weight on Spanish

GDP. Note: Central line stands for median values, the box represents 50% of the central part of the data and the

whiskers are the minimum and maximum of the data
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Figure 4 shows, firstly, the initial quarterly regional GDP estimation (distribution of

annual regional GDP according to the indicator) against the evolution of the indicator and,

secondly, the initial quarterly estimation against the final quarterly GDP.

It is easy to see how the first step of estimating quarterly GDP depending on the

evolution of the indicator is even more crucial to the subsequent balancing procedure.

Furthermore, the small region does not have its initial estimate changed substantially

compared with that of the large region. This fact shows the robustness of the balancing

–4

–2

0

2

4

6

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

Fig. 3. Box plot: year-on-year rates of growth (annual data). Note: Dot is the aggregate data for Spain
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Fig. 4. Initial quarterly estimation vs. final balanced estimation. Small vs. large regions, year-on-year rates of

growth
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procedure, revealing that the variability in the final estimate is driven by the variability of

the selected indicator.

4. Conclusions

In this article we have presented a feasible way to add a regional dimension to the short-

term macroeconomic analysis, satisfying the temporal and cross-section constraints

imposed by the NA. Our procedure generates results that are comparable across regions,

are based on meaningful short-term information, and may be updated at the same time as

the GDP flash national estimates, providing a solid basis for specific regional estimates.

In summary, the major outcomes of the model are:

- It solves the lack of quarterly GDP at the regional level, providing estimates

consistent with the official available data published by the NA (RA and QNA).

These estimates are a stand-alone product that may be used as input in regional

econometric models.

- It provides a regional breakdown of the early estimates of the quarterly national

volume GDP that may be released simultaneously, providing flash estimates at the

regional level.

There are several promising lines of research that may broaden the scope of the article. The

use of dynamic-factor models to estimate the regional high-frequency synthetic indexes

may provide a more complete description of the economic conditions at the regional level.

The modeling approach can be extended easily to accommodate several types of

extrapolations. For example, the transversal benchmark of the model (the national

quarterly GDP) may be an official release made by the NSI or a forecast made by an

analyst (e.g., the research department of an investment bank). In the latter case, we can

combine these forecasts with the projected path for the underlying short-term quarterly

regional indicators to generate the corresponding regional quarterly GDPs. The resulting

conditional extrapolations can be used to assess the expected cyclical position of each

region with respect to the nation.

Finally, the estimated regional quarterly GDPs can be used to analyze issues related to

the synchronicity of the regional business cycles as well as their pattern of co-movements.
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Appendix 1: Main Features of the Spanish Regions (2011)
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Quarterly Regional GDP Flash Estimates by Means of
Benchmarking and Chain Linking

Ángel Cuevas1, Enrique M. Quilis2, and Antoni Espasa3

In this article we propose a methodology for estimating the GDP of a country’s different
regions, providing quarterly profiles for the annual official observed data. Thus the article
offers a new instrument for short-term monitoring that allows the analysts to quantify the
degree of synchronicity among regional business cycles. Technically, we combine time-series
models with benchmarking methods to process short-term quarterly indicators and to estimate
quarterly regional GDPs ensuring their temporal and transversal consistency with the National
Accounts data. The methodology addresses the issue of nonadditivity, explicitly taking into
account the transversal constraints imposed by the chain-linked volume indexes used by the
National Accounts, and provides an efficient combination of structural as well as short-term
information. The methodology is illustrated by an application to the Spanish economy,
providing real-time quarterly GDP estimates, that is, with a minimum compilation delay with
respect to the national quarterly GDP. The estimated quarterly data are used to assess the
existence of cycles shared among the Spanish regions.

Key words: Benchmarking; chain linking; national accounts; regional accounts; GDP flash
estimates.

1. Introduction

Business cycle analysis and the short-term monitoring of a national economy can be

substantially improved if an explicit regional dimension is taken into consideration. In this

way, the diffusion of the aggregate (or national) cycle can be analyzed in detail:

identifying leading/coincident/lagged regions, detecting common and specific shocks and

so on. The relevance of this added geographical dimension is especially important both for

large or medium-sized countries as well as for countries with decentralized systems that

allow specific economic policies to be applied. Of course, the quarterly regional estimates

that we present below are also very useful for regional governments.

The Regional Accounts (RA) are annual data and in this context we here propose a

methodology for estimating quarterly Gross Domestic Product (GDP) time series at the

regional level, providing a new instrument for short-term monitoring that allows us to

gauge the degree of synchronicity and the identification of shared and idiosyncratic shocks

to different regions.
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Our methodology ensures the consistency of these quarterly regional GDPs with the

national quarterly GDP, taking into account the chain-linking procedures that underlie

its compilation. Note that the same principles of volume estimation using chain-

linked indices have been used in our analysis and we have applied the same

procedures of seasonal and calendar adjustment used by the Quarterly National

Accounts (QNA).

Structural consistency is also ensured, since the quarterly regional GDPs are consistent

with their annual RA counterparts. The fact that both QNA and RA share the same

National Accounts (NA) framework provides the base for the consistency obtained in our

analysis. In this way, we can use the quarterly regional estimates to derive structural

measures at the regional level.

The modeling approach is highly reliant on a set of regional high-frequency indicators.

These indicators provide the ultimate basis used by the model to generate GDP according

to time-series techniques ranging from univariate ARIMA models to multivariate

dynamic-factor models. The set of indicators and models are homogeneous across regions,

ensuring the comparability of the results.

The methodology has three main stages:

1. Processing of the high-frequency indicators available at the regional level and

estimation, for each region, of a synthetic index that combines the available short-

term information.

2. Temporal disaggregation and interpolation of annual regional GDP using the

indicators processed in Step 1.

3. Balancing of these initial quarterly estimates in order to ensure transversal

consistency with national quarterly GDP, at the same time preserving the temporal

consistency achieved in the previous stage.

It is worth emphasizing that, from an operational perspective, early estimates of quarterly

regional GDPs may be available with a minimum delay with respect to the national

quarterly GDP release, the so-called “GDP flash estimate”. Thus the national figure may

have timely regional counterparties, enhancing the informational content of analysis

carried out at the aggregate level.

The main contributions of our article are:

- A methodology for obtaining quarterly estimates of GDP for all the regions in a

country, derived in a consistent way with the official available data provided by the

NA, both RA and QNA.

- Early (or flash) estimates of quarterly GDP at the regional level that may be released

at the same time as the national GDP.

- Transversal consistency is compliant with the chain-linking methodology,

circumventing its nonadditive features in the balancing step.

The article is organized as follows. The second section outlines the modeling approach,

going into detail on its main steps. A complete and in-depth application of the

methodology using Spanish data appears in section three. Finally, in the fourth section,

we present our conclusions and future lines of research.
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2. Modeling Approach

In this section we present the main steps of the proposed methodology. The modeling

approach consists of three basic steps: (i) seasonal adjustment of regional short-term raw

indicators and construction of synthetic indicators for each region by means of factor

analysis, (ii) initial quarterly estimates of regional GDP provided by benchmarking and

(iii) enforcement of the transversal constraint that links the regional quarterly GDPs with

their national counterpart.

This aggregation constraint must be consistent with the chain-linking procedure used to

compile quarterly GDP at the national level, dealing with the nonadditivity issue in an

appropriate way. We now turn to examine the three stages in more detail; however, to

simplify the exposition, we first present the required information set.

2.1. Information Set

The model requires as input three elements that vary according to their sampling

frequency (annual or quarterly), their spatial coverage (regional or national) and their

method of compilation (NA or short-term indicators).

The variables of the system are: regional GDPs ( y), national GDP (z), and regional

short-term indicators in their original or raw form (xr). Upper-case letters refer to annual

variables, while lower-case letters refer to quarterly variables. Let T ¼ 1,..,N be the

annual (low-frequency) index, t ¼ 1,..,4 the quarterly index within a natural year and

j ¼ 1,..,M the regional (cross-section) index.

Hence, Y ¼ {YT, j: T ¼ 1,..,N; j ¼ 1,..,M} is a NxM matrix comprising the annual

regional GDPs that play the role of temporal benchmarks of the system. Aggregation of

the regional GDPs generates the GDP at the national level. Note that, aggregation is

performed according to the chain-linking methodology.

Variable z is a nx1 vector comprising the observed quarterly GDP provided by the QNA,

being n the number of quarterly observations satisfying n $ 4N. This figure is available

more timely than the regional data and shares with them the corresponding annual GDP

volume index:

ZT ¼
1

4 t[T

X
zt;T ð1Þ

For example, taking 2011 as a reference, the QNA released its first estimate of 2010:Q4

on February, 11 while the RA released its first estimate of 2010 on March, 24. Both

estimates share the annual figure for 2010 implicitly provided by the QNA by means of

temporal aggregation of the four quarters of 2010.

Finally, xr is a nxM matrix comprising the observed raw quarterly indicators that

operate as high-frequency proxies for the regional aggregates Y. As will be explained later,

we work with the seasonally and calendar-adjusted indicators (x) instead of the raw

indicators (xr).

Only the indicators x are observed at the three dimensions of the system: T (annual

index), t (quarterly index) and j (regional index). Therefore, they provide the interpolation

basis for Y (across the quarterly dimension t) and z (across the regional dimension j ).
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In other words, our objective is to estimate y using x as interpolators and consistently with

both Y and z.

Table 1 sets out the relationship among the inputs (Y, z and x) and the output ( y) of the

system for a simplified case with two regions (M ¼ 2) and two years (T ¼ 2). The first

year is complete while the second year is incomplete (i.e., the last two quarters are not

available for x and z and the annual figure for Y is not available either).

In this simplified example, we want to estimate the first year’s quarterly regional GDPs

yj,t,1 consistently with their annual counterparts Yj,1 and satisfying the transversal

constraint that links the regional GDPs with the national GDP zt,1 each quarter. The annual

constraints do not apply during the second year since Yj,2 are not available. Thus the only

binding constraint is the transversal constraint.

2.2. Processing Short-Term Indicators

Typically, short-term regional economic indicators are compiled in raw form by the

statistical agencies. However, the volume GDP used for short-term monitoring at the

national level is calculated in two ways: using raw indicators or using seasonal and

calendar-adjusted indicators. Since seasonal and calendar effects could be quite different

between indicators and the macroeconomic aggregates, the second procedure for the

calculation of the GDP seems more reliable. Usually these GDP figures are referred to as

seasonal and calendar adjusted.

In order to ensure the homogeneity between both sources of information, regional raw

indicators and seasonally adjusted quarterly national GDP, we apply an ARIMA model-

based correction that filters out the raw data from seasonal and calendar effects, if they are

present. The procedure has been implemented using the TRAMO-SEATS program, see

Gómez and Maravall (1996) and Caporello and Maravall (2004). Formally:

xj;t;T ¼ VðB;F;cjÞ xrj;t;T ð2Þ

where xrj,t,T is the raw short-term indicator; V() is the Wiener-Kolmogorov filter

symmetrically defined on the backward and forward operators B and F and cj are the

Table 1. Information set of the model: Quarterly GDP tracker (x), Annual Regional GDP (Y), quarterly

National GDD (Z) and Quarterly Regional GDP (y), which is the variable to be estimated.

Region 1 Region 2 Nation

Year Quarter x1 y1 Y1 x2 y2 Y2 Z

1 x1,1,1 y1,1,1 x2,1,1 y2,1,1 z2,1,1

1 2 x1,2,1 y1,2,1 x2,2,1 y2,2,1 z2,2,1

3 x1,3,1 y1,3,1 Y1,1 x2,3,1 y2,3,1 Y2,1 z2,3,1

4 x1,4,1 y1,4,1 x2.4,1 y2,4,1 z2,4,1

2 1 x1,1,2 y1,1,2 x2,1,2 y2,1,2 z2,1,2

2 x1,2,2 y1,2,2 x2,2,2 y2,2,2 z2,2,2

3
4

Note: bold variables are temporal constraints (Y) or transversal constraints (z).
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parameters of the filter derived consistently with those of the ARIMA model for xrj,t,T,

see Gómez and Maravall (1998a, 1998b) for a detailed exposition of the model-based

approach used by TRAMO-SEATS.

If the indicators are available at the monthly frequency, seasonal adjustment is

performed on the monthly series. The resulting series are temporally aggregated to the

quarterly frequency.

We have used TRAMO-SEATS because it is the method used by the Spanish National

Statistical Institute (NSI) to adjust GDP to seasonal effects. Of course, the choice of the

seasonal adjustment procedure depends on the official method used by the NSI to produce

the GDP figures. In countries where X12-ARIMA is the official procedure, this should be

also the choice for seasonally adjusting the short-term indicators.

In practice, several short-term economic indicators are used to monitor and estimate

regional GDPs. These indicators are individually processed according to (2) and then

linearly combined, producing a composite indicator that will be used as the high-frequency

proxy for regional GDPs. As will be explained in the third section, we use factor analysis

to estimate a synthetic indicator for each region because it provides an objective and

simple way to combine the available indicators.

2.3. Initial Quarterly Regional GDP Estimation

Preliminary estimates of quarterly GDP at the regional level are compiled using

benchmarking techniques (see Di Fonzo 1987, 2002 and Proietti 2006 for an in-depth

exposition). These techniques play an important role in the compilation practices of QNA

around the world (see Eurostat 1998 and Bloem et al. 2001).

We have considered several benchmarking procedures for deriving the preliminary

GDP estimates: Chow and Lin (1971), Fernández (1981), Santos-Silva and Cardoso

(2001) and Proietti (2006). All of them hinge upon a dynamic linear model that links the

(observable) high-frequency indicator with the (unobservable) regional GDP. (To keep the

notation simple we have omitted the regional index j ).

yt ¼ f yt21 þ b0 xt þ b1 xt21 þ ut ð3Þ

The innovation u follows an AR(1) process:

ut ¼ rut21 þ at ð4Þ

Finally, the random shock that drives the innovation u is the Gaussian white-noise process:

at , iid Nð0; vaÞ ð5Þ

The model includes a temporal constraint that makes y quantitatively consistent with its

annual counterpart Y:

Y ¼ Cy ð6Þ

C is the temporal aggregation-extrapolation matrix defined as:

C ¼ ðIN^cjON;n2sNÞ ð7Þ

where N is the number of low-frequency observations, ^ stands for the Kronecker product,
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c is a row vector of size s which defines the type of temporal aggregation and s is the

number of high-frequency data points for each low-frequency data point. If

c ¼ [1,1, : : : ,1] we would have the case of the temporal aggregation of a flow, if

c ¼ [1/s,1/s, : : : ,1/s] the case of the average of an index, and if c ¼ [0,0, : : : ,1], an

interpolation would be obtained. In our case, s ¼ 4.

Extrapolation arises when n . sN. In this case, the problem can be solved easily by

simply extending the temporal aggregation matrix by considering new columns of zeroes

which do not distort the temporal aggregation relationship and that do not pose any

difficulty to the inclusion of the last n-sN data points of the indicators in the process of

estimating y.

The different benchmarking methods depend on the values of the parameters in (3) and

(4) according to Table 2.

The methods of Chow-Lin and Fernández place the dynamics in the innovation, which

may follow a stationary AR(1) process (Chow-Lin) or a nonstationary I(1), random-walk

process (Fernández). Litterman (1983) proposes a methodology close to those of

Chow-Lin and Fernández. However, the empirical and Monte Carlo evidence show that its

performance is sometimes disappointing. This is due to the flatness of the implied

likelihood profile and, therefore, the corresponding observational equivalence in a wide

range of values for its dynamical parameter, see Proietti (2006). On the other hand, the

methods of Santos Silva-Cardoso and Proietti place the dynamics in the variables y and x,

treating the innovation as a purely random shock. Gregoir (1994) and Salazar et al. (1994)

also propose methods in which the dynamics of y and x play an explicit role.

The estimation of the parameters and the unobserved time series y is performed by

maximizing the implied log-likelihood profile of the low-frequency model. The low-

frequency model incorporates the temporal aggregation constraints [2.6] and [2.7]. This

optimization is performed by means of a grid search on the stationary domain of f or r and

pinning down the values of b and s that maximize the log-likelihood function conditioned

on the selected value for f or r (see Bournay and Laroque 1979 for an in-depth

exposition). The computations have been carried out using the functions written in Matlab

by Abad and Quilis (2005).

2.4. Balancing in a Chain-Linking Setting

The estimates derived in the previous step do not verify the transversal constraint that

should relate them to the national quarterly GDP, satisfying the same type of relationship

that links annual regional GDPs and annual national GDP. We solve the problem by

Table 2. Benchmarking methods

Parameter

Method f b1 r

Chow-Lin 0 0 (0,1)
Fernández 0 0 1
Santos Silva-Cardos (0,1) 0 0
Proietti (0,1) – 0 0
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applying a multivariate balancing procedure, in particular a multivariate extension of the

Denton (1971) method. This extension can be expressed in matrix form (as in Di Fonzo

1990 and Di Fonzo and Marini 2003), as well as in state-space form (see Proietti 2011).

In this article we have adopted the former approach, using the functions written in Matlab

by Abad and Quilis (2005).

This balancing method depends on the formulation of additive constraints. However,

volume indexes compiled according to the chain-linking methodology are nonadditive, see

Bloem et al. (2001) and Abad et al. (2007). Fortunately, we can transform the chain-linked

measures in order to write them in an additive form and then use the powerful machinery

of balancing procedures to ensure transversal and temporal consistency. Finally, we can

express the results in the initial chain-linked format by reversing the transformation.

The constraint that links regional and national quarterly volume GDP is:

zt;T ¼
X

j

Wj;T21

yj;t;T

Yj;T21

 !

ZT21 ð8Þ

where zt,T is the national quarterly volume GDP, Wj,T21 is the weight of region j in year

T 2 1 and yj,t,T is the quarterly volume GDP of the jth region. Weights are computed

using GDPs valued at current prices, see Abad et al. (2007) for a complete derivation.

Finally, ZT and Yj,T are the annual counterparts zt,T of and yj,t,T.

After some algebraic manipulations, we can express the constraint in additive form:

rt;T

zt;T

ZT21|ffl{zffl}
¼

wrj;t;T

X

j

Wj;T21

yj;t;T

Yj;T21

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼
j

X
wrj;t;T ð9Þ

In (9), the relationship between the national ratio rt,T and the weighted regional ratios

wrj,t,T is additive.

Plugging the initial estimates derived according to (3)–(7) into (9), we obtain the

preliminary, unbalanced estimates:

wr*
j;t;T ¼ Wj;T21

ŷj;t;T

Yj;T21

ð10Þ

The balanced and temporally consistent time series wr **
j,t,T are the output of the following

constrained quadratic optimization program:

wr *
MIN ðwr ** 2 wr *Þ0D 0Dðwr ** 2 wr *Þ s:t: H wr ** ¼ Re ð11Þ

being:

H ¼
1‘

M ^ In

IM ^ C

" #

and Re ¼
z

WR

" #

where 1M is a column vector of ones and WR is the annual counterpart of the weighted

regional ratios written in matrix form.

In program (11), the objective function reflects the volatility of the discrepancies

between the quarter-to-quarter growth rates of the balanced series and those of the
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unbalanced ones. After some mathematical manipulation, an explicit expression can be

derived:

wr ** ¼ wr * þ ðD 0DÞ21H 0½HðD 0DÞ21H 0�21ðRe 2 Hwr *Þ ð12Þ

The interpretation of Equation (12) is straightforward: the quarterly balanced series are the

result of adding a correction factor to the unbalanced series. This correction factor derives

from the distribution of the discrepancy between the preliminary unbalanced estimates and

the constraint series Re.

Once we have obtained the consistent weighted ratios, we can reverse the

transformation (9) to derive the final estimates of the quarterly regional GDP in volume

terms:

y**
j;t;T ¼ wr**

j;t;T

Yj;T21

Wj;T21

ð13Þ

In this way, the estimates of quarterly GDP derived in the previous equation are

quantitatively consistent in their time dimension (taking as benchmark their annual

regional counterparts) and in their cross-section dimension (generating the GDP provided

by the QNA by regional aggregation). We should also emphasize that the consistency

extends to the methodological dimension too, since the chain-linking procedures currently

used by the NA have been properly taken into account. Finally, using time-series methods

to project the basic short-term indicators, we can derive nowcasts (or flash estimates) of

regional quarterly GDP in a timely manner.

As a summary, Figure 1 presents a picture of the complete procedure. The diagram

emphasizes the binding constraints and the homogeneous processing of information at

the regional level. Note that the box labeled “balancing” embeds the dechaining and

GDP1,T GDPM,TSynthetic indicator sac1,t,T Synthetic indicator sacM,t,T

Benchmarking Benchmarking

Preliminary GDP1,t,T Preliminary GDPM,t,T

National GDPt,T

BALANCING

Final GDP1,t,T Final GDPM,t,T

GDP1,T
GDPM,T

Temporal constraints Cross-section constraint

Fig. 1. Schedule of Steps 2 (Benchmarking) and 3 (Balancing). Note: national variables in bold. Quarterly

index t goes from 1 to 4; annual index T goes from 1 to N and regional index j goes from 1 to M
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rechaining steps required to circumvent the nonadditive features of the chain-linked

volume indexes.

2.5. Comparison with Other Approaches

Table 3 compares our methodology with related approaches along six dimensions: high-

frequency model, role of constraints (temporal and transversal), explicit consideration of

chain linking, mixing data frequencies (e.g., annual and quarterly data) and computational

approach.

Di Fonzo (1990) presents a methodology closely related to ours. We have expanded his

approach to cope with the issue of chain linking and focus the results upon flash estimation

and benchmarking. Di Fonzo and Marini (2005) may be considered a variant of Di Fonzo

(1990) in which balancing plays also a critical role.

In addition, Proietti (2011) is also a close reference. He generalizes the Di Fonzo (1990)

model to take into account integrated random-walk innovations and deals with the issue of

nonadditivity posed by the chain-linking volume indexes implicitly, arranging the

measurement equations to consider a statistical discrepancy. His computational approach

relies on Kalman filtering of the state-space representation of the model. By contrast, our

approach is matrix-oriented, following Di Fonzo (1990).

Spatial correlation plays an important role due to the fact that short-term regional

indicators are closely related and the estimation of regional GDPs at the quarterly

frequency depends also on the national quarterly GDP (Step 3: balancing).

However, our procedure is oriented towards the temporal disaggregation of regional

aggregates, at the same time preserving the cross-section consistency with the national

quarterly GDP rather than the spatial disaggregation of national totals taking the

information contained in the regional indicators as the basis for interpolation. The last

approach is used by the so-called spatial Chow-Lin procedure that adapts the Chow-Lin

method to the spatial nature of the data and may be used to distribute a grand total into its

spatial components at a given point in time (see Vidoli and Mazziotta 2012 and Polasek

and Séllner 2010 among others). This procedure is very flexible and can be used to

disaggregate national, regional or provincial totals into their spatial components (regions,

provinces or areas), but does not consider explicitly the temporal constraints that are the

hallmark of the NA, both regional and quarterly, and of our procedure.

Finally, we want to emphasize that our approach is focused on the estimation of

(unobservable) quarterly regional GDPs rather than on the forecasting of the (observable)

annual regional GDPs. To ensure the comparability and homogeneity of those estimates,

our procedure hinges upon the temporal and cross-section consistency in the same way as

implemented in the NA. The reliance on mimicking the NA limits the selection of

indicators as well as the modeling approach. Lehmann and Wohlrabe (2012) present a

detailed forecasting exercise at the regional level, using a variety of models and a large set

of indicators with different spatial coverage.

3. Case Study: A System of Flash Regional Quarterly GDP Estimates for Spain

In this section we present the main results of a system of regional quarterly GDP flash

estimates for the Spanish economy, following the modeling approach previously outlined.
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3.1. Selection of Monthly Regional Indicators

This subsection details the indicators that have been selected for model estimation. The

selection process was carried out under the premise that indicators should be available in

a timely fashion and should provide a synthetic measure of each of the regional

economies.

The criterion for choosing these variables is the consideration of the regional

counterpart of all the indicators used in the compilation of the QNA (see Álvarez

1989, Martı́nez and Melis 1989, INE 1993 and Álvarez 2005). To fulfil this goal, we

have prepared a set of monthly regional indicators that provides a fairly

comprehensive basis for analyzing and monitoring GDP at the regional level. This

set offers a high-frequency approximation to the behavior of the main macroeconomic

aggregates: gross added value (industry, construction, and services), consumption,

external trade and employment. The selected indicators, with a brief description of

them, are:

. IPI: Index of Industrial Production.
* Units: Index number.
* Source: National Statistical Institute (Instituto Nacional de Estadı́stica, INE).
* Starting date: 1995.01.
* Back-calculation: combining data from 1990 base (1995.01–2002.01) and 2005

base (2002.01–2011.12), using the oldest period-on-period rates of growth to

retropolate the newest base.

. LIC: Municipal construction licenses. Total area to build.
* Units: square meters.
* Source: Ministry of Public Works (Ministerio de Fomento).
* Starting date: 1995.01.
* Back-calculation: Data for Basque Country (Paı́s Vasco) during the period

1995.01–1997.12 have been back calculated using the average of the remaining

regions as indicator. Some specific missing data (Basque Country -2008.08- and

Navarra -2009.12-) have been interpolated using the program TRAMO.

. PER: Overnight stays in hotel establishments.
* Units: Number of overnight stays.
* Source: National Statistical Institute (Instituto Nacional de Estadı́stica, INE).
* Starting date: 1995.01.
* Back-calculation: The series have been homogenized since 1998.12 by means of

univariate intervention analysis in order to correct the methodological change

introduced in 1999.01.

. IAS: Services sector activity indicator.
* Units: Index number. Valuation at current prices.
* Source: National Statistical Institute (Instituto Nacional de Estadı́stica, INE).
* Starting date: 2005.01.
* Deflated using the Consumer Price Index (CPI) for services (house rentals

excluded).
* Missing data since 1995.01 have been estimated using the static factor derived

from the indicators that start in 1995.01 as regressor.
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. ICM: Retail sales index.
* Units: Index number. Valuation at current prices, gas stations excluded.
* Source: National Statistical Institute (Instituto Nacional de Estadı́stica, INE).
* Starting date: 2001.01.
* Deflated using the CPI for services (house rentals excluded).
* Missing data since 1995.01 have been estimated using the static factor derived

from the indicators that start in 1995.01 as regressor.

. MAT: Car registrations.
* Units: Registrations.
* Source: Traffic department (Dirección General de Tráfico, Ministerio del Interior).
* Starting date: 1995.01.

. EXP: Exports of goods.
* Units: Euros, valuation at current prices.
* Source: External trade statistics, Ministry of Economy and Competitiveness.
* Starting date: 1995.01.
* Deflated using the national exports unit value index.

. IMP: Imports of goods.
* Units: Euros, valuation at current prices.
* Source: External trade statistics, Ministry of Economy and Competitiveness.
* Starting date: 1995.01.
* Deflated using the national imports unit value index.

. AFI: Social security system: registered workers.
* Units: persons.
* Source: Labor department (Ministerio de Empleo y Seguridad Social).
* Starting date: 1995.01.

The short-term indicators, in order to be consistent with the QNA data (as mentioned in

Section 2), have been seasonally and calendar adjusted.

3.2. Regional Synthetic Indexes

To combine the information contained in the individual monthly indicators in an efficient

and operative way, we have calculated a synthetic indicator for each region. In order to

convey an idea of the correlation between the individual indicators and the estimated

synthetic indicator (common factor), Table 4 shows the loading vectors, estimated by

means of principal components factor analysis.

We have to note how loadings vary depending on the predominant activities in which

each region specializes. Since two of the indicators (IAS and ICM) have been completed

using the common factor estimated from the remaining indicators, their correlations with

the common factor estimated with the balanced panel are overestimated to a certain extent.

This fact complicates the exact quantification of their role. However, their economic

relevance (IAS for the whole services sector and ICM for private consumption)

recommends their inclusion in the estimation of the regional GDP trackers.

The corresponding monthly regional synthetic indicators are temporally aggregated to

the quarterly frequency.
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3.3. National Accounts Data: Regional Accounts and Quarterly National Accounts

Apart from the monthly regional indicators mentioned above, regional annual GDPs

in chained-volume indices are provided by the RA according to ESA-95 conventions and

they are available for the time span 1995–2011. The cross-section dimension includes

17 regions (Comunidades Autónomas) plus two autonomous cities that will be jointly

considered, giving M ¼ 18, a NUTS-2 regional breakdown according to Eurostat’s

classification.

Finally, the quarterly transversal constraint is the Spanish quarterly volume GDP

provided by the QNA. This variable is compiled seasonally and calendar adjusted.

3.4. Empirical Results

Using the abovementioned data for the period 1995.01 – 2012.12 we can compare now the

final results obtained using the different benchmarking techniques mentioned in section

two (Fernandez, Chow-Lin, Santos Silva-Cardoso (SSC for brevity), Proportional Denton

and Proietti) in order to select the most appropriate in terms of correlation and volatility.

Table 5 shows the summary results obtained with the different methods. Starting with

the composite indicators derived by factor analysis for each region in the first stage, we

apply different benchmarking methods and compare the different results obtained after

final balancing. In order to summarize the results, we present the average correlation of the

quarterly growth rate of GDP finally estimated by region with the initial composite

indicator and the average standard deviation of the quarterly growth rate of GDP finally

estimated by region.

This table shows that there seems to be a trade-off relationship between correlation and

volatility (except in proportional Denton, which shows high volatility and low

correlation). The Fernández and Chow-Lin methods are closest to the evolution of the

indicator, without assuming a more complex structure in the errors, as is the case with SSC

and Proietti.

Based on these results, we have decided to choose either the Fernández or the Chow-Lin

method, because we think it is more important to be as faithful as possible to the

information contained in the indicators, despite having higher volatility. Additionally,

this is the method currently suggested for the compilation of the Spanish QNA

(see Quilis 2005).

Regarding the distinction between the Fernández or Chow-Lin method, the results of the

exercise show an innovational parameter with Chow-Lin close to 1 (approximately

0.98–0.99 in most cases), so under this situation both methods are practically equivalent.

With the aim of analyzing both the duration and the date of entry and exit of the

recession in each region, Table 6 presents the evolution of the estimated year-on-year rates

Table 5. Comparison of methods (quarterly rates of growth)

Fernandez Chow-Lin SSC Denton Prop. Proietti

Average Standard Deviation 0.821 0.858 0.731 0.843 0.744
Average Correlation 0.767 0.776 0.683 0.670 0.736
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of growth in the quarterly frequency; for the exercise performed with the Chow-Lin

method, for example.

The table shows how the crisis has affected regions unevenly. For example, we can

place the bulk of the recession between the fourth quarter of 2008 and the first quarter of

2010. Most of the regions fell into recession at the same time but not all of them left it

simultaneously; this is the case of regions such as Andalucı́a, where the contractionary

period is particularly long. We can see that many regions fall back into recession after the

first quarter of 2012.

In relation to the variance of these results, Figure 2 shows the different box plots of the

year-on-year rates of growth in the quarterly frequency for the different regions:

We observe a greater presence of outliers in periods of recession than in periods of

expansion. This is partly due to the longer duration of the latter, rendering the median less

representative for recessionary quarters. At the same time, the highest rate of variability is

not linked to the larger size (GDP weight) of the region (see Appendix 1).

The temporal dimension of the data allows us to appreciate a reduction in volatility after

2003, although this is a property inherited from the annual data published by the RA (see

Figure 3):

Finally, in order to clarify the importance of the balancing procedure on the final

estimate, an exercise on two regions has been carried out: one with a large size (Cataluña)

and other with a small size (La Rioja). This exercise is trying to reveal whether a small

region can seriously change its initial estimate of quarterly GDP with the final balancing.

Initial or preliminary estimates do not take into account the information contained in the

national quarterly GDP. Those initial estimates are modified to be consistent each quarter

with the quarterly national GDP, reflecting the fact that the national data is the transversal

aggregation of the regions.

The difference between the initial and the final estimates reflects the balancing

procedure that ensures the transversal constraint and preserves, for each region, the

temporal consistency with the Regional Accounts.
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Fig. 2. Box plot: annual growth rates by region in quarterly frequency, sorted according to weight on Spanish

GDP. Note: Central line stands for median values, the box represents 50% of the central part of the data and the

whiskers are the minimum and maximum of the data
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Figure 4 shows, firstly, the initial quarterly regional GDP estimation (distribution of

annual regional GDP according to the indicator) against the evolution of the indicator and,

secondly, the initial quarterly estimation against the final quarterly GDP.

It is easy to see how the first step of estimating quarterly GDP depending on the

evolution of the indicator is even more crucial to the subsequent balancing procedure.

Furthermore, the small region does not have its initial estimate changed substantially

compared with that of the large region. This fact shows the robustness of the balancing
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Fig. 3. Box plot: year-on-year rates of growth (annual data). Note: Dot is the aggregate data for Spain
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Fig. 4. Initial quarterly estimation vs. final balanced estimation. Small vs. large regions, year-on-year rates of

growth
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procedure, revealing that the variability in the final estimate is driven by the variability of

the selected indicator.

4. Conclusions

In this article we have presented a feasible way to add a regional dimension to the short-

term macroeconomic analysis, satisfying the temporal and cross-section constraints

imposed by the NA. Our procedure generates results that are comparable across regions,

are based on meaningful short-term information, and may be updated at the same time as

the GDP flash national estimates, providing a solid basis for specific regional estimates.

In summary, the major outcomes of the model are:

- It solves the lack of quarterly GDP at the regional level, providing estimates

consistent with the official available data published by the NA (RA and QNA).

These estimates are a stand-alone product that may be used as input in regional

econometric models.

- It provides a regional breakdown of the early estimates of the quarterly national

volume GDP that may be released simultaneously, providing flash estimates at the

regional level.

There are several promising lines of research that may broaden the scope of the article. The

use of dynamic-factor models to estimate the regional high-frequency synthetic indexes

may provide a more complete description of the economic conditions at the regional level.

The modeling approach can be extended easily to accommodate several types of

extrapolations. For example, the transversal benchmark of the model (the national

quarterly GDP) may be an official release made by the NSI or a forecast made by an

analyst (e.g., the research department of an investment bank). In the latter case, we can

combine these forecasts with the projected path for the underlying short-term quarterly

regional indicators to generate the corresponding regional quarterly GDPs. The resulting

conditional extrapolations can be used to assess the expected cyclical position of each

region with respect to the nation.

Finally, the estimated regional quarterly GDPs can be used to analyze issues related to

the synchronicity of the regional business cycles as well as their pattern of co-movements.
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Appendix 1: Main Features of the Spanish Regions (2011)
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Cultural Variations in the Effect of Interview Privacy and
the Need for Social Conformity on Reporting Sensitive

Information

Zeina M. Mneimneh1, Roger Tourangeau2, Beth-Ellen Pennell1, Steven G. Heeringa1, and

Michael R. Elliott3

Privacy is an important feature of the interview interaction mainly due to its potential effect on
reporting information, especially sensitive information. Here we examine the effect of third-
party presence on reporting both sensitive and relatively neutral outcomes. We investigate
whether the effect of third-party presence on reporting sensitive information is moderated by
the respondent’s need for social conformity and the respondent’s country of residence. Three
types of outcomes are investigated: behavioral, attitudinal, and relatively neutral health
events. Using data from 22,070 interviews and nine countries in the cross-national World
Mental Health Survey Initiative, we fit multilevel logistic regression to study reporting effects
on questions about suicidal behavior and marital ratings, and contrast these with questions
about having high blood pressure, asthma, or arthritis. We find that there is an effect of third-
party presence on reporting sensitive information and no effect on reporting of neutral
information. Further, the effect of the interview privacy setting on reporting sensitive
information is moderated by the need for social conformity and the cultural setting.

Key words: Privacy; cultural variability; interview variability.

1. Introduction

Many studies instruct interviewers to conduct their interviews in a private setting (with no

third party present). The rationale is that the presence of a third party during the interview

might interfere with the response process, possibly causing respondents to misreport

information (especially that of a sensitive nature) or to rely on others present during the

interview for answers to knowledge questions.

However, establishing interview privacy might not always be feasible, even when the

study protocol calls for it. Most studies in different countries that report whether

interviews were carried out in private reported rates of third-party presence higher than

35 percent (Mneimneh 2012).

The relatively common presence of a third party during the interview has led researchers

to examine the effect of third-person presence on reporting answers to survey questions. In

1997, Aquilino proposed a framework that describes three factors affecting the size and
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direction of bystanders’ effect on reporting sensitive information (“bystander” and “third

person” are used interchangeably in this article). The first is whether the survey question

asks about factual or subjective information. The second is whether the bystander knows

the factual information requested. The third is the perceived likelihood that the respondent

might experience negative consequences by revealing new and unwelcome information to

the bystander. If the third party already knows the information to be reported, then their

presence might not have an effect, or it might even lead to more truthful reporting. If the

third party does not know the information requested, and the respondent perceives a high

likelihood of negative consequences by revealing this information, then the presence of a

third party might lead to misreporting. The last two factors are related to the type of

relationship that exists between the third party and the respondent. The relationship must

be significant to the respondent, and the respondent’s answer must bear directly on the

relationship for the respondents to change their answers in order to convey a more

desirable image in the presence of the third person (Aquilino 1997; Pollner and Adams

1997). This has led a number of researchers to investigate the effect of specific types of

relationships on reporting answers to sensitive factual and attitude questions.

The most commonly studied types of relationship between the third party and the

respondent are parental and spousal relationships. Several studies have investigated the

effect of parent or spouse presence during the interview on reporting sensitive factual

information. The effect of parent presence on reporting substance use among youth and

young adults is consistent. Youth and young adults interviewed in the presence of their

parents were less likely to report substance use (Aquilino 1997; Aquilino et al. 2000;

Gfroerer 1985; Hoyt and Chaloupka 1994; Moskowitz 2004). In a meta-analysis

conducted by Tourangeau and Yan (2007), the authors concluded that parental presence

significantly reduced reporting of socially undesirable information.

The effect of spouse presence has been less consistent. In one of the studies conducted

by Aquilino (1997) among married couples less than 34 years old, spouse presence had

no effect on reporting substance use. However, in another sample, Aquilino et al. (2000)

found higher rates of reported substance use among respondents (less than 45 years old)

who were interviewed in the presence of their spouse. Casterline and Chidambaram (1984)

studied the effect of third-party presence on reporting contraceptive use in several

countries in Latin America, the Caribbean, Asia, and Africa. The authors found that

husband presence during the interview reduced the odds of reporting contraceptive use.

Pollner and Adams (1994) found that spouse presence reduced the reporting of depression

symptoms among adult respondents residing in Los Angeles, but it did not have an effect

on reporting other mental-health symptoms.

The effect of third-party presence on reporting subjective information has also been

mixed. In India, youth and young adults (15–29 years old) interviewed in the presence

of their parents reported more positive attitudes toward family (Podmore et al. 1975). In

the United States, respondents interviewed in the presence of their spouse reported a

better quality of marital life (Aquilino 1993). On the other hand, Anderson and Silver

(1987) found that partner presence had no effect on agreement between emigrant Soviet

couples when asked about their satisfaction with housing and standard of living. Pollner

and Adams (1997) and Smith (1997) also reported that spouse presence had no effect on

respondents’ attitudes toward spouse support and satisfaction with household
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arrangements and subjective questions on marriage and gender differences, respectively.

Pollner and Adams (1997) concluded that the inconsistency of findings and the

ambiguity surrounding the interview conditions of some studies indicated that a

conclusive judgment about third-party effects on reporting was not possible and needed

further investigation.

Several factors might have contributed to the inconsistency of these findings, including

interviewer differences in reporting privacy measures and a failure to take into account

respondent characteristics that are associated with both reporting of sensitive information

and establishing a private interview. These respondent characteristics could moderate the

effect of third-party presence on reporting.

The first factor, interviewer differences, is important since interviewers are relied on to

request, achieve, and report on interview privacy. We have shown that between-

interviewer variation in reporting privacy measures is large (even larger than between-

country differences) and could possibly vary from one study to another depending on

interviewer training protocols and the population studied (Mneimneh 2012). To date, none

of the studies investigating the effect of third-party presence on reporting controlled for

interviewer variation in interview privacy.

The second factor involves respondent characteristics that could moderate the effect

of third-party presence on reporting sensitive information. These include respondents’

need for social conformity and their cultural background. Respondent’s need for social

conformity is driven by the respondent’s motivations and desire to obtain social

approval from others (Cialdini and Goldstein 2004) and minimize possible negative

evaluation by others (Johnson and van de Vijver 2003). Such conformity motivations

could be activated and strengthened depending on contextual stimuli, such as the

perception of threats to fitting in socially and the lack of anonymity of the interaction

(Cialdini and Goldstein 2004). Therefore, the presence of others during the interview

may intensify such motivations already held by certain respondents. Thus respondents

with activated conformity motivations might be more likely to misreport sensitive

information than those with low conformity motivations. To our knowledge, only one

study controlled for a similar conformity construct when investigating the effect of

third-party presence on reporting (Moskowitz 2004). The author did not investigate the

possible moderating effect of the respondent’s need for social conformity on interview

privacy and reporting, however.

Respondents’ cultural background is another characteristic associated with both

interview privacy and social-desirability motivation. The respondent’s cultural

background could be defined in several ways. Throughout this article the term cultural

background refers to the country where the respondent resides or originates from.

Respondents who reside in collectivist and lower-income countries were more likely to

be interviewed in the presence of a third party than those residing in individualistic and

high-income countries, respectively (Mneimneh 2012). This is consistent with how

collectivist cultures are structured. In collectivist cultures, the self is defined in terms of

relationships with others. To maintain harmony and interdependence in such cultures,

close attention is given to others in the social context, especially if they belong to the in-

group circle–the individual’s family and friends and others concerned with his or her

welfare (Smith et al. 2006; Triandis 1995). Hofstede et al. (2010) discuss how a
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collectivist culture considers it normal for a member of one’s in-group to invade one’s

privacy at any time. This stands in contrast to individualistic cultures, where ties

between individuals are loose and the primary concern is independence (Hofstede et al.

2010; Triandis 1989). Cultural differences due to masculinity also seem to affect the

presence of partners during the interview. Countries high in masculinity have distinct

gender roles and are more focused on achievement and material success. The higher the

masculinity of the country, the less likely a partner will be around during the interview

(Mneimneh 2012).

The relationship between the interview privacy setting and wealth seems to be driven by

the country’s level of individualism and masculinity (Mneimneh 2012). As a country’s

wealth increases, its citizens give more attention to self-expression and personal choice.

Moreover, as wealth increases, resources and commodities become more available,

allowing citizens to become more independent rather than interdependent (Hofstede et al.

2010; Smith et al. 2006).

Respondents’ cultural background is also associated with socially desirable reporting

behavior. Most published literature has focused on the collectivism dimension and

found it to be positively associated with general measures of social desirability

(Bernardi 2006; Bond and Smith 1996; Triandis 1995) or specific components of social

desirability, namely impression management (Lalwani et al. 2006). Triandis (1995,

cited in Johnson and van de Vijver 2003), discussed how honesty in interactions with

strangers is valued more in individualist societies, while saving face is more salient in

collectivist societies. In collectivist societies, an individual’s loss of face can also cause

a loss of face for the group they belong to. Thus members that belong to the same in-

group have a shared interest in avoiding any loss of face to maintain in-group harmony

(Ting-Toomey 1999).

Other cultural dimensions found to be associated with social desirability are a country’s

level of uncertainty avoidance (Bernardi 2006) and wealth (van Hemert et al. 2002). The

association between social desirability and these two cultural dimensions, however, work

in opposite directions: whereas a country’s level of uncertainty avoidance shows a positive

association with social-desirability motivation, a country’s level of wealth exhibits a

negative association. Neither masculinity nor power-distance dimensions have been found

to be associated with social desirability (Bernardi 2006).

In summary, the perception of one’s role and status vis-à-vis the roles and statuses of

others in any social interaction is unconsciously guided by one’s cultural background

(Hofstede et al. 2010); as a result, respondents in certain cultural settings – for example,

those living in collectivist (vs. individualistic) and lower-income (vs. high-income)

societies – may be more concerned about how they appear to others present during an

interview, leading them to misreport information. These hypothesized associations are

guided by the previously demonstrated relationship between a country’s level of

collectivism and wealth and social-desirability bias. In this article, we specifically focus on

the cultural factors that have been shown to be associated with both interview privacy and

social desirability (a country’s wealth and its level of individualism).

To understand the moderating effect of respondents’ need for social conformity

and the cultural setting on the third-party presence and reporting of sensitive behaviors

(suicidal behavior) and attitudes (marital rating), we tested the following hypotheses:
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Suicidal behavior:

Hypothesis 1: There is an interaction between the respondent’s need for social

conformity and third-party presence. Reporting differences due to third-party presence

are larger among respondents with a high need for social conformity.

Hypothesis 2: There is an interaction between the country’s level of individualism and

third-party presence. The effect of third-party presence on reporting suicidal behavior is

reduced as the country’s level of individualism increases.

Hypothesis 3: There is an interaction between the country’s level of wealth and third-

party presence. The effect of third-party presence on reporting suicidal behavior is

accentuated in countries with a middle and low GNI per capita (compared to countries

with a high GNI per capita).

Marital rating:

Hypothesis 4: There is an interaction between the respondent’s need for social

conformity and partner presence. Reporting differences due to partner presence are

larger among respondents with a high need for social conformity.

Hypothesis 5: There is an interaction between the country’s level of wealth and partner

presence. The effect of partner presence on marital ratings is accentuated in countries with a

middle and low GNI per capita (as compared to countries with a high GNI per capita).

For comparative purposes, we also tested the effect of third-party presence on relatively

neutral health measures (having high blood pressure, arthritis, or asthma) using the

following hypotheses:

Physical chronic conditions outcome.

Hypothesis 6: Third-party presence is not significantly related to the likelihood of

reporting any of the physical chronic conditions.

Hypothesis 7: There is no significant interaction between the respondent’s need for

social conformity and third-party presence on reporting any of the physical chronic

conditions.

Hypothesis 8: Neither the country’s level of individualism nor the country’s level of

wealth significantly moderates the effect of third-party presence on reporting any of the

physical chronic conditions.

From a theoretical point of view, testing for the above hypotheses will help survey

researchers to better understand the effects of interview privacy on reporting sensitive

information and shed the light on some of the inconsistencies in the literature. It

emphasizes the importance of respondents’ cultural and individual-level characteristics in

moderating such effects and the need to account for them in future investigations. From a

practical point of view, this research highlights the need to design well-defined interviewer

privacy observations to capture the dynamics of the interview interaction and further

investigate its effects on different types of questions.
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2. Methods

Data from the World Mental Health (WMH) Survey Initiative were used to address these

research questions.

The survey design, implementation, and data processing across all participating WMH

countries were coordinated by two central organizations. All participating countries were

required to follow a standard survey protocol that includes a probability-sample design,

a fixed minimum sample size, a shared core instrument, a specific translation protocol, a set

of quality-control measures, and specific interviewer-training protocols. However, countries

were allowed to adapt certain features, including computerization of the interview, the

contact protocol, respondent incentives, and the field-team structure. This mix of

centralization and local control allowed establishing a survey protocol adapted to local

conditions while maintaining comparability of the data collected (Pennell et al. 2010).

2.1. Sample Designs for the WMH Surveys

In the first twenty-four countries that completed the WMH surveys, nine – Brazil,

Bulgaria, Japan, Lebanon, Mexico, Nigeria, the People’s Republic of China, Romania, and

the United States – collected data on the respondent’s social-conformity motivations and

interview privacy. The analyses focused on these nine countries.

All WMH surveys targeted the adult population and most of them featured nationally

representative probability samples of individuals in households. One (Mexico) was

representative of urban areas, one (Nigeria) of selected states, and four (Brazil, India,

Japan, and the People’s Republic of China) of selected metropolitan areas. Detailed

information on the survey sample design is published elsewhere (Heeringa et al. 2008).

To reduce interview length, the WMH interviews were designed to be administered

in two parts: Part 1 included core questionnaire sections and Part 2 included noncore

sections. All respondents completed Part 1; Part 2 was administered to a subsample of

Part 1 respondents. The current analyses focused on Part 2 respondents as the scale

measuring the respondent’s need for social conformity and the majority of key outcomes

were collected only in Part 2. Table 1 presents the number of Part 2 interviews completed

in each country and the number of field interviewers.

2.2. Questionnaire

The WHO Composite International Diagnostic Interview (CIDI) Version 3.0 was used

in all WMH surveys. The CIDI 3.0 is a fully structured interview that generates diagnoses

for a wide range of mental-health disorders. It also collects information on treatment,

disability, and physical chronic conditions. Detailed questions on social and family life,

employment history, finances, and childhood experiences are also included. The

questionnaire was translated into each country’s local language following the WHO

translation guidelines (Harkness et al. 2008; Kessler et al. 2004; Kessler and Üstün 2004).

2.3. Questionnaire Administration

In all countries, trained interviewers conducted face-to-face interviews using either paper-

and-pencil interviewing (PAPI) or computer-assisted personal interviewing (CAPI)
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methods. Interviewer training in each country was modeled on a five-day training that

project staff from each country had attended. All data were collected before 2008, with the

majority of the fieldwork taking place between 2001 and 2003. Detailed information on

the specific years of data collection, mode used, response rates, and supervisor-to-

interviewer ratio are published elsewhere (Pennell et al. 2008).

2.4. Measures Studied

As detailed below in the analysis section, a multilevel model was used to explore our

research questions. Below we list the key binary outcomes, followed by predictors.

2.4.1. Key Outcomes

The key outcome measures fell into three categories, representing a variety of sensitive

behaviors, attitudes, and relatively neutral measures.

Behavioral outcome: CIDI 3.0 included a section on suicidality. In this section,

respondents were asked to report whether they had ever made a suicide plan or attempted

suicide. This outcome was chosen based on the authors’ perceived judgment that reporting

on suicidal behavior is relatively undesirable across cultures.

Attitudinal outcome: Married respondents were asked to rate their relationship with

their current partner by answering the following question: “Using a scale from 0 to 10

where 0 means the worst possible marriage, and 10 means the best, how would you rate

your marriage?” Since we were interested in investigating the effect of partner presence on

reporting high marital ratings (rather than an average increase of one point on the scale),

the score was categorized into two groups: a high rating defined as a score above the

midpoint of the scale (which is five) and low rating (five or below). Reporting high marital

rating is judged to be desirable if the partner is present.

Possible cultural variations in the sensitivity of reporting suicidal behavior and high

marital rating were investigated through testing for a moderation effect of cultural

background on third-party/partner presence.

Physical Chronic Condition Outcomes: Respondents were asked to report whether

they had ever been told by any health professional that they had the following conditions:

high blood pressure, asthma, or arthritis. These outcomes were chosen based on our

judgment that such chronic conditions are less sensitive than suicidal behavior and marital

rating across cultures.

A number of substantive and sociodemographic predictors were investigated. These

predictors are described below.

2.4.2. Respondent-Level Predictors

Interview privacy: Interviewer observations about the privacy of the interview setting

were collected at the end of the interview. Interviewers were instructed to specify:

1) whether a third person was present at any time during the interview; 2) the relationship

of the third party to the respondent (parent, partner, child, youth, or other adults); and 3)

the duration of the third party’s presence during the interview (all the time, most of the

time, about half of the time, about one quarter of the time, or less than one quarter of

the time). The current analyses focus on any third-party presence, excluding children
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under the age of six (for the suicidal behavior outcome) and partner presence (for the

marital rating outcome). The duration of the third-party stay was divided into two

categories: 1) all of the interview time and 2) some of the interview time.

Respondent’s need for social conformity: CIDI 3.0 included an adapted version of the

Marlowe-Crowne Social Desirability Scale (Crowne and Marlowe 1960). Crowne and

Marlowe designed the scale to measure the construct they labeled as “the need for social

approval.” The CIDI adapted scale consisted of 10 true or false statements such as “I never

met a person that I didn’t like” and “I have always told the truth.” Respondents were

instructed to choose the answer that first came to their mind and not take too much time

thinking before they answered. A value of one was assigned to each item the respondent

endorsed. The sum of these values formed a score ranging from zero to ten. Within each

country, the respondent’s total score was standardized by the country’s average and standard

deviation. A score was considered high if it was at least one standard deviation above the

national-level mean. This measure will be referred to as the CIDI social-conformity scale,

and was used to investigate whether an interaction between third-party presence and a high

score on this scale had an impact on reporting sensitive information. Country-level Cronbach

alpha estimates are in the acceptable to good range (0.6–0.8) (Table 1).

Respondent sociodemographic predictors: These variables were treated as control

variables and included the respondent’s gender, age (18–34, 35–49, 50–64, older than

64 years), marital status (never married, currently married or cohabiting, previously

married), education level (high, middle, low, very low relative to the rest of the country),

income (high, middle, low, very low relative to the rest of the country), current

employment status (employed, studying, taking care of home, other), and household size

(fewer than two, two, three, more than three). Among those currently married or

cohabiting, the partner’s level of education (high, middle, low, very low) and type of

occupation (not employed, have a low-skill job, low-to-average skill job, average-to-high

skill job, and high-skill job) were also taken into account.

2.4.3. Interviewer-Level Predictors

Interviewer identification numbers were available for all nine countries. This information

enabled the modeling of random effects (intercepts) for the individual members of the

interviewing force in each country. No other interviewer-level covariates were available.

2.4.4. Country-Level Predictors

Two country-level cultural dimensions were included in the current analyses:

individualism and masculinity. Country-specific scores for each of the two dimensions

and more details on their assessment are available in Hofstede et al. (2010). For each

dimension and for each country, a standardized score was calculated based on the average

score and the standard deviation across all the countries included in the analyses. Higher

scores indicated higher levels of the underlying dimension. The country-specific scores are

presented in Table 1.

Finally, the countries’ economic strength and standard of living was measured by their

Gross National Income (GNI) per capita. GNI measures in nominal dollar values that were

calculated according to the Atlas Method for the year the data was collected were used.

According to the World Bank, the Atlas method “applies a conversion factor that averages
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the exchange rate for a given year and the two preceding years, adjusted for differences in

rates of inflation” (“GNI per capita,” Atlas method (current US$), accessed July 26, 2012,

http://data.wordbank.org/indicator/NY.GNP.PCAP.CD). The limited number of countries

and the vast differences in wealth leave big gaps in the GNI measure in this group of

countries. The countries that are in this sample thus lend themselves to categories of

wealth rather than a continuum of wealth (as evident in Table 1). Given these big gaps, the

countries were categorized into three groups according to their GNI per capita: high,

middle, and low GNI per capita. This categorization matches the World Bank

classification of countries by income.

3. Analysis

Because of the limited number of countries, a two-level logistic regression with

respondents nested within interviewers was used for all outcomes. Interviewers were

treated as random effects. All predictors were treated as fixed effects, including the cultural

factors. Indicator variables for individual countries were not included as fixed effects due to

a resulting low-rank design matrix. Country effects were adjusted for through the three

country-level variables – individualism, masculinity, and GNI per capita. The analyses

were repeated using a three-level model with respondents at level 1, interviewers at level 2,

and countries at level 3; the results with respect to our main hypotheses were consistent but

less stable because of the limited number of countries in the analyses. Thus the analyses and

the findings reported below are based on the two-level model.

For suicidal behaviors and physical chronic condition outcomes (high blood pressure,

asthma, or arthritis), the main predictors included whether any third party was present

during all of the interview time (vs. none of the time), any third party was present during

some of the interview time (vs. none of the time), the respondent’s level on the CIDI

social-conformity scale (high vs. low), the country’s level of individualism, and the

country’s level of GNI per capita (middle vs. high and low vs. high). Only cultural factors

that have been demonstrated in the literature to be related to both interview privacy and

social desirability were included as main predictors. The country’s standardized

masculinity score as well as respondent demographics and socioeconomic characteristics

were also included in all the models as control variables. Interactions between third-party

presence measures and a high score on the CIDI social-conformity scale, and between

third-party presence measures and the country’s level of individualism and wealth

were tested. To maintain a parsimonious model, only significant interactions (with a

p-value less than 0.05) were kept in the final model; nonsignificant interactions were

removed.

The marital rating outcome was collected in only five out of the nine countries.

Substantive predictors for the marital outcome rating included partner presence, the

respondent’s level on the CIDI social-conformity scale (high vs. low), and the country’s

level of GNI per capita (middle vs. high and low vs. high). The country’s level of

individualism was not included in the model as two of the five countries had the same level of

individualism and there was not enough variation to explore. Respondent sociodemographic

characteristics as well as the presence of any other third party (other than a partner) and

country’s level of masculinity were also included in all the models. Interactions between
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partner-presence measures and a high score on the CIDI social-conformity scale, and

between partner-presence measures and the country’s level of wealth were tested separately.

To maintain a parsimonious model, only significant interactions (with a p-value less than

0.05) were kept in the final model; nonsignificant interactions were removed.

All multilevel models are unweighted. To explore the effect of weights on the findings, the

analyses were replicated using weighted and unweighted single-level logistic regression

models. The weights accounted for within-country differential probability of selection, post-

adjustment to the country’s sociodemographic distributions, and subsampling to specific

questionnaire sections. Adjusted and unadjusted point estimates were consistent (with single-

level models being more stable), suggesting that the use of weights to adjust for informative

sample design was not necessary for the relationships investigated. All analyses were

conducted using the PROC GLIMMIX procedure in SAS version 9.2 (SAS institute, NC).

4. Results

4.1. Outcome Rates and Interview Privacy Rates Across Countries

Table 2 presents the different outcome rates in each of the countries included in the

analyses. Weighted rates for combined suicide plan or suicide attempt reports differed

greatly across countries, with the lowest rates (1.0%) reported in Nigeria and Romania,

and the highest rate (7.5%) reported in the United States. High marital ratings were

reported by the majority of respondents in all five countries where such ratings were

collected. All rates were higher than 90%.

All countries included questions on high blood pressure, asthma, and arthritis. Reported

rates of asthma were generally low (mainly less than 5.5%), except in the United States

where 11.6% of the respondents reported having asthma. Arthritis and high blood pressure

were more common and rates were more variable across countries. Arthritis rates range

from 7.0% (Lebanon) to 33.3% (Romania) and high blood pressure rates range from 4.3%

(Lebanon) to 24.1% (United States).

On average, 37% of the interviews were conducted in the presence of a third person.

Table 3 presents the rates of third-party presence and duration of stay in each of the nine

countries. In most countries, a third party was present for part of the interview rather than

the entire interview (the average rate across countries was 26%). On average, only 11% of

the interviews had a third party present during all of the interview time. Partners were

present in 19% of the interviews across all the countries. Again, partners were mostly

present for some parts of the interview rather than the whole interview. Country-specific

rates are presented in Table 4.

4.2. Effect of Third-Party Presence on Reporting: Results from Multilevel Logistic

Regression Model

4.2.1. Suicidal Behavior

As hypothesized and shown in Table 5 (interaction model column), the respondent’s need

for social conformity moderated the relationship between third-party presence and
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reporting suicidal behavior. Ignoring this interaction would give a misleading picture of

the direction of third-party presence effects.

Respondents who scored high on the social-conformity scale and who had a third person

present during the interview were less likely to report suicidal behavior compared to those

who had no one present. Among respondents who scored high on social conformity, the

odds of reporting suicidal behavior were lower by a factor of .92 when a third party was

present during the entire interview and by a factor of .56 when a third party was present

part of the time relative to not having a third party present during the interview (see

Table 5). The results were quite different among respondents who scored low on the CIDI

social-conformity scale. Among those respondents, having a third person present all or

part of the time increased reporting of suicidal behavior compared to being interviewed

alone (OR ¼ 1.20 and 1.40, respectively; see Table 5).

Contrary to what was hypothesized, however, neither the country’s level of

individualism nor its wealth significantly moderated the effect of third-party presence

on reporting suicidal behavior.

Table 3. Percentage of any third-party presence (s.e.)

Country N

No third party
present during

interview

Any third party
present all

interview time

Any third party
present some

of the interview time

Bulgaria 2,232 60.7 (1.0) 13.2 (0.7) 26.1 (0.9)
Brazil 2,942 41.0 (0.9) 19.7 (0.7) 39.3 (0.9)
China 1,628 63.9 (1.2) 12.8 (0.8) 23.3 (1.0)
Japan 1,346 87.5 (0.9) 2.7 (0.4) 9.8 (0.8)
Lebanon 1,031 33.6 (1.5) 21.5 (1.3) 44.9 (1.5)
Mexico 2,350 65.4 (1.0) 10.7 (0.6) 23.9 (0.9)
Nigeria 2,141 68.0 (1.0) 7.1 (0.6) 24.9 (0.9)
Romania 2,356 64.6 (1.0) 15.2 (0.7) 20.2 (0.8)
USA 5,304 70.0 (0.6) 5.0 (0.3) 25.0 (0.6)

Values are unweighted estimates of sample % (standard error)

Table 4. Percentage of partner presence (s.e.)

Country N
No partner present

during the interview
Partner present

all interview time
Partner present some
of the interview time

Bulgaria 2,232 73.9 (0.9) 8.5 (0.6) 17.6 (0.8)
Brazil 2,942 73.3 (0.8) 9.6 (0.5) 17.1 (0.7)
China 1,628 80.1 (1.0) 7.1 (0.6) 12.8 (0.8)
Japan 1,346 93.8 (0.7) 1.5 (0.3) 4.7 (0.6)
Lebanon 1,031 68.3 (1.5) 11.1 (1.0) 20.6 (1.3)
Mexico 2,350 88.6 (0.7) 4.0 (0.4) 7.4 (0.5)
Nigeria 2,141 91.6 (0.6) 1.7 (0.3) 6.6 (0.5)
Romania 2,356 79.3 (0.8) 8.3 (0.6) 12.4 (0.7)
USA 5,304 82.9 (0.5) 2.9 (0.2) 14.2 (0.5)

Values are unweighted estimates of sample % (standard error)
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4.2.2. Marital Ratings

High ratings of marital relationships were positively associated with partner presence during

the interview, controlling for other respondent-level characteristics, the country’s level of

wealth and masculinity (see Main Model, Table 6). Unlike suicidal behavior (and contrary to

what was hypothesized), the association between partner presence and reporting a high

marital rating was not significantly moderated by the respondent’s need for social conformity.

The effect of partner presence on reporting marital rating was, however, significant

among respondents interviewed in a country with middle GNI per capita (compared to

high GNI per capita, specifically the United States), as hypothesized. Respondents who

were interviewed in a middle-income country and in the presence of their partner during

the whole interview had more than 1.5 times the odds of reporting a high marital rating

score compared to those who had no partner present and were in a country with high

GNI per capita (see Interaction Model, Table 6). Though the interaction effect among

respondents interviewed in low-income countries was in the hypothesized direction (and

similar to middle-income countries), it was not statistically significant.

4.2.3. Physical Chronic Conditions

Unlike reports of suicidal behavior and marital relationship rating, reporting high blood

pressure, asthma, or arthritis was not significantly associated with third-party presence

(see Table 7). Moreover, as hypothesized, no significant interaction effects were found

between third-party presence and the respondent’s need for social conformity or with

either of the country-level factors for any of the three outcomes.

Table 5. Odds ratio and 95% confidence interval from multilevel logistic model predicting suicide attempt or

plan (N ¼ 21,329)a

Main model Interaction model

Presence of third party
Third party present all of the time 1.20 (0.99–1.43) 1.20 (0.98–1.46)
Third party present some of the time 1.31 (1.16–1.45) 1.40 (1.23–1.60)
No third party present 1.00 1.00

Social-conformity score
High scoreb 0.69 (0.59–0.82) 0.82 (0.67–1.01)
Low score 1.00 1.00

Individualism standardized score (IND) 2.72 (2.26–3.28) 2.72 (2.26–3.28)
Country’s GNI per capita

Low 12.78 (6.54–24.97) 12.74 (6.52–24.88)
Middle 12.49 (6.96–22.41) 12.45 (6.94–22.34)
High 1.00 1.00

Present all of the time £
high social conformity

–– 0.92 (0.55–1.54)

Present some of the time £
high social conformity

–– 0.56 (0.38–0.82)

a Significant odds ratios with p , 0.05 are presented in bold. Dashes (––) indicate variables not entered in the

model. All models control for sex, age, marital status, education level, income level, employment status,

household size, and the country’s score on masculinity
b High score is greater or equal to one standard deviation above the mean
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5. Discussion

This article is the first to investigate whether the effect of third-party presence on reporting

sensitive information is moderated by the respondent’s need for social conformity and the

respondent’s country of residence. Three types of outcomes were investigated: a sensitive

behavioral outcome (suicidal behavior), a sensitive attitudinal measure (marital rating), and

three relatively neutral health measures (having high blood pressure, arthritis, or asthma).

Third-party presence effects are moderated by the respondent’s need for social conformity and

the respondent’s country of residence. Though such moderating effects were hypothesized for

both outcomes, they differed depending on whether the outcome is behavioral or attitudinal.

For sensitive behaviors, specifically suicidal behavior, having a third party present

during the interview was associated with lower odds of reporting such behavior only

among respondents who had high scores on the social-conformity scale. Having someone

present during the interview might create a contextual stimulus that strengthens the

respondent’s already existing need for social conformity and increases their perceived

likelihood that revealing such behavior in the presence of a third party will trigger negative

consequences. To avoid such consequences, respondents might prefer not to disclose such

information in the presence of the third party, a phenomenon sometimes referred to as

Table 6. Odds ratio and 95% confidence interval from multilevel logistic model predicting high marital rating

score (N ¼ 6,595)a

Main model Interaction model

Presence of partner
Partner present all of the time 1.59 (1.08–2.35) 0.51 (0.24–1.10)
Partner present some of the time 1.36 (1.07–1.73) 1.51 (0.92–2.50)
No partner present 1.00 1.00

Social-conformity score
High scoreb 1.55 (1.17–2.05) 1.53 (1.16–2.02)
Low score 1.00 1.00

GNI per capita
Low 1.63 (1.15–2.30) 1.56 (1.07–2.28)
Middle 0.70 (0.47–1.03) 0.66 (0.43–1.01)
High 1.00 1.00

Partner present all of the time £
low GNI per capita

–– 1.35 (0.92–1.98)

Partner present some of the time £
low GNI per capita

–– 1.01 (0.77–1.31)

Partner present all of the time £
middle GNI per capita

–– 1.64 (1.21–2.22)

Partner present some of the time £
middle GNI per capita

–– 0.94 (0.78–1.14)

a Significant odds ratios with p , 0.05 are presented in bold. Dashes (––) indicate variables not entered in the

model. All models control for sex, age, marital status, education level, income level, employment status,

household size, and country’s level of masculinity
b High score is greater or equal to one standard deviation above the mean
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impression management. In fact, Paulhus (1984) shows that the Marlow Crowne Scale that

is used in this paper as a measure of social conformity loads on impression management

scales. The picture is quite different among respondents who do not have such needs and

who scored low on social conformity. Among those respondents, the likelihood of

reporting suicidal behavior was higher in the presence of a third party than in private.

Respondents who scored low on social conformity might not have concerns about possible

negative consequences from divulging such information, or they might have already

confided in the third person present during the interview. Among such respondents, a third

party who is present during the interview might act as a truth control increasing the

reporting of such behavior. This has been also reported by two studies investigating

sensitive undesirable outcomes in the United States (Aquilino 1997; Hoyt and Chaloupka

1994), where respondents who had a third party present were more likely to report illicit

substance use than those interviewed in private. Future research on the effect of

information already held by the third party on reporting sensitive information and how it

interacts with respondent’s need for social conformity is needed.

The interaction effect between the respondent’s need for social conformity and third-

person presence on reporting suicidal behavior was only statistically significant among

interviews where a third person was present during “some” of the interview time. Though

the direction of the interaction effect was the same when a third person was present “all”

the interview time, it was not statistically significant. This difference between the two

measures of third-party presence may reflect any of several factors: small cell size,

psychological presence of third person and question location, and possible misclassifi-

cation in the duration measure. First, the absence of a significant interaction effect between

third person presence during “all” of the interview time and social conformity could be

attributed to the small sample sizes, given that suicide behavior is rare (four percent in the

overall sample) and that most of the nonprivate interviews had someone present “some” of

the time rather than “all” of the time (70.4% vs. 29.6%). Second, though it is not possible

to ascertain that the third party was physically present during the specific administration of

the suicide questions in the interviews where the third person was present during “some”

of the interview time, we suspect that people are typically present during the beginning of

the interview and they might leave or come and go as the interview progresses. This could

have primed the respondent to perceive the setting as nonprivate, even after the third

person had physically left the interview setting. In fact, there is strong evidence in the

literature that social influence is not only produced by the actual physical presence of

family and friends but also by their psychological presence, through priming respondents

with their name, words or questions about them, or just thinking about or imagining them

(Shah 2003; Moretti and Higgins 1999; Berscheid and Reis 1998; Fitzsimons and Bargh

2003). It seems that the activation of the representation of others occurs outside of people’s

awareness and has a powerful automatic effect on people’s perceptions and behaviors

(Berscheid and Reis 1998). Thus, given that the suicide behavior questions are towards the

first third to the middle of the interview (depending on the skip patterns), even if the third

person was not physically present during the actual administration of the suicide questions,

his or her physical presence during earlier questions might have activated a mental

representation of the third party’s presence during the administration of the suicide

questions. However, how long the psychological presence could persist during the
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interview is a question for future investigation. It is possible that the psychological

presence would only last briefly after the third person left and thus would manifest only in

nearby questions but not those administered towards the end of a long interview (such as

the marital rating question). Third, the difference in the statistical significance between the

two measures of third person presence could be also attributed to misclassification of the

duration of presence in either directions. This could happen especially in situations where

multiple people are present and come and go at different points during the course of the

interview. In fact, 27% of interviews conducted in the presence of third members are

reported to have more than one third person present.

Besides the respondent’s need for social conformity, we hypothesized that the

respondent’s country of residence would moderate the effect of third-party presence on

reporting suicidal behavior. However, this interaction effect was not significant. Although

third-party presence is more common in collectivist and lower-income countries

(Mneimneh 2012), the effect of third-party presence on reporting suicidal behavior does

not change across countries that differ on those characteristics. It seems likely that

reporting suicidal behavior is highly sensitive across all societies, irrespective of their

level of collectivism/individualism or wealth. Even if the general level of social

desirability is higher among collectivist and lower-income societies, having a third person

present during the interview does not differentially heighten the sensitivity of suicidal

information across countries.

The second sensitive outcome investigated is respondents’ attitudes toward their current

marriages. Respondents interviewed in the presence of their partner might be more

motivated to provide a positive characterization of their relationship than those

interviewed in private. This finding was first documented by Aquilino (1997). Unlike

suicide behavior, the effect of partner presence on reporting marital attitudes was not

moderated by the respondents’ need for social conformity. The absence of the

hypothesized moderating effect of the respondent’s high need for social conformity on

partner presence and reporting a high marital rating could be explained by the nature of the

marital rating measure. Unlike suicidal behavior, which is a factual measure, marital rating

is subjective. Respondents who scored low on social conformity might have already

confided in other household members about their suicide experiences. Thus low

conformity respondents might be more inclined to report their “true” suicidal behavior

when a third party was present. This might not be the case for marital ratings, because

marital happiness is not factual and does not have a “true” value.

When investigating whether the effect of partner presence on reporting high marital

rating varies by the country of residence, we found it was significant in countries with

middle GNI per capita (compared to high GNI per capita). Respondents interviewed in

middle-income countries might practice impression management in the presence of their

partner and deliberately report higher ratings of their marital relationship compared to

their counterparts in high-income countries so as to maintain a favorable image in front of

their spouses. Such reporting behavior (impression management) has been found to be

more present among collectivist cultures (compared to individualistic cultures), which are

typically less wealthy (Lalwani et al. 2006). Though such an effect did not reach statistical

significance in low-income countries, the same trend is observed in low-income countries,

and upon further investigation it was not statistically different from the effect in middle-
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income countries. It is also important to note that the magnitude of the interaction effect

was higher before controlling for country’s level of masculinity (OR ¼ 4.4 vs. OR ¼ 1.6

after controlling for masculinity level). This could be attributed to the fact that the GNI-

per-capita interaction effect is partially driven by the country’s level of masculinity.

As discussed earlier, differences in the observed interaction effects between country-

level variables and interview privacy in reporting suicidal behavior versus marital ratings

could be attributed to the difference between the two in levels of sensitivity. It is possible

that suicidal behavior is sensitive across country boundaries. Thus, controlling for the

respondent’s level of social conformity and irrespective where he or she lives, the third-

party presence decreases reporting suicidal behavior similarly since the topic is considered

very sensitive across countries. This mechanism could be different for outcomes such as

marital rating, however, where a differential level of sensitivity might be observed across

countries, reflected through interactions between contextual interview settings such as

partner presence and country-level variables such as wealth. The third set of outcomes

investigated is chronic physical conditions: high blood pressure, arthritis, and asthma.

These outcomes are normally perceived as more neutral than suicidal behavior or marital

happiness. They were chosen to compare the effect of third-party presence on reporting

clearly sensitive information with its effect on reporting more neutral outcomes. As

hypothesized, the presence of a bystander during the interview does not significantly affect

reporting of such neutral outcomes across the different cultures studied.

In summary, in our analysis of the World Mental Health data collected in a sample of

countries, the presence of a third party during the interview affects reporting of sensitive

outcomes. The effect can go in either direction, depending on the respondent’s need for

social conformity, the respondent’s cultural setting, and the type of question. Whether it

increases or reduces reporting of potentially sensitive information, the presence of a third

party during the interview adds some measurement variation among respondents in a

sample. Such variation is another layer of error that needs to be minimized. This is even

more important in cross-cultural research, where both the rates of third-person presence

(Mneimneh 2012) and their effects vary by culture, jeopardizing comparability.

Researchers sometimes try to counter the effect of third-party presence on reporting by

using self-administered modes. Though the fact that using self-administered modes

reduces interviewer effects has been established in the literature (Tourangeau and Yan

2007), whether such modes reduce the reporting effects of third-party presence is still

under debate. Only five studies used randomized mode experiments and investigated the

effect of third-party presence among each randomized group (Aquilino 1997; Aquilino

et al. 2000; Cahucahrd 2013; Couper et al. 2003; Moskowitz 2004). The results of these

studies are mixed. The presence of a third party during the interview, especially if the third

party is a household member, might prime the respondent and alter his or her frame of

mind when answering sensitive questions. Even when using a self-administered mode, the

interview might not feel as private when a third party is present compared to when the

respondent is interviewed alone. In fact, Aquilino et al. (2000) reported that third-party

effects are found even when the bystander did not interfere with the interview or

communicate with the respondent. Still, due to the limited empirical evidence, further

research is needed on the moderating effect of the interview mode on third-party presence

and reporting sensitive information before any conclusions are made.
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Given these findings, first, survey practitioners need to train interviewers better on how

to achieve and maintain interview privacy, and the effect of such training interventions on

interview privacy needs to be measured. Even when the mode of data collection uses self-

administration, third-party effects are found (Aquilino et al. 2000). Second, researchers are

encouraged to measure and train interviewers on collecting more specific data on the

interview setting, such as the timing of the presence through section-specific measures, its

dynamics, and information already known by the third person to better understand the

effect of third-party presence. Third, if such effects are replicated, researchers need to take

these measures into consideration when analyzing their data and control for them in their

substantive investigations.

The findings presented here need to be interpreted with the following considerations in

mind. First, the presence of a third party at respondents’ homes during the interview is

difficult to control by the researcher and was not randomized. Though we controlled for

many factors known to be associated with third-party presence, it is possible that there are

other unmeasured factors that we did not control for and which could have affected the

relationship observed between third-party presence and the reporting of sensitive

outcomes. Thus no causal interpretations of any of the findings can be made and only

associations are reported.

Second, interview privacy measures are based on interviewer observations reported at the

end of the interview. The duration of third-party presence during the interview is an overall

measure for the whole interview and is not section specific. Thus there could be some

misclassification in the duration of the stay, especially in situations where multiple people

might have been present at different points during the interview. Moreover, in instances

where the interviewer reported that someone was present during “some” of the interview

time, it was not possible to determine whether the bystander was actually present when the

target question was asked. This could explain some of the differences observed between the

effect of the third-party presence on reporting the different sensitive outcomes. Information

on suicidal behavior was collected toward the first half of the interview and might have been

affected by the “psychological” presence of a third person, whereas marital ratings were

collected toward the end of the second half and might have been less prone to such a

psychological presence in a long interview like the CIDI 3.0. The duration-of-stay measure

also reflects all of the bystanders that might have been present during the interview. Thus,

when investigating partner presence, if the interviewer indicated that another person was

present in addition to the partner, the duration of stay was assigned to all of the different

bystanders present. However, this should not significantly affect the findings as in the large

majority of interviews (83%), a partner was present but no other bystander was also present.

Third, the respondent’s need for social conformity was measured using an adapted

version of the Marlowe-Crowne Scale. Though this scale has been extensively used in the

literature, and though the direction of the association between the respondent’s need for

social conformity and reporting outcomes is in the expected direction, these scales have

their measurement problems. Self-reported scales that measure the need for social

conformity are prone to misreporting, and their accuracy might vary depending on

individual as well as cultural factors. Moreover, such scales assume that social conformity

is stable from the time of its measurement; however, social conformity is contextual

(Cialdini and Goldstein 2004) and could vary during the course of the interview.

Journal of Official Statistics692

Unauthenticated
Download Date | 1/7/16 1:08 PM



Fourth, suicidal behavior and the rating of marital-relationship outcomes were chosen

based on the authors’ judgment of their undesirability/desirability across cultures

(compared to chronic conditions). Unfortunately, there is no empirical evidence of the

level of sensitivity of these outcomes (in general or across cultures). We believe that

suicidal behaviors are generally seen as undesirable in all cultures; similarly, rating one’s

current marital relationship highly (especially in the presence of one’s partner) is generally

desirable across all cultures. Cultural differences in the level of sensitivity of these

outcomes were investigated by testing for the interaction effects, where larger third-party

presence reporting effects were hypothesized for the cultures with higher levels of social

desirability according to the literature.

Fifth, the cultural-dimension indices used in these analyses come from data published in

Hofstede et al. (2010), some of which were collected several years ago. One concern is the

applicability of those indices to the WMH data. Nevertheless, a number of researchers

have shown that while the values of many nations have been changing, the relative

positioning of those nations has been maintained (Hofstede et al. 2010; Ingelhart and

Baker 2000; Schwartz et al. 2000).

Finally, the lack of statistical significance of some hypothesized interactions could be

attributed to the small-size interaction classes resulting from the low prevalence of both

sensitive outcomes and the specific privacy interview setting, namely the presence of a

third party during “all” the interview time.

6. Conclusion

Reporting sensitive information is affected by the respondent’s personal characteristics

and cultural values, the social context in which the topic is broached, and the players

involved during an interview. For a given topic, such factors affect whether the

respondents interpret the content as socially desirable or undesirable and whether they edit

the information or not. This article demonstrates that the effect of the privacy of the

interview setting on reporting is moderated by the need for social conformity and

respondent’s country of residence.

It is important for us to develop a better understanding of the dynamics surrounding

interview privacy, how it is affected by respondents’ and third parties’ personal

characteristics and cultural background, and how privacy affects different types of survey

questions. To achieve that, future work that captures what information is already held by

the third party, as well as more specific interviewer privacy observations are needed. Such

improved privacy measures need to then guide both practical interventions on training

interviewers to better achieve, maintain, and observe interview privacy, and empirical

work on the possible moderating effects of personal, cultural, and other interview-setting

factors on the response process for sensitive questions.
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Frameworks for Guiding the Development and
Improvement of Population Statistics in the United Kingdom

James Raymer1, Phil Rees2, and Ann Blake3

The article presents central frameworks for guiding the development and improvement of
population statistics. A shared understanding between producers and users of statistics is
needed with regard to the concepts, data, processes, and outputs produced. In the United
Kingdom, population estimates are produced by conducting decennial censuses and by
estimating intercensus populations through the addition and subtraction of the demographic
components of change derived from registers of vital events and from a combination of
administrative data and surveys for internal and international migration. In addition, data
cleaning, imputation, and modelling may be required to produce the desired population
statistics. The frameworks presented in this paper are useful for aligning the required concepts
of population statistics with the various sources of available data. Taken together, they
provide a general ‘recipe’ for the continued improvement and expansion of official statistics
on population and demographic change.
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1. Introduction

Population statistics are used by national governments to distribute money across local

governments for managing services, such as healthcare and education. They are used to

establish the boundaries for political constituencies and to provide denominators for other

measures, such as fertility or unemployment rates. They are used to manage and plan for

future water, power, and sanitation needs. They can also be used to decide the number and

types of homes to be built and design centres for shopping and leisure activities.

Companies use population statistics to target their goods and services at specific groups of

people (Boyle and Dorling 2004) and for workforce planning purposes. In other words,
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population statistics are central for understanding society and societal change and are

widely used in comparisons with other countries and areas within countries (Stone 1971;

United Nations 1975).

Published outputs of population statistics are the result of matching available data to

particular needs or concepts. The concepts are driven by user demand. In some cases, the

data are processed or combined with other information to make statistics. Furthermore, the

published statistics may not meet all of the needs of various user groups. As this article

highlights, there are many requirements and types of population statistics. However, there

are rarely single sources of information that cover a wide variety of needs. Instead,

population statistics bring together data from many sources, all with their relative strengths

and weaknesses.

The production of population statistics is further complicated because populations are

both dynamic and heterogeneous. They change continuously according to the addition of

births, subtraction of deaths and addition or subtraction of migrants. These processes are

influenced by the social and cultural environments, economic environments and natural

and built environments in which the populations live, as well the intersections between

them (Bycroft 2011). In order to understand population statistics, one must first realise that

they only represent a ‘snapshot’ of a population at a particular time or a flow between two

fixed time points.

With such a demand and need for information on populations and their demographic

behaviours, trusted, independent, and robust information about the size, structure and

characteristics of a population is seen to be an essential underpinning of a modern society

(Statistics New Zealand 2011). Such information is essential for improving the well-being,

prosperity and legitimacy of modern democratic institutions and society alike. It is

therefore vital not only that the statistics are reliable and robust, but also that users

understand how the different statistics are compiled, how they relate to each other and

what each variable actually represents. To achieve this, population information needs to be

publicly available, transparent and understandable.

To help with the task of assembling population statistics for a country, national statistics

offices require frameworks or agreed sets of concepts and methods, aligned to those

available through current collection instruments and databases. Shared understanding of

the frameworks within an organisation and across users facilitates the production and

improvement of population statistics. In this article, we show how frameworks for

population statistics can provide the main basis for achieving this. We use the United

Kingdom (UK) as the illustration, but the frameworks may be generalised or adapted to

other countries and data systems.

2. Frameworks for Population Statistics

In 1971, Richard Stone defined a system of social and demographic statistics, which he

then refined for the United Nations in 1975. The system covered the whole range of

government statistics, starting with demographic stocks and flows, moving on to families

and households, social class and stratification, income and wealth, housing and the built

environment, the use of time, social security and welfare, learning and educational

services, employment, health, and public order. Stone’s system also introduced the
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concept of the life course, which is so important in contemporary social science research.

Stone’s system represents an important and basic foundation for how we think about

official statistics today. Our frameworks presented in this article focus on demographic

stocks and flows, which form the basic elements of the wider design set out by Stone.

In this section, we first present a framework for official statistics and then illustrate how

this can be applied to produce statistics on the usual resident population. We also present

a framework for the underlying mechanism of population change. The frameworks are

designed to be general across the many different ways of producing population statistics.

For illustration, we describe how they are being used by the United Kingdom’s Office for

National Statistics (ONS) in their Beyond 2011 Programme, which is “taking a fresh look

at options for the production of population and small area socio-demographic statistics

for England and Wales” (ONS 2013a). This includes exploring options based on

administrative data (ONS 2013b).

2.1. Official Statistics

In designing a framework for population statistics, it is useful to first think about the

activities and stages involved in producing official statistics (Laux 2002). In Figure 1, the

functions of Society, Concepts, Data, Processing, Outputs, and Validation are presented.

Society represents the economic and social conditions of the country producing the

statistics. It determines the type of information required. Concepts refer to particular

statistics of interest, such as the usual resident population, rates of unemployment, welfare

provision or persons present without citizenship. Data are any information gathered

concerning the required statistic, usually obtained from censuses, surveys or

administrative registers. Processing represents data cleaning, imputation, combining

two or more information sources through matching or proportioning, and statistical

modelling to ensure that the data more closely match the required concept. Outputs are the

published statistics or estimates. Validation is the procedure of assessing the quality of the

published statistics in relation to the concepts required, often resulting in periodic

revisions or improvements in data collection or processing.

SOCIETY

CONCEPTS

DATA 

PROCESSING

OUTPUTS
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Fig. 1. A framework for producing official statistics
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2.2. Population Statistics

The general framework for official statistics presented in Figure 1 may be applied to the

production of population statistics. Many types of population statistics can be produced,

such as the population present at the time of a census or survey (de facto population), the

population considered permanent or usually resident (de jure population), the population

considered temporary (tourists, business travellers, short-term migrants), the population

born in the country (native born) and the population born abroad (foreign born). We focus

on the statistics that form the basic requirement for most national statistical offices, namely

the usual resident population by age and sex, living in area i at time t. Adopting the United

Nations (2007) definition, usual residents are all persons who reside, or intend to reside, in

a place continuously for either most of the last twelve months or for twelve months or

more. This includes nationals, foreigners, undocumented persons, applicants for asylum

and refugees. Counts of usual residents provide “: : : the best indication of where people

will demand and consume services, and : : : is therefore most relevant for planning and

policy purposes” (United Nations 2007, 132).

To illustrate how the framework for official statistics can be applied in the production of

statistics of usual residents by age, sex and local authority in the United Kingdom,

consider the expanded framework presented in Figure 2. Here, more details are provided

under the main headings of society, concept, data, processing, and output. Validation is not

included in the diagram, but of course it is necessary for the continued improvement of the

population statistics over time. We also include two columns covering background and

other considerations, which may be interpreted as the context and specific factors for a

particular society, respectively.

There are many issues to consider in the production of population statistics, which are

largely driven by the need for distributing national resources, planning, and social welfare.

What makes the UK different from other countries is its economy and culture, and this

varies over time depending on, for example, the political climate and available resources.

The UK does not have a population register or common identification number or code

system (Poulain et al. 2006, 112–113), and has historically relied on decennial censuses to

produce population statistics, with demographic estimation (described in Subsection 2.3)

used to produce statistics for years between censuses. Note that care must be taken, when

comparing censuses, to allow for coverage differences as well as conceptual differences in

defining the population of interest. Very often, to aid these comparisons, several different

population bases will be provided by national statistical offices for the basic population

counts.

As mentioned previously, at any time, there are always several populations that may be

measured or conceptualised. In the UK, a midyear (30 June/1 July) ‘usual resident’

population estimate is produced. This statistic is recommended by the United Nations for

international comparability, although the practicalities of identifying usual residents may

differ from country to country. Furthermore, the size and characteristics of the population

may vary greatly, depending on both the time of day and day of the year measured. The

usual resident population represents a ‘night-time’ measure, which captures the population

where it sleeps. A ‘day-time’ measure captures the population where it goes to school, to

work, to shop or to pursue leisure activities. Finally, it is important to be clear about the
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criteria for the inclusion or exclusion of individuals. Business travellers and visitors are

usually excluded from official and international statistics on population and migration.

Temporary workers may be included in official estimates of short-term migrants, but not in

the usual resident population.

Regardless of the population concept being measured, it can only ever represent a

snapshot of the continuous process of population change. This is further illustrated in

Figure 3, which shows how populations present in an area may change over time. If the

interest is tracking the changes of usual residents, each of the entry and exit components

needs to be defined accordingly. Here, for example, only those who change their country

of usual residence would be included as international entries or exits. All other

international entries and exits would be excluded from the official statistics. Likewise, the

BACKGROUND OTHER CONSIDERATIONSFRAMEWORK

SOCIETY

United Kingdom

USER NEED ECONOMY AND CULTURE

CONCEPT

Usual residents at time t by age,
sex and local authorityUNDERLYING PROCESS OF

CHANGE
COMPARABILITY OVER TIME

AND SPACE

DATA

Census, survey and administrative
sourcesDATA AVAILABILITY GEOGRAPHICAL REFERENCING

PROCESSING

Coverage survey, demographic
estimation, combining

administrative/survey data
DATA LIMITATION DATA PROTECTION

OUTPUT

Estimate of usual residents at
time t by age, sex and local

authority

Fig. 2. A framework for producing population statistics in the United Kingdom

Entries between t-n and t
Actual population at time t-n Births Actual population at time t

Usual residents International moves Usual residents
Migrants Internal moves Migrants

Temporary workers Temporary workers
Business travellers Exits between t-n and t Business travellers

Visitors Deaths Visitors
International moves

Internal moves

Fig. 3. The dynamics of actual population change for a geographic location within a country
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births, deaths and domestic movements of temporary workers, business travellers and

visitors would also be excluded.

There are two ways in which estimates of the usual resident population can be obtained:

(1) using a source or combination of sources that can be used to count the population at

a particular point in time and (2) combining sources of information on population stocks

(e.g., recent census) with information on demographic events over time (see Subsection

2.3). The sources of demographic data may be censuses or surveys, or may arise from

administrative processes including the registration of births and deaths or the need to

access healthcare or state benefits. Each data source has limitations with regard to

collection and storage. This usually concerns the amount of detail included and whether

it contains individual information or an aggregation of individual information. It also

concerns the amount of characteristic detail included in the data. Typically, censuses and

surveys include much characteristic information for understanding societal differences

and change, whereas administrative data contain only basic information necessary for

operational purposes (see Subsection 2.4).

It is difficult to design data sources to measure particular population concepts and to

capture all of the population required. Moreover, in the case of administrative data,

population measurement is not the primary purpose. Thus, national statistical offices often

use additional methods to improve the data, aligning the information with the required

concept. In the UK, for example, coverage surveys and imputation are used to produce the

census estimates (ONS 2013c). For estimates between census years, demographic event

data are combined with statistical estimation used to augment the data on internal and

international migration. Finally, there is an increasing need to provide measures of

uncertainty – or, conversely expressed, of accuracy – with the estimates so that they may

be interpreted correctly (see Section 3). The outputs or published statistics are estimates,

since they are only able to come close to the ‘true’ conceptual measure but do not match it

exactly. These statistics are also published with supporting information about how they

have been produced, allowing the user community to make informed judgements on the

current state of the population and its likely future.

To summarise, it is important to understand the various factors involved in producing

population statistics. The framework for population statistics starts with the societal

context and extends to the required published outputs. Next, we describe how the usual

resident population can be aligned with the underlying mechanism for population change,

involving the demographic accounting equation.

2.3. Underlying Mechanism of Demographic Change

There are two ways that population statistics can be produced: enumeration and

demographic accounting. In practice, both are often used to understand the population

change occurring and to verify the quality of the estimates being produced. In the UK,

censuses are used to provide accurate estimates of the population every ten years. In

between censuses, midyear estimates are produced by rolling forward the age- and sex-

specific census estimates based on the number of births, deaths, domestic migrations and

international migrations that occur within each year utilising the demographic accounting

equation (see Figure 4 and equations below). To maintain an accurate picture of population
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change over time, care must be taken to match the model used for demographic estimation

with the nature of the data available. Note that for the production of international migration

statistics in the UK, both survey (major source) and administrative (minor source) data are

used (represented by solid line and dashed line arrows, respectively).

When producing estimates based on demographic accounting, it is important to take into

consideration the close dependence between the migration definition and the demographic

accounting model. There are two types of migration data: events and transitions. Events

refer to the number of moves that occur within a particular time period, whereas transitions

refer to data collected on places of residence at two points in time. The demographic

accounting model essentially rolls forward the population estimate from the last reliable

estimate (e.g., census) to successive years until the next reliable estimate, where the error

of the process can be assessed. The same demographic accounting process is also used for

estimating future population totals (i.e., population projections), except that observations

on fertility, mortality and migration are replaced with estimated future (projected) figures.

Demographic change accounts based on events are presented in Table 1. These accounts

represent an extension of those originally developed by Stone (see United Nations 1975).

The variable Mij represents internal migration events from one area i to another area j. The

n subscript denotes the number of areas. Note that we ignore internal migration events

when i ¼ j. Instead, we enter terms Ri, which are accounting balances, the result of

subtracting from the start population all possible exit events. Total (internal) outmigrations

from each area are denoted by Miþ and total (internal) inmigrations to each area are

denoted by Mþ i (see the Table 1 notes for explicit definitions). Here we use the subscript i

as a general index for a region. The Ii variable signifies the number of immigration events

from outside the system of interest and Ei tabulates the corresponding emigration events.

The vital events of death, Di, and birth, Bi, complete the flows in the table. The sum of the

numbers in the rows adds up to the populations at the beginning of the time interval, Pi(t).

The balancing term is obtained by subtracting the total number of outmigrations,

emigrations and deaths from the population at the beginning of the time interval, that is,

Ri ¼ PiðtÞ2 Miþ 2 Ei 2 Di: ð1Þ

Census

Internal migration

Administrative
Register

Deaths

Population
Estimates

Demographic
Accounting

Births

Survey

International migration

Fig. 4. Overview of population estimation in the UK

Raymer et al.: Frameworks for population statistics 705

Unauthenticated
Download Date | 1/7/16 1:09 PM



T
a

b
le

1
.

A
d

em
o

g
ra

p
h

ic
a

cc
o

u
n
ti

n
g

fr
a

m
ew

o
rk

fo
r

p
o

p
u
la

ti
o
n

st
a
ti

st
ic

s

T
o

d
es

ti
n

a
ti

o
n

:
F

ro
m

o
ri

g
in

:
A

re
a

1
A

re
a

2
:
:
:

A
re

a
i

:
:
:

A
re

a
n

E
m

ig
ra

ti
o

n
s

D
ea

th
s

T
o

ta
l

A
re

a
1

R
1

M
1
2

:
:
:

M
1

i
:
:
:

M
1

n
E

1
D

1
P

1
(t

)
A

re
a

2
M

2
1

R
2

M
2

i
M

2
n

E
2

D
2

P
2
(t

)
:

:
:

:
:

:
:

:
A

re
a

i
M

i1
M

i2
:
:
:

R
i

:
:
:

M
in

E
i

D
i

P
i(

t)
:

:
:

:
:

:
:

:

A
re

a
n

M
n

1
M

n
2

:
:
:

M
n
i

:
:
:

R
n

E
n

D
n

P
n
(t

)
Im

m
ig

ra
ti

o
n

s
I 1

I 2
:
:
:

I i
:
:
:

I n
0

0
I þ

B
ir

th
s

B
1

B
2

:
:
:

B
i

:
:
:

B
n

0
0

B
þ

T
o

ta
l

P
1
(t
þ

1
)

P
2
(t
þ

1
)

:
:
:

P
i(

t
þ

1
)

:
:
:

P
n
(t
þ

1
)

E
þ

D
þ

D
efi

n
it

io
n
s

o
f

v
ar

ia
b

le
s

an
d

su
b

sc
ri

p
ts

:
P
¼

p
o

p
u
la

ti
o

n
,

R
¼

b
al

an
ci

n
g

te
rm

s,
M
¼

in
te

rn
al

m
ig

ra
ti

o
n

s
(w

it
h

in
a

co
u

n
tr

y
),

E
¼

em
ig

ra
ti

o
n

s,
I
¼

im
m

ig
ra

ti
o
n

s,
B
¼

b
ir

th
s,

D
¼

d
ea

th
s,

0
¼

st
ru

ct
u

ra
l

ze
ro

es
,
t
¼

ti
m

e,
i
¼

su
b

sc
ri

p
t

fo
r

ar
ea

,
n
¼

n
u

m
b

er
o

f
ar

ea
s

an
d
þ
¼

su
m

m
at

io
n

o
v

er
ar

ea
s.

T
o

ta
l

in
te

rn
al

o
u

tm
ig

ra
ti

o
n

s
fr

o
m

ar
ea

i
¼

S
j
¼

1
to

n
,j

–
i

M
ij
¼

M
i
þ

.
T

o
ta

l
in

te
rn

al
in

m
ig

ra
ti

o
n

s
to

ar
ea

i
¼

S
j
¼

1
to

n
,j

–
i

M
ji
¼

M
þ

i.

Journal of Official Statistics706

Unauthenticated
Download Date | 1/7/16 1:09 PM



The variables in the columns of Table 1 add up to the populations at the end of the time

interval. We can compute these by adding to the balancing term the total inmigrations,

immigrations and births, that is,

Piðt þ 1Þ ¼ Ri þMþi þ Ii þ Bi: ð2Þ

If we combine these two equations, the balancing term cancels out, and we obtain the

familiar components of the population change equation:

Piðt þ 1Þ ¼ PiðtÞ2 Miþ 2 Ei 2 Di þMþi þ Ii þ Bi: ð3Þ

Although the demographic accounting model is applied similarly, it is important to

understand how the movement and transition concepts of migration differ. To illustrate,

consider Figure 5, where the vertical axis represents space and is divided into two regions

and the horizontal axis represents time (one time interval). The lines on the graph (A, B)

plot the location of two people. Person A starts in Region 1 and migrates to Region 2 at

time t þ 0.7 and then remains there to be recorded in Region 2 at time t þ 1. Person B

starts in Region 2 and migrates to Region 1 at time t þ 0.2 but then migrates back to

Region 2 at time t þ 0.4. These two persons make one move from Region 2 to Region 1

and two moves from Region 1 to Region 2. Person A makes one transition, from Region 1

at time t to Region 2 at time t þ 1. Person B is recorded in Region 1 at time t and at time

t þ 1 and so fails to make a transition. Note that the net migration between regions is þ1

for Region 2, whether migration is measured as a move or as transition.

The demographic accounts in Table 1 are specified for the whole population (all ages).

When the population is rolled forward from one year to the next, the accounts and

associated population change equations can be specified for each age, using period

cohorts. The only difference is that the birth terms are omitted from the accounts and

instead are used as the starting population in the accounts for the new-born period cohort.

Furthermore, Table 1 is specified for one country with several subnational regions and one

A

B

t t+1

Region 1

Region 2

Time 

Space

Fig. 5. A time-space diagram illustrating different migration measurement concepts
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external region, the rest of the world. However, this spatial system can be expanded to

include a large number of areas. The system can also be collapsed to estimate the national

population change. Furthermore, the demographic accounting framework could also

designate internal regions as separate countries (e.g., the 28 members of the European

Union) or a combination of both national and subnational units can be employed (see, e.g.,

Kupiszewski and Kupiszewska 2008).

If an end of interval population, Pi(t þ 1), is independently available from a population

register or an end-of-decade census, then the error of estimation may be calculated. To

reconcile population change through the interval with the start and end population stocks,

some corrections must be made to the component terms using assessments of the likely

errors involved. To estimate the population at time t þ 1, the demographic accounting

model therefore requires a population stock at time t and information about births and

deaths (natural increase measures) and domestic and international migration between time

t and t þ 1.

Perhaps the most accurate information we have is on the number of live births and

deaths for locations in the UK over time. This is because all births and deaths have to be

registered by law. Births are published according to the sex and birthplace of the child

and the age and residential location of the mother. Deaths are recorded for all persons by

age, sex and residential location. Migration data, on the other hand, are obtained from

general-purpose censuses, surveys or administrative registers. Unlike fertility or

mortality, the practical measures of migration obtained from these sources often do not

coincide with theoretical or contextual definitions of migration (Bell et al. 2002). For

example, Raymer and Smith (2010, 703) describe migration as “a loosely defined

process that represents the relocation of people during a period of time that causes them

to relinquish the ties with their previous locality.” Migration can involve people moving

within a country and within localities, as well as across international borders. The factors

that separate migration from other forms of mobility (e.g., daily commuting, weekday/

weekend commuting, holiday visits or seasonal moves) are generally the distance travelled

and the length of time spent in the destination (or away from the origin). In practical terms,

migration can be defined as relocations between administrative areas and mobility as

relocations within areas. Intra-area migration is not required for population change accounts

(Table 1). ONS does not restrict the spatial scale of residential migration, as any such

classification would be arbitrary. Therefore, a residential migration within the same suburb is

still a migration that may have relevance for the estimation of the population of very small

areas, such as output areas or postal sectors.

2.4. Population Characteristics

Users of population statistics are interested in the characteristics of the population and

how those characteristics change over time. Age and sex are considered the baseline

characteristics required for population statistics because many other attributes have a close

relationship with them. For understanding change or differences between population

groups, it is useful to have more detailed attribute information, depending on the need or

users. For example, for those interested in the integration of immigrants, information on

the foreign population, their levels of education and their occupations are useful. For those
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wishing to set migration policy, understanding the reasons or drivers for migration is

important. For provision of services, information on population health, number of children

and economic activity are useful. The availability of data on characteristics will depend on

the type of information required and the data available to meet the need.

2.5. Geographic Classifications

Geographic classifications are fundamental for understanding society and population

change. There are many different ways of representing geography, depending on the

location information available in the data source. Statistics are usually produced for local-

authority districts, counties and regions in England and Wales, and electoral wards and

council areas in Scotland. Sometimes, the actual geography is not of interest but rather the

area type, such as urban, rural or coastal. Geographic information is important for planning

schools, hospitals, workforces, as well as for comparing different spatial patterns of

residence according to ethnicity or density.

3. Output Uncertainty

Information about uncertainty in the published statistics can help users to gain a better

understanding and use of the statistics. If the sources of uncertainty are known, they can

also be used to inform data providers where improvements can be made to their data

collection or estimation methodologies and to evaluate the scale of improvement achieved.

For example, in 2009, the UK Statistics Authority report “Migration Statistics –– The Way

Ahead?” recommended that “ONS should flag the level of reliability of individual local

authority population estimates.” As part of the Migration Statistics Improvement

Programme, ONS responded by developing methods for measuring error and defining

confidence intervals for the England and Wales local authority midyear population

estimates (ONS 2012b). They also developed a table of key indicators, which can be used

to identify local authorities with characteristics associated with greater likelihoods of

uncertainty in their midyear estimates, such as the proportion of students present.

Uncertainty can come into the population estimation model in many ways. At the onset,

the base population taken from, for example, a recent census may contain error. The

components of change may contain errors. For example, in the UK, internal migration and

international migration are considered the most problematic in terms of population error.

Registrations of births and deaths, on the other hand, are considered highly reliable since

they have a very clear legal framework and long history of data collection. The degree of

uncertainty in the time series of population estimates is most often revealed when the

results of the next census become available and often, as a result, the annual population

estimates are revised to coincide with both the most recent and the previous census. To

achieve a fully consistent time series of population change, it may also be necessary to

revise the components of change. The vital statistics (births and deaths) normally do not

need revision, though the associated demographic rates are often revised as a result of

changes to the population at risk.

Within the area of survey methodology, the framework for survey error provided by

Groves et al. (2009) provides a useful basis for considering the errors underlying data

collected by surveys. The framework is also useful when considering data generated by a
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census or administrative system. Figure 6 sets out the framework, showing the processes

used in gathering population data and where errors arise. Errors may be systematic or

random, and they affect the uncertainty of the statistics in two different ways:

systematically or randomly. An important purpose of including uncertainty measures

in official statistics is to prevent users from making inferences that are not supported by

the data.

3.1. Accuracy

Accuracy refers to the closeness of the estimates to the true values. When producing

population estimates, we know that accuracy is greater for larger populations as it takes

more to influence their population change. We also know that accuracy decreases the

further away in time the estimates are from a census. For example, in the UK, we would

expect the 2012 population estimates to be considerably more accurate than the 2020

population estimates will be when they are produced, because the most recent (available)

census occurred in 2011.

Bias, which is caused by systematic errors, refers to whether the estimates have higher

or lower values on average in comparison to the true values. The sources of bias include

both those that are known beforehand and those that appear unexpectedly. In general,

the known biases are those that involve areas that are difficult to count, such as those with

highly mobile populations, including students, migrants, homeless persons or armed-

forces personnel, and those with high deprivation, unemployment or crime. These areas

contain populations that are less likely to fill in questionnaires or register in an

administrative source. For example, the age profile of internal migration in England and

MEASUREMENT REPRESENTATION

Construct Target population

Validity Coverage error

Measurement Sampling frame

Measurement
error

Sampling error

Response Sample

Processing
error

Nonresponse
error

Edited response Respondents

Adjustment
error

Postsurvey adjustments

Survey statistic

Fig. 6. A framework for survey error. Source: Adapted from Figure 2.5 in Groves et al. 2009, 48
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Wales, as measured using data from the National Health Service Central Register

(NHSCR), exhibits a markedly lower level for males than females aged 15–29 years

(Raymer et al. 2011, 80–81). In 2007, there were 55 per cent more females in the 20–24

year old age group changing their General Practitioner than males. If we believe the two

levels should be similar for these ages, then overall, it can be said there is a 15 per cent

undercount of males or about a seven per cent undercount for all migrants in the NHSCR

data. Overcounting may also be an issue in some administrative sources as a result of lags

or failures in deregistration. Finally, unexpected biases may result from a particular

methodology used to estimate the population totals or to a change in the way data are

collected. For example, when net migration rates are used in demographic accounting

models instead of origin-destination-specific rates, there is a tendency to overestimate

areas of growth and underestimate areas of decline (Rogers 1990).

Information on the potential sources of inaccuracy (due to systematic or random errors,

or both) can help users understand the range of plausible totals for a particular area and

the reasons why their area or group is considered to be estimated with more or less uncertainty.

These two aspects of uncertainty – size and causes – can also point to areas where

methodology could be improved or where additional data should be gathered. They also

provide a more realistic picture of population change. Furthermore, as national statistics

offices continue to improve their methodology for estimating populations, the availability

of measures of uncertainty could inform the extent of the improvement. The actual measures

of uncertainty may vary from probabilistic predictive intervals to summary statistics, for

example, Mean Algebraic Percentage Error for systematic deviation (bias) or Mean Absolute

Percentage Error as a measure of precision, or spread, due to random variation. Finally,

difficulties may arise in calculating the uncertainty measures, especially for population

estimates where no information exists on the true values (e.g., postcensus population

estimates and projections). Here, statistical models may be used to estimate the uncertainty.

3.2. The Challenge of Measuring Migration

Measuring migration is particularly difficult, and deserves special treatment here. First,

long-distance migration is a relatively rare event in the lives of most people. Second, many

data sources are not designed to capture migration specifically; rather, migration measures

are a by-product obtained by additional analyses of administrative or general purpose

databases. This has implications for measurement (duration, coverage), accuracy and

detail. Thus, when considering appropriate data sources to measure migration, there are

inevitably a number of obstacles to be overcome:

1. Difference between what the available data measure and what is required by the

population estimation model (Rees 1985).

2. Small sample size of most survey data sources. Because most people do not migrate

within a given time period, small sample size leads to estimates with very high

standard errors and, consequently, the inability to use sample data for subnational

areas without auxiliary information.

3. Coverage differences between the populations targeted in survey and administrative

sources and the coverage needed in the model for generating population estimates or

projections.
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4. Underreporting of migrations (as events), which also manifests itself as excessive

lags in the reporting of address changes. Underreporting may occur as there is no

legal requirement to report a migration event in the UK, and individuals may be slow

to advise administrations of changes of address where either (a) there is no incentive

to do so or (b) there is no need for them to access a particular service.

5. Misreporting of destinations or origins of migration, depending on the data set

involved. Misreporting occurs for several reasons, and is primarily related to survey

or census data. Respondents arriving in the UK may be unsure or vague about their

destination. Respondents to household surveys or the census may inaccurately recall

where they were living some time ago, particularly if they have experienced high

mobility in between.

What consequences does a migration measure have for population estimation? Rees (1985)

points out that you need to match the concept used to measure migration with the concept

used in the population estimation equation. The standard estimation equation assumes that

migration is measured as a count of relocation events alongside the event counts of births

and deaths. It is possible to develop a population estimate equation that uses migration

measured as transitions, but the model is complicated for the UK for two reasons. First,

there is no population register from which transitions can be counted for the population as a

whole. In the UK, a census is administered only once in ten years and the main migration

question captures transitions only for the year prior to the census. Second, the system of

population statistics used by ONS is based on the movement concept using data on events.

This is why ONS applies adjustment factors to the Patient Register Data System (PRDS)-

derived migration measures which are based on the transition concept. The adjustment

ratios are computed by comparing counts of moves (migrations as relocation events)

between Former Health Authorities in a data set based on the NHS Central Register against

the counts of transitions aggregated appropriately from the PRDS system (ONS 2012c).

3.3. The Challenge of Measuring Special Populations: The Armed Forces and Prisoners

The population estimation methods described above depend on being able to measure all

demographic components of change for all population groups. This is often true for births

and deaths, where the registration has a legal basis. For the internal and international

migration components, some populations may be left out. For instance, the NHS register

does not report the movements of the Armed Forces or the prison population. The current

approach to estimating populations is to subtract, at the start-of-time interval, the Armed

Forces population and the prisoner population from the start population stock and then add

fresh stock estimates to the end population. The data for these populations are supplied by

the Ministry of Defence and the Ministry of Justice, respectively.

4. Applications of the Population-Statistics Framework

In this section, we illustrate how the frameworks presented in Section 2 can be applied to

local area immigration statistics and to combine various administrative data sources to

measure the usual resident population.
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4.1. Immigration to Local Authorities in the United Kingdom

As an illustration of how the population statistics framework may be applied, consider the

user requirement for the population within a particular local authority in 2010. The need

could be conceptualised as “the usual resident population within local authority j, 2010”.

Here, data are required that match the concept of “all migrants arriving in the UK and

residing for at least a year in local authority j, mid-2009 to mid-2010” to allow estimation of

the population. Next, assume that there are only two sources of information available:

migrants identified in the International Passenger Survey (IPS) and National Insurance

Number (NINo) registrations to non-UK nationals. As shown in Figure 7, the IPS identified

536 (95% confidence interval: 506 to 566) thousand persons coming from abroad between

mid-2009 to mid-2010 who intended to stay at least twelve months (ONS 2013g) (Note that

this estimate of immigration was revised upwards after the 2011 Census to 579 thousand).

They were surveyed at the point of arrival and were asked about their destination in the UK.

However, because of the relatively small sample size, this information is only reliable at the

national level. For the same period, there were 668 thousand new NINo applications

recorded for foreign citizens aged 16 years or over. The information was collected at the

time of registration with reliable address information but no information on length of stay.

The main advantage of the IPS is that it measures “all migrants arriving in the UK intending

to stay for at least a year.” The main advantage of the NINo registration is that it measures

those “residing in local authority j.” Neither of these sources alone can provide data that meets

the concept above. Additional information about the number of visitor and migrant switchers

(i.e., those changing their intentions) for the IPS data and the lag between arrival and

registration and the duration of stay for the NINo data would be required. The two data sources

can be aligned by separating the foreign citizens aged 16þ years from the rest of immigrants

in the IPS. It is then possible to produce estimates of “foreign citizens aged 16þ years arriving

in the UK for at least a year residing in local authority j, 2010.” This illustration shows how the

framework may be used to take a user requirement and align the available data to the concept

needed; it also shows the obstacles and limitations that often occur with such a process.

Figure 7 represents an illustrative example based on the more complex estimation

process described in ONS (2011) based on work by Boden and Rees (2010), which has

improved estimates of immigration to local authorities in England and Wales. The method

divides the national estimate of immigration into different flows by purpose of

immigration – for work, for study, as returning citizens or residents, and as dependants.

Different administrative sources are used to distribute each “purpose group.” For example,

higher-education records, which cover all newly registered foreign students, are used to

estimate the local-authority distribution of foreign student arrivals. This method replaces a

less accurate process that hierarchically distributed yearly IPS immigration totals: (1) into

regions according to three-year averaged Labour Force Survey estimates; (2) into

‘intermediate’ geographies based on IPS estimates; and (3) into local authorities based on

the previous Census (2001) counts.

4.2. Combining Administrative Data to Estimate Usual Residents by Age and Sex

In this subsection, we describe how ONS is exploring the quality and application of

administrative data sources, including combinations of them, to estimate usual resident
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populations as part of their ‘Beyond 2011’ programme (ONS 2012a). Administrative data

may be used to directly or indirectly inform annual population estimates by age, sex and

geography. Here, it is useful to refer to the frameworks presented in Figure 1, Figure 2 and

Figure 6, as well as those presented in Zhang (2012). These frameworks can be used to

Source International Passenger Survey National Insurance Number

Period Mid-2009 and mid-2010 Mid-2009 and mid-2010

Coverage Sample of all arriving passengers, a
subsample of which intend to stay at
least 12 months in the UK (long-term

international migrants)

All foreign nationals aged 16 years
or over who registered for a NINo

Geographic coverage National National and subnational

Total number 5360001 6680002

Step 1: Adjust IPS and
NINo

Estimate visitor and migrant
switchers and identify foreign

nationals 16+ years

Adjust for arrival date where
available

Step 2: Combine sources

VALIDATION
Compare estimates with census population and immigrant stock

benchmarks

All migrants arriving in the UK in local authority j between mid-2009
and mid-2010, residing for at least a year

CONCEPT

DATA

PROCESSING

OUTPUT
Estimate of foreign citizens 16+ years arriving in local authority j in

the UK and residing for at least a year, mid-year 2009 to mid-year 2010

Apportion IPS data using proportion of NINo registrations in local
authority j

Fig. 7. Application of the population statistics framework to combine International Passenger Survey (IPS) and

National Insurance Number (NINo) registrations to measure international migration in the UK. Note: (1) Total

immigration estimated by factoring up sample count; (2) a full count of new NINo registrations by foreign

nationals.
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assess how the data sources relate to the concepts we are concerned with, including how

they capture information about location, births, deaths and migration, and to determine

where potential sources of error may arise, respectively. The assessment may be conveyed

visually using Venn diagrams as outlined in Figure 8 below. The aim of these diagrams is to

illustrate how the concept of the usual resident population relates to the population covered

by the administrative source (or sources) in a specific area j at a specific point in time t.

To understand the relationship between a particular administrative data source and

the usual resident population, consider the UK National Health Service’s patient

register. General Practitioners (GPs) are the first point of contact for nearly all UK

National Health Service (NHS) patients (NHS 2011). Most individuals and households

are registered with a GP near their home. The NHS patient registers are used to

maintain an accurate list of all persons registered with a GP, allowing the timely

transfer of medical records and correct payments to doctors. ONS receives a list of

everyone who is registered with a GP in England and Wales. This source of individual-

level data has a specific administrative purpose and is not designed to specifically

measure the populations.

The patient register contains the address details of patients; however, depending on the

extract, the complete address may not always be available for analysis. Location

information derived from just a post code may differ from that derived from the full

address where these lie very close to the boundary of a local authority, for example.

The quality of the address information is also dependent on individuals keeping their GP

up to date with changes, or registering with a new GP if they have made a longer-distance

move. Any failure or lag in updating address information results in measurement error

Administrative
source

Usually resident
population

Intersection between two
circles indicates usual
residents registered on

the administrative source

Those present in
the administrative
source but not in
the usual resident
population concept

Description of reason why
people might be in this
subgroup

Those present in
the usual resident
population
concept but not in
the administrative
source

Fig. 8. Understanding the relationship between an administrative data source and the usual resident population

concept
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arising in the location information on the patient register at a particular point in time. For

persons who “live” at more than one address, the situation is more complex. For example,

some children at boarding school register with a GP using their boarding school address,

others using their parental address.

The coverage of the patient register is all persons registered with a GP in England and

Wales. The population covered by the patient register includes the following subgroups

not present in the usual resident population:

. Persons staying in the country for fewer than twelve months (short-term migrants);

. Patients not removed from the register because of unregistered deaths or when they

have moved out of an area and not deregistered from the NHS (list inflation or

registration lag for outmigrants or emigrants);

. Persons issued with new duplicate NHS numbers, for example when away from home

(multiple NHS numbers).

Conversely, the usual resident population has subpopulations not recorded in the patient

register:

W Persons who have failed to register at their destination after an inmigration or

immigration, more likely among young adult males (nonregistration or registration

lag for inmigrants or immigrants);

W Patients removed from the patient register when they have not moved (erroneous list

cleaning);

W Military personnel treated by their own health services (armed forces); and

W Inmates of prisons treated by the prison medical service ( prisoners).

In terms of timing, the Patient Register extract used by ONS is taken one month after the

date at which the usual resident population is estimated to counteract some of the lag in

changing GP registrations following moves. Note that the NHS Patient Register is not used

directly as a population estimate. Instead, patients are matched between two registers one

year apart to count patient transitions. These are converted to movements before being

used in the demographic accounting equation that produces the new end of internal

population estimate.

Another important administrative data source is the specific social security and

revenue information held within the Department of Work and Pensions (DWP), referred

to as the Customer Information System (CIS) (ONS 2013d). The CIS contains a record

for all individuals that have been issued with a NINo. For the DWP, the primary

purpose of the CIS is to store basic identifying information, such as name, address and

date of birth. The extract of the CIS provided to ONS on the 2011 Census day (27

March) contained approximately 96 million records. In Figure 9, a Venn diagram is

presented showing the differences between the usual resident population with a NINo

and the CIS records.

The NHS patient register provides good coverage of the population and represents the

timeliest source of administrative data currently available. The CIS also provides good

coverage of the population but includes a large number of people who are no longer

resident in the UK. Additional administrative sources include the English and Welsh

School Censuses and Higher Education Statistics Agency data (ONS 2013e), which
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provide comprehensive information but only for subsections of the population. In

combination, all these sources and others have the potential to provide comprehensive

and timely information about population stocks and distributions in the UK. In order to

produce these estimates, ONS needs to incorporate knowledge of the coverage and

measurement error associated with each of the sources to process them individually, and to

combine them in a way that captures the concept of usual residence. Work to achieve these

combined estimates has begun (ONS 2013a). One illustration of this approach is

summarised in Figure 10 below within the context of the population statistics framework.

For each data set an attempt to remove those individuals not resident needs to be made. It is

also necessary to adjust for those who may be recorded in the wrong place. The coverage,

or representation error, within all the sources is the product of a complex web of issues that

needs to be disentangled. For areas where populations are relatively stable the issues have

a less significant impact than for those areas experiencing high levels of population

turnover. Note that national statistics agencies, including ONS, are also interested in other

populations, such as present population, short-term population and visitors. Which

concept is used depends on the purpose to which the population statistics will be put.

ONS is undertaking the Beyond 2011 programme to explore options for producing

population and sociodemographic statistics in future. Similar work is being undertaken by

National Records for Scotland (NRS) and the Northern Ireland Statistics and Research

Agency (NISRA). Some of the options involve using administrative registers to estimate

the full population while large household surveys are used to assess coverage and to

add the attribute detail delivered by the traditional census (ONS 2013f). These new

methods have the potential to deliver population statistics more frequently, though the

precision may be lower for small-area population statistics than for large-area population

statistics.

DWP/HMRC
Sources

Usually resident
population 

Change of details
lag for outmigrants
from area j

Usual residents with
a NINo

Short term
immigrants who
have registered for a
NINo and are in UK

Duplicate record or NINo

Migrants who
do not have a
NINo

Records for migrants who
have applied and been
issued with a NINo but have
yet to enter the country

Children for
whom child
benefit has not
been claimed

Change of details
lag for inmigrants
to area j

Those who have moved/died
abroad without notifying DWP

Fig. 9. Relating the CIS to the usual resident population in area j at time t
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5. Conclusion

The production of population statistics is complicated because populations are dynamic,

heterogeneous, and influenced by the social and cultural environments, economic

environments and natural and built environments in which the populations reside. In this

article we have presented central frameworks for developing and improving population

estimates. The key elements are user requirement, concepts, data, processing and outputs.

User requirements determine the population statistics of interest. Concepts are required to

Source Patient register Customer Information 
System

Higher Education Statistics 
Agency

Date 31 July 2011 31 March 2011 2010–2011 Academic year

Coverage Everyone currently registered
with a General Practitioner in

England and Wales

Everyone who has ever
been registered for a NINo

All students currently
registered at government-
funded higher education

institutions

Geographic coverage Address Address on date of extract Domicile and term-time
addresses

Total number 58,509,000 96,450,000 2,814,000

Step 1

Step 2

Step 3

Step 4

Estimate of usually resident population living in local authority j in 2011

Compare estimates with census benchmark
VALIDATION

DATA

Usually resident population of local authority j
CONCEPT

Adjust sources to match required concept as closely as possible

Apply aggregate adjustments

PROCESSING

Anonymously link data sources

Apply decision rules to include and exclude records

OUTPUT

Fig. 10. Application of the population statistics framework to combine administrative data sources to measure

the usual resident population in the UK (ONS 2012d, ONS2013a, ONS2013d, ONS 2013e)
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understand and define the population statistics required and how the demographic

components of change should be related to them. Concepts are also needed to match the

measurements in the available data, which may come from censuses, surveys or

administrative sources, to the statistic of need. As the available data are unlikely to match

the concept exactly, and are very likely to contain error or miss certain groups of the

population, processing is required in order to produce the final statistical output.

The frameworks for official statistics, population statistics, demographic accounting

and survey error presented in this article are useful for facilitating communication with

users of population and migration statistics, and for ensuring that everyone understands the

underlying concepts, the nature of the data available and the methods used to derive

estimates of key statistics. One important message that we have focused on is the tension

between concepts and outputs. There are many requirements and types of population

statistics but there are rarely single sources of information that cover all of these and match

the concepts exactly. The published outputs, therefore, are only able to address some of the

needs and are often produced by bringing together data from multiple sources, all with

their relative strengths and weaknesses. Future work should consider extending the

framework to include the relationships between different user needs and statistical

releases.

In conclusion, we hope this article provides a better understanding of the relationships

between the population concepts required by users and the data available to measure them.

The frameworks presented in this article should also provide a guide for any country

considering alternative data or methods for producing population and migration statistics.

We focused on the UK and the work being carried out in the Office for National Statistics

because of the transition that is occurring to incorporate and make better use of

administrative data to estimate local populations. In particular, these frameworks have

been used to guide the Beyond 2011 project that assessed administrative data quality,

including coverage from a variety of sources, and have provided a single reference point

for both users and providers.
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Quality Indicators for Statistical Disclosure Methods:
A Case Study on the Structure of Earnings Survey

Matthias Templ1

Scientific- or public-use files are typically produced by applying anonymisation methods to
the original data. Anonymised data should have both low disclosure risk and high data utility.

Data utility is often measured by comparing well-known estimates from original data and
anonymised data, such as comparing their means, covariances or eigenvalues.

However, it is a fact that not every estimate can be preserved. Therefore the aim is to
preserve the most important estimates, that is, instead of calculating generally defined utility
measures, evaluation on context/data dependent indicators is proposed.

In this article we define such indicators and utility measures for the Structure of Earnings
Survey (SES) microdata and proper guidelines for selecting indicators and models, and for
evaluating the resulting estimates are given. For this purpose, hundreds of publications in
journals and from national statistical agencies were reviewed to gain insight into how the SES
data are used for research and which indicators are relevant for policy making.

Besides the mathematical description of the indicators and a brief description of the most
common models applied to SES, four different anonymisation procedures are applied and the
resulting indicators and models are compared to those obtained from the unmodified data. The
disclosure risk is reported and the data utility is evaluated for each of the anonymised data sets
based on the most important indicators and a model which is often used in practice.

Key words: Statistical disclosure control; data utility; quality indicators; R.

1. Introduction

Anonymisation methods are applied to microdata to reduce their disclosure risk. By

applying too much or overly heavy anonymisation, the data utility is reduced and the

information loss is increased. However, users who analyse anonymised microdata want to

have as precise parameter estimates as possible. It is therefore of great interest to measure

the data and user context utility of a microdata set after disclosure limitation methods have

been applied.

1.1. General Methods for Measuring Data Utility

Anonymised data should have the same structure as the original data and should allow for

analysis with high precision.

q Statistics Sweden
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To evaluate the precision, the estimation of different classical estimates such as means

and covariances are often focused upon. By using the R-package sdcMicro (Templ and

Meindl 2010; Templ 2008; Templ et al. 2015), it is possible to calculate 26 different

measures on continuous scaled variables that are based on classical (most of these

measures are described in Hundepool et al. 2012) or robust distances. These measures are

computed for the original data and the perturbed data and then compared. To evaluate the

multivariate structure of perturbed data, comparisons based on eigenvalues and robust

eigenvalues may also be made. The comparison of means and covariances by mean

squared errors, mean absolute errors, and mean variations is also proposed in

Domingo-Ferrer et al. (2001). A generalisation is given by Domingo-Ferrer and Torra

(2001) by averaging the mean variations and mean absolute errors. They also define

information loss measures for categorical variables: direct comparison of categorical

values, comparison of contingency tables, and entropy-based measures. For the direct

comparison, a distance is defined over the range of categories. When the range of

categories of a variable is of ordinal scale, the distance between two categories is

proportional to the number of categories between them. For nominal scale, the Hamming

distance (zero when equal, otherwise one) is chosen. The comparison of contingency

tables considers the number of differences between the two contingency tables,

normalised by dividing by the number of cells of a table. The entropy-based measure is

suitable for the PRAM method, where the logarithm of the transition probabilities of one

category to another is used.

Shlomo (2008) uses some methods to evaluate data utility based on a contribution from

Gomatam and Karr (2003) and extends them by measures on impact of association and a

measure based on the between variance of a proportion fitted by regression models.

Woo (2009) proposes the use of propensity-score methods. The idea is to merge or join

the original and the perturbed data sets and then create a new index variable with ones for

the original data and zeros for observations from anonymised data. A logistic regression

model is then fitted using the new index variable as the response variable. Predictions from

this model are then compared with the proportion of observations of the perturbed data to

the original data (usually 1/2). Woo also describes two other measures, one based on

cluster analysis (evaluating the cluster sizes) and another which compares the empirical

cumulative distribution function. They concentrate only on data utility measures and do

not account for disclosure risk. Karr et al. (2006) propose measures based on differences

between inferences on original and perturbed data that are tailored to normally distributed

data, and they also use the propensity score method in Oganian and Karr (2006).

Reiter (2012) mentions, without presenting numerical results, that the comparison of

measures based on specific models is often done informally. If the regression coefficients

obtained from original and perturbed data are considered close, for example if the

confidence intervals obtained from the models largely overlap, the released data have high

utility for that particular analysis (see also Karr et al. 2006).

1.2. Trade-Off Between Data Utility and Disclosure Risk

The goal of statistical disclosure control is always to release a safe microdata set with high

data utility and a low risk of linking confidential information to individual respondents.
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Disclosure risk can be measured in different ways. Several methods have been suggested,

such as the individual risk approach (Franconi and Polettini 2004) that is used in this

contribution, methods based on log-linear models (Rinott 1990; Carlson 2002) or the

SUDA concept (Manning et al. 2008). So, firstly, a decision on which method, or methods,

for measuring disclosure risk will be used is necessary. Secondly, the data holder has to

decide on the level of disclosure risk that is acceptable and sufficient for distributing the data.

For example, in the case of the SES, anonymised microdata is sent to Eurostat. However,

many countries do not agree with the proposed rules for anonymisation communicated by

Eurostat, nor can they allow the use of remote access systems such as the PiEP Lissy project

(Marsden 2010) because of restrictions in national legislation. Therefore, almost every

country applies different anonymisation methods to their data (the anonymisations and the

disclosure risk are therefore somehow fixed in advance), but Eurostat wants to ensure that the

most important statistics can be estimated with high precision.

In this study, the focus is not specifically on disclosure risk, however, and hence only

one disclosure risk measure, the individual risk approach, was used. Several

anonymisation procedures were however applied to the data and the data utility for

each case is reported. It is up to the data holders to decide whether a particular

anonymisation procedure is sufficient. In this study we have simply assumed that the

chosen anonymisations are sufficient from a risk point of view and devote our attention to

data utility.

1.3. Outline of the Article

In Section 2 we describe the basic ideas of the proposed approach for utility assessment.

Section 3 introduces the Structural Earnings Survey (SES). In addition, the usage of this

particular survey is analysed and the most important projects which have their main focus

on this data set are mentioned. Based on this analysis, the most important indicators are

discussed in Section 4 and the three most important indicators and one model are described

in detail in Section 5. Confidentiality aspects are briefly discussed in Section 6. Results

from the analysis using the selected data utility measures are presented in Section 7.

Section 8 concludes the article.

2. Data and Context-Driven Utility Measures

In practice it is not possible to create an anonymised file that has exactly the same structure

as the original file. Contrary to general methods described previously, we propose that the

differences between estimates based on anonymised and original data need to be small, or

even zero, only for the most important statistics. This approach measures the data utility

based on quality indicators (Ichim and Franconi 2010; Franconi et al. 2011; Templ 2011a)

and is another more user-driven approach than applying general tools, since for the users it

might not be relevant to estimate all popular statistics with high precision, but just those

that are relevant for their analysis.

The first step in quality assessment is to decide on a set of quality indicators. To do so,

one has to evaluate the user needs, that is, what is analysed by the users, and report on the

most important estimates. These estimators are often named benchmarking indicators

(see, e.g., Templ 2011a,b) and referred to here as quality indicators.
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The general procedure is quite simple – although much work is necessary. It can be

described in the following steps:

i) Analysis of the user needs of researchers, policy makers, and society regarding a

specific data set. Analysis of the aim for which the underlying data have been used.

ii) Selection of a set of quality indicators after the detailed analysis in (i).

iii) Estimation of all quality indicators on the original, unmodified microdata set.

iv) Estimation of the quality indicators on the protected microdata set.

v) Comparison of statistical properties such as point estimates, variances or overlaps in

confidence intervals for each quality indicator.

vi) Assessment of the data utility of the protected microdata set.

If the quality of the data is reasonable, the anonymised microdata set may be published.

Note that the anonymisation procedure chosen has to lead to a reasonably low disclosure

risk of the anonymised data.

If the deviations of the main indicators calculated from the original and the protected

data are too large, the anonymisation procedure should be revised by modifying selected

parameters used for the applied disclosure methods or by a complete revision of the

anonymisation process.

Usually the evaluation is focused on the properties of numeric variables given

unmodified and modified microdata. However, it is of course also possible to look at the

impact of local suppression or recoding that has been conducted to reduce individual

reidentification risks.

Another possibility to evaluate the data utility is to define a model that is fitted to both,

the original, unmodified microdata and the anonymised data. The main idea is to look at

differences in the regression coefficients. If the deviations are small enough, one may go

on to publish the safe and protected microdata set. Otherwise adjustments in the protection

procedure need to be carried out.

It may also be of interest to evaluate the set of quality indicators not only for the entire

data set but also for some domains. The evaluation of quality indicators is then performed

for each of the h groups by looking at differences between indicators for original and

modified data in each group.

3. The Structural Earnings Statistics Survey

The Structural Earnings Statistics Survey (SES) is conducted in almost all European

countries, and the most important figures are reported to Eurostat.

3.1. Sampling Design, Data Preparation Issues, and Data Sources

SES is a complex survey of enterprises and establishments with more than ten employees

(e.g., 11,600 enterprises in Austria), NACE C-O, including a large sample of employees

(e.g., in Austria: 199,909). In many countries, a two-stage design is used where in the first

stage a stratified sample of enterprises and establishments on the NACE one-digit level,

NUTS 1 and employment size range is used – large companies have higher inclusion

probabilities. In stage two, systematic sampling is applied within each enterprise using

unequal inclusion probabilities with regard to employment size-range categories.
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In the Austrian case, for example, the sample has only 2.4% nonresponse. Regression

imputation is applied by using tax data to replace these missing values. If information on

imputed values is available, variance estimation procedures should account for this extra

variability.

Calibration is applied to reflect certain population characteristics corresponding to

NUTS 2 and NACE one-digit level, but also for gender (number of men and women in the

population).

SES compromises information from different perspectives and sources:

Information on the enterprise level: Enterprises are asked question batteries, such as

whether the enterprise is private or public or whether it has a collective bargaining

agreement (both binary variables). As a multinomial variable, the type of collective

agreement is included in the questionnaire.

Information on the individual employment level: The following questions to

employees come with the standard questionnaire: social identity number, date of

employment, weekly work hours, kind of work agreement, occupation, amount of

annual leave, place of work, gross earnings, earnings for overtime, and amount of

overtime.

Information from registers: All other information may come from registers, such as

information about age, size of enterprise, occupation, education, amount of employees,

NACE, and NUTS classifications.

3.2. Standard Publications and Use of the Microdata

The standard publication from national statistical offices is issued every four years after

the survey is conducted. In addition, a special publication about low incomes and non-

common occupation employment is published by some member states, such as Statistics

Austria’s report on low incomes (see Geissberger and Knittler 2010). In Austria, a special

report has been written for the Austrian women’s report focused on the gender pay gap and

socioeconomic studies (Geissberger 2010). Many other national publications by statistical

agencies or researchers are available in almost every country (for some summaries about

publications until 1999, see Belfield 1999; Nolan and Russel 2001; Dupray et al. 1999;

Frick and Winkelmann 1999; Dell’Aringa et al. 2000).

However, social scientists have mostly carried out qualitative analysis or rough

quantitative interpretations of a few official figures, mainly because of lack of access to

micro data for researchers. One exception are publications made with direct or follow-up

data connection and using the PiEP Lissy project and its remote access system (Marsden

2010) to various SES data. Actually, 10-15 projects are running within Eurostat’s Safe

Center and anonymised CD-ROM (see the next section).

3.3. Access to SES Microdata and European Projects

Access to Data Provided by Eurostat: Anonymised SES 2002 and 2006 data from 23

countries can be accessed for research purposes by means of research contracts through

the safe center or anonymised CD-ROM at the premises of Eurostat. The output will be

checked by Eurostat for confidentiality and quality. Further plans include automatic
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output checking of data to reduce the workload of the statistical institutes. More

technical details on the safe center can be found in Reuter (2010); and Reuter and

Museux (2011). To obtain the data, see Eurostat’s website: http://epp.eurostat.ec.

europa.eu/portal/page/portal/microdata/ses.

Access to Data Through PiEP Lissy: The Pay Inequalities and Economic

Performance Project (PiEP) studied wage differentials based on SES data (Marsden

2010) in depth. SES microdata from the Czech Republic, Hungary, Ireland, Italy,

Latvia, Lithuania, the Netherlands, Norway, Portugal, Slovakia, and Spain can also be

analysed via the PiEP Lissy remote-access system. The user can run Stata code on the

PiEP Lissy server, for example, although some commands (twelve in total) are blocked

by the system to prevent listing of individuals.

Synthetic SES Population Data: A synthetic population is simulated in Templ and

Filzmoser (2014) and a sample of this population is included in the R-package laeken

(Alfons and Templ 2013).

The LEED Project: Within the EU project on Linked Employer-Employee Data

(LEED), studies assessing the potential of linked employer-employee and panel data

sets for the analysis of European labour-market policy are carried out. They concentrate

on SES data and use the PiEP Lissy remote access system to gain access to the data of

twelve different countries, see http://cep.lse.ac.uk/leed/.

The Dynamic Wage Network: The dynamic wage network was founded by the

European Central Bank and it consists of four research groups. The microdata group

pursues three directions of research one of which is on wage differentials and modelling

of earnings. The SES data is one of the main data sources for this group, used by many

authors (see, e.g., Caju et al. 2010, 2009a,b; Messina et al. 2010; Dybczak and Galuscak

2010; Simón 2010; Pointner and Stiglbauer 2010).

4. Important Indicators Estimated from SES Data

4.1. Research Potential of SES Microdata

Statistical agencies usually provides, amongst other things, tables on average hourly

earnings on domain level (Geissberger 2009), for country comparisons (see, e.g., Mittag

2005) and for special groups like low incomes (Geissberger and Knittler 2010; Casali and

Alvarez 2010).

SES data includes information on enterprise and employment level. Generally such

linked employer-employee data are used to identify determinants/differentials of earnings,

some indicators are also directly derived from hourly earnings, such as the gender pay gap

or the Gini index (Gini 1912). The most classical example is the income inequality

between genders as discussed in for example, Groshen (1991).

A correct identification of factors influencing earnings could lead to relevant evidence-

based policy decisions. Research studies are usually focused on examining the

determinants of disparities in earnings. Earnings comparisons between different industries

or regions are frequently performed (see, e.g., Stephan and Gerlach 2005; Caju et al. 2010,

2009b,a; Messina et al. 2010; Dybczak and Galuscak 2010; Simón 2010; Pointner and

Stiglbauer 2010). Sometimes socioeducational factors are investigated as possible
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explanatory variables of income, for example in Bowles et al. (2001). The overview of the

analyses performed using SES data highlighted that, generally, the log hourly earnings are

modelled. The explanatory variables correspond to employer activity (related to the

enterprise), his or her experience (education, length of stay in service, qualification, etc.)

and working hours. It was also observed that linear models are extensively used. ANOVA

analysis, linear mixed-effects models, and multi-level models are other examples of

statistical tools that have been applied. However, a lot of similar models are applied in the

literature to model the log hourly earnings.

It should also be noted that the distribution of errors is always assumed to be normal.

The estimates are generally computed by means of ordinary least squares by ignoring the

sampling design and corresponding weights which is not good practice.

4.2. Summary of the Most Important Analyses from SES Data

In summary, the most important analyses using SES data are related to

Gender pay/wage gap: The gender wage gap is currently one of the most important

indicators obtained from SES in many European countries (Research Center for

Education and the Labour Market at the Maastricht University 2009) and intensively

discussed in the European Union (Dupré 2010). In Austria, for example, many

publications about the gender wage gap are published by Statistics Austria and the

national authorities (Stockinger 2010). The topic Women and Equality is of central

interest not only for the Federal Minister for Women and the Civil Service, and

socioeconomic studies are carried out with support from the state (one example is

Geissberger 2010) or European institutions where regression models are also applied to

estimate the adjusted gender pay gap (Research Center for Education and the Labour

Market at the Maastricht University 2009).

Wage differentials and interindustry wage differentials: Differences in earnings for

workers employed in different industries and occupations has long been recognised as

an important issue for the labour market and several studies have been carried out (Caju

et al. 2010, 2009a,b; Messina et al. 2010; Dybczak and Galuscak 2010; Simón 2010;

Pointner and Stiglbauer 2010). Pointner and Stiglbauer (2010) use several workplace-

specific dummy variables for the employee’s occupation (ISCO 1) within the firm, the

sector (NACE-2 digits) of the employer, for firm size and location (NUTS-1 digits), and

a control for private ownership of the firm as predictors. Caju et al. (2010, 2009b)

modelled the gross hourly wages with sex, education, age class, number of years of

employment, type of employment contract, part/full-time, bonus for shift work, night

and/or weekend work, a dummy for paid overtime and occupation sector effect. Messina

et al. (2010) used a model to predict the log hourly wages with firm size, firm size

squared, age class, female employment proportion and proportion of high- and low-

skilled workers as predictors. Caju et al. (2009a) used age, capital-labour ratio, profit

elasticity and the percentage of blue-collar workers covered by single-employer

collective agreements to model the log hourly earnings.

Low-pay dynamics: In some countries, great changes in the distribution of earnings are

observed (see, e.g., Dell’Aringa et al. 2000; Geissberger 2009) with a widening of
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inequality and an increase in dispersion. The Gini index and the quintile share ratio are

two of the main indicators to estimate the inequality (Graf et al. 2011; Kolb et al. 2011).

Enterprise characteristics that affect earnings or profit: The differential that

describes the profit of an enterprise is an interesting aspect, that is how enterprises

integrate a combination of systems to provide greater flexibility in pay, and how

information sharing and the size of the enterprise influences the profitability of an

enterprise. On the other hand, it is of interest to investigate the prediction of pay

flexibility using the size of the enterprise, level of competition, training, job rotation,

time flexibility, and so on (see, e.g., Marsden 2010).

Collective bargaining: Due to the unions importance in determining wages, to measure

the extent of the union-nonunion wage gap is of interest (for an example from the US,

see Edwards 2010; also see Fitzenberger et al. 2006).

Average Earnings: Average earnings in enterprises as an indicator for productivity or

performance (Winter-Ebmer and Zweimüller 1999; Marsden 2010). The idea is that in a

competitive market environment, employees’ pay corresponds to the value of their

output, that is deviations from this position would lead to difficulties in recruitment and

retention. In branches with high output, earnings would therefore be higher compared to

enterprises in low economic branches with low production.

Occupation and length of employment: Another interesting analysis includes the

difference in income for different occupation levels or by the length of employment.

Comparative studies between countries play an increasingly important role. However, our

purpose is to study how estimates of a defined set of indicators from protected microdata

perform compared to estimates based on the original, unmodified data. Therefore, such

comparative studies are not directly within the scope of this work, since good estimates on

a country level should ensure that comparisons between countries are possible.

5. Two Indicators and One Model for Quality

In the following, three measures that we have identified as the most important and have

selected as quality indicators are described in full detail. Note that in a real-life setting, one

would include any number of measures deemed important enough and not just the three we

have chosen. However, in order to avoid this article becoming overly long, we limit the

investigation to only these three quality statistics.

First, the (unadjusted) gender pay gap (GPG) is described, since it is one of the most

important indicators obtained from SES data; thereafter the Gini index is described. The

GPG and the Gini index (for hourly earnings) are extremely sensitive to changes in the

upper and lower tail of the distribution (see e.g., Alfons et al. 2013). If these estimators are

not affected by anonymisation, one can be quite sure that the corresponding variables have

high data utility, since it is most difficult to preserve the structure of the data in the upper

tail of the distribution.

Lastly, a model-based estimation on employment level is described, representative for

all model-based estimations. Note that our choice of indicators and model is subjective;

even so, the choice is based on our review of dozens of contributions (see Subsection 4.1).

However, it can be expected that differences in estimations between anonymised and

original data according to this model will be comparable in similar models.
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5.1. The Gender Pay Gap

As already noted, the GPG is probably the most important indicator derived from the SES

data.

The calculation of the GPG is based on each person’s hourly earnings. The hourly

earnings equals to the gross monthly earnings from labour divided by the number of hours

usually worked per week during 4,33 weeks, (see EU-SILC 2009; Beblot et al. 2003).

5.1.1. Definition Gender Pay Gap

The GPG in unadjusted form is defined on population level as the difference between

average gross earnings of male paid employees and of female paid employees divided by

the earnings of male paid employees (EU-SILC 2009).

5.1.2. Estimation of the Gender Pay Gap

Since the GPG is usually estimated by survey information, the estimation has to consider

sampling weights in order to ensure sample representativity. Therefore, all our estimations

consider sampling weights.

We let x: ¼ (x1, : : : , xn)0 denote the hourly earnings where x1 # : : : # xn and

w: ¼ (wi, : : : ,wn)0 denote the corresponding personal sample weights, where n denotes the

number of observations.

We define the index set

J ðMÞ :¼ {j [ {1; : : : ; n} jworked as least 1 hour per week ^ ð16 # age # 65Þ

^ person is male};

and let J (F) be the corresponding index set for female employees.

With these index sets, the GPG in its unadjusted form is estimated by

GPGðmeanÞ ¼

X
i[J ðMÞ wixi

X
i[J ðMÞ wi

2

X
i[J ðFÞ wixi

X
i[J ðFÞ wi

X
i[J ðMÞ wixi

X
i[J ðMÞ wi

: ð1Þ

The definition from EU-SILC (2009) differs from the definition used by the Bureau of

Labour Statistics of the United States (see, e.g., Weinberg 2007), where weighted medians

are used instead of arithmetic means.

The GPG is usually estimated at domain level such as economic branch, education and

age groups (Geissberger 2009).

In addition, it is important to estimate the variances of the estimations.

5.2. The Gini Index for the Estimation of Inequality

The Gini index (Gini 1912) is a well-known measures of inequality of a distribution and is

widely applied in many fields of research.
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The Gini index according to EU-SILC (2004, 2009) is estimated by

Ĝini :¼ 100
2
Xn

i¼1
wixi

Xi

j¼1
wj

� �
2
Xn

i¼1
w2

i xi

Xn

i¼1
wi

� �Xn

i¼1
ðwixiÞ

2 1

2

4

3

5: ð2Þ

The Gini index is closely related to the Lorenz curve (Lorenz 1905), which plots the

cumulative proportion of the total income against the corresponding proportion of the

population.

The Gini index and the GPG are typically – among other domains – estimated with

breakdowns by age and gender, or age, gender, and region, or by education level.

The latter domain is used in the following.

5.3. Model-Based Predictions on Employment Level

As representative of all model-based estimations at employment level, we choose a model

described in Marsden (2010) applied within the PiEP Lissy project and also used in

Dybczak and Galuscak (2010). They fit OLS regression models where they modelled the

gross hourly earnings of workers in enterprises using age, age2, sex, education, and

occupation as predictors.

The data from the Lissy system is also used for the LEED project (see Subsection 3.3)

where similar studies and modelling have been carried out (see, e.g., Simón 2010). Similar

models are also fitted within the wage dynamics network of the European Central Bank

(Caju et al. 2010; Pointner and Stiglbauer 2010).

In the following estimations, the following model is used:

logðhourly earningsÞ , sex ð2Þ þ age ð6Þ þ education ð6Þ þ occupation ð23Þ

þ location ð5Þ þ economic activity ð12Þ þ error term

The numbers in brackets correspond to the respective number of categories for each of the

categorical variables in the original SES data.

It seems that the sampling weights are mostly ignored in the literature on fitting models

to SES data. However, in our study the weights are taken into account by using weighted

least squares regression.

5.4. Variance Estimation

A calibrated bootstrap to estimate the variances (Bruch et al. 2011; Templ and Alfons

2011) for the GPG and the Gini index is applied.

Let X denote a survey sample with n observations and p variables. Then the calibrated

bootstrap algorithm for estimating the variance and confidence interval of an indicator can

be summarised as follows:

1. Draw R independent bootstrap samples X
*

1; : : : ;X
*

R from X.
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2. Calibrate the sample weights for each bootstrap sample X
*

r , r ¼ 1, : : : ,R.

Generalised procedures are then used for calibration: a multiplicative method

known as raking, an additive method or a logit method (see Deville and Särndal

1992; Deville et al. 1993).

3. Compute the bootstrap replicate estimates û
*

r :¼ û X
*

r

� �
for each bootstrap sample X

*

r ,

r ¼ 1, : : : ,R, where û denotes an estimator for a certain indicator of interest. The

sample weights need to be considered in the computation of the bootstrap replicate

estimates.

4. Estimate the variance V(û) by the variance of the R bootstrap replicate estimates:

V̂ðûÞ :¼
1

R 2 1

XR

r¼1

û
*

r 2
1

R

XR

s¼1

û
*

s

 !2

ð3Þ

5. Estimate the confidence interval at confidence level 1 2 a by the percentile method:

û
*

ðRþ1Þa
2ð Þ; û

*

ðRþ1Þ 12a
2ð Þð Þ

h i
, as suggested by Efron and Tibshirani (1993), where û

*

ð1Þ #

: : : # û
*

ðRÞ denote the order statistics of the bootstrap replicate estimates.

6. Confidentiality Issues and Perturbation of SES

6.1. Disclosure Scenario

In principle, two reidentification scenarios are related to the SES data. The

identification of an enterprise may lead to information about their employees. Key

variables at enterprise level might be location (3), NACE one-digit level codes

(economic activity) (12), size of the enterprise (5), and distinction between public or

private enterprises (2); the bracketed numbers are the respective number of categories.

However, here we only focus on reidentification scenarios on employment level since

the fraction of employees asked in each company, is rather high (lower for large

enterprises, larger to all employees in smaller companies). Furthermore, to limit the

scope of the paper, more serious disclosure situations on employment level will not

be considered.

Categorical key variables at employment level might be location (3), age class (6),

education (7), economic activity (12), and size (5). This leads to 7,560 strata. Of course, the

choice of key variables for disclosure scenarios is a somewhat subjective decision and

might vary across countries. For example, Ichim and Franconi (2007) proposed to use only

location, economic activity, size and age class as categorical key variables. Continuous

key variables at employment level might be the hourly earnings and overtime earnings.

This choice of scenario is also a subjective decision.

Remark: Anonymised SES 2002 and 2006 data from 23 countries can be accessed for

research purposes through the safe center at the premises of Eurostat. Anonymisation is

done by recoding NACE, NUTS, and size, removing citizenship and building six age

classes, microaggregation (individual ranking) for absence days and earnings and

removing the sampling weights.
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6.2. Anonymisation of SES

Various methods exists to anonymise microdata (see, e.g., Hundepool et al. 2012; Templ

and Meindl 2010). Two possibilities (amongst others) for anonymisation are the

following:

a) To provide k-anonymity (Sweeney 2002) for categorical key variables (for

enterprises, for employees), and to apply microaggregation or adding (correlated) noise

(Brand 2004) for continuous key variables.

b) Synthetic data generation of all variables (Alfons et al. 2011; Templ and Filzmoser

2014), that is, simulation of all variables by drawing from predictive distributions. Note

that by simulating only a part of variables (e.g., gross earnings) and leaving other

variables (such as the categorical variables) unchanged, intruders might be able to

identify persons based on the unchanged variables and this might not be in scope with

specific legislations on data privacy.

Fixed rules to protect the microdata may not always be accepted by all data providers (e.g.,

member states of EU); some freedom to choose protection methods must be given.

However, some minimal quality requirements must be fulfilled by the applied protection

methods (Ichim and Franconi 2010).

We do not go into detail about the anonymisation methods per se since the main focus of

this paper is on evaluating the data utility of anonymised data.

Nevertheless, three possible perturbations to make the data confidential are outlined and

applied. First, variables size, age, sex, location, education and economic activity are

selected as categorical key variables and hourly earnings and overtime earnings as

continuous key variables. Then the following anonymisation procedures are applied (note

that this choice of anonymisation methods is subjective and many other disclosure

scenarios and perturbation methods can be applied):

1. Recoding from 53 categories to twelve categories for the variable economic activity:

local suppression to achieve three-anonymity (optimal local suppression following

Templ et al. 2015); microaggregation (individual ranking method for fast

computations) applied on each strata defined by economic activity of hourly

earnings and overtime earnings with aggregation level 4.

2. Same recoding and local suppression as in 1: adding correlated noise (Brand 2004) to

hourly earnings and overtime earnings with noise parameter 150 (for details, see

Templ et al. 2015).

3. Swapping location and economic activity using the (invariant) postrandomization

method (PRAM, see Gouweleeuw et al. 1998) with default parameters (see Templ

et al. 2013); microaggregation as in 1.

4. Experimentally, shuffling (Muralidhar and Sarathy 2006) with a rather small model

is applied (earnings hour þ earnings overtime , sex þ age þ education); the

anonymisation of categorical key variables are done as in 1 (and 2).

The amount of local suppression (to achieve three-anonymity) for Procedures 1, 2 and 4 is

0.001% (one value out of 199,909) for size, 0.115% (230 values) for economic activity and

0.005% (nine values) for age.
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For the application of PRAM in Procedure 3, 18,151 values changed their category in

location and 18,867 values in economic activity.

7. Results

The utility measures chosen – based on the quality indicators that have been defined in

Section 5 – are the following:

. The difference in the estimation of the GPG and the Gini from the original and

perturbed data defined for h domains given by the (well-known) absolute relative bias:

arb ¼
1

h

Xh

i¼1

ûi 2 ~ui

�
�

�
�

ûi

; ð4Þ

. where û and ũ denote the estimates from the original and the anonymised data set

respectively. Note that the û have to be nonzero, which is practically always the case.

. The variances are estimated and the overlap of the confidence interval of the

perturbed and original data is evaluated and reported as percentages.

. The model defined in Subsection 5.3 is fitted using weighted least squares regression

on original and perturbed data. To stay comparable, the categories of economic

activitiy are equal, that is, the NACE one-digit level is chosen.

7.1. Absolute Relative Bias

Table 1 shows the absolute relative bias (arb) for the GPG and the Gini index; both the

overall estimate and the mean over the domains is shown. Here, the domain education and

age is chosen for the GPG and for the Gini index, the domain (sex £ age class) is used

since this is reported to be one of the most interesting domains (see, e.g., Geissberger 2009,

EU-SILC 2009 and Section 5).

The global measure of individual risk and the expected number of reidentifications are

reported in the last two columns of Table 1. Note that the sum over individual risks gives

the number of expected reidentifications. The number of reidentifications is not high in the

original data set (2,024 of 199,909 observations) and it is reduced by applying the

Table 2. Lower (l) and upper (u) limits of the confidence intervals for the GPG for each category of education

Data ISCED 0–1 ISCED 2 ISCED 3–4 ISCED 5A ISCED 5B

original (l) 0.15938 0.12102 0.22572 0.29568 0.21744
original (u) 0.26525 0.15023 0.23944 0.35010 0.25835
rec þ ls þ ma (l) 0.16123 0.12144 0.22624 0.28891 0.21290
rec þ ls þ ma (u) 0.27062 0.15211 0.23970 0.34381 0.25904
rec þ ls þ noise (l) 0.17012 0.12106 0.22399 0.29135 0.21152
rec þ ls þ noise (u) 0.27011 0.15172 0.23776 0.34551 0.25805
pram þ ma (l) 0.17682 0.12200 0.22554 0.29064 0.21946
pram þ ma (u) 0.27230 0.15065 0.24197 0.33822 0.26172
rec þ ls þ shuffle (l) 20.01865 0.09365 0.18510 0.19294 0.19859
rec þ ls þ shuffle (u) 0.24584 0.12496 0.20950 0.25071 0.26183
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anonymisation methods. For those anonymisation methods that use (optimal) local

suppression, three-anonymity is achieved. 4,414 observations violate three-anonymity in

the original data set. The PRAM method performs best in terms of data utility since none

of the variables that are used in these estimations are altered. The second best is recoding

þ local suppression þ microaggregation. Recoding þ local suppression þ shuffling

performs worst. The reasons for this could be that continuous variables are shuffled and

also shuffled between gender, which is the most important variable when estimating the

GPG and that the prediction quality of the model used for the shuffling procedure is low.

In general, recoding þ local suppression þ microaggregation and pram þ

microaggregation reports very low bias and clearly outperform shuffling and adding noise.

7.2. Overlap of Confidence Intervals

As an example, the upper and lower confidence intervals for the GPG in the domain

education are given in Table 2. It is easy to see that the length of the confidence intervals is

shorter for category ISCED 3-4 and largest for ISCED 0-1.

Again, the shuffling method does not seem to be able to give approximately the same

confidence intervals.

A clearer picture is supported by Table 3, where the overlap of the confidence intervals

for the GPG – estimated from the perturbed and the original data – is reported.

The coverage rates are relatively high for all methods except recoding þ local

suppression þ shuffling. Differences in some categories are visible when comparing the

other methods, whereas no clear ranking of them in terms of quality can be made.

The coverage rates for the gender pay gap in domain age (Table 4) are similar. Mostly

the recoding þ local suppression þ microaggregation methods performs slightly better

than recoding þ local suppression þ adding noise and pram þ microaggregation.

However, a completely different picture is seen for the absolute relative bias of the Gini

index in Table 5. Recodingþ local suppressionþ microaggregation outperforms all other

Table 3. Coverage rates for confidence intervals of the gender pay gap in each educational sector between the

original and perturbed data

Data
ISCED
0 and 1 ISCED 2

ISCED
3 and 4 ISCED 5A ISCED 5B

rec þ ls þ ma 98.25 98.55 96.21 88.45 88.65
rec þ ls þ noise 89.85 99.86 87.81 91.58 99.26
pram þ ma 83.52 96.63 83.45 78.18 95.08
rec þ ls þ shuffle 81.67 13.51 0.00 0.00 64.67

Table 4. Coverage rates for confidence intervals of the GPG in each age class between the original and

perturbed data

Data (0,19) (19,29) (29,39) (39,49) (49,59) (59,120)

rec þ ls þ ma 98.81 76.40 99.28 82.41 95.82 91.45
rec þ ls þ noise 94.90 80.27 94.31 89.60 89.70 96.76
pram þ ma 84.26 88.92 95.02 88.55 92.58 86.94
rec þ ls þ shuffle 0.00 32.75 0.00 0.00 0.00 0.00
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methods. PRAM þ microaggregation also gives acceptable results but recoding þ local

suppression þ adding noise gives low coverage rates for age classes below 29 years.

Shuffling results in the estimates with the highest bias.

7.3. Differences in Regression Coefficients

As already mentioned, to compare the regression coefficients of original and anonymised

data sets, the same categories in the explanatory variables of the model must be present.

Thus the recoded twelve categories of economic activity are used also for the original data

set, keeping in mind that this means a certain kind of information loss.

In Table 6 the regression coefficients for the original and the anonymised data sets are

shown.

The regression coefficients and their confidence intervals are visualised in Figure 1,

whereas the original estimates (in black) are compared with the estimates from

anonymised data (in grey).
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Fig. 1. Confidence intervals for the regression coefficients for the original data (black lines) and the perturbed

data (grey dotted lines).
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Recoding þ local suppression þ microaggregation again performs best and the

confidence intervals obtained from the anonymised data almost always cover the

confidence intervals obtained from the original data completely. Almost as good is the

quality of data anonymised by recoding þ local suppression þ adding correlated noise.

The results from invariant pram þ microaggregation are good for all coefficients except

those related to economic activity. This is not surprising, since this variable was one of the

variables which was changed using PRAM. Some few coefficients are well preserved from

the recoding þ local suppression þ shuffling anonymised data, but others are not. The

reason is that even if the distribution of the continuous shuffled variables is well preserved,

the relation to other variables that are not included in the shuffling model might be not

preserved. A better model would probably lead to better results.

8. Conclusions

This article focuses upon the use of the most important measures of a particular survey as

quality indicators of utility to evaluate anonymised data sets.

As a case study, the use of the Structure of Earnings Survey is analysed in detail in order

to identify the most important variables, indicators and models applied to this data set.

Based on the knowledge gained, the most important indicators are selected and the data

utility of the anonymised data is evaluated; the disclosure risk is briefly reported. The

evaluation is done on point and variance estimates from the selected indicators as well as

on inferences on regression coefficients of a selected model. The evaluation of the

regression coefficients in particular shows various problems with data utility. Thus such a

comparison of model estimates should always be focused upon especially because a

model reflects the multiple relationships between variables. Out of hundreds of different

possible models, those models that are most often applied in practice should be chosen and

an analysis of the literature is therefore necessary. The aim is to preserve the estimates

from the most-used indicators and models and those anonymisations should be chosen that

achieve both the minimum requirements in terms of disclosure risk and high precision on

the chosen quality indicators.

The aim of this investigation was not to find the best anonymisation procedure from a

risk perspective, but how to evaluate data utility. Nevertheless, four different possible

anonymisations were applied and evaluated. The best results are obtained by the

anonymisation: recoding þ local suppression to achieve three-anonymity þ

microaggregation in each stratum defined by economic activity. For the invariant pram

method, some problems become visible for those variables that have been ‘pramed’. The

shuffling method did not perform well, but this may depend on the shuffling model used

(in our study several models were tested and the best was chosen); good results on other

data sets may perform better as the method seems very promising (see, e.g., Muralidhar

and Sarathy 2006).

This case study is only focused on one particular survey, the Structural Earnings

Statistics survey, but we have demonstrated a general concept of how to identify the most

important indicators and models and how to evaluate the quality of the protected data

based on estimates of these indicators. Although this key idea is not new in priciple, it is

demonstrated practically in a large case study in a larger setting.
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The used (and other) indicators have been implemented in the R package laeken

(Alfons and Templ 2013), which makes the application of the methods to complex data,

such as the SES, easy.
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B-Graph Sampling to Estimate the Size of a Hidden
Population

Marinus Spreen1 and Stefan Bogaerts2

Link-tracing designs are often used to estimate the size of hidden populations by utilizing the
relational links between their members. A major problem in studies of hidden populations is
the lack of a convenient sampling frame. The most frequently applied design in studies of
hidden populations is respondent-driven sampling in which no sampling frame is used.
However, in some studies multiple but incomplete sampling frames are available. In this
article, we introduce the B-graph design that can be used in such situations. In this design, all
available incomplete sampling frames are joined and turned into one sampling frame, from
which a random sample is drawn and selected respondents are asked to mention their contacts.
By considering the population as a bipartite graph of a two-mode network (those from the
sampling frame and those who are not on the frame), the number of respondents who are
directly linked to the sampling frame members can be estimated using Chao’s and
Zelterman’s estimators for sparse data. The B-graph sampling design is illustrated using the
data of a social network study from Utrecht, the Netherlands.

Key words: Network sampling; capture recapture; hidden populations.

1. Introduction

Estimating the sizes of hidden populations is important in the field of official statistics in

order to provide local or national institutions with insights into the nature and extent of a

social problem. Hidden populations are characterized by the lack of well-defined complete

sampling frames due to the privacy-threatening nature of the variable that defines the study

population (Spreen 1992; Heckathorn 1997). Privacy-threatening traits are often illegal

activities and/or activities that are not socially accepted. Examples of illegal activities are

drug trafficking, human trafficking, sexual abuse, child abuse, domestic violence, terrorist

activities, criminal acts, and so on (e.g., Brugal et al. 1999; Holland et al. 2006; Surjadi

et al. 2010; Kunst et al. 2010; Palusci et al. 2010). Depending on the culture and/or legal

system of a nation, privacy-threatening traits can also be activities that are not socially

accepted, like drug use, selling sex, buying sex, undeclared work, or tax evasion (Bogaerts

and Daalder 2011). Requesting privacy-threatening information from members of hidden

populations will lead to high rates of uncooperative individuals or unreliable answers

(Heckathorn 1997). Two different data collection procedures can be distinguished for

estimating the size of a hidden population. In capture-recapture procedures, official
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registration sources are used as sampling frames to estimate hidden population sizes. In

link-tracing or network sample procedures, social links between hidden population

members are used as sampling frames for estimation purposes. The difference between

these two procedures lies in the way data are collected. In capture-recapture procedures,

hidden population members themselves are not sampled and interviewed, only registered.

In link-tracing procedures, hidden population members are sampled and interviewed about

their social links with other members of that hidden population.

In this article, a practical sampling design called the B-graph sampling design is

introduced and illustrated. This design has been elaborated for research contexts in which

one or multiple registration sources are available but each source on its own is considered

too small to produce valid capture-recapture estimations. However, if pooling all available

registration sources results in a substantial coverage of the unknown population according

to local experts, this pooled source can be considered a plausible sampling frame to start a

link-tracing data collection procedure. For example, all neighbourhood youth workers in a

city agree that the number of names on the pooled list cover a substantial part of the total

unknown population. For estimation purposes, the population of interest can be divided

into two subpopulations, namely registered and unregistered persons. Drawing a

probability sample from the (pooled) registered part of the hidden population and

employing a link-tracing procedure by asking each sampled person to disclose his contacts

with other hidden population members, the size of the unregistered subpopulation directly

linked to registered persons can be estimated. Furthermore, if the assumption that each

unregistered person of the study population has at least one direct link to a registered

person is held to be plausible, each unregistered person has a positive probability of being

included in the link-tracing sample. Thus the resulting estimate gives an indication of the

total population size. The estimation problem of the number of persons directly linked to a

known subset of persons is of interest in a variety of (forensic) social network studies. For

instance, if the known set of persons is hooligans or gang members, the number of directly

related unregistered hooligans or gang members can be estimated. If the known subset of

persons is arrested problem youths in some city, their number of contacts with other youths

may provide valuable information about the size of the problem.

In this article, we discuss three capture-recapture estimators by considering the hidden

population as a bipartite graph of a two-mode network (registered and unregistered

persons); for example, we focus on the social links between the two subpopulations. This

approach is illustrated by data obtained from a social network study conducted among the

population of opiate users in the city of Utrecht, the Netherlands (Ten Den et al. 1995). In

the original study, three sampling procedures were applied: a random sample from the files

of three drug-assistance organisations, a convenience fieldwork sample and a snowball

sample to find unregistered opiate users. To illustrate the B-graph design, the three client

lists are pooled into one sampling frame (excluding the respondents from the convenience

and snowball sample), from which a random sample is drawn and a link-tracing procedure

applied to sample unregistered opiate users. The statistical problem is to estimate the

number of unregistered opiate users directly related to the clients of the aid agencies.

The outline of the article is as follows. In Section 2, a brief review of capture-recapture

techniques for hidden population size estimation using administrative sources and

estimation techniques for research contexts in which sampling frames are lacking is given.
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Section 3 introduces the proposed B-graph sampling design. Because newly mentioned

users will be rather sparse in most contexts, we focus on size estimators based on multiple-

capture techniques for sparse data in Section 4 (Chao 1987; 1988; 1989; Zelterman 1988;

Böhning 2010). Finally, Section 5 is concerned with the illustration, and the article ends

with some concluding remarks.

2. Review of Literature on Estimating Hidden Populations

According to Böhning and van der Heijden (2009), capture-recapture methods are

conventionally used to estimate the size of a hidden population when only (multiple)

registration sources are available. In particular, the so-called Petersen-Lincoln (PL)

estimator has been widely applied in animal studies, but nowadays this estimation

technique is also employed in social studies where two registration sources are available

(McCullough and Hirth 1998; Chao et al. 2008). The PL estimator is based on the number

of n1 units captured in Source 1, the number of n2 units captured in Source 2, and the

number of m2 units captured in both sources. By assuming that the two sources are

independent of each other, the units not captured in one of the sources can be estimated

because the odds ratio is close to unity (Brittain and Böhning 2009).

N̂PL ¼
n1n2

m2

ð1Þ

The standard procedure for estimating the size of an animal population in a two-sample

capture-recapture study is to capture a first sample, mark the captured animals and release

them. Subsequently, a second sample is captured, and the number of animals captured in

the first, the second and both samples is used to estimate the size of the population with the

PL estimator (1). The standard procedure for estimating the size of a human population

where two registration sources are available mirrors the animal population procedure by

considering persons on the lists to be “marked”. Like the trapping samples in animal

studies, the number of persons on the first, the second, and both lists are used to employ

the PL estimator (1). Examples of registration sources are hospitals, treatment centres,

pharmacies, police registers, birth registers, and so on. The assumptions for producing

valid estimates by capture-recapture methods are more or less identical in animal and in

human population studies. According to Chao (2001), the validity of a capture-recapture

estimator for animal populations depends on:

1. Demographic closure assumption: there is no birth, death, or migration, so that the

population size is stable over trapping times;

2. Equal catchability assumption: all animals have the same capture probability in each

sample, although the probability can be allowed to vary among samples.

To fulfil the first assumption, in animal studies data are collected during a relatively short

time period. The second assumption refers to the independence of the samples.

Dependence between samples can occur through local list dependence and unequal

catchabilities (Chao et al. 2008). Local list dependence occurs whenever captured

animals are easier or more difficult to capture by next samples as a consequence of their
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trapping history. Unequal catchability refers to the process that samples are dependent

because their capture probabilities are heterogeneous (Chao 2001).

To produce valid estimators in human populations, the following assumptions must be

met (Brittain and Böhning 2009):

1. Independence between registration sources or lists,

2. The population must be closed,

3. Independence between individuals.

In most empirical situations, these assumptions are violated. For instance, in drug abuse

studies the registration sources of addiction centres and police registers are often

combined to estimate the size of the number of drug users who are not registered.

However, both data sources may have administration flaws. If arrested drug users are

structurally assigned to certain addiction centres, Assumption 1 is violated. If there is also

a high death or removal rate, Assumption 2 is violated. If certain ethnic groups of drug

users are treated by the same institution, Assumption 3 is violated. There is a growing

amount of literature on how to deal with these types of dependencies (see the special issues

of the Biometric Journal, 2008, volume 50, the AStA Advances in Statistical Analysis,

2009, volume 93 and Journal of Official Statistics, volume 31).

In some empirical research contexts, registration sources are simply lacking or of such

poor quality (for example, incomplete registration systems) that valid capture-recapture

estimation is debatable. In such situations, link-tracing sampling procedures can be

applied (Spreen 1992). Link-tracing designs use existing relational structures within the

study population for sampling purposes. Up-to-date respondent-driven sampling (RDS) is

the link-tracing procedure applied most frequently to estimate hidden populations sizes

when (proper) sampling frames are lacking (Heckathorn 1997; Salganik and Heckathorn

2004; Volz and Heckathorn 2008). In RDS, the hidden trait to be estimated is viewed as a

network phenomenon because it is assumed “that those best able to access members of

hidden populations are their own peers” (Heckathorn 1997, 178). The sampling procedure

starts with the recruitment of individuals (called “seeds”) from the target population. This

recruitment is nonrandom. The recruited individuals are offered dual incentives: they are

financially rewarded for completing the interview and for recruiting other individuals

(typically 3-5 persons) into the study. Subsequently, the newly recruited persons are asked

to become recruiters themselves and are also rewarded financially. To estimate the size ŷ

of a hidden population, Volz and Heckathorn (2008) defined the RDS estimator

(Formula 7, p. 85) as:

ŷ ¼
1

i[S

X 1

di

i[S

X yi

di

; ð2Þ

where S is the set of all sampled persons and di the number of persons mentioned by i

(degree).

The RDS estimator takes account of the network structure within the hidden population

by weighing each interviewed respondent with the number of persons he or she is linked to

in the network. These individual degree weights are assumed to be arbitrary positive
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inclusion probabilities which can be expanded to reach the level of the whole population

(Särndal et al. 1992). According to Volz and Heckathorn (2008), it is usually prudent to

exclude the initial recruits of the sample because they are not randomly found, although

the estimator will be asymptotically unbiased.

Other link-tracing design-based estimators for hidden population sizes are the Frank and

Snijders estimators (1994). Like RDS, their sampling design is based on the assumption

that the population of interest can be viewed as a social network. In their theoretical

(one-wave snowball) design, a random sample of n persons (vertices) is drawn from an

unknown network and the selected persons are asked to mention other persons (their

degree) they know in the network. Frank and Snijders propose the following estimator:

v̂F2S ¼
ðn 2 1ÞT01

T00

þ n; ð3Þ

where n is the size of the initial sample, T00 the number of times initial respondents

mentioned each other, and T01 the number of times newly mentioned fellow hidden

population members are mentioned by initial respondents. Estimator (3) can be understood

in terms of capture-recapture, where capture is interpreted as drawn in the initial sample

and recapture as mentioned by initial respondents. Frank and Snijders (1994) considered

the initial sample to be a Bernoulli sample, which is not feasible in practical research. To

relax this assumption, they recommend using some variant of targeted sampling (Watters

and Biernacki 1989). To approximate a Bernoulli initial sample to a reasonable extent,

Frank and Snijders (1994) recommend using several unrelated sources of well-defined

social meeting places during the sampling phase. There are other examples of link-tracing

designs in literature, such as multiple-wave snowball designs (Goodman 1961; Frank

1979), random-walk designs (Klovdahl 1989), and adaptive sampling designs (Thompson

and Frank 2000), which we will not discuss.

RDS and the Frank-Snijders estimators are both elaborated for situations in which

sampling frames are lacking. For situations in which various scattered sampling frames are

available, B-graph sampling can be used.

3. B-Graph Sampling

Consider a hidden population in some well-defined geographic area for which it is

assumed that its members know each other because of the hidden activity. For instance, a

group of hooligans know each other because they operate as group against other groups of

hooligans, drug users know each other for economic reasons (e.g., procuring drugs,

knowing the market), terrorists know each other for political reasons, homeless people

know each other from the street, and so forth.

Hidden populations are often registered by multiple administrative sources. For

instance, a population of drug users may be registered as clients of a local drug-assistance

institution but also as detainees by the police. In this situation, the Petersen-Lincoln

estimator (1) for two sample closed experiments can be employed using both registration

resources to estimate the number of unregistered drug users. Obviously, the quality of the

estimate is dependent on different issues. For instance, administration flaws may render

the accuracy of the registration systems too questionable to be valid for capture-recapture

Spreen and Bogaerts: Estimating the Size of Hidden Populations 727

Unauthenticated
Download Date | 1/7/16 1:09 PM



estimation. In such situations, one may consider a B-graph sampling procedure. A B-graph

sampling design consists of the following steps. In Step 1, it is decided whether the hidden

activity to be estimated leads to relations and/or administrative records by different

institutions. Step 2 consists of collecting all available administrative records of all relevant

institutions; all collected individual records are turned into one sampling frame and a local

team of fieldworkers evaluate whether the persons on the list cover a substantial part of the

population. Most of the time, local field workers have a good overview of their caseloads

and neighbourhood (Heckathorn 1997). If the constructed sampling frame is considered to

cover a substantial part of the population, the unknown total population can be considered

as a bipartite graph (Figure 1).

For argument’s sake, the four uncoloured vertices represent registered hidden

population members pooled into one sampling frame from different sources, that is,

sampling frame a ¼ {1; 2; 3; 4}. The unknown hidden populations members are coloured

vertices, that is, subset b ¼ {5; 6; 7}. Note that all coloured vertices have at least one link

to an uncoloured vertex, that is, all unregistered hidden population members have a

positive probability of being included in a sample when the registered hidden population

members are asked to give their relations with unregistered hidden network members. In

this article, the problem of estimating the number of unknown hidden population members

(coloured vertices) is considered.

In Step 3 of a B-graph sample, a simple random sample S of s vertices from sampling

frame a is drawn. Each sampled i [ S is asked to mention his or her relations with other

hidden population members according to a predefined inclusion criteria. As a result, a

sample of subset b is observed. Throughout this article, we assume that this observation

is without measurement error (each respondent completely discloses his contacts in the

hidden network). The total number of observed distinct unregistered hidden population

members (coloured vertices) in the final sample is denoted mðSÞ. The number of

unregistered u [ b mentioned exactly t times by the s selected registered hidden

population members is denoted f t, that is,
Ps

t¼1 f t ¼ mðSÞ. As an illustration, consider

Figure 2, in which a sample S of s ¼ 2 uncoloured vertices from a is drawn from the

bipartite graph of Figure 1. The selected uncoloured vertices are vertices 2 and 4.

In Figure 2, the total number of distinct vertices u [ b observed is mðSÞ ¼ 2, that is,

vertices 6 and 7. Vertex 7 is involved two times with a vertex i [ S, while vertex 6 is

involved one time, that is f 2 ¼ 1 and f 1 ¼ 1, respectively. Using this sample information,

multiple capture-recapture estimators for the size of vertex set b can be employed.

1
5

2
6

3

4 7

α β

Fig. 1. Bipartite graph example
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4. Multiple Capture-Recapture Estimators

Data collected from a B-graph sample can be understood as a multiple-capture sample in

which each unregistered hidden population member (coloured vertex) captured via i [ S

is regarded as an independent trapping sample. Using this assumption, multiple-capture

census estimators as discussed in Fienberg (1972), Bishop et al. (1988), and Cormack

(1989; 1992) can be applied. However, the larger a population, the more sparse the total

times unregistered hidden population members of subset b will be captured via registered

members i [ S. Dependent on the sampling design and the assumptions about the

population, various refinements of multiple-capture models have been introduced,

especially for sparsely distributed animal populations. For a general review, we refer the

reader to Seber (1986). The review article of Wilson and Collins (1992) merits special

attention; it discusses the performance of 14 capture-recapture estimators. In this article,

we discuss three capture-recapture estimators whose model assumptions are closely

related to the assumptions of the proposed B-graph design: the moment estimator of Chao

and a modified version of this estimator (Chao 1987; 1988; 1989) and the truncated

Poisson estimator of Zelterman (1988).

Chao (1989) considered estimators for animal population size studies in which capture

frequencies of the animals are low. In this study, we focus on the heterogeneity model-

based estimator proposed by Chao (1989). This estimator has the following assumptions:

1. The animal population is closed, so there are no changes due to birth, death,

emigration or immigration during the sampling period,

2. The probability of capturing an animal is independent of that animal’s previous

history,

3. Different animals are allowed to have different probabilities of capture.

The proposed B-graph design for human populations meets the assumptions of Chao’s

estimator. The ‘closure’ assumption refers to the definition of the inclusion criteria of the

hidden population: who belongs to the population? To produce valid estimations, the

definition of the hidden population must at least be bounded by strict relational, time and

geographic criteria, that is, can you give me your friendly relations with people who have

the same hidden variable in common as you, whom you have met during the last three

months and who live in your town? The second assumption refers to the sampling

procedure of the proposed B-graph design. The probability of an unregistered hidden

1
5

2
6

3

4     7

α β

Fig. 2. Sample of bipartite graph
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population member u [ b being mentioned by a registered hidden population member is

independent of the previous capture history of u [ b. In the B-graph design, a simple

random sample is drawn from the sampling frame. This implies that a multiple capture

of an unregistered hidden population member is independent of the registered persons

by whom he or she is mentioned. In Chao’s terminology, the capture probability of

unregistered u [ b is independent of the sequence of the samples. The third assumption

also applies to the proposed B-graph design. Each unregistered hidden population member

u [ b is assumed to have at least one contact with a registered hidden population member;

this leads to positive inclusion probabilities for all u [ b when drawing a sample from a.

Accordingly, by random sampling from sampling frame a each u [ b has a chance of

being mentioned by an i [ S. However, different vertices have different probabilities of

being mentioned, that is, the higher the degree of u [ b in the total population, the higher

the probability of being mentioned in the final sample.

For situations where s is not too small ð$ 5Þ and most unregistered hidden populations

members are observed only one or two times, the following estimator of Chao (1988) can

be employed:

m̂C ¼ mðSÞ þ
f 2

1

2f 2

� �

: ð4Þ

Chao (1987, 1988) also proposed a biased-corrected version to correct for overestimation

bias:

~mC ¼ mðSÞ þ
f 1ð f 1 2 1Þ

2ð f 2 þ 1Þ

� �

ð5Þ

The computation of the 95-percent confidence intervals of (4) and (5) are found in

Chao (1989).

The idea behind Estimator (4) is that unregistered hidden population members of subset

b with small capture probabilities (they have few relations in the network with members

that are registered) are likely to be not mentioned (frequency class f 0) or only mentioned

very few times by i [ S. This emphasis on the lower frequency classes makes Estimator

(4) robust in the presence of heterogeneity. The influence of unregistered hidden

population members mentioned very often is weighted down so that the presence of

heterogeneity exercises a small influence on the estimate (Smit et al. 1997).

Based on the intuitive notion that ‘individuals never seen are more similar to those

rarely seen than those captured many times’, Zelterman (1988, 227) formulated,

independently of Chao, an estimator for the relative frequency of the unobservable zero

class in a truncated Poisson distribution, that is,

m̂Z ¼
mðSÞ

1 2 Q1

ð6Þ

where Q1 ¼ exp ½22f 2=f 1�.

The 95-percent confidence interval is given in Zelterman (1988).

Estimators (4) and (6) will produce about the same estimates, because both assume that

the observed series of frequencies follows a Poisson distribution which is truncated below

one (Smit et al. 1997). In a simulation study by Böhning (2010), in which the performance
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of Chao’s estimator was compared with Zelterman’s estimator, the author showed that the

estimators are close if the ratio f2/f1 is small. He also showed that the biased-corrected

estimator (5) of Chao performs best for small samples and small amounts of heterogeneity.

5. Illustration

To illustrate the B-graph sampling design, data from a social network study of the opiate-

using population in the city of Utrecht, the Netherlands (Ten Den et al. 1995; Jansson and

Spreen 1998) are used for secondary analyses. Utrecht is one of the largest cities (about

320,000 inhabitants) in the Netherlands and is geographically located in the middle of the

country. At the time of the study, the opiate-using population in Utrecht caused a lot of

nuisance for the general public, but there was also concern about specific health issues

such as the relation between injecting drugs and contagious hepatitis, HIV, and sexually

transmitted diseases. The goal of the study was to gain an insight into the nature of opiate

use, such as types of users injecting drugs, lifestyles of opiate users, and so on. Another

goal of this study was to gain insight in the total number of opiate users in Utrecht.

Therefore several estimation techniques were used.

In Utrecht, local authorities managed several drug-assistance institutions that kept

registration files of their clients, but worked more or less independently of each other. In

the original study, the resulting sample of 101 opiate users was gathered by a random

sample of 51 users from the registers of three drug-assistance organisations, by a

convenience field work sample in which 37 users were found, and by a snowball sample in

which 13 users were found via other users. Each interviewed opiate user was asked to

mention other opiate users in Utrecht. Due to privacy reasons and to prevent a high rate of

nonresponse, each opiate user was asked to give the first two letters of his or her first and

family name, nickname, age, neighbourhood, and whether he or she was known as a client

of the drug assistance by his or her fellow drug users. The identification of the respondents

was done by a team of experienced field workers. Based on this sample, several estimation

techniques were applied to estimate the prevalence of opiate users in Utrecht. It was

possible to compute a Peterson-Lincoln estimate by using the registration files of the

police and the largest drug-assistance organisation in Utrecht. The Petersen-Lincoln

estimate was about 1,100 users. Furthermore, two extrapolation estimators (Smit et al.

1996) based on the registers of the largest drug-assistance organisation and the police were

computed. Based on the first source, the estimate for the total population was about 1,000

users; for the second source (police data), the estimate was about 900 users. Finally, 69

users (51 of the random sample and 18 of the users found during field work) were

evaluated as collected independently of each other, and served as the initial “random”

sample for the Frank-Snijders estimators. Two network estimators of Frank and Snijders

(1994) were reported (without standard errors) and resulted in estimates of 759 and 936

users. Finally, the researchers combined all different estimators and decided that the most

likely estimate for the population size of the Utrecht opiate users population was about 950

users (Ten Den et al. 1995). The final report of Ten Den et al. (1995) did not provide the

confidence intervals of the estimates.

To illustrate the B-graph sampling design, we were able to use the random sample of

size 44 from the largest drug-assistance organisation. We call this the Regular Drug
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Assistance (RDA). Note that our purpose is to estimate the number of opiate users who are

not clients of the RDA but directly related to a user who is a client. In other words: how

many opiate users in Utrecht are not known to the RDA but could be contacted via the

RDA’s clients? This is important information for the effectiveness of all kinds of health

measures.

In Utrecht at the time of the study, 427 drug abusers were recorded as clients of the

RDA, that is, a ¼ {1; 2 : : : ; 427}. A simple random sample without replacement S of size

s ¼ 44 was drawn and each i [ S was asked to mention his/her contacts with other opiate

users. This way, a respondent could mention not only other opiate users already registered

by the RDA but also opiate users who were not registered on the RDA list. For each

mentioned opiate user, the respondent gave individual and identifying characteristics.

The criteria for opiate users to be included in the sample were:

1. the mentioned opiate user is a resident of the city of Utrecht or resides in Utrecht at

least (at a minimum of) four days a week;

2. the mentioned opiate user has used opiates a minimum of 25 times in the past six

months;

3. the respondent and the mentioned opiate user must know each other by first and

family name.

Of the 44 selected clients, six refused to provide information about their opiate-using

contacts. The remaining 38 clients mentioned 98 other opiate users who were not on the

RDA list, that is, mðSÞ ¼ 98. The 38 respondents reported 107 relations with the 98

mentioned opiate users. As a result, the observed frequency distribution of the sampled

B-graph was rather sparse (see Table 1).

In Table 2 the three multiple-capture estimates and their 95-percent confidence intervals

are given.

As expected, the estimates of the Chao and Zelterman estimator are close to each other,

538 and 535 respectively, because the ratio f 2=f 1 is rather small. Taking into account the

95-percent confidence intervals of the model-based estimators, we observe some

differences. The underlying assumptions of the Chao and Zelterman estimators applied to

this specific study can be regarded as plausible. The population can be considered closed,

because respondents report only other opiate users whom they know by name and live in

Utrecht and the practical sample was done in a time frame of three months. The number to

be estimated can be understood as the number of opiate users directly connected to the

clients of the RDA. The probability of capturing unregistered opiate user k via registered

opiate user i is independent of registered user h because i and h are randomly selected from

the register. The probability of capturing an unregistered opiate user is dependent on his or

her amount of contacts with registered opiate users. The 95-percent confidence regions are

rather large, but this is characteristic for sparse frequency distributions. The confidence

Table 1. Capture frequency distribution of mentioned opiate users

Ft 1 2

Counts 89 9
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region of the Zelterman estimator in particular is known to produce anomalous values

caused by small standard errors close to zero (Wilson and Collins 1992).

Following various simulation studies, Chao (1989) concluded that her proposed

moment estimator performed best for sparse populations. Furthermore, in a simulation

study by Wilson and Collins (1992), Chao’s estimator performed best in heterogeneous

populations. Böhning (2010) showed in a simulation study that Chao’s modified estimator

performs best for small samples and small amounts of heterogeneity. In Table 2, the

modified estimator has a smaller variance than the other two. However, these simulation

results are based on slightly different sampling schemes. Based on the three estimators, we

may conclude that a reasonable estimate of the number of opiate users directly linked to

RDA opiate users in Utrecht is in the range of 500 – 550. Compared to the estimations of

the population size from the original study, the B-graph sampling design gives comparable

point estimates (500þ427 ¼ 927; 550þ427 ¼ 977; 490þ427 ¼ 917), implying that the

proportion of opiate users in Utrecht who are at a social distance of Step 2 from clients of

the RDA (they know clients only via unregistered opiate users) is probably very small.

6. Discussion

In studies of hidden populations, sampling frames are often lacking, but sometimes the

nature of the hidden trait will lead to the emergence of networks. In such research

situations, Frank and Snijders (1994) proposed estimators that can be applied when one

may assume an initial sample of individuals found independently of one another that

resembles a random sample of the total network. Heckathorn (1997) elaborated RDS in

which the recruitment of respondents is done by respondents, showing that “RDS produces

samples that are independent of the initial subjects from which sampling begins” (p. 176).

However, often partial sampling frames are available in studies of hidden populations. In

this article, an alternative sampling design is introduced that makes use of the partial

sampling frames by pooling them into one sampling frame. If this sampling frame is

considered to cover a substantial part of the unknown hidden population by the local

experts, one may draw a random sample of this sampling frame, asked the respondents

who they know in the hidden population and estimate the number of persons who are not

on the sampling frame. This proposed B-graph sampling design has some challenging

features for hidden population research. First, in a lot of studies it is often interesting to

know how many people with hidden activities are directly related to the registered group

of known people. By random sampling from the registered population and application of

the B-graph design, each member of the unknown directly related population has a chance

to be in the sample. For instance, if a health organisation wants to know how many other

possible “future” clients they can reach via their own clients for health education purposes,

Table 2. Results of different estimators of opiate using population directly linked to clients of the RDA-lists

Estimator Lower bound Point estimate Upper bound

Chao 306 538 1,031
Chao modified 293 490 886
Zelterman 340 535 1,307
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the B-graph design can be used. This way, “recruit” markets of criminal organisations,

radicals, youth or street gangs, or networks of paedophiles can also be estimated.

Furthermore, if capture-recapture estimates based on administrative sources are possible, a

comparison can be made, revealing the size of the proportion of that part of the populations

that is very difficult for institutions to reach. Another advantage of the B-graph design is

that more qualitative information about the population of interest is collected, such as the

quality of relations, lifestyles, and so on.

The B-graph sampling design can only be applied to populations with a network

structure; the hidden activity must lead to network formation. As with capture-recapture or

RDS studies, the practical problem of accurately identifying population members also

remains for the B-graph design. Selected members have to disclose their relations. This is

not a straightforward activity. Network members can be identified by a number of

characteristics, such as the first two or three letters of first and family name, sex, age,

neighbourhood, and so on. Reasons to work with identification variables are often to

protect the privacy of users but also to reduce nonresponse. However, the remark of Chao

et al. (2008, 957) for animal size studies also applies to human population size studies:

“Careful sampling with proper marking (identifying) can provide more accurate

estimates about the population size than an incomplete census.”
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Effects of Cluster Sizes on Variance Components
in Two-Stage Sampling

Richard Valliant1, Jill A. Dever2, and Frauke Kreuter3

Determining sample sizes in multistage samples requires variance components for each stage
of selection. The relative sizes of the variance components in a cluster sample are dramatically
affected by how much the clusters vary in size, by the type of sample design, and by the form of
estimator used. Measures of the homogeneity of survey variables within clusters are related to
the variance components and affect the numbers of sample units that should be selected at each
stage to achieve the desired precision levels. Measures of homogeneity can be estimated using
standard software for random-effects models but the model-based intracluster correlations may
need to be transformed to be appropriate for use with the sample design. We illustrate these
points and implications for sample size calculation for two-stage sample designs using a
realistic population derived from household surveys and the decennial census in the U.S.

Key words: Anticipated variance; measure of homogeneity; sample size calculation.

1. Introduction

Samples from finite populations are often selected in two or more stages for reasons of cost

or operational necessity. For example, household samples in the U.S. may be selected

through geographic areas like counties or groups of counties at the first stage, smaller areas

like blocks at the second, and households at the last stage. Using multiple stages

concentrates the sample in a limited number of areas, which is important when data are

collected by personal interview at the respective households. In a survey of students,

permission to conduct a survey may have to be obtained from school districts. Selecting

districts first, then schools within sample districts, and finally a sample of students within a

certain grade level within the school is operationally convenient and economical. Another

example is a survey of employees in one or more business sectors, such as retail trade or

services. Selecting establishments and then employees within establishments is a natural

way of obtaining the sample.

Designing an efficient sample depends on estimating the contribution to the variance of

an estimator associated with each stage of sampling. This involves estimating variance

components for each stage that depend on the type of estimator and the types of units
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selected for the stage in question. This topic is covered in many standard texts on theoretical

and applied sampling (Cochran 1977; Lohr 2010; Särndal et al. 1992). In the textbooks,

formulae are available for the variance components for general sample designs; these

formulae are usually specialized and simplified to obtain versions that facilitate sample size

calculations. The relative sizes of the variance components are quite sensitive to how large

the sampling units are at the different stages, how much variation there is among the sizes of

the units, and the type of estimator used. Although this is implicit in the general variance-

component formulae, this sensitivity is given little emphasis in most texts but can have a

critical effect on calculated sample sizes and the achieved precision of estimators.

In certain applications, a survey designer has some control over the relative size of the

sampling units. For example, in a household survey, extremely large metropolitan areas in

the U.S., like New York or Chicago, are treated as strata and not as clusters of units. The

first-stage units within such strata are groups of blocks defined by the U.S. Census Bureau

for census taking and other survey data collections. Attempts are usually made to create

groups by combining individual blocks so that the groups have about the same total

population. In other applications, the survey designer has very little control over the units’

sizes. In a school or establishment survey, the number of students or employees in each

school or establishment is given. The survey must work with the existing sizes and

combining these clusters further would not be meaningful.

In this article, we illustrate the effect of varying cluster sizes on design effects and

measures of homogeneity within clusters for two-stage sampling. Section 2 discusses the

variance-component formulae for two-stage sampling when the first-stage units are

selected by either simple random sampling or probability proportional to size sampling.

The effects of variation in cluster size are illustrated using an artificial, but realistic,

population created using decennial census data from one county in the state of Maryland

(Section 3). In Section 4, we describe how variance components from random-effects

models can be used to calculate the measures of homogeneity needed for a two-stage

sample. We summarize our results in the last section.

2. Background: Two-Stage Sampling

In this section, we present some background material for two-stage sampling and

estimators of totals used for such designs. The units in the first stage of selection will be

called primary sampling units (PSUs) or clusters. Units within PSUs are called elements

and are the units for which data are collected. We use the following notation in the

subsequent formulae:

U ¼ universe of PSUs

M ¼ number of PSUs in the universe

Ui ¼ universe of elements in PSU i

Ni ¼ number of elements in the population for PSU i

N ¼
P

i[U Ni, the total number of elements in the population
�N ¼ N=M, the average number of elements per PSU

m ¼ number of sample PSUs

ni ¼ number of sample elements in PSU i
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s ¼ set of sample PSUs

si ¼ set of sample elements in PSU i

pi ¼ selection probability of PSU i

pkji ¼ selection probability of element k given PSU i was selected

yk ¼ value of a variable Y observed for element k

�yU ¼
P

i[U

P
k[Ui

yk=N, the mean per element in the population

�yUi ¼
P

k[Ui
yk=Ni, the mean per element in the population in PSU i

S2
U ¼

P
i[U

P
k[Ui
ðyk 2 �yUÞ

2=ðN 2 1Þ, the population variance of Y

ti ¼
P

k[Ui
yk, the universe total of Y in PSU i

tU ¼
P

i[U ti, the universe total

�tU ¼ tU=M, the average PSU total.

The p-estimator of a population total weights the value for element k inversely by its

selection probability, pk. Särndal et al. (1992, Result 4.3.1) give a formula for the variance

of the p-estimator for a very general two-stage sample design. However, the general

formula is not useful for designing samples because it involves joint selection probabilities

of units at each stage that do not explicitly involve sample sizes. In this section, we present

the variance formulae for different two-stage sample designs where the variance of the

estimated total is simple enough for use in sample size calculation. In the first, PSUs are

selected by simple random sampling; in the second, PSUs are selected with varying

probabilities. For both designs, we assume that elements within PSUs are selected by

simple random sampling. We follow the discussions of the p-estimator and probability

with replacement ( pwr) estimator of a total in Subsections 2.1 and 2.2 with the ratio

estimator of a total in Subsection 2.3.

2.1. Equal-Probability Sampling at Both Stages

Suppose the first stage is a simple random sample selected without replacement (srswor)

of m PSUs from a population of M PSUs, and the second stage is a sample of ni elements

selected by srswor from the population of Ni. As a shorthand, denote this design by srs/srs.

The selection probability of element k in PSU i is pk ¼ pipkji ¼ ðm=MÞðni=NiÞ.

The p-estimator of a population total is

t̂p ¼
M

m i[s

XNi

ni k[si

X
yk ¼

M

m

X

i[s

t̂i ð1Þ

where t̂i ¼ ðNi=niÞ
P

k[si
yk, the estimate of the total for PSU i with a simple random

sample. The design variance, that is, the variance computed with respect to repeated

sampling, of the p-estimator is

Vðt̂pÞ ¼
M 2

m

M 2 m

M
S2

U1 þ
M

m

X

i[U

N2
i

ni

Ni 2 ni

Ni

S2
U2i ð2Þ

where S2
U1 ¼

P
i[U
ðti2�tU Þ

2

M21
, and S2

U2i ¼

P
k[Ui
ð yk2�yUiÞ

2

Ni21
, the unit variance of Y among the

elements in PSU i.

The first component of (2), the “between” term, can also be written as a function of the

variance among means per element within the PSUs. However, expressing the between
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term as a function of PSU totals as shown above allows a more intuitive explanation to be

given for some subsequent results.

The relative variance (relvariance) of t̂p is its variance divided by the square of the

population total, Vðt̂pÞ=t2
U , and is especially useful for sample size calculation since the

relvariance is unaffected by the scale of y. If the same number of sample elements, ni ¼ �n,

is selected from each PSU, and the first-stage sampling fraction, m/M, and the second-

stage sampling fraction, �n=Ni, are both small, the relvariance can be written as

Vðt̂pÞ

t2
U

¼
B2

m
þ

W 2

m�n
ð3Þ

where B2 ¼ S2
U1=�t

2
U is the unit relvariance among PSU totals and

W 2 ¼ M 21
P

i[U

�
Ni
�N

�2 S2
U2i

�y2
U

. A common simplification used in Cochran (1977) and

Hansen et al. (1953a) is to further assume that all PSUs contain the same number of

elements, that is, Ni ; �N, so that W 2 ¼ M 21
P

i[U S2
U2i=�y

2
U . Roughly speaking, W 2 is an

average relvariance per PSU with the per-PSU relvariance expressed as S2
U2i=�y

2
U , that is,

with the overall mean in the denominator. Expression (3) can be rearranged to give

Vðt̂pÞ

t2
U

¼
~V

m�n
k½1þ dð�n 2 1Þ� ð4Þ

where ~V ¼ S2
U=�y

2
U , k ¼ ðB2 þW 2Þ= ~V, and d ¼ B2=ðB2 þW 2Þ, often referred to as a

measure of homogeneity. With single-stage srs sampling of clusters from a population in

which all clusters have the same size �N, d is an intraclass correlation (see Cochran 1977,

ch. 9; Lohr 2010 sec. 5.2.2) that can be computed as a type of Pearson correlation. With

two-stage sampling, however, d is not a correlation but still is related to the degree of

homogeneity of elements within clusters. Note that an fpc, 1 2 m�n=M �N, is sometimes

inserted into Expression (4) if the sampling fractions are not small, but this is an ad hoc

addition that does not follow directly from rewriting (3).

The formula found in most textbooks is Expression (4) with k ¼ 1, which comes from

first writing the population variance of y as

ðM �N 2 1ÞS2
U ¼

X

i[U

Ni

ti

Ni
2

tU

M �N

� �2

þ
X

i[U

ðNi 2 1ÞS2
U2i:

Then, with some algebra (see Hansen et al. 1953a, sec. 6.6; Hansen et al. 1953b, sec. 6.5),

it can be shown that when all clusters have the same size, �N, and both M and �N are large,

S2
U

�y2
U

¼
1 2 M 21

1 2 ðM �NÞ21
B2 þ

1 2 �N21

1 2 ðM �NÞ21
W 2 8 B2 þW 2 ð5Þ

that is, k ¼ 1. In that case, (4) reduces to the relvariance of the estimated total in srs, ~V=m�n,

times a design effect, 1þ d ð�n 2 1Þ. The design-effect concept has been extended to more

complex situations by Gabler et al. (1999), Lynn and Gabler (2005), and Park and Lee (2004).

The assumptions to obtain (5) that the number of population clusters and number of

population elements per cluster are large is often reasonable, but assuming that the clusters

all have the same size (Ni ¼ �N) may not be. Although this special case is emphasized in

texts like Kish (1965) and Lohr (2010), it can be misleading when clusters vary in size.
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An alternative design for the second stage is to select elements at a fixed rate r within

each cluster. The expected sample size in cluster i then is ni ¼ rNi. This design might be

preferred to srs/srs with a fixed-size sample at the second stage because all sample

elements will have the same weight, M=ðmrÞ. There are different ways of selecting such a

sample. Bernoulli sampling is one; systematic sampling from a randomly ordered list is

another. In the latter design, which we use here, the achieved sample size is either the

integer floor or ceiling of rNi. This type of systematic sample can reasonably be treated as

srswor when the list is randomly ordered. Substituting ni ¼ rNi in (2), dividing by t2
U , and

using the equivalent expressions for the population total, tU ¼ M�tU ¼ M �N�yU , gives the

approximate relvariance as
Vðt̂pÞ

t2
U

¼
B2

m
þ

~W2

m�n*
ð6Þ

where B2 is the same quantity as in (3), �n* ¼ r �N, and ~W2 ¼ M 21
P

i[U
Ni
�N

S2
U2i

�y2
U

. There is

some randomness in the achieved second-stage sample size when rNi is not an integer.

Note that �n* is an average cluster sample size in the sense that the average sample size over

all clusters in the universe is
P

i[U ni=M ¼ r �N. The corresponding value of the measure of

homogeneity is ~d ¼ B2=ðB2 þ ~W 2Þ. The relvariance in (6) can also be written as

Vðt̂pÞ

t2
U

¼
~V

m�n*
~k½1þ ~dð�n* 2 1Þ� ð7Þ

where ~k ¼ ðB2 þ ~W 2Þ= ~V. Note that (7) reduces to the usual textbook formula if ~k ¼ 1,

which requires that S2
U=�y

2
U 8 B2 þ ~W 2. Since the design with a fixed sampling rate at the

second stage may be more common in practice than one with a common �n when the design

is srs/srs, we concentrate on it in the numerical illustrations.

Expressions (4) or (7) are useful for sample size calculation since the number of sample

PSUs, m, sample elements per PSU, �n, or the within-PSU rate, r ¼ �n*= �N, are explicit in the

formula. Expressions like (4) and (7) often seem to be treated as if they apply regardless of

how the samples of PSUs and elements within PSUs are selected. If, for example, a

probability proportional to size ( pps) sample of PSUs is selected, (4) and (7) do not reflect

that feature. In Subsection 2.2 we therefore give a relvariance that is similar in form to (4)

and (7) but is appropriate for pps sampling of PSUs.

When designing samples, practitioners sometimes use rough rules of thumb for values

of ~d (or d), say ~d # 0:10, based on how “alike” elements within PSUs are thought to be.

However, the form of S2
U1 and, therefore, B2 implies that the size of ~d (or d) can also be

determined by the relative variability of the cluster totals, ti. As we will illustrate, one way

in which ~d can be large is by having clusters that vary in size.

2.2. Varying Probabilities at the First Stage

Variances of estimators in designs more complicated than simple random sampling at each

stage can also be written as a sum of components. However, the most general of these have

limited value in determining sample sizes (e.g., see Särndal et al. 1992, result 4.3.1).

A more useful formulation is the case where PSUs are selected with varying

probabilities but with replacement ( ppswr), and the sample within each PSU is selected by
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srswor. We refer to this design as ppswr/srs. With-replacement designs may not often be

used in practice but have simple variance formulae, which makes them useful for sample

size calculation. The probability with-replacement ( pwr) estimator of a total is

t̂pwr ¼
1

m

X

i[s

t̂i

pi

where t̂i was defined in Subsection 2.1 and pi is the one-draw selection probability of

PSU i. The variance of t̂pwr is (Cochran 1977, 308-310)

Vðt̂pwrÞ ¼
1

m

X

i[U

pi

ti

pi

2 tU

� �2

þ
X

i[U

Ni
2

mpini

1 2
ni

Ni

� �

S2
U2i: ð8Þ

Making the assumption that �n elements are selected in each PSU and that �n=Ni is

negligible, the variance reduces to

Vðt̂pwrÞ ¼
S2

U1ð pwrÞ

m
þ

1

m�n

X

i[U

N2
i S2

U2i

pi

where, in this case, S2
U1ð pwrÞ ¼

P
i[U pi

ti

pi
2 tU

� �2

and S2
U2i is defined for Expression (2).

Dividing this by t2
U and simplifying, we obtain the relvariance of t̂pwr as, approximately,

Vðt̂pwrÞ

t2
U

8
B2

*

m
þ

W2
*

m�n
¼

~V

m�n
k*½1þ d*ð�n 2 1Þ� ð9Þ

with B2
*
¼

S2
U1ð pwrÞ

t2
U

, W2
*
¼ 1

t2
U

P
i[U N2

i
S2

U2i

pi
, k* ¼ B2

*
þW2

*

� �
= ~V, and d* ¼ B2

*
= B2

*
þW2

*

� �
.

If k* ¼ 1, then (9) has the interpretation of an srs relvariance times a design effect,

1þ d*ð�n 2 1Þ.

The approximation in (9) does depend on the sampling fraction of elements within each

sample cluster being small, and more importantly on using the with-replacement variance

formula for the first stage. On the other hand, it does allow the number of population elements

per cluster to vary, which is an important feature to account for in some populations.

A special case of the design above would be pi ¼ Ni=N, that is, probability proportional

to the size of cluster i. If the weight of cluster i in a with-replacement sample of m clusters

is N=ðmNiÞ and an equal-probability sample of �n elements are selected in each cluster, the

sample is “self-weighting” as the weight of each sample element in the pwr estimator is the

same: ðN=mNiÞðNi=�nÞ ¼ N=ðm�nÞ. This combination of design and weighting method is

common in household surveys where a practical goal is often to have an equal workload in

each cluster and limit variation in weights.

A more general point to note is that the measures of homogeneity in (4), (7), and (9)

depend on both the sample design and the estimator being used. This is because the

decomposition of the variance of an estimator depends on both. A different decomposition

would be needed for, say, the general regression (GREG) estimator of a total or an

estimator of a mean that uses an estimate of N in its denominator.

2.3. Ratio Estimator of a Total

The p-estimator of a total may be inefficient in some designs compared to alternatives like

the ratio estimator or a GREG estimator. In this section, we present the variance-

component formula in the srs/srs design for the ratio estimator defined as
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t̂R ¼ t̂p
N

N̂p

where N̂p is the p-estimator of the number of elements in the population, N, defined as

N̂p ¼ M
P

s Ni=m. (Note that, in probability proportional to Ni sampling with pi ¼ Ni=N,

the estimated total number of elements is N̂pwr ¼ m21
P

i[s t̂i=pi ¼ N, and there is no gain

from ratio estimation.) Assuming that the sample size of clusters m is large and using a

first-order linear approximation,

t̂R 2 tU ¼ t̂p 2 �yUN̂p þ OpðM=mÞ8
M

m

X

s

t̂zi ð10Þ

where t̂zi ¼ Ni

P
k[si

zk=ni with zk ¼ yk 2 �yU . Expression (10) follows from assuming that

M 21ðt̂p 2 tUÞ and M 21ðN̂p 2 NÞ are Opðm
21=2Þ as they would be if m1=2ðt̂p 2 tUÞ=M and

m1=2ðN̂p 2 NÞ=M had asymptotic standard normal distributions. In that case the remainder

in the first-order Taylor series approximation to M 21ðt̂R 2 tUÞ is Opð½m
21=2�2Þ ¼ Opðm

21Þ

(see Wolter 2007, Theorem 6.2.2). Under those conditions, t̂p 2 �yUN̂p ¼ OpðM=m1=2Þ,

that is, a higher order than the remainder term in (10). Approximation (10) has the same

form as the p-estimator in (1). Consequently, a variance-component formula analogous to

(2) and a relvariance formula similar to (3) can be derived. In particular,

Vðt̂RÞ8
M 2

m

M 2 m

M
S2

Uz1 þ
M

m

X

i[U

N2
i

ni

Ni 2 ni

Ni

S2
U2zi

with S2
Uz1 ¼ ðM 2 1Þ21

P
i[Uðtzi 2 �tUzÞ

2, and S2
U2zi ¼ ðNi 2 1Þ21

P
k[Ui
ðzk 2 �zUiÞ

2 where

tzi ¼
P

k[Ui
zk, �tUz ¼

P
i[U tzi=M, and �zUi ¼

P
k[Ui

zk=Ni. Assuming that the fpcs,

ðM 2 mÞ=M and ðNi 2 niÞ=Ni, are approximately 1 and that the sample size in PSU i is

rNi, the relvariance formula is

Vðt̂RÞ8
B2

z

m
þ

~W
2

z

m�n*
¼

~V

m�n*
kz½1þ dzð�n

* 2 1Þ� ð11Þ

where B2
z ¼ S2

Uz1=�t
2
U , ~W

2

z ¼ M 21
P

i[UðNi= �NÞS
2
U2zi=�y

2
U , kz ¼ B2

z þ
~W

2

z

� �
= ~V, and

dz ¼ B2
z= B2

z þ
~W

2

z

� �
. Compared to the (srs/srs, p-estimator) strategy the ratio estimator

can reduce the measure of homogeneity, leading to more precise estimators as illustrated

in Example 4 of Section 3.

3. Examples of Variance Components and Measures of Homogeneity

We created an example population based on U.S. Census counts from the year 2000 for

Anne Arundel County in the state of Maryland and refer to this data set as MDarea.pop.

The population is also included in the R package PracTools (Valliant et al. 2013, 2015).

The population contains three continuous and two binary variables denoted by y1, y2,

y3, ins.cov, and hosp.stay, respectively. The variables are generated using

models, since individual-person data for small geographic areas is suppressed in the actual

census for reasons of confidentiality. The variables in MDarea.pop were created by

fitting models for several variables in the 2001-2002 National Health and Nutrition
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Examination Survey (Center for Disease Control and Prevention 2009) and 2003 National

Health Interview Survey (Center for Disease Control and Prevention 2012) data sets to

obtain regression means that depended on whether a person was Hispanic and on the

person’s gender and age. Person-level values were created using random-effects models

that had error terms for tracts, block groups, and persons. The three continuous variables

(y1, y2, y3) are positively skewed with mean values based on models for body weight,

body mass index, and systolic blood pressure (although the scales of the generated

variables do not match those of these physical measurements). The binary variables,

ins.cov and hosp.stay, are based on the rates of insurance coverage and overnight

hospital stay in a twelve-month period.

The geographic divisions used in this data set are tracts and block groups, which are

geographic areas defined by the Census Bureau (U.S. Census Bureau 2011). Tracts are

constructed to have a desired population size of 4,000 people. Block groups (BGs) are

smaller, with a target size of 1,500 people. However, the sizes of both tracts and BGs vary

because the Census Bureau also attempts to limit the geographic area covered by a BG.

Counts of persons in the data set are the same for most tracts and BGs as in the 2000

Census; exceptions are five BGs that were augmented to have at least 50 persons each.

The example population contains 403,997 persons, 95 tracts, and 307 BGs. The proportion

of persons with insurance coverage is 0.793; the proportion with a hospital stay in the prior

twelve months is 0.072. Descriptive statistics for other variables are given in Table 1.

Because the tracts and BGs in the Maryland population are extremely variable in size,

we created two other variables called PSU and SSU to demonstrate the effect of having

equal-sized units. Each artificial PSU has approximately the same number of persons;

likewise the SSUs were created to have about the same number of persons. The PSUs and

SSUs were formed after sorting the file by tract and BG within tract, thus retaining

geographic proximity of persons grouped together. Each PSU has about 5,050 persons

while an SSU has about 1,010. Although the assumption of equal PSU size made to obtain

(5) or to set ~k ¼ 1 may seem innocuous, it is far from that, as we will illustrate below.

We use the Maryland population to illustrate the effects of using different sizes of

primary and secondary sampling units on the measures of homogeneity for two-stage

sampling. In all of the examples, calculations are made assuming that the entire population

is in hand. This means that the theoretical values in the preceding formulae can be

evaluated rather than estimated from a sample as would be required in practice.

Table 1. Descriptive statistics for the Maryland area population

Tract population BG population y1 y2 y3

Minimum 86 52 262.7 22.9 32.6
1st quartile 2,728 780 18.7 2.3 66.7
Median 4,132 1,240 50.8 5.4 81.4
Mean 4,253 1,316 69.7 7.7 87.5
3rd quartile 5,684 1,732 104.4 10.7 101.2
Maximum 13,579 4,744 1163.7 101.1 479.2
Population CV 0.51 0.58 1.21 1.01 0.34

CV ¼ coefficient of variation.
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When examining the effects of varying unit sizes, working with a population is an

advantage as the complication of sampling variability is eliminated.

Example 1. Between- and within-variance components in srs/srs design. Using the

variables in the Maryland population, we computed the unit relvariance of each variable

S2
U=�y

2
U

� �
, B2 þ ~W 2 and ~k for comparison, and ~d ¼ B2=ðB2 þ ~W2Þ for the srs/srs design

and the pwr-estimator. (Note that the p-estimator and pwr-estimator in srs/srs have the

same form when the first stage is selected with replacement. In the examples, we will refer

to the (srs/srs, pwr-strategy).) First, the results are shown in Table 2 using the PSU and

SSU variables as clusters. Values of ~d range from 0.001 to 0.079 when PSUs are clusters.

Deltas are somewhat larger when SSUs are clusters, reflecting the common phenomenon

that smaller geographic areas are somewhat more homogeneous than large ones in

household populations. The third through fifth columns show that the approximation that

S2
U=�y

2
U 8 B2 þW 2 works well in this case.

Next, to illustrate the dramatic effect that varying sizes of clusters can have, in Table 3

we present the same statistics as above using tracts and BGs within tracts as clusters.

Values of d range from 0.023 to 0.730 when tracts are clusters. When BGs are used as

clusters, ~ds range from 0.032 to 0.791. The measures of homogeneity increase

substantially when tracts or BGs are the first-stage clusters. For example, when PSUs are

clusters, d ¼ 0.005 for y1 but is 0.152 when tracts are clusters. This is almost entirely due

to the increase in the between-variance component, B2, when units with highly variable

sizes are used. For example, B2 ¼ 0.0079 for y1 when PSU is a cluster, but is 0.2605

when tract is a cluster. The third through fifth columns in Table 3 show that the

approximation S2
U=�y

2
U 8 B2 þ ~W2 does not work well when either tracts or BGs are

clusters. This again is due to the clusters not all having the same size. This implies that

when making advance estimates of the relvariance of an estimated total, ~k cannot be safely

set to 1 in (7) when PSUs vary in size.

Example 2. Effect of incorrect measures of homogeneity on achieved precision. If

incorrect values of the measure of homogeneity are used to compute sample sizes, the

sample can be much less efficient than anticipated. This example looks at the effect of

Table 2. Variance components and measures of homogeneity in the Maryland population using PSUs and

SSUs as clusters with an srs/srs design, the pwr-estimator, and a fixed sampling rate at the second stage

B2 ~W2 S2
U=�y

2
U B2 þ ~W 2 ~k ~d

PSUs as clusters
y1 0.0079 1.4553 1.4627 1.4631 1.0003 0.005
y2 0.0069 1.0097 1.0163 1.0166 1.0003 0.007
y3 0.0090 0.1048 0.1136 0.1137 1.0012 0.079
ins.cov 0.0012 0.2599 0.2611 0.2611 1.0003 0.005
hosp.stay 0.0175 12.8831 12.8979 12.9006 1.0002 0.001
SSUs as clusters
y1 0.0365 1.4277 1.4627 1.4642 1.0010 0.025
y2 0.0169 1.0004 1.0163 1.0173 1.0010 0.017
y3 0.0184 0.0954 0.1136 0.1137 1.0012 0.161
ins.cov 0.0032 0.2581 0.2611 0.2613 1.0010 0.012
hosp.stay 0.0558 12.8549 12.8979 12.9107 1.0010 0.004
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using ~ds computed as if clusters all had the same size when clusters actually vary. Suppose

that the costs which vary with the number of sample clusters and elements can be written

as C ¼ C1mþ C2m�n where C1 is the cost per cluster and C2 is the cost per sample

element. If the budget for variable costs is fixed at C and the relvariance is given by (7), the

optimal numbers of elements and clusters are (cf. Hansen et al. 1953a sec. 16.6):

�nopt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1

C2

1 2 ~d

~d

s

and mopt ¼
C

C1 þ C2 �nopt

: ð12Þ

(The results in (12) hold for both ~k ¼ 1 and a general value of ~k.) In this example, the cost

assumptions are C ¼ $100,000, C1 ¼ $1; 000, and C2 ¼ $100. Suppose that the sample

sizes in (12) are computed using the ~ds in Table 2, assuming that clusters are PSUs or

SSUs (i.e., clusters with the same size). These values of �nopt and mopt are shown in Table 4

using the ~ds and values of ~k from Table 2. The estimated coefficients of variation (CVs),

that is, the square root of the estimated relvariances that would be obtained with the equal-

size cluster ~ds, are in the fourth column, assuming that ~V ¼ 1. Suppose that the correct ~ds

and ~ks are in reality those in Table 3, which account for varying cluster sizes. The actual

CVs that would be obtained with these ~ds are also shown in the sixth column of Table 4,

again assuming that ~V ¼ 1. The ratio of actual CVs with ~ds from Table 3 to the estimated

CVs with ~ds from Table 2 range from 1.5 to 6.3. In other words, the actual CVs range from

50% to 530% higher than estimated because varying cluster sizes increase the measures of

homogeneity and values of ~k. This implies that if the correct ~ds and ~ks were used, more

clusters and fewer elements per cluster should be selected than the mopt and �nopt values in

Table 4.

Example 3. ppswr at first stage, srs at second. This example repeats the calculations in

Example 1 for the variables in the Maryland area population but with a different sample

design. Assume that clusters will be selected proportional to the count of persons Ni in

each cluster and that an srs with a small sampling fraction is selected in each sample

cluster, that is, a particular case of ppswr/srs. Table 5 shows the values of B2
*
, W2

*
, and d*

Table 3. Variance components and measures of homogeneity in the Maryland population using tracts and block

groups as clusters with an srs/srs design, the pwr-estimator, and a fixed sampling rate at the second stage

B2 ~W2 S2
U=�y

2
U B2 þ ~W2 ~k ~d

Tracts as clusters
y1 0.2605 1.4539 1.4627 1.7144 1.1720 0.152
y2 0.2687 1.0058 1.0163 1.2745 1.2540 0.211
y3 0.2707 0.1001 0.1136 0.3707 3.2634 0.730
ins.cov 0.2624 0.2593 0.2611 0.5217 1.9985 0.503
hosp.stay 0.3078 12.8786 12.8979 13.1864 1.0224 0.023
Block groups as clusters
y1 0.3489 1.4478 1.4627 1.7967 1.2283 0.194
y2 0.3485 0.9994 1.0163 1.3479 1.3263 0.259
y3 0.3492 0.0926 0.1136 0.4418 3.8887 0.791
ins.cov 0.3408 0.2574 0.2611 0.5982 2.2916 0.570
hosp.stay 0.4246 12.8567 12.8979 13.2813 1.0297 0.032
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when PSUs and SSUs are clusters. Because each PSU and SSU was formed to have almost

the same number of persons, the values in Table 5 are virtually the same as the srs/srs

results in Table 2.

Table 6 shows the results when tracts and BGs are used as clusters. With the ppswr/srs

design, the between term is much smaller than the within term compared to the results in

Example 1. This is true whether PSU and SSU are used as clusters or tracts and BGs are

used. For example, with y1, d ¼ 0:152 when tracts are clusters in the srs/srs design

(Table 3). However, d* ¼ 0:006 for y1 with tracts as clusters in the ppswr/srs design in

Table 6. The measures of homogeneity for other variables are also substantially less in

Table 6 than in Table 3.

When clusters are selected by srs, S2
U1 is the variance of the cluster totals around the

average cluster total. In contrast, with pps sampling of clusters, S2
U1ð pwrÞ is the variance of

the estimated population totals, ti=pi around the population total, tU . When clusters are

selected with probability proportional to Ni, ti=pi ¼ Ni �yUi=ðNi=NÞ ¼ N �yUi. If these

Table 5. Variance components and measures of homogeneity in the Maryland population using PSUs and

SSUs as clusters with a ppswr/srs design and the pwr-estimator

B2
*

W2
*

k* d*

PSUs as clusters
y1 0.0078 1.4553 1.0002 0.005
y2 0.0068 1.0097 1.0002 0.007
y3 0.0088 0.1048 1.0002 0.078
ins.cov 0.0012 0.2599 1.0002 0.005
hosp.stay 0.0173 12.8831 1.0002 0.001
SSUs as clusters
y1 0.0364 1.4277 1.0010 0.025
y2 0.0169 1.0004 1.0010 0.017
y3 0.0183 0.0954 1.0008 0.161
ins.cov 0.0032 0.2581 1.0010 0.012
hosp.stay 0.0557 12.8549 1.0010 0.004

Table 6. Variance components and measures of homogeneity in the Maryland population using tracts and BGs

as clusters with a ppswr/srs design and the pwr-estimator

B2
*

W2
*

k* d*

Tracts as clusters
y1 0.0092 1.4539 1.0002 0.006
y2 0.0107 1.0058 1.0002 0.011
y3 0.0136 0.1001 1.0002 0.119
ins.cov 0.0018 0.2593 1.0002 0.007
hosp.stay 0.0223 12.8786 1.0002 0.002
Block groups as clusters
y1 0.0160 1.4478 1.0007 0.011
y2 0.0176 0.9994 1.0007 0.017
y3 0.0211 0.0926 1.0006 0.186
ins.cov 0.0039 0.2574 1.0007 0.015
hosp.stay 0.0509 12.8567 1.0008 0.004
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1-cluster estimates of the population total are fairly accurate, as they are here, the B2 term

can be quite small. This leads to much smaller values of the measure of homogeneity in

pps sampling of clusters, implying that the effect of clustering is less important in this

population for a design that selects clusters with probabilities proportional to their

population counts.

Practitioners habitually gravitate toward pps sampling of clusters rather than srs.

This example makes it clear why this choice is often a good one.

Example 4. srs/srs design with ratio estimator of the total. Next, we consider whether

use of the ratio estimator of the total in an srs/srs design reduces the effects of using

clusters with varying sizes. Table 7 displays results for the variance components, B2
z and

~W
2

z , kz, and dz defined in Subsection 2.3 when tracts or block groups are used as clusters.

The values of dz in Table 7 are much lower than those of ~d in Table 3, implying that use of

a ratio estimator in srs/srs substantially reduces the effect of clustering compared to using

the pwr-estimator. The values of dz are very close to those of d* in Table 6 for the ppswr/

srs design combined with the pwr-estimator. However, the values of k* in Table 6 are all

near 1 while kz in Table 7 ranges from about 1.23 to 1.35. Thus, for a given number of

sample clusters m and elements �n in the ppswr/srs case or �n* in the srs/srs fixed rate case,

the ( ppswr/srs, pwr-estimator) strategy will be more efficient than the (srs/srs, ratio

estimator) strategy. For example, suppose that BGs are clusters, the total of y1 is

estimated and �n ¼ �n* ¼ 50. If srs/srs and the pwr-estimator is used, then ~k½1þ ~d ð�n 2 1Þ�

¼ 1:2283½1þ 0:194ð50 2 1Þ� ¼ 12:905 using the figures in Table 3. For the ( ppswr/srs,

pwr-estimator) strategy, k*½1þ d*ð�n 2 1Þ� ¼ 1:007½1þ 0:011ð50 2 1Þ� ¼ 1:550 using

the values in Table 6. For (srs/srs, ratio estimator) the corresponding value is kz½1þ dz

ð�n* 2 1Þ� ¼ 1:3462½1þ 0:010ð50 2 1Þ� ¼ 2:006 using the figures in Table 7. Accord-

ingly, the relvariance for (srs/srs, pwr-estimator) is 8.33 (12.905/1.550) times as large as

that of ( ppswr/srs, pwr-estimator), while the relvariance of (srs/srs, ratio estimator) is 1.29

(2.006/1.55) times as large. Using the ratio estimator in srs/srs is much better than

using the pwr-estimator, but still is considerably less efficient than the ( ppswr/srs,

pwr-estimator) strategy.

Table 7. Variance components and measures of homogeneity in the Maryland population using tracts and block

groups as clusters with an srs/srs design, a fixed rate at the second stage, and a ratio estimator of a total

B2
z ~W

2

z
kz dz

Tracts as clusters
y1 0.0093 1.8390 1.2636 0.005
y2 0.0114 1.2662 1.2571 0.009
y3 0.0143 0.1253 1.2285 0.102
ins.cov 0.0021 0.3260 1.2568 0.007
hosp.stay 0.0265 16.3171 1.2672 0.002
Block groups as clusters
y1 0.0193 1.9499 1.3462 0.010
y2 0.0223 1.3338 1.3344 0.017
y3 0.0271 0.1220 1.3127 0.182
ins.cov 0.0052 0.3426 1.3324 0.015
hosp.stay 0.0681 17.2695 1.3442 0.004
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4. Estimating Variance Components Using Anticipated Variances

In normal circumstances, only a sample is available from a population and variance

components must be estimated. Design-based estimators can be found in Särndal et al.

(1992, sec. 4.3.2) and will not be covered here. As noted earlier, the general formulae for

estimation of variance components are specialized, complex, and difficult to use in

practice. Being able to use the software routines that are available for variance-component

estimation would be a real advantage if they estimate the components properly. The best of

these routines use algorithms designed to handle a variety of numerical problems that are

hard to anticipate in practice. Searle et al. (1992) review the methods available, including

minimum variance quadratic unbiased estimation (MIVQUE0), maximum likelihood, and

restricted maximum likelihood (REML). Note that these estimates are derived through a

specified model and not a particular sample design.

Model variance components can be introduced by using an anticipated variance

(Isaki and Fuller 1982) defined as

AVðt̂Þ ¼ EM½Epðt̂ 2 tUÞ
2�2 ½EMEpðt̂ 2 tUÞ�

2

where EM is the theoretical expectation (or average) with respect to the specified

population model and Ep is the (design-based) expectation under repeated sampling. If the

estimator is design-unbiased or approximately so, then the anticipated variance is AVðt̂Þ ¼

EM½varpðt̂ 2 tUÞ� since Epðt̂Þ ¼ tU . Thus the model expectation of a formula like (3) or (4)

can be computed, resulting in a formula that includes model variance components that can

be estimated using standard software. An additional advantage to this approach is the

clarification of the key role that PSU and SSU sizes play in determining the measures of

homogeneity. Expressions (4), (7), (9), and (11) contain measures of homogeneity, d, ~d,

d*, and dz, respectively, that are critical determinants of sample sizes. However, d, ~d, d*,

and dz are not equal to the model correlation of elements in the same cluster, except in

some special circumstances, as we will illustrate.

Examples in the literature of using model variance-component estimates in survey

design seem limited, even though practitioners often use the technique. A few examples

are Chromy and Myers (2001); Hunter et al. (2005); Judkins and Van de Kerckhove

(2003); and Waksberg et al. (1993). We demonstrate the basic approach using a random-

effects model.

In a clustered population, the simplest model to consider is one with common mean and

random effects for clusters and elements:

yk ¼ mþ ai þ 1ik; k [ Ui; ð13Þ

with ai ~ 0;s2
a

� �
, 1ik ~ 0;s2

1

� �
, and the errors being independent. The model correlation of

any two elements in the same cluster is

corrð yk; yk 0 Þ ¼
s2
a

s2
a þ s2

1

; r: ð14Þ

The model expectation of the design variance can be computed under this model, but for

sample size calculation, only the approximate expectation of the between- and within-

variance components for two-stage sampling are needed. First, take the case of an srs/srs
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design and the pwr-estimator where a common sampling rate r is used in all clusters. The

approximate model expectations are needed for B2 ¼ S2
U1=�t

2
U and ~W 2 ¼ M 21

P
i[U

Ni

�N

S2
U2i

�y2
U

in (6). After some algebra, the model expectations of S2
U1 and S2

U2i defined below (2) are:

EM S2
U1

� �
8 s2

a þ m2
� �

S2
N þ

�N2s2
a þ s2

1

EM S2
U2i

� �
¼ s2

1

where �N ¼
P

i[U Ni=M is the average number of elements per cluster, and S2
N ¼P

i[UðNi 2 �NÞ2=ðM 2 1Þ is the population variance of the PSU sizes, Ni. We also assume

that M is large so that M 2 1 8 M. Assuming that the expectation of a ratio, like S2
U1=�t

2
U , is

approximately the ratio of the expectations, the model expectation of the measure of

homogeneity ~d in (7) is

EMð ~dÞ8
s2
a þ m2

� �
n2

N þ s2
a þ s2

1= �N
2

s2
a þ m2

� �
n2

N þ s2
a þ s2

1ð1þ �N22Þ
ð15Þ

where n2
N ¼ S2

N= �N
2 is the relvariance of the Nis. If Ni ¼ �N, that is, all the clusters are the

same size, then n2
N ¼ 0 and (15) reduces to

EMð ~dÞ8
s2
a þ s2

1= �N
2

s2
a þ s2

1ð1þ �N22Þ
: ð16Þ

If, in addition, �N is sufficiently large for s2
1= �N

2 to be negligible compared to s2
a, then

EMð ~dÞ does equal the model correlation in (14). However, when clusters vary in size, (15)

will be a closer approximation to the measure of homogeneity needed for sample size

calculation.

The result for d in (4) is very similar. The model expectation of d is equal to (15) but

1þ �N22 in the denominator is replaced with 1þ n2
N þ

�N22. Numerically, the model

expectation of ~d will be somewhat larger than that of d. For d* and dz the calculations

would have to be specialized to be appropriate to the forms of B2
*
, W2

*
, B2

z , and ~W
2

z used in

the definitions of those measures of homogeneity. We consider only d* below.

Next, consider the ppswr/srs design where the one-draw probability of cluster i is

proportional to its number of elements, that is, pi ¼ Ni=M �N. The model expectation of

S2
U1ð pwrÞ is

EM S2
U1ð pwrÞ

� �
¼ ðM �NÞ2s2

a 1 2
1

M
2 2

1

�N

� �

n2
N þ 1

� �
	 


þM 2 �Ns2
1:

The model expectation of d* is then approximately

EMðd*Þ8

s2
a 1 2

1

M
2 2

1

�N

� �

n2
N þ 1

� �
	 


þ
s2
1

�N

s2
a 1 2

1

M
2 2

1

�N

� �

n2
N þ 1

� �
	 


þ s2
1 1þ

1

�N

� � ð17Þ

If Ni ; �N, selecting PSUs with probability proportional to the sizes Ni is the same as

equal-probability sampling. In that case, (17) reduces to approximately the same form as
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(16), which is essentially equal to the model correlation in (14) when Ni ; �N and the

average cluster size is large.

Example 5. Anticipated variance components in two-stage sampling from a model.

A number of software routines are available for estimating variance components – the

R package lme4 (Bates et al. 2011), the SASw procedure proc mixed, and the xtmixed

routine in Stataw are examples. We used the function lmer in lme4 to estimate the variance

components for the model in (13) and the corresponding intracluster correlations in (14).

The type of sample design used (srs/srs or ppswr/srs) does not affect these estimates, since

they are based strictly on the model in (13). The results for all variables using PSUs,

SSUs, tracts, and BGs as clusters are shown in Table 8. The estimates for r when PSUs

and SSUs are clusters are almost the same as the values of ~d in Table 2 where srs is used at

each stage. But when tracts and BGs of varying sizes are used as the clusters, the rs in

Table 8 are very different and much smaller than the ~ds in Table 3. As noted above, the

design-based formula for B2=ðB2 þ ~W2Þ will estimate the same thing as the model-based

calculation if the clusters have the same large size, but not otherwise.

Table 9 shows the measures of homogeneity computed from Formula (15) for an srs/srs

design and Formula (17) for a ppswr/srs design, both with the pwr-estimator of a total.

Values of ~d in Table 9 for srs/srs when PSUs and SSUs are clusters are similar to those in

Table 2 and Table 8. For example, ~d ¼ 0:005 in Table 2 for y1 with PSUs as clusters and

Table 8. Intracluster correlations r from (14) under a simple random-effects model

Values of model intracluster correlation r

Unit used for clusters

Variable PSUs SSUs Tracts Block groups

y1 0.005 0.024 0.008 0.012
y2 0.007 0.016 0.013 0.017
y3 0.079 0.161 0.148 0.191
ins.cov 0.004 0.011 0.008 0.014
hosp.stay 0.001 0.003 0.002 0.003

Table 9. Measures of homogeneity EMð ~dÞ and EMðd*Þ estimated from Expression (15) for an (srs/srs, pwr-

estimator) strategy and from Expression (17) for a ( ppswr/srs, pwr-estimator) strategy

PSUs SSUs Tracts Block groups

~ds for srs/srs design using (15)
y1 0.005 0.024 0.159 0.198
y2 0.007 0.016 0.216 0.264
y3 0.079 0.161 0.738 0.797
ins.cov 0.004 0.011 0.503 0.569
hosp.stay 0.001 0.003 0.022 0.029
d*s for ppswr/srs design using (17)
y1 0.005 0.025 0.008 0.012
y2 0.007 0.017 0.013 0.018
y3 0.077 0.161 0.144 0.190
ins.cov 0.005 0.012 0.008 0.015
hosp.stay 0.001 0.004 0.002 0.004
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is 0.005 in both Tables 8 and 9. PSUs and SSUs have almost the same size, and therefore

(15) reduces to the model formula for the correlation in (14). When tracts or BGs are

clusters, the values of r in Table 8 and ~d and d* in Table 9 are substantially different – for

example, when tracts are clusters r ¼ 0.148 for y3 but ~d ¼ 0.738 for srs/srs in Table 9.

However, 0.738 is close to the value of 0.730 for (tracts, srs/srs) in Table 3. That is, using

the correlation estimated from the model in the variance formula for a total in (7) would be

a mistake, as shown in Example 6 below. However, using the model correlation to

calculate a measure of homogeneity in (15) works.

Example 6. Effect of using incorrect measure of homogeneity on sample size

calculation. Suppose that the design is srs/srs with a fixed second-stage sampling rate and

that tracts or BGs are used as PSUs. The cost assumptions are the same as those in Example 2.

Table 10 in its upper bank lists the sample sizes computed from (12), assuming that the

model correlations in (14) can be used for ~d. This would be appropriate if tracts and BGs

were equal sized. The lower tier of Table 10 shows the sample sizes computed when the

measures of homogeneity are the ones proper for tracts and BGs that are computed from

(15). Since the correct ~ds in Table 9 are much larger than the model correlations in Table 8,

the sample sizes of tracts and BGs in the lower tier are larger than in the upper tier of

Table 10. The sample sizes of elements per tract or BG are correspondingly lower when the

appropriate measures of homogeneity are used. All of the allocations in Table 10 respect the

cost constraint of $100,000, but the one in the lower tier will yield smaller CVs (i.e., more

precise estimates), assuming that the values of ~d from (15) are correct.

Results are different for a ppswr/srs design. The values of the model correlation r in

Table 8 and the measures of homogeneity ~d in Table 9 for tracts and BGs are almost

identical. They are also very close to the design-based values in Table 6, resulting in

relatively similar sample sizes for the two stages of the design using either method. As

noted earlier, probability proportional to cluster-size sampling was extremely effective in

reducing the between component of variance in the Maryland population. The upshot of

this is that the measures of homogeneity and thus the sample sizes are quite similar to ones

for a population in which clusters all have the same size.

Table 10. Sample sizes of PSUs and elements computed with incorrect and correct measures of homogeneity

Tracts Block groups

m �n m �n

rs for srs/srs design using (14)
y1 22 35 26 29
y2 27 28 29 24
y3 57 8 61 7
ins.cov 22 35 27 27
hosp.stay 12 71 15 58
ds for srs/srs design using (15)
y1 58 7 61 6
y2 62 6 65 5
y3 84 2 86 2
ins.cov 76 3 78 3
hosp.stay 32 21 35 18

Valliant et al.: Effects of Cluster Sizes on Variance Components in Two-stage Sampling 779

Unauthenticated
Download Date | 1/7/16 1:10 PM



5. Conclusion

Using variance components and measures of homogeneity are key parts of designing

multistage samples. The relative sizes of the variance components are very sensitive to the

sizes of the first-stage units or clusters themselves. Many textbooks present specialized

variance formulae that assume that all clusters contain the same number of elements.

However, varying cluster sizes can increase the measures of homogeneity that affect the

precision of estimates from a two-stage sample. Having clusters that are more internally

homogeneous will require more clusters and fewer elements per cluster to be sampled to

achieve a desired level of precision. The effect of having variable-sized clusters also

depends on the method of selecting clusters and the type of estimator that is used.

Probability proportional to cluster-size sampling is more efficient than simple random

sampling of clusters. Use of a ratio estimator when clusters are sampled via srs will temper

some of the precision losses when cluster sizes vary, but still will be less efficient than pps

sampling. As a result, recognizing the effects of varying cluster sizes is important for

designing efficient samples and choosing estimators.

The variation of the tract sizes in the Maryland population used in our examples is

considerably more than practitioners would prefer when defining PSUs for a household

survey. For example, the range of the number of persons per tract is 86 to 13,579. Having

such a large variation in PSU sizes leads to large differences in the cluster totals of analysis

variables. This causes the between-cluster variance component to be large, which in turn

leads to high measures of homogeneity and inefficiency if an equal-probability sample of

clusters is selected. Standard practice would be to combine the small tracts or BGs so that

all PSUs have some prescribed minimum number of persons. Although variation in cluster

sizes can have a dramatic effect on the measures of homogeneity needed to design a

sample, this seems to be rarely emphasized in sampling texts.

If the designer has some flexibility in forming the clusters, as would usually be the case

in a household survey, clusters with nearly equal numbers of elements should definitely be

created. In some surveys, however, the clusters are naturally occurring units, like schools,

classrooms, or establishments. In those cases, one may have to live with the predefined

units, but considering the variation in cluster size will be important when determining

sample sizes. This will be true whether clusters are selected with equal probability or with

probabilities proportional to their sizes as measured by counts of elements. Generally

speaking, sampling unequal-sized clusters with probabilities proportional to their sizes

will be more efficient as long as the measure of sizes (MOSs) are accurate and cluster

totals of analysis variables are closely related to MOSs. If clusters are selected with equal

probability, some efficiency can be recovered by using a ratio estimator of a total rather

than a p-estimator; however, in the examples we presented, pps sampling will still be more

efficient.

We have not covered several topics that are important in practice: three-stage sampling

and nonlinear estimators more general than a ratio estimator. Three-stage sampling is used

in many household surveys, but involves more complex variance formulae that we plan to

address in a separate paper. Although we did not cover nonlinear estimators, such as the

poststratification estimator or the general regression estimator, the analyses presented here

will apply after forming a linear approximation to the nonlinear estimator (see, e.g., Binder
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1995). The sizes of design effects for these nonlinear estimators can be quite different from

those for the p-estimator, as pointed out by Park and Lee (2004).

Another important topic that we have omitted is domain estimation. The general

technique of breaking the variance of an estimator into components will apply to

subpopulation estimates. However, using the usual method of coding y to 0 for units not in

the subpopulation will have an effect on the size of between- and within-variance

components, which in turn affects the measures of homogeneity and sample size

calculations. Whether a domain is spread over most clusters or present only in a subset of

them will also affect the efficiency of sampling probability proportional to an MOS

compared to equal-probability sampling of clusters.

Sample size calculation is an important aspect of survey design. Using formulae with

assumptions that are not supported by the population at hand can result in either wasted

project funding, an insufficient sample size with lower precision than desired, or

inconclusive hypothesis tests. We demonstrated techniques not clearly specified in the

literature to properly account for the variance components under two first-stage sample

designs and the implications for assuming equal cluster sizes when in fact this is not the

case. With knowledge in hand, survey statisticians are better equipped to design multistage

surveys, and teachers will be better able to explain some of the nuances of sample design

to students.
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On Proxy Variables and Categorical Data Fusion

Li-Chun Zhang1

The problem of inference about the joint distribution of two categorical variables based on
knowledge or observations of their marginal distributions, to be referred to as categorical data
fusion in this paper, is relevant in statistical matching, ecological inference, market research,
and several other related fields. This article organizes the use of proxy variables, to be
distinguished from other auxiliary variables, both in terms of their effects on the uncertainty of
fusion and the techniques of fusion. A measure of the gains of efficiency is provided, which
incorporates both the identification uncertainty associated with data fusion and the sampling
uncertainty that arises when the theoretical bounds of the uncertainty space are unknown
and need to be estimated. Several existing techniques for generating fusion distributions
(or datasets) are described and some new ones proposed. Analysis of real-life data
demonstrates empirically that proxy variables can make data fusion more precise and the
constructed fusion distribution more plausible.

Key words: Identification problem; sampling uncertainty; uncertainty analysis; fusion
distribution; fusion data; proxy variable; relative efficiency.

1. Introduction

Some statistical problems are characterized by a lack of observations of interest. A familiar

example is incomplete data due to survey nonresponse. Examples of other ‘censoring’

mechanisms that have received attention in the social sciences can be found in Manski

(1995). In all these cases, the lack of observations of interest induces an identification

uncertainty about any stipulated model assumptions that is not a question of the sample

size but one of the data structure, such that “inference even from an infinite number of

observations is subject” (Koopmans 1949, 132).

The particular situation to be considered in this article is inference about the joint

distribution of two target categorical variables of interest based on knowledge or observations

of their marginal distributions, to be referred to as categorical data fusion. The setting is

readily recognizable in statistical matching (e.g., D’Orazio et al. 2006b; Rässler 2002),

ecological inference (e.g., Wakefield 2004; King 1997), and several other related fields.

The first topic of interest in data fusion is uncertainty analysis. The identification

problem implies that there exist a set of probability distributions of the target two-way

contingency table, denoted by Q and referred to as the uncertainty space, whose

elements can be constrained by knowledge or observations of the table margins.
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The conceptualization and measure of uncertainty space for statistical matching have been

considered in Kadane (1978), Moriarity and Scheuren (2001), D’Orazio et al. (2006a),

Rässler and Kiesel (2009) and Conti et al. (2012, 2013).

The second topic of interest is data fusion techniques. Each element of the uncertainty

space corresponds to a specific joint distribution. Identification is only possible by stipulation.

The thus-identified joint distribution will be referred to as the fusion distribution. A fusion

distribution should be regarded as a pseudo estimate of the target distribution, since the

underlying assumption is not empirically verifiable. Sometimes, as is often the case in

statistical matching, the practical interest is to construct a fusion dataset that conforms to the

fusion distribution. It is natural to treat the two as the dual aspects of each data fusion

technique. Indeed, D’Orazio et al. (2006b) refer to the construction of fusion distribution as

statistical matching at the macro level and to fusion data as that at the micro level.

In this article we organize for the first time the use of proxy variables for categorical

data fusion. We define a proxy variable to be similar in concept to the target variable and

have the same support. For example, having a registered job-seeker status or not can be

considered a proxy variable of being unemployed or not in the Labor Force Survey (LFS),

but not whether a person is male or female even though both are binary variables. On the

other hand, having a registered job-seeker status or not is not a proxy variable of the there-

category LFS status (employed, unemployed, not in the labor force), because of the

different support. It is helpful to distinguish between proxy and other auxiliary variables in

data fusion both with regards to uncertainty and technique.

The rest of the article is arranged as follows. In the first place, when available, the proxy

variables are usually the covariates that have the strongest association with the target ones.

To facilitate a precise statement of this, in Section 2 we propose a measure of the relative

efficiency of fusion with and without the proxy (or other auxiliary) variables, which builds

on the measure of uncertainty space proposed by Conti et al. (2012), but here incorporates

additionally the sampling uncertainty when the relevant theoretical uncertainty bounds are

unknown and need to be estimated.

Next, existing methods, including conditional independence model, middle-of-bounds

estimation and iterative proportional fitting, are discussed in Section 3. Note is given

whether a technique can be more readily motivated depending on the availability of proxy

variables. We also introduce some new methods, including a recursive derivation of the

middle-of-bounds estimates, and in particular a flexible technique of distribution

calibration for making use of proxy variables.

Thirdly, using real-life data on education, election turnout, and labor force status, we

demonstrate empirically in Section 4 that proxy variables can potentially yield not only huge

reduction of the identification uncertainty of data fusion, but also more plausible pseudo

estimates of the target joint distribution. Finally, a short summary is given in Section 5.

2. Uncertainty Analysis

2.1. The Identification Problem

There is a general identification problem in data fusion due to the lack of joint

observations of the target data. The problem can be characterized by the breakdown of
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likelihood-based inference of the uncertainty space Q. Binary data can be used to provide

an illustration.

Let Y1 ¼ 0; 1 and Y2 ¼ 0; 1 be the two target variables. Consider first the situation

where Y1 and Y2 are separately observed in two independent and disjoint samples. This is a

typical setting for statistical matching. Let n1 and n2 be the respective sample sizes, and

let y1 and y2 be the respective numbers of Y1 ¼ 1 and Y2 ¼ 1. Let y1 have the Binomial

ðn1;f1Þ distribution where f1 ¼ PðY1 ¼ 1Þ, and let y2 have the Binomial ðn2;f2Þ

distribution where f2 ¼ PðY2 ¼ 1Þ. Note that the two outcomes y1 and y2 are independent

of each other because they are observed in two independent samples of Y1 and Y2,

respectively. The likelihood is then given by

Lðf1;f2; y1; y2Þ / f
y1

1 ð1 2 f1Þ
n12y1f

y2

2 ð1 2 f2Þ
n22y2

¼ ðu10 þ u11Þ
y1 ðu00 þ u01Þ

n12y1 ðu01 þ u11Þ
y2 ðu00 þ u10Þ

n22y2 / Lðu; y1; y2Þ

where u ¼ ðuijÞi;j¼0;1, and uij ¼ PðY1 ¼ i; Y2 ¼ jÞ for i; j ¼ 0; 1. The maximum-likelihood

estimate (MLE) of ðf1;f2Þ is ðf̂1; f̂2Þ ¼ ð y1=n1; y2=n2Þ. However, the MLE û can not be

uniquely identified, but is constrained to a region called the likelihood ridge (D’Orazio

et al. 2006a) defined by

û10 þ û11 ¼ y1=n1 and û01 þ û11 ¼ y2=n2 and
ij

X
ûij ¼ 1

Next, suppose a single sample of the target data of size n, where joint observations of Y1

and Y2 are unavailable due to some censoring mechanism. Instead, only the marginal totals

y1 of Y1 ¼ 1 and y2 of Y2 ¼ 1 are observed. Let nij be the number of units with

ðY1; Y2Þ ¼ ði; jÞ, for i; j ¼ 0; 1, where y1 ¼ n11 þ n10 and y2 ¼ n01 þ n11. Suppose the joint

cell counts follow the multinomial distribution with parameters u as defined above. The

likelihood is then the sum of the probabilities of all possible joint cell counts subjected to

the marginal constraints, that is,

Lðu; y1; y2Þ / Pð y1; y2Þ

¼
XU11

m¼L11

Pðn11 ¼ m; n10 ¼ y1 2 m; n01 ¼ y2 2 m; n00 ¼ n 2 y1 2 y2 þ mÞ

¼
XU11

m¼L11

bmu
m
11u

y12m
10 u

y22m
01 u

n2y12y2þm
00

where L11 ¼ max ð y1 þ y2 2 n; 0Þ, and U11 ¼ min ð y1; y2Þ, and the coefficient bm is

given by

bm ¼
n!

m!ð y1 2 mÞ!ð y2 2 mÞ!ðn 2 y1 2 y2 þ mÞ!

A variation of the setting is when one of the margins is known, as is usual in ecological

inference. Suppose the marginal distribution of Y1, that is f1 ¼ P Y1 ¼ 1ð Þ, is known.

Conditional on y1, n11 and n01 are now modelled as two independent binomial
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distributions, that is Binomial ð y1; u11=f1Þ for n11, and Binomial ðn1 2 y1; u01=ð1 2 f1ÞÞ

for n01. The likelihood is then given by

Lðu; y1; y2Þ / Pð y2jy1Þ ¼
XU11

m¼L11

Pðn11 ¼ m; n01 ¼ y2 2 mjy1Þ

¼
XU11

m¼L11

Pðn11 ¼ mjy1ÞPðn01 ¼ y2 2 mjn 2 y1Þ

This is the same likelihood as above, except that the coefficient bm is replaced by

bc
m ¼

y1!

m!ð y1 2 mÞ!

� �
ðn 2 y1Þ!

ð y2 2 mÞ!ðn 2 y1 2 y2 þ mÞ!

� �

¼ bm=
n!

y1!ðn 2 y1Þ!

� �

that is bc
m / bm for fixed ð y1; y2; nÞ. Plackett (1977) demonstrates that the MLE of the log

odds ratio of this 2 £ 2 table is either 1 or 21. Equivalently, the MLE of either

PðY2 ¼ 1jY1 ¼ 1Þ or PðY2 ¼ 1jY1 ¼ 0Þ is 0 or1, which are all on the boundary of the

likelihood ridge.

The reason for the breakdown of likelihood-based inference above is not the sample

size. The number of observations might as well be infinite in any of the settings, the

problem would still remain. Identification of a particular u is only possible by stipulation,

which is thus associated with an identification uncertainty that is distinct from the

sampling uncertainty. The former is due to the structure of the available data, whereas the

latter is basically a function of the sample size. While the sampling uncertainty will

become negligible as the sample size tends to infinity, the identification uncertainty could

remain fundamentally unchanged. Therefore, for proper inference in data fusion, it is

necessary to quantify the identification uncertainty.

2.2. Measure of Identification Uncertainty

A natural approach is to construct a measure of the uncertainty space Q, in the sense

that larger Q would imply greater identification uncertainty and vice versa. Denote by

Y1 ¼ 1; : : : ;H and Y2 ¼ 1; : : : ; J the target variables of interest. Let fi ¼ P½Y1 ¼ i�

and fj ¼ PðY2 ¼ jÞ, where the simplified notation requires that one observe the notational

correspondence between i and Y1 and between j and Y2. Let uij ¼ P½ðY1; Y2Þ ¼ ði; jÞ� be

the target joint distribution. The Fréchet inequalities for uij are given as

max ðfi þ fj 2 1; 0Þ ¼ Lij # uij # Uij ¼ min ðfi;fjÞ

It should be noted that logical constraints among the variables may invalidate these

bounds. Such situations of incoherence are excluded from the general discussion below

(see e.g., Lindley et al. 1979, Vantaggi 2008 and Brozzi et al. 2012 for discussions).

The Fréchet inequalities can also be given for any subtable as follows. Let R1 #

{1; : : : ;H} be a subset of categories of Y1, and let R2 # {1; : : : ; J} be that of Y2. Let

uR ¼
P

i[R1

P
j[R2

uij be the total measure of the subtable corresponding to R1 £ R2. Let

fRj and fRj be the respective marginal probabilities of the subtable, satisfying
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uR ¼
P

i[R1
fRi ¼

P
j[R2

fRj, given which the Fréchet inequalities for uij, where i [ R1

and j [ R2, are given as

max ðfRi þ fRj 2 uR; 0Þ ¼ LRij # uijjuR # URij ¼ min ðfRi;fRjÞ ð1Þ

The full-table bounds thus correspond to the case of uR ¼ 1, R1 ¼ {1; : : : ;H} and

R2 ¼ {1; : : : ; J}.

Conti et al. (2012) propose using the interval width as a point-wise measure of Q at uij,

that is,

Dij
def
¼Uij 2 Lij ð2Þ

Below we derive two results Lemma 1 and Corollary 1 in the case of categorical ðY1; Y2Þ.

Lemma 1 The point-wise measure Dij given by (2) can be directly calculated as

Dij ¼ min ðfi; 1 2 fi;fj; 1 2 fjÞ ð3Þ

Proof. First, it is only necessary to consider the situation where fi # fj, since one can

handle the situation where fi $ fj by exchanging the generic denotation of Y1 and Y2.

Next, provided fi # fj, one only needs to distinguish between two situations: fi þ fj #

1 or fi þ fj . 1. The result (3) follows then from observing:

fi #fj and fiþfj # 1 ) Dij¼fi and fi # min ðfj;1 2fjÞ# 1=2 # 1 2fi

fi #fj and fiþfj . 1 ) Dij¼ 1 2fj and 1 2fj ,fi #fj and 1 2fj # 1 2fi B

Corollary 1 The identification uncertainty (2) is the same everywhere for binary Y1

and Y2.

Proof. The binary outcome space can be specified as ði; i cÞ and ð j; j cÞ, respectively, such

that fi c ¼ 1 2 fi and fj c ¼ 1 2 fj. It follows from (1) that Dij is the same for any ði; jÞ. B

Next, suppose there are additional categorical auxiliary variables X, and let k ¼ 1;

: : : ;K be the levels arising from cross classifying all the variables in X. The joint

distributions fik ¼ PðY1 ¼ i;X ¼ kÞ and fjk ¼ PðY2 ¼ j;X ¼ kÞ are assumed to be

observable or known, but not the target conditional distribution

lk
ij ¼ PðY1 ¼ i; Y2 ¼ jjX ¼ kÞ. Note that, in this paper, f can designate any unconditional

probability while u will be reserved for that of ðY1; Y2Þ. Note also the special tensor

(or Einstein) notation for conditional probability lk
ij, which facilitates the summation

convention whenever an index appears both as superscript and subscript. An index that

appears only as subscript, or only as superscript, remains constant. Thus, for example, we

have lk
i ¼ PðY1 ¼ ijX ¼ kÞ, and fi ¼ lk

i fk ¼
P

k PðY1 ¼ ijX ¼ kÞPðX ¼ kÞ ¼ EX lk
i

� �
,

where EX denotes expectation over X.

As a measure of the conditional identification uncertainty given X ¼ k, Conti et al.

(2012) use

Dk
ij
def
¼Uk

ij 2 Lk
ij ð4Þ

where Lk
ij ¼ max lk

i þ lk
j 2 1; 0

� �
# lk

ij # min lk
i ; l

k
j

� �
¼ Uk

ij. It follows from

Lemma 1 that

Dk
ij ¼ min lk

i ; 1 2 lk
i ; l

k
j ; 1 2 lk

j

� �
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Note that sharper bounds are available when Y1 and Y2 are ordered categorical variables

(Conti et al., 2012, 2013). Note also that it is sometimes possible to achieve point-wise

identifiability due to logical constraints between the target and auxiliary variables.

For instance, let Y1 be the employment status and let X contain the payroll records at

the tax authority, then the presence of wage payment in X would imply null probability of

Y1 being other than employed.

To assess the contribution of the auxiliary information {fik} and {fjk} on uij, put

�Dij
def
¼EX Dk

ij

� �
¼ fkD

k
ij ð5Þ

�Lij
def
¼fkLk

ij ¼ EX Lk
ij

� �
# uij ¼ EX lk

ij

� �
# EX Uk

ij

� �
¼ fkUk

ij
def
¼ �Uij ð6Þ

One observes that fi ¼ fkl
k
i ¼ EX lk

i

� �
and fj ¼ fkl

k
j ¼ EX lk

j

� �
. It follows from

Jensen’s inequality that Lij # �Lij and �Uij # Uij (Conti et al., 2009), such that

�Dij ¼ �Uij 2 �Lij # Dij ð7Þ

The result (7) means that the bounds ð �Lij; �UijÞ are never wider but can only be narrower

than Lij;Uij

� �
due to the additional information {fik} and {fjk}. A measure of the relative

efficiency (RE) of this additional information for uij can thus be given as

gij ¼ �Dij=Dij ð8Þ

In particular, powerful auxiliary information is often the case when proxy values for the

target ones are available, which can greatly reduce the identification uncertainty, as will be

illustrated in Section 4. Moreover, the scope of data fusion techniques is widened by the

proxy variables (Section 3).

Conti et al. (2012) propose combining the point-wise measure (4) to yield an overall

measure of the identification uncertainty through a set of normalising weights, that is,

�D ¼ w
ij
kD

k
ij where w

ij
k=fk ¼ lk

i l
k
j

and w
ij
k ¼

~fijk ¼ P½ðY1; Y2;XÞ ¼ ði; j; kÞ� when Y1 and Y2 are independent conditional

on X. But other choices may be possible. In particular, setting w
ij
k ¼ wijfk, where

1ijw
ij ¼ 1, yields

D ¼ wijDij and �D ¼ wij �Dij and g ¼ �D=D ¼ �wijgij ð9Þ

where �wij=wij ¼ Dij=D. The choice (9) expresses the overall RE g ¼ �D=D as a weighted

average of the point-wise RE gijs. The weights may be set as wij ¼ fifj. Or they may be

chosen to reflect the relative ‘importance’ of uij, for example, both D ¼ max Dij and

D ¼ min Dij can be accommodated by (9). Note that, in the special case of binary data

without auxiliary data, Dij is a constant of ði; jÞ, so that the overall measure D does not

depend on the choice of the weights.
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2.3. Estimation of Uncertainty Bound

The uncertainty bounds ðLij;UijÞ for the target uij depend on the marginal probabilities

fi and fj. In reality these may be unknown and need to be estimated. Consequently,

in uncertainty analysis one also needs to take into consideration the sampling uncertainty.

Take first the case where observations of Y1 and Y2 are available in separate and

independent samples. Assume asymptotic normal distributions of f̂i and f̂j.

The distribution of the max and min of bivariate normal random variables has been

studied in the literature (e.g., Nadarajah and Kotz 2008; Cain 1994). These results apply

directly to Ûij, but further derivation is needed for L̂ij. An alternative is to directly evaluate

the expectations and variances by Monte Carlo calculation.

Take next the situation with a single sample, where f̂i and f̂j are not independent. Without

losing generality, it suffices to consider L̂11; Û11

� �
for cell ð1; 1Þ in a 2 £ 2 table. Denote the

true cell counts by ðn11; n10; n01; n00Þ where n11 is the cell of concern. Let n ¼
P1

i¼0

P1
j¼0nij.

The estimates L̂11, Û11 and D̂ ¼ D̂11 ¼ Û11 2 L̂11 are, respectively, given as

L̂11 ¼ n21 max ðn11 2 n00; 0Þ

Û11 ¼ n21ðn11 þ min ðn10; n01ÞÞ

D̂ ¼ D̂11 ¼ n21ðmin ðn10; n01Þ þ min ðn11; n00ÞÞ

The expectation and variance of L̂11 can be evaluated via conditioning on m ¼ n11 þ n00, for

m ¼ 1; : : : ; n. For convenience, denote by ‘b;m;c the generic binomial probability function,

that is, ‘b;m;c ¼ PðB ¼ bÞ for B , Binomialðm;cÞ. Then,

EðL̂11Þ ¼ n21
Xn

m¼1

mþm;c‘m;n;j

VðL̂11Þ ¼ n22
Xn

m¼1

tþm;c‘m;n;j 2
Xn

m¼1

mþm;c‘m;n;j

 !2
0

@

1

A

where j ¼ u11 þ u00, and mþm;c ¼
Pm

b¼kþ1 ð2b 2 mÞ‘b;m;c and tþm;c ¼
Pm

b¼kþ1

ð2b 2 mÞ2‘b;m;c, and c ¼ u11=ðu11 þ u00Þ, and k ¼ bm=2c is the largest integer less or

equal to m=2. An alternative, closed expression for mþm;c can be given as

mþm;c ¼ mð2c 2 1ÞPðB $ k þ 1Þ þ 2ðk þ 1Þð1 2 cÞ‘kþ1;m;c, where B , Binomialðm;cÞ,

on noting the following result (Patel et al. 1976, 201):
Xm

b¼k

b
m

b

 !

cbð1 2 cÞm2b ¼ mcPðB $ kÞ þ kð1 2 cÞPðB ¼ kÞ

Similarly for Û11. Let m ¼ n10 þ n01 and j ¼ u10 þ u01. One obtains

EðÛ11Þ ¼ u11 þ n21
Xn

m¼1

mm;c‘m;n;j

VðÛ11Þ ¼ n21u11ð1 2 u11Þ þ n22
Xn

m¼1

tm;c‘m;n;j 2
Xn

m¼1

mm;c‘m;n;j

 !2
0

@

1

A

þ2n22
Xn

m¼1

hmmm;c‘m;n;j 2 nu11

Xn

m¼1

mm;c‘m;n;j

 ! !
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where hm ¼ Eðn11jmÞ ¼ ðn 2 mÞu11=ðu11 þ u00Þ, and

mm;c¼EðminðA;BÞjAþB¼m;B,Binomialðm;cÞÞ¼
Xk

b¼1

b‘b;m;cþ
Xm2k21

b¼1

b‘b;m;12c

tm;c¼E minðA;BÞ2jAþB¼m;B,Binomialðm;cÞ
� �

¼
Xk

b¼1

b2‘b;m;cþ
Xm2k21

b¼1

b2‘b;m;12c

Again, a closed expression can be given for mm;c¼mcPðB#kÞ2ðkþ1Þð12cÞ‘kþ1;

m;cþmð12cÞPðB$kþ1Þ2ðm2kÞc‘k;m;c. Finally, via the same conditioning on

m¼n10þn01, one obtains

EðD̂Þ¼n21
Xn

m¼1

ðmm;c1
þmn2m;c2

Þ‘m;n;j

VðD̂Þ¼n22
Xn

m¼1

tm;c1
‘m;n;j2

Xn

m¼1

mm;c1
‘m;n;j

 !2
0

@

1

A

þn22
Xn

m¼1

tn2m;c2
‘m;n;j2

Xn

m¼1

mn2m;c2
‘m;n;j

 !2
0

@

1

A

þ2n22
Xn

m¼1

mm;c1
mn2m;c2

‘m;n;j2
Xn

m¼1

mm;c1
‘m;n;j

 !
Xn

m¼1

mn2m;c2
‘m;n;j

 ! !

where c1¼u10=ðu10þu01Þ and c2¼u11=ðu11þu00Þ.

Now that the true target distribution u is not identifiable, one needs to stipulate a

particular element in the uncertainty space ~u [ Q, in order to evaluate the expectations

and variances above. Various fusion distributions described in Section 3 can be used. As it

will be illustrated in Section 4, the choice seems to matter little to the results. In other

words, the identification uncertainty of the sampling uncertainty is usually small compared

to the sampling uncertainty itself.

3. Fusion Techniques

Data fusion techniques depend not only on whether auxiliary data are available, but also

the nature of the auxiliary data that are available. Note will be given whether a technique

requires proxy variables or not. To focus on the identification that results from the

underlying assumptions, the techniques will be described in terms of the relevant

theoretical distributions. It is understood that some of these may be known while some

may require estimation in a particular application.

3.1. Conditional Independence Assumption

Denote by {ðX; Y1Þ; ðX; Y2Þ} the setup where each target variable is separately observed

with the auxiliary ones. The conditional independence assumption (CIA) is given by

~l
k

ij ¼ lk
i l

k
j ð10Þ
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The corresponding fusion distribution can be given in several expressions:

~uij ¼ lk
i l

k
j fk ¼ lk

i fjk ¼ lk
j fik ¼ fikfjk=fk

A schematic denotation of data fusion by the CIA is Y1

‘
Y2jX. The auxiliary data may

or may not include proxy variables. However, the possibility of including a good

proxy variable for at least one of the variables can be beneficial (Rässler 2002; D’Orazio

et al. 2006b). The independence assumption (IA), that is, Y1

‘
Y2 or ~uij ¼ fifj, can be

considered as a special case of the CIA in the absence of auxiliary information.

To obtain categorical fusion data, some variant of the hot-deck imputation can be used

(see e.g., Singh et al. 1993). Constraints of hot-deck imputation may easily be imposed

when generating synthetic fusion data. For instance, starting from the dataset

{ðxs; y1sÞ; s ¼ 1; : : : ; n}, synthetic ~y2s can be generated randomly for each s ¼ 1;

: : : ; n from the conditional distribution lk
j given xs ¼ k. However, one may wish to

constrain the synthetic dataset {ðxs; y1s; ~y2sÞ; s ¼ 1; : : : ; n} such that ~njk ¼Pn
s¼1Ixs¼kI ~y2s¼j ¼ nkl

k
j ¼ nkfjk=fk for all ð j; kÞ and nk ¼

Pn
s¼1Ixs¼k

� �
. This can be

accomplished as follows: first, construct a vector of nk components where ~njk of them have

value j, for j ¼ 1; : : : ; J; then, assign any permutation of this vector to the units that have

xs ¼ k. The difference between the unconstrained and constrained hot decks here is an

example of the matching noise (see e.g., Conti et al. 2008 and Marella et al. 2008 for

discussions).

It is convenient to merge separate datasets under the CIA. Okner (1972) is often cited as

an early reference. But the CIA is understandably avoided in ecological inference, where it

would have defeated its own purpose. It is interesting to note that the same assumption

may be popular for generating fusion data, but disreputable when it comes to the

construction of fusion distribution.

3.2. Middle of Bounds

To start with, consider the situation with no auxiliary data. The difference between the true

uij and any admissible ~uij, or the ‘loss’ of ~uij as measured by j ~uij 2 uijj, has an upperbound

Lij ¼ max ð ~uij 2 Lij; Uij 2 ~uijÞ ¼ Dij=2þ j ~uij 2 mijj

where mij ¼ ðLij þ UijÞ=2 and Dij ¼ Uij 2 Lij. In other words, Lij is the upper bound of the

identification error of ~uij. It attains the minimum value Dij=2 at

~uij ¼ mij ¼ ðLij þ UijÞ=2 ð11Þ

which is the middle-of-bounds (MoB) value that minimizes the maximum potential loss.

Note that D’Orazio et al. (2006a, 2006b) define the ‘middle-of-bounds’ as the expectation

of uij with respect to a Bayesian distribution of the parameter. Theirs differs

from the definition (11) and its minimax interpretation, except in the special case of

binary Y1 and Y2.

The MoB fusion distribution ~u should be well defined and preserve all the margins of Y1

and Y2. Take first the binary base, and let Y1 and Y2 take values ði; i cÞ and ð j; j cÞ,

respectively. Then,

Zhang: Categorical Data Fusion 791

Unauthenticated
Download Date | 1/7/16 1:11 PM



2ðu~ij þ u~ij
c Þ ¼ ðUij þ LijÞ þ ðUij c þ Lij c Þ

¼ uij þ min ðuij c ; ui cjÞ þ max ðuij 2 ui cj c ; 0Þ

þuij c þ min ðuij; ui cj c Þ þ max ðuij c 2 ui cj; 0Þ ¼ 2fi

since min ða; bÞ þ max ða 2 b; 0Þ ; a for any a and b. An MoB fusion distribution in the

nonbinary case can be constructed recursively, by repeatedly referring to the basic binary

case and the subtable bounds (1). Example 1 below suffices to illustrate the idea.

Example 1. Consider the target 3 £ 3 table to the left in Table 1. The marginal fi and fj

are as given, as well as the MoB values directly derived from them. Clearly, since these do

not sum to the total measure uR ¼ 1, they do not yield a well-defined fusion distribution.

However, starting from any of them, which is by definition an admissible value of the

corresponding ~uij, one can construct the corresponding MoB fusion distribution rooted in

the chosen cell. The choice of cell (1,1) is illustrated here. The initial ~u11 ¼ 1=8 partitions

the remaining MoB ~uijs into three groups:

1. Cell (1,2) and (1,3). The implied row margin is fRi ¼ fi 2 ~ui1 ¼ 3=8 for i ¼ 1. The

column margins are fRj ¼ fj ¼ 1=8 for j ¼ 2 and 5=8 for j ¼ 3. The relevant

subtable is given by deleting the initial first column since, whatever the values

ð ~u21; ~u31Þ, they have no effect on ð ~u12; ~u13Þ given fRi and fRj. Thus the total measure

of the relevant subtable is uR ¼ 1 2 1=4 ¼ 3=4. The MoB ð ~u12; ~u13Þ ¼ ð1=16; 5=16Þ

follow from the subtable bounds (1).

2. Similarly for cell (2,1) and (3,1). The implied column and row margins are as given.

The relevant subtable is given by deleting the initial first row, yield the

corresponding subtable total measure uR ¼ 1 2 1=2 ¼ 1=2. The MoB ð ~u21; ~u31Þ

follow from (1).

3. The remaining cells on deleting the initial row and column occupied by the root cell

(1,1). The implied row margins are fRi ¼ fi 2 ui1 and fRj ¼ fj 2 u1j. The implied

subtable total measure is uR ¼ 1 2
P

j
~u1j 2

P
i
~ui1 þ ~u11, which is 3=8 in this case.

Clearly, the initial problem is thus reduced to the smaller, remaining 2 £ 2 table,

which can be solved recursively.

Table 1. Illustration of MoB fusion distribution rooted in cell (1,1).
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The resulting MoB distribution is well defined and preserves all the margins of

Y1 and Y2. B

In the setting {ðX; Y1Þ; ðX; Y2Þ}, the conditional binary MoB fusion distribution is

given by

~l
k

ij ¼ mk
ij ¼

1

2
max lk

i þ lk
j 2 1; 0

� �
þ min lk

i ; l
k
j

� �� �
ð12Þ

such that ~uij ¼ fk
~l
k

ij, denoted by mijjX. The conditional nonbinary MoB fusion distribution

can be constructed recursively as described above, separately for each X ¼ k. Again, the

auxiliary data may or may not include proxy variables, although the plausibility of the

MoB distribution can be quite different with or without the latter.

The use of binary MoB fusion distribution has been considered, for example, by

Chambers and Steel (2001) in the context of ecological inference, but rarely in statistical

matching. The discussion above shows that the MoB fusion distribution is more

complicated to handle than CIA when merging data files containing nonbinary and/or

multiple target variables.

3.3. Structure-Preserving Estimation

Consider the setting {ðX 0; Y1Þ; ðX
0; Y2Þ}, and suppose now the auxiliary data are

X 0 ¼ ðX; Z1Þ, where Z1 is a proxy variable for Y1 and X contains the rest of the nonproxy

variables. Data fusion is yielded by turning Z1 into ~Y1, under certain distributional

constraints derived from the knowledge or observations available. Denote by fijk the joint

distribution of ðY1; Y2;XÞ, and by fhjk that of ðZ1; Y2;XÞ where the proxy Z1 is indexed by

h, and by ~fijk the fusion distribution ð ~Y1; Y2;XÞ where ~Y1 has the same index as Y1 but a

distinction is made between f and ~f.

Structure-preserving estimation (SPREE) operates by raking (or iterative proportional

fitting) of the initial table {fhjk} towards certain sufficient margins that are available.

To identify the constraints that may be imposed, one only needs to inspect, in a

‘descending’ order, the log-linear representation of the fusion distribution, that is,

log ~fijk ¼ ~a0 þ ~ai þ ~aj þ ~ak þ ~aij þ ~aik þ ~ajk þ ~aijk

Take first ~aijk, which corresponds to the sufficient margin ~fijk. Since fijk is unavailable, no

constraint can be imposed on ~aijk. Next, take ~ajk, for which fjk can be derived from

{ðX; Z1; Y2Þ} and imposed through raking. The case similar for ~aik, where fik can be

derived from {ðX; Z1; Y1Þ}, but not ~aij, which requires the knowledge of fij. There is no

need to go through the lower-order terms as these will be fixed through the constraints

already included: {fik} and {fjk}. Note that one needs to ensure that these two

distributions are consistent with each other if they are estimated from separate data

sources. The fusion distribution by SPREE can be characterized by the proxy interactions,

derived from ðZ1;Y2;XÞ, which are preserved by raking

ð ~aij; ~aijkÞ ¼ ðahj;ahjkÞ and ~l
jk

i ¼
~fijk=fjk ð13Þ

A schematic representation of SPREE (13) is ðZ1; Y2;XÞ! ð ~Y1; Y2;XÞjðY2;XÞ&ðY1;XÞ.
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Singh et al. (1993) consider a similar approach of exploring proxy data through log-

linear constraints in the setting of merging three data files. The term SPREE, however, is

taken directly from the small-area estimation literature that dates further back (e.g., Purcell

and Kish 1980).

Two other generic settings for SPREE are worth noting. First, consider

{ðX 0; Y1Þ; ðX
0; Y2Þ} where X 0 ¼ ðX; Z1; Z2Þ, that is, proxy variables are available for both

Y1 and Y2. The SPREE can either turn ðZ1; Z2;X; Y2Þ into ð ~Y1; Z2;X; Y2Þ, or ðZ1; Z2;X; Y1Þ

into ðZ1; ~Y2;X; Y1Þ. Afterwards, the ‘redundant’ proxy variable can be integrated out to

obtain the fusion distribution ~fijk, that is, Z2 out of the distribution of ð ~Y1; Z2;X; Y2Þ or Z1

out of the distribution of ðZ1; ~Y2;X; Y1Þ. For instance, the SPREE turns Z2 (indexed by g)

into ~Y2 by raking of {fhigk} towards {fhik} and {fhjk}, that is,

ðZ1; Z2;X; Y1Þ! ðZ1; ~Y2;X; Y1ÞjðZ1; Y1;XÞ&ðZ1; Y2;XÞ, which is characterized by

ð ~ahij; ~aijk; ~ahijkÞ ¼ ðahig;ahgk;ahigkÞ and ~l
hik

j ¼
~fhijk=fhjk ð14Þ

In the second case, consider {Y1; Y2; ðX; Z1; Z2Þ}, where there are no joint observations of

the target and auxiliary variables of any kind, but there do exist joint proxy variables

among the auxiliaries. The SPREE remains operative by raking of {fhgk} towards {fi},

{fj} and {fk}, that is, ðZ1; Z2;XÞ! ð ~Y1; ~Y2;XÞjY1&Y2&X, under which

ð ~aij; ~aik; ~ajk; ~aijkÞ ¼ ðahg;ahk;agk;ahgkÞ ð15Þ

It is instructive to note that neither the CIA (10) nor the MoB (12) is able to utilize the

auxiliary data ðX; Z1; Z2Þ in this setting.

3.4. Distribution Calibration

To start with, observe the setting {Y1; Z1}, where the target Y1 and proxy Z1 are separately

available. To turn Z1 into ~Y1 that has the same distribution as Y1, one only needs to identify

an H £ H matrix j ¼ {jh
i ; i; h ¼ 1; : : : ;H}, where 1ijh

i ¼ 1, such that

~fi ¼ jh
i fh ¼ fi

Morever, being a gross-flow matrix from Z1 to ~Y1, j tells one how to generate a set of

values { ~Y1s; s ¼ 1; : : : ; n} from the initial proxy values {z1s; s ¼ 1; : : : ; n} by

constrained hot deck. Subjected to rounding, TrðnjÞ initial proxy values will then remain

the same, where n is the diagonal matrix of ðnfhÞh¼1; : : : ;H , while the rest n 2 TrðnjÞ will

be changed. By contrast, with d ¼ {dh
i } where dh

i ¼ 1 if i ¼ h and 0 otherwise, no proxy

values will be changed at all. This suggests as a well defined approach to obtain some

minimum-change
~
j by solving the following optimization problem:

j
min Dðj; dÞ subject to fi ¼ jh

i fh and 1ijh
i ¼ 1 and jh

i $ 0 ð16Þ

where Dðj; dÞ is the distance function of choice. For instance, to minimize the number of

changes of the initial proxy values, one can put D ¼ TrðndÞ2 TrðnjÞ ¼ n 2 TrðnjÞ. Or, a

squared Euclidean distance function between j and d is given by D ¼
P

i;hðj
h
i 2 dh

i Þ
2.

Provided additional nonproxy auxiliary data, distribution calibration (DC)

defined by (16) can be applied conditionally. Suppose the setting {ðX; Y1Þ; ðX; Z1Þ}.
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Conditional distribution calibration (CDC) from Z1 to ~Y1 for each X ¼ k yields
~jk ¼ { ~j

hk

i ; i; h ¼ 1; : : : ;H}, such that

~l
k

i ¼ lk
h
~
j

hk

i ¼ lk
i and ~fi ¼ fk

~l
k

i ¼ fkl
k
i ¼ fi and

~fik ¼ fkðfik=fkÞ ¼ fik

Note that a different distribution ~fik of ð ~Y1;XÞ would be generated by unconditional DC,

that is, fi ¼ ~j
h

i fh, since ~Y1 is then independent of X given Z1, such that
~fik ¼ fhk

~j
h

i – fik.

Given the relevant proxy variables, DC and CDC can be used to generate a fusion

distribution, whether or not there are joint observations of the target and proxy variables.

Consider again the setting {Y1; Y2; ðX; Z1; Z2Þ}. A scheme of DC can be as follows:

Z1
DC
! ~Y1 ) ~fi ¼ fhj

h
i ¼ fi

Z2
DC
! ~Y2 ) ~fj ¼ fgj

g
j ¼ fj

9
=

;
) ~fijk ¼ 1gh ~f

Z2Z1
~Y1
~Y2X

ghijk ¼ l
gh
k fghj

h
i j

g
j

where the last expression follows since ~Y1 is independent of the other variables given

Z1 and similarly for ~Y2 given Z2. This is a different fusion distribution than that by

SPREE (15).

It is worth noting that DC and CDC can be useful for generating fusion data prescribed

by another fusion technique. Take the SPREE (15) under the setting {Y1; Y2; ðX;Z1; Z2Þ}.

It is not immediately clear how to generate the fusion data it implies. However, let ~
l

k

p be

the fusion conditional probability of p ¼ ði; jÞ given X ¼ k. Let q ¼ h; g
� �

index Z1; Z2

� �

in accordance. Then, CDC satisfying ~l
k

p ¼ lk
qj

qk
p yields the gross-flowmatrix that can turn

ðZ1; Z2Þ into the SPREE ð ~Y1; ~Y2Þ with minimum changes given X ¼ k. As another

example, consider CDC under the setting {ðX; Y1Þ; ðX; Y2Þ; ðX; Z1; Z2Þ}:

that is, exactly the same fusion distribution as that of the CIA in the setting

{ðX; Y1Þ; ðX; Y2Þ}. But CDC can yield different fusion data. For instance, suppose

{ðX; Y1Þ; ðX; Y2Þ} represent two separate sample datasets, while {ðX; Z1; Z2Þ} is a

population register dataset. On the one hand, a population fusion dataset can be generated

by CDC; on the other hand, a synthetic CIA population fusion dataset can be obtained by

randomly and separately generating ~Y1 and ~Y2 conditional on X in the population. Both

datasets will have the same fusion distribution, but the CDC data will resemble the real

population much more than the CIA data.

4. Two Cases

Two real-life datasets involving education, election turnout, and labor force status

variables are used to illustrate the approach to uncertainty analysis and the fusion
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techniques described above, and to empirically evaluate the relative efficiency of the

available proxy data.

4.1. Education and Election Turnout: Binary Data

Both the highest level of education and election turnout are collected in the Norwegian

Election Survey 2005, to be treated as Y1 and Y2, respectively. A level of education can

also be compiled based on the register information available at Statistics Norway, denoted

as Z1, while the true head count can be obtained from the local electoral offices, denoted

by Z2. Both Z1 and Z2 can be linked to the survey at the individual level, and the observed

four-way table for the respondents in Election Survey 2005 provides all the data for this

illustration. For ease of exposition, only two categories “Low” and “High” are coded for

the education variable.

Various settings of the data are given in Table 2. All the cross counts of Y1 and Y2 are

given in parentheses and assumed to be unobserved. In the top block, the overall

unconditional counts of ðY1; Y2Þ are given to the left, and those of ðZ1;Z2Þ to the right.

Together they provide the setting {Y1; Y2; ðZ1; Z2Þ}. The next block gives the setting

{ðZ1; Y1Þ; ðZ1; Y2Þ}, where Z1 is the only auxiliary data. The case is similar for

{ðZ2; Y1Þ; ðZ2; Y2Þ} in the third block. Lastly, the bottom block provides the setting

{ðZ1; Z2; Y1Þ; ðZ1; Z2; Y2Þ}.

Table 3 illustrates the results of uncertainty analysis for P½ðY1; Y2Þ ¼ ðLow;NoÞ�. The

first row corresponds to the setting {Y1; Y2; ðZ1; Z2Þ}. The estimated lower and upper

bounds are ð0:0; 0:104Þ. The estimated width of the uncertainty space at this point is 0:104.

Since Q measures the same everywhere in the case of binary data, as previously noted

for (2), 0.104 is also the estimated overall measure of the uncertainty space. The relative

efficiency is unity by definition. The associated sampling uncertainty is evaluated as

described in Subsection 2.3, for which it is necessary to stipulate a joint distribution. Three

alternatives are illustrated in Table 3. The first one is the true sample distribution of

ðY1; Y2Þ given in Table 2; the second one is the CIA fusion distribution; and the last one is

the MoB fusion distribution. It is seen that the estimated standard errors (SEs) are virtually

the same using any of the three alternatives.

In a similar manner, the other rows of Table 3 provide the results under different settings

of jointly available auxiliary data. It is seen that with only Z1 available, the identification

uncertainty is reduced by 17% (that is, RE ¼ 0.83), whereas the reduction is 62% (that is,

RE ¼ 0.38) with Z2, so that it is much more informative than Z1. With both proxy

variables available, the estimated uncertainty bounds are ð0:074; 0:095Þ, strictly narrower

than the initial ð0:0; 0:104Þ on both sides. The width of the interval is 0:021, which is about

one fifth of that without ðZ1; Z2Þ. Taking into account the sampling uncertainty, an

approximate 95% confidence interval of the width of the identification uncertainty interval

is ð0:014; 0:028Þ. In comparison, had the joint sample of ðY1; Y2Þ been available, the width

of the approximate 95% confidence interval of P½ðY1;Y2Þ ¼ ðLow;NoÞ� would have

been 0:027. Thus, in this respect, there is at least as much information about P½ðY1; Y2Þ ¼

ðLow;NoÞ� in {ðZ1; Z2; Y1Þ; ðZ1; Z2; Y2Þ} as that in {ðY1; Y2Þ}.

Table 4 illustrates a number of (pseudo) estimates of P½ðY1; Y2Þ ¼ ðLow;NoÞ� together

with their respective identification assumptions. The first one (from the top) is based

on the true data of ðY1; Y2Þ. The next five are derived under the setting
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{ðZ1; Z2; Y1Þ; ðZ1;Z2; Y2Þ}. Note the difference between the two CIAs. The two situations

of single proxy variable follow next. In the last setting where ðZ1;Z2Þ are not jointly

observed with any of the target variables, only SPREE and DC can make use of them.

A few general impressions can be noted.

. All the different SPREE estimates appear reasonable here; the best ones (that is, 0.0877

and 0.0876) yield an estimated cell count 153 after rounding, which is almost identical

to the true observation 154. Adjusting Z1 towards Y1 gives better results than adjusting

Z2 towards Y2. But at this stage of knowledge one is unable to deduce this from the

higher association between Z2 and Y2 compared to that between Z1 and Y1.

Table 2. Education and election turnout data.

Y2 Z2

Y1 No Yes Z1 No Yes

Low (154) (885) 1039 Low 210 920 1130
High (28) (676) 704 High 44 569 613

182 1561 254 1489

Z1 ¼ Low Z1 ¼ High
Y2 Y2

Y1 No Yes Y1 No Yes

Low (149) (854) 1003 Low (5) (31) 36
High (9) (118) 127 High (19) (558) 577

158 972 24 589

Z2 ¼ No Z2 ¼ Yes
Y2 Y2

Y1 No Yes Y1 No Yes

Low (140) (61) 201 Low (14) (824) 838
High (26) (27) 53 High (2) (649) 651

166 88 16 1473

Z1;Z2

� �
¼ (Low, No) Z1; Z2

� �
¼ (Low, Yes)

Y2 Y2

Y1 No Yes Y1 No Yes

Low (136) (59) 195 Low (13) (795) 808
High (8) (7) 15 High (1) (111) 112

144 66 14 906

Z1; Z2

� �
¼ (High, No) ðZ1; Z2Þ ¼ (High, Yes)
Y2 Y2

Y1 No Yes Y1 No Yes

Low (4) (2) 6 Low (1) (29) 30
High (18) (20) 38 High (1) (538) 539

22 22 2 567
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. The CIA results are worse than SPREE in every setting for this dataset. The

advantage of SPREE is particularly useful in cases without any joint observations

between the proxy and target variables, where it makes much better use of the

auxiliary information.

. The MoB estimates are quite reasonable as long as Z2 is available, and Z1 appears to

bring little improvement either on its own or in addition to Z2. The effect of the proxy

data is evident if 0.0846 given ðZ1; Z2Þ is compared to 0.0521 in the absence of

ðZ1; Z2Þ.

. The Euclidean distance is used to generate the DC. The result is worse than the

SPREE, but better than CIA and MOB, which are unable to make use of the proxy

variables in this setting.

Table 3. Estimated lower and upper bounds for P½ðY 1;Y 2Þ ¼ ðLow;NoÞ� and associated standard error (SE)

using true data, CIA or MoB fusion distribution as basis of evaluation, estimated width of uncertainty space and

true SE in parentheses, relative efficiency (RE) of proxy data.

Joint
proxy

Bound
(Lower,

1,000 £ SE of Bound
(Lower, Upper)

variable Upper) True CIA MoB Width RE

- (0.000, 0.104) (0.0, 7.3) (0.0, 7.3) (0.0, 7.3) 0.104 (0.0073) 1
Z1 (0.018, 0.104) (9.1, 7.2) (8.9, 7.2) (7.1, 7.2) 0.086 (0.0065) 0.83
Z2 (0.065, 0.104) (6.2, 4.9) (5.7, 4.9) (6.2, 4.9) 0.039 (0.0044) 0.38
ðZ1; Z2Þ (0.074, 0.095) (4.6, 4.7) (4.4, 4.7) (4.6, 4.7) 0.021 (0.0034) 0.20

Table 4. Illustrated (pseudo) estimates of P ðY 1;Y 2Þ ¼ ðLow;NoÞ
� 	

.

Setting Estimate Identification assumptions

fðZ1; Z2; Y1; Y2Þg 0.0884 True sample

0.0856 CIA: Y1

‘
Y2jðZ1; Z2Þ

fðZ1; Z2; Y1Þ; 0.0761 CIA: Y1

‘
ðY2; Z2ÞjZ1 and Y2

‘
ðY1; Z1ÞjZ2

ðZ1; Z2; Y2Þg 0.0846 MoB: mijjðZ1; Z2Þ
0.0876 SPREE: ðZ1; Y2; Z2Þ! ð ~Y1; Y2; Z2ÞjðY1; Z2Þ&ðY2; Z2Þ
0.0863 SPREE: ðZ1; Y1; Z2Þ! ðZ1; Y1; ~Y2ÞjðY1; Z1Þ&ðY2; Z1Þ

0.0813 CIA: Y1

‘
Y2jZ1

fðZ1; Y1Þ; ðZ1; Y2Þg 0.0592 MoB: mijjZ1

0.0877 SPREE: ðZ1; Y2Þ! ð ~Y1; Y2ÞjY1&Y2

0.0805 CIA: Y1

‘
Y2jZ2

fðZ2; Y1Þ; ðZ2; Y2Þg 0.0845 MoB: mijjZ2

0.0833 SPREE: ðY1; Z2Þ! ðY1; ~Y2ÞjY1&Y2

0.0622 IA: Y1

‘
Y2

fY1; Y2; ðZ1; Z2Þg 0.0521 MoB: mij

0.0833 SPREE: ðZ1; Z2Þ! ð ~Y1; ~Y2ÞjY1&Y2

0.0794 DC: Z1
DC
! ~Y1 and Z2

DC
! ~Y2
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Finally, it may be reiterated that the choice of a particular fusion distribution is empirically

unverifiable within the identification uncertainty bounds. Indeed, under each of the four

settings considered in Table 4, the same uncertainty analysis, as given in Table 3 for the

corresponding datasetting, should be reported for all the different pseudo estimates.

4.2. Labor Force Gross Flows

Labor force gross flows are of concern for both policy makers and researchers. Let the

labor force status be classified as “employed (E)”, “unemployed (U)” and “not in the labor

force (N)” for each eligible person in some given age range. Let Y1 be the status at time

point t1 and Y2 that at t2, then gross flow i; j
� �

refers here to the probability

uij ¼ P½Y1 ¼ i; Y2 ¼ j�. Together these form the 3 £ 3 matrix, where the row margins

fi ¼
P

j uij, for i ¼ 1; 2; 3, form the marginal distribution of Y1 and the column margins

fj ¼
P

i uij, for j ¼ 1; 2; 3, that of Y2. Further classification by region, age, and so on may

be of practical interest, but will not be considered here.

Countries that conduct the LFS typically apply some form of rotating panel design, so

that joint observation (or panel data) of Y1 and Y2 are available for various combinations

of t1 and t2. However, concerns for response burden and cost of following the same person

over time will place a practical limit on the length of LFS participation, so that joint

observations are not available if the difference between t1 and t2 is beyond that limit.

For instance, in the Norwegian LFS (NLFS), each sample person participates in eight

successive quarters, such that panel data are available for any two time points within a

two-year span but not otherwise.

Two questions are considered below. Subsection 4.2.1 studies the efficiency of proxy

data for labor force gross flows. To this end, proxy labor force status, denoted by Z1 and Z2

respectively, are compiled based on the various administrative data available to Statistics

Norway (SN) and linked to the NLFS yearly panel between 2011 and 2012. The sources

include employer/employee and self-employer registration, administration of job seekers,

related health and welfare, payroll tax records, military services, and so on. Essentially

the same proxy labour force status is used for the register-based census 2011. At the same

time, it is acknowledged that at the individual level the proxy values will not always

coincide with those that could be collected in the NLFS.

The second question to be considered is data fusion of ðY1; Y2Þ, for which no joint

observations are available. In particular, there is then an issue of how to make use of the

data that are available for the time period between t1 and t2. For instance, although one

does not have panel data between 2011 and 2013, one does have data between 2011 and

2012 and between 2012 and 2013, respectively. Various fusion methods can be used. For

instance, under the CIA between ðY1; Z1Þ in 2011 and ðY2;Z2Þ in 2013 conditional on

ðYt; ZtÞ in 2012, it becomes possible both to generate the fusion distribution of ðY1; Y2Þ and

to assess the associated sampling uncertainty. However, this would not be appropriate if

the identification uncertainty surrounding the CIA is ignored (Subsection 4.2.2).

4.2.1. Relative Efficiency of Proxy Labor Force Status

The data between 2011 and 2012 are given in Table 5. All joint observations of ðY1; Y2Þ are

given in parentheses and assumed to be unobservable. The proxy register variables
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ðZ1; Z2Þ are jointly available with either of the target status, that is, the generic setting

{ðZ1; Z2; Y1Þ; ðZ1; Z2; Y2Þ}.

The target NLFS sample gross flows of ðY1; Y2Þ and the proxy flows of ðZ1;Z2Þ are

given in Table 6, together with four fusion distributions by the CIA, MoB and two SPREE

methods, respectively. Comparisons between the target and proxy joint distribution show

that the register flow is higher for the stable employed persons (E, E), but lower for the

stable unemployed persons (U, U) and ‘inactive’ ones (N, N). The largest relative

deviations among the off-diagonal flows occur for (U, E) and (N, U). The causes for these

differences are complex. For instance, persons who are on the way back into the labor

force from N may be classified as U or E if interviewed in the NLFS, but they may well

remain as N in the register sources until they first become E (possibly lagging behind the

NLFS), which can be a cause for register underestimation of (N, U).

Focusing on the results of data fusion, it may be noted that all the techniques adjust the

proxy flows (E, E) and (N, N) downwards. The adjustment of the proxy flow (U, U) differs

across the method. In particular, the off-diagonal proxy flows are all adjusted upwards, and

the flows (U, E) and (N, U) are no longer the ones that relatively deviate most from the

target flows. Overall, the CIA results are worse than the others, especially for the diagonal

flows, whereas the MoB results may seem slightly better than the two SPREE. Indeed,

compared to the average of the two SPREE results, the MoB fusion distribution is closer to

the target distribution for five out of nine flows.

Still, regardless of how plausible the fusion distributions may seem compared to the

direct register-based proxy distribution, they can only be treated as potentially useful

pseudo estimates. Proper inference is only facilitated by uncertainty analysis. Table 7

provides the estimated identification uncertainty bounds and the associated SE with and

without the proxy variables as auxiliary data. The SEs are evaluated here on the basis of

the true sample distribution, but any of the fusion distributions would have yielded

virtually the same results. Again, the identification uncertainty matters little to the

assessment of the sampling uncertainty.

It can be seen that the sampling uncertainty is relatively small compared to the

identification uncertainty, especially in terms of the width of the identification uncertainty

interval. The proxy variables are most effective for reducing the identification uncertainty

of the ‘corner’ flows (E, E), (E, N), (N, E) and (N, N). As these four measure over 95% of

the outcome space, the overall measure of the uncertainty space is greatly reduced in the

presence of the proxy variables. Depending on the choice of wij in the calculation of

D̂ ¼ wijD̂ij and �D
^
¼ wij �D

^
ij, one obtains D̂ ¼ 0:266; 0:263 or 0.269 when wij is set to the

true uij, the CIA or MoB ~uij, and �D
^
¼ 0:069; 0:069 or 0.070 in correspondence. The overall

relative efficiency of the proxy variables is 0.26 by all means.

4.2.2. Making Use of Available Data in Data Fusion

Where observations are unavailable for gross flows ðY1;Y2Þ over t1 and t2, various fusion

distributions can be generated based on the intermediate observable target and proxy data.

For instance, the gross flows between 2011 and 2013 can be derived from the observable

flows between 2011 and 2012 and that between 2012 and 2013, under assumption that the

labor force status in 2011 is independent of that in 2013 conditional on the status in 2012.
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However, analysis of the register-based status overtime suggests that such a CIA is

unattainable. Moreover, even if the CIA had seemed reasonable for the proxy gross flows,

it would only have yielded plausible pseudo estimates of the target gross flows, due to the

fact that identification is not verifiable empirically but is only achieved on the strength of

stipulation.

To illustrate data fusion under alternative settings in this situation, a synthetic dataset

has been constructed as follows. Denote by ðY1; Z1Þ ¼ ði; hÞ the data in 2011 and by

ðYt; ZtÞ ¼ ðk; l Þ the data in 2012, with the joint sample distribution fhikl. Assume the

CIA and the same conditional transition probabilities from 2012 to 2013 as from 2011 to

2012, that is, put llk
jg ¼ flkjg=flk equal to the corresponding lhi

kl ¼ fhikl=fhi, for j; g ¼ 0; 1.

The synthetic joint distribution over 2011, 2012, and 2013 is then given by

fhikljg ¼ fhiklflkjg=flk, from which the synthetic joint distribution of ðZ1; Y1; Y2; Z2Þ can

be obtained by integrating out ðYt; ZtÞ, that is, fhijg ¼ 1klfhikljg, and so on.

Consider three settings: (i) ignore ðYt; ZtÞ and assume the setting

{ðZ1; Z2; Y1Þ; ðZ1; Z2; Y2Þ}, that is, with joint auxiliary data ðZ1; Z2Þ, (ii) assume the

setting {ðZ1; Z2; Zt; Yt; Y1Þ; ðZ1; Z2; Zt; Yt; Y2Þ}, that is, with joint auxiliary data

ðZ1; Z2; Zt; YtÞ, and (iii) ignore ðZ1; Z2; ZtÞ and assume the setting {ðYt; Y1Þ; ðYt; Y2Þ},

where Yt may be considered a proxy for Y1 as well as for Y2.

The respective theoretical uncertainty bounds and width of the nine gross flows between

Y1 and Y2 are given in Table 8. It is clear that using all the available joint auxiliary data,

that is ðZ1; Z2; Zt; YtÞ here, provides the narrowest uncertainty bounds. There is more

Table 6. Target, proxy and fusion labor force gross flows by CIA, MoB and SPREE

Target gross flows Proxy gross flows
Y2 Y2

Y1 E U N Y1 E U N

E 0.6736 0.0057 0.0402 E 0.6846 0.0049 0.0410
U 0.0083 0.0030 0.0052 U 0.0030 0.0020 0.0037
N 0.0400 0.0065 0.2176 N 0.0480 0.0020 0.2107

CIA: Y1

‘
Y2jðZ1; Z2Þ MoB: mijjðZ1; Z2Þ

Y2 Y2

Y1 E U N Y1 E U N

E 0.6460 0.0059 0.0675 E 0.6628 0.0075 0.0501
U 0.0078 0.0013 0.0074 U 0.0078 0.0058 0.0076
N 0.0681 0.0080 0.1880 N 0.0510 0.0068 0.2058

SPREE: Z1 ! ~Y1jðY1; Z2Þ&ðY2; Z2Þ SPREE: Z2 ! ~Y2jðY1; Z1Þ&ðY2; Z1Þ
Y2 Y2

Y1 E U N Y1 E U N

E 0.6530 0.0053 0.0612 E 0.6567 0.0084 0.0543
U 0.0081 0.0022 0.0062 U 0.0077 0.0022 0.0065
N 0.0609 0.0077 0.1956 N 0.0575 0.0045 0.2022
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information about the target distribution of ðY1; Y2Þ in the register proxy ðZ1; Z2Þ than in

the survey proxy Yt, as witnessed by the widths of the uncertainty bounds. In other words,

there is more information in the concurrent proxy variables that are of a different definition

than in the proxy variable that has the same definition but is from a different reference time

point. Although the actual figures in Table 3 are obtained on a synthetic dataset, the basic

results appear to reinforce the message that in data fusion one should strive to make use of

all available auxiliary data.

5. Summary

The usefulness of proxy variables for categorical data fusion is considered above.

A measure of the relative efficiency with and without proxy (or other auxiliary) variables

is proposed. In practice, the uncertainty analysis must also take into account the sampling

uncertainty in cases where the identification uncertainty bounds are unknown and need to

be estimated. A flexible technique of distribution calibration is introduced for making use

of proxy variables, which can be useful for constructing the fusion distribution as well as

the fusion dataset. Empirical results demonstrate that proxy variables can play two

beneficial roles at the same time: not only do they provide a general means for reducing the

uncertainty associated with data fusion, they also widen the scope of plausible pseudo

estimates of the target joint distribution.
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Rässler, S. and H. Kiesl. 2009. “How Useful Are Uncertainty Bounds? Some Recent

Theory With an Application to Rubin’s Causal Model.” In Proceedings of the 57th

Sessions of the International Statistical Institute. (2009) CD-ROM. Durban, South

Africa.

Singh, A.C., H. Mantel, M. Kinack, and G. Rowe. 1993. “Statistical Matching: Use of

Auxiliary Information as an Alternative to the Conditional Independence Assumption.”

Survey Methodology 19: 57–79.

Journal of Official Statistics806

Unauthenticated
Download Date | 1/7/16 1:11 PM

http://dx.doi.org/10.2307/1905689
http://dx.doi.org/10.2307/2345078
http://dx.doi.org/10.1016/j.spl.2008.01.020
http://dx.doi.org/10.1109/TVLSI.2007.912191
http://dx.doi.org/10.1093/biomet/64.1.37
http://dx.doi.org/10.2307/1402400


Vantaggi, B. 2008. “Statistical Matching of Multiple Sources: A Look Through

Coherence.” International Journal of Approximate Reasoning 49: 701–711. Doi: http://

dx.doi.org/10.1016/j.ijar.2008.07.005.

Wakefield, J. 2004. “Ecological Inference for 2 x 2 Tables (incl. discussions).” Journal of

the Royal Statistical Society Series A 167: 385–445. Doi: http://dx.doi.org/10.1111/j.

1467-985x.2004.02046.x.

Received July 2013

Revised August 2015

Accepted September 2015

Zhang: Categorical Data Fusion 807

Unauthenticated
Download Date | 1/7/16 1:11 PM

http://dx.doi.org/10.1016/j.ijar.2008.07.005
http://dx.doi.org/10.1016/j.ijar.2008.07.005
http://dx.doi.org/10.1111/j.1467-985x.2004.02046.x
http://dx.doi.org/10.1111/j.1467-985x.2004.02046.x


Book Review

Carina Cornesse1 and Annelies G. Blom2

Mario Callegaro, Reginald P. Baker, Jelke Bethlehem, Anja S. Göritz, Jon A. Krosnick, Paul J.

Lavrakas (Eds). Online Panel Research: A Data Quality Perspective. 2014. Chichester, UK: John

Wiley and Sons. ISBN: 978-1-119-94177-4, 508 pp., £55.00.

Online Panel Research. A Data Quality Perspective by Mario Callegaro, Reg Baker, Jelke

Bethlehem, Anja S. Göritz, Jon A. Krosnick, and Paul J. Lavrakas is an edited volume that

brings together state-of-the-art findings on various aspects of online panel research. It

presents evidence on a diverse set of research questions on detecting and correcting for

different kinds of errors arising in online panels. The book also gives advice on practical

aspects of conducting online panels and new developments regarding web panel software.

The book is a valuable addition to and extension of the existing literature on online

surveys. Other books in this area typically focus on survey design and on the practical

implementation of web surveys (see for example Couper 2008 and Tourangeau et al.

2013). Online Panel Research is different in two main respects: firstly, while previous

literature has a broad focus on all kinds of web survey research, this book concentrates

exclusively on survey methodological research on online panels; secondly, this book

focuses particularly on errors and biases in online panels.

In structural terms the book follows a Total Survey Error logic (see Groves et al. 2009).

It is a compact collection of findings on the most important issues in online panel research

including studies from various countries. The book is very comprehensive and highly

instructive for survey methodological research, and is particularly valuable for survey

practitioners either already conducting or still aiming to build an online panel.

However, there are some caveats that the reader should be aware of: first, the book is

generally written from a commercial data collection rather than an academic perspective.

This becomes apparent in the language used in several chapters and section introductions

throughout the book where “customer” and “client” interests are emphasized and survey

“companies” (see p. 9) are addressed. Second, most chapters apply a limited definition of

representativeness, that is, the authors assume that online panels need only be

representative of the online population. The reason for this might be that most online

panels simply do not include non-Internet users. Some probability-based online panels

aim to be representative of the general population and include previously offline persons

(so-called offliners) by providing them with the necessary equipment. This aspect of

increasing representativeness by including offliners is not discussed in the book, not even
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in Chapter 2, where panels with and without the inclusion of offliners are compared in

terms of their data quality (see p. 26).

The book is structured logically. It begins with a general introduction followed by one

section each on coverage, nonresponse, measurement error, weighting adjustments,

special domains (such as smartphone usage in online panels), and operational issues (such

as online panel software). Each section contains a short introduction written by the editors

of the book. In the following, we briefly discuss each section in turn.

The general introduction contains a brief overview of topics and steps important in

online panel research. It lists state-of-the-art findings with additional references to more

detailed literature. This section consists of two chapters. The first, written by the editors of

the book, is especially helpful regarding the collection of standards, associations’

guidelines, and advisory groups presented. Chapter 2 by Callegaro et al. provides a

detailed overview of studies comparing online panels to other panels and benchmark

surveys. This chapter also offers a rich typology of comparison studies on data quality

(in particular on measurement error) and provides a range of examples.

The coverage section contains Chapter 3 by Struminskaya et al. and Chapter 4 by

Grönlund and Strandberg, which both assess the representativeness of online panels.

While Chapter 3 offers valuable and detailed practical insights into the design and

implementation of an online panel as well as recent findings on the representativeness of

probability-based online panels, Chapter 4 focuses on the effect of panel attrition on the

representativeness of panel survey results. Both chapters are highly instructive and

transparent regarding the models estimated and the conceptual as well as analytical

decisions taken. In Chapter 5, McCutcheon et al. provide the results of a survival analysis

model of members in a multimode consumer panel. The analysis is very easy to follow,

especially because of the helpful graphical presentation of results.

The nonresponse section of the book is very diverse in terms of the questions raised and

the methods used to assess nonresponse. In Chapter 6, Lugtig et al. present an instructive

latent class analysis to investigate the different behavioral patterns involved in panel

attrition. Göritz presents results of logistic regression analyses, including hypotheses on

and indicators of survey nonresponse, in Chapter 7. All variables are examined regarding

their influence on the starting propensity as well as the completion propensity of a survey

wave within a panel. In Chapter 8, Keusch et al. provide insight into the motives and value

characteristics of participants in a nonprobability online panel. Among other findings, they

show how important both intrinsic and extrinsic motivation is to participation, concluding

that both types of motives need to be addressed and encouraged by the panel provider. In

Chapter 9, Scherpenzeel and Toepoel present various experimental studies to assess the

effect of nonmonetary incentives and encouragement strategies on panel participation.

They conclude that survey practitioners should not take for granted that feedback and

small acknowledgments have a significant positive effect on panel retention.

In the measurement error section, Hillygus et al. in Chapter 10 provide evidence on a

wide range of indicators concerning the response behavior of professional respondents,

that is, respondents participating in multiple panels. In Chapter 11, Greszki et al. focus on

the magnitude and intensity of the effect that speeders have on data quality. Unfortunately,

this study compares two panels which differ from one another in more than one respect,
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which limits the generalizability of their results. Both chapters offer rich descriptions of

the underlying theories and methods used to assess measurement error.

The chapters on measurement error are followed by a section on weighting adjustments.

In Chapter 12, Steinmetz et al. take a very thoughtful and critical view of propensity-

weighting adjustments. They show the advantages and challenges of using reference

surveys to calculate propensity weights for nonprobability panels. Their description of the

process of applying weights is very detailed and easy to understand. However, they

generalize their results on the representativeness of one specific panel (the Dutch

WageIndicator Survey) to all nonprobability panels, although their panel may well attract

a very specific group of panelists (see p. 286). Chapter 13 by Zhang gives an overview of

imputation approaches and their advantages and disadvantages. Zhang gives detailed

instructions on when and how to use imputations, as well as providing interesting insights

into the impact of such imputation procedures on the representativeness of results

(see p. 305).

The next section contributes to understanding how nonresponse and measurement error

interact. The analyses in Chapter 14 by Malhotra et al. and Chapter 15 by Roberts et al.

complement one another as they both look at the interdependence between nonresponse

error and measurement error. In particular, they study the effects of nonresponse reduction

in the recruitment phase. Chapter 14 focuses on the comparison between hard-to-recruit

and easy-to-recruit respondents and their response behavior. The authors of this chapter

use various different indicators of measurement error (pp. 326). Chapter 15 looks at the

long-term effects of nonresponse reduction strategies. Their findings on the correlation

between recruitment effort and conditioning during the later panel waves are particularly

informative (p. 356).

The special domains section of this book consists of two very different chapters. Drewes

in Chapter 16 presents interesting findings about smartphone users, their attitudes towards

smartphones and web surveys, and the differences in their response behavior compared to

users of conventional web devices, such as PCs and laptops. In Chapter 17, Napoli et al.

report alarming facts concerning the history and development of Internet ratings panels

(see e.g., pp. 388). Internet ratings panels systematically collect data on their participants’

online behavior. They use special hardware and software to capture Internet usage patterns

directly. The authors of this chapter conclude that to date the findings reported by these

panels are not reliable and not representative of the online population (see p. 402) and

frequently collect very sensitive information without explicitly informing their panelists

(see for example p. 389 and p. 397).

The last section of the book covers new procedures for solving practical problems

involved in conducting online panels. In Chapter 18, Macer provides information on

recent developments regarding web panel software. The chapter covers software solutions

for the complete survey process, from questionnaire development and panel management

to monitoring panelists. In the subsequent chapter, Baker et al. provide evidence on the

effectiveness of procedures to validate panelists’ identities. Although the authors show

that unvalidated respondents tend to produce data with a little lower quality than validated

respondents, the authors conclude that respondent validation may lead to smaller and less

representative samples without the answer quality being substantively better (see p. 450).
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Therefore every researcher has to decide for themselves whether these procedures can and

should be applied to their specific online panel project.

This edited volume serves as a very valuable introduction to online panel research, since

it provides comprehensive information on the definitions, typologies, guidelines, and basic

formulae necessary for starting research on online panels as well as building a new online

panel. Our primary criticisms concern the definitions of representativeness adopted and

the commercial perspective portrayed in some of the chapters. Nonetheless, the book is an

important addition to the survey methodological literature, because it offers state-of-the-

art research in the field of online panel research. We thus highly recommend this book to

academic survey methodologists and practitioners in the field of online panels alike.

References

Couper, M. 2008. Designing Effective Web Surveys. New York: Cambridge University

Press.

Groves, R.M., F.J. Fowler, Jr., M.P. Couper, J.M. Lepkowski, E. Singer, and

R. Tourangeau. 2009. Survey Methodology. Hoboken, NJ: John Wiley & Sons.

Tourangeau, R., F. Conrad, and M. Couper. 2013. The Science of Web Surveys. Oxford:

Oxford University Press.

Journal of Official Statistics812

Unauthenticated
Download Date | 1/7/16 1:15 PM



Book Review

Mariano Ruiz Espejo1

Richard Valliant, Jill A. Dever and Frauke Kreuter. Practical Tools for Designing and Weighting

Survey Samples. New York: Springer, 2013. ISBN 978-1-4614-6448-8, 670 pp. $68.34.

This book is directed at students, survey statisticians, social scientists, and other survey

practitioners, presenting statistical thought and steps taken to design, select, and weight

random survey samples. Following a first chapter on “An Overview of Sample Design and

Weighting”, which contains the background and the basic terminology used, the book is

divided into four parts: I: Designing Single-Stage Sample Surveys (Ch. 2-7), II: Multistage

Designs (Ch. 8-11), III: Survey Weights and Analyses (Ch. 12-16), and IV: Other Topics

(Ch. 17-18).

Parts I-III describe examples of projects similar to those that might be encountered in

practice. After introducing each project, the authors present the tools for accomplishing

their work in the subsequent chapters. The last chapters in Parts I-III, Chapters 7, 11, and

16, provide one way of meeting the goals of the example project but with solutions that are

not unique. The authors explain that “there are likely to be many ways of designing a

sample and creating weights that will, at least approximately, achieve the stated goals...

Practitioners need to be comfortable with the solutions they propose. They need to be able

to defend decisions made along the way and understand the consequences that alternative

design decisions would have. This book will prepare you for such tasks.”

Part I addresses techniques that are valuable in designing single-stage samples.

Chapter 2 presents a straightforward project to design a personnel survey. The subsequent

chapters concentrate on methods for determining the sample size and allocating it among

different groups in the population. Chapter 3 presents a variety of ways of calculating a

sample size to meet stated precision goals for estimates for the full population. Chapter 4

covers various methods of computing sample sizes based on power requirements, which is

common in epidemiological applications when the goal is to find a sample size that will

detect with a high probability some prespecified difference in means, and so on, between

subgroups or between groups at two different time periods. All of these goals substitute

inference criteria or make deliberate use of approximations that can be seen as pragmatic

or arbitrary and not scientific criteria or principles (for these, see Cochran 1977; Ruiz

Espejo 1986, 1987, 2013).

Chapters 3 and 4 focus on sample-size decisions made based on optimizing precision

and power for one single variable at a time. To meet multiple goals and respect cost

constraints, the authors suggest that the methods in Chapters 3 and 4 could be applied by
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trial and error in the hopes of finding an acceptable solution. A better approach is to use

mathematical programming techniques that allow optimization across multiple variables.

Chapter 5 presents some multicriteria programming methods that can be used to solve

these more complicated problems. These algorithms are better known to operations

researchers and management scientists than to survey statisticians, and they allow more

realistic treatment of complicated allocation problems involving multiple response

variables and constraints on costs, precision, and sample sizes for subgroups. In Chapter 6,

adjustments need to be made to the initial sample size to account for such circumstances.

Part II concerns the design of clustered samples in order to efficiently collect data, and

therefore sample-design decisions are required in multiple stages. Chapter 8 begins with a

moderately complex project to design an area sample and allocate units to geographic

clusters in such a way that the size of the sample of persons is controlled relative to some

important demographic groups. Chapters 9 and 10 cover the design of samples of those

geographic clusters. Chapter 11 gives a solution to the area sample design.

Part III discusses the computation of survey weights and their use in some analyses.

Chapter 12 begins with a project on calculating weights for a personnel survey, like the one

designed in Project 1 of Chapter 2. Chapters 13 and 14 describe the steps for calculating base

weights, making adjustments for ineligible units, nonresponse, and other sample losses, and

for using auxiliary data to adjust for deficient frame coverage and to reduce variances. Some

of the important techniques for using auxiliary data are the general regression estimator and

calibration estimation, which provide biased estimators and their variances are not usually

unbiasedly estimable. But software is now available to do some of the computations.

Chapter 13 sketches the rationale behind the nonresponse weight-adjustment methods, which

requires thinking about models for response and other methods that omit some units.

Applications of calibration estimation, including poststratification, raking, and general

regression estimation are covered in Chapter 14. More discussion of objective unbiased

variance estimation could have been included here (Ruiz Espejo et al. 2006; Ruiz Espejo

2013, 2015). Weight trimming using quadratic programming and other more ad hoc methods

are also dealt with in this chapter. Chapter 15 covers the major approaches to variance

estimation in surveys. Chapter 16 gives a solution to weighting the personnel survey.

Part IV covers the specialized topics of multiphase sampling (Ch. 17) and quality

control (Ch. 18).

My opinion of the book is that, while it does not resolve inference problems which arise

in survey sampling theory, it does provide pragmatic ideas and solutions in applied designs

and statistical weighting in sample surveys. Many examples of useful code written in R are

provided throughout the book. The book is oriented towards practice but without the

developed pure science behind it. For this reason, I believe that it is more useful for survey

statisticians and social survey practitioners interested in practical solutions in the survey

design than those interested in development of sampling theory.
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Book Review

Timothy Michael Mulcahy1

Louise Corti, Veerle Van den Eynden, Libby Bishop, and Mathew Woollard (eds). Managing

and Sharing Research Data: A Guide to Good Practice. 2014. Los Angeles, London, New Delhi,

Singapore, Washington, DC: SAGE Publications. 222 pp., ISBN 978-1-4462-67264, £25.99.

Rapid technological changes are reshaping the way we discover, access, and manipulate

data and are spawning new and innovative processes that facilitate the effective

management and exchange of information between agencies, independent of their

geographic location or proprietary infrastructure (Heus and Gregory 2010). Increasingly,

however, these changes call into question traditional statistical data management

approaches and systems. As government and private-sector data producers move away

from traditional survey approaches (for example, ‘design-collect-analyze-publish’) toward

more integrated structures, the challenge for producers of statistics is to exploit recent

technological advances to develop new and innovative ways to manage, access, process,

discover, and visualize data (Lorenc et al. 2013). Old paradigms need to be revisited, prior

assumptions reviewed, and traditional research methods re-evaluated and updated as

appropriate.

Corti el al.’s (2014) book, Managing and Sharing Research Data: A Guide to Good

Practice, addresses these daunting challenges. This clearly written, easy-to-follow

handbook highlights best practices in research data management and sharing. However, it

is not simply an anthology of data management and data sharing best practices, it is a

comprehensive and contemporary primer on nearly every aspect of the research process

firmly rooted in the research data lifecycle (Humphrey 2006).

The book is organized into eleven related chapters and applies to a wide range of

audiences, covering topics such as management and sharing of data, the research data

lifecycle, data management planning, documenting and providing context for data,

formatting and organizing data, storing and transferring data, legal and ethical issues,

rights relating to research data, strategies for collaborative research, secondary research,

publishing, and citing research data. The book is particularly timely in that funding

agencies around the globe are formulating new laws, policies, and procedures that strongly

encourage, if not require, researchers and grantees to provide data management plans or

strategies as an integrated component of their research proposals. While these efforts are

sound and aim to encourage knowledge sharing, collaboration, and open access to

publicly-funded research data, they also raise new questions and challenges for data

producers and end users that are adeptly addressed in this practical handbook.
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In Chapter 1 the authors introduce a recurring theme that permeates the book: the need

to ensure high quality, sustainable research in a responsible and efficient manner, and to do

so in a way that meets the replication standard (King 1995) and ensures the ability to share

and reuse research data in perpetuity. The authors also highlight the benefits of managing

and sharing research data effectively, noting concerns voiced by some researchers, and

providing tangible examples of successfully implemented data management plans.

Chapter 2 notes the critical importance of properly indexing, archiving, and curating data

to facilitate future uses and reuses of the data. Readers are encouraged to utilize a data

lifecycle approach, one that is at once specific to the detailed nuances of each stage of the

research process while also generic enough to apply more widely to disciplines outside of

social science.

In Chapter 3, the authors emphasize the critical importance of early planning and

formulating data management plans to help design and implement successful research

efforts, ensure that adequate resources are in place, and clearly articulate, assign, and

manage individual roles and responsibilities. Examples are provided from the UK and US

for planning, documenting, formatting, storing, confidentiality, ethics, consent, copyright,

and sharing.

Chapters 4–8 directly address the myriad challenges involved in data sharing and

provide tangible strategies to overcome these limitations. Chapter 4 emphasizes that data

alone are of limited usefulness and that they must be accompanied by proper

documentation and context. Data are not simply collected to serve our current needs, they

are meant to be preserved in perpetuity to allow future use and reuse. Chapters 5 and 6

extend this theme to the importance of formatting and organizing data for long-term use,

storage, and transfer. Chapter 7 discusses the legal and ethical frameworks involved in

data sharing and shares valuable insights into the process of obtaining informed consent

(including unknown future uses), modern techniques for perturbing and anonymizing data

for safe use, and regulating access to data. Chapter 8 focuses on rights related to research

data, and provides an in-depth discussion on Intellectual Property Rights in data, including

copyrights and exemptions, database rights, freedom of information, and licensing.

In Chapter 9, the authors point out that collaborative research is becoming an

increasingly common phenomenon and caution that this newly emerging paradigm

presents particular challenges to ensuring high-quality, sustainable, and reusable research.

Although collaborative research heightens the need to develop and implement sound data

management plans, the authors provide effective strategies to assist in this regard, for

example, developing standard procedures, protocols, and policies, and clearly assigning

roles and responsibilities across collaborating entities.

Chapter 10 reinforces the notion that archived data at some later point may become

important historic research materials and discusses the opportunities and limitations to

conducting secondary analyses. On the one hand, respondent burden is reduced, data

linking is made possible, and new data sets and derivative products may be created. In

addition, reanalyzing data facilitates reinterpretation and allows new questions to be asked

of archived data. This provides a mechanism for validating and replicating prior work – a

critical check and balance on policy and programming decisions derived from earlier

findings. On the other hand, the authors caution that truly replicating historical research is

hardly a trivial task, if possible at all, as studies rarely canvass identical social phenomena.
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The final chapter discusses the nuances involved in publishing and citing research data, yet

another area that has borne witness to dramatic changes in recent years. The authors

conclude by providing rich examples of data centers, institutional data repositories,

traditional and digital data archives, and associations that are on the cutting edge of

publishing and data citing.

In the main, practitioners and students will find this book to be extremely valuable.

Written by and for researchers, professional researchers and students alike would do well

to keep a copy of this guide book close at hand. Each chapter is self-contained, allowing

readers to peruse individual sections to learn more and/or refresh their knowledge and

understanding of a particular issue or topic of interest and is accompanied by a

comprehensive bibliography that serves as a useful guide for further research. Finally, it

provides empirical case studies and “hands-on” exercises and activities that drive home

the core concepts of the modern-day research process.
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