Journal of Official Statistics
vol. 31, i. 3 (2015)

C———
T,

o4 0= - o =T PP p. 349
Bart F.M. Bakker, Peter G.M. van der Heijjden, Sander Scholtus

Sensitivity of population size estimation for violating parametric assumptions
inlog-linear MOdEIS. ... e e p. 357
Susanna C. Gerritse, Peter G.M. van der Heijden, Bart F.M. Bakker

On modelling register COVErage @rrorsS.............coouiiiiiiiiiiiiiii e p. 381
Li-Chun Zhang

Using the bootstrap to account for linkage errors when analysing
probabilistically linked categorical data....................oo p. 397
James O. Chipperfield, Raymond L. Chambers

Coverage evaluation on probabilistically linked data.......................... p. 415
Loredana Di Consiglio, Tiziana Tuoto

Models for combining aggregate-level administrative data in the absence of a
traditional CENSUS. ..o p. 431
Dilek Yildiz, Peter W.F. Smith

Linkage of census and administrative data to quality assure the 2011 census
for England and Wales......... ... p. 453
Louisa Blackwell, Andrew Charlesworth, Nicola Jane Rogers

A Bayesian Approach to Population Estimation with Administrative Data................. p. 475
John R. Bryant, Patrick Graham

Sensitivity of Mixed-Source Statistics to Classification Errors........................c.ccceee. p. 489
Joep Burger, Arnout van Delden, Sander Scholtus

D T 1T oL ¥ 1 o o T p. 507
Ray Chambers

[0 1T ol 13 1o ] o 1 p. 515
Anders Holmberg

[0 1T o1 T 11 o ] o T PP p. 527
Stephen E. Fienberg



] DE GRUYTER
OPEN

G

Journal of Official Statistics, Vol. 31, No. 3, 2015, pp. 349-355, http://dx.doi.org/10.1515/JOS-2015-0021

Preface

1. Introduction to the Special Issue on Coverage Problems in Administrative
Sources

Administrative data are being used more and more in official statistics and academic
research as an alternative to interviewing, in particular for census taking. An important
issue with the use of administrative sources for statistical purposes is that they often suffer
from under- and overcoverage with respect to the population of interest. The articles in this
special issue focus on methodologies for dealing with these coverage problems. A
common theme in many of the articles is that they address the assumptions behind the dual
system capture-recapture methodology that is often used to correct for undercoverage in
censuses — either by evaluating the robustness of this method to violations of certain
assumptions or by proposing new methods that relax some of these assumptions.

2. The Importance of Administrative Data

In many countries the use of administrative data has been stimulated by the fact that census
information is vital and at the same time very expensive if the data are collected by door-
to-door interviewing.

The importance of a census can hardly be overstated. Census information is used to
substantiate government policies as it gives a very detailed picture of society and its
social and regional differences. Moreover, census outcomes are important sources for
historical trends longer than a few decades. Finally, because of their relatively large
consistency between countries, census data are increasingly used for international
comparative studies. The success of the Integrated Public Use Microdata Series IPUMS)
proves that this development is substantial. [PUMS consists of 238 microdata samples
from census records from 74 countries from all around the world (Minnesota Population
Center 2013).

However, census taking by door-to-door interviewing is very costly. In the United
States (US), the cost of the 1990 Census was $2.6 billion and this increased to $13 billion
in 2010. The costs of conducting a US census have more than doubled every ten years.

Acknowledgments: The idea of this special issue on coverage arose at a meeting in 2012 in Orebro, Sweden,
where specialists in the field of official statistics discussed quality issues of administrative data. It used the papers
presented at the 59th World Statistics Congress in Hong Kong in 2013 as an important source. We want to thank
the contributors, reviewers and discussants for their efforts to make this a successful issue of JOS. We also want to
thank the editorial staff at JOS for giving us the opportunity to compile this special issue and for their support and
guidance along the way. We hope this issue provides interesting reading.

© Statistics Sweden


http://dx.doi.org/10.1515/JOS-2015-0021

350 Journal of Official Statistics

In England and Wales, the door-to-door census of 2011 cost was 482 million British
pounds. The 2001 census cost was less than half that amount: 210 million pounds
(Economist, 2 June 2011).

Therefore, countries are looking for more cost-effective alternatives. One popular way
to reduce costs is to make use of administrative records like population, tax, or health
registers, and, if these sources do not cover all information that is needed, to combine these
sources with data from sample surveys. Denmark was the first country in the world to
conduct a completely register-based census as early as 1980. In 1990, Finland was the next
to follow and thus reduced the costs for the census by more than 90% between 1980 and
1990 (Ruotsalainen 2011). The 2011 census is exclusively register-based in the Nordic
countries, Austria, Belgium, Slovenia, and Switzerland, while Germany, Netherlands,
Latvia, Lithuania, and Israel rely heavily on registers (UNECE 2014; Bechtold 2013). The
costs for register-based censuses are much lower than the costs of traditional censuses: for
example, the 2011 census in Denmark cost only $0.07 per head of the population,
compared to $40.17 for the US Census (UNECE 2014, 64).

3. Coverage Problems Defined

Censuses are very important for giving a detailed picture of the social and regional
differences in each country. To fulfil that role, they should cover the entire population and
only the population. However, both a traditional census and a register-based census have
coverage problems. The traditional census could miss parts of the population due to
incomplete address files and nonresponse. Register-based censuses could miss parts of the
population because not all elements of the population are registered. In both cases, this
might lead to undercoverage. Another problem is that registers erroneously include
individuals that are no longer part of the population. This leads to overcoverage. This
could be the case, for example, if removals, emigrations and deaths have been registered
with a certain time lag. Administrative delay is an important source of error in
administrative data (Bakker and Daas 2012; Zhang 2012).

The usual way of census coverage evaluation is to conduct a postenumeration survey (or
coverage measurement survey) to the census data in order to estimate the total population
size using capture-recapture methods. For that purpose, a register could also be used
instead of the postenumeration survey. This is also known as dual-system estimation (e.g.,
Hogan 1993; Brown et al. 2006; Chen et al. 2010; Sadinle and Fienberg 2013; Baffour et al.
2013). In most cases, log-linear models are used to estimate the size of the population and
the part missed by the observed data.

The quality of the outcomes of capture-recapture methods with two sources rely on five
assumptions (Bishop et al. 1975; International Working Group for Disease Monitoring and
Forecasting 1995):

1. The probability of being in the second source does not depend on the probability of
being in the first source.

2. The probabilities are homogeneous across all elements in at least one source, or, if
probabilities are heterogeneous in both sources, the sources of heterogeneity are
unrelated (see Van der Heijden et al. 2012).
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3. The population is closed, that is, there are no individuals entering or leaving the
population during the period of observation.

4. The elements of the population in the two sources can be perfectly linked.

5. There are no erroneous captures in either the first or second source.

Violating these assumptions can cause severe bias in the population size estimates. In
particular, violation of perfect linkage and independence can lead to serious bias (Brown
et al. 2006; Baffour et al. 2013; Sadinle and Fienberg 2013).

To fulfil the needs of the main users of the census, the information on the total
population should have all the details, much more detail than the cross table of
the covariates. These needs can be fulfilled by weighting the data of individuals in the
census, be it a traditional door-to-door census or a register-based census. Here the
estimation of the total population by the cross table of the covariates in the log-linear
model can be used as a weighting frame for the construction of the weights. The success of
this procedure depends on the association between the variables used for the construction
of the weights and the target variables on the one hand, and the probability of being
missed in the administrative data on the other hand, because it is similar to weighting
procedures correcting for selective nonresponse in household surveys. The higher the
associations, the better the estimates become (Sarndal et al. 1992, 588-589; Bethlehem
et al. 2011, 207-246).

An increasing number of countries use administrative data not only for census
purposes, but also for their regular production of official statistics and for academic
research. The coverage problems that occur in the register-based censuses are similar to
other fields of interest. In this special issue, we present a number of methodological studies
that address important aspects of the methodological problems in estimating population
sizes and other official statistics with administrative data and suggest solutions for some
of them.

4. In this Issue

Nine studies are presented, each dealing with specific aspects of the methods for
estimating under- or overcoverage. All studies deal with undercoverage, and several deal
with overcoverage as well.

Gerritse, Van der Heijden, and Bakker study undercoverage of linked data sources and
methods to remedy this using dual-system estimation. The sensitivity of the population
size estimates is studied for violation of the assumption that in dual-system estimation the
inclusion probabilities of two sources are independent (this is Assumption 1 discussed
above). They simulated this with or without covariates, using log-linear models with
offsets. In their simulation with real data they found that under certain circumstances, this
sensitivity is high and leads to implausible results. If the first source has a better coverage
than the second source, then the sensitivity is higher compared to when the coverage of the
first source is lower. They also studied models in which a covariate is only available in one
of the two sources, which is a rather common situation. They show that, in accordance
with Zwane and Van der Heijden (2007) and Van der Heijden et al. (2012), ignoring
covariates that are related to the inclusion probability may lead to biased estimates.
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If overcoverage occurs, there are erroneous captures in either the first or second source
or in both sources. This is a violation of Assumption 5 of dual-system estimation discussed
above. The article of Zhang proposes models that take into account both over- and
undercoverage. His models are developed for (i) two lists that may both have over- and
undercoverage and (ii) an additional coverage survey. Assumptions are that the additional
coverage survey has only undercoverage, and that the additional coverage survey can be
completely linked to the two lists. Simulations suggest the usefulness of the models
proposed and this may prove to be a promising direction for solving applied problems
where overcoverage plays a role. The models also deal in some way with Assumption 3
discussed above, that of a closed population.

When administrative data are used for the census or other official statistics, most of the
time different administrative sources are combined to produce the desired tables.
However, record linkage is not an error-free process. Missed links can lead to
undercoverage and incorrect links can lead to overcoverage (Bakker and Daas 2012). Both
missed links and incorrect links are violations of the abovementioned Assumption 4,
which states that individual records can be perfectly linked. There has been an explosion of
record-linkage applications, yet there has been little work on making correct inference
using such linked files. When the possible existence of these errors is not taken into
account, however, this may lead to biased inferences. Chipperfield and Chambers develop
a method of making inferences for the measurement of binary variables in the population
when record linkage is not an error-free process. In particular, they develop a parametric
bootstrap approach to estimation which can accommodate sophisticated probabilistic
record linkage techniques that are widely used in practice (e.g. 1-1 linkage, i.e., where
every record on one file is linked to a distinct and different record on the other). The article
demonstrates the effectiveness of this method with a simulation and an application to real
data.

Another article on linkage, and hence on a violation of Assumption 4, is provided by
Di Consiglio and Tuoto. They build on earlier work by Ding and Fienberg (1994). Ding
and Fienberg proposed estimators corrected for linkage bias, and Di Consiglio and Tuoto
provide a generalization of these estimators. The method is illustrated with an application
to real data to estimate the number of casualties due to road accidents, integrating data
from two registers. Simulated data are used to show the benefit of the proposed new
method over the existing estimators.

In England and Wales, several alternatives to a traditional census have been evaluated in
the Beyond 2011 programme. The recommended option for 2021 makes use of
administrative data. In England and Wales, the National Health Service Patient Register
(NHSPR) is the most comprehensive administrative source. It covers everyone registered
with a general practitioner (GP). However, it is known that direct estimates from the
NHSPR of the population size by sex, age, and region are biased due to a variety of
problems, such as administrative delays when people change GPs, persons being
registered more than once, and so on. This may be seen as ‘local’ overcoverage and hence
as a violation of Assumption 5. Yildiz and Smith determine which population groups are
not well presented in the NHSPR and propose a method for correcting for the inaccuracies.
For this purpose, they combine the NHSPR with marginal information on sex, age, and
region from an auxiliary source, which is supposed to provide unbiased estimates at a
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regional level, keeping the higher-level interaction structure intact. Population counts are
estimated by using different log-linear models with offsets that take care of the interaction
structure. In their application, they use auxiliary information from the 2011 Census.
However, in the future marginal information from other data structures may be used to
correct for bias in the NHSPR.

In the study of Blackwell, Charlesworth, and Rogers, the quality assurance of the 2011
Census of England and Wales is discussed. This quality in terms of coverage has been
determined by linking the traditional census data to administrative sources. The Office for
National Statistics (ONS) has invested a lot of effort in the process of linking those data.
The linking strategy reflected the hierarchical structure of people living within and across
addresses and included evidence from the census field operation. Patterns of differential
coverage in the different administrative sources emerged.

Bryant and Graham have a different approach to deriving population estimates from
multiple administrative data sources with undercoverage. They do not combine different
administrative sources at the individual level by record linkage, but at an aggregate level:
the cell count. The overall model contains submodels describing regularities within
demographic processes and the relations between the demographic processes and the
available datasets. They use Bayesian methods, because this makes it possible to account
for different sources of uncertainty. Coverage rates are used as a diagnostic and as an
important source to weight the data. They apply this method to data from New Zealand and
try to estimate the population by age (5-year groups), sex, time and region. The process of
deriving the weights is automatic and data driven. They show that their approach is
promising, in particular if for some reason you are not able to perform high-quality record
linkage at the individual level.

A final article deals with coverage but is not directly linked to the population census.
Coverage problems could also occur if units are wrongly classified, for example if
addresses are wrongly classified by region. This can lead to a net undercoverage if the
balance between erroneously assigned units and erroneously unassigned units is negative,
and it can lead to a net overcoverage if this balance is positive. The study of Burger, Van
Delden, and Scholtus applies a resampling method to assess the sensitivity for source-
specific classification errors in mixed-source statistics, such as an enterprise register and
survey. The method can be used for deciding how to allocate resources in the production
process of statistics. They applied the method to short-term business statistics suggesting
that shifting classification resources from small and medium-sized enterprises to large
ones may have no effect on the accuracy, because the gain in precision is offset by the
creation of bias.

At the end of this issue, Raymond Chambers, Anders Holmberg, and Stephen Fienberg
tie these manuscripts together in insightful ways. Chambers focuses on the articles of
Burger et al., Gerritse et al., Di Consiglio and Tuoto, and Zhang, which have in common
that they deal with measurement error methodology for official statistics. He argues that
the difference is that Burger et al. and Gerritse et al. only point out deficiencies when
assumptions are not met, but that Di Consiglio and Tuoto and Zhang try to come up with
solutions. Anders Holmberg comments on all articles from the perspective of the tasks of
offices of national statistics and his own personal experiences. Fienberg discusses all
contributions and provides additional links of these articles to the literature, to work on
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official statistics in the U.S. as well as to his own work. Moreover, he sketches a research
programme to continue the research on the most important topics discussed in this special
issue. It is definitely worth taking the time to study these comments in addition to the
contributions of the authors.
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Sensitivity of Population Size Estimation for Violating
Parametric Assumptions in Log-linear Models

Susanna C. Gerritse', Peter G.M. van der Heijden*, and Bart F.M. Bakker’

An important quality aspect of censuses is the degree of coverage of the population. When
administrative registers are available undercoverage can be estimated via capture-recapture
methodology. The standard approach uses the log-linear model that relies on the assumption
that being in the first register is independent of being in the second register. In models using
covariates, this assumption of independence is relaxed into independence conditional on
covariates. In this article we describe, in a general setting, how sensitivity analyses can be
carried out to assess the robustness of the population size estimate. We make use of log-linear
Poisson regression using an offset, to simulate departure from the model. This approach can
be extended to the case where we have covariates observed in both registers, and to a model
with covariates observed in only one register. The robustness of the population size estimate is
a function of implied coverage: as implied coverage is low the robustness is low. We conclude
that it is important for researchers to investigate and report the estimated robustness of their
population size estimate for quality reasons. Extensions are made to log-linear modeling in
case of more than two registers and the multiplier method.

Key words: Capture-Recapture methodology; dual-system estimation; sensitivity analysis;
census; Poisson log-linear regression.

1. Introduction

For the Census of 2011, an increasing number of countries used administrative data to
collect the necessary information. Under census regulations a quality report is obligatory,
and one of the aspects that needs to be addressed is the undercoverage of the census data.
This asks for an estimate of the size of the population. If one wants to estimate the size of a
population, capture-recapture methods, making use of log-linear models, are commonly
used (Fienberg 1972; Bishop et al. 1975; Cormack 1989; International Working Group for
Disease Monitoring and Forecasting 1995). These methods go by different names, such as
mark-recapture methods, dual-system methods or dual-record system methods. In this

I Utrecht University, Methods and Statistics, Padualaan 14, Utrecht 3584 CH, The Netherlands and University
of Southampton, UK. Email: sc.gerritse @ gmail.com

2 Utrecht University, Methods and Statistics, Padualaan 14, Utrecht 3584 CH, The Netherlands and University of
Southampton, UK. Email: P.G.M.vanderheijden@uu.nl

3 Statistics N etherlands, Methodology, P.O.Box 24500, 2490 HA, The Hague, The Netherlands and
VU University, Netherlands. Email: bfm.bakker@cbs.nl

Acknowledgments: An earlier version of this article was presented at the 59th World Statistics Congress, 25 — 30
August 2013. Rik van der Vliet and Peter-Paul de Wolf for their valuable comments on earlier drafts of this
article. Olav Laudy for his help in writing the SPSS routine and Raymond Chambers for pointing out the link to
the work of James Brown. We would also like to express our gratitude for the valuable comments of our reviewers
and editors.

© Statistics Sweden


http://dx.doi.org/10.1515/JOS-2015-0022

358 Journal of Official Statistics

article we use the label capture-recapture. In countries with a traditional census a
postenumeration survey could be organised to collect recaptured data, as was the case for
instance in the United Kingdom (Brown et al. 1999; ONS 2012), and in the U.S. (Wolter
1986; Bell 1993; Nirel and Glickman 2009). In this case, a survey with a relatively small
sample size is linked to the census data. In countries with a census based on administrative
data, the approach used most is to find two registers and treating these as the captured and
recaptured data. The method includes linking the individuals in the registers and
subsequently estimating the number of individuals missed by both registers.

However, the outcome of the capture-recapture method depends heavily on some
assumptions underlying the data. In particular, if two sources are used, it is usually assumed
that inclusion in the captured data is independent of inclusion in the recaptured data. A second
assumption deals with homogeneity versus heterogeneity of inclusion probabilities. If there is
one source of heterogeneity it is assumed that at least for one of the two sources the inclusion
probabilities are homogeneous (Chao et al. 2001; Zwane and Van der Heijden 2004). If there
are two sources of heterogeneity (two covariates), the estimates are unbiased if the inclusion
probabilities of the first source vary with one source of heterogeneity, and the inclusion
probabilities of the second source vary with a second source of heterogeneity, but the two
sources of heterogeneity are statistically independent (Seber 1982, 86). The remaining two
assumptions are that the population is closed and that the registers are perfectly linked.

The assumption of independence between two registers is very strict and can easily be
violated. Under dependence between registers, the inclusion probability of one register is
related to the inclusion probability of the other register. Then, under positive dependence
individuals in the captured data have a higher probability of also being in the recaptured
data, resulting in an underestimation of the population size estimate. Additionally, under
negative dependence the opposite holds (Hook and Regal 1995).

Independence is an unverifiable assumption, that is, it cannot be verified from the data
used for the estimation of the population size. The log-linear independence model for the
linked captured and recaptured data has three parameters, whereas there are only three
counts. Because the observed counts are equal to fitted counts, the independence model is
the saturated model (compare van der Heijden et al. 2012). Thus we cannot assess
dependence from the saturated model. One way of reducing the impact of the strict
independence assumption is to replace it with the lesser strict assumption of independence
conditional on covariates. Adding covariates enables us to reduce heterogeneity
introduced to the model due to the specific covariate, adjusting the population size
estimate for the better. The situation of a saturated model also holds when covariates of
individuals are taken into account and we operate under the log-linear conditional
independence model. However, we are interested in what the impact of mild or severe
violations of (conditional) independence is on the population size estimate. It does not
necessarily have to be the case that violation of the (conditional) independence assumption
results in a substantive bias in the population size estimate. It is of important to also assess
what happens when the other assumptions are violated. However, looking at all
assumptions at once is very complex. In this article, we will thus focus on the violation of
the independence assumption, assuming all other assumptions to be met.

We propose a general approach to sensitivity analyses under the log-linear model
framework using a log-linear Poisson regression, a special case of the generalized linear
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model. Where in the saturated model specific interaction parameters are equal to zero,
we impute fixed values departing from zero for these parameters, thus simulating
dependence, and investigate the impact on the population size estimate. As the log-linear
interaction parameters are closely related to the (conditional) odds ratio, there is a clear
interpretation for the values to which we fix the parameters.

Similar findings come from the research of Brown et al. (1999), where the census was
linked to a Post Enumeration Survey to assess under- and overcoverage (cf. also Wolter
1986; Bell 1993). Brown et al. (1999) used a fixed odds ratio of 0.1 and 10 to investigate
the impact of simulated dependence on the population size estimate. They showed that
fixed dependence can seriously bias the population size estimate under the independence
assumption. Results like these are valuable, since they give insight to the size of the impact
of violated independence. However, research into the robustness of the population size
estimator under violation of independence is non standard. As far as we know, other
research on the impact of the violation of independence involves simulation studies, an
already known population size estimate or uses multiple sources (Wolter 1986; Bell
1993; Cormack et al. 2000; Hook and Regal, 1992, 1997, 2000; Brown et al. 2006; Baffour
et al. 2013).

We extend the results of Brown et al. (1999) by, instead of using the standard log-linear
model, working under a log-linear Poisson regression where we simulate a fixed
dependence using offsets. In simulating dependence by adding a fixed offset value to the
log-linear model, we can compare the population size estimate under independence to the
population size estimate under a ‘true’ dependence. Additionally we extend our two-register
independence model to the case with covariates observed in both registers (fully observed
covariates) and covariates observed in only one register (partially observed covariates).

Partially observed covariates are usually ignored because including them would lead to
missing values in the other register. However, ignoring these covariates when they
actually are related to the inclusion probability of the register results in a biased population
size estimate (Zwane and van der Heijden 2007). In assuming missing at random (MAR)
we can impute the missing values of the partially observed covariate in the other register
and use this covariate to replace the strict independence assumption with independence
conditional on covariates. For partially observed covariates the log-linear model is easily
extendable, so that we can also conduct sensitivity analyses in this context.

We proceed as follows. In section 2 we will discuss the log-linear model for a capture-
recapture model with two registers without covariates. In Section 3 we will discuss a two-
register capture-recapture model and conduct a sensitivity analysis on two registers with a
conditional independence. In Section 4 the independence assumption will be conditional
on partially observed covariates, where a covariate has been observed in only one register.
Here the sensitivity analysis is on the dependence of the partially observed covariate on the
register, thus whether the covariate influences the inclusion probability of the register.
Section 5 provides some extensions made to a specific model, namely for models for three
registers, the multiplier method and confidence intervals.

We use two data sources to illustrate the robustness of capture-recapture methodology,
which have been provided by Statistics Netherlands. We chose not to make a simulation
study because researchers in the field of capture-recapture use real data and we wanted to
make the impact of a possible dependence relevant to such researchers. The first data
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source is the GBA (Gemeentelijke Basisadministratie) which is the official Dutch
Population Register containing demographic information on the ‘de jure’ population. The
‘de jure’ population differs from the ‘de facto’ population, the latter also containing
residents who have immigrated from other countries of the European Union and did not
register as such, immigrants who (are planning to) stay less than four months and illegal
immigrants. An important part of the difference between the ‘de jure’ and the ‘de facto’
population is the group of temporary workers from eastern Europe, in particular Poland.
The second data source is the HKS (Herkenningsdienst systeem), which is a police register
of all persons suspected of known offenses. We refer the reader to van der Heijden et al.
(2012) for more details on the registers.

2. Two Registers Without Covariates

The simplest population size estimation model makes use of two registers, 1 and 2. Let
variables A and B respectively denote inclusion in registers 1 and 2. Let the levels of A be
indexed by i (i = 0, 1) where i = 0 stands for “not included in register 1, and i = 1 stands
for “included in register 1”. Similarly, let the levels of B be indexed by j (j =0, ).
Expected values are denoted by m;;. Observed values are denoted by n; with ngg =0,
because there are no observations for the cases that belong to the population but were not
present in either of the registers.

Recall that one of the assumptions in population size estimation is that the probability of
being in the first register is independent of the probability of being in the second register.
Under independence, the log-linear model for the counts ng;, njo and ny; is:

logm; = A+ X} + A} (1)

where we used the identifying restrictions A = A5 = 0. There are two ways to derive the
estimate of the missed part of the population. First, by /7190 = exp(A), and second, by using
the property that the odds ratio under independence is 1, that is, moomyy/miono; = 1
so that:

myoMor _ M1ohol

2)

oy = —
myy n
For the first way of estimating the missed portion of the population we need an estimate
of A in (1). There are several ways to estimate the parameters in (1), and it suits our
purposes later on to use the generalized linear model. We assume that ;; follow a Poisson
distribution; a log link connects the expected values m; to the linear predictor. In terms of
matrices and vectors we get

mp 1 1 1 A
log | mo =1 1 0|[A 3)
Mo 1 0 1 A

where the right-hand side of (3) leads to a vector with elements
A4+ A7 + A%, A+ A1, A + AT]. Thus the estimates of A, A7 and AY will get us estimates
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myy, Mo and gy of which also the missed portion of the population 7y is found by log
(o) = A, so that gy = exp ()\)

However, the problem with using the independence model is that independence is an
unverifiable assumption, that is, we can not verify independence from the data. Thus the
Poisson log-linear model for independence works under the assumption that the
interaction parameter A% = 0. As noted before, this assumption could be violated and
the population size estimate under independence may well be inaccurate. We are
interested in what happens to the population size estimate when we assume independence
when actually the inclusion probabilities of inclusion in registers 1 and 2 are dependent.

The approach we advocate is to include a fixed interaction parameter X;;B in the model,
where the tilde indicates that the interaction parameter is not estimated but fixed. By
choosing interesting values for X;B we can conduct a sensitivity analysis on the population
size estimate. The log-linear model then becomes:

log mj = A+ X + AP + & )

i - AB AB .
where we used the identifying restrictions Ay, = A}, = Ay, = 0. In matrix terms we get:

A
miy 1 1 1 1 A4
1
log|mo | =111 00 \B 5)
1
mo1 1 010 AB
Ay

The log-linear model for independence is a special case of this saturated model when
“AB

)\AB A;; = 0. Dependence can be introduced to log-linear models by fixing /\

anythlng but 0. In software for P01sson regresswn Model (4) and (5) can be fit by entenng

)\38 as a so-called offset. When )\ 75 0, A in (5) differs from Xin 3).
Note that interesting values for )\ can be chosen using a direct relationship between

)\33 and the odds ratio 6, which is:

=110 — oxp 17 (6)
miomoy

Using the Poisson log-linear model with an offset is a general approach for carrying out
a sensitivity analysis. The approach is general in the sense that it can be applied in
more complicated log-linear models, for example when it is desirable to investigate
violations of more than one assumption simultaneously (cf. the models discussed in
Subsection 4.2). For completeness we also discuss a second method that is simpler but
less general.

The second way of estimating the missed portion of the population is by using odds
ratios directly, as has been done in Brown et al. (1999). We show this second way to give a
full overview of the method. This also provides for simpler notation, which we will use in
the rest of the article. Under independence, the odds ratio myimo/miomo = 1, and by
rewriting and replacing the expected values with observed values, we get maximum
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likelihood estimate (2). We can impute dependence by making the odds ratio 6 # 1.
Thus 6 = my1mg/miomo, and

oMot _ o M1001

mij ni

Moo = 6 = Ooo. )
Note that 77199 can be found simply by multiplying the estimate under independence, 77,
with 6. Both approaches, the log-linear Poisson regression with an offset and the odds
ratio, yield the same 71p9. We will use the odds ratio to denote dependence as it provides a
simpler notation than the interaction parameter X:;.B.

The methods just described allow us to study the impact of a violation of the
independence assumption as a function of 6. To get the population size estimate, let n be
the total of observed cases, n = ng; + n19 + n11, let N be the population size estimated
under 6= 1, thus N=n + mgo, and define N(g) as the estimated population size under
dependence of size 6, N = n + fitgo = n + Oingp. It follows that under negative
dependence (i.e., 6 < 1), N will be an overestimation compared to N(g), and under a
positive dependence (i.e., 6 > 1), N will be an underestimation compared to N(g). The bias
will be smaller the closer 6 is to 1.

Assume that Register 1 has a better coverage of the population than Register 2. Then when
ny1/(n1 + noy) is high the observed coverage is high, and vice versa. Brown et al. (2006)
showed that as the observed coverage increases, the number of individuals that are missed
by Register 1 reduces and n11/nono; increases so that niong; /n11 = gy decreases. Then,
the implied coverage of Register 1 is high, so that 7 is reasonably robust to dependence.
When the observed coverage decreases, the number of individuals missed by Register 1
increases and ny;/niono; decreases. Then the implied coverage of Register 1 will be low,
so that 7 is less robust to dependence.

To illustrate, we use two registers of Statistics Netherlands, the GBA and the HKS, on
people with Afghan, Iranian, or Iraqi (AIl) nationality living in the Netherlands in 2007
(shown in Table 1; van der Heijden et al. 2012), and on people with a Polish nationality
living in the Netherlands in 2009 (shown in Table 1; van der Heijden et al. 2011).

For the people with Afghan, Iraqi, and Iranian nationality /g0 = 6, 170 under indepen-
dence between the registers GBA and HKS. The population size estimated under 6 = 1
becomes N = 27,594 4 6,170 = 33,764. Then, under dependence between the registers
GBA and HKS the estimated population size becomes N(g) = 27,594 + (676, 170), see (7).

To investigate the robustness of the estimate under dependence we vary 6 from 0.5 to 2. In
the log-linear Poisson regression approach this corresponds to using offsets varying between
log(0.5) and log(2). Table 2 shows 7igg), the population size estimate N( 0), the estimated

Table 1. The observed values for the two nationalities, with the Afghan, Iraqi,
and Iranian people residing in the Netherlands in 2007 on the left, and the Polish
people residing in the Netherlands in 2009 on the right.

All HKS Polish HKS

GBA 1 0 GBA 1 0

1 1,085 26,254 1 374 39,488
0 255 - 0 1,445 -
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Table 2.  Sensitivity analysis of the population size estimate for the people residing in the Netherlands in 2007
with Afghan, Iraqi, and Iranian nationality (upper panel) and for people with Polish nationality in 2009
(lower panel).

Odds ratio
0.50 0.67 1.00 1.50 2.00
All 1Mop(6) 3,085 4,114 6,170 9,255 12,341
_ N 30,679 31,708 33,764 36,849 39,935
N/N) 1.10 1.06 1.00 0.92 0.85
se 223 293 441 647 864
Polish W) 76,284 101,712 152,567 228,851 305,135
_ N 117,591 143,019 193,874 270,158 346,442
N/N) 1.65 1.36 1.00 0.72 0.56
se 4,473 6,024 8,787 13,630 17,866

relative bias N/N and the bootstrapped standard error (se) of the estimate for both
nationalities (details about the parametric bootstrap are provided in Subsection 5.3). As can be
seen from the upper panel of Table 2, for the people with Afghan, Iraqi, and Iranian
nationality under a dependence of § = 0.5, the estimate /7o is half the size of the population
size estimate under independence, and for a dependence of # = 2 the estimate 7 is twice
the size of the population size estimate under independence. If in the population the registers
are dependent with a true size 6, the population size estimate under independence varies
between a ten percent overestimation and a 15 percent underestimation. Thus when the
true 0 # 1 our population size estimate under independence remains fairly accurate.

However, for the Polish people the population size estimate under dependence is not
robust. As can be seen from the lower panel of Table 2, if in the population the registers are
dependent with a true size 6, the population size estimate under independence deviates
between a 65 percent overestimation and 44 percent underestimation. Thus when the true
0 # 1, the population size estimate under independence for the Polish people is not robust.

The most important reason why the population size estimate deviates this much is
because the implied coverage of the people with Afghan, Iraqi, and Iranian nationality
is smaller than for the individuals with a Polish nationality. For example, 1,085 is
1,085/ (1, 085 + 255) = 0.81, thus 81 percent of implied coverage of the GBA measured
by the HKS. By contrast, for the individuals with Polish nationality the implied coverage
of the GBA is only 21 percent, confirming the research by Brown et al. (20006) that as the
observed coverage increases, the implied coverage increases and thus the population size
estimate is more robust against dependence.

The estimated standard error of N(@) is mainly determined by the size of 7igg(g), and this
explains the sharp rise of the standard error from 6 = .50 to 6 = 2.00 and the difference in
standard error between the individuals with Afghan, Iraqi, and Iranian nationality and the
individuals with Polish nationality.

3. Two Registers With Fully Observed Covariates

Covariates were first introduced to capture-recapture by Alho (1990) to reduce the
heterogeneity resulting from individual differences on that covariate. As such, if covariates
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are available, the generally nonfeasible independence assumption can be replaced with a
less strict conditional independence assumption, where independence is conditional on
covariates (Bishop etal. 1975; van der Heijden et al. 2012). This assumption is less stringent
because it can take into account inclusion probabilities that are heterogeneous over the
levels of the included covariate. Another advantage of using covariates is that it allows us
to investigate the characteristics of the missing portion of the population.

Suppose we have observed covariate X, where the levels of X are indexed by x,
(x =0, 1). Under independence conditional on X, there are two zero counts for cases not
found in either register, namely for x =0 and for x = 1. Let m;;, denote the expected
values for A, B and X. The log-linear model for independence for two registers and
covariate X is

log mye = A+ X+ A7 + AL + A+ 4K (8)

Jx

with identifying restrictions that a parameter equals zero when i or j or x = 0. When
assuming independence between A and B conditional on X, 3% = A3PX = 0. We use the
notation of Bishop et al. (1975) to denote hierarchical log-linear models, that is, we denote
this model as [AX][BX].

In Section 2 we discussed two ways to estimate population sizes in a sensitivity analysis,
namely one using an offset in a Poisson log-linear model and another using odds ratios
directly. Here we only discuss the first way as it is more general. We assume that 7;;,
follow a Poisson distribution and a log link connects the expected value m;j, to the linear
predictor.

It is important to note that in this context, too, sensitivity analyses are useful for
assessing the impact of assumptions that are not verifiable from the data under study. Here
conditional independence is the unverifiable assumption, since model [AX][BX] is the
saturated model. By contrast, model violations for more restricted models are verifiable in
the data, for example for a model such as [A][BX]. Hence, the impact of interaction
between A and X does not have to be investigated via a sensitivity analysis. However,
when there may be dependence between A and B, a sensitivity analysis is useful.

We model dependence in the data by adding fixed parameters X;;B + X;fx to Model (8).
We again work under the saturated model, as the number of parameters to be estimated is
equal to the number of observed parameters:

log mye = A+ X4+ AF + A% 4+ 0% 4 ABX 4 10 4 Y )
with the additional restrictions that parameters X;;B and X;fx equal zero when i or j or
x=0.
Under dependence between A and B given X, the association between the odds ratio 6,
and the log-linear parameters is:

_ My1xMpox

0, = exp (Xj‘f +X§‘ﬂx). (10)

myoxmMoix

When we assume that dependence for x = 0 is identical to dependence for x = 1, then:

0

miioMiooo _ Mi117Mo01 ~AB
= = =exp (A} )
miooMioro  M101Mo11

(11
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Table 3. The observed values for the Afghan, Iraqi, and Iranian people,
males on the left panel and females on the right panel.

Males HKS Females HKS
GBA 1 0 GBA 1 0

1 972 14,883 1 113 11,371
0 234 - 0 21 -

We estimate (9) using log- llnear P01sson regression with for cell (1,1,0) the offset )\ 1 % and
for cell (1,1,1) the offset AH + /\111 After estlmatmg (9), estimates for the missed
portions of the population are found by gy = exp(/\) and 7gg; = exp (A + /\

Table 3 shows the data for the Afghan, Iraqi, and Iranian people distributed over males
(x=0) and females (x =1). Under conditional independence, iy = 3,583 and
myo1 = 2, 113. Taken together, both registers missed 5,696 cases. Note that conditional
independence does not imply marginal independence under model [AX][BX], since the
marginal odds ratio 1,085%5,696/26,254"255 = 0.92, and hence shows dependence
(under marginal independence it would be equal to 1).

We estimate the parameters in (9) with a Poisson regression with )‘ux = 0, so that the
odds ratio of the males equals the odds ratio of the females (cf. (11)). The upper panel of
Table 5 shows the results of the sensitivity analysis for the people with Afghan, Iraqi, and
Iranian nationality in 2007 and the covariate gender. If in the population the registers are
dependent with a true size 6, the population size estimate under independence varies
between a nine percent overestimation to a 15 percent underestimation. As figg is
relatively small, the standard error is relatively small. Thus when the true 6 = 0.5 but we
estimate under 6 = 1, the population size estimate under independence is fairly robust.

For the people with a Polish nationality residing in the Netherlands in 2009 the covariate
gender is also used. Under conditional independence, the estimate iy, = 144, 548. The
lower panel of Table 5 shows the sensitivity analysis of the population size estimator
under conditional independence. If in the population the registers are dependent with a
true size 6, the population size estimate under independence ranged between a 58 percent
overestimation and a 42 percent underestimation. Thus when the true 6 # 1, the population
size estimate deviates greatly from the population size estimate under § = 1, indicating that
for this dataset the population size estimate under independence is not robust.

We note that this example uses a covariate with only two levels. One can easily extend
this to covariates with more levels. Assume covariate W has three levels, where the levels
of W are indexed by w (w = 0, 1, 2). Then there are three zero counts, namely for w = 0,
w = 1 and w = 2. One can estimate the zero counts using Equation (10), where estimates

Table 4. The observed values for the Polish people, males on the left panel and
females on the right panel.

Males HKS Females HKS
GBA 1 0 GBA 1 0

1 313 19,152 1 61 20,336
0 1,349 - 0 96 -
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Table 5.  Sensitivity analysis for the people with Afghan, Iraqi, and Iranian (All) nationality residing in the
Netherlands in 2007 (upper panel), and the people with Polish nationality residing in the Netherlands in 2009
(lower panel), conditional on gender.

Odds ratio

0.50 0.67 1.00 1.50 2.00
All I’zlo() 2,848 3,797 5,696 8,544 11,392
Ny, 30,442 31,391 33,290 36,138 38,986

N/N) 1.09 1.06 1.00 0.92 0.85

Se 292 390 576 863 1144
Polish @100 57,274 76,365 114,548 171,821 229,095
Ny, 98,581 117,672 155,855 213,128 270,402

N/N) 1.58 1.32 1.00 0.73 0.58
Se 3,814 5,088 7450 11,465 15,135

for the missed portions of the pOpulZvl‘EIOIl are found by #y = exp (/\) and gy =
exp ()\ + X ) and figpx = exp (/\ + A,

4. Two Registers With Partially Observed Covariates

In Section 3 we used covariates that are present in both registers (fully observed
covariates) to replace the strict independence assumption with an independence
assumption conditional on covariates. However, a register usually also has a set of
variables that are only measured in one register and not in the other register (partially
observed covariates). Partially observed covariates in A are usually ignored because
including them leads to missing data in B for those individuals that are not in A, and vice
versa. When these covariates are related to the inclusion probability, ignoring the partially
observed covariates can lead to a biased population size estimate (Zwane and van der
Heijden 2007; van der Heijden et al. 2012).

4.1. Partially Observed Covariates

Partially observed covariates can be approached as a missing data problem (Zwane and
van der Heijden 2007). If we assume MAR mechanism for the data, then we can use the
Expectation-Maximization (EM) algorithm to estimate the missing values of the partially
observed covariate of register 1 (and 2) for the individuals not present in Register 1 (and 2).
MAR assumes that the probability of missingness depends only on the observed variables
in the capture-recapture model (Little and Rubin 1987). When the assumption of MAR has
been satisfied, the EM algorithm will give unbiased estimates.

Suppose register 1 has the covariate X, indexed by k(k =0, 1), where the values for X
are missing for A = 0 because X, is not in register 2. Assume that register 2 has the
covariate X, indexed by /(I =0, 1), where the values for X, are missing for B =0
because X, is not in register 1. The log-linear conditional independence model for two
registers, with two partially observed covariates X; and X5, is denoted as

log myy = A+ AP + A7 4+ N1+ X + X5% 4+ A0 + 0, (12)
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Table 6. Expected values for two registers and two partially observed covariates.
B=1 B=0
X2=1 X2=O X2=1 X2=0

A= X =1 miin miiio mio11 mio10
X1=0 miol mi100 mioo1 m1000
A=0 X =1 mo111 mo110 moo11 mgo10
X1=0 mo101 mo100 Mmoot mM0000

with identifying restrictions A% = XgXt = AP = APH = NG = ALY = 0. The
conditional independence model is denoted by [AX,][BX][XX;]. Inclusion of the
parameter )\’?ZXZ instead of the parameter )\ﬁcx ' may seem counterintuitive, but no interaction
for A and X, can be identified as the levels of X; do not vary over individuals for which
A = 0, and similarly for B and X, (Zwane and van der Heijden 2007).

Table 6 illustrates that two registers with two covariates lead to 16 cells. However,
because our covariates are only partially observed, columns X, = 1 and X, = 0 for B=10
are collapsed, just as rows X; = 1 and X; = 0 for A = 0 are collapsed. In other words, we
do not observe counts for mg;;; and mg;o; but only one count for the sum mgi1; + mg101,
and similarly for mg;10 + mo100, Mm1011 + M1010 and mygo; + myg00. Note that we have no
observed values for mg;1, Mooo1, Moo10 and Mo, as these refer to individuals who are in
neither of the registers. Thus model [AX,][BX][X1X>] is saturated with eight observed
values and eight parameters to be estimated.

Using the EM algorithm we first estimate the four missing cells, that is, the cells that are
missing because the covariates are only partially observed. In the E-step we spread out the
four sums mg;11 + Moio01, Mo110 + Mo100, Mio11 + Mioro and myger + Mmigp Over the eight
cells to get an expectation for the missing data. In the M-step we estimate log-linear model
(12) to the completed table of twelve cells. For estimation, we assume that the twelve
counts follow a Poisson distribution and a log link connects the expected counts to the
linear predictor. The resulting estimates are then used for the E-step where in the M-step,
following (12), we estimate the parameters again.

To illustrate we once more use the data on the people with Afghan, Iraqi, and Iranian
nationality residing in the Netherlands in 2007 with two partially observed covariates (van
der Heijden et al. 2012). The GBA has the partially observed covariate marital status (X;),
where X| = 1 denotes either being married or living together and X; = 0O denotes either
unmarried, divorced or widowed. The HKS has the partially observed covariate police
region (X;), where X, = 1 denotes residing in one of the five biggest cities of the
Netherlands (i.e., Amsterdam, Rotterdam, Utrecht, The Hague, and Eindhoven) and X, = 0
denotes residing in the rest of the country.

Due to the log-linear model used, the first four observed values remain unchanged for
each iteration (for GBA =1 and HKS = 1). The upper panel of Table 7 shows the
observed counts and the lower panel of Table 7 shows the fitted counts after convergence
of the EM algorithm. As an example, the observed value of 91 (for X, = 1, where X;
values are missing under GBA = 0) is spread out into the values 64 for X; = 1 and 27 for
X1 = 0. After convergence, the unobserved part of the population is estimated. In total,
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Table 7. Data for the Afghan, Iraqi, and Iranian people residing in the Netherlands in 2007, spread out over the
partially observed covariates marital status X, and police region X,

Panel 1: The observed counts

HKS =1 HKS =0
X, =1 X,=0 X, missing
GBA =1 X, =1 259 539 13,898
X =0 110 177 12,356
GBA =0 X| missing 91 164 -
Panel 2: The fitted frequencies
HKS =1 HKS =0
X2:1 X2:O X2:1 X2:0
GBA =1 X, =1 259 539 4,511 9,387
X, =0 110 177 4,736 7,620
GBA =0 X =1 64 123 1,112 2,150
X;=0 27 41 1,168 1,745

we estimate that there were 33,770 individuals with Afghan, Iraqi, and Iranian nationality
residing in the Netherlands in 2007.

4.2.  Sensitivity Analyses

We again make use of a sensitivity analysis to investigate the unverifiable assumption of
independence conditional on partially observed covariates. Model violations for more
restricted models are verifiable in the data. For example, using a model such as [AX,][BX]
allows us to investigate absence of interaction )\fl'xz in the data. Thus the impact of an
interaction between X; and X, does not need to be investigated via a sensitivity analysis.
However, in this context (12) is the saturated model and therefore model violations such as
dependence between A and X, between B and X;, and between A and B are unverifiable,
rendering it useful to conduct a sensitivity analysis. Note that in the previous sections we
used a sensitivity analysis to assess the interaction between the two registers. In this
section we assess not only the interaction between A and B, but also the interaction
between the register and its partially observed covariate. To exemplify, we introduce an
interaction parameter that simulates dependence between the GBA and marital status.
Such a dependence would imply that marital status influences the inclusion probability of
being in the GBA.
The log-linear model for an interaction between A and B would be:

logmyiy = A+ X+ AP + A%+ A + X0 4 AR5 0% L 5F 0 (3)

with additional identifying restrictions that X;;B = 0 when i orj equals 0. Here exp ():28) is
the conditional odds ratio for the interaction between A and B.

Assume the partially observed covariate marital status is related to the inclusion
probability of the GBA, thus /\’;X' # 0. Because the interaction between A and X is
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unverifiable from the data, the fixed parameter ):fle has been added to the log-linear
model (12). We continue to work under the saturated model:

logmyy = A+ A+ AP+ A0+ X%+ A0+ A8 a0+ T 9
with additional identifying restrictions that X;?{XI = 0 when i or k equals 0. The same can be
done for the interaction between B and X,. When the partially observed covariate X, is
related to the inclusion probability of register B, )\ﬁxz # 0. We add fixed parameter /\~j}3X2 to
the log-linear model. The log-linear model then becomes:

logmyg = A+ A+ AP+ A0 + X+ A0+ A8 a0 X (15)

with additional identifying restrictions that Xﬁxz = 0 when j or [ equals 0. We can estimate
(13), (14) and (15) via Poisson regressions with offsets. Note that in modeling these
relationships we have to fix the offset variable on a log scale. Then we can estimate the portions
of the pog{ulatlon that both reglsters have missed by moooo = exp ()\) Moo10 =
exp ()\ + A ) Algop] = €Xp (/\ + /\1 ) and figg;; = exp(/\ + )\1 + /\1 + )\11 2

The upper panel of Table 8 shows the sensitivity analysis for the interaction between
A and B, the middle panel shows the sensitivity analysis for the interaction between A and
X1 and the lower panel shows the sensitivity analysis for the interaction between B and X,
for the Afghan, Iraqi, and Iranian people. As can be seen, for the interaction between
A and B, the relative bias is similar to the bias found in Tables 2 and 5. If in the population
the GBA and marital status are dependent with a true size 6, the estimation under
independence deviates between a 2.22 percent overestimation to a 2.89 percent
underestimation, and the estimation under independence between the HKS and police
region deviates between a 0.23 percent underestimation and a 0.19 percent overestimation.
Thus for the interactions AX; and BX,, when the true 6 # 1, the population size estimate
under independence remains fairly robust.

We have done the same for the people with Polish nationality residing in the Netherlands
in 2009. The observed values are shown in the upper panel of Table 9 and the expected

Table 8. Sensitivity analysis of the population size estimate for the people residing in the Netherlands in 2007
with an Afghan, Iraqi, and Iranian nationality with the interaction A and X, (upper panel) and the interaction
between B and X, (lower panel).

Odds ratio

0.50 0.67 1.00 1.50 2.00
AB 12100(9) 3.088 4,117 6,176 9,264 12,352
N, 30.682 31,711 33,770 36,858 39,946

N/N 1.10 1.06 1.00 0.92 0.85

AX1 ;1:100(9) 5,443 5,711 6,176 6,736 7,179
Ny, 33,037 33,305 33,770 34,330 34,773
N/N 1.0222 1.0140 1.00 0.9837 09711

BX2 @00(9) 6,253 6,220 6,176 6,136 6,112
N 33,847 33,814 33,770 33,730 33,706

N/N 0.9977 0.9987 1.00 1.0012 1.0019




370 Journal of Official Statistics

Table 9. The observed counts for the people with Polish nationality residing in the Netherlands in 2009
(upper panel) and the fitted frequencies spread out over the partially observed covariates (lower panel).

Panel 1: The observed counts

HKS =1 HKS =0
X, =1 X,=0 X, missing
GBA =1 X =1 111 188 25,416
X, =2 32 43 14,072
GBA=0 X =1 603 842
Panel 2: The fitted frequencies
HKS =1 HKS =0
X2:1 X2:O X2:1 X2:0
GBA =1 X, =1 111 188 9,435 15,981
X, =2 32 43 6,004 8,068
GBA =0 X =1 468 685 39,787 58,250
X|=2 135 157 25,318 29,408

frequencies are shown in the lower panel of Table 9. Again a sensitivity analysis has been
conducted, which is shown in Table 10. Just as with the individuals with Afghan, Iraqi, and
Iranian nationality, the estimates and thus the relative bias under dependence between A and
Bremains unchanged (cf. Tables 2 and 5). If in the population the GBA and marital status are
dependent with a true size 6, the population size estimate under independence ranges from a
seven percent overestimation to a nine percent underestimation (upper panel). The estimate
under independence between the HKS and police region deviates from a two percent
underestimation to a two percent overestimation (lower panel). Thus when the true 6 # 1,
the population size estimate under independence remains fairly robust.

Table 10. Sensitivity analysis of the population size estimate for the the people residing in the Netherlands in
2009 with Polish nationality with the interaction between A and X (upper panel) and the interaction between
B and X, (lower panel).

QOdds ratio

0.50 0.67 1.00 1.50 2.00
AB 1Moo(6) 76,381 101,842 152,762 229,143 305,524
Ny, 117,688 143,149 194,069 270,450 346,832

N/N) 1.65 1.36 1.00 0.71 0.56
AX1 1Moo(6) 139,494 144,238 152,762 163,584 172,582
N, 180,801 185,545 194,069 204,891 213,889

N/N) 1.07 1.05 1.00 0.95 0.91
BX2 1Moo(6) 156,616 155,004 152,762 150,707 149,429
Ny, 197,923 196,311 194,069 192,014 190,736

N/N 0.98 0.99 1.00 1.01 1.02
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Under the use of partially observed covariates it becomes clear why the log-linear
Poisson regression provides a more general approach than using odds ratios to implement
the sensitivity analyses. When using log-linear Poisson regression the process becomes
vastly simpler, in that the offset can be set to any number per cell. When multiple different
offsets are in use, the log-linear Poisson regression allows for this complexity, whereas
implementing odds ratios may become gruesome.

5. Miscellany

5.1. Extension to Multiple Sources

One way to make the impact of possible violations of the independence assumption less
severe is by conditioning on covariates, as we have seen in Section 3 and 4. Another way to
make the impact of possible violations of the independence assumption less severe is by
adding registers, when more registers are available (cf. Baffour et al. 2013). Assume we
have three registers 1, 2 and 3, where the variables A, B and C respectively stand for
inclusion in the registers. We denote the expected values m;;, where i, j, p = 1 stand for
the inclusion into Registers 1, 2 and 3 respectively and where i, j, p = O stands for the
absence in registers 1, 2 and 3.
For three variables, the saturated log-linear model is denoted by

log mjp = A+ X+ A7 + A5+ X5% + X7+ A)C (16)
with identifying restrictions that a parameter equals zero when i,j or p = 0. We assume
that interaction parameter )\jj-fc = 0. Model [AB][BC][AC] is the saturated model, as the
number of observed parameters equals the number of parameters to be estimated. With
d registers, we assume that the d-factor interaction is absent.

For estimation, assume that n;;, follow a Poisson distribution and a log link connects the
expected value m;, to the linear predictor. We can estimate the parameters in (16) via a
Poisson log-linear regression.

Model [AB][BC][AC] assumes that odds conditional on a third variable are equal, for
example for the odds ratio between A and B given C we find

my10Mo00 _ M111M001

7)

n100Mo10 mio1Mo11

Model (16) assumes that for estimation with odds ratios under saturated model
[AB][BC][AC] we get:

Mo10Moo1 M1ooMti11 _ Mo10Moo1 100111

PSS = = Mooo- (18)
mp11M110M101 no11711107101

An estimate for /7y is easily derived from (17) as [AB][AC][BC] is the saturated model in

this context; absence of the three-factor interaction is an unverifiable assumption as it

cannot be verified in the data. More restricted models such as [AB][AC] are verifiable in

the data. However, we can investigate the robustness of the population size estimate

against violations of the assumption that the three-factor interaction is absent by fixing the
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interaction parameter to anything but 0, that is, Py
becomes:

i € 0. Thus the log-linear model

log m,j,,:/\+A<‘+A‘?+AC+/\<‘B+AAC+ABC+/\ (19)

ijp

with the additional identifying restriction where parameter ’\up equals zero when i or j or
= (. The population size estlmate under (19) can be estimated using Poisson log-linear
regressmn with parameter )\ as an offset.
Under dependence between A and B given C, the association between the odds ratio 6
and the log-linear parameters is:

0&,;:0) _ M1i0Mooo _ exp (/\AB)’ (20)
m100M010
and:
=) _ minmoor _ exp (X1 4 \ABC), QD

nio1mMo11

When we assume that the odds ratio between A and B is the same for p =0 and p = 1,
we get

n110M000 m111m001

Oap = exp (AD). (22)

miooMo10  M101Mo11
When more registers are available we can use these extra registers to reduce the impact
of violations of the independence assumption. As we have shown, the log-linear model is
easily generalizable to multiple registers.

5.2.  Multiplier Method

The multiplier method is an alternative method to estimate the size of a population and it is
used, amongst others, in drug use research and HIV prevalence (European Monitoring Centre
for Drugs and Drug Addiction (EMCDDA) 1997; Cruts and van Laar 2010; Temurhan et al.
2011). Multiplier methods are user-friendly for their mathematical simplicity, and absence
of linkage, and are straightforward to use. At least two data sources are needed to use the
multiplier method, usually a comprehensive register and a survey. For example, assume we
wish to estimate the number of Polish people residing in the Netherlands in 2013. We assume
that everyone has an equal chance of going to a hospital, thus we go to hospitals to assess
how many Polish patients there are, and ask them whether they are in the GBA. Then
assume the data we found is the data from Table 11. There are 200 Polish people, of which
150 are in the GBA. Thus p(GBA [Hospital) = 0.75. If a total of 40,000 Polish people are
registered, in the GBA, this means our actual total should be 40,000/0.75 = 53,333 and
we missed 53,333 — 40,000 = 13,333 people who are not registered in the GBA.

The multiplier method can also be explained from the perspective of capture-
recapture methods. Using the counts provided above, we have njj, ng; and nj+ so
that ny4 — n;; = njp and Equation (2) gives (39, 850*50)/150 = 13,283. Then N=
150 4+ 50 4 39, 850+ 13,283 = 53,333, which is the exact same value as we got above.
A sensitivity analysis could be conducted using Equation (7).
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Table 11.  Artificial observed data for the Polish people in the hospital

Hospital
1 0
GBA 1 150 39,850 40,000
0 50 - -
200 - -

The attractiveness of the multiplier method lies in the absence of the linkage of two
sources. When estimating hidden or hard-to-reach populations, it is likely that it is difficult
to obtain identifying variables to link the individuals in the samples. The absence of linkage
is what makes the multiplier method different from capture-recapture. However, it has to be
kept in mind that the multiplier method also relies on the underlying assumptions that being
in the hospital is statistically independent from being in the GBA, and that it relies on
individuals reporting their GBA status accurately when being admitted to the hospital.

5.3.  Confidence Intervals

Apart from robustness, another aspect of the usefulness of a point estimate is its confidence
interval. Parametric bootstrap confidence intervals can be used to find these confidence
intervals in a simple way when dealing with incomplete contingency tables. In a
parametric bootstrap sample, the estimate 7i1gg for cell (0, 0) is used in the multinomial
probabilities. So for Table 1, the four probabilities are nll/ﬁ(e), n1o /N(g), nOI/N(g) and
N o ., . AB . . o

Moocey/Neg- A sample with size )\,-j is drawn with replacement. This yields four counts

nbTh b, s ! and ni5!. The first bootstrap population size estimate N~ is found using

only nf7!, nf!, n5!, that is, ignoring nfy", and estimating 7ggy, . This is repeated 10,000
times, yielding 10,000 bootstrap population size estimates. From these, 2.5 and 97.5
percentile scores are derived.

To exemplify we constructed a parametric bootstrapping confidence interval on the data
presented in Section 2, which can be found in Table 12. The R code for the parametric
bootstrap confidence interval can be found in Appendix A.3.

To compare, we also constructed the asymptotic confidence estimate
CI = oo + / — 2975 | V VA&Y(")), where Var(n) = (nisnqinionor) /((ni1)*)  (Bishop
et al. 1975). The estimated confidence interval for the Afghan, Iraqi, and Iranian people
under independence is 32,905.44 — 34,623.16, which is close to the bootstrapped
confidence interval.

Table 12. Confidence intervals

Odds Ratio All Polish

0.50 30,254 — 31,132 109,529 — 127,022
0.67 31,156 — 32,288 132,278 — 155,837
1.00 32,931 — 34,654 177,476 — 212,431
1.50 35,607 — 38,125 245,439 — 298,960

2.00 38,292 — 41,682 314,212 — 384,579
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6. Discussion

We have shown for two different datasets that the population size estimate under
dependence could be fairly robust as well as not robust at all. Deviations from
independence when implied coverage is low (and thus 7y is high) result in bigger
deviations from the population size estimate under fixed dependence than when the
implied coverage is higher. Thus the estimate becomes less robust and this makes the
situation worse. For the Afghan, Iraqi, and Iranian people the population size estimate did
not change much when dependence was introduced; it also remained fairly robust whether
or not we assumed conditional independence on fully observed covariates. However, for
the Polish people, the implied coverage is small, resulting in a higher 7o so that the
deviation from independence will be large. The resulting lack of robustness makes it even
worse. Not only did the population size estimate under independence change dramatically
under fixed dependence, adding a covariate to replace the strict independence assumption
with the less strict independence assumption conditional on covariates changed the
population size estimate but did not improve the robustness.

This reflects the fact that Polish people, much more than people from Afghanistan,
Iraq, and Iran, are in the position that they work on a temporary basis without living
permanently in the Netherlands. By law, it is permitted for people from European
Union countries like Poland to work in the Netherlands without a work and living
permit. This is not the case for people from Afghanistan, Iraq, and Iran. Therefore, the
coverage of the GBA differs between both nationalities, which gives a relatively high
estimation of the missed population of the Polish people compared to the Afghan, Iraqi,
and Iranian people. Additionally, because we multiply ngy with 6, it follows that a
bigger mgy will result in a bigger mgp than a smaller my, would when multiplied with
the same 6.

We also showed how to investigate robustness of the population size estimate in models
with partially observed covariates. For the example we used, the population size estimate
was relatively insensitive to violation of specific conditional independence assumptions.
Since adding covariates reduces heterogeneity and gives the opportunity to assess how the
population is divided over the levels of the covariate, it is useful to include a partially
observed covariate.

In this article we assumed that the only assumption that was violated was the
independence assumption. However, violation of other assumptions could also have a
large impact on the population size estimate. In particular, research on violation of the
assumptions that the registers are perfectly linked as well as that the population is closed
during the observation period is needed to draw conclusions on the usefulness of the
capture-recapture method for estimating the undercoverage of census data.

We have chosen a range of odds ratio from 0.5 to 2. To our knowledge, it is not possible
to get an accurate estimation of what a realistic 6 value would be, since it is impossible to
ascertain 6 from the data. One way of dealing with the strict independence assumption is
by adding a third register, hence using another source to estimate 6, as has been done by
Brown et al. (2006) who created an adjustment factor based on a third source for the
census.



Gerritse et al.: Parametric Assumptions in Log-linear Models 375

In conclusion, it is important to assess the size of the implied coverage of one of the
registers. We have shown that lack of robustness under dependence is easily established
when implied coverage is low. However, when implied coverage is high the population
size estimate remains fairly robust. Thus, instead of accepting the population size estimate
as it is, researchers should report on the robustness of their estimate.

7. Appendix

To estimate the population size under log-linear models, we have used Poisson regression
with an offset in SPSS and R.

A.l. R Code

Below is given the R code to get estimates nigyy in the EM algorithm, for the Polish data
only.

##Give the data

data = c(111,188,32,43,12708,12708,7036,7036,301.5,421,301.5,421) ## Polish data
data = data*10000

freqitx = freqitl = data

## Design matrix

A =c(1,1,1,1,1,1,1,1,0,0,0,0)

B = ¢(1,1,1,1,0,0,0,0,1,1,1,1)

X1 = ¢(1,1,0,0,1,1,0,0,1,1,0,0)
X2 = ¢(1,0,1,0,1,0,1,0,1,0,1,0)

## OR for independence

offst = ¢(0,0,0,0,0,0,0,0,0,0,0,0)

for (i in 1:50000){

glm = glm(freqitx ~ A*X2 + B*X1 + X1*X2, offset= offst, family=poisson)
freqdata = c(data[1:4])

freqfit = glm$fitted.values[5:12]

freqitx = c(freqdata,freqfit)

freqitx = round(freqitx)}

## Parameter estimates under independence

par = glm$coefficients

m0011 = as.numeric(exp(par[ 1]+ par[3]4 par[S]4 par[8]))

m0010 = as.numeric(exp(par[1]+par[5]))

m0001 = as.numeric(exp(par[1]+par[3]))

m0000 = as.numeric(exp(par[1]))

matrix = matrix(c(glm$fitted.values[1],glm$fitted.values[2],
glm$fitted.values[5],glm$fitted.values[6],glm$fitted.values[3],glm$fitted.values[4],
glm$fitted.values[7], glm$fitted.values[8], glm$fitted.values[9], glm$fitted.values[10],
mO0011,m0010,glm$fitted.values[11],glm$fitted.values[12],m0001,m0000),4,4,byrow
= TRUE)

N = sum(matrix)



376 Journal of Official Statistics

## Define the offsets. Here we only give an example for the offsets of BX2 = 0.5
offstl] = ¢(-0.6931472,0,-0.6931472,0,0,0,0,0,-0.6931472,0,-0.6931472,0)

## Iterative GLM Loop for the EM algorithm

for (i in 1:50000){

glm = glm(freqitx ~ A*X2 + B*X1 + X1*X2, offset = offstl, family=poisson)
freqdata = c(data[1:4])

freqfit = glm$fitted.values[5:12]

freqitx = c(freqdata,freqfit)

freqitx = round(freqitx)}

## Calculation of estimated missed frequencies

par = glm$coefficients

m0011 = as.numeric(exp(par[1] + par[3] + par[5] + par[8]))
m0010 = as.numeric(exp(par[1] + par[5]))

m0001 = as.numeric(exp(par[1] + par[3]))

m0000 = as.numeric(exp(par[1]))

mO0Ocomp = mO0011 + m0010 + m0001 + m0000
PSE = sum(data)+ mOOcomp

print(m0Ocomp)

print(sum(data)+ mOOcomp)

print(N/PSE)

A.2. SPSS Syntax

compute freqitx = freqitl.

compute freqitx = rnd(freqitx).

execute.

DEFINE EM_PGLM()

DO !I1 = 1 !TO 10000.

GENLIN freqitx BY A B X1 X2 (ORDER = ASCENDING)
/MODEL A B X1 X2 A#X2 B*X1 X1*X2 INTERCEPT = YES OFFSET = offst05
DISTRIBUTION = POISSON LINK = LOG

/SAVE MEANPRED (pred_val).

compute diff = ABS(freqitl-pred_val).

means diff.

compute freqitx = pred_val.

IF(A = DN&(B = DH&X1 = 1)&(X2 = 1))freqitx = freqit].
IF(A = D&(B = )&(X1 = 2)&(X2 = 1))freqitx = freqit].
IF(A = DN&(B = 1&(X1 = 1)&(X2 = 2))freqitx = freqitl.
IF(A = D&(B = H&(X1 = 2)&(X2 = 2))freqitx = freqit].
COMPUTE freqitx = rnd(freqitx).

execute.
delete variables pred_val.
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'\DOEND
!\ENDDEFINE.
##run the macro
EM_PGLM.

A.3. R Code Parametic Bootstrap

The R code presented below represents the parametric bootstrap for the Polish data from
Table 1

data = c(374, 39488, 1445) ## Polish data

theta =2

mO00 = (data[2]*data[3])/data[1]

mOOtheta = mOO*theta

datacomp = sum(data,m(0Otheta)

## The estimate of N, under an offset theta

n = sum(data)

N = n + mOOtheta

##The relative bias under an offset theta

(n + mO00)/N

## Parametric bootstrap

NN = c(N)

p = matrix(c(data/datacomp, m0OOtheta/datacomp),1)
set.seed(N)

library(combinat)

databoot = rmultinomial(rep(NN, 10000),p)

mOOboot = theta* (databoot[,2]*databoot[,3])/databoot[,1]
nboot = databoot[,1:3]

Nboot = mOOboot + nboot[,1] + nboot[,2] + nboot[,3]
quantile(Nboot, c(0.025, 0.5, 0.975), type = 1)

sd = function(x) sqrt(var(x))

sd(Nboot)
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On Modelling Register Coverage Errors

Li-Chun Zhang'

Register data that originate from administrative or other secondary sources are increasingly
being used to generate statistical outputs directly. The coverage of the input datasets is an
important issue in this respect. Traditionally capture-recapture models have been used to deal
with multiple list enumerations subjected to undercoverage errors. The aim of this article is to
scope possible approaches to modelling capture-recapture data with additional overcoverage
error. Attention is primarily given to model interpretations and conditions under which a
model may provide a plausible basis for estimation and uncertainty evaluation. The setting
with two list enumerations is examined in depth as it is the most common in practice. Models
that can be extended to include more than two lists are identified. An additional independent
coverage survey with only undercoverage error is always needed for estimation. Potential
application to census coverage-error adjustment is discussed.

Key words: List error and catch; log-linear model; pseudoconditional independence.

1. Introduction

More and more often, register data that originate from administrative or other secondary
sources are being used to generate statistical outputs directly, instead of merely supplying
auxiliary information for sample surveys and census. The recent round of census provides
examples of this development in a number of European countries. The coverage of the
input registers has a direct bearing on the population size statistics and, in the next
instance, statistics about the various characteristics of interest (Zhang 2012).

A register has undercoverage of the target population if there exist population units that
are not listed in the register; it has overcoverage if not all the units in the register belong to
the target population. Capture-recapture (CR) models for population size estimation (e.g.,
Fienberg 1972; Cormack 1989; IWGDMF 1995a and 1995b) can be used to deal with the
undercoverage errors that exist in multiple registers. A notable application is census
underenumeration adjustment using an independent U-sample coverage survey to generate
recapture data. See for example Wolter (1986), Hogan (1993), Brown et al. (2011),
Renaud (2007), and Nirel and Glickman (2009). Note that the term list (e.g., Wolter 1986)
is more natural than register in this context, as well as in a number of situations outside
official statistics, such as sizing of wildlife, hard-to-reach or clandestine populations.
The two terms list and register will be used interchangeably in this article.
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When it comes to overcoverage, the standard census adjustment approach is to deploy a
separate O-sample, selected from the census reports, to directly estimate the overcoverage
rate. No explicit statistical model is applied to the O-sample, in contrast to the U-sample.
Moreover, fieldwork for the O-sample can be limited or totally absent — see for example
Renaud (2007) for an account of the Swiss census. On the one hand, this helps to bring
down the cost; on the other hand, spurious coverage errors such as duplicate reports and
misreports of census residence area can to a large extent be assessed based on record
matching and clerical checks without any fieldwork. However, the ability to detect
erroneous enumeration, that is, reports of nonexistent or out-of-scope cases, may be
reduced as a result.

A modelling approach to include both under- and overcoverage errors can thus have
direct relevance to the census methodology. It may potentially provide a means to assess as
well as to adjust for erroneous census enumerations, provided additional register
enumerations from secondary sources. For example, the Office for National Statistics in
the UK is currently investigating the use of administrative data for the future provision of
population statistics (ONS 2013). The same goes for those countries where the traditional
census enumeration has already been replaced by population registers (e.g., Israel,
Switzerland), but the O-sample deploys only limited fieldwork or no fieldwork at all.

Moreover, applications to CR data in a range of situations can be conceived. For
instance, the target population may be clandestine and dynamic, such as active drug users.
Relevant lists may be available from the police, clinics, and various nongovernmental
organisations. Erroneous enumeration can occur in all these lists. Or, consider multiple
screening procedures, each generating a list of the units with a positive test result. Only the
test-positive units are subjected to a comprehensive examination, which may reveal both
erroneous enumerations and underenumerations in each list. A model for predicting the
errors of each test as well as the combined test results may then be of interest.

In the sequels we investigate some possible approaches to modelling two-list CR data in
the presence of both over- and undercoverage errors. Section 2 briefly sets out the CR model
underlying the dual-system estimator (DSE) in use for census undercoverage, as expounded
in Wolter (1986). The modelling approach is extended to include the overcoverage error in
Section 3. All possible standard log-linear modelling alternatives for crossclassified counts
are examined, as well as an approach based on the concept of pseudoconditional
independence. The emphasis is on the modelling strategy, the interpretation and the
conditions under which a model may provide a plausible basis for statistical estimation and
uncertainty evaluation. Models that can readily be generalised to include more than two lists
are identified. In Section 4 the different models are compared to each other, using artificial
CR datasets that seem relevant for the setting of census population size estimation with
additional administrative register data. Discussions will be given in Section 5 regarding the
future work that is needed to establish a viable estimation methodology for the census or
census-like population statistics.

2. Homogeneity Model for Dual-System Estimation

Wolter (1986) discussed several CR models for census undercoverage errors. The
homogeneity model described below underpins the DSE currently in use in a number of
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countries. References to the assumptions as stated by Wolter are cited and given in
parentheses.

Let target population U be of unknown size N. Let A and B be two lists, both of which
aim to enumerate U. Let the probability that a unit in U belongs to a particular list domain
be given as below:

List B
n out
in
List A P11 P1o P1+
out Po1 Poo Po+
D+1 D+o 1

Each unit is assumed to follow independently (“Autonomous Independence”) the
multinomial distribution (“Multinomial’) with probability p,, for being included in the list
domain (a,b), for a,b =1,0,+. Note that Uy refers to the units that are neither
enumerated in A nor B. Let the list-domain size N,, be observed except for Ny and
N = N4, that is, the matching of list A and B is error free (“Matching”). All the units in
list A and B can be identified (“Nonresponse”). Neither list A nor B contain overcoverage
errors (“Spurious Events”). Finally, under the assumption that the event of being
enumerated in list A is independent of that in B (“Causal Independence”), the probability
Dab 18 given by

Pab = Pa+P+b ey

For application to census undercoverage adjustment, let A be the census data and B the
independent coverage-survey data. To avoid additional details, we assume that the
coverage survey aims to enumerate the whole population at the sampled locations, such as
census blocks or postcode areas, so that the missing survey enumerations are not due to
sample selection, and the estimation below may be repeated for the target population at
each sampled location. Because there is a time lag between the two list enumerations in
practice, one needs to assume that the target population remains the same (“Closure”).
A large-sample estimator of N and (p;4,p+1) in (1) is given by

NN Nu &)

(Ny Al aA 1):( ) )
i Pt Ni Ny Niy

(e.g., Wolter 1986). In particular, N is the so-called Dual-System Estimator (DSE). Among
others this may be motivated as the method-of-moments estimator (MME) based on the set
of moment equations:

E(N11) = Np1+p+1

E(N14) = Np1+

E(N11) = Npy

E(No) =N — E(N14+) — E(N+1) + E(N11)

@)
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Note that the last equation is merely a tautology since Ny is nonobservable, such that there
are in effect only three equations.

3. Model with Additional Overcoverage Errors

3.1. Target-List Universe

Erroneous enumerations in census correspond to reports of nonexistent or out-of-scope
cases, such as newborns after the census reference period that are mistakenly recorded in
the census. Out-of-scope newborns can equally occur in lists originating from
administrative sources, such as when the entry time point of a record is misreported.
More often, though, erroneous register enumerations happen because an individual leaves
the target population without deregistering. For instance, someone may have moved
abroad without notifying their general practitioner and thus becomes an erroneous
enumeration in the Patient Register for the census. Likewise, the same individual may fail
to notify the election office, and become an erroneous enumeration in the Electoral
Register, say, until the next time this person takes part in the general election from abroad.

Generally speaking, therefore, it is unlikely to be the case that overcoverage errors are
independent across multiple registers. Moreover, erroneous enumerations may be more
extensive in the administrative registers than in the census. For example, the Patient
Register enumeration of the population of England and Wales is over four percent higher
than the Census 2011 population estimate (ONS 2013). In other words, if unaccounted for,
erroneous register enumeration is potentially a source of large bias.

The homogeneity model above is defined for the units in the target population alone.
Erroneous list enumeration implies that there are units included in list A or B, or both,
which are not in the target population U. One needs to extend the reference set to the
target-list universe, denoted by U* = U U A U B. Let the probability that a unit in U*
belongs to a particular rarget-list domain be given as below:

List B
in out
InU List A in P D110 D1+
out D101 D100 Pio+
P11 P1+o P1++
List B
in out
Out of U List A in Do11 Do1o Po1+
out Poo1 — DPoo1
Po+1 Po1o

Each unit in U* is assumed to follow independently (““‘Autonomous Independence’) the
multinomial distribution (“Multinomial””) with probability p,., for u,a,b=1,0,4+,
except for (u,a,b) = (0,0,0) which is not part of the target-list universe. Let N, be the
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size of the corresponding target-list domain, where Ngy = 0, that is a structural zero.
The target population is given by U = U, 4+ and its size by N = Ny in this notation.
Let N be observed for (u,a,b) = (4,1, 1), (+,1,0) or (+, 0, 1), that is the matching of
list A and B is errorfree (“Matching”), and let all the list units be identified
(“Nonresponse”).

Thus, all the assumptions of the homogeneity model are retained, except for the three of
“Spurious Events”, “Closure” and “Causal Independence”. This is of course not to say that
the other assumptions are all beyond criticism. But they are not dealt with in this article.
In particular, we modify the assumption of “Spurious Events” to exclude all other
overoverage errors, such as duplicate reports, but allow for erroneous list enumeration.
The “Closure” assumption is no longer necessary, because we now allow for erroneous list
enumerations. What remains to be explored are the possibilities of replacing the
assumption of “Causal Independence” (1).

3.2.  Moment Equations Given Additional Survey Enumeration

The seven parameters of the multinomial distribution are not estimable given only three
observed list-domain counts N ;, N9 and Ng;. Assume that there exists an additional
coverage survey, denoted by S, which (I) has only undercoverage error so that all the units
in S belong to U, and (II) can be matched to list A and B without errors.

The following additional notations seem convenient. Let n,, be the observed number of
units in S that belong to the list domain (a, b). Assume that the event of being enumerated
in S is independent of the inclusion in the lists, such that

ms=P(ieSlieU,)=Pi€S) 3)
It follows that E(n,p) = E(N14)7s. Consider two possible decompositions
E(N1p) = ENP(i € Uy, li € U) = EN1a)P(i € Uli € U.,) 4)

for (a, b) # (0,0). The first conditional probability that unit { € U is in the list domain
(a, b) will be referred to as the corresponding list catch rate, short handed as

Tab = plub/pl++
for a,b =1,0,4. The second conditional probability is given by one minus the

conditional probability that a unit in the list domain (a, b) is an erroneous enumeration, for
(a,b) # (0,0), to be referred to as the corresponding list error rate and short handed as

Oub = Poab/P+ab = Poab/(P1ab + Poab)

Given that our interest is to see how the erroneous enumerations can be modelled, it will
be useful to observe a set of moment equations, conditional on x = (x;;, X9, Xo;) defined
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by x4 = Niap, given in terms of the list error rates:
E(ny|x) = x11(1 — 611)7g
E(niolx) = x10(1 — 610)7s
E(noi1x) = xo1(1 — 6o1) 75 )
E(ngolx) = (EWN1x) = x11(1 = 611) = x10(1 = 810) — x01(1 — 601)) s

Notice that, since the unknown quantity E(N|x) appears only in the last equation, this last
equation can only be used to derive an estimate of E(N|x) given the other parameter
estimates. There are four parameters in the first three equations of (5). At least one
additional assumption is needed from the different models, which can be compared to each
other in terms of how they transform the first three equations. The strategy now is to
examine systematically the possible log-linear models for, respectively, the target universe
U, the target-list universe U* and the list universe, denoted by U, = A U B.

3.3. A Log-Linear Model of U
The list catch rates are defined for the units in U, conditional on which the Ny,s form a
two-way contingency table with fixed total N. The saturated log-linear model is
log 7y = A+ X3+ AF + A28
(e.g., Agresti 2013). The largest nonsaturated model is given by
Nop =0 & gy = Tay Ty & 01 To0 = Ti0T01 (6)

that is the event of being enumerated in List A is independent of that in B. Given that
E(n.|N) = Ng1s, Model (6) implies

E(N111IN) = E(N11£IN)E(N141IN)/N
E(n11|N)E(nooIN) = E(n19IN)E(n:|N)

the latter of which can be checked given the n,s.

As discussed previously, one does not really expect (6) to hold for example between the
census and the Patient Register, or between the Patient and the Electoral Registers, and so
on. Still, to see the implications of (6) on the list error rates, let 6,4+ = poi+/p+1+ be the
probability that a unit in list A is erroneous and 611 = po11/p++1 that a unit is erroneous in
list B. Combining (6) with decompositions like (4), we have

(1 —611) _ EGi4)E(41)
(I =01 —=0641)  E(x)EN)

)

On account of (7), we refer to (6) as an incidental model of the list error mechanism, in the
sense that it imposes constraints between the list error rate and the target population
size N. For instance, under (6), we have N = E(Nj1+|N)E(N+1|N)/E(N11|IN).
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Since N111 = Ny11 = x11, and Nyip = Niiw — Niio = Niig — Nyo = N1y — X0, and
Nitt = N1yt = Niot = N1yt — Nyor = N1y — Xo1, we must have

(E(N11+|N)E(N1+1|N) E(N11+|N)E(N1+1|N)>
E(N11+IN) = E(x10IN)" E(N141IN) — E(x01|N)

E(N11+|N)E(N1+1|N)

=N = min
E(x11IN)

Now that each list error rate is a conditional probability within the list universe, such
constraints on the target population size are unwarranted in general.

3.4. Log-Linear Models for Target-List Universe
The saturated log-linear model of p,,;, of the target-list universe U* is given by

108 puap = A+ AV + 2 + AE 4 AUA 1 \UB 4 \AB 4 \UAB

uab

Without losing generality, we shall set all the As to zero except those with all their
subscripts equal to one. The structural zero cell, that is, pogo = 0, can be accommodated
by dropping the parameter A, such that the seven parameters of the saturated model are
(AV N AR VA AU X AL,

The largest nonsaturated hierarchical model is the one with AYA® =0, denoted by
[UA][UB][AB], where

pioo = exp (A])

poto = exp (A7)

pio = exp (AY + A1 + AT

poot = exp (AF)

piot = exp (AY + A% +AYP)

poit = exp (A} + AF + A1)

piin = exp (A + A} + AP + A4 + AUE 4 \F)

It follows that

pou _ log w—i— log poﬁ—i— log p1oo
P11 P10 Pio1

log

The three log ratios correspond to the log odds of list error in list domain (1, 1), (1,0) and
(0, 1), respectively, denoted by logit 61, logit 6,9 and logit 6y;, whereas pjgp is the
proportion of target-population units outside of the list universe. In terms of the list error
rates, then, the model amounts to the following assumption

logit 6;; = logit 6,0 4 logit 6y; + (log E(N100) — 10g(N4+++)) ®)

which is an incidental model, just like (6). Since there are no compelling reasons why the
conditional probabilities of erroneous enumeration within the list universe must depend on
the number of target units outside of it, Model (8) cannot be of general use.

It is possible to further reduce the log-linear model. But this would only result in
incidental models based on implausible assumptions. For instance, under model [UA][AB]
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with /\ﬂB = 0 in addition, we would have

1 1
poor _ L g powo _pon _

pio1  P1oo pio pin piooexp (AL)

3.5. Log-Linear Models for List Universe

To separate piop from the list error mechanism, consider now modelling the list universe
U; = A U B with the conditional probabilities, for (a,b) # (0,0) and u = 0, 1,

Guab — puah/(l - Pl()O)

The saturated log-linear model of g, is given by

logquah:/\+/\'s/+/\12+A§+AL€?+A$+A‘2}?+/\UAB

uab

Without losing generality, we shall set all the As to zero except those with all their
subscripts equal to one. There are two structural-zero cells in U, namely, gooo = g100 = O,
which can be accommodated by dropping the parameters A and AV, such that the six
parameters of the saturated model are (/\*]‘, NBOANUA NUB (4B \UAB )

The largest nonsaturated hierarchical model is the one with A%E = 0, where

qoi0 = exp (A7)

g0 = exp (A} + {1
qoo1 = €Xp )\f)
qio1 = A+ A7)

qoi1 = exp (A} + AY +A1F)
exp (A + A7 + AT+ AT + A1)

(

(
exp (Af

(

(

qi11

In terms of the log odds of erroneous enumeration, that is, logit 6}, logit 6,0 and logit 6y,
this amounts to the following assumption, for (a,b) # (0, 0),

logit 6,, = ays + byp < logit 6;; = logit 6,y + logit 6y, )

This is a ‘standard’ null second-order interaction assumption, that is, /\%B =0, of the
three-way classification of the list units. It is not an incidental model. Whether or not
plausible for the particular data of concern, it is a model that can not be disregarded
a priori, and it can readily be extended to situations involving more than two lists, where
the log-linear model of the extended list universe can be put down similarly.

We note that further reduction of Model (9) would only result in less plausible
assumptions. For instance, under model [UA][AB] with )\ﬁB = 0 in addition, we have

@:1 and @:@: exp <_)\€]1A)
q101 qi10 qi11

that is, the error rate is simply 0.5 for the units in B but not A, and it is the same for all the
units in A whether they belong to list B or not, which seems unwarranted in general.
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3.6. Two Alternative Log-Linear Models for List Universe

So far (9) is the only model of list erroneous enumeration that (i) does not involve
incidental assumptions about the target population size, and (ii) can be extended to
include more than two lists. When a list error rate is low, its logit does not differ much
from its log. For instance, for a ten percent error rate, we have logit0.1 = —2.2
compared to log 0.1 = —2.3. Replacing logit in (9) with log leads to the following log-
linear model

IOg Ha;, = adp + baB ~ IOg 011 == lOg 010 + log 9()1 R4 011 == 91()9()1 (10)

for (a,b) = (1,1),(1,0),0, 1), that is, the error rate of the units in both A and B is the
product of the error rate of the units in only A (but not B) and that of the units in only
B (but not A). That is, for i € Uy,

P& Ulie ANB)=Pi & Uli € A\B)P(i & Uli € B\A)

Clearly, every extension of (9) to the situation with more than two lists gives rise to a
corresponding model (10), as the two differ only in the choice of the link function.
Provided low error rates, the two are expected to yield nearly the same fit to the data.
But the difference can become greater if some or all of the error rates are appreciable.

Now, consider the scenario where list A and B have high quality so that both have low
erroneous enumerations, that is, both 6, = po14+/p+1+ and 041 = pot1/p++1 are small,
and both have high catch rates, so that the list domain (1, 1) is much larger than domain
(1, 0) or (0, 1). It then seems natural to expect the error rate to be even lower among the
units in both A and B, that is, 6;; < 6,4 and 6;; < 6., while the error rates among the
units that belong to only one list are comparatively high, that is, ;9 > 6,1 and 6y; > 6.
It is thus worth considering 6;; = 6,4+ 64, as an alternative to 6;; = 6096y, above, that is,

log 01 = log 61+ + log 041 < 011 = 61464 (11)

The main difference is that 6;; can be much lower under (11) than under (10).

It should be noted that Model (11) does not belong to the standard log-linear models for
cross classified counts based on the concept of conditional independence. The examination
of the possible standard log-linear models above empirically verifies this for the two-list
setting. Generically speaking, denote by X, Y and Z any three random events. A conditional
independence assumption among them must be of the form

P(X NY|Z) = PX|Z)P(Y|Z)

that is, the conditional joint probability is the product of the conditional marginal
probabilities. If we put X as erroneous enumeration for i € Uy, and Y as its inclusion in list
A and Z as its inclusion in B, then (11) has the form

PX|Y N Z) = PX|Y)P(X|Z)

that is, the joint conditional probability is the product of the marginal conditional
probabilities. We refer to this as an assumption of pseudoconditional independence (PCI).

It is possible to develop classes of log-linear models that extend (11) to list CR data
involving more than two lists. But we shall not go into the details here. Instead, let us look
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at a heuristic example of why Model (11) may be more suitable than (10) when the quality
of the list enumerations is high. Assume two lists that have no erroneous enumerations at
all and Nyy; = N4+ = N4y, in which case we have 6;; = 0,4 = 6, =0 while
(610, 6p1) do not exist. In other words, Model (11) holds but (10) is not applicable. Suppose
now two units leave the population. First, in the ideal case, the two events are registered in
both lists so that (N41;, N4+, N1y;) are all reduced by two. Then, Model (11) still holds
and (10) remains inapplicable. Next, suppose some lack of updating, such that the one
event is registered in list A but not B, and the other is registered in B but not A. Then, we
still have 0;; = 0, but 619 = 6,0 = 1, and 6, = 1/(N+1+ —1and 604, = l/(N.H_l —1).
Model (10) errs much more than (11), because the difference between 6;; = 0 and
010001 =1 is much larger than the difference between 6;; =0 and
614041 = 1/[(Nt1+ — )(N44+1 — 1)]. One can go through the other possibilities of
imperfect updating, and one will find that the Model (11) either holds or errs only little.

Both Model (10) and (11) can be fitted given survey data S. For the two-list setting, it is
convenient to derive the MME from (5) directly (Appendix). We have

A Xo1 (P11 Mo A X10 (P11 ol
6o = — (— — —> and 6y = — <— - _) (12)
no1r \X11 X10 nio \X11 X01
for Model (10), and
A Xyl (i Ny A Xi+ (M Ny
01+:—(——— and 0 =—|——— (13)
nyp \X11 X+ ni4 \X11 X41

for Model (11). Any estimated error rate that is negative will be replaced by 0.

4. Simulations

4.1. Range of Fitting

First we explore numerically the differences between the models outlined above, in order
to better appreciate the conditions under which a good fit can be achieved for list CR data.

Consider the two-list CR data in Table 1. In Example (I), the number of units is 1,000 in
list A and 1,200 in B and 900 in both A and B. The number of erroneous units is 50 in list A
and 80 in B. The number of erroneous units among those in both A and B is left to vary,
denoted by r|;. The number of erroneous units among those in A but not B is then 50 — ryy,

Table 1. Two numerical examples of two-list CR data with under- and overcoverage

A B Aand B AbutnotB B butnot A
1)) List enumeration 1,000 1,200 900 100 300
No. erroneous units 50 80 1 50 — 1y 80 — 3
A B Aand B AbutnotB B butnot A
(II)  List enumeration 1,200 1,350 900 300 450

No. erroneous units 250 400 ri 250 — ry 400 — ryy
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Table 2. Values of r1, at which models fit perfectly for data in Table 1

Example (I) Example (IT)
Model ri (610, o1, 6011) ri (610, 6o1, 611)
9) 33 (0.170, 0.157, 0.0367) 184 (0.220, 0.480, 0.207)
(10) 30 (0.200, 0.167. 0.0333) 155 (0317, 0.544. 0.172)
(11) 3 (0.470, 0.257, 0.0033) 56 (0.208, 0.296, 0.062)

and it is 80 — r;; among those in B but not A. By varying r;;, the idea is to see when the
Models (9), (10) and (11) appear most plausible. The case is similar for Example (II).

More specifically, for Example (I), Model (9) fits the CR data perfectly when, for some
1 =r;; =49, we have logit(r1;/900) = logit((50 — r11)/100) + logit((80 — r11)/300),
which occurs at r;; =33. Model (10) fits perfectly at r;; =30, where
log (r11/900) = log ((50 — r11)/100) + log ((80 — r11)/300), whereas Model (11) fits
perfectly at ri; =3, where log (r;;/900) = log (50/900) + log (80/1200). The
corresponding errors rates are summarized in Table 2. Similarly for Example (II).

The situations that are favorable to Models (9) and (10) are seen to be fairly similar for
relatively low error rates such as in Example (I). The one fits best at 7;; = 33 and the other
at 30. However, the difference between the two becomes larger as the error rates increase.
In Example (II), the one fits best at r;; = 184 and the other at 155. Also the corresponding
error rates are seen to differ more in this case.

Next, Model (11) is more suitable in situations where relatively more erroneous
enumerations occur among the units that belong to only one list, while erroneous
enumeration is much less probable for units in both lists. In Example (I), the PCI
assumption (11) fits best when r;; = 3 and 6;; = 0.0033, the latter of which is much lower
than the marginal error rates 04 = 0.050 and 65, = 0.067. The contrast between 6;; on
the one hand and (6, 6y;) on the other is much larger than under model (9) or (10). The
contrast is reduced as the error rates increase in Example (II). But the situation where
Model (11) would be plausible is still quite different from those for the other two models.

In conclusion, both Models (10) and (11) are additions to the standard log-linear model
(9) rooted in the concept of conditional independence. In particular, Model (11) provides
an alternative in situations where there is a large contrast between the overcoverage error
among the units in both lists and that among the units in only one list. The aim of the
discussion above is to illustrate when the different models might be applicable and how
they relate to each other.

4.2. Adjustment of Census Erroneous Enumeration

As mentioned earlier, adjustment of census erroneous enumeration traditionally requires
a separate O-sample in addition to the independent U-sample for undercoverage
adjustment. In theory, an O-sample selected from the list enumerations can be used to
estimate the error rates (61, 61, 610). This requires making a strong assumption that
fieldwork is able to identify all the erroneous list enumerations in the O-sample. It
would also imply extra cost, although to some extent this can be controlled by the
choice of the O-sample size. On both accounts, it seems of interest if the modelling
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approach considered in this article can potentially provide useful adjustment of census
erroneous enumeration without the need for conducting the fieldwork. The possibility is
explored here.

Assume three datasets: census, denoted by A, register enumeration processed from
administrative sources, denoted by B, and an independent undercoverage survey, denoted
by S. Without losing generality, we shall suppose that the survey S attempts to enumerate
everyone in the selected areas. This yields the two-list one-survey setting in each surveyed
area. The following assumptions and observations are worth noting:

e The census erroneous enumeration rate is expected to be relatively low. We assume
that the range of the marginal error rate 6, of the census (i.e., List A) is reasonably
covered by the following set of values: 6,4 = 0.2%,0.5%, 1%.

e The register enumeration can have a higher, even much higher, marginal error rate
0.1. We shall explore the following set of values: 6,1 = 1%, 5%, 10%,20%.

e Provided independent survey (Equation 3), we have E(n) = E(N)ms = E(N4++)s
where n is the total survey enumeration, and E(n — ngg) = E(Nj4+4+ — Nigo) s
where ng is the number of individuals enumerated in S that do not belong to list
A nor B. Thus, the overall list catch rate can be given by

EN — Nioo) _ EWN14+ — Nioo) _ E(n — noo)
E(N) E(N14y) E(n)

and estimated by 1 — ngo/n, irrespective of the error rates. An important implication
is that the relative bias induced by the misspecification of a nonincidental erroneous
enumeration model is unrelated to the target population size N.

e Provided the theoretical value of 0, in addition to 6,4 and 6., a straightforward
simulation approach to evaluate the potential bias of an error model is to repeatedly
generate n = (ny, 1o, No1, Nop) under some given value of 7, conditional on the
target-list universe, and calculate the average of N over all the repetitions. More
convenient, however, is to fit the moment Equations (5) just once to the expected
values of n, denoted by n, and use the difference between the corresponding N(n) and
N as an approximation to the model bias. This has two advantages: firstly, it makes it
clear that the result is invariant to the arbitrary choice of g, which cancels out on
both sides of the equations in (5) at n = E(n|U*); secondly, the result is not subjected
to the Monte Carlo errors of the repeated sampling approach.

For comparison to the equally cost-efficient approach without extra fieldwork associated
with the O-sample, we consider the DSE based on census A and undercoverage survey S,
that is ignoring the potential erroneous census enumerations. Corresponding to the
expected survey enumeration 7, this is given by

Npse = x4 /s =~ E(Npsg|U*)

Clearly, the relative bias of this unadjusted DSE is simply 0, , because the hypothetical
unbiased DSE is then given by Ax;+(1 — 614)/A+.
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Table 3. Range of relative bias under Model (10) and (11) for census enumeration error adjustment. Census
enumeration = 1,000, register enumeration = 1,200, census-register enumeration = 900. Error rate of census
errra (0)4), register enumeration (65), census-register enumeration (6y1), where 0 < 6y, < 6,4. All numbers
in %.

Model (10) Register error rate

Census error rate 1 5 10 20

0.2 (0.078, 0.078) (—0.11, —0.11) (=048, —048) (—34, —34)
0.5 (—0.038, 0.43) (—0.88, 0.32) (—2.5,0.095) (=16, —1.6)
1 (=025, 1) (—2.3,1) (—6.3,1) (—38, 1)
Model (11) Register error rate

Census error rate 1 5 10 20

0.2 (0.11, 0.11) (0.11, 0.11) (0.1, 0.1) (0.089, 0.089)
0.5 (0.11, 0.45) (0.091, 0.44) (0.068, 0.44) (0.014, 0.43)
1 ©.1, 1 (0.065, 1) 0.012, 1) (—=0.11, 1

Table 3 gives the range of relative bias under the Model (10) and (11), respectively. For
each combination of (6,4, 64;), the number of erroneous enumeration Ny;; among the
units in both A and B (i.e., the census-register enumeration) is bounded upwards by
min (N4146;4, N1y 041) for the given target-list universe. In the simulation setting here,
this is always equal to the integer Nijy0,+ = x14+6;4+. Each possible Ng;; yields a
different target population size N = N4, a corresponding ‘joint’ error rate
611 = No11/x11 = No11/N 411, and a set of expected survey enumerations n. The relative
bias of a model is given by N(n)/N — 1, where N is derived from (12) under Model (10)
and (13) under Model (11). As explained above, this relative bias is invariant towards
any arbitrary but admissible choice of the survey catch rate 75 and the overall list catch
rate adopted in the simulation. The relative biases corresponding to Ng;; = 1 and
Noi1 = x1+ 01+ — 1, respectively, yield the range of relative bias reported in Table 3.

Take first the results for Model (10) in the upper half of Table 3. At 6+ = 0.2% and
with census enumeration being 1,000, there are only two erroneous census enumerations,
and the DSE has a relative bias of 0.2%. Only Ny;; = 1 is in the range to be examined,
so that the lower and upper ends of the relative bias range coincide in this case. As the
register error rate 6, increases, the estimate of Ny;; increases under Model (10), to the
extent that it is 31.6 when the register error rate is 20%, leading to a large negative bias
—3.4% due to model misspecification. Next, at 6+ = 0.5%, the two end points
correspond to Ng;; = 1 and Ny, = 4. Model (10) is most misleading at the lower end, as
the exploration in Subsection 4.1 has indicated, where the estimate of Ny, is 142.6,
leading to a disastrous negative relative bias for N. The performance becomes even
worse at 0+ = 1%, where large negative bias already occurs somewhere between 6, =
1% and 5%. At the upper end, where No;; = 9, the MME (12) is initially negative and
needs to be truncated to 0, that is, no census erroneous enumeration at all. The model
estimate N then becomes the same as the DSE, and has the same relative bias which is
equal to 6;4.
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In short, when misspecified, Model (10) can lead to grave negative bias in situations
where both the census and the register have non-negligible error rates but the error rate is
much lower among the census-register enumeration. For example, at
(614, 0+1) = (1%,5%), the negative bias of Model (10) would be larger in absolute
value than the bias of the DSE for all 0;; < 0.4%.

Turning now to Model (11), we notice immediately that its bias is in no case larger than
that of the DSE. At 0+ = 0.2% and Ny;; = 1, the estimate of N¢;; increases from 0.007 at
0+1 = 1% to 0.2 at 6.1 = 20%. In absolute terms, however, such differences have
essentially no bearing on the resulting bias, which is about half of that of the DSE across
the range of 64,. Next, at 6,4 = 0.5%, the model predicted value of Ny;; would be
somewhere between 0 and 1 for all the values of 6,1 here. As Ny increases from 1 and 4,
the fitted Noj; (and Nyj4) decreases steadily towards 0, resulting in the bias to increase
towards that of the DSE. The case is similar at 6, = 1%, where Model (11) removes
almost all the bias of the DSE as Ny;; — 1, while tending towards the DSE as Ny — 9.

Thus, it looks like Model (11) is a more robust choice than (10) for potential adjustment
of census erroneous enumeration using an additional list enumeration derived from
administrative sources. Within the plausible range of marginal error rates of the census and
register enumerations (e.g., in Table 3), the PCI assumption (11) removes essentially all
the bias of the census-survey DSE as the number of erroneous enumerations among the
units in both the census and the register (i.e., Noj1) tends to zero. At the other other end, as
the latter tends towards its upper bound, that is, No;; — min (Noj+, No+1), the bias of the
model estimate increases towards that of the DSE.

5. Summary and Discussion

Above we have considered some approaches to modelling erroneous enumeration as a type
of overcoverage error. Two types of nonincidental models of the list universe are
identified. The first of these consists of standard log-linear models, such as (9), and the
associated models using alternative link functions, such as (10). The second of these refers
to a class of log-linear models that build on the concept of pseudoconditional
independence. The two types of models are suitable for different error mechanisms of the
data, and are therefore complementary to each other in practice.

One possible application is the adjustment of census erroneous enumeration based on an
independent coverage survey and an additional register enumeration processed from
administrative sources. Simulations under what seems to be the plausible range of the
census and register error rates suggest that Model (11) is robust towards misspecification of
the error rate among the ones enumerated in both the census and the register. The potential
bias is bounded upwards by the bias of the DSE that ignores erroneous enumeration.

Of course, further investigation should also take into account the variance of the DSE
compared to that of the adjusted model estimator. Simulation on the historic census and
register data will be necessary. Moreover, it is important to consider the over and
undercoverage adjustments hand in hand. Various authors have considered the so-called
triple-system estimator (TSE) based on census, register and coverage survey for
adjusting under-coverage. See Griffin (2014) for a recent update. A traditional motivation
for the TSE is the possibility to relax the “Causal Independence” assumption (1).
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An independent survey, however, is needed in the two-list setting that allows for
overcoverage errors. There is simply not enough degree of freedom otherwise. The
tension needs to be resolved.

An approach to census-like population statistics without the census is a more ambitious
goal. To start with, the census may be replaced by an “improved administrative file” (i.e.,
register), as some countries have done already. A modelling approach can be used to assess
and potentially adjust the erroneous register enumeration, provided very little or no
fieldwork associated with the O-sample. It also opens up the possibility for using several
input registers instead of one combined register.

Appendix
Method-of-Moment Estimator (MME)
Dividing the first equation in (5) by the second and third, respectively, we obtain
ni(x — ) = nien — ri) = mxn(l = (rr2)/(0x2))
{nll(xz —r2) = m(xi — i) = mxy (1 — (r1712)/(x1x2))
where (n1,n2) = (n19,n01), (x1,%2) = (x10,%01) and (ry,72) = (x10010,%01601) under

Model ~ (10), and = (n,m) = (mi4,n41),  (X1,%2) = (X14,%41)  and - (ry,72) =
(x14-01+,x4+1641) under Model (11). Note the symmetry between r and r,. We have

) )
nixixa X1 nix2 X1 X1ing

1
ar% —bri+c=0 where (a,b,c) — ( ny n n ny nuxp 1)

After some algebra we obtain

1\? b+ VA
A=b2—4ac=<— A +£+—> o that PTYVAZ L
Xiny  nixp X 2

It follows that the admissible r; and, by symmetry, r, are given by

X2 (11 X1 (n11
r=—\—x —m and rn=—|—x —n
ny \X11 nyp \X11

We obtain ry /x; as (510 under (10) or 51+ under (11). The case is similar for r,. We obtain
é“ according to either Model (10) or (11). Next, we obtain
s = (x; — r1)/m = (x2 — r2)/ny, and N on substituting these parameter estimates into
the last equation of (5). Linear approximation yields the variance of the MME.
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Using the Bootstrap to Account for Linkage Errors when
Analysing Probabilistically Linked Categorical Data

James O. Chipperfield" and Raymond L. Chambers*

Record linkage is the act of bringing together records that are believed to belong to the same
unit (e.g., person or business) from two or more files. Record linkage is not an error-free
process and can lead to linking a pair of records that do not belong to the same unit. This
occurs because linking fields on the files, which ideally would uniquely identify each unit, are
often imperfect. There has been an explosion of record linkage applications, particularly
involving government agencies and in the field of health, yet there has been little work on
making correct inference using such linked files. Naively treating a linked file as if it were
linked without errors can lead to biased inferences. This article develops a method of making
inferences for cross tabulated variables when record linkage is not an error-free process.
In particular, it develops a parametric bootstrap approach to estimation which can
accommodate the sophisticated probabilistic record linkage techniques that are widely used in
practice (e.g., 1-1 linkage). The article demonstrates the effectiveness of this method in a
simulation and in a real application.

Key words: Record linkage; measurement error; parametric bootstrap.

1. Introduction

Record linkage is the act of bringing together records from two or more files that are
believed to belong to the same unit in a defined population (e.g., a person or business).
Record linkage is an appropriate technique when these data sets are joined to enhance
dimensions such as time and breadth or depth of detail. In particular, record linkage is an
intrinsic part of virtually all coverage error estimation and correction methodologies,
where records from two or more frames, each with incomplete coverage of a target
population, are linked in order to estimate the extent of the overlap of these frames. In such
cases, coverage error models are usually based on the linked data. Ideally, the linkage will
be perfect, that is, all records belonging to the same unit are linked and there are no links
between records that belong to different units. However, in many situations perfect linkage
is not possible. This is because linking fields (e.g., name, address, postcode) may not
uniquely identify a unit, legitimately change over time, be missing or contain errors.
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Probabilistic record linkage is a widely used approach to record linkage. In probabilistic
record linkage (Fellegi and Sunter 1969) each possible link, called a record pair, is given a
score based on the likelihood that the two records belong to the same unit. Optimisation
algorithms are then used to select which record pairs are declared as links. Probabilistic
methods for record linkage are now well established (see Herzog et al. 2007; Winkler
2001; Winkler 2005) and there is a range of computer packages available to implement
them. A recent example of probabilistic linkage from the Australian Bureau of Statistics
(Zhang and Campbell 2012) is the linkage of person records on its 2006 and 2011
Censuses of Population and Housing to facilitate analysis of how characteristics of cohorts
change over time. There are many other examples of probabilistic record linkage from
statistical agencies, particularly in the area of health data (see the introduction of Kim and
Chambers 2012a).

Naively treating a probabilistically linked file as if it is perfectly linked leads to
biased inference. Scheuren and Winkler (1993) and Lahiri and Larsen (2005) (referred to
as SW and LL hereafter) propose bias-corrected estimators of coefficients in a linear
regression model given data from a probabilistically linked file. Chipperfield et al. (2011)
consider the analysis of linked binary variables. Building on Chambers (2009), Kim and
Chambers (2012a, 2012b) (referred to as KC hereafter) investigate the analysis of
linked data using a more general set of models fitted using estimating equations. Kim
and Chambers (2012b) review recent development in inference for regression parameters
using linked data.

Linkage models form the key feature of all of the above approaches. The linkage model
describes the probability that a record on one file is linked to each of the records on another
file. For a linkage model to be useful, it must properly take into account how records were
linked. SW and LL do not allow for 1-1 linkage, where every record on one file is linked to
a distinct and different record on the other, or for linkage in multiple passes or stages,
both of which are commonly used in probabilistic record linkage. In theory, KC allows
for 1-1 linkage, but imposes strong constraints on the linkage model in order to do so.
KC also requires a clerical sample to estimate the parameters of the linkage model,
something which is not always available in practice and which itself can be subject to
measurement errors.

This article describes an approach to inference using estimating equations that is based
on probabilistically linked data where the linked data file is created under the 1-1
constraint. In fact, the proposed method is valid when the linkage is performed in an
arbitrary fashion, as long as the linkage process itself is probabilistic and can be replicated.
In particular, we argue that replication is straightforward within the probabilistic record
linkage framework of Fellegi and Sunter (1969).

Section 2 introduces the basics of record linkage and the linkage model. It describes a
bootstrap approach to fitting the linkage model and compares it with the approach of LL.
Section 3 describes how this approach to linkage error modelling can be used to bias
correct cross tabulations based on linked data, as well as to make correct inference for
binary variables. Section 4 demonstrates through simulation that the proposed approach
has good bias and coverage properties. Section 5 considers the performance of the
proposed approach for estimating regression coefficients in a real example. Section 6
contains some concluding remarks.
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2. Linkage and Linkage Models

This section introduces the basics of record linkage. It also defines the linkage error model,
which is an essential ingredient for making correct inference with probabilistically linked
data, and proposes a bootstrap approach to estimating it. One crucial aspect of our model is
that it distinguishes between the process of linking and whether or not the linking is
successful. Here, linking denotes the putting together of records to make up the linked data
file, that is, the identification of records that are believed to come from the same population
unit, while successful linking denotes the event that two records actually come from the
same population unit.

2.1. A Framework for the Probability Linking of Two Files of the Same Size

Consider linking two files, file X and file Y, each containing N records that correspond to
the same set of units. Leti = 1,. . ., N denote an arbitrary indexing of the records in X, and
similarly let k = 1,. . ., N denote an arbitrary indexing of the records in Y. A subset of the
set of pairs (i, k) is chosen to define the linked records, and we refer to this subset as the set
of linked pairs. In addition, let j = 1,. . ., N denote another indexing of the records on Y
such that record i in X and record j in Y is a correct link when i = j. It is important to note
that the j index of a record in Y is unknown, since it by definition requires knowledge of the
correctly linked data file.

Suppose that there are L linking fields defined by variables that are common to X and Y.

We then define A” = (A{,, ... ,AY%, ...,A%y) to be the LXN? matrix of observed
agreement patterns for all record pairs, that is (A;’k)T: (A%, A%, . . ., AYy), where

Aj, = Oor 1 if the linked (i, k) pair disagrees or agrees on the /th linking field, respectively.
For example, if first name, last name and date-of-birth are the three linking fields, and
if the (i,k)th pair agrees on the first two but not on the third, then (A%)"= (1 1 0).
Here ‘1’ indicates agreement and ‘0’ indicates disagreement. There are 2° possible
agreement patterns for a record pair.

Define A= (Ayy,...,Aj, ..., Ayy) to be the matrix of unobserved agreement
patterns, where A; = (A,j,-l,Al;ﬂ, .. .,A,:,-L), with A;; = 0 or 1 if the (i, j)th record pair
disagrees or agrees on the /th linking field, respectively. Although A is simply a
rearrangement of the columns of A°, this rearrangement is indexed by the unobserved j
index. A is therefore a latent variable and can be modelled as the outcome of a random
process. A common model for A, and one which we use in this article, is often described
by the following set of parameters:

o M;; = Pr(A;; = 1li = j) the probability that the value of the Ith linking field for
record i in X is the same as the corresponding value for linked record i in Y;

e U;; = Pr(A;; = 1li # j): the probability that the values of the /th linking field for
record i in X and record j in Y are the same, given i # j.

The probabilities M;; and U;; are often assumed to be homogeneous, that is, they do not
depend on i and j. In such a situation we denote them by M; and U, respectively.
Conditional independence is often also assumed. Conditional independence means that
for any linked pair, agreement on linking field / is independent of agreement on any other
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linking field I’ for all values I’ # [. This is a strong assumption but, as we will see, it can be
a reasonable working assumption.

Put ¥y = (M, ..., M, Uy, ..., UyL). Prior to probabilistic linking, Us or its estimate,
P, is required. In some cases Y may be known (e.g., if a unique identifier was available
from a previous linkage of X and Y). Computing ! using mixture models has been
extensively studied (see Larsen and Rubin 2001, who also consider relaxing the
conditional independence assumption).

2.2.  The Linkage Process

Given a value for {5, and a proposed indexing of Y defined by k=1, . . ., N, Fellegi and
Sunter (1969) suggested calculating a weight for the observed (i, k)th pair of the form
Wi = 22 Wiy» where

wiy, = In(M;/U)) ifA7, =1
=In[(1 —M)/(1 — Ul if A7, = 0.

These authors argue that the larger this pair weight, the more likely that the pair is a correct
link. These pair weights are then used in an optimisation algorithm to determine the set of
(i,k) pairs that are declared as links. An obvious objective function to maximise is
0= Zi’k W Ly, where Ly = 1 if the (i,k) pair is linked and ), Ly = 1 for all i and k.
Often a 1-1 constraint is imposed such that Zk Ly = Zi Ly = 1 for all i and k. Also, in
practice a linked pair must have a weight that is greater than a cut-off value, c,, to be
declared a link. The value for ¢, can be chosen to ensure that the proportion of links that
are correct is acceptably high (see Herzog et al. 2007).

To keep computations to a practical level, records on X and Y are often assigned to
blocks, where only records within the same block form linked pairs. If there is more than
one suitable blocking field, linking can often be performed in multiple passes, where a
different set of blocking and linking fields is used in each pass. For example, Chipperfield
et al. (2011) consider an example with two passes.

2.3. The Linkage Model

The result of a 1-1 linkage process is a generally unknown permutation matrix P = [§;]
with (i,j) element &; equal to 1 if record i in X is linked to record j in ¥ and equal to 0
otherwise. By definition of the i and j indices, diagonal entries of 1 on P indicate correct
links. Let V& denote a matrix of values derived from the information in X. We then put

E(PIV®) =Q. (D)

We refer to (1) as the linkage model. Specifically, the linkage model is given by Q = [g;;]
where ¢ = E (6,] IV(X)) is the probability that record i in X is linked to record j in Y, so g;;
is the probability of correctly linking to record i in X, and Z gij =Y ;q; = 1. Various
authors estimate Q in different ways.
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Let I;; denote the indicator for i = j. Chambers (2009) considers an ‘exchangeable’
linkage model, where

gi =N+ (1 =MW — )71 = 1. )

This model is constrained through a single parameter, \ (or one parameter per block, if a
blocking strategy is used). In practice, A is unknown; Chambers (2009) suggests that in
such a situation, it can be estimated using a sample of linked pairs that are reviewed
clerically and are assigned, without error, as matches (correct links) or nonmatches
(incorrect links). However, note that (2) does not explicitly account for how records are
linked (e.g., single pass vs. multiple passes), and so may be inadequate when the method of
linking leads to heterogeneous correct (and incorrect) linkage probabilities.

LL on the other hand implicitly assume that ordering Y by the j and k indices leads to the
same result, and so put Q = [g;], where gj, is estimated by q(LL) =pi/ D w Diki» Where pix
is the probability that the (i,k) pair is a correct link under the model for A in Subsection 2.1
(see LL, page 223 for an expression for p; based on a mixture model). By definition, gy is
then the probability that the (i,k) pair is linked. Since the probability of linkage of two
records is not the same as the probability that these two records, when linked, are correctly
linked, the use of g;; as a proxy for g;; is incorrect in general and, as we show later, can lead
to significant bias. Moreover, the estimator ¢{~ does not factor in all of the complexities
of the linking process (e.g., 1-1 linkage), with LL (page 226) noting that “It is not entirely
clear how to force one-to-one matches and consider probabilities of matching in which two
records in one file have a nonzero probability of matching a record in the second file.”
Goldstein et al. (2012) make a similar proxy assumption, suggesting the estimator

(GS) = W%/ > 1 Wi In the following section, we define a bootstrap approach to
estlmatmg Qfora hnkage process which may include 1-1 assignment.

2.4. A Bootstrap Estimator of Q

We assume that the linking process can be characterised as in Subsection 2.2 and that all
linking fields on X and Y are known. We also assume that the conditional independence
model (see Subsection 2.1) holds and that an unbiased estimator, denoted by tif, of the
vector of M and U probabilities defined there is available. Note that if either of these
assumptions does not hold, then the bootstrap estimator of Q defined below may well be
biased. In particular, following Winglee et al. (2005), we estimate Q by bootstrap
replication of the linking process. This is accomplished by bootstrapping the unobserved
agreement pattern matrix, A, assuming that patterns defined by distinct pairs of population
units are independently distributed. That is, for each bootstrap realisation of the linking
process, we simulate N2 realisations A; = A;};) of Aj; such that

Bty i=j

A;ﬂ = B ~ . .

Wy i#j
where B(7r) denotes an independent realisation of a Bernoulli random variable with

success probability 7. Note that since bootstrap replication aims to generate agreement
patterns that have a similar distribution to the actual unobserved set of agreement
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patterns A, this assumption of independent Bernoulli realisations is a strong one.
Alternative models for A can be constructed, using the fact that this matrix defines a
network connecting the population units. Further research is required on whether this extra
level of sophistication is warranted, however.

Given this bootstrap realisation of A, we obtain the corresponding bootstrap
realisation of the linkage matrix P by repeating the linking process using the bootstrap

weights W;; =Y wfﬂ, where

wiy = In(M,/ ) ifA;, =1
=mn[(1-M)(1-0)] ifA7, =0.

We then estimate Q by averaging over these bootstrap realisations of P. That is, we
proceed as follows:

1. Repeat the following steps a total of B times:

a. Generate A(b) as the bth independent draw of A based on 11: and an assumption
of independent Bernoulli realisations.

b. Calculate the linking weights, WEI}-’) for all 7, j and /, as a function of 115 and A(b).

c. Link X and Y using the Wg’)usihg the same algorithm that was used to link
the original file. Denote the resulting N X N permutation matrix of actual
links by P(b; ti;), that is the columns of P are indexed by j and element (i,j ) of
P is equal to 1 if record i in X is linked to record j in Y and O otherwise.
Note that true links then correspond to record pairs where the (i,i) element of
P is equal to 1.

2. Estimate Q by Q(§) = B~ 3", P(b; 1s).

Note that if X and Y are 1-1 linked, then they must also be linked in this fashion in Step 1(c)
above.

3. Estimation of Frequency Tables from Linked Data

3.1. A Bias-Corrected Estimator

Let y be a categorical variable recorded on file Y with categoriesy =1, .. ., u,...,Y,
and let x be a categorical variable recorded on file X with categoriesx =1, .. .,t,. .., T.
The values of x and y for the correct links are denoted by x; and y;, respectively. Given X
we can then define the N X T incidence matrix I®) = [I{°], where I§;" is the indicator
for x; = r. Similarly, given ¥ we can define the N X Y incidence matrix 1% = [1{’],
where Ig) is the indicator for y; = u. The T XY matrix of frequencies of interest is
N= (I(X))TI(Y) where the (f,u) element of N is Ny,.

Assuming independent and identically distributed population units, the probability
distribution for (x,y) is multinomial with parameter m = [, ], where r, is the probability
that (x,y) = (t,u). Under the multinomial model, E(I™[I®) = A where A = A() has
(i,u) element,

E(1[17) = madiy”
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. -1 . . .. .
with ), = m, (Zu, 7Tm/) . Lety; denote the linked value of y for record i in X. The naive
estimator of N, which is based on the assumption that all links are correct, is then

Ny — (I(X))TI(Y*) = (I(X))TPI(Y),

where 1) = [Ig*)}, and 1" is the indicator for y; = u.

A key assumption we now make is that of conditional independence of the population
distribution of y and the linkage error matrix P given the values in X. This allows us to
write

EPIV 1Y) = E(@IFNEAMID). 3)
Given this assumption, the naive estimator N* is a biased predictor of N, since
E(N" — N[I%) = A {EPI)EAV 1Y) — EAV 1Y)}
= I%)(Q — Iy)A(m)

which is nonzero in general. Here I}y is the identity matrix of order N. Using Q = Q (11:) as
an estimate of Q = Q(s) leads to the bias-corrected estimator

R = A% (1Y) — (Q — LyA(#)) )

where 4t is an estimate of 7 defined by
1. Initialising % by &©.
2. Computing N*® = Nzgh) =N*(&").
3. Computing #/*+" using 7" = max (N:Eh)N’l,O).
4. Iterating between Steps 2 and 3 above until convergence.

In all applications reported later in this article, 7(?) was based on the naive estimate N* and
this iterative scheme always converged.

3.2. Variance Estimation

Let N;(tff) denote the (z,u) element of N* given by (4), and put IV = (I 1 =u = V),
Ifty) = (I;,,Y), l=t= T) and II(JYY) = (I;,f )l1=t= T). We can write

190 10 101 'n') } +E{Var (Nm(lL)

1910 )} VD

Ty 0

Var (N;(J;)) = Var{E (N:u(fb)

v I(Y*>7I§X);¢,ﬂ)}

u u

=var{E(¥,, D)

where we identify Vgﬂ’) as the component of variance due to estimation of Us. We then make

the large sample approximation

Var{E(]V:u(JJ) 1§X>,I§,Y*>,I;Y);¢,w) } ~ Var(ﬁ;(t];);tb,ﬂ) .

Proceeding along the same lines, and using the conditional independence assumption,
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we have
Var(N,,,(¢);¢,n)=Var{ ( L) |T 1D ) Tr}-l-E{Var(N W0, 10 ) ﬂ}
= Vi +E{ Var (R, W1, 100 ) |

=V +E{var (8, @) 1050 |
=Vi'+V,

273

where Vg,}’) and V;u now denote the components of variance, due to the multinomial model
and the linkage errors respectively. That is, we write down the large sample approximation

Var (8,(0) = Vi +V;, + Vi, )

273

Note that since Q is determined by i, V('J’) can also be considered to be the component of
variance due to estimating Q.

In order to estimate (5), we start by writing down a large sample approximation to 1% )
of the form

VY = var [E{N ()10, 1, } w}

7u7

Var E( (1)1 — (1) (Q - IN)A("/:")} \I?“;dl);ﬂ}
tu

{ )
~ var{E((17") 17 ~ [(19)" (@ ~ WA |14 7}
= Var (1) QI [109; )
™)Q

= (19)7 QVar (I |19; =) Q71

This suggests the plug-in estimator

Viu

() QU154 Q"

where V(I [I%; %) is a diagonal matrix with ith diagonal element (1 — 7).

We estimate V;, by parametric bootstrapping (Lahiri 2003). That is, given x; = 1, we
first generate S independent values y;, for s =1, . . ., S, of y; by making random draws
from the multinomial distribution with parameter |, = (ﬁ'u| t), setting / ff )(s) equal to the
indicator for y;; = u. If we write the corresponding simulated true incidence matrix as
IM(s) = [I(s)], the bth bootstrap value for the simulated linked incidence matrix
I19(s) is IY)(b, 5) = P(b)IY)(s), where P(b) is the bth bootstrap value of P, obtained

using the procedure described in Subsection 2.4. Our estimate V/,, is then

f/:u:S_‘ZB_IZ( N, (b,s) — Nm(s))27
K b

(b,s) is the (1) element of N' (b, 5) = (I<X>)T{II<Y*>(b - - IN)A(Tr)} and
I (s) = (Q — InAM)).

where Nm

Ny(s) is the corresponding element of N*(s) = (I®)”
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Finally, we use a double bootstrap version of the procedure described in Subsection 2.4

to derive an independent bootstrap estimator for Vg,‘f). Let s=1,..., § index the
multinomial model-based parametric simulations of y described in the preceding
paragraphs. Indexing these new double bootstrap replications by r=1,..., R, we

proceed as follows:

1. Generate A(r) so that Pr(A;(r) = 1) = M; and Pr (Ay(r) = 1) = Uj;
2. Calculate Ys(r) (and hence M;(r) and U)(r)) from A(7) in the same way that {y was
calculated from A;
3. Calculate Q(r) from Jj(r) in the same way that Q was calculated from ﬁ: Specifically,
this involves for b = 1,..., B,
a. Generating A(r,b) so that Pr(A;;(r,b) = 1) = M(r) and Pr Aj(r,b)y=1)=
Ui(r);
b. Generating P(r,b) as a random realisation of the permutation matrix that
characterises probabilistic linkage with agreement patterns A(r,b) and
b = (r);
4. Calculate Q(r)= B~ 'Y, P(r,b) and hence N*(r,s)= [N,u(r, s)}, where
N*(r,5) = AD){IY () = (Q(r) — Ty)A)}.

Our bootstrap estimate of Vﬁ,‘f ) is then

2
‘A/f;b) =5 ZR_I Z (](]m(r, s) T {Nm(r', s)})
s r
where av denotes average and N;L[(r, s) is the (z,u) element of N*(r, s). Choice of values for
B, S and R were chosen so that, in simulations, the variability in the estimates of each of the
three components of variance (see (5)) were negligible.
The frequentist perspective views N as a fixed population total and y as a fixed quantity.
If all records on files X and Y are linked, then, from a frequentist perspective, Vg,f ) = 0, and
the only sources of variation in N* are due to incorrect linkage and due to estimating the
linkage model, Q.

3.3. Linking Files of Different Sizes

Consider the general case where X has N records, Y has M records and there are O
linked records. There are also no duplicated records on either X or Y. Previously we
considered 1-1 linkage, that is, O = N = M. Here we consider the two other important
cases, O < N=Mand O = N< M.

331. Case :L<O=M

Linking only a subset of records is common in practice because a cut-off, c,, for linked
pair weights is usually enforced. Without loss of generality, we assume that the first O
records in X are linked. The estimator of Q developed in Subsection 2.4 is no longer
appropriate, since it is based on the assumption that all records on X are linked. Here we
are interested in estimating the O X N matrix Q with ith row Q, = (g;j), where g;; is the
probability thatrecordiin X,i =1, . . ., Oislinked torecordjin Y,j =1, . . ., N. Some
suggested methods of estimating Q are given below.
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1. Purist approach. This involves estimating Q as described in Subsection 2.4, but
where the bth replicate is only kept if the set of X records linked in the bth replicate is
the same as the set of X records that were originally linked. This could be
computationally infeasible if many replicates are discarded.

2. Bayes’ Rule. This first involves estimating Q as described in Subsection 2.4. Then,
conditioning on the set of L linked records in X and using Bayes’ Rule, we get
i = i (Z;V:I %21

3. Exchangeability. Here we assume an exchangeable structure (see (1)) for the linkage
model, conditional on the set of L linked records in X. Accordingly, it follows that

Gi=N=L"'SL, CIU(Z,' qij)

the average probability of a correct link.

1

1
and g; = (1 — N)(N — 1)7! for i #j, where A is

For IV; to remain unbiased when we replace Q with Q in (1), the conditional distribution of
y given x for the O linked records must be the same as for all N records in X. That is,
nonlinkage is completely at random. It is possible to relax this assumption to some degree
and to improve the accuracy of Nfu by assuming that the conditional distributions of y
given (x, z) for the linked records and for all records on X are the same. Here z is an
auxiliary categorical variable defined on X with categories 1 = v = V. This is equivalent
to assuming that nonlinkage is at random given z. Let Ny, and N, ,

linked counts defined by xXyXz cross tabulation. Estimating Ny, given N;,,
straightforward, since we can simply treat (x,z) as a more detailed version of x. Let
N* = [N;v] denote the bias-corrected es}imates (42 defined by this more detailed cross
tabulation. Our estimate of Ny, then is N, = 3" N, . The more general case, where the
nonlinkage is not at random (i.e., there is no available z that can be used to make the linked
and unlinked distributions of y, x and z the same), requires further research.

denote the true and
is

332. Case2: 0 =N<M

In this case there are more y records than x records, and all x records are linked. Here
Q =1[Q,, Q] is N XM, where Q,, is the N X N linkage model for records on Y with a
match, Qg is the N X (M — N) linkage model for records in ¥ without a match, and IV is
M X Y. Also, EAY[I®) is undefined for records on Y that do not have a corresponding
record on X. This means that we cannot evaluate the expectation of the naive estimator,

m)

. _ 7 \T
N', and hence correct for its bias. To remedy this, let EV|I®) = A = (AT AnTl) ,

where A,, and A, are the model expectations for the records with and without a match,
respectively. That is, the (j,u) element of Ais

m,; if x;=1¢ and j=N;
Ny =S e if j>N; 6)

0 otherwise.

where g, is the mean value of 1! for the M — N records on Y without a match. From (6) it
follows that

EN'I) = A*)(Q,,A,, + Qaln).
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The bias of the naive estimator of N is therefore
E(N" = NIIV) = A" {(QuAn + Qudi) — AvAn)}
= A {(Qu ~ 1A, + Qads }
which suggests the bias-corrected estimator (where a "hat’ denotes an estimate),
R = a®) (17 = (Qu — Iv)An — Qadi ). )

Here Q (and hence Qm and Q,—,,) as well as AmA can be calculated using the bootstrap
methods outlined earlier. However, this leaves AW—, to be evaluated in (7). It would be
reasonable to assume that A, is known if M is many times larger than N, in which case it
could be estimated from all the records in Y (since records without a match would make
up the vast majority of records on this file). Alternatively, if X can be assumed to be a

random subsample from Y, then we may write fi,= 77, (Zl, ﬁ',/u) 71, which is the marginal
mean of 1\,

Combining the above two cases leads to the general case O < N < M. Equation (7) can
then be used in place of (4) in the bootstrap algorithm described earlier.

3.4. Inference for Binary Variables

Finally, we move away from the estimation of frequencies defined by cross tabulations
of linked categorical variables to modelling the distribution of a binary variable. Logistic
or log-linear models are commonly used with frequency tables (see Hosmer and
Lemeshow 2000).

Define Z” = [z, . . .,Z,, . . .,Zy], where z,, is a binary vector of length K commonly
referred to as the wth covariate pattern. Put T = (¢, ...,t,,...,tw)" and
R=(ry, ... 1y, .. .,rW)T, where t, and r, are the numbers of ‘successful’ and

‘unsuccessful’ cases for the wth covariate pattern.
A model for the number of successful cases when population units are independently
distributed is

E(t,) = my,puy,

where w,, = g(zgﬁ), g() is the link function, and m,, = t,, + r,, is the total number of
cases. A standard estimate of 8, denoted by 3, is obtained by solving the score equation

H=Z"(T — diagM)u) = 0 8)

where M =T+ R, = (W1, - - fay, - - -, )" and wyy = o (B).

Now consider the case where, again due to linkage error, T and R are not available. We
can define N (see Subsection 3.1) so that N = [T, R] is of dimension W X 2. This is the
situation discussed in Subsection 3.1 for the case where y is binary and the categories of x
correspond to the set of covariate patterns. It follows that we can replace T and R in (8) by
their estimates N* = [T*, R"], where N* is given by (4). Note that if the model covariates
are all observed on X, then M =T + R and M* = T* + R* are the same. In general,
however, this will not be the case. A biased-corrected estimator of 8, denoted by ﬁ* is
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therefore obtained by solving the adjusted score equation
H,; = Z"(T" — diag(M")p) = 0. ©)

It is easy to see that if Q is known, then (9) is an unbiased score equation. Using the same
arguments as those underpinning (5), a large sample approximation to the covariance
matrix of B can be estimated by

VB = VO 4V 4V,

Here V) = (Z7VZ)~', where V is diagonal with wth element g,(1 — f,),
llw :g(zz; ),

T
Vi=sTy BTy (fs*(b,s) — BB by - B*(s)) :
s b

where 3*(b, s) and *(s) are the solutions to (9) when we replace T* by T*(b, s) and T*(s)
respectively, and

T
Vi =g ZR” Z{é*(r,@ —ay (G*(ﬂ,s)) }{G*(m) —ay <G*<r',s>> } :

where B*(r,s) is the solution to (9) when we replace T* by T*(r,s).

4. Simulation Results

4.1. The Simulated Data

We simulated data where files X and Y were each comprised of N = 1,000 records. The
variable x was generated independently for each record such that x = 1 with probability
0.75 and x = 2 otherwise. The variable y then takes the values 1 or 2 and are generated
from the multinomial distribution with parameter 7 = (||, 731, |2, T2)2). We consider
two possible values for 77, 7@ = (0.7, 0.05, 0.05, 0.2) and 7® = (0.6, 0.1, 0.2, 0.1).

We consider the logistic model Pr(#; = 1|z;) = 1/{1 + exp(—{)}and {; = z] (Bo, B1)-
Define 8(.) = 1 if the argument is true and &(.) = 0 otherwise. We fit the model to the
generated data (y,x) above where the first covariate pattern is z; = (1,1) when x = 1 and
Z, = (1,0) when x = 2, and the number of successes and cases for the kth covariate pattern
isty =3 ,;6(x; =k,y; = 1), m =), 8(x; = k) respectively for k = 1,2.

The 1,000 records in files X and Y were allocated to 100 blocks with ten records per
block. There were five linking fields. In Scenario 1, the five linking fields had C; = 5, 5, 4,
4, 4 categories for [ = 1,..5, respectively. In Scenario 2 the five linking fields had C; = 7,
7,7, 6, 6 categories. The value for each linking field in file X was assigned independently
and with equal probability from the set of possible categories.

In Scenario 1 the linking fields were assigned M; = 0.8, 0.6, 0.6, 0.6, 0.6. In Scenario 2,
these assignments were M; = 0.8, 0.7, 0.7, 0.6, 0.5. The linking fields in file Y, ngy), were
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generated independently for each i and / according to:
FiY =% with probability M,

= arandom and equal probability draw from the set{{1,2, . . ., } — {fi"’} } otherwise.

This meant that U; = 1/C;.

4.2. Linking Under 1-1 Constraint
Records were linked under the 1-1 constraint. This involved:

1. Sort all record pairs by their weight from highest to lowest;

2. The first record pair in the ordered list is linked;

3. All record pairs containing either of the records linked in Step 2 are removed from
the list;

4. Return to Step 2 until all records are linked.

Of note is that the proportion of correct links was 0.74 and 0.91 in Scenarios 1 and 2,
respectively.

4.3. Results

The number of replicates used to estimate the linkage model was B = 300. The proposed
estimator of Q was unbiased in both scenarios (e.g., the average value of the diagonal was
0.74 in Scenario 1). In contrast, the LL estimator of Q was significantly biased in both
scenarios — the average values of the corresponding diagonals were 0.5 and 0.62 in
Scenarios 1 and 2, significantly different from the corresponding true values of 0.74 and
0.91. The conclusion is that the LL. method of estimating Q performs poorly under 1-1
linkage. Consequently, estimates of the regression coefficients on which they are based
would be heavily biased with poor coverage.

In order to measure Coverage (for nominal 95% confidence intervals), Bias (as a
percentage of the corresponding true value) and Root Mean Squared Error (RMSE),
the various approaches to linkage and analysis were applied to 300 independently
generated versions of file X and file Y and S = 10. When s was unknown, the variation
in {y was estimated with R = 10. These results are summarised in Tables 1 and 2.
The main results are:

e Naive inference, which treats the linked file as if it was perfectly linked, can be
significantly biased and has poor coverage properties.

e The proposed method has negligible bias and good coverage properties whether or
not Ys (and hence Q) was known.

e The accuracy of the proposed estimator is somewhat reduced when ¥ is unknown.
For example, in Table 1, Scenario 1 where 7 = 79 the RMSE was 0.012 and 0.014
when ¥ was known and unknown, respectively.

e The magnitude of the bias in the naive estimator tends to be higher for regression
coefficients compared with frequency counts, even though the underlying data are the
same. For example, for Scenario 1 and v = 7*) the bias in the regression coefficients
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estimates is 54% and -33%, compared with 5% and 7% for frequency count
estimates.

e The coverage rates for the naive estimator are sometimes close to the nominal 95%
level for estimates of frequency counts, but are consistently lower than 95% for
estimates of regression coefficients.

5. Real Example

The 2011 Census of Australian Population and Housing collected economic and social
information from over 20 million people living in Australia with a reference date of
9 August 2011 (Census night). The Australian Department of Immigration and
Citizenship’s (DIAC) collected information about 1,315,000 people who were granted
visas to live permanently in Australia from the beginning of 2006 to 9 August 2011; this
information is stored on the Settlements Database (SD). Given that the undercoverage of
the Census is small (Iess than 1%) and all migrants in scope of the Census can be identified
on the SD, it is reasonable to assume that the records on the SD are a subset of the records
on the Census.

Two strategies were used to link the Census and SD (see Richter et al. 2013). The first
linking strategy, called Bronze, did not use name and address. For the purpose of
evaluation we focus on records linked during the fifth linking pass, which used the
blocking variables date of birth and sex and linking variables country of birth, marital
status, year of arrival in Australia, religion, and fine-level geography (see Richter et al.
2013). Probabilistic linking was performed using the 1-1 assignment algorithm in Febrl
(Christen and Churches 2005). The second linking strategy, called Gold, used name and
address and required significant evidence in order to assign a link (i.e., high cut off) such
that we assume all Gold links are correct.

The true proportion of links made by Bronze linkage was ¢ = 0.64. That is, 64% of the
Bronze links were also Gold links. Using the replication method in Subsection 2.4, g was
estimated to be ¢ = 0.65. This is a remarkably accurate estimate and suggests that the
Fellegi and Sunter (1969) framework, upon which the replication approach was based, is
an accurate model for describing linkage errors.

Next we compare the estimator N™, using the Brongze links, to the corresponding
population total N, calculated from Gold links. This comparison was made using only SD

Table 3.  Cross tabulation of proportions according to level of
qualification within Visa Class: Based on data obtained by linking
settlements database to 2011 Census

Level of qualification

Visa class  Estimator 1 2 3

1 True (gold) 0.273 0.642 0.083
Naive (bronze) 0.220 0.750 0.029
Proposed (bronze) 0.220 0.755 0.025
2 True (gold) 0.385 0391 0.222
Naive (bronze) 0.315 0.641 0.043
Proposed (bronze) 0.343 0.551 0.105
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records that were linked by both Bronze and Gold — therefore any differences between the
two are due only to incorrect links, the error of interest here. After restricting to 30—35-
year-olds on the SD there were about 3,000 records. As population estimates are of interest
here, y is a fixed quantity and V') = 0.

Table 3 sets out the true and naive frequency tables for level of qualification (Census) by
visa class (SD). For simplicity, frequency counts are expressed as proportions of the
marginal counts by visa class. Across the Visa Classes, the proposed estimates are closer
(measured by the mean absolute difference) to the true proportions when compared with
the naive estimates. However, for Visa Class 1 the naive estimates are marginally closer to
the true proportions than the proposed estimates. Research into more robust ways of
specifying and estimating the parameters in the linkage model is required.

6. Conclusion

Data linkage is being used increasingly by statistical organisations to link administrative
data sets. This is because administrative data sets are rich sources of information and
linking is a relatively inexpensive process. Probabilistic linking is an approach to linking
data sets when there is no unique record key or identifier. This article proposes a method of
inference using files that have been probabilistically linked. The method can accommodate
1-1 linking — in fact, as long as the linkage process can be replicated, the proposed method
is valid. In this sense, there are good prospects of applying this method to linkage
involving multiple passes. The proposed method worked well in a simulation study and
showed promise in a real situation.
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Coverage Evaluation on Probabilistically Linked Data

Loredana Di Consiglio" and Tiziana Tuoto"

The Capture-recapture method is a well-known solution for evaluating the unknown size of
a population. Administrative data represent sources of independent counts of a population and
can be jointly exploited for applying the capture-recapture method. Of course, administrative
sources are affected by over- or undercoverage when considered separately. The standard
Petersen approach is based on strong assumptions, including perfect record linkage
between lists. In reality, record linkage results can be affected by errors. A simple method
for achieving linkage error-unbiased population total estimates is proposed in Ding and
Fienberg (1994). In this article, an extension of the Ding and Fienberg model by relaxing
their conditions is proposed. The procedures are illustrated for estimating the total number
of road casualties, on the basis of a probabilistic record linkage between two administrative
data sources. Moreover, a simulation study is developed, providing evidence that the adjusted
estimator always performs better than the Petersen estimator.

Key words: Linkage errors; capture-recapture method; Petersen estimator; administrative
data.

1. Introduction

The problem of assessing the unknown size of a population is one that has long been grappled
with, from the first experiments at measuring wild animal population size during the
seventeenth century (Petersen 1896; Lincoln 1930) to applications for determining
the number of people affected by specific diseases or using illegal drugs (Bartolucci and
Forcina 2006), including the population census coverage (Wolter 1986). One well-known
and widespread solution for this problem is the capture-recapture method. This method
consists of comparing two (or more) independent counts (“capture” in the field of wild animal
population estimation) of the same units, then evaluating, without error, the number of
individuals in both the counts, and, as a result, counting the number of those caught only once.

In this framework, the standard Petersen estimator works well under some strong
assumptions, such as the independence of the lists, the homogeneity of capture
probabilities, and the lists’ error-free linkage at record level.

Several extensions and adjustments of the Petersen estimator have been proposed over
time in order to avoid bias due to failure of these assumptions, which causes the population
to be under- or overestimated (e.g., Chao 2001, Chen and Kuo 2001).

Nowadays, the use of administrative data is emerging as a new opportunity in several
statistical fields. Administrative data represent sources of several independent counts of a
population. They can be exploited for the application of the capture-recapture method to
estimate the unknown size of the population.

! Jtalian National Statistical Institute - Istat, Via Cesare Balbo, 16 00184 Rome, Italy. Email: diconsig@istat.it
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Since records are collected for different purposes by different actors, the different
administrative sources can be expected to be independent recaptures of the same
(sub)population, in contrast to survey data, which are collected by the same organization.
In fact, the independence assumption could be violated if the heterogeneity of capture
probabilities of units is not properly encompassed in the statistical model.

Given their large size, data sets collected by administrative sources require a massive
use of automatic tools, implementing record linkage techniques. Therefore, the error-free
linkage assumption can be compromised, particularly in absence of unique identifiers for
privacy issues.

In this article, we concentrate on failure of the perfect linkage hypothesis and we
analyse different proposals that adjust the Petersen estimator by explicitly taking into
account linkage errors.

In Ding and Fienberg (1994), a simple method to achieve linkage error-unbiased
estimators of population total and undercoverage rate is proposed; moreover, different
models for the two types of linking errors are described. The Ding and Fienberg (1994)
adjustment considers the probability of missed true links and the probability of erroneous
links, providing an alternative formula with respect to the Petersen estimator to assess the
undercoverage and consequently the true population total.

We enhance the Ding and Fienberg (1994) model by defining the probabilities of being
counted in both lists, handling the two lists in a symmetric way. These findings are subject to
conditions of admissibility, which are discussed in the Appendix. The method s illustrated with
an application to real data to estimate the number of casualties due to road accidents, integrating
data from two registers: the “Causes of death” register and the “road accidents resulting in
deaths (within 30 days) or injuries” register. Simulated data are used to show the benefit of the
proposed new method over the existing ones in different linkage scenarios.

2. Capture-Recapture Background

The Petersen model (see Wolter 1986) is a standard well-known model for evaluating the
population total. Let N be the unknown population total, and N;and N, the population
size reported in the first and second list, respectively. Let x;; be the number of units
recorded in both lists, x5 = N; — x1; the number of units reported only in List 1 and
X217 = Ny — x1; the number of units reported only in List 2.

The counts can be organised in a 2 X 2 contingency table, with x,, the unknown number
of units missed by both lists (Table 1).

Under the assumption of independent captures, the number of individuals in the
contingency table follows the multinomial distribution.

Table 1. Contingency table of the counts in the two lists

List 2

Present Absent

List 1 Present X11 X12
Absent X21 X2o
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Moreover, adding the following assumptions:

1. the population is closed, so the population being measured in both sources is the
same

2. records from both sources can be linked without errors

3. units have the same capture probabilities within each source (homogeneity
probability assumption)

4. overcount in both sources is negligible

an unbiased estimator of N, the well-known Petersen estimator, is given by
Np= Ny XNy /x11. (D
The first list coverage is then given by
T1p=x11/N2 2)
and similarly the second list coverage is
T2p=x11/Nj. 3)

The previous assumptions’ validity has been widely debated in a traditional survey
context. Several extensions and adjustments have been proposed in order to avoid biases
due to any failure of these assumptions that is under- or overestimation of the real
population total amount.

As discussed above, on one hand, the independence of administrative sources could be
guaranteed by different data collectors, while on the other hand, the heterogeneity of
capture probabilities is a common issue in different settings due to inherent individual
behaviour. When the individual capture propensity is not properly modelled, the
dependence between lists can arise even in an administrative data context. Much literature
focuses on including sources’ dependencies and captures’ heterogeneity by means of:

— extensions of the log-linear model (Fienberg 1972; Cormack 1989; Chao 2001,
Agresti 1994; Coull and Agresti 1999)

— the conditional multinomial logit model (McFadden 1974; Bock 1975; Chen and
Kuo 2001; Zwane and van der Heijden 2005)

— the latent class model (Bartolucci and Forcina 2006)

— the Bayesian capture-recapture model (Ghosh and Norris 2005).

More specifically, log-linear models explain the dependencies between data collections
and the heterogeneity of capture probabilities by using categorical covariates, while the
conditional multinomial logit model also allows continuous covariates to be included in
the models.

The latent class model can be considered a conditional multinomial logit model
extension and permits the modelling of both the observed heterogeneity using covariates
and the unobserved heterogeneity by assuming that units belong to distinct latent classes.
Finally, Bayesian capture-recapture models allow dependencies and heterogeneity to be
formalised by means of suitable parameters for the distribution of individual capture
probabilities.
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When dealing with administrative data, compared to the survey context a change of
perspective regarding the validity of previous assumptions is needed. In fact, overcoverage
in the administrative lists may assume a relevant role. Recently, we have seen the failure of
the last assumption 4), due to an observed significant level of list overcoverage affecting
administrative data. Large et al. (2011) propose an adjustment to the Petersen estimator in
order to correct bias due to overcount within the census context.

Another matter emerging when dealing with administrative sources concerns the
unavailability of unique identifiers for maintaining privacy. In this framework, linkage
errors could arise. This article considers extensions to deal with record linkage between
lists affected by errors.

3. Including Linkage Errors in the Petersen Estimator

In this section, a short description of the most common probabilistic record-linkage
framework is given, mainly in order to formalise linkage errors. Moreover, the Ding and
Fienberg (1994) estimator to adjust the Petersen one for linkage errors is briefly reported;
an extension is introduced to deal with more generic contexts, including those contexts
typical for administrative data.

3.1. Linkage Model and Error Evaluation

A key step in applying the Petersen model is the integration of two (or more) sources at
record level to identify the common units: this action is commonly referred to as record
linkage.

A fundamental theory for record linkage is given in the seminal paper by Fellegi and
Sunter (1969). Given two lists, say L1 and L2, of size N and N, let ) = {(a, b),a € L1
and b € L2} be the complete set of all possible pairs, of size [}] = N| X N,. The linkage
process between L1 and L2 can be viewed as a classification problem where the pairs in ()
have to be assigned to two independent and mutually exclusive subsets M and U, such that:

M is the link set (a = b)
U is the nonlink set (a # b).

In order to assign the pairs to the sets M or U, K common identifiers (the linking variables)
are chosen and, for each pair, a comparison function is applied in order to obtain a
comparison vector Y = {vj,¥2,. . ., ¥k }. The ratio r of the conditional probability of y
given that the pair belongs to set M to the conditional probability of y given that the pair
belongs to set U

. _ POla,b) €M) _m(y)
P(yl(a,b) € U)  u(y)

is used to classify the pairs. The probabilities m and u can be estimated by assuming the
true link status is a latent variable, using, for instance, the EM algorithm (Jaro 1989).
Hence, those pairs for which r is greater than the upper threshold value T, are assigned to
the set of linked pairs, M *; those pairs for which ris smaller than the lower threshold value
T, are assigned to the set of unlinked pairs U *; if r falls in the range (T, T,,), no decision
is made and the pair is checked by clerical review.
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The thresholds are chosen to minimise false link probability, 8, and false nonlink
probability, 1 — «, defined as follows:

B=> unPM ly) = u(y) where Ty ={y:T,=mjuyp} @

yel' vEL )+

I—a=> myPU ly=> my) where Ty-={y:T,=m)/u}. ©)

yel' yEL, *

The linkage model also provides an evaluation of the probability of a link being a correct
given that the link is assigned, the so-called true match rate:

> u(y)PM*1y) > uy)

1 yel'y 1 vEly, = (6)
'y] = -—_ -_ .
> “m(yP(M*|y) > “m(y)
yEly YEL )+

3.2. The Ding and Fienberg Estimator

In the context of probabilistically linked data, the coverage rates and population total
estimates produced by the Petersen model may be biased and so they need to be “adjusted”
in order to explicitly take into account the linkage errors.

A simple method for achieving “linkage error-unbiased” estimators of the population
total and the coverage rates has been suggested by Ding and Fienberg (1994). They relax
the perfect linkage assumption, propose models to describe linking errors and include
those errors in the estimators derived by the Petersen model.

Under the following assumptions:

(a) true links between L1 and L2 are assigned with probability «

(b) false links between records belonging to M (see Subsection 3.1) are negligible

(c) false links can occur with a common probability 8 between records belonging to U
(see Subsection 3.1)

(d) linkage direction from L1 to L2,

the adjustment proposed by Ding and Fienberg (1994) considers the false nonlink of
linking cases probability (i.e., the probability of missing true link, 1-o) and the false link of
nonlinking case probability (i.e., the probability of linking false pairs, ),

Niuz

T1.oF + Tapr — (@ — B)F1.pr2pr — BTLDF

Npr= @)
where 7| pr and 7, pr are the estimates of probabilities of being recorded in lists 1 and 2,
respectively. Niu» = x11 + X12 + X21 = X, + x|, + x5, is the number of records in list 1
or list 2, with x;; the number of true records in both lists, x;, the number of true records
in list 1 and not in list 2 and, vice versa, x»; the number of frue records in list 2 and not
in list 1, while x};,x},, X5, are the observed number of records in both lists, in list 1
and not in list 2, and in list 2 and not list 1, respectively, resulting from the linkage
procedure.
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The coverage of the first list is given by:

_le + B(xﬁfl +XT2)

fl,DF = * * (8)
(B—a)(x; +x3)
and similarly the coverage of the second list is
. —xj;, + B(x, +x;
fapF = 11 B( 11 12) (9)

B— a)(xy, +x1)
The coverage rate estimates, 7j pr and 7 pr, are obtained by maximizing the conditional
likelihood of (x},,x},,X5,) given N2,
e
Niua! P P1aPo (10)
* % * .
X1 X010, L (pu + piz + pan)V1e

Li(p11,p12,p21) = Li(71, 1) =

In this setting, a record is counted in both lists when it is actually in both lists and a link is
made, and when the record is only in L1 but it is incorrectly linked with a record in L2.
The former event has the probability at 7, whereas the latter has B7(1 — 1), so the
probability of observing a count in (1,1) is p;; = a7 + B7((1 — 7). The probability of
occurrence in cell (1,2) and (2,1) can be derived as p;; = 7 — piiand p21 = 7 — pii,
respectively. See Ding and Fienberg (1994) for more details.

Note that the solutions are admissible under conditions on relationships of errors and
counts.

The previous estimators are based on the assumptions: false links that occur when at
least two errors are made (that is, records are incorrectly linked and the correct link is
missed) have negligible probability of occurrence (assumption b). Moreover, a direction
from LI to L2 is assumed both in the linkage procedure (assumption d) and in the
specification of the linkage errors. In the next subsection, generalised estimators for
(7)—(9) achieved by relaxing assumption d are illustrated.

3.3. A Generalised Estimator

The Ding and Fienberg (1994) proposal was explicitly defined in the traditional census
coverage evaluation context, where the linkage procedure between census data and the
postenumeration survey results (Wolter 1986) works in one direction. When dealing with
administrative data sources, this assumed one-way linkage direction is not guaranteed.
Linkage errors, in particular false links, can occur in both directions, in contrast to what is
assumed in d) of Subsection 3.2 according to Model B proposed by Ding and Fienberg
(1994, 150). Note that in the context of administrative data, due to differences in unit and
time reference, as well as variables’ definitions, joint linkage errors (i.e., incorrect link and
missed true links at the same time) may occur. Nevertheless, their probability can still be
assumed negligible as at least three errors should be made, each one with small probability.

In the present proposal, assumption d) in Subsection 3.2 is relaxed, allowing for
two-directional linkage. Hence, the probability of an occurrence in cell (1,1) is p;; =
anm + Br(1 — m) + Br(1 — 71) where a7, is the probability that a unit is actually in
both lists and a link is made, 87;(1 — m) is the probability that a unit actually registered
only in L1 is incorrectly linked with a record in L2, and finally Bm(1 — 1) is the
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probability that a unit actually registered only in L2 is incorrectly linked with a record in
L1. The probability of occurrence in cell (1,2) and (2,1) can be derived as pj = 71 — p11
and py; = m — pyj, respectively.

Replacing pi1,p12,p21 as defined above in the conditional likelihood (10) and
maximizing with respect to 7 and 7, the Modified Ding and Fienberg (MDF) estimators
are given by
2Bx,, + B, + Bx) —x,

28— a) (x;j + x;)
2px, + B, + Bx, — X

2B~ a)(x; +x,)

1)

T\ Mpr =

L (12)

T2, MDF =

Once 7| ypr and 7 ypr are obtained, the MDF ML estimator of N is given by:

Niu2
T1.mpr + T2 mpr — (@1 mpr T2.mpF + B(T1 mpr + T2.mpF — 271, MpF T2,MDF))

Nupr= (13)
Conditions for the admissibility of the estimates (11)—(12) also apply (see the Appendix).
The proposed estimators as well as the DF estimators are based on the assumption
that linkage errors are constant. If this assumption holds at least in subgroups, the
estimators can be applied within strata in which matching error probabilities (and capture
probabilities) can be assumed to be more homogeneous than in the whole population.

4. Applications

4.1. Real Data Application

In this section, we present an application to data coming from two independent registers of
deaths caused by road accidents. These data are exploited mainly because a complete
analysis of the linkage status by clerical review is possible thanks to their small size.

In Italy, police authorities locally collect the road accidents resulting in deaths (within
30 days) or injuries and provide those data to the National Institute of Statistics. The Road
Accident Register (denoted as RAR — or list 1, in the following) is an exhaustive,
monthly-based register reporting the dynamics and circumstances of road accidents. Data
collected by police are the main source for studying road traffic injuries. However,
although the police usually collect very detailed information on crash dynamics and
circumstances, relevant underreporting could occur due to the very complex situations
related to the seriousness of the accidents. Therefore, the integration with health-care
databases, such as mortality registers, can be very useful, complementing police data
by capturing missing cases and also enriching them with detailed information on causes of
death. For this purpose, a record linkage between the RAR and the data on causes
of mortality, collected by the Italian National Vital Statistics Death Registry on causes of
death (RCD - or list 2, in the following), was carried out.

The linkage procedure is not straightforward: a common personal identifying code is
not available. Moreover, since RAR reference units are the road accidents, personal
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identifying variables (i.e., names, surnames, ages) are sometimes missing or mistaken
when more than one person is involved.

The reference year of the application is 2009. As far as the data from RAR are
concerned, only records with at least one fatal casualty are considered, corresponding in
that year to 4,237 records. Regarding RCD data, only road-accident deaths are considered,
according to ICD-10 codes for traffic accidents involving motor vehicles on public roads.
These correspond to a total of 4,642 records. The variables used for the linkage are: the
road traffic victim/dead person name, surname and age, and the accident/death day, month,
municipality and province.

The selected data sources’ sizes do not require reduction procedures and the cross
product of all records can be considered. The whole linking space is also exploited for the
clerical review of links missed by the probabilistic procedure.

The linkage procedure identifies 3,129 linked records. The linkage errors estimated by
the Fellegi-Sunter model (see (4) and (5)) are 8= 0.00 and 1 — a = 0.15.

As is well known, in this approach the accuracy of linkage-error estimates is
heavily dependent on the estimates’ accuracy in the tails of the my(7y) and u(7y)
distributions. Misspecifications in the model assumptions, errors or lack of information
can cause a loss of accuracy in the latter. So, even though in most practical cases the
linkage procedure is robust with respect to the links identification, the linkage error-
estimates based on the linkage model are nevertheless generally too optimistic (Larsen and
Rubin 2001).

As stated above, with these data, a clerical review of the linkage status is possible: this
allows an evaluation of the proposed estimators knowing the true linkage-error values.

According to Table 2, the true 1 — ais 0.1141 and S is 0.0009. On the basis of the true
linkage status, the Petersen estimate of the total amount of road deaths is 5,572.

The results for the population size and the coverage list rates evaluation using the
illustrated estimators are summarised in Table 3, where DF and MDF are defined in
(7)-(9) and (11)—(13), respectively, and the naive Petersen estimators are given by
Equations (1)—(3), replacing the unobserved count x;; by the observed one xj 1

As expected, the DF and the MDF estimators give the same results when linkage errors
are obtained from the linkage model due to the negligible value of 8. All the compared
estimators provide values close to the true one when linkage errors are known. Moreover,
they are also less biased than the naive Petersen estimates when linkage errors are
estimated via the linkage model.

It is worth noting that even when a training set with known linkage status is available,
the evaluation of 8 and 1 — « is not straightforward. For instance, the well-known method

Table 2. Comparison between true linkage status and probabilistic linkage results

True linkage status

Link Nonlink
Probabilistic linkage Link 3,127 2 3,129
Nonlink 403 2,218 2,621

3,530 2,220
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Table 3.  Amount of road deaths and coverage-rate estimates with estimated and true linkage errors

True values  Petersen DF MDF

N 5,572 6,286 Estimated linkage errors 5,330 5,330

— True linkage errors 5,569 5,571

Coverage rate 0.760 0.674 Estimated linkage errors  0.795  0.795
List 1

- True linkage errors 0.761  0.761

Coverage rate 0.833 0.738 Estimated linkage errors  0.871  0.871
List 2

- True linkage errors 0.833  0.833

proposed by Belin and Rubin (1995) only provides estimates for 8. In fact, detecting false
links is more practicable than identifying missing links.

4.2.  Simulation Study

The previous section showed an interesting real capture-recapture application that takes
into account linkage errors. In that case, even with low linkage-error levels, the adjusted
estimators perform better than the naive Petersen estimator. However, the benefit of the
proposed MDF over the DF is not sufficiently evident. In this section, a simulation is
performed on fictitious data in order to compare the estimators in different linkage
scenarios with variables of varying identifying power.

4.2.1. Description of the Simulated Setting

The simulation study was conducted on 100 replicated settings. Each one consists of a
population of 1,000 units and two different lists that are generated mimicking the register
undercoverage and the presence of errors in the common identifiers (the linking variables).
The replicated pseudopopulations were independently randomly selected from the
fictitious data on the UK population census. These data were created for the ESSnet DI
(McLeod et al. 2011), which was a European project on data integration (Record Linkage,
Statistical Matching, Microintegration Processing) run from 2009 to 2011. For each
replicated pseudopopulation, the two lists were randomly generated according to the
following coverage probabilities, 71 = 0.930 and 7, = 0.924, respectively.

Finally, on each replicated setting, the two lists were linked assuming three different
scenarios to reflect different levels of informativeness in the linking variables. The Gold
scenario uses linking variables with the highest identifying power, namely, Name,
Surname, Complete date of birth. In this scenario, of course, the best results in terms of
linked pairs and expected linkage errors are achieved.

The Silver scenario represents a situation where the strongest identifying variables —
namely, Name and Surname — are not available, because, for instance, they are not
released due to privacy issues. The linkage procedure can still be applied on variables with
lower identification power than in the Gold Scenario, namely, the Complete Date of Birth.
This causes linkage errors higher than in the previous scenario, in terms of both missing
links and false links.
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Table 4.  Distribution of the linkage errors in the three scenarios

Scenario  Linkage results Min Q1 Median  Mean Q3 Max

Gold a 0.838  0.933 0.940 0939 0945 0.961
B 0 0 0 0.001 O 0.057
Silver a 0.807  0.842 0.853 0.851  0.861  0.884
B 0.028  0.077 0.099 0.101  0.125  0.179
Bronze a 0.808  0.822 0.833 0.833 0.843 0.874
B 0.037  0.084 0.108 0.107  0.132  0.209

Finally, the Bronze scenario is the most unfavourable in terms of linkage errors; the set
of variables used in the linkage procedure, namely Surname, Day and Month of Birth, has
the lowest identifying power. In fact, in our data these variables are the ones most affected
by typos and missing values. More precisely, in both lists, 16.7%, 2.6% and 4.3% of the
records are affected by error in Surname, Day of Birth and Month of Birth respectively.

All the probabilistic record-linkage procedures were applied by means of the software
RELAIS (see RELAIS 2011), according to the Fellegi and Sunter model summarised in
Subsection 3.1.

Table 4 summarises the linkage results in terms of linkage errors, reporting the
probability of nonmissing true matches («) and the probability of false matches (3) as
defined in Subsection 3.1. The true values of « and 3 can be evaluated in light of the true
linkage status, which is known for each pair in each replication of the three scenarios.

4.2.2. Performance of the Alternative Estimators in the Simulation Study

From each linked set, we computed the counts x|, x;, and x,, to apply the naive Petersen
estimator and the adjusted DF and MDF estimators described in Subsection 3.2 and 3.3,
respectively. The DF and the MDF estimators are computed using the true values of the
probability of nonmissing true matches («) and the probability of false matches (3)
obtained in each replication. The use of the true values of « and S allows the comparison
of the estimators without the effect of linkage-error estimation.

To assess their performance, alternative estimates for each replicate in the three
scenarios are reported in Figures 1-3.
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Fig. 1. Estimates in the Gold Scenario
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Fig. 2. Estimates in the Silver Scenario

In the Gold scenario, mimicking a situation where false linkage error is (nearly) absent,
the adjusted estimators improve the naive Petersen estimator in terms of bias as already
shown with the real data application (Subsection 4.1). Again, as expected, the DF and the
MDF are very close, as the extension in the MDF involves only the false linkage error 3, as
it results from a comparison of Equations (7) and (13) by simple algebra.

In the Silver scenario, where the false linkage error 8 is not negligible, the
outperformance of the MDF with respect to the alternative estimators is clear. The
comparison of Graphs 1-3 shows that the improvement by the MDF estimator is even
more evident with higher levels of linkage error, as in the Bronze scenario.

The adjusted estimators’ outperformance in terms of relative errors with respect to the
naive Petersen estimator is also shown in Table 5, where the minimum, the first quartile,
the median, the mean, the third quartile and the maximum of the Percentage Relative Error
over the 100 replications are reported for the three scenarios.

5. Concluding Remarks and Future Work

This work proposes a method for evaluating the unknown size of a population in the
Petersen framework when the record linkage is not error free. This proposal overcomes the
limitations of the Ding and Fienberg (1994) model tailored on the population census
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Fig. 3. Estimates in the Bronze Scenario
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Table 5. Percentage Relative Error distribution in the three scenarios

Percentage Relative Error

Scenario Estimator Min Q1 Median Mean Q3 Max
Gold Petersen 3.9 5.9 6.4 6.5 73 9.0
DF -04 —-0.1 0.1 0.1 0.3 0.6
MDF -04 —-0.1 0.1 0.1 0.3 0.6
Silver Petersen 11.8 14.5 15.6 15.5 16.4 20.6
DF -2.0 —-1.3 -0.9 -0.9 -0.6 0
MDF -04 -0.1 0.1 0.1 0.3 0.6
Bronze Petersen 14.0 16.7 17.9 17.8 19.0 21.3
DF -2.0 —-14 —-1.0 —-1.0 -0.7 0
MDF -04 —-0.1 0.1 0.1 0.3 0.6

coverage context. The application on real data showed an improvement of all
the considered alternative methods in terms of bias with respect to the Petersen
estimator. In this particular case, the model value of B8 was zero. When dealing with
administrative data, this value is justified if personal identifying codes are available.
In this case, the missed links are the most serious issue, since the omitting or
erroneous reporting of identifying variables is not uncommon in administrative sources,
in particular when they contain reference units and variables that differ from the
statistical ones.

The simulation on fictitious data confirms the results of the real data application under
more general frameworks, where different linkage-error levels are considered. Moreover,
simulation results indicate that the MDF outperforms the other estimators when £ is not
negligible.

The adjusted methods depend on the correct evaluation of both kinds of linkage errors.
This clearly appears in the real data application. In this application, the estimators’
performances are assessed in both the following cases: linkage errors are estimated from
the linkage model (Formulas 4 and 5); and the true linkage errors values are available.
However, the adjusted estimators’ improvement can also be observed with respect to the
Petersen estimator in the first case. Further improvement in adjusting for linkage errors
could be achieved by introducing individual values for the probability of correct links and
missing links.

The evaluation of linkage errors is still an unresolved issue. The proposals that consider
the linkage errors in analyses of linked data are often based on a training set to assess
linkage quality. In any case, automatic probabilistic methods are necessary, particularly
for detecting missing-link 