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Micro- and Macrodata: a Comparison of the Household
Finance and Consumption Survey with Financial Accounts

in Austria

Michael Andreasch1 and Peter Lindner2

This article compares the results of Austria’s Household Finance and Consumption Survey
(HFCS) on savings deposits and estimates on total financial assets with administrative records
from the national accounts for the household sector. The microdata that are newly generated
through the HFCS and the detailed (internally available) breakdown of savings deposits in the
existing macrodata (financial accounts) lend themselves to a more in-depth analysis of the
similarities and differences in these two sources. Comparing the data shows that the HFCS-
based aggregate estimates are lower than the financial accounts data, which is in line with
evidence from the literature. The article also shows, however, that the survey adequately
captures the underlying patterns at the microlevel in terms of the overall financial portfolio
allocation and the distribution of savings deposits over detailed breakdowns. Moreover,
a simulation based on the HFCS data demonstrates the effect that the inclusion of savings
deposits in the most affluent tail of the distribution has on common statistics. Undercoverage
above all of the upper deposit ranges suggests an underestimation or bias in the statistics. This
underestimation, however, can be shown to be relatively minor, particularly in the case of
robust statistical measures, such as the median or percentile ratios.

Key words: Wealth distribution; survey; national accounts.

1. Introduction

In recent years, survey data have become an important tool in the research on assets and

debt. The data often constitute the only pool of data on household assets that is collected

systematically at the microlevel. Yet the tradition of surveys on household assets is shorter

than that of income surveys. For this reason, survey data on incomes have been compared

with income data from other sources more frequently and in greater detail in the literature.

The innovation of the Household Finance and Consumption Survey (HFCS), which covers

the entire eurozone, is that it provides a harmonised framework for collecting information

on eurozone household (financial and nonfinancial) assets and liabilities, which represents

a basis for eurozone-wide analyses.
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Although all forms of data compilation come with their own specific problems, some

difficulties attached to surveys attract special criticism, such as nonparticipation or

nonresponse. A key criticism is that households often decline to participate in voluntary

surveys or that, if they do agree to participate, they provide incorrect information or

refuse to respond to specific questions. In addition, the survey methods may influence

results from survey data, for example, the interview mode (see Fessler et al. 2012).

Hence, to identify the strengths and possible weaknesses of the HFCS data, it is useful

to compare them thoroughly with other national statistics. In doing so, we also need to

bear in mind that the macrodata exhibit certain weaknesses. The most obvious one is

that data from financial accounts are (publicly) only available at the aggregate level and

thus it is not possible to carry out a distributional analysis. Additionally, there are also

issues concerning classification of the data (households vs. self-employed businesses/

other institutions) and estimations (e.g., cash holdings). Thus it is far from clear that one

or the other source of data present a better choice for all investigations, and so

comparing the results of the HFCS survey with other national statistics will contribute to

a better understanding of the economy, as different data sources tend to generate

complementary findings.

Furthermore, in the light of the “Report by the Commission on the Measurement of

Economic Performance and Social Progress” by Stiglitz et al. (2009), which recommended

to “[g]ive more prominence to the distribution of income, consumption and wealth”

(Recommendation 4 on page 13), our understanding of the integration of micro- and

macrodata must be analysed and enhanced. This analysis also contributes to the effort of

international institutions such as the ECB to integrate information from the macro- and the

microlevel to a greater extent. Furthermore, in light of the “Beyond GDP” initiative of the

European Commission, the analysis at hand can be viewed as a first step towards an

approach integrating micro- and macrostatistics. Before a clear view of the overall picture

can be gained, we need to understand the similarities and differences between the existing

information in detail.

One of the general results documented here is evidence that the HFCS in Austria

underrepresents households’ financial assets: total financial assets as identified by the

HFCS come to roughly 40% of total financial assets as shown by the financial accounts

(Section 4.1). Essentially, this finding corresponds to similar comparisons of survey data

and administrative records described in the literature (Section 2). Owing to the internal

availability of administrative records on financial wealth, the article contributes to the

existing literature in the following ways. First, we compare the allocation of savings

over different deposit ranges and different sectors of the Austrian banking system, as

these are recorded by both the HFCS and existing national statistics (hence the article

goes beyond a comparison of the aggregate statistics). We find that the deposit patterns

are similar in both the survey data and the banks’ reports. Furthermore, a

microsimulation of the upper deposit amounts, which are underrepresented in the

HFCS, shows that the ensuing (negative) bias is relatively low for statistical robust

estimates in particular. Thus, depending on the issue under research, both the aggregated

data of the national accounts and the HFCS data represent a valid basis for empirical

evaluations. The results presented in this analysis should provide a good understanding

of the relationship of the micro- and macrodata of other eurozone countries due to the
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harmonised manner of data collection and the similar relative importance of the major

components.

This article is structured as follows. In Section 2, we establish a link between the article

and the existing literature. Section 3 provides an explanation of the data used. The results

of the comparison are presented in Section 4. In addition to the evaluation of aggregate

results, we provide a comparison of the HFCS data with the banking statistics in a detailed

breakdown of deposits on savings accounts. The simulation of the upper savings deposit

ranges along with the evaluation of the impact of undercoverage on the main estimators is

set out in Section 5. The analysis concludes with final remarks and suggestions for further

research.

2. Background

Comparisons of survey data with data derived from administrative sources are common in

the scientific literature. As data on flows of the household balance sheet, in particular from

administrative sources, are more readily available than data on household stocks, most

studies limit themselves to evaluating information on incomes. The literature comparing

income in survey and administrative data is able to provide a broader picture of relevant

ideas for investigations concerning the stocks of the household balance sheet, such as the

present article.

In summary, income data from both survey and administrative sources are subject to

errors, the resulting bias of the estimators is expected to be low, and, in most studies, the

differences between the data result from specification differences (definitions of the unit

of collection, of types of income, etc.). As a case in point, Törmälehto (2011) compares

the data collected by the Luxembourg Income Study Group (LIS) with income aggregates

in the national accounts. He observes that surveys capture over 90% of income in most

countries, admittedly with a lower degree of coverage in some income subcategories. For

the United States, Davies and Fisher (2009) find some differences between individual

income sources using data from the Current Population Survey (CPS) and the Survey of

Income and Program Participation (SIPP) matched with administrative data from the

social security administration. Using the same datasets, Roemer (2002) shows that the

surveys accurately capture the underlying patterns of income distribution. Roemer also

points out the problems underlying income distributions based on administrative data

(e.g., because illegal work and related income are not captured in the administrative

data). Kavonius and Törmälehto (2003) compare income aggregates of various sources

from survey data (e.g. Income Distribution Survey) with national accounts data for

Finland. While wages and salaries are nearly identical in both data sources (survey

coverage is about 99%), the data for property income and self-employment income differ

substantially (unadjusted coverage is 210% and 52%, respectively). Bricker and

Engelhardt (2008) report on measurement error in earnings data for men and for women

in the United States, comparing administrative records of the Social Security

Administration (SSA) and of the Internal Revenue Service (IRS) with the survey data

in the Health and Retirement Study (HRS). As the data can be precisely matched, the

authors are able to identify a measurement error of about six percent in men’s incomes

and of approximately seven percent in women’s incomes. Finally, Kapteyn and Ypma
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(2007) research measurement error on the basis of data from the Swedish Longitudinal

Individual Data Base (LINDA) compared with information from the Survey of Health,

Ageing, and Retirement in Europe (SHARE). The authors show that erroneous

observations lead to biased estimators in a variance analysis. Errors are found not just in

survey data, but also in the administrative data.

The literature has not produced as many findings on stocks of the household balance

sheet. Avery et al. (1988) were the first to compare aggregate estimates based on survey

data with national accounts data (i.e., flow-of-funds statistics). The authors show that

aggregate savings deposits as documented by the Survey of Consumer Finance (SCF)

amounted to less than 50% of aggregate savings deposits as captured by the flow-of-

funds statistics. However, the discrepancy between the two data sources with regard to

the household wealth held in the households’ main residence offsets this difference.

Thus the estimate of households’ gross assets is quite similar in both data sources.

Similarly, Antoniewicz et al. (2005) examined the coverage of financial assets and

liabilities of the household sector in three surveys performed for Italy, the United States,

and to some extent for Canada. With regard to Canada, where data were available for

1999, the microdata on deposits and total liabilities were around 30% lower than the

macrodata. This result is echoed by the microdata for Italy, which are based on the

Survey on Household Income and Wealth (SHIW): the estimate for total financial assets

in the SHIW came to 31% of the corresponding macrodata. However, an adjustment for

underestimation and nonresponse produces a significant improvement of underreporting.

In the United States, the survey data (SCF) are closer to the flow-of-funds data. In a

more recent paper based on the same data, Henriques and Hsu (2014) show additionally

that the changes in the aggregate values over time are broadly synchronized. Sierminska

et al. (2006) compare the data of the Luxembourg Wealth Study (LWS) for several

countries with national statistics. The authors show that the varied sources on which the

LWS database is based capture between 13% and 117% of per capita household wealth.

The administrative data are subject to some problems, so that an estimate of per capita

household wealth in the LWS database equalling 117% of the estimate based on national

statistics is not necessarily a sign of a lack of quality of the surveys used. With a ratio of

the LWS database to the national balance sheet of between 65% and 117%, the match

between the micro- and macrodata of nonfinancial assets is closer than that of financial

assets (with an LWS to NBS ratio of between 13% and 52%). Finally, Johansson and

Klevmarken (2007) used information from the administrative LINDA database and from

two surveys conducted in Sweden (both refer to residents aged 50 and over) to identify

measurement error, its correlation with the volume of assets, and the effects on

regression analyses. The authors concluded that measurement error correlated with the

volume of assets occurs above all at the tails of the distribution. In an independent effort

at approximately the same time as this article was written, Kavonius and Honkkila

(2013) looked at the comparison of the HFCS with National Accounts for Finland, Italy

and the Netherlands. However, Kavonius and Honkkila (2013) only look at a comparison

of aggregated values. The analysis below extends the literature by looking at detailed

categories in terms of asset ranges and banking sectors on the one hand, and by

simulating the potential impact of the highest saving levels on commonly used statistics

on the other hand.
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3. Data and Definitions

This analysis is based on two different datasets from Austria, data derived from the HFCS and

administrative banking statistics used to compile the financial accounts. Both types of data are

compiled and managed by the Oesterreichische Nationalbank (OeNB). The breakdown in both

the microdata and macrodata permits a granular analysis of the interlinkages. Appendix A

provides the details of the breakdown by banking sector and assets ranges.

3.1. The HFCS in Austria

The first wave of the HFCS is the most comprehensive survey on household assets and

debt to be conducted in Austria. Of a stratified cluster random sample of 4,436 households,

2,380 households agreed to participate in the voluntary survey and were interviewed in

person (CAPI - Computer-assisted personal interviewing) about the different components

of household assets and liabilities among other things. The field phase was conducted from

the third quarter of 2010 to the second quarter of 2011. The reference period for stock

information is the time of the interview. Most of the missing information (i.e. information

not provided by respondents) was imputed using a Bayesian-based multiple-imputation

procedure (this is explained in more detail below). On the basis of sample design weights

and after nonresponse adjustment, the final household weights used in the evaluations in

this analysis were poststratified both by regional distribution of the households and by

distribution of household size (see Albacete et al. (2012) and Fessler et al. (2012)). In

particular, this means that the weights were not adjusted to meet the aggregates or the

structure of wealth and debt positions of an administrative data source. Hence, differences

between the two separate data sources are to be expected; they have not been reduced or

ruled out ex ante in the production process.

3.2. The Financial Accounts in Austria

The financial accounts are an integral part of the national accounts and as such are

compiled in accordance with the rules of the European System of National and Regional

Accounts 2010 (ESA 2010) based on data derived from a variety of administrative sources.

In particular, the following components are used for the compilation of the data on

deposits:

- The OeNB’s financial statements,

- MFI (monetary financial institution) balance sheet statistics,

- supervisory statistics of banks resident in Austria,

- quarterly/annual balance of payments and international investment position data.

We used the financial accounts data for the reporting date 31 December 2010 (i.e., in

the middle of the field phase of the HFCS) for comparison with the HFCS results. The

focus of our analysis is not just on establishing the discrepancies between the aggregate

values – as documented in the international survey literature – but above all on assessing

the allocation of deposits to small ranges of volume and to the different sectors of the

Austrian banking system. These data from the banking statistics are an important

component of the financial accounts. This approach allows for the documentation of new
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and more detailed findings on the similarities and differences between macro- and

microdata.

3.3. Definition of the Unit of Collection

The household represents the unit of collection in the HFCS. All households in Austria

(except institutionalized households living, for example, in a home for the elderly, a

monastery, military compound, or prison) are part of the target population, irrespective

of their nationality, and thus have a positive probability of being selected for the

HFCS sample.

By contrast, the banking statistics in the financial accounts capture the information on

(euro-denominated) savings accounts, not by households but by accounts. These accounts

can be allocated to the sector of (domestic) households and self-employed persons.

The reports cover the accounts of all Austrian residents (persons or institutional units).

The household sector includes consumer households, self-employed persons and sole

proprietorships. Financial assets and liabilities for the self-employed businesses are shown

on a gross basis in the financial accounts. In the HFCS, wealth of self-employed persons

and sole proprietorships is classified as net wealth in self-employment business, that is,

total assets (real and financial) minus liabilities, and is not recorded as part of the financial

wealth but rather as real assets.

Household level in the survey and deposit account in the banking statistics are

obviously two different units of observation. Despite the fact that it is the only possible

way to compare savings from the two sources in detail as is done in this analysis, there

are further reasons why this distinction does not render the analysis meaningless. As

will be shown below, households have more than one account, but most households

only use one bank, so the categorisation into banking sector is not affected to a large

extent by the unit of observation. Furthermore, although shifts in asset ranges to higher

ones might be expected in the survey due to aggregation of accounts, we would argue

that the comparison of the detailed ranges is still valuable, since a lot of findings such

as missing information in some ranges in the survey still provide important information

independent of the discrepancy of the unit of observation. One can estimate how much

is missing solely because of ranges with no observations in the survey, for example.

Furthermore, bearing the unit of observation in mind allows us to see whether the

aggregation at the household level yields the expected results, such as higher average

values.

4. Results of the Comparison of HFCS and Financial Accounts Data

4.1. Aggregates

Major aggregate components of financial assets classified in the financial accounts can

be estimated from the HFCS as well. The definitions of the information collected in

the HFCS and reflected in the macrostatistics of the financial accounts are broadly

comparable. Kavonius and Törmälehto (2010) have documented the link between the

HFCS variables and the ESA definitions in detail, and so the links are not explained again.

The following picture emerges for Austria (Table 1), with the top part of the table showing
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the comparable components, including the share of each component in terms of total

comparable financial wealth and the bottom part showing the components that are not

covered by one of the two data sources.

As common in the literature, the comparison of survey data (HFCS) and financial

account aggregates indicates underreporting of household financial wealth in the HFCS in

Austria. Table 1 indicates that the HFCS aggregate for comparable household financial

wealth in Austria runs to about 42% of the financial accounts aggregate. This value may be

considered fairly high in an international comparison with other surveys (see also

Section 2). Sierminska et al. (2006) for example shows ratios ranging from 13% (United

Kingdom, BHPS 2000) to 52% (Norway, IDS 2002) and Mathä et al. (2012) indicate a

ratio of 35% for the HFCS in Luxembourg. The possible origins of this difference are

manifold; on the one hand the survey estimates might not cover the totality of the financial

assets, but on the other hand the financial accounts data do not reflect solely the financial

wealth of households as they include self-employed business assets and single-person

companies and thus overestimate the households’ financial wealth. However, the table

indicates that (i) the distribution of the individual components of comparable financial

assets in the HFCS data broadly mirrors the financial accounts patterns (see columns

headed “share”) and that (ii) the coverage ratio of the HFCS compared with the financial

accounts varies considerably for individual financial instruments and components (see

column headed “HFCS/financial accounts ratio”).

The HFCS/financial accounts coverage ratio for savings deposits runs to 40%. It must be

noted, though, that the administrative records on total deposits also include the deposits of

self-employed persons and sole proprietorships (accounting for e13 billion at the end of

2013), which the HFCS classifies as net investment in self-employment business, that is,

as real assets. In the HFCS, the volume of life insurance holdings (representing the

second-highest shares in both data sources) is calculated as the accumulated premia

over the time span of the contract up to the time of the interview. The financial accounts

data are based on insurance technical reserves comprising provisions for prepayments of

premia (the difference between premia recognised and premia earned) and actuarial

reserves (current value of expected future benefits); they may also include life insurance

provisions if policyholders bear the investment risk. The HFCS captures premia, but no

profit participation or service charges of the insurance providers. In addition, the value of

life insurance holdings can fluctuate in the case of unit- and index-linked life insurance

contracts.

Certain subcomponents are not covered by either of the two data sources. For instance,

in the financial accounts, financial wealth resulting from the debt of a household to the

respondent’s household is not covered, as relevant data are not available. However,

the HFCS shows that this component has a non-negligible volume. The HFCS did not

include a question on cash holdings, as this question was considered to be too sensitive.

In the financial accounts, the category “cash holdings” is calculated based on the estimated

proportion of total financial assets adjusted by the change in cash requirements for

consumption.

Figure 1 shows the relative importance of the major components of financial wealth for

all countries covered in the HFCS. The similarity of the overall distribution of components

of comparable financial wealth holds not only for Austria, but for all countries
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participating in the HFCS across the board. Deposits (sight and savings accounts together)

account for some 42% of financial wealth in the HFCS and some 47% in the financial

accounts in Austria. Thus, these holdings make up the largest share of financial assets.

Consequently, the analysis of this component of financial wealth has a greater explanatory

weight (see Andreasch et al. (2009) for a comparison of survey data and administrative

data on investments in selfemployment businesses). Given the fact that a breakdown of

deposits compiled in macrodata by individual households is not possible, the attempt was

made to find reasons for the discrepancies in the total volume by the analysis of data by

individual banking sectors and asset ranges. This breakdown is available in both sets of

data sources. In addition, the macrodata broken down by banking sectors are further

disaggregated in different ranges of level of deposits, including the number of accounts

allowing the estimation of the average amount for each range of deposit.

With some exceptions, the structural pattern in other countries seems to broadly reflect

what is found in Austria. Hence – together with the ex-ante harmonisation of the HFCS –

we are convinced that the remaining results in this study are a reasonable indication for

other countries as well. In the following, we are able to extend the literature by making use

of the detailed administrative records with respect to savings accounts.

4.2. Comparison of Savings Deposits

4.2.1. Historical Background and Imputations

In the Austrian financial landscape, savings accounts for a very long time enjoyed a special

position, as depositors were able to hold numbered accounts and thus remain anonymous.

Opening anonymous accounts has been prohibited by law since 2000; and since then
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to less than 25 observations (see ECB (2013)).
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Fig. 1. Proportion of financial asset categories as share of total financial assets
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customers have been required to provide identification when opening an account. In

theory, it is still possible to hold anonymous accounts even today, as the requirement

imposed on banks is to identify accounts only if there are withdrawals or payments into the

account. Additionally, the identification of existing savings accounts is reported to the

Austrian Federal Ministry of the Interior only for withdrawals from deposit accounts with

an amount of above e15,000. The historical development of identification requirements

for savings accounts and the tradition of keeping information about household wealth,

especially savings, confidential – households consider this information personal and

sensitive – explains households’ reluctance to provide information on the volume of

holdings in savings accounts in the survey.

Based on the flags which describe the origin of every observation and used for the variable

for deposits on savings accounts (HD1210), Table 2 shows that (only) about 56% of

respondent households provided the exact amount of holdings in savings accounts.

Approximately four percent of households could not (“don’t know”) and about ten percent

did not want to (“no answer”) provide data. An additional 16% of households provided range

estimates, as they were unable to indicate specific amounts. This shows that in a voluntary

survey like the HFCS, not only unit nonresponse (refusal to participate) but also item

nonresponse (refusal to answer particular questions) represents a difficulty, especially when

questions cover such sensitive issues. As the (partial) lack of answers cannot be considered

purely random, the exclusion of these households (commonly referred to as “listwise

deletion” or “complete case analysis” in the literature) results in a distortion of the estimators.

Thus, in line with the procedures applied in the recent literature, the missing information in

the HFCS was imputed using Bayesian-based multiple imputation (see Albacete et al. 2012

for an in-depth explanation of the imputation procedure applied). The estimations in this

study take the multiple-imputation structure and survey design into account.

4.2.2. Comparison of Number of Accounts

The banking statistics documented roughly 23.5 million savings accounts as of the end of

2010, and according to information provided by Statistics Austria, some 8.4 million

persons (3.7 million households according to the HFCS estimate) live in Austria. Hence,

many persons have several savings accounts, but the amounts held in these accounts are

Table 2. Share of imputed observations

Number Share

Not applicable (no value due to use of filter) 295 12.4%
Value collected, complete observation 1,321 55.5%
Edited, value collected was incorrect 2 0.1%
Imputed, originally – Don’t know 83 3.5%
Imputed, originally – No answer 244 10.3%
Imputed, originally not collected due to higher order missing 38 1.6%
Imputed, originally collected from a range or from brackets 381 16.0%
Imputed, collected value deleted or value not collected due

to CAPI error
16 0.7%

Total 2,380 100%

Source: HFCS Austria 2010, OeNB.
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fairly small (see Table 3: roughly 81% of accounts contain deposits of less than e10,000).

The reasons for having more than one savings account can be summed up as follows:

- Savings plans with building societies are separate savings accounts subject to special

tax treatment. Therefore, many persons (Austrian citizens) have at least two savings

accounts, one being a savings plan with a building society and the other a standard

savings account. Customers typically attribute their building society savings plan to

their house bank even though legally speaking, the deposits are held with another

bank (a building society).

- Furthermore, security deposits for rental apartments are frequently kept on a

separate savings account.

- As account maintenance charges are low (some Austrian banks do not charge any

maintenance fees for accounts), people often have several savings accounts so that

they can react quickly to interest rate differentials.

- Separate savings accounts (and partly also savings plans with building societies) are

also kept for children.

- In addition, some account holders may have in fact forgotten they have accounts

with very small holdings, so that the banking statistics may overrepresent actively

held savings accounts. These forgotten accounts are by law kept alive for 30 years

upon which they expire if no bank transfer (apart from interest payment) occurs in

this period. Especially in the lowest deposit categories, the number of accounts may

be distorted upward in the banking statistics in terms of active accounts.

Table 3 shows the distribution of the number of savings accounts by deposit holdings. The

number of savings accounts is not explicitly asked for in the HFCS. However, the number

of customer relationships households in Austria have with different banks can be

estimated. The result of this calculation on the basis of HFCS data is displayed in the first

column of Table 3, which indicates the number of customer relationships broken down by

deposit ranges and the sum total of about 4.2 million of these relationships, which

compares with about 23.5 million accounts in the financial accounts. Moreover, the table

shows that the aggregation of potentially many accounts results in a higher percentage of

Table 3. Number of customer relationships with a bank/savings accounts

HFCS Banking statistics

Total Share Total Share

All accounts 4,205,802 100.0% 23,463,618 100.0%
Up to e10,000 2,653,396 63.1% 19,058,885 81.2%
e10,000 to e20,000 637,071 15.1% 3,207,943 13.7%
e20,001 to e50,000 533,765 12.7% 798,045 3.4%
e50,001 to e100,000 212,675 5.1% 271,481 1.2%
e100,001 to e500,000 166,324 4.0% 119,911 0.5%
e500,001 to e1,000,000 2,570 0.1% 5,019 0.0%
e1,000,001 to e3,000,000 .1 . 1,963 0.0%
Over e3,000,000 . . 371 0.0%

Source: HFCS Austria 2010, OeNB; OeNB banking statistics.
1 All cells marked with “.” have no observation.
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customer relationships with higher deposits in the HFCS than in the banking statistics:

some 81% of all accounts belong to the lowest category (holdings of up to e10,000) in the

banking statistics, whereas only about 63% of the accounts captured by the HFCS have

holdings in this range. This difference is then spread among the next highest categories.

As the individual accounts in the banking statistics cannot be assigned to individual

households, it cannot be determined whether the aggregation of accounts within a

household explains the totality of the discrepancy.

The HFCS does not capture accounts with holdings above e1 million. Oversampling

of wealthy households could improve the coverage of savings deposits in the HFCS.

The probability of a household having savings deposits of over e1 million is highly

unlikely, as only a total of about 0.03% of savings accounts are classified in the top three

categories. Only about 0.0099% of savings accounts are classified in the top two categories

in the banking statistics. Conversely, the HFCS covered a sufficient number of households

with savings deposits of up to e500,000, and few households in the range in between.

4.2.3. Savings Deposits Aggregate

The total volume of savings deposits of domestic nonbanks in Austria is about e156 billion.

The overwhelming majority (i.e., roughly e150 billion or 96%) of this total can be attributed

to households in the financial accounts. The remaining part is classified as “others”. However,

the total of the household sector as derived from the banking statistics cannot be broken

down further into individual ranges and into banking sectors for the household sector.

Therefore, the value of about e156 billion for total domestic nonbanks is used for the analysis,

even though this leads to an overestimation on the side of the administrative data.

A detailed breakdown of the differences between HFCS and banking statistics data are

shown in Table 4. In the first row, total savings deposits in all banking sectors are shown in

the HFCS (panel 1) and in the banking statistics (panel 2). The third panel shows the HFCS

to banking statistics ratio of each value. The HFCS results in the following tables are based

on the information provided on savings deposits; this data is attributed to banking sectors

on the basis of the bank at which a household holds the highest amount of deposits. The

appendix contains equivalent tables based on national deposit variables.

The HFCS does not contain information about the two highest deposit categories.

Consequently, assets in this part of the distribution are underestimated. The volume of

savings deposits is also underestimated in the HFCS in the lower categories. For instance,

in the savings deposit category e100,000 to e500,000, HFCS coverage comes to nearly

87% of the total aggregate, but to only 19% of total of savings deposits up to e10,000.

This underestimation is attributable above all to the aggregation of savings accounts at the

household level in the HFCS rather than the account level (banking statistics). This pattern

is similar across all banking sectors. The higher estimate for the aggregate value (HFCS)

in the middle savings deposit categories in the joint stock banking sector is also a

consequence of the difference between unit of collection at the household and at

the account level. The banking statistics data show a relatively larger number of

deposit accounts among the lower deposit categories. These banking statistics data are not

suited to showing the distribution of savings by households in Austria, only by

accounts. In addition to what is already documented in the literature, we see in particular

coverage rates in the different deposit categories and in the different banking sectors.
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Table 5 additionally provides an analysis of the shares of individual banking sectors (left

part) and deposit categories (right part) in total savings deposits.

The allocation of deposit holdings to the individual banking sectors is broadly the same

in the HFCS and in the financial accounts. For instance, the smaller banking sectors

(the Volksbank credit cooperatives and the mortgage banks) account for deposit shares of

7% and 3% according to HFCS data. The comparable banking statistics values are 9% and

4%, respectively. Both data sources also show the three banking sectors holding

the higher market shares of deposits. Only joint stock banks are shown to have a lower

share and Raiffeisen banks a somewhat higher share in total deposits in the banking statistics.

According to the banking statistics more than two-thirds (roughly 70% in total) of all

savings deposits are in savings accounts with holdings of less than e50,000 (see the right

half of Table 5). The HFCS column features larger percentages of deposit holdings in

higher categories due to the aggregation at the household level. Thus more than two-thirds

of total savings deposits (71%) are held in the categories spanning the range from e20,001

to e500,000. This is yet another area in which the household-level data from the survey

complement the banking statistics data, as the preferred unit of evaluation is usually the

household, not the individual account. Although deposits in the range from e500,001 to

e1.000,000 account for 2% of the total volume in both data sources, the two top categories

(four percent of the total volume in the banking statistics) are not covered in the HFCS.

This means in particular that nearly seven percent of the total undercoverage in the HFCS

can be attributed to the top two categories.

4.2.4. Accounts with MFIs/Customer Relationships with Banks in the HFCS

In order to explore further similarities and differences between the two data sources

beyond the aggregates and aggregate shares, we analyse the allocation of customer

relationships with banks in the HFCS and of the numbers of accounts in the banking

statistics (see Table 6). The first row in the HFCS panel (“total”) differs marginally from

the results in Table 3, as the percentages cover only the customer relationship with the

bank with the highest deposit holdings.

The distribution of customer relationships (HFCS) in the individual cells is very similar

to the distribution in banking statistics. For example, 32.9% of accounts are held in the

joint stock banking sector according to banking statistics, and 28.9% of households have

accounts in the joint stock banking sector according to HFCS data. The gap in the

Raiffeisen credit cooperative sector is even smaller at 30.5% (banking statistics) versus

30.2% (HFCS). A broad view of all categories in the individual sectors reveals that

the middle categories in all sectors are somewhat overestimated, whereas the categories at

the upper and lower ends are underestimated in the survey. We should point out that less

than 1% of accounts as shown by the banking statistics are in the category from e100,001

to e500,000 and that the HFCS estimates for this category are generally also of the same

order (with the exception of the category joint stock banks). Hence, the HFCS appears to

cover the customer relationship patterns quite well up to a level of about e500,000.

According to the banking statistics, all categories above e500,000 contain a maximum

of 0.01% of accounts across all banking sectors. The HFCS contains nearly no

observations above the level of e500,000. These figures once again show how unlikely it is

that (enough) households with savings deposit holdings in excess of e500,000 will be
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obtained. Appropriate oversampling of more affluent households in the survey might

increase the chance of capturing the right tail of the distribution.

4.2.5. Average Deposit Holdings in Banking Statistics/in the HFCS

As the banking statistics data show both the volume of deposits and the number of accounts, the

average holdings per accounts can be calculated. The arithmetic mean of deposits in

households including the standard error of the estimator can also be estimated on the basis of

the survey data. Table 7 shows the average deposit holdings broken down by deposit ranges and

banking sectors for both data sources. For the HFCS data, the calculation of the standard error

of the respective mean in a cell is based on 1,000 resampling weights contained in the HFCS

data. A rescaled bootstrap procedure is the replication method used to construct the replicate

weights. For details on the construction and use of these weights, see Albacete et al. (2012).

Although it would be desirable to compare the whole distribution (or at least also the median),

such a comparison cannot be made, as the banking statistics lack the relevant information.

Table 7 highlights two important aspects, namely (i) the total average of deposit

holdings (Column 2) is higher according to the HFCS data than according to the banking

statistics, and (ii) amounts above e500,000 are not covered, a confirmation of the known

finding. The higher means are the result of the aggregation of individual accounts to

household deposit holdings in the HFCS. The table shows clearly that the average amount

of deposits in an account does not correspond to the average of Austrian households’

savings deposit holdings, as households may have several accounts.

In the individual categories covered by the HFCS, the mean value of both data sources is

similar. As a case in point, the average holdings of deposits in the range from e100,001 to

e500,000 come to about e168,000 according to HFCS data (the standard error is roughly

e19,000), thus matching the banking statistics average of about e168,000. Only in the first

category – deposits up to e10,000 (and to a much lesser extent in the second category as

well) – are the averages according to the banking statistics data far lower than the

corresponding HFCS values. Savings accounts with very low deposits are responsible for

this discrepancy. No large differences across banking sectors are observed, as the data

from both sources confirm.

5. Simulation of the Impact on some Key Indicators in the HFCS

Finally, a look at the theoretical impact of coverage of the top deposit categories in the

HFCS on commonly used statistics is able to provide some insights. The following simple

simulation makes it possible to quantitatively assess how some indicators would change

if the HFCS sample contained households with savings in the two top categories (savings

of over e1 million). The HFCS already includes observations – albeit very few – in the

category with savings of e500,001 to e1,000,000. The procedure simulates a few

households with average holdings in the top two categories as available from the banking

statistics. These households are assigned a weight, and the distributional indicators are

then calculated with and without these households. The details of each step are laid out in

the following paragraphs.

The household simulation is performed on the basis of the following assumptions:

Two households with average holdings of e6,320,000 (average in the highest deposit range
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in the banking statistics) and four households with average savings deposits of e1,530,000

(average in the second-highest deposit range in the banking statistics) are imputed. While the

assumption of the number of households is ad hoc, it is justified for two reasons: first,

the assumption reflects the higher number of accounts in the second-highest deposit range in the

banking statistics, and second, it allows for the assignment of different weights to the households.

Assuming that every household in Austria has the same number of savings accounts,

there are roughly 330 households with accounts in the second-highest category and only

about 60 households with accounts in the highest category. Hence, the nonresponse-

adjusted weights are assumed to be very low3; that is, for the households in the top deposit

range, the weight is 175, or approximately the smallest nonresponse-adjusted weight in the

original sample. For two households in the second-highest deposit range the nonresponse-

adjusted weight is set to 300, or roughly the smallest percentile of these weights in the

original sample. For the remaining two households in the second-highest category, this

weight is set to 750, or roughly the fifth percentile in the original sample. To influence the

preparation of the survey as little as possible, the HFCS poststratification process in

Austria was repeated with these newly simulated households. This last step in defining

the final household weights is based on the nonresponse-adjusted weights as well as

information on household size and the geographical distribution of households in Austria.

For the simulated households, the information on household size and geographical

location required for the poststratification process are randomized (uniform distribution).

This means that the simulated households are assigned a random size of between one and

six members (this corresponds to the minimum and maximum numbers of adult members

in the households represented in the HFCS) and are assigned randomly to an Austrian

province. In the poststratification procedure, the weights of the new total of 2,386

households are adapted in line with the distribution of household size and geographical

location in Austria as taken from the Statistics Austria microcensus (see the HFCS

documentation for Austria in Albacete et al. (2012)). After poststratification, the weights

of the simulated households average 423 (408 prior to poststratification), whereas all other

households have an average weight of around 1,600. The range of the weights changes

from 150–750 to 159.6–721.3, that is, the range becomes smaller.

This simulation procedure reflects the relatively low number of accounts in the two top

categories in the banking statistics. However, assuming an even distribution of the

accounts, the six simulated households with an average weight of over 400 tend to

overrepresent the roughly 400 households cited above. Thus it must be assumed that the

simulation results represent the upper limit of the possible change.

Some of the most widely used indicators of the new sample can be compared with the

estimators of the sample without the imputed households (original sample). The results are

shown in Table 8.

Unsurprisingly, aggregate total savings deposits in Austria and average savings deposits

are higher in the simulated sample. While the increase by 9% is economically significant,

it cannot fully explain the entire underrepresentation (see Table 1 in Section 4). However,

3 Increasing these weights does not necessarily exert a clearly defined effect on the estimators, as the
nonresponse-adjusted weights are poststratified.
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the quality of the simulation is also reflected by the absolute rise by some e5 billion,

so that the aggregate in the top two categories of the banking statistics is fully covered.

The impact on robust statistics such as the median or the percentile ratios is very small: the

median of savings deposit amounts rises by just 0.1%, for example. The impact on the

ratios of the percentiles is also negligible in all parts of the distribution. The minimal

reduction of P90/P10 and P90/P50 can be explained by the fact that the 90th percentiles

increase less than the 10th and 50th percentiles on account of the simulation. Conversely,

nonrobust statistics such as the Gini coefficient or the arithmetic mean of savings deposits

change more strongly. Factoring in the simulated households causes the Gini coefficient to

go up by some 2.5 points (about four percent of the rise in inequality as measured by the

Gini coefficient). The reason for this fairly strong effect is the widening of the wealth

bandwidth in deposits. In the original calculation, the Gini coefficient is calculated for a

bandwidth of e0 to less than e1 million. The inclusion of the simulated households with

holdings over e6 million has an effect on the Gini coefficient, even though these

households have a low weight.

Overall, the simulation exercise shows that the HFCS is very well suited to capturing

most of the distribution (see percentiles) even without generating information on the upper

ranges of savings deposits. With respect to the other indicators, oversampling of the

wealthy households – and thus achievement of a higher probability of capturing very high

savings deposits – would be desirable, but the current indicators still deliver the best

estimators for these statistics. Capturing the households with the holdings in the highest

savings deposit ranges would, if anything, increase (but not decrease) the estimators for

the aggregate, for the arithmetic mean, and for the inequality of savings deposits as

measured by the Gini coefficient.

6. Concluding Remarks

This article examines the similarities and differences between data derived from surveys

and from administrative sources, focusing on savings deposits as the main category of

households’ financial wealth in Austria. To this end, we compare the aggregate values, in

line with the approach commonly described in the literature, and additionally compare a

detailed breakdown of deposits by banking sectors and by deposit ranges, which has not

Table 8. Simulation results

HFCS

Original
sample

Simulated
sample

Change from
original sample (%)

Mean (e) 18,333 19,974 8.9%
Median (e) 6,985 6,994 0.1%
Gini 0.681 0.706 3.7%
P90/P10 64.68 64.57 20.2%
P90/P50 6.23 6.23 20.1%
P10/P50 0.10 0.10 0.0%
Aggregate (e million) 60,287 65,731 9.0%

Source: HFCS Austria 2010, OeNB.
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been documented in the literature so far. Given the ex-ante harmonisation of the HFCS and

the relatively similar structure of the relative importance of the components of financial

wealth (see Figure 1), results are expected to be similar in other eurozone countries.

The main results of this analysis and what we can learn from them may be summarised as

follows: the HFCS is well suited to identifying the (basic) deposit patterns, but estimates of

total wealth are distorted downward, as has already been previously shown in the literature

(and is discussed in Section 2). The underrepresentation of deposits across all banking

sectors and deposit ranges and the lack of information on the highest deposit ranges are the

reasons for this underestimation. Oversampling in the HFCS may contribute to closing this

information gap at the tail of the distribution in the future (although due to the extremely

low number of accounts in the highest ranges it is by no means guaranteed). The aggregate

measures derived from administrative sources should provide a reliable estimator.

In addition, we consider the effects of the different units of aggregating savings deposits

in the banking statistics (accounts based) and in the HFCS (household based). The banking

statistics do not allow individual accounts to be allocated to households. The aggregation

of accounts to the level of households, which is done the HFCS, results in a shift across

deposit ranges. This shift indicates that even the data reported by the banks in the banking

statistic cannot be used to analyse individual households, so that the HFCS provides highly

useful additional information to the aggregates. Furthermore, the distribution across

banking sectors and asset ranges of deposits is relatively similar in both data sources.

Consequently, the two data sources are not meant to replace each other; much rather, they

serve as complementary sources for analysing households in an economy where reliable

distributional estimates can be calculated from the HFCS and aggregate values from the

financial accounts. A final simulation of the top savings ranges indicates that the

estimators (such as the Gini coefficient or the arithmetic mean) from the HFCS represent at

least a lower bound for the true parameters, and that some indicators, in particular robust

statistics such as the median and percentiles, are affected to a fairly low extent. The survey

data provide a wealth of information that complement the administrative data and that are

needed in particular to analyse certain groups of the respective target population.

Many other areas of the household accounts were not examined in this study, which

focuses on financial assets and in particular savings deposits. Future research could be

devoted to other components of financial wealth, such as equity wealth, or the debt side of

the household balance sheet. A more in-depth comparison of data on real assets would also

be desirable. However, very little useful administrative data on real assets is available.

Furthermore, the investigation of measurement error that could not be achieved with the

administrative records at hand should yield interesting insights.

Appendix A: Explanatory Note on Data and Definition

The data available allowed for a comparison not only of the aggregate values, but also

of transferable deposits (F.22) and savings deposits (as a subcomponent of other

deposits, F.29) in a particularly detailed way. Exploiting this detailed information from

administrative sources provides the opportunity to extend the results in the literature,

investigating financial assets, not only total values but also the distribution over asset

ranges and banking sectors.

Andreasch and Lindner: Comparing HFCS and Financial Accounts 21

Unauthenticated
Download Date | 3/14/16 12:58 PM



The HFCS in Austria includes one question on sight accounts and two sets of questions on

savings accounts. First, households are asked to specify the total amount of their savings

deposits, broken down by (i) savings other than savings with building societies and (ii)

savings with building societies (Note that life insurance funds must be subtracted from

variable HD1210 of the version of the HFCS in Austria published by the ECB (this variable

covers savings accounts) to ensure comparability with the values in the financial accounts).

Building societies are banking entities that collect savings, usually from individuals, and grant

preferential mortgage loans. Second, households are asked to indicate which banks they use

based on a predefined list of the largest 21 banks and an additional verbatim recording for

other institutions (up to five banks could be reported) and to specify how much money they

hold in savings accounts and custody accounts at these banks, starting with the bank at which

they hold the highest amount. The data from the first survey method are contained in the

dataset published by the ECB as current account and savings account (including savings in

building societies) information and therefore are used as the basis of comparison in this study.

However, the ECB dataset does not contain any information about the allocation of

households’ savings to the individual sectors of the Austrian banking system, which is only

available internally. The results of the comparison based on the second set of questions

(amounts held at different banks) are in the Appendix B to this study as a sensitivity analysis

and in general confirm the findings of the article.

As explained above, in the HFCS households were asked to indicate which banks they

use rather than specifying the amounts held in individual accounts. If a household has

several accounts at one and the same bank, the dataset records a customer relationship with

a single bank. If a household has accounts at different banks, the dataset reflects customer

relationships with several banks. The overwhelming majority of Austrian households use

only a single bank – more than 91% of respondents in the HFCS – and only two percent of

households have accounts with more than two different banks. However, households can

be expected to have more than a single account with their so-called house bank. The first

bank recorded, that is, the one at which the household holds the highest volume of funds, is

also the one to which households are classified for the results in the article.

The deposit aggregates may be subdivided into sight accounts and savings deposits by

bank sectors on the basis of the administrative account data that Austrian banks report to

the OeNB. In addition, the total in savings accounts (only totals of domestic nonbanks,

which include the self employed and sole proprietorships) may be further subdivided by

deposit ranges. The data of the following bank sectors may be analysed separately:

. Joint stock banks

. Savings banks

. Raiffeisen credit cooperatives

. Volksbank credit cooperatives

. State mortgage banks

. Other

Raiffeisen and Volksbank are two types of credit cooperatives in the form of multistaged

banks, which each form one separate banking sector in the banking statistics. Building

societies are classified under the respective sector of the households’ (house) bank, as

customers associate their building society savings plans with their (house) bank. The
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category “other” is differently defined for the results from the HFCS and the banking

statistics. In the HFCS, the households could choose to have a customer relationship with a

bank from a predefined list of the 21 largest banks in Austria. In case the household wanted

to state a different bank, a verbatim recording was available. If a respondent left the

verbatim recording blank, the relationship was classified in the “other” category, since

these responses could not be attributed to a banking sector ex post. In the banking

statistics, “other” refers to special-purpose banks and banks as defined in Article 9 of the

Austrian Banking Act (credit institutions from EU Member States). If a household has

provided information about one of these banks in the verbatim text field, it was also

classified to the category “other”. Given the different definitions, no comparisons of this

category were made; it is provided simply for the sake of completeness. Deposits can be

allocated to the following ranges based on the administrative account data (the HFCS

permits any type of classification):

- Up to e10,000

- e10,000 to e20,000

- e20,000 to e50,000

- e50,000 to e100,000

- e100,000 to e500,000

- e500,000 to e1,000,000

- e1,000,000 to e3,000,000

- Over e3 million

With data available in the banking statistics on both the number of accounts and the total

volume of deposits, it is possible to calculate the average deposit holdings per account in

a given deposit range for each and every bank sector separately. This average can be

compared with the HFCS results for individual households. Due to the differences in the

unit (account vs. household), however, one is expecting differences in the overall statistics

since (potentially) several accounts are held by a single household (as explained above).

Given the structure of the HFCS, where all accounts of a household are totalled, it might be

expected that average deposits tend to be higher.

Appendix B: Additional Results

This appendix features three tables that repeat the calculations in Tables 4, 6, and 7 on the

basis of the second way the information on the amounts (savings deposits) held at different

banks was surveyed in the HFCS (see Appendix A). The use of data from this alternative

survey method in the HFCS does not change the basic findings of the comparison of the

HFCS and the financial accounts data. The appendix simply provides a sensitivity analysis

for the classification of a household to a bank and for the different coverage methods of

savings deposits.
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Respondent-Driven Sampling – Testing Assumptions:
Sampling with Replacement

Vladimir D. Barash1, Christopher J. Cameron2, Michael W. Spiller3,

and Douglas D. Heckathorn4

Classical Respondent-Driven Sampling (RDS) estimators are based on a Markov Process
model in which sampling occurs with replacement. Given that respondents generally cannot
be interviewed more than once, this assumption is counterfactual. We join recent work by Gile
and Handcock in exploring the implications of the sampling-with-replacement assumption
for bias of RDS estimators. We differ from previous studies in examining a wider range of
sampling fractions and in using not only simulations but also formal proofs. One key finding
is that RDS estimates are surprisingly stable even in the presence of substantial sampling
fractions. Our analyses show that the sampling-with-replacement assumption is a minor
contributor to bias for sampling fractions under 40%, and bias is negligible for the 20% or
smaller sampling fractions typical of field applications of RDS.

Key words: Respondent-driven sampling; hidden populations; sampling with replacement.

1. Introduction

Respondent-Driven Sampling (RDS) has become the method of choice for studies of hidden

and hard-to-reach populations, yet important questions regarding the method remain

unresolved. RDS is a form of network sampling paired with an estimation strategy, where

individuals are treated as network nodes and their social relationships are treated as edges.

Drawing an RDS sample involves several steps. First, when sampling from a hidden

population, one begins with a convenience sample of initial respondents who serve as “seeds”.

Seeds can be identified by key informants who are drawn from organizations where the target

population congregates, or they may self-identify by volunteering for the study. Second,

initial respondents each recruit several peers, who compose the sample’s first “wave”. Third,

the first-wave recruits each recruit several peers, who form the sample’s second wave.

Thus the first-wave recruits become the recruiters of the second wave. Fourth, the sample

expands in this recursive manner, wave by wave, with the prior wave’s recruits becoming

the recruiters of the subsequent wave, until the desired sample size has been reached.
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One essential feature of the sampling method includes keeping track of who has

recruited whom. This is important because affiliation patterns (e.g., members of a

racial/ethnic group tending to recruit members of the same racial/ethnic group) affect the

composition of the sample. A second essential feature of the sampling method is asking

each respondent how many members of the target population they know as acquaintances,

friends, or closer than friends. The people in the target population known to an individual

node defines the node’s network neighborhood, and the number of nodes in the

neighborhood defines the node’s degree. Nodes of larger degree tend to be oversampled

because they have a larger number of edges that serve as peer-recruitment paths.

The RDS estimators employ information about a respondent’s degree and their

affiliation patterns to correct for sources of bias inherent in chain-referral sampling.

Specifically, in the computation of the RDS estimator, the estimated size of each of

the population’s subgroups is inflated or deflated based on whether the subgroup

was judged to be under- or oversampled. In sum, the RDS estimator functions some

what like a corrective lens that compensates for network-based sources of bias in the

sampling process.

The advantage of RDS is that it provides a means for drawing probability samples of

populations which cannot be effectively sampled using traditional population survey

methods because they lack a sampling frame, and because these populations have social

networks that are hard for outsiders to penetrate due to stigma or privacy concerns.

RDS studies have focused both on populations of relevance to public health, such as

injection drug users (IDUs), men who have sex with men (MSM), and commercial sex

workers (CSW); on populations of relevance to arts and culture such as jazz musicians

(Heckathorn and Jeffri 2001) and visual artists (Jeffri et al. 2011); on hard-to-reach or rare

general populations such as low-wage workers (Bernhardt et al. 2012) and Canadian urban

aboriginals (Smylie et al. 2011); and on criminological populations such as underage sex

trafficking victims (Curtis et al. 2008). A 2009 survey (Malekinejad et al. 2008) analyzed

the results of 128 studies drawn from more than 28 countries. RDS has been employed in

studies funded by agencies including, the Centers for Disease Control and Prevention

(CDC), CDC/Global AIDS, Gates India, the United States Agency for International

Development (USAID), the National Science Foundation (NSF), and National Institutes of

Health (NIH) institutes including the National Institute on Drug Abuse (NIDA), the

National Institute of Mental Health (NIMH), the National Institute on Child Health and

Human Development (NICHD) and the National Institute of Nursing Research (NINR).

The popularity of RDS derives in large part from a proof (Salganik and Heckathorn

2004) showing that when the assumptions of the method are satisfied, population estimates

are asymptotically unbiased. This means that bias is only on the order of 1/n, where n is

the sample size, so bias is trivial in samples of significant size. A subsequent paper

(Heckathorn 2007) reduced by one the number of assumptions required by the method,

so the proof of lack of bias depends on four conditions: (1) the network connecting the

population is dense enough to form a single component; (2) recruiters know one another,

as acquaintances, friends, or those closer than friends, so their relationships are reciprocal;

(3) respondents recruit as though they are selecting randomly from their neighborhoods;

and (4) sampling occurs with replacement. In this article, unless otherwise specified, we

use the Heckathorn 2007 estimator because it requires fewer assumptions than other
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estimators, and it controls for a form of bias ignored by other RDS estimators, differential

recruitment by degree. (For a comparison of estimators, see Heckathorn 2011.)

The first three assumptions can be approximated given a suitable choice of population to

study and of research design. Given its reliance on network-based recruitment, RDS is a

method suited only for studying populations with relatively dense networks. Generally,

this involves populations united by a contact pattern, that is, network connections created

by virtue of membership in the population. For example, drug users form ties when

purchasing and using drugs and jazz musicians form ties when performing in an ensemble.

When membership in a population does not create contact patterns, as is the case for tax

evaders, the population is not suitable for study using RDS or any other network-based

method. Hence, assumption one determines the conditions under which RDS is a suitable

sampling methodology.

The second assumption, that respondents know one another well enough for their

relationships to be reciprocal, can be satisfied by appropriate research design. This involves

making recruitment rights both scarce and valuable. Generally this is done through a

combination of rewards for peer recruitment and quotas to limit the number of peers who

can be recruited. Quotas are implemented by giving each respondent, that is, each potential

recruiter, a limited number of recruitment coupons. Each coupon has a unique serial

number which allows the recruiter to whom the coupon was given to be linked to the recruit

who brings it into the study site. When recruitment rights are scarce and valuable, few

respondents waste them on strangers who may fail to take advantage of the recruitment

opportunity. Consequently, recruitment by strangers is generally infrequent––less than a

few percent (Iguchi et al. 2009)––and these recruitments can be identified by asking

respondents about their relationship to their recruiter, and then deleting these cases to

produce a data set consisting exclusively of respondents who know one another, as

acquaintances, friends, or closer than friends. The rationale for the reciprocity assumption

is that for any individual, those who consider him or her as acquaintances or friends (i.e.,

the individual’s “in-degree”), also tend to be viewed by the individual as an acquaintance

or friend (i.e., the individual’s “out-degree”). Because in-degree and out-degree are

equivalent in networks where all ties are reciprocal, we refer merely to “degree”.

The third assumption, that respondents recruit randomly from their neighborhoods, can

be best approximated when opportunities to be interviewed are easily and safely available to

all members of the neighborhood because respondents have no incentive to selectively

favor or exclude any particular neighbors (Heckathorn 2007, 163–164). Here it is important

to note that individuals are not assumed to recruit randomly from the target population, for

this target population is generally far larger than any node’s neighborhood. Furthermore,

the composition of nodes’ neighborhoods varies greatly, because those similar in race/

ethnicity, education, income, religion, and other factors tend to affiliate, so neighborhoods

are often relatively homogeneous, a factor termed homophily. Hence, when a node recruits

randomly from its neighborhood, this does not mean that it is sampling randomly from the

target population. Support for this assumption of random recruitment from neighborhoods

has been found in several studies (e.g., Heckathorn et al. 2002; Wang et al. 2005); however,

the conditions under which it holds or is violated warrant further study.

The final assumption, that sampling occurs with replacement, has a unique status

because it is invariably counterfactual irrespective of choice of population or research
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design; respondents can only be interviewed once, and hence replacement is excluded.

Sampling with replacement is not feasible in practice because RDS survey respondents are

generally compensated for their participation and allowing a single individual to

participate multiple times could lead to strategic recruiting behavior by participants.

Methods have been developed to reduce subject duplication through a database that

records scars, tattoos, and biomarkers (Heckathorn et al. 2001). These methods are

necessary in RDS sampling because most RDS studies require subject anonymity due to

the sensitive nature of questions in these studies: some RDS studies have asked about

sexual and drug use history (Iguchi et al. 2009), while others have asked employees to

report their employers’ violations of workplace laws (Bernard et al. 2010). Even if

sampling with replacement did not create perverse recruitment incentives, it would be

inefficient and costly to interview a person each time they were recruited. Compared to a

hypothetical implementation of with-replacement RDS, without-replacement RDS yields

data from a greater number of unique individuals.

If respondent-driven sampling were conducted with replacement and in accordance

with the other assumptions, the RDS process would be a simple random walk on the

network conforming to a Markov Process. Previous studies (Volz and Heckathorn 2008)

have assumed that, for very small sampling fractions, the sampling-with-replacement

assumption is valid; in our analysis, we put these statements to the test and, more broadly,

explore the potential for bias resulting from this counterfactual assumption.

The general expectation in statistical analyses is that a sampling-with-replacement

assumption, which is equivalent to the assumption of an infinite population size (Gile

2011, 32), becomes more problematic as the sampling fraction increases. This may suggest

that the replacement assumption does not significantly bias RDS studies with small

sampling fractions. For example, in the CDC’s National HIV Behavioral Surveillance

Injection Drug User (NHBS-IDU) study, the sampling fraction for the 23 study sites had a

median of 2.3% and a range of 0.6% to 8% (Lansky et al. 2009). Similarly, in the NEA-

funded study of jazz musicians, the sampling fractions were 0.8% and 1.6% in New York

and San Francisco, respectively (Heckathorn and Jeffri 2001). However, given the unique

nature of RDS sampling, especially the interdependence of observations owing to the

tendency of respondents to recruit others like themselves, there can be no guarantee that

this rule of thumb is valid.

Furthermore, there are inevitably studies in which the research design calls for a large

sample from a small population. In such cases, the sampling fraction is large. The largest

sampling fraction with which this research team has been directly involved was a study

of IDUs in a small Connecticut town with a population of 59,000 of whom slightly

more than 1,000 were injectors. The sampling fraction was estimated at a rather

substantial 37% via capture-recapture using a combination of RDS and police statistics

(Heckathorn et al. 2002).

In this article, we extend work by Gile (2011) and Gile and Handcock (2010) in

analyzing bias introduced by violation of the sampling-with-replacement assumption,

as well as overall bias of RDS estimates. We employ formal proofs complemented with

simulation to explore the relationship between bias and sampling fraction, including

factors that affect this relationship, such as network density, homophily and the degree

distribution in the population. Our results suggest that under certain circumstances,
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RDS estimates are surprisingly stable even in the presence of high (i.e., 50% or greater)

sampling fractions.

Previous work, such as the Successive Sampling Estimator (Gile 2011), has

explored solutions to reducing the bias of the Volz-Heckathorn (VH) estimator (Volz

and Heckathorn 2008) for high sampling fractions. Such work is a useful exploration

of the boundary conditions for RDS studies; however, a major limitation is that it

focuses exclusively on sampling fractions of 50% to 95%, and does not explore the

magnitude of bias in low and moderate sampling fractions. Sampling fractions

approaching 100% are more akin to census-level studies, where the population

proportions can be calculated directly, than to random samples requiring population

estimators. In the limit of 100% sampling fraction (census), a simple sample

proportion gives the correct prevalence value without needing an estimator. Therefore,

while the Successive Sampling Estimator performs well at fractions over 50%, it is

important to note that for some of the range of sampling fractions the Gile 2011 study

covers, census-level measures, such as simple sample proportion, are often more

appropriate for parameter estimation than RDS estimators such as VH or successive

sampling. A variance-estimation method appropriate for RDS is still required as

simple random sample variance estimates will be much too small. Note that Gile

(2011) compares the Successive Sampling Estimator to the VH estimator. As long as

all groups recruit equally effectively (as is the case in Gile’s simulations and in this

article’s simulation), the VH and Heckathorn (2007) estimators produce identical point

estimates and may be directly compared (Volz and Heckathorn 2008; Heckathorn

2007). In the discussion section of this study below, we address in more detail the

differences between the Successive Sampling Estimator, the Heckathorn (2007)

estimator and the simple sample proportion.

What we explore in this article is a range of sampling fractions not examined in previous

studies, which were limited to a range from 50% to 95% (Gile 2011). Our key finding is

that RDS estimates within the parameter ranges we examine (i.e., sampling fractions

between 5% and 80%) are surprisingly unbiased even in samples with high (i.e., 50% or

greater) sampling fractions. We did not examine sampling fractions in excess of 80%,

because few field studies reach such a high proportion of the population. Gile (2011) has

already examined this upper range and demonstrated that very large sampling fractions

result in significant VH estimator bias. We found that expected bias is less than five

percentage points away from the true population proportion across the ranges of sampling

fraction, homophily, and degree distribution examined in our simulations.

We also find that violation of the sampling-with-replacement assumption is not a major

contributing factor to bias in RDS simulations for sampling fractions under 40%; other

factors, such as relative mean degree of the target group, tend to affect bias more than

sampling without replacement in these conditions. In particular, both the mean and the

95% confidence intervals for sampling with and without replacement are essentially

identical (within 1–2% of each other) for sampling fractions up to 20%.

Finally, we analyze the sampling variability of the RDS method, which we define as

the width of the 95% confidence interval of the sampling distribution over a set of

simulated RDS samples, using the Heckathorn (2007) estimator to calculate sample

prevalence. We find that the sampling variability of RDS decreases with increasing
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sampling fraction for sampling fractions under 40%. In combination, these findings

suggest an optimal range of one to 20% of sampling fractions for RDS studies using the

Heckathorn (2007) estimator.

The rest of this article is organized as follows: We first present a formal model of an

RDS sampling process, with a few additional assumptions for simplicity. We use this

model to derive several results about the extent of bias due to sampling without

replacement in different network structures, for different values of sampling fraction and

(for a two-group system) homophily and relative group size. Next, we confirm our formal

results with simulations, and extend them further by offering simulations that go beyond

the scope of our proofs. Finally, we offer a brief discussion of the analysis with

implications for future RDS studies in the field, and conclude with directions for future

work in this area.

2. Formal Model

For reference, we begin this section with a glossary of terms and notation used throughout

the rest of the article. Notation is presented in Table 1.

Network Terms:

Social Network. The social network is the set of individuals in a population (nodes) and a

set of connections (friendships, acquaintances, etc.) between these individuals (edges).

Node. In a social network, a person corresponds to a particular node in the network.

Edge. Edges connect nodes in a social network and represent the relationships between the

individuals represented by the nodes. Relationships (i.e., friendship) can be undirected,

such that an edge from node A to node B implies an edge from B to A, or directed.

The social networks we consider are assumed to have undirected edges.

Path. Sequence of consecutive edges connecting two nodes in a network. For example, if

we have a network of three individuals A,B,C with edges between A and B and B and C,

then a path exists between A and C.

Neighborhood/Neighbors. For any node ego in a network, the nodes directly connected

to ego via an edge define ego’s neighborhood. Nodes connected by an edge are

considered neighbors.

Degree. For any node ego in a network, ego’s degree is the number of nodes in ego’s

neighborhood.

Degree Distribution. For a collection of nodes in the graph, usually the entire population

or a sample, the degree distribution is a probability distribution P(k) where P(k) is the

fraction of nodes in the collection with degree equal to k. Degree distributions are

necessarily discrete, but it is common to approximate the shape of P(k) with a continuous

probability distribution. Common models of degree distribution include the uniform

distribution, in which every node has the same degree, the power-law degree distribution,

and the Poisson degree distribution.
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Poisson Degree Distribution. A degree distribution where the fraction of nodes with

degree k follows the Poisson probability distribution, that is ðkÞ ¼ l ke 2l

k!
, where l is

equal to the mean node degree.

Power-Law Degree Distribution. A degree distribution where the fraction of nodes with

a degree k follows a Power Law; (k) , k2g, where g is a shape parameter.

Homophily (group-level attribute). The homophily index is the mathematical value

capturing the extent to which individuals in a particular group are connected to nodes within

the group rather than nodes in other groups. A homophily value of zero means the proportion

of ties between members of a group is consistent with the proportion of within-group ties

that would be expected if ties were formed at random. A positive homophily value indicates

the presence of an in-group affiliation bias and a value of 1 indicates that the group is entirely

isolated from other groups––all ties from the group are to other members of the group.

Table 1. Notation

Symbol Meaning

r An individual recruit in an RDS sample, or participant in RDS study
ri The ith recruit in an RDS sample, or participant in RDS study,

in order of recruitment
Rj jth wave of recruiters for an RDS study. If j ¼ 0, this is the set of

“seed nodes” for the RDS study
R The full collection of recruiters and recruits in an RDS sample, ordered

by recruitment
NR The number of recruiters in an RDS study
P The larger population from which the RDS sample is drawn
N The total number of potential recruits in an RDS study
G The graph of potential recruits in an RDS study
d(i) Degree of node i (representing recruit ri) in G
md(A) Mean degree of a set A of nodes (recruits) in G
L The node-level variable of interest in an RDS study, for example

HIV Status
L(r) Value of L for recruit r, for example, “HIV-positive”
S The set of all distinct values of L present in R, for example,

{“HIV-positive”, “HIV-negative”, “unknown”}
sk s is an enumeration of S and k is an index variable

for the elements of s. k [ f1; : : :; jSjg
p(sc, sd) Transition probability between two states of the Markov Process

model of RDS, where individual states correspond to elements of S
p(sk) The proportion of recruits in R with value of L ¼ sk, a.k.a. the sample

proportion of recruits with value L ¼ sk

s The proportion of the population in the sample.
s ¼ jfr: r [ Rgj=N

bsNc Sample size for a particular RDS sample
v Repeated sampling event where participant ri in an RDS study

attempts to recruit participant rj but discovers that rj has already
been recruited

rv Density of repeated sampling events in a particular RDS
study or simulation
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Tree. Named for the characteristic branching shape, a tree is a type of network where any

two nodes are connected by exactly one path (ignoring the directionality of the edges if the

edges are directed).

RDS Terms:

Recall that respondent-driven sampling starts with a set of seed nodes selected by some

nonrandom process. Each seed node selects k random nodes from its neighborhood to

generate a collection of new participants in a process called recruitment. In recruitment,

the nodes selecting new participants are referred to as recruiters and the selected nodes are

referred to as recruits. The seeds constitute sample wave 0 and the collection of nodes

selected by the seeds constitutes sample wave 1. The nodes in wave 1 recruit wave 2 and so

on with each new wave of recruits serving as recruiters for the next wave. Except for the

seeds and the final wave of recruits (who do not recruit in turn), each participant serves as

both a recruiter and as a recruit.

Seed. A member of the initial wave of recruiters in an RDS sample.

Recruit. A member of the second through last wave of recruiters in an RDS sample.

Recruitment Event. RDS is a type of chain-referral sample where individuals already in the

sample attempt to recruit new participants from their own neighborhoods. We call each of

these recruitment attempts a recruitment event. The recruitment event may succeed or fail.

A node in the sample generates a recruitment event each time it tries to recruit a neighbor,

so a pair of nodes may generate duplicate recruitment events when sampling with

replacement. A successful recruitment by a node in sample wave w results in a new

member in sample wave w þ 1. Respondent-driven sampling only captures successful

recruitment events.

Sample Chain. A sequence of edges and nodes that reflects a series of recruitments. Every

recruit in an RDS sample can be traced back through a series of recruiter/recruit

relationships to a seed node. When sampling is without replacement, the chain is unique

and the set of nodes and edges from all the chains that begin from a particular seed define

a directed tree graph with the seed as the root node.

Group. The set of individuals with the same value for a particular categorical variable (L).

Membership in a group does not imply relationships to other members of the same group

and ties between nodes do not imply membership in the same group. The population can

be partitioned into groups based on a variable of interest (L) with the number of

groups equal to the number of unique levels of (L). If the variable of interest were race,

then the groups would correspond to unique race groups. If the variable of interest were

HIV status, then the groups might correspond to “Positive”, “Negative” and “Don’t

Know.” The point of RDS analysis is to produce an estimate of the relative size of each

group in the population.

Recruitment relationship. With the exception of the sample seeds, each individual recruited

into the sample is recruited by someone else already in the sample. Each successful

recruitment event generates a recruitment relationship in the sample between the recruiter
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and the recruit. For a given individual-level categorical attribute (L), the recruitment

relationships in the sample can be labeled by the value of L for the recruiter and the recruit.

Recall that each individual in the population has an attribute corresponding to a value for

categorical variable L so each sample member r [ R can be labeled by L(r). For any

particular categorical variable L, recruitment events in the sample can be labeled by the

tuple (L(recruiter), L(recruit)). When L is a binary variable with levels 0 and 1, then there are

four possible labels for a recruiter ! recruit relationship: (0,0), (0,1), (1,0), (1,1).

Markov Process. A stochastic process whose next state depends only on its

present state. RDS recruitment is a Markov Process because the future state of the

process (future recruits) is dependent only on the current state (current recruits) via

the recruitment mechanism.

Irreducible Markov Process. A Markov Process for which it is possible to get to any state

from any state. RDS Recruitment is not an irreducible Markov Process because individuals

cannot be recruited more than once, so once the process has gotten to a particular state

(a particular set of recruits) it cannot return to that state.

Notation:

We use Xj j to indicate the number of elements in collection X. For collections that may

contain duplicates, the size of the collection is the number of elements in the collection

including duplicate entries.

We use set builder notation to describe sets, as in S ¼ {L(r): r [ R}, by which we mean

S is the set of unique values produced by applying the function L(r) to each element in the

collection R. We also need to construct collections that may contain duplicate elements.

For these collections, we adopt an angle bracket notation as in Rvalues ¼ kL(r): r [ Rl by

which we mean the collection Rvalues is the sequence ðLðriÞÞ
Rj j

i¼1 where r is an enumeration

of the collection R in order of recruitment. Though S and Rvalues have the same number of

distinct values, the number of elements in Rvalues is equal to the number of elements in R,

while the number of elements in S is the number of distinct values of the categorical

variable L. Stated more simply, S is a collection of the unique values in Rvalues.

The formal foundation for RDS as a Markov Process has been well explored in

previous articles, such as Heckathorn (1997) and Volz and Heckathorn (2008).

Previous work (Heckathorn 1997; Volz and Heckathorn 2008) showed that RDS can be

modeled as a Markov Process. We do not repeat the analysis here for space reasons, but

summarize it.

Assume that we wish to estimate the population composition in terms of some

individual-level categorical variable L. The first step is to gather an RDS sample. Consider

an arbitrarily selected seed set R0 of initial recruiters for an RDS study. These recruiters

are embedded in a larger population P, members of which are connected in a social

network. For simplicity, we posit that recruitment into the RDS study can occur through

any network connection––that is, if two individuals are network neighbors, it is possible

for one to recruit the other. It is possible to define possible recruitment paths differently,

but the choice of definition does not affect our formal analysis, so we use this simple one.

Each member of collection R0 then recruits a random subcollection of its neighbors.
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The elements of these subcollections form the collection R1 of recruits (which is also a

subcollection of the network neighbors of R0). The attributes of the individuals in R1 are

measured, including node degree, the value for variable L. The process then repeats, with

R1 recruiting a subcollection of the neighbors of R1 to generate the collection R2 and Rj

generating the collection Rjþ 1 until the RDS sampling process is stopped. At the end of the

study, the full collection of recruiters and recruits R is an object of analysis.

The RDS sample is a collection of nodes R, the measured attributes of nodes in R and the

recruitment relationships between recruiter and recruit. In order to estimate the transition

probabilities for the underlying Markov Process, we need to construct a list of all the

successful recruitment events captured by the sample. For each sample wave j . 0 each

recruit ri [ Rj can be paired with at least one recruiter rh [ Rj21 who recruited ri into the RDS

sample, generating a recruitment event. When sampling without replacement, there is exactly

one recruiter for each recruit. When sampling with replacement, a particular individual may

appear multiple times within a single wave and may also appear in later waves. This is not a

problem because there is exactly one successful recruitment event for each appearance of

an individual in the sample. The collection of recruitment pairings between Rj and Rj21 for

all waves j where j . 0 constitutes the list of recruitment events in the sample.

Each individual in the population has some value for the categorical attribute L so each

sample member r [ R can be labeled by L(r). The recruitment events in the sample can

also be labeled by the sequence kL(recruiter), L(recruit)l.
Consider an RDS sampling process that starts from a single seed and where each

recruiter generates at most one recruitment event. In this case, each sample wave j : j . 0 is

generated by one recruitment event; Rj has exactly one element ri and for any

r [ Rj : j . 0, we can observe the node label of the ith recruit L(ri) and the label of the kth

recruitment event kL(rk21), L(rk)l. The sequence of node labels produced by the sampling

process can be modeled as a Markov Process on the distinct values of L.

Let S be the set of distinct values of L so S ¼ {L(r): r [ R}. We can model the

recruitment process as a Markov Process, where the states sk [ S; k ¼ 1; 2 : : : Sj j

correspond to distinct values of L and the transition from states sc to sd represent a

recruitment event with label ksc, sdl. Thus the underlying Markov Process that models RDS

is between different values of an individual variable L, not between individual nodes. The

work in Volz and Heckathorn (2008) models RDS as a Markov Process between individual

nodes; however, the result of their analysis is identical to the Heckathorn (1997) analysis:

that is, so long as the underlying Markov Process is irreducible, a stationary equilibrium

exists where the state of the Markov Process (the current node) is independent of the

starting state (the seed node). At this point, the steady state distribution of the Markov

Process modeling the RDS recruitment process is an unbiased estimator of the population.

Similarly, Volz and Heckathorn’s analysis requires the assumption of sampling with

replacement to be met for the irreducibility condition to be satisfied. Accordingly, the

analysis in the rest of the article would be substantively the same were we to choose Volz

and Heckathorn’s (2008) model instead of the Heckathorn (1997) model. We focus on the

Heckathorn (1997) model because it is much more straightforward to formulate bias due

to sampling without replacement in terms of transitions between groups than it is

to formulate the same in terms of transitions between nodes. More discussion follows in

the Appendix.
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We can also conceive of this process as occurring between groups A, B,: : : where an

individual group contains all recruits in R who have the variable value sc. In either case,

previous work on RDS shows that as long as the Markov Process is irreducible, a condition

that holds if a number of assumptions, including sampling with replacement, are satisfied,

it will reach equilibrium. After the Markov Process reaches equilibrium, the state of the

system is independent of the starting state, and recruits sampled after equilibrium will be

independent of the seeds. A Markov chain is irreducible if it is possible to move from

every state to every other state in a finite number of steps––that is, there can be no groups

or sets of groups with homophily of 1. When these conditions hold, the mix of recruits will

be independent of the seeds. In this case, if all individuals have equal degree, the RDS

sample is representative of the underlying population.

The Markov Process model of RDS is also critical for estimating population

composition by the levels of L. Heckathorn (1997) shows that it is possible to use the

transition probabilities p(sc, sd) between states in the Markov Process to construct a system

of simultaneous equations that will yield the sample proportions p (sc) of recruits with key

variable value equal to sc. Furthermore, as the same work showed, one can estimate the

transition probabilities p(sc, sd) using the frequency of individuals in the collection

kr: L(r) ¼ scl recruiting individuals in the collection kr: L(r) ¼ sdl as follows:

p̂RDSðsc; sdÞ ¼
Rec r: LðrÞ ¼ sch i; r: LðrÞ ¼ sdh i
� ��� ��

Rec r: LðrÞ ¼ sch i;R
� ��� �� ð1Þ

where Rec(A,B) is the collection of all recruitment events where an individual in A recruits

another individual in B. Later, Salganik and Heckathorn (2004) showed that if sampling

occurs with replacement (any individual can be recruited any number of times), the RDS

estimates of the Markov Process transition probabilities are unbiased, so as sample size

increases, p̂RDS(sc, sd) approaches the equilibrium transition probabilities pMC(sc, sd) of the

underlying Markov Process. When R is the result of a Markov Process, p̂RDS(sc, sd) is

exactly the same as the maximum-likelihood estimate for the transition probabilities

p̂MC(sc, sd).

p̂MCðsc; sdÞ ¼
D r : LðrÞ ¼ sch i; r : LðrÞ ¼ sdh i
� ��� ��

D r : LðrÞ ¼ sch i;R
� ��� �� ð2Þ

where D(A,B) is the set of network connections between individuals in collection A and

individuals in collection B.

However, if sampling occurs without replacement, the Markov Process model of RDS

must be called into question. Since every individual may be recruited at most once, and

there are a finite number of individuals, the underlying Markov Process is no longer

irreducible, and thus does not have a stationary equilibrium distribution.

We cannot use the reducible Markov Process for sampling without replacement to

calculate transition probabilities p(sc, sd) and sample proportions p(sc). However, we can

still use the irreducible Markov Process for sampling with replacement, and calculate

transition probabilities and sample proportions for that process, as long as RDS chains are

sufficiently similar to those that would be produced under sampling with replacement. To

the extent that there is a difference between actual RDS chains and chain-referral samples
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with replacement, p̂RDS(sc, sd) will not be an unbiased estimate of the true transition

probabilities p(sc, sd).

We note that p̂MC(sc, sd) is the transition probability that any (not a particular) individual

with key variable value sc recruits any other (not a particular) individual with key variable

value sd. Therefore, it is a measure of transitions between groups of individuals and

depends on the number of edges between these groups––in this sense, p̂MC(sc, sd) depends

on the network. When estimating p̂MC(sc, sd) in the course of RDS analysis, researchers

typically do not have access to the underlying network structure, so they estimate it via

p̂RDS(sc, sd), which is calculated based on the number of recruitments by individuals with

key variable value sc of individuals with key variable value sd.

3. Bias in Sampling Without Replacement

We have shown that the underlying cause of bias due to sampling without replacement in

RDS studies is the difference between RDS chains and those that would be created under

chain-referral sampling with replacement. The next question is the magnitude and

direction of that bias.

Let us begin by making an observation: sampling without replacement produces a bias in

transition probability estimates when a participant in an RDS study with value L(sc) attempts

to recruit another individual, say with value L(sd), but finds that individual has already been

recruited. Bias occurs in this case because the equilibrium transition probabilities are based

on the number of network connections between individuals with L(sc) and L(sd), but the

recruitment failure prevents one of those connections from being included in the estimate

counts. We make this observation formal by defining a repeated sampling event:

Definition 3.1 A repeated sampling event v is an event where participant ri in an RDS

study attempts to recruit participant rj but discovers that rj has already been recruited.

Equivalently, we can think of a repeated sampling event as introducing a difference

between an RDS chain and a with-replacement chain-referral sample on the sample

population, with the same seeds. Now we can describe the bias due to sampling without

replacement in terms of a frequency of discrete events.

Before we proceed with the rest of the analysis, it is important to point out that for the

vast majority of RDS studies, we cannot measure the frequency of repeated sampling

events directly, since most RDS studies do not ask recruiters how many peers they

attempted to recruit into the study, nor how many of those peers refused because they had

already participated. However, we can make general observations about the frequency of

repeated sampling events in RDS, and, based on these observations, demonstrate

analytically the dynamics of this frequency for different values of sampling (fraction,

homophily, and so on).

We begin by observing that the occurrence of repeated sampling events is determined

by exactly three factors:

. Network structure

. Sampling fraction

. Probability of any RDS recruitment chain following a particular edge in the network
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For example, consider an undirected tree network with the RDS seed as the root. Then,

regardless of sampling fraction or the probability of following any particular edge in the

network, the only possible repeated sampling events are those where a recruit directly

attempts to recruit her recruiter. Assuming these “backtracking” events do not occur

(as we do below), no repeated sampling events occur, and the bias from sampling without

replacement is zero. Conversely, consider a population where for some reason every

recruit will attempt to recruit her recruiter. Then, regardless of (nonzero) sampling fraction

and network structure, there will be some repeated sampling events, and the bias from

sampling without replacement is nonzero.

Neither of these scenarios is likely to occur in an empirical RDS study; however, they

are useful for two reasons. First, they provide us with theoretical bounds for the space of

repeated sampling events. Second, they do resemble some empirical RDS scenarios.

For example, networks of novice drug users in NY have been shown to resemble a star

shape, with several recreational users connected to no one but a central active supplier

(Wallace 1991).

In the following analysis, we will investigate first the density of repeated sampling

events, and then the effect of this density on bias. We first investigate the effect of

sampling fraction and network structure on the occurrence of these events, and then move

on to the last factor, the probability of RDS recruitment along particular edges in the

network.

Density of Repeated Sampling Events

The key factor in measuring and accounting for bias in sampling without replacement is

the density of repeated sampling events, which we will call rv. We begin with a definition

of rv:

Definition 3.2 The density rv of repeated sampling events in a particular RDS study or

simulation is the frequency of repeated sampling events divided by the total number of

recruitment events in the study or simulation.

A formal analysis of this quantity yields surprising observations about the

correspondence between rv and particular network structures. We can use these

observations to infer backwards from our understanding of network structure in hidden

populations to expected levels of bias due to repeated sampling events. We begin this

analysis by modifying the original assumptions about the RDS process outlined in

Section 1, so as to incorporate sampling without replacement. Below, we present the new

set of assumptions about RDS necessary for our analysis:

Assumption 3.3 The target population’s network must be dense enough for the

population to form a single component, so every node is reachable from every other node.

Assumption 3.4 Recruiters know one another, as acquaintances, friends, or those closer

than friends, so their relationships are reciprocal and recruitment can occur in either

direction along the tie.

Assumption 3.5 Respondents recruit as though they are selecting randomly from their

neighborhoods.
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Assumption 3.6 Recruits cannot attempt to recruit their recruiters. In other words,

the random walk that generates the sample does not backtrack.

Assumption 3.7 The RDS recruitment process is asynchronous, that is, at no point is a

potential recruit simultaneously approached by two or more recruiters.

Assumption 3.8 The RDS process begins with one seed.

Assumption 3.9 Respondents attempt to recruit a constant number k of their neighbors,

or all of their neighbors, whichever is smaller. This number includes failed attempts to

recruit due to repeated sampling events. Attempt here means that a recruiter will try to

recruit some individual unless she has already been recruited, in which case the recruiter

tries to recruit another individual in their network neighborhood and so on, until the

recruiter has tried to recruit k individuals. The inclusion of failed attempts in k may mean

that the RDS process stops when no recruiter has a legal recruit. In formal analysis, we are

not concerned with the termination of specific RDS chains unless it happens

deterministically, which is not the case for sampling fractions , 100%. In simulations,

chain termination is a concern, which we address by introducing additional seeds, one at

a time (see the simulation section below).

Assumptions 3.3 and 3.4 pertain to the structure of the graph and are therefore scope

conditions.

Assumptions 3.5, 3.6 and 3.7 pertain to the nature of the recruitment process, specifying

a nonbacktracking random walk. Lee et al. (2012) showed that a nonbacktracking random

walk retains the Markov property and will have the same stationary distribution as a

simple random walk. Even though backtracking would create a repeated sampling event,

Lee et al. show that eliminating backtracking does not change or bias the estimation of

transition probabilities or the stationary distribution. We focus only on repeated sampling

events that might produce bias estimates by excluding backtracking from our analysis.

Assumptions 3.8 and 3.9 are less reflective of empirical RDS studies, and we relax them

in a simulation framework in Section 4.

In the following analysis, we focus on the graph of potential recruits G, in contrast to

the recruitment graph of relationships between actual recruits. G is meant to represent the

wider community, from which the seeds and the recruits are drawn. For example, in a

study of jazz musicians in New York City, G is the graph of all jazz musicians in New

York City. A graph consists of nodes and edges; in this example, the nodes are the jazz

musicians in New York City and the edges are connections (friendships, professional

relationships, etc.) between jazz musicians, along which recruitment may occur. Since the

target sampling fraction, s, is a rational number and the sample size has to be an integer

(number of individuals), we define sample size as the greatest integer less than or equal to

the sample fraction multiplied by the population size or bsNc.

We now restate our observation about tree structures and the absence of repeated

sampling events as a formal lemma:

Lemma 3.10 Given assumptions 3.3–3.9, sampling without replacement cannot occur

only in populations where the structure of relationships among members of the population

is an undirected tree.

Journal of Official Statistics42

Unauthenticated
Download Date | 3/14/16 12:59 PM



Proof: Consider graph G, which is not an undirected tree graph. An undirected tree is a

type of network where the edges are undirected and any two nodes are connected by

exactly one path. If G is not an undirected tree, then there is at least one cycle in G that is a

sequence of connected nodes (seed and recruits) r1 : : : rl where l is the length of the cycle

and rl has an edge to r1. Then it is possible for r1 to be a seed, and recruit r2, who recruits r3

and so on until rl is recruited. Then it is possible for rl to attempt to recruit r1 at which point

a repeated sampling event will occur.

Similarly, consider a graph G0 that is an undirected tree graph. Consider some seed r1.

Then for any potential recruiter r consider the set of potential recruits PS. A repeated

sampling event can occur only if some p [ PS has already been recruited. But that means

that a path exists from a seed r1 to p that does not go through r. Since a path already exists

from r1 to p that does go through r, this means that a cycle must exist in G 0, which

contradicts the claim that G 0 is an undirected tree. A

Lemma 3.10 shows that specific network structures imply particular levels of bias due to

sampling without replacement. However, this does not mean there is a deterministic

relationship between network structure and level of bias due to sampling without

replacement, as we show with the following negative result:

Lemma 3.11 Given assumptions 3.3–3.9, and a particular chain of recruitments, it is

possible that this chain could have arisen without any repeated sampling events regardless

of the underlying structure of relationships between the recruits.

Proof: Given any connected graph G of potential recruits, we can remove edges from G

until no cycles exist but all the nodes are still connected. This is the minimum spanning

tree of G. Let the number of coupons for an RDS study on this network be greater than the

degree of any node in the minimum spanning tree. Under these conditions, an RDS process

can start at any node in G and end by recruiting all potential recruits avoiding any repeated

sampling events simply by following the minimum spanning tree. A

However, Lemma 3.11 does not preclude estimation of bias due to sampling without

replacement from network structure. We may not be able to calculate an exact amount of

bias for a particular network structure analytically, but we can nevertheless define bounds

for this type of bias and formalize its relationship to key variables such as the sampling

fraction. In particular, we outline and then prove a number of theorems about the

relationship between network structure and density rv of repeated sampling events. We

begin with a theorem for making formal statements about the density of repeated sampling

events for any network structure. This theorem will serve as a framework for proving

statements about specific network structures.

Theorem 3.12 Given assumptions 3.3–3.9, a graph G with N nodes and one or more

cycles, a further assumption that each recruiter attempts to recruit exactly k neighbors, and

an RDS process with sampling fraction s, the density rv of repeated sampling events is:

rv ¼

XNR

i¼1
f ðriÞ

NR
ð3Þ
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where f(ri) is a function for recruiter r expressing the fraction of her k recruits that have

already been recruited, and NR is the number of recruiters in the RDS sample.

Proof: The density of repeated sampling events is the ratio of repeated sampling events

(RSE) to the total number of recruitment events (RE). Symbolically, let us represent it as:

rv ¼
RSE

RE
ð4Þ

As per the statement of the theorem, we make a further assumption that recruiters make

exactly k recruitment attempts––in other words, that Assumption 3.9 holds and

furthermore every individual has degree at least k. This assumption greatly simplifies the

analysis, and we relax it in the simulation section. With this assumption, we can rewrite

rv as:

rv ¼
RSE

kNR
ð5Þ

where NR is the number of recruiters in the RDS sample. For the numerator, let f(ri) be a

function for recruiter ri expressing the fraction of her k recruits that have already been

recruited. Then the numerator is:

RSE ¼
XNR

i¼1

kf ðriÞ ð6Þ

Substituting in RSE, taking the constant k out of the sum and canceling, we get:

rv ¼

XNR

i¼1
f ðriÞ

NR
ð7Þ

A

Having shown a general relationship between rv and sampling fraction s for some

graph G, we proceed to show specific instances of this relationship on Poisson Random

Graphs, Small-World Graphs and Preferential Attachment Graphs.

A Poisson Random Graph is a graph where all ties are randomly targeted and the nodes

have a Poisson degree distribution. We use the Erdős-Rényi version of a Poisson Random

Graph (Erdős and Rényi 1959).

A Small-World Graph is a graph whose nodes are embedded in a regular lattice, but a

fraction of the edges between these nodes are randomly rewired, creating enough shortcuts

in the graph to lead to a small graph diameter (a small world). Nodes in Small-World

Graphs have a regular degree distribution, that is, all nodes have identical degree. Watts

and Strogatz (1998) describe the construction and properties of Small-World Graphs.

A Preferential Attachment Graph is a graph where nodes connect to others

preferentially based on their degree. Nodes in Preferential Attachment Graphs have a

power-law degree distribution. Preferential Attachment Graphs are described in Barabasi

and Albert (1999).
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Theorem 3.13 Given 3.3–3.9, a Poisson Random Graph G with N nodes and one or

more cycles, and an RDS process with sampling fraction s, the density rv is bounded by

the following inequality:

s

2ðk þ 1Þ
2

1

2N
# rv #

s

2
2

1

2N
ð8Þ

Proof: For a Poisson Random Graph, all ties are randomly targeted, so the probability of

a tie targeting an already-recruited node is given by n/N where n is the current number of

recruits. For recruiter ri, n ¼ i 2 1, so we can rewrite Equation 3 as follows:

rv ¼

XNR

i¼1

i 2 1

N
NR

ð9Þ

or

rv ¼
ðNR 2 1Þ

2N
ð10Þ

Now we have the equation strictly in terms of NR the number of recruiters and N the

population size. We can bound the number of recruiters by the following argument: In the

simulation design of RDS, and also in RDS empirical studies, if an individual fails to

recruit k recruits, a new recruiter is added. As we discuss above, we can assume for the

purposes of this section that every individual has at least degree k, so the only way a

recruiter fails to recruit k recruits is through a repeated sampling event, when the recruiter

tries to recruit some individual who has already been recruited. So the minimum number of

recruiters occurs when no repeated sampling events occur. In this case, every recruiter

recruits exactly k recruits. We know the total number of participants in the sample

(recruiters þ recruits) is bsNc, so we can derive the lower bound for the number of

recruiters by solving:

NRþ kNR $ bsN c ð11Þ

or

NR $
bsN c

k þ 1
ð12Þ

Now let us consider the maximum number of recruiters. This occurs when all sampling

events are repeated sampling events; when all current recruiter attempts lead to repeated

sampling events in an empirical RDS study, a new recruiter is added to the sample. Thus,

in this case, a new recruiter is added to the sample after every recruiter makes all of their

recruitment attempts. This extremely rare situation would occur if all the initial seeds in an

RDS study tried to recruit each other and only each other, and every subsequently added

recruiter tried to recruit only from among the seeds. In this case, the number of recruiters is
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just the sample size, so the other side of the inequality is:

NR # bsNc ð13Þ

Using this inequality, we can put bounds on rv as follows:

bsNc

k þ 1
2 1

2N
# rv #

bsNc 2 1

2N
ð14Þ

or

s

2ðk þ 1Þ
2

1

2N
# rv #

s

2
2

1

2N
ð15Þ

A

Equation 14 shows that rv increases linearly in the sampling fraction (all other terms are

constant for a given RDS sample). Note that for large populations, 1
2N

is negligible, so the

bounds on rv are:

s

2ðk þ 1Þ
# rv #

s

2
ð16Þ

Theorem 3.14 Given assumptions 3.3–3.9, a Small-World Graph G with N nodes and

one or more cycles and rewiring probability p, and an RDS process with sampling fraction

s, the density rv of repeated sampling events is bounded by the following inequality:

pð1þ 1 2 c1 2 pþ c1pÞ

2ðk þ 1Þ
sþ

pð1þ 1 2 c1 2 pþ c1pÞ

2N
2 p

1

N
þ c1 2 pc1

# rv #

pð1þ 1 2 c1 2 pþ c1pÞ

2
sþ

pð1þ 1 2 c1 2 pþ c1pÞ

2N
2 p

1

N
þ c1 2 pc1

ð17Þ

Proof: For a Small-World Graph with rewiring probability p, a fraction p of all ties are

randomly targeted, while the rest are embedded within a regular lattice. Given some

recruiter ri making k recruitment attempts, kp of those attempts will be reaching random

targets in the network, while k(1 2 p) of those attempts will be reaching lattice neighbors.

Accordingly, f(ri) will be an interpolation between p and 1 2 p.

First, let us examine what happens in the case of lattice neighbors. Some fraction c of

these will already have been recruited, in one of two ways: either they were recruited by

their own lattice neighbors, or they were recruited through random ties. Let us call the

fraction of neighbors recruited by their own lattice neighbors c1, and the fraction recruited

through random ties c2.

The quantity c1 is independent of sampling fraction. To see why, consider the example

of a ring lattice. Since we are only looking at individuals recruited by lattice neighbors, the

recruitment set on this network will resemble a line that grows at both ends. Each new

recruit ri appears at the end of the line and always has the same neighborhood composition
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with respect to recruited versus nonrecruited individuals: half are already recruited

(the half of ri ’s neighbors that are closer to the seed) whereas the other half are not already

recruited (the exception being when all individuals are recruited and the ends of the line

connect, but that lone case will not affect our estimations).

The quantity c2 is the probability that some lattice neighbor j of ri has already been recruited

by another node k via a randomly rewired tie. For each such j, there are approximately

i potential recruiters, and each recruiter can recruit j if it has a rewired tie (probability p) and

it points to j (since rewired ties are random, the probability is uniform at 1/N).

To calculate the quantity c, let us consider the processes that generate c1 and c2 as

probabilistic events C1 and C2. In the equation below, k is the logical OR notation. Then:

c ¼ ð1 2 pÞ C1j C2j
� �

ð18Þ

¼ ð1 2 pÞ 1 2 ð1 2 PðC1ÞÞð1 2 PðC2ÞÞð Þ ð19Þ

¼ ð1 2 pÞ 1 2 ð1 2 c1Þ 1 2 p=N
� �i

� �
ð20Þ

< ð1 2 pÞ 1 2 ð1 2 c1Þ 1 2 pi=N
� �� �

ð21Þ

Note that Equation 21 is an approximation, based on a derivation by Tillé (2006). This

approximation holds for pi p N, meaning that as long as pi p N, the left-hand side is

almost exactly equal to the right-hand side. The quantity i is bounded by the number of

recruiters, NR. Thus, pi p N so long as:

pNR p N ð22Þ

The quantity NR itself is bounded by the sampling fraction s, such that NR # bsNc.

Accordingly, the inequality holds as long as:

pbsNc p N ð23Þ

or,

psp 1 ð24Þ

In the simulation section of the article we use p ¼ 0.2, 0 , s , 1 so ps ranges

between 0 and 0.2, which is significantly smaller than 1.

Next, consider the pk attempts that reach network neighbors through rewired ties. These

ties are rewired at random, so the targets of those ties will be random nodes in the network.

As in Theorem 3.13, the probability that any attempt reaches a node that has already been

recruited is (i 2 1)/N for the ith recruit. Now we are finally ready to write down rv.

rv ¼

XNR

i¼1
p

i 2 1

N
þ ð1 2 pÞ 1 2 ð1 2 c1Þ 1 2 p

i

N

� �� �� �

NR
ð25Þ
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or

rv ¼

pð2 2 c1 2 pþ c1pÞ

N

XNR

i¼1
ði Þ2 p

NR

N
þ c1NR 2 pc1NR

NR
ð26Þ

or

rv ¼
pð2 2 c1 2 pþ c1pÞ

N

ðNRþ 1Þ

2
2 p

1

N
þ c1 2 pc1 ð27Þ

As we showed above, the number of recruiters is between bsNc
kþ1

and bsNc, so we can write:

p 2 2 c1 2 pþ c1p
� �

N

bsNc

k þ 1
þ 1

� �

2
2

p

N
þ c1 2 pc1

# rv #

p 2 2 c1 2 pþ c1p
� �

N

bsNcþ 1
� �

2
2

p

N
þ c1 2 pc1

ð28Þ

or

pð2 2 c1 2 pþ c1pÞ

2ðk þ 1Þ
sþ

pð2 2 c1 2 pþ c1pÞ

2N
2

p

N
þ c1 2 pc1

# rv #

pð2 2 c1 2 pþ c1pÞ

2
sþ

pð2 2 c1 2 pþ c1pÞ

2N
2

p

N
þ c1 2 pc1

ð29Þ

A

This is a much more complex form than Equation 14, but again, all the terms except for

s are constants for a particular RDS sample, so again rv increases linearly in s.

Furthermore, recall that p , 1 and c1 , 1. So, p(2 2 c1 2 p þ c1p) , 2 and for large

populations:

pð2 2 c1 2 pþ c1pÞ

2N
< 0 ð30Þ

or

p

2N
< 0 ð31Þ

Then, for large populations, the bounds are:

pð2 2 c1 2 pþ c1pÞ

2ðk þ 1Þ
sþ c1 2 pc1 # rv #

pð2 2 c1 2 pþ c1pÞ

2
sþ c1 2 pc1 ð32Þ

Theorem 3.15 Given Assumptions 3.3–3.9, a Preferential Attachment Graph G with N

nodes, one or more cycles, a degree distribution approximated by P(x) < x2a and

rewiring probability p, and an RDS process with sampling fraction s, the density rv of

repeated sampling events is a nonlinear function of s that is sublinear for small values of

s and approaches linearity in s for larger values of the sampling fraction.
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Proof: In a Preferential Attachment Graph, ties are not targeted randomly, but according

to the degree of the target, with higher-degree nodes more likely to be tie targets. For

recruit ri, f(ri) thus depends not only on the number of individuals already recruited, but

also on their sum degree. Specifically:

f ðriÞ ¼
SRFði Þ

SN
ð33Þ

where SRF(i) is the sum degree over all nodes already recruited whereas SN is the sum

degree over all nodes in the graph. In the beginning of the recruitment process, the

recruited sample is more likely to contain network hubs than low-degree nodes, as all

nodes (including the seed) are preferentially more likely to have ties to higher-degree

nodes than to lower-degree nodes. However, the number of such hubs is very small, so the

recruited sample quickly exhausts them and moves on towards lower-degree nodes. As

this happens, the average degree over all recruits approaches the average degree over all

nodes in the graph. When the average degree over all recruits is approximately equal to the

average degree over all N nodes:

SRFði Þ

i
<

SN

N
ð34Þ

we have:

f ðriÞ ¼
SRFði Þ

SN
ð35Þ

¼

SRFði Þi

i
N SN

N

ð36Þ

¼
i

N

SRFði Þ

i
SN

N

ð37Þ

<
i

N
ð38Þ

This is almost the same expression as f(ri) for a Poisson Random Graph, where rv is

linear in s. Accordingly, in the limit of large sampling fraction, rv approaches a linear

function of s. However, for small sampling fractions, the sample may never reach this

stage. In that case, the average degree over all recruits is much bigger than the average

degree over all N nodes:

SRFði Þ

i
q

SN

N
ð39Þ

In this case, f(ri) is much bigger than f(ri) for a Poisson Random Graph. Therefore, rv
values grow more quickly than for a Poisson Random Graph for small sampling fractions,

but then grow ever slower as sampling fraction increases, approaching a linear growth rate.

Thus, the second derivative of rv is initially negative, and it grows sublinearly for small

sampling fractions. A
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To give some idea of the range of sampling fractions, over which rv grows sublinearly,

we consider the probability of high-degree nodes being picked in the sample, which

also gives us the expected point at which these high-degree nodes are exhausted. Let

us focus on nodes with above-average degree––so long as these nodes are picked, the

average degree over the recruit set remains higher than the average degree over all nodes.

The probability p(n . md) of any one tie targeting a node n with above-average degree

is given by:

pðn . mdÞ ¼

X
j
dð jÞ . md

SN
ð40Þ

<

ÐM

md
xPðxÞdx

ÐM

m
xPðxÞdx

ð41Þ

where d(j) is the degree of node j, md is the mean degree, M the max degree and m the min

degree of G, x is degree, and P(x) is the degree distribution of G. The approximation in

Equation 41 is a smoothing out of Equation 40, since the degree distribution of G ranges

only over discrete values of x. As we note in the theorem statement, P(x) < x2a.

Therefore, Equation 41 evaluates to:

pðn . mdÞ <
M 22a 2 md

22a

M 22a 2 m22a
ð42Þ

where a is the best-fit exponent of the degree distribution of G. For a . 2, md is

well-defined and equal to:

md ¼ m
a 2 1

a 2 2
ð43Þ

So we can rewrite above as:

pðn . mdÞ <
M 22a 2 m

a 2 1

a 2 2

� �22a

M 22a 2 m22a
ð44Þ

Note that for a . 2, M 22a is very close to 0. We can use that to reapproximate

p(n . md) as:

pðn . mdÞ <
a 2 1

a 2 2

� �22a

ð45Þ

This function decreases superlinearly in a, but between a ¼ 2 and a ¼ 3 (the range for

Preferential Attachment Graphs), it varies between .8 and .5. Now consider the fraction of

nodes that have above-average degree, P(N . md), which is derived from the cumulative
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degree distribution of G, which is the integral of the partial degree distribution of G, P(x):

PðN . mdÞ <

ÐM

md
PðxÞdx

ÐM

m
PðxÞdx

<
md

m

� �2aþ1

ð46Þ

¼
a 2 1

a 2 2

� �12a

ð47Þ

¼ pðx . mdÞ�
a 2 2

a 2 1
ð48Þ

In other words, given exponent a of 2.1, about 80% of the ties will be targeting nodes with

above-average degree, whereas only about 10% of the nodes will have above-average

degree. This disparity suggests that a sublinear relationship will exist between rv and s,

given a of 2.1 and sampling fractions much lower than ten percent. We can establish

similar relationships for other values of a and s, but note that as a increases, fewer and

fewer of the early ties will point to above-average degree nodes. A complex nonmonotonic

relationship therefore exists between the power-law exponent and the relationship

between sampling fraction and density of repeated sampling events.

Bias Due to Repeated Sampling Events

We formalize the relationship between the density of repeated sampling events rv and the

bias due to sampling without replacement. This bias can be expressed as the difference

between the equilibrium transition probabilities for a Markov Process modeling a chain-

referral sample with replacement and the estimated transition probabilities between

different groups in an empirical RDS sample:

BiasSWOR ¼
si

X

sj

X
pMCðsi; sjÞ2 p̂RDSðsi; sjÞ
�� �� ð49Þ

where si, sj are different values of the key variable L analyzed in the course of an RDS

study as described in Section 2, and p̂RDS(si, sj) and pMC(si, sj) are defined in Equations 1

and 2, respectively. In the case where no repeated sampling events are possible (e.g., on an

undirected tree as described in Lemma 3.10), this bias tends asymptotically to 0 in the

sampling fraction s:

s!1
lim ðBiasSWORÞ ¼ 0 ð50Þ

In the case where repeated sampling events are possible, each event initially introduces

a small amount of bias. Recall that Rec(A,B) is the collection of all recruitment events

where an individual in A recruits another individual in B, D(A,B) is the set of network

connections between individuals in collection A and individuals in collection B and the

definitions of p̂RDS and p̂MC given in Equations 1 and 2. Consider a single repeated

sampling event in the sampling process where a recruiter r1, L(r1) ¼ s1 tries to recruit

another individual r2, L(r2) ¼ s2, but r2 has already been recruited.
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In the limit of s ! 1, the number of recruitments from s1 nodes to s2 approaches the

number of edges between s1 and s2 minus the single failed recruitment.

Rec ri : LðriÞ ¼ s1h i; rj : LðrjÞ ¼ s2

	 
� ��� ��

! D ri : LðriÞ ¼ s1h i; rj : LðrjÞ ¼ s2

	 
� ��� ��2 1 ð51Þ

At the same time, the number of recruitments from s1 nodes to any other node

approaches the number of edges between s1 and all other nodes minus the single failed

recruitment:

Rec ri : LðriÞ ¼ s1h i;R
� ��� ��! D ri : LðriÞ ¼ s1h i;R

� ��� ��2 1 ð52Þ

Let a ¼ D ri : LðriÞ ¼ s1h i; rj : LðrjÞ ¼ s2

	 
� ��� �� and b ¼ D ri : LðriÞ ¼ s1h i;R
� ��� �� so

p̂RDSðsi; sjÞ!
a 2 1

b 2 1
ð53Þ

With a and b as defined above, p̂MCðsi; sjÞ ¼
a
b

and so BiasSWOR ! a
b

2 a21
b21

. In general, if the

density of repeated sampling events rv is uniform across all nodes and each node makes

the same number of recruitment attempts, then, in the limit of s ! 1:

p̂RDSðsi; sjÞ! pMCðsi; sjÞð1 2 rvÞ ð54Þ

for all si, sj and so BiasSWOR !
P

si

P
sj

pMCðsi; sjÞðrvÞ
�� ��: Note that the assumption that

each node makes the same number of recruitment attempts is not entirely unrealistic in

empirical RDS studies, since the number of coupons per recruiter is usually capped at a

small value. The other assumption, that repeated sampling event density is uniform across

all nodes, is less realistic, but useful for generalized results across network structures.

In the simulation section of this article, we relax the uniform density assumption.

Bias Due to Degree Differential and Group Size

The case explored in Theorem 3.15 suggests that the degree of recruits can play an

important role in creating bias due to sampling without replacement. In this section, we

consider a scenario wherein two groups of recruiters are present, one with a drastically

higher degree than the other, and explore the implications for density rv of repeated

sampling events. We also consider the effect of group size on bias, that is, the case where

two groups are present in the target population, but one group has many more members

than the other. In this section, we make a further simplifying assumption for RDS samples:

when a target population is divided into two groups, all members of a group have the

same degree. This is a strong assumption, but it helps illustrate the fundamental effect of

degree differential and group size on bias. We relax this assumption in the simulation

section below.

The networks we construct in this section have the property that the probability of

an edge targeting a particular node ¼ td(i) where t . 0 is a constant and d(i) is the

target node’s degree. This mode of network construction allows us to examine a simplified

version of preferential attachment tie formation behavior found in many empirical

networks. Given our earlier assumption that all nodes in one group have the same
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degree, we cannot construct actual preferential attachment networks; again, we relax

this constraint in the simulation section below, where we examine true preferential

attachment networks.

First, we explore only the effect of degree differential. Consider a population of

potential recruits that consists of two equal-sized groups A and B, embedded in a network

as described above. Furthermore, we have:

mdðAÞ ¼ cmdðBÞ ð55Þ

where md(A) is the mean degree of group A and md(B) is the mean degree of group B, and

c is a constant. Given a uniform distribution of recruits between network neighbors

as per Assumption 3.5, the probability of a recruit coming from group A is c times the

probability of a recruit coming from group B. Then, given r recruits, under sampling with

replacement, rc/(c þ 1) of them will come from group A and r/(c þ 1) of them will come

from group B. However, the sample is collected without replacement, so the sampled

proportions of recruits from group A and B will differ from the with-replacement

condition.

We illustrate the difference in sampled proportions of recruits from A and B under

conditions of sampling without replacement with the following toy scenario: consider a

population of 100 individuals, 50 of which are in group A and the other 50 in B. The

sampling fraction is 70 percent and the average degree of group A is six times the average

degree of group B.

Under conditions of sampling with replacement, 70 individuals are recruited (some

multiple times), 60 of those individuals are from group A and ten from group B. However,

under conditions of sampling without replacement, all we know is there are 60 recruitment

attempts targeted at group A and ten at group B. Some of these attempts may lead to

repeated sampling events, where an individual in group A has already been recruited, and

others do not. An estimate of the density of repeated sampling events rv in these scenarios

depends on calculating the expected fraction of recruitment attempts that end up as

repeated sampling events.

We begin with a simple observation: consider the situation that, under sampling without

replacement, the first 50 recruitment attempts targeted at group A each target a distinct

recruit. Then we know the last ten attempts targeted at group A automatically lead to a

repeated sampling event. From this situation, we observe that at some point a group may

become exhausted, after which point all recruitment attempts targeting that group

automatically lead to repeated sampling events. After this point, the density rv of repeated

sampling events becomes an interpolation between 1 (the rate for events that target

group A) and whatever the rate was previously; this interpolation rapidly converges to 1 as

sampling fraction increases. We present a formal proof of this observation below.

We now investigate the case when A is not exhausted. In this case, recruitment attempts

targeted at A lead to a repeated sampling event with a probability that rises in the number

of individuals already recruited from A. That probability is zero if no recruits have yet

come from A and approaches unity as A approaches exhaustion.

Finally, consider the effect of group size, which is very simple: the smaller the size of A,

the more quickly it approaches exhaustion. In other words, the smaller A is, the earlier
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the onset of the exhausted regime, during which rv converges rapidly to one as sampling

fraction increases.

We now combine these observations into a formal argument. We begin by proving a

lemma that gives a formal expression for the expected number of distinct recruits from

some group U given m recruitment attempts targeting U. This lemma is necessary to

calculate the exhaustion point for groups, and relies on the assumption we make at the

beginning of this section: all individuals in a particular group have the same degree. We

then use the lemma to prove a “master equation” theorem that combines sampling fraction,

degree differential and group size into one expression for rv.

Lemma 3.16 Given a group U of size N that has not yet been exhausted, such that all

individuals in the group have the same degree, the expected number of distinct recruits

from U given m recruitment attempts targeting U is bounded by the inequality:

m 2
mðm 2 1Þ

2N
, DR , m ð56Þ

Proof: The quantity DR is equivalent to the number of distinct elements NDE after

sampling m elements with replacement from a set of N elements with uniform selection

probabilities, which is given in Tillé (2006):

NDE ¼ N 2
ðN 2 1ÞmN!

N mðN 2 1Þ!
ð57Þ

or

NDE ¼ N 1 2
N 2 1

N

� �m� �
ð58Þ

Focusing on the exponential term in Expression 58, we have:

N 2 1

N

� �m

¼ 1 2
1

N

� �m

¼ 1þ
21

N

� �m

¼ ð59Þ

by binomial expansion:

¼
Xm

k¼0

m

k

� �
21

N

� �k

¼
m

0

� �
1þ

m

1

� �
21

N
þ

m

2

� �
1

N 2

þ : : :þ
m

m

� �
21

N

� �m
ð60Þ

This series has the property that, for any k # m, m , N the k þ 1st element is smaller in

magnitude and opposite in sign to the kth element. The sign opposition comes from the

2 1 in the power term of the series. The magnitude difference comes from the fact that the

k þ 1st element is O([m/N ]k), which decreases in k since m , N.

This property implies that the first few terms will dominate the series. In particular, we

can establish bounds of the series with the second and third partial sums: 1 2 m/N and

1 2 m
N
þ mðm21Þ

2N 2 . Every subsequent term will alternatively drive the series closer to
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1 2 m/N and to 1 2 m
N
þ mðm21Þ

2N 2 , by an ever-decreasing degree, so the final sum will always

stay within those bounds. Accordingly, we can approximate the inner term as follows:

1 2
m

N
þ

mðm 2 1Þ

2N 2
.

N 2 1

N

� �m

. 1 2
m

N
ð61Þ

We can now rewrite Equation 56 as:

N 1 2 1þ
m

N
2

mðm 2 1Þ

2N 2

� �
, NDE , N 1 2 1 2

m

N

h i� �
ð62Þ

or

m 2
mðm 2 1Þ

2N
, NDE , m ð63Þ

A

What does Equation 63 tell us? Instead of targeting m distinct nodes, m recruitment

attempts target some slightly smaller number m–e nodes. In other words, m–e ties target

distinct nodes in the network, and the remaining e ties are redundant, that is, lead to

repeated sampling events.

Operationally, we can approximate DR by setting NDE to its lower bound (by the

argument above, NDE will be much closer to its lower bound than to its upper bound):

e ¼
mðm 2 1Þ

2N 2
ð64Þ

Then:

DR ¼ NDE < m 2
mðm 2 1Þ

2N 2
ð65Þ

We now follow with a definition of group exhaustion and then the “master equation”

theorem. In Theorem 3.18, we use big O notation written as ( f ¼ O(g)), where f and g are

non-negative functions. This notation indicates that f is asymptotically upper bounded by

g, in other words, that there exists an integer n0 and a constant c . 0, such that for all

integers n . n0, f(n) # cg(n). In this particular case, we claim that rv is asymptotically

bounded by another expression, either s if neither group is exhausted or an expression that

tends asymptotically to 1 as s ! 1 if one of the groups is exhausted. In the latter case,

Theorem 3.18 shows that rv is always less than some function, and that function itself is

always less than 1.0 but approaches it quickly as s increases.

Definition 3.17 A group of potential recruits is said to be exhausted if, in the course of

an RDS recruitment process, every individual in that group is recruited.

Theorem 3.18 Given Assumptions 3.3–3.9, and a population of N potential recruits

split into two groups A and B, with a individuals in A and b individuals in B, such that

every individual in A has degree d(A) and every individual in B has degree d(B), and the

probability of an edge targeting a particular node ¼ kd(i) where k . 0 is a constant and

d(i) the node’s degree, at sampling fraction s the frequency of repeated sampling events,
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rv, is approximated by:

rv ¼ OðsÞ if neither group is exhausted ð66Þ

rv ¼O 1 2
ð1 2 kÞPERðgÞ

TRðgÞ

� �
if some group g is exhausted;

which tends asymptotically towards 1 ass ! 1

ð67Þ

where 0 , k , 1 is some constant, PER(g) is the number of recruitment attempts made

targeting group g before g is exhausted, and TR(g) is the total number of recruitment

attempts made targeting group g. Further, we can express TR(g) as:

TRðgÞ ¼
dðgÞ

Sg 0e A;Bf gdðg
0Þ
sN ð68Þ

And PER(g) as:

PERðgÞ ¼ sðgÞ þ e ð69Þ

where s(A) ¼ a, s(B) ¼ b and e is some small positive constant.
Proof: The proof follows from the observations before Lemma 3.16. For each of the two

groups A and B in the target population, one of two cases is possible: either the group is

exhausted, or it is not. If neither group is exhausted, then we only have to consider repeated

sampling events due to the same recruit being targeted multiple times by chance. Since we

assume every recruit within a group has the same degree, the probability of a repeated

sampling event for some group is determined entirely by the number of individuals already

recruited from that group. We can then use the same reasoning as in Theorem 3.13 to show

that, when no group is exhausted, rv is dominated by the sum of two linear functions of s,

which is itself a linear function of s.

Now consider the case when some group g is exhausted. In this case, rv is an

interpolation between the density of repeated sampling events prior to exhaustion, and 1,

which is the density after exhaustion, and rvNE, which is the density from any

nonexhausted groups. Given TR total recruitment attempts made targeting g and PER of

those attempts made prior to exhaustion, we can express this interpolation as:

rv ¼ O rvNE þ
kPERðgÞ

TRðgÞ
þ

TRðgÞ2 PERðgÞ

TRðgÞ

� �
ð70Þ

or

rv ¼ O rvNE þ 1 2
ð1 2 kÞPERðgÞ

TRðgÞ

� �
ð71Þ

where k is some constant between 0 and 1 representing the linear dependence between

number of recruitment attempts and density of repeated sampling events prior to

exhaustion. This asymptotic bound equation consists of two parts: rvNE, which grows

linearly in sampling fraction, and 1 2 (1 2 k)PER(g)/TR(g). The growth of the second

part depends entirely on TR(g), since PER(g) remains constant once g is exhausted and k is

a constant. We now derive an expression for TR(g). Since the network is a preferential
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attachment network, the number of recruitment attempts targeting group g is simply the

total number of recruitment attempts times the ratio of the group degree to the sum degree:

TRðgÞ ¼
dðgÞ

Sg 0e A;Bf gdðg
0Þ
sN ð72Þ

Plugging Equation 72 into Equation 71, we have:

rv ¼ O rvNE þ 1 2
ð1 2 kÞPERðgÞðdðAÞ þ dðBÞÞ

sdðgÞN

� �
ð73Þ

Equation 73 is dominated by the nonlinear term 1 2 (1 2 k)PER(g)(d(A) þ d(B))/

(sd(g)N) so we can rewrite it as

rv ¼ O 1 2
ð1 2 kÞPERðgÞðdðAÞ þ dðBÞÞ

sdðgÞN

� �
ð74Þ

Note that this quantity increases asymptotically towards 1 as s ! 1 since all the terms

except s are constants and s is in the denominator of the fraction.

The only remaining piece of the proof is to derive an expression for PER(g). PER(g) is

the number of recruitment attempts made targeting group g before the group is exhausted.

Note that this is not simply the number of individuals in g, as we showed Lemma 3.16,

making m recruitment attempts generally yields fewer than m distinct recruits. In order to

calculate this value more precisely, we need to solve Approximation 65 for m given

DR ¼ s(g), that is:

sðgÞ < m 2
mðm 2 1Þ

2sðgÞ2
ð75Þ

This equation is highly nonlinear but it is easy to estimate an approximate solution as

m < s(g) þ e for some small e (too small to significantly affect rv). Plugging in that

estimate, we have:

sðgÞ < sðgÞ þ e 2
1

2
2
ð2e 2 1Þ

2sðgÞ
2

eðe 2 1Þ

2sðgÞ2
ð76Þ

For s(g) q e, the right-hand side is bigger than the left-hand side, and we have a

sufficient condition––enough recruitment attempts have been targeted at g to exhaust it.

So, we can approximate PER(g) as:

m < sðgÞ þ e ð77Þ

A

4. Simulations

We employed simulation to explore scenarios not addressed by the analytic results. The

analytic results do not specifically account for multiple seeds or recruitment processes

with one versus multiple coupons given to recruiters, nor do they account for homophily,
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so simulating the chain-recruitment process provides additional insight into how the

presence of multiple seeds and the number of coupons available to the recruiters might

impact the nonreplacement bias. In these simulations, the targeted subpopulation

comprised 20% of the nodes. We simulated respondent-driven sampling and calculated the

Heckathorn 2007 RDS estimates for the target subgroup.

Networks

The simulated chain-recruitment samples were generated from Watts–Strogatz Small-

World Networks, Barabási-Albert preferential attachment networks and Erdős-Rényi

random graphs as implemented in the Python package NetworkX (Hagberg et al. 2008).

These networks have uniform, power-law, and Poisson degree distributions, respectively.

We selected network parameters to maintain a mean degree of about eight for standard

graphs and 16 for the higher-density graphs. Networks were of orders 500 and 5000 nodes.

We present results for the 5000-node networks because we were unable to obtain

meaningful results for low sampling fraction on the smaller networks. For example, a five-

percent sample of a 500-node network would yield only 25 individuals. At this very small

scale, RDS samples are extremely idiosyncratic and dependent on the seeds, so the

variance between individual RDS samples is too large to produce a consistent pattern of

results. Holding the number of nodes constant while manipulating sample fraction through

sample size most closely models the tradeoffs field researchers must consider when

implementing RDS. We recognize that allowing sample size to covary with sampling

fraction can make the results harder to interpret, so we conducted a second set of

simulations, following Gile (2011), holding sample size constant while varying the

number of nodes in the network to manipulate the sampling fraction. This second approach

covaries network density with sampling fraction. We report results that are consistent

between the two approaches and note a few differences in the results section. Furthermore,

we investigated large networks of up to 20,000 nodes and found that the results for these

large networks did not differ substantially from the results reported below.

To manipulate homophily in the population, we created two separate networks. One

network contained the entire target subgroup and the other network contained the rest of

the population. These networks were then merged using a random double-edge swap

that preserves the degree of each node (Maslov and Sneppen 2002). Different levels of

rewiring result in different numbers of crosscutting ties, and thus create different levels

of homophily. The target subgroup population proportion was held constant at p ¼ .20.

The networks ranged between zero and .75 homophily, where zero corresponds to the

homophily score when ties in the network are completely at random and the maximum

score of 1 corresponds to a group with no ties to other groups. Details of the calculation

and rationale are described in Heckathorn (2002).

To explore the effect of high and low relative mean degree for the target population, we

reallocated edges from one subgroup to the other while maintaining overall mean degree

and similar overall edge count. Due to the interdependence of network parameters and the

particular network generation algorithms used, it was impossible to reallocate edges in

these networks without also causing some variation on other parameters. We chose to hold

the node count constant while matching mean degree within groups across each network
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type as closely as possible. We permitted slight variation in the number of total edges as

long as this variation was less than one extra edge per node. For the low mean degree

networks, the mean degree for the nontarget group was 1.5 times higher than the mean

degree for the target group. In the high mean degree networks, the mean target group

degree was 1.5 times the mean nontarget group degree. We collected simulated samples

from each of the three levels of mean degree differences for each of the three network

types. Table 2 shows the variation in the total number of edges for different levels of mean

degree difference.

As documented in Gile (2011) and Gile and Handcock (2010), bias in RDS estimate

increases with larger differences in mean degrees among groups. In other words,

estimates of variables that are strongly related to degree will exhibit much larger bias

than estimates of variables that have no relationship to degree. In order to select an

appropriate degree ratio for our simulations, we estimated degree ratios for five public

health RDS studies: two RDS surveys of Latino MSM (Ramirez-Valles et al. 2005) and

three U.S. sites of the SATH-CAP studies (Iguchi et al. 2009). We examined 14 variables

for each of the Latino MSM studies, resulting in 37 degree ratios per study; we examined

19 variables for each of the SATH-CAP studies, resulting in 48 degree ratios per study.

We found that only three of the 218 degree ratios examined were greater than 2.

Furthermore, we found that only SATH-CAP’s RTI site has more than 25% of its ratios

greater than 1.5. Over all studies and variables, 50% of ratios were less than 1.2, 88% of

the ratios were less than 1.5, and 97.7% were less than 2. We conclude from this analysis

that a significant majority of network size ratios will be less than 1.5 in public health

RDS studies, and that virtually all network size ratios will be less than 2. Therefore, our

simulations employ a ratio of 1.5 to be representative of the majority of ratios a typical

RDS public health study will observe.

Simulation Parameters

We simulated with- and without-replacement RDS using both branching and

nonbranching referral processes. Each simulation started from six randomly selected

seed nodes and each seed was granted a recruitment quota of c. These seeds form the first

wave of recruiters. Each recruiter recruited up to c of their available neighbors and each of

these new recruits was allocated c successful recruitments for the next recruiting wave.

In the without-replacement samples, nodes were considered available for recruiting only

if they were not already in the sample. Each recruiter selected their recruits at random

from their available neighbors until either c new recruits were generated or all available

neighbors were recruited. Recruitment was asynchronous and the order of execution of

recruitment privileges was randomized by node.

Table 2. Differences in Group Mean Degree for Target and Nontarget Groups

Target Group Mean Target Non-Target Total Edges

Lower 12 18 42000
Same 16 16 40000
Higher 24 16 44000
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The recruitment quota was one for nonbranching chains (c ¼ 1) or three for branching

chains (c ¼ 3). We considered other quotas, including c ¼ 2, c ¼ 4 and c chosen

uniformly at random between 0 and 4, but chose to focus on the distinction between

branching and nonbranching samples as all branching samples were substantially similar

and recruitment quotas are not the main focus of this article.

Each sample began with six seeds selected uniformly at random from the nodes in the

network and chain recruitment continued until the target sample size was reached. In a

typical RDS field study, where sampling is without replacement, the sample size is the

number of people interviewed and equals the number of interviews and the number of

unique nodes visited. When simulating with-replacement RDS, the sample size

corresponds to the number of node visits (interviews) rather than the number of unique

nodes visited. In simulated with-replacement samples the number of nonduplicate nodes in

the sample ranged from about 60 to 99% of the sample size. As expected, the percentage of

unique nodes visited decreased as sampling size increased. The relationship is linear with

an average of 90% unique visits for sampling fractions of 0.05 and an average of 65% for

sampling fractions of 0.8. The pattern was substantially similar on all three network types.

We explored sampling fractions of 0.05, 0.1, 0.2, 0.4, 0.6 and 0.8. Sample chains

constructed without replacement occasionally terminate early when all nodes near the

recruiting nodes have already been recruited, and the probability of early chain termination

increases with the target sample fraction. To reach the target sample sizes, we adopted the

following procedure: if a simulated RDS sample has no “productive” recruitment chains,

but has not yet reached target sample size, add a single new seed to the sample, chosen

uniformly at random from the set of nodes not yet recruited. We applied this procedure

iteratively to all simulated samples that had failed to reach their target sample size, until the

total number of recruits þ seeds in these samples was equal to the target sample size.

Sample Filtering

The calculation of Heckathorn (2007) RDS estimates requires cross recruitment among the

different subgroups in the population. When networks contain very few intergroup ties

(i.e., have extreme levels of homophily), RDS samples drawn from these networks often

fail to capture any of these critical ties. We excluded samples with fewer than four

intergroup recruitments in each direction.

Though most samples could be collected from the initial seed cluster, some samples

required the addition of new seeds as described above. While many of these samples

succeeded after the addition of a few new seeds, some samples required the addition of

many seeds to reach the target sampling fraction. Since seeds are recruited with an

unknown probability in real-world RDS studies, their sample inclusion probability cannot

be known. Instead, the network size for seeds is treated as missing data and must be

imputed. In effect, this means that samples with a large proportion of seed nodes have a

large proportion of missing data. When the number of seeds becomes too large, RDS

estimation is inappropriate, so samples with more than five percent seeds were excluded

from the analysis.

The proportion of samples excluded by these criteria depends on sampling method,

sample size, and network structure. For instance, small samples from highly homophilous
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networks are less likely to capture cross-group ties. In less dense networks with

nonbranching samples, samples were much more likely to dead end, thus requiring

additional seeds. For the non-constant sample size simulations two to twelve percent of

samples at sampling fraction level .05 were excluded and most of the excluded samples

were drawn from the most homophilous networks. The exclusion rate rapidly decreases

with sampling fraction, dropping below one percent by 20% sampling fraction. We

attribute this to the small sample sizes at low sampling fractions. The constant sample size

simulations (n ¼ 500) had a more constant rejection rate, typically below five percent.

The two criteria for sample exclusion––fewer than four intergroup recruitments in each

direction and more than five percent seeds––are based on easy-to-recognize sample

characteristics that are observable by researchers conducting RDS studies in the field and

reflect the importance of cross-group ties to the RDS estimation process.

Simulation Results

We now present results of simulations that confirm and extend our analytical results. The

parameter space we are examining is extremely high dimensional, including sampling

fraction, network structure, relative mean degree of the target group, and homophily.

In this section, we first present the results about rv, which confirm our analytical results,

and then describe the bias of simulated RDS samples, which extend our analytical results.

We begin by looking at rv as a function of sampling fraction for without-replacement

RDS samples across different network structures and mean degree values for the target

group. Figures 1, 2, and 3 correspond to Poisson Random Graphs, Small-World Graphs,

and Preferential Attachment Graphs, respectively. In each figure, degree differential

changes from left to right, with a target group having a smaller mean degree than the rest of

the network on the left pane; same mean degree as the rest of the network in the center

pane; and a greater mean degree than the rest of the network in the right pane. See Table 2

for the absolute degree values of the target and nontarget groups in both cases. Finally,

within each pane, we have sampling fraction on the x-axis and frequency of repeated

sampling events on the y-axis. The multiple lines for each pane correspond to the

nonbranching (c ¼ 1) and branching (c ¼ 3) cases and the width of the 95% confidence

intervals for these cases, respectively.
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Fig. 1. Recruitment failures for Poisson Random Graphs
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In Figure 1, we can see that in all three panes the relationship between rv and s is linear,

as predicted by Theorem 3.13. The absence of any asymptotic behavior suggests that

neither group is exhausted in the course of sampling, so the results correspond to

Equation 66 in Theorem 3.18.

In Figure 2, we can see that in all three panes, the relationship between rv and s is

linear, as predicted by Theorem 3.14. The absence of any asymptotic behavior suggests

that neither group is exhausted in the course of sampling, so the results correspond with

Equation 66 in Theorem 3.18.

In Figure 3, we can see that in all three panes, the relationship between rv and s is

slightly sublinear when s , .2, and then quickly approaches linearity, as predicted by

Theorem 3.15. The absence of any asymptotic behavior suggests that neither group is

exhausted in the course of sampling, so the results correspond with Equation 66 in

Theorem 3.18.

Note that in all Figures 1–3 there is no significant difference between the branching and

the nonbranching cases, which confirms the independence of our analytic results in

Theorems 3.13–3.15 and 3.18 on the number of respondents recruited by each recruiter,

represented by the parameter k in Theorem 3.12.

We present a set of results that show the effect of homophily on rv. Our analysis does

not account for the effect of homophily on the frequency of repeated sampling events, so

the simulations serve as a useful counterpart for analyzing recruitment failures in high-

homophily regimes. In our work, we use the definition of homophily presented in

Heckathorn (2002).
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Fig. 2. Recruitment failures for Small-World Graphs
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Fig. 3. Recruitment failures for Preferential Attachment Graphs
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We find no significant difference in mean or the variance of the probability of repeated

sampling events, rv, across the full range of homophily values we explore (0 to .75) for

Poisson Random Graphs or Preferential Attachment Graphs, even when varying the target

group mean degree and the branching value. For Poisson Random Graphs, rv ranges

between 0.22 and 0.25 across the full range of homophily, and for Preferential Attachment

Graphs, rv ranges between 0.35 and 0.36 across the full range of homophily.

Figure 4 shows the relationship between rv and homophily, averaged across all values

of sampling fraction, for the Small-World Graph. In this figure, as in Figures 1–3, the

degree ratio changes from left to right, with a target group having a smaller mean degree

than the rest of the network on the left pane; the same mean degree as the rest of the

network in the center pane; and a greater mean degree than the rest of the network in the

right pane.

Figure 4 shows that for Small-World Graphs, homophily has an apparent effect on rv.

Initially, the branching and nonbranching cases start out with the same level of rv, but as

homophily increases, rv increases superlinearly for the branching case. The increase is

likely due to the high level of clustering in Small-World Networks. More clustered

networks have more within-group collisions even with a homophily of 0, and an increase

in homophily will only exacerbate the within-group collisions for these networks. In

contrast, Poisson Random Graphs and Preferential Attachment Graphs feature low levels

of clustering, and the effect of homophily on rv is negligible (, 5%) across the range of

homophily values up to 0.7. Overall, the effect of homophily on nonreplacement bias is

negligible compared to the effect of sampling fraction. High homophily does impact the

probability of capturing cross-group ties in an RDS sample and is an important

consideration in RDS survey design, but does not appear to contribute to the bias from

sampling without replacement.

We now present simulation results that show the effect of sampling fraction on overall

RDS bias. Sampling without replacement is only one factor that could affect the bias of an

RDS estimate. For instance, in a larger sample, we would find more repeated sampling

events, which may lead to increased bias, but also less dependence on initial conditions

(seeds), which may lead to decreased bias. Therefore, we investigate both overall RDS

bias and the part of it that is attributable to sampling without replacement. We run two

parallel sets of simulations: one sampling without replacement, as above, and a second on

the same network but sampling with replacement, so individuals can participate in a study

more than once. For clarity of visualization, we here focus exclusively on the branching

(c ¼ 3) RDS samples. We discuss nonbranching samples at the end of this section.

The figures below show both mean bias and sampling variability, which we define as the

range of the 95% confidence interval of the sampling distribution over the set of samples.

Figure 5 shows the mean bias and sampling variability for the Poisson Random Graph. The

three panels correspond to three levels of differential degree, with the target group having

smaller degree on the left pane, equal degree in the center pane, and higher degree on the

right pane. We use a legend to differentiate between samples drawn with (WR) and

without replacement (WOR).

There are three important observations to make based on these graphs: first, while the

expected bias in samples drawn with replacement is zero, the expected bias in samples

drawn without replacement remains small (less than five percentage points away from the

Barash et al.: Respondent-Driven Sampling: Testing Assumptions 63

Unauthenticated
Download Date | 3/14/16 12:59 PM



true value), even up to sampling fractions of 80%. Therefore, we can say that the effect of

violating the sampling-with-replacement assumption on the expected bias of RDS

estimates is five or fewer percentage points across the parameter range explored in this

study. Second, the mean bias and sampling variability for samples drawn without

replacement are nearly identical to mean bias and sampling variability for samples drawn

with replacement up to a sampling fraction of about 20%. Therefore, we can say that

sampling without replacement is not a major source of estimator bias in RDS studies for

sampling fractions under 20%. Finally, also across all three graph structures, we see a

nonlinear relationship between the variability of samples drawn with versus without

replacement. The variability of samples drawn with replacement shrinks to zero in the

limit of 100% sampling fraction (not shown in graphs). The variability of samples drawn

without replacement decreases and then increases: it follows the behavior of samples

drawn with replacement up to sampling fraction ,40%, and then increases rapidly, except

when the target group has higher mean degree. The reasons for the pattern will be explored

in a future paper.

We plot the mean bias and sampling variability for two other types of networks, Watts-

Strogatz and Power Law, in the figure in the supplemental data. The results for these types

of networks are substantially similar to the results for Poisson Random Graphs as shown in

Figure 5.

Nonbranching samples represent an idealized process that is not representative of

empirical RDS studies, but the simulations indicate mean bias for nonbranching
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Fig. 4. Recruitment failures by homophily for Watts-Strogatz Network
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without-replacement samples is very similar to the branching without-replacement

samples (not shown in graphs). The relationship between sampling fraction and the

sampling variability of nonbranching without-replacement samples is similar to that of

nonbranching with-replacement samples (not shown in graphs).

Branching samples are less prone to chain exhaustion than nonbranching samples on the

lower density graphs with mean degree of eight. Branching samples were able to reach their

target sample size from the initial six seeds but nonbranching chains often became stuck,

requiring many additional seeds to reach the target sample size on all network types. To

reach the highest levels of sampling fraction, hundreds of additional seeds were required.

Our sample filtering capped the allowable additional seeds at five percent of the overall

sample. On the more dense mean degree sixteen networks, nonbranching samples are able

grow as effectively as branching samples. Though not the main focus of this article, the

observed difference in robustness between branching and nonbranching samples highlights

the practical necessity of recruitment quotas greater than one for some network structures.

5. Discussion

The results above show the effect of sampling fraction, degree distribution, degree

differential and group size on bias in RDS studies, both specifically due to sampling

without replacement (in Figures 124), and overall bias from the true prevalence figures

(in Figure 5). We can make six general observations based on the results:

The density of repeated sampling events, rv, increases monotonically in sampling

fraction across network structures and degree differential. This increase is predicted by

our analysis, and is generally linear for Poisson Random Graphs and Small-World Graphs,

and slightly superlinear for Preferential Attachment Graphs. This increase suggests that

bias due to sampling without replacement increases steadily with sampling fraction.

Homophily has a small effect on rv outside of Small-World Networks, which have a

high level of clustering. Even for Small-World Networks, rv increases by less than

ten percent from homophily ¼ 0 to homophily ¼ .7. Theoretical analyses (Heckathorn

2002, 28) have shown that the standard error of an RDS estimate increases exponentially

with increases in homophily, so RDS is not a suitable sampling method for networks with

homophily above .7.

Overall bias remains small across the range of simulated parameters, less than five

percentage points for the highest sampling fractions. This suggests that, at high sampling

fractions, increased bias due to sampling without replacement is counteracted by other

factors (such as a larger sample size which usually results in a more diverse set of recruits).

Note that bias is essentially zero when the target group has the same mean degree as the

rest of the network, so many variables will exhibit minimal bias regardless of sampling

fraction. As discussed above, approximately 85% of variables in RDS public health studies

have degree ratios #1.5 and will therefore exhibit bias no greater than five percentage

points, and the remaining 15% may exhibit more extreme levels of bias. Researchers

should note the potential for more significant amounts of bias when extreme degree ratios

are observed in an RDS study.
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Both overall bias and sampling variability for samples drawn without replacement are

essentially identical to the respective quantities for samples drawn with replacement for

sampling fractions up to 20%. The implication of this result is that for sampling fractions

of up to 20%, violations of the sampling-with-replacement assumption inherent in the

Heckathorn 2007 RDS estimator can be considered negligible. This range includes RDS

studies conducted in large cities, such as the CDC NHBS study of IDUs in 23 large US

cities noted above, where the median sampling fraction was 2.3%, and studies of jazz

musicians in New York City and San Francisco, with a maximum sampling fraction

between the cities of 1.6%. For sampling fractions in the 20% to 40% range, the sampling-

with-replacement assumption is a modest source of bias, with a magnitude of no more than

two percentage points across the range of simulated parameters. Such cases may arise

when RDS is employed in small towns, as in the case from Connecticut described above.

Here, results should be interpreted with the potential for small amounts of bias in mind,

especially for variables that have a strong relationship with degree.

The simulated 95% confidence interval is nonlinear for the branching cases drawn

without replacement. The 95% confidence intervals for these cases shrink for sampling

fractions of up to 40% and then diverge, so at very high sampling fractions, the RDS

estimates for without-replacement branching cases for target groups with lower and equal

mean degree have very wide 95% confidence intervals.

Our results help map the bias and recruitment failure spaces of the Heckathorn (2007)

RDS estimates. Just as previous work (Heckathorn 2010) mapped design effect space, so

we describe a parameter space where the Heckathorn (2007) RDS estimates produce

different levels of bias. The bias is nearly constant in some parameters (homophily) and

highly nonlinear in others (sampling fraction), with minimal bias in the parameter ranges

of homophily , .7, and sampling fraction below 20%.

Our work has two simple implications for empirical RDS studies employing the

Heckathorn (2007) estimator: in order to minimize bias, keep sampling fraction below

20%, and avoid very high (. .7) homophily networks. Our study points to the importance

of presurvey ethnographic and field research to detect high levels of homophily and the use

of empirical research such as capture-recapture methods to calculate the sampling fraction.

We show that for small sampling fractions, RDS produces low levels of bias, but we do not

rule out the possibility of using alternative estimators for very large sampling fractions.

6. Limitations

The principal goal of this article is to examine the effect of violation of the sampling-with-

replacement assumption of RDS on bias of RDS population proportion estimates,

specifically the effect of this violation for studies with high sampling fractions. The

methodology of this article is a mix of analytic and simulation approaches. In this article,

we have chosen to focus on our goal and methodology rather than explore many possible

implications for RDS bias (and many possible methods); as a result, our analysis has

several limitations.

First, we only explore the violation of one RDS assumption––sampling without

replacement––and not the violation of other assumptions. Specifically, we do not explore

violations of the assumption of random recruitment, which we repeat here:
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Assumption 3.5 Respondents recruit as though they are selecting randomly from their

neighborhoods.

This assumption states only that respondents recruit as though they are selecting

randomly––not that respondents employ a truly random process when choosing

recruits. There are complicated or nonsystematic ways that may achieve unbiased

results without being truly random. At the same time, this assumption indicates that studies

where recruitment has a particular bias (e.g., all respondents recruit people of the same gender)

will produce biased estimates. This assumption is certainly worth examining, but is far beyond

the scope of this article. We are interested in exploring this assumption in future work.

Second, our analysis focuses on targets of recruitment, not sources. We do not consider,

for example, whether a respondent who tries to make multiple recruitments but fails

(because they have already been recruited) will get discouraged and stop trying to recruit

others. These questions are certainly worth investigating, but they are less analytically

tractable than the issue of multiple recruitment attempts. For example, we have derived

results about multiple recruitment attempts from assumptions about the underlying

network structure and sampling fraction. Common network structures have been studied

extensively in the literature analyzing social networks. Sampling fractions have been

determined in meta-analyses of RDS studies (Wejnert et al. 2012). In contrast, in order to

derive results about respondent behavior we would have to start with assumptions about

the enthusiasm levels and so on of participants in RDS studies, which to our knowledge

have not been explored in the RDS literature. Consequently, we think that a follow-up,

empirical study of RDS participants would be better suited to analyzing RDS assumptions

with respect to recruiter behavior.

Third, our analytic and simulation results examine the bias in the estimate of population

proportions and not the sampling variance of the estimate. In our simulations, the

difference between with- and without-replacement sampling variance increases with

sample size and with-replacement sampling has lower sampling variance. This contrasts

with Lu et al. (2012) who found less sampling variance in simulated without-replacement

sampling on an empirical online social network. These different findings suggest that the

relationship between sampling fraction and sampling variance may depend on currently

unidentified elements of network structure. Sampling variance is clearly an important

consideration that should be addressed in future work.

Fourth, we do not analytically link the proportion of repeated sampling events to the

magnitude of the bias. The proportion of repeated sampling events is a way to quantify the

divergence between with- and without-replacement sampling. We demonstrate both

analytically and in simulations (in Figures 1–3) that the density of repeated sampling

events (proxied by the proportion of failed recruitments in the simulation section)

increases smoothly with the sampling fraction. The important analytic result is that this

quantity grows in a bounded and predictable way as sampling fraction increases.

Unfortunately, there are many possible sources of bias in RDS studies, including recruiter

activity, recruiter preference for certain recruits, and failed recruitments. Most of these

sources of bias are not analytically tractable. We are able to demonstrate via simulation

that the increase in the proportion of repeated sampling events is associated with an

increase in the bias from sampling with replacement. Our simulation results demonstrate a

clear positive and near-linear relationship between the proportion of repeated sampling
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events and sampling fraction and a clear positive relationship between sampling fraction

and the magnitude of estimate bias when the subgroups in the target population have

different mean degree.

Finally, we do not study empirical social networks of RDS participants. Such networks

are extremely hard to collect: most RDS studies ask participants about the number, but not

the exact identity, of their friends. This lack of specificity is crucial for privacy reasons; at

the same time, it leads to a lack of knowledge about the empirical networks surveyed via

RDS. There is no prima facie reason to assume the networks typically targeted by RDS

surveys are structured in a fundamentally different way than fully mapped social

networks; at the same time, empirical networks may have unusual features that lead to bias

in RDS studies. For example, one individual may serve as the only broker between two

otherwise physically and socially separated groups, such as one dealer connecting two

groups of drug users in different neighborhoods. Such “chokepoints” would be extremely

problematic for RDS studies, and yet for the abovementioned reason there are no empirical

studies to our knowledge that investigate the frequency of these network structures in RDS

studies. We hope that in future work we can study the question of whether additional,

noninvasive questions during RDS studies can help researchers identify chokepoints or

other unusual network structures in the field without violating participant privacy.

Ultimately, we would like to come up with recommendations for researchers to dynamically

adjust their sampling strategy when they encounter an unusual network structure, so as to

minimize bias in the resulting RDS sample.

7. Conclusion

Our analysis has described a large parameter space of possible conditions for RDS studies,

and the levels of bias across this space. We have shown that for a wide range of parameter

values, mean bias remains extremely low, and the biased estimate is not significantly

different from the true value under conditions which reasonably correspond to empirical

RDS studies. We have also shown that higher levels of bias due to sampling without

replacement do not necessarily correspond to higher levels of overall bias; on average,

sampling without replacement is neither the only nor the dominant factor affecting RDS

estimates.

Our results suggest that bias is negligible for sampling fractions up to 20%, a case which

fits most studies of hidden populations in large urban settings, for example, the

abovementioned studies where sampling fractions range from 0.6% to 8%. In the 20–40%

range, the magnitude of bias depends on other parameters, especially whether the variable

of interest is correlated with degree. Bias may be as much as two percent if the degree ratio

is 1.5; if the variable is independent of degree, bias is again negligible. This case fits

studies in small towns or sparsely populated rural areas, or studies in large cities with very

large sample sizes. In the 40% to 80% range, the biases of the RDS estimator and the raw

sample proportion tend to be in opposite directions, so an estimate in between these two

will be less biased. Gile’s (2011) successive sampling approach is a principled method

to mediate between the RDS estimator and the raw sample proportion as a function of

sampling fraction. Finally, at very high sampling fractions, the sample is best treated as a

census rather than a sample, so no statistical estimation process is required. This fits
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studies conducted either in very sparsely populated areas, or studies that are sufficient to

saturate the target population.

An implication of these suggestions is that population-size estimation should be

incorporated into all RDS studies; otherwise the most appropriate mode of analysis cannot

be identified. A further implication is that population estimation should involve

quantitative procedures such as capture-recapture or network scale-up, because estimates

even from knowledgeable key informants can be wrong by more than an order of

magnitude (Heckathorn et al. 2002).

This article introduced a new theoretical concept for analyzing bias in RDS analyses, a

repeated sampling event, in which a peer-recruitment attempt fails because the respondent

has already participated in the study. Analysis of the density of these events provides a new

conceptual tool for analyzing bias in RDS analysis. It also has implications for research

design. For example, in sparse networks where branching is precluded (i.e., respondents can

recruit only a single peer), recruitment chains tend to die out quickly, so attaining a desired

sample size may involve employing very large number of seeds; in extreme cases, more

than half the sample may be seeds. Because RDS seeds contribute less information to the

sample than a peer-recruited participant but cost the survey the same in terms of time

and participation incentives, the efficiency of the project may be severely compromised.

Furthermore, if a significant proportion of the sample is composed of seeds, RDS weights

are not appropriate for calculating point estimates. However, if branching is permitted (e.g.,

allowing each respondent to recruit three peers), the number of seeds required to attain a

specific sample size is dramatically reduced, thereby increasing the efficiency of the study.

Hence, though we confirmed previous findings that branching can increase a study’s design

effects under some conditions (Goel and Salganik 2009), or have trivial effects under others

(Heckathorn 2002), we also identify a compensatory benefit from building branching into

a research design: in sparse networks, it can greatly increase a study’s efficiency.

A final implication of the study is to demonstrate the importance of exploring a large

parameter space when quantifying bias in RDS studies, for studies which explore only

limited regions may produce misleading results, especially if the region investigated fails

to encompass the full range of RDS studies reported in the literature. We explore sampling

fractions between five percent and 80%, homophily between 0 and .7, and various network

structures and degree distributions to produce results that can provide practical insight

about the impact of nonreplacement bias on RDS estimates.

The supplemental data is available at: www.dx.doi.org/10.1515/JOS-2016-0002

Appendix: Relating This Analysis to RDS Work Previously Published in JOS

Implications of Violation of Sampling With Replacement for Volz-Heckathorn Estimator.

The Volz-Heckathorn estimator relies on a model of chain-referral sample as a random

walk on a network. In the case of sampling with replacement, this model is accurate, and

the random walk is a Markov Process, which in equilibrium occupies a node with

probability proportional to degree (Salganik and Heckathorn 2004). However, in the case

of sampling without replacement, the model is inaccurate: instead of being a random walk
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on a network, the RDS sample is a self-avoiding walk (SAW) on a finite network. Since the

network is finite and the SAW may not by definition visit a node more than once, in

equilibrium the probability of it occupying any node approaches 0. In this case, we can no

longer apply the arguments in Salganik and Heckathorn (2004), but must propose another

model of RDS as a self-avoiding random walk.

By definition, an RDS sample is a finite-size chain-referral sample, in which no

individual may be recruited more than once, drawn from a larger (but still finite) network.

Thus, we can formalize RDS as a length jRj SAW on a network of size jPj. This SAW

corresponds to a reducible Markov Process MPWOR on the set of nodes in R, where each

state is a node and transitions between states correspond to recruitments. Note that for this

reducible Markov Process, no state may have more than one incoming transition from

another state. The reducible Markov Process has a number of differences to the irreducible

Markov Process MPWR, which models sampling with replacement. However, both

processes may be encoded as transition matrices, and we can compare the transition

matrices to measure the extent of bias due to sampling with replacement.

We can construct an incidence matrix M for the network, where for any individuals i, j

in the larger population P, Rij ¼ 1 if i and j are connected, 0 otherwise. This matrix gives

the equilibrium transition probabilities for MP WR. Indeed, we can construct a transition

matrix M WR where for any individuals i, j in P, M WR
ij ¼ 1 if i recruited j into the chain-

referral sample with replacement modeled by MP WR, 0 otherwise. This matrix will

approximate M in the sense that, for some node i, the larger i’s in-degree ð
P

i MijÞ, the

more likely and more frequently will i be recruited in the chain-referral sample ð
P

i M WR
ij Þ.

Similarly, we can construct a transition matrix M WOR where for any individuals i, j in P,

M WOR
ij ¼ 1 if i recruits j to participate in the RDS study, and 0 otherwise.

Note that if no individual is ever recruited more than once in the course of the chain-

referral process modeled by MPWR, then M WOR ¼ MWR. However, even a single repeated

sampling event can introduce a chain of differences between the two transition

matrices––for example, let A be a with-replacement sample wherein i recruits j who

recruits k who recruits i who recruits l. Let B be a repeated sampling sample wherein i

recruits j who recruits k, and then the sample ends. The corresponding transition matrices

would look as follows:

i j k l

i 0 1 0 1

j 0 0 1 0

k 1 0 0 0

l 0 0 0 0

A

i j k l

i 0 1 0 0

j 0 0 1 0

k 0 0 0 0

l 0 0 0 0

B
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Still, by definition any atomic (cell-level) differences between MWOR and MWR are due

entirely to repeated sampling events, and so we can operationalize the bias due to sampling

with replacement as the difference between the two matrices.
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Classifying Open-Ended Reports: Factors Affecting the
Reliability of Occupation Codes

Frederick G. Conrad1, Mick P. Couper1, and Joseph W. Sakshaug2

A source of survey processing error that has received insufficient study to date is the
misclassification of open-ended responses. We report on efforts to understand the
misclassification of open occupation descriptions in the Current Population Survey (CPS).
We analyzed double-coded CPS descriptions to identify which features vary with intercoder
reliability. One factor strongly related to reliability was the length of the occupation
description: longer descriptions were less reliably coded than shorter ones. This effect was
stronger for particular occupation terms. We then carried out an experiment to examine the
joint effects of description length and classification “difficulty” of particular occupation
terms. For easy occupation terms longer descriptions were less reliably coded, but for difficult
occupation terms longer descriptions were slightly more reliably coded than short
descriptions. Finally, we observed as coders provided verbal reports on their decision
making. One practice, evident in coders’ verbal reports, is their use of informal coding rules
based on superficial features of the description. Such rules are likely to promote reliability,
though not necessarily validity, of coding. To the extent that coders use informal rules for long
descriptions involving difficult terms, this could help explain the observed relationship
between description length and difficulty of coding particular terms.

Key words: Survey processing error; coding error; occupational classification.

1. Introduction

Survey responses are imperfect measures. The origins and implications of response error

are increasingly well understood (e.g., Sudman et al. 1996, ch. 2; Tourangeau et al. 2000,

ch. 1) but the vast majority of this knowledge concerns closed-form questions,

i.e., questions that present response options which respondents select to report their

answers. However, essential information for official statistics is derived from open res-

ponses, i.e., answers reported in respondents’ own words. These open responses are coded

– assigned to categories – in order to be quantified, and the coding process can introduce
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error to the survey data. Coding error does not necessarily mean that a code is

“inaccurate.” Responses can vary in the degree to which they belong in particular coding

categories, i.e., category membership is graded (e.g., Barsalou 1985), so simply assigning

a code to an open response can involve error because the fit is not perfect, even if there is

no better fitting code.

One domain in which open responses are essential is the measurement of occupation.

The coding of occupation has many unique features compared to coding other types of

open responses: coders must assign a description to one of hundreds of possible codes

rather than just a handful, the open answers are short and factual rather than long and

attitudinal, and occupation coders who make this their profession become very skilled.

The data about occupation that are produced through the coding process are commonly

used to study various phenomena occurring in the labor force, including sex segregation

(Anker 1998), work-related injuries (Cawley and Homce 2003; Layne 2004; Reichard and

Jackson 2010), health-related exposures (Kromhout et al. 1993; Hammond et al. 1995;

Kauppinen et al. 2000), wage inequality (Lettau 2003; Heywood and O’Halloran 2005;

Bjerk 2007), mobility (Shniper 2005; Moscarini and Thomsson 2007), and occupational

projections (Rosenthal 1992).

Despite differences in the details of coding open responses in different domains, there

seem to be certain commonalities in the ways coders contribute to overall error. Coder

error is a type of processing error (Biemer and Lyberg 2003, 234–241) that is introduced

by coders interpreting respondents’ verbalization of their thinking. By some measures, it

can substantially inflate other sources of error. For example, in a study of time use, Sturgis

(2004) demonstrated that correlated coder error – analogous to interviewer variance –

nearly doubled the size of standard errors on average, across ten activity categories with

a maximum inflation factor of 3.36. Classification of open reports may be compromised

because, for example, coders may fail to consider key information such as the size of

different categories and, thus, the probability of membership. Base rates are just one

consideration when all else is equal or there is no way to choose between alternative

classifications. Alternatively, the quality of coding may be degraded because the coding

categories and the rules for using them are too rigid to adequately address the ambiguity

inherent in people’s descriptions; for example, respondents’ descriptions may fit well

into more than one category or may not fit well into any category but must be assigned to

one nevertheless.

There are various techniques for coding open-ended responses into different categories.

The majority of these techniques can be classified into three distinct groups: manual

coding, computer-assisted coding, and automated coding. In manual coding, respondents

provide their response in free text and coders assign codes based on a standardized

classification system. In computer-assisted coding, coders provide codes by means of

assistance dictionaries, which provide lists of possible answers for the coder to choose

from (Bushnell 1995; Lyberg and Kasprzyk 1997). In automated coding, the software

codes some open-ended responses without human intervention, and manual (or computer-

assisted) coding is used to code the unresolved balance (Lyberg and Dean 1992; Macchia

and D’Orazio 2001; Esuli and Sebastiani 2010).

Using occupation as an example, in the current work we explore how (1) the charac-

teristics of respondents’ open-ended reports – in particular the length of the reports and
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the difficulty of classifying descriptions that include particular words – and (2) the practices

of coders may affect the quality of computer-assisted coding of open-ended answers.

The occupation coding task that we study here involves assigning respondents’

occupation descriptions, collected from open-ended reports of their occupation and duties,

to categories in the US Census occupational classification system, which is derived from

the Standard Occupational Classification System (SOC) and has been updated several

times. The SOC is one of several standard classification systems established by the US

Office of Management and Budget, and is used to publish comparable occupational data

for statistical purposes across the U.S. federal statistical agencies. The data set used in this

study involved codes from the 1990 Census system, derived from the 1977 SOC. The 1990

Census system included 501 detailed categories, expressed as three-digit codes, 13 major

occupation groups, expressed as two-digit codes, and six summary groups, expressed as

one-digit codes. There are some differences between the 1977 SOC and the most recent

version, the 2010 SOC. The number of major occupation groups has increased from 21 to

23, and the number of detailed occupations has increased from 662 to 840. A detailed

description of the revision history and process can be found online (Bureau of Labor

Statistics, 2014).

While occupation is one important domain in which the data are based on coded open-

ended responses, coding open responses is ubiquitous throughout survey research,

producing important data in domains ranging from public opinion (e.g., most serious

problems facing the country) to time use (activities) to academic fields of study. To the

extent that the coding of open responses across domains and question types is similar to the

coding of occupation descriptions, what we learn about occupational coding may inform

how we think about coding open responses in other applications.

2. Classification and Measurement

The coding process may introduce error in several ways having to do with (1) the “in or

out” requirement of a formal classification system in a world where categories are ever

changing and where membership is a matter of degree, (2) lack of category size

information to help inform coder decisions when a description seems to fit two categories

equally well, (3) ambiguity of particular words that respondents use in occupational

descriptions, and (4) length of occupation descriptions.

In everyday classification tasks, people can modify categories to accommodate

instances that are atypical. However, formal classification systems are more rigid than this.

In a demonstration of the flexibility of everyday categories (as opposed to a formal

classification system like the SOC), Kunda and Oleson (1995) found that when presented

with descriptions of cases that deviate from the stereotype (e.g., an introverted lawyer),

under the right circumstances people preserved the integrity of the main category (lawyer)

by creating subtypes (a category for introverted lawyers). Under other circumstances, they

redefined the main category to include deviant cases (lawyers in general were rated as

more introverted than they were if no deviant case had been presented). A coder using an

established classification scheme would not be able to accommodate the deviant case in

either of these ways, but instead would have to assign it to a category despite the poor fit.
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When respondents’ answers are ambiguous, that is, could be assigned to more than one

category, coders may systematically assign answers to the wrong category. Tversky and

Kahneman (1983) found that if an instance sounds like it could belong to the conjunction

of two everyday categories (e.g., a feminist bank teller) but could also be assigned to one

of the individual categories (bank teller), people are more likely to judge such instances

to be members of the conjunction than the individual category. They call this the

conjunction fallacy because there are more bank tellers than feminist bank tellers in the

world, yet people seem to give more weight to similarity of the description to the category

prototype (sounds more like a feminist bank teller than a bank teller) than to the size of

the category (there are more bank tellers than feminist bank tellers). In another

demonstration of this general tendency, Tversky and Kahneman (1974) found that people

were more likely to judge someone who seemed like an engineer to be an engineer than

to be a lawyer, even though they were told that, in the experimental scenario, there were

more lawyers than engineers. They call this the representativeness heuristic and, while it

can be a useful guideline in making some classification judgments, it desensitizes people to

the base rate or size of categories when making these judgments. Coders may be similarly

oblivious to category size and probability of membership when faced with descriptions that

sound like particular categories, even if instances of these categories are relatively rare.

This is not to say base rates and probability of category membership should be the only

consideration that informs a coder’s decision. If a description could fit equally well into two

categories with very distinct meanings – for example, “secretary” could refer to a senior

official of an organization or to an office assistant – a coder could be instructed to choose

the category for which the odds of membership are greater rather than flipping a coin. There

are more office assistants than senior officials in the world so in the absence of any

additional information, considering the size of the categories would be a rational – if

imperfect – strategy.

By another view, it is not flaws in coder decision making as much as the descriptions

themselves that lead to lower-quality codes. Within a particular domain, some terms in

respondents’ descriptions may be inherently hard to code, for example, they may fit poorly

into existing categories or may fit well into multiple categories. Coders may address this

by developing specialized rules for classifying descriptions with problematic terms (see,

e.g., Hak and Bernts 1996; Martin et al. 1995). While the use of such rules should increase

agreement among coders, this could well happen without any increase in the “validity” of

codes. It could be the case that a rule leads to incorrect – but consistent – codes on some

occasions because it may lack the means to adjust the code on the basis of subtle changes

in context. Such rules may actually lower agreement among coders if they are not defined

by the group or, for other reasons, not unanimously endorsed. This is particularly likely

when rules are not explicitly documented. Furthermore, one rule may conflict with another

even though both seem to apply to a particular case; this too might lead to disagreement.

In addition to the inherent difficulty in coding certain terms, the length of respondents’

answers may also affect how well they are coded. Couper and Conrad (1996) asked a

national sample standard questions about their occupation (“What kind of work do you do,

that is, what is your occupation?”) and duties (“What are your usual activities or duties at

this job?”) from the Current Population Survey (CPS), and asked half of the sample an

additional question about their job title (“What is your job title?”). When coders were able
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to consider the extra response in their coding decision, their agreement with each other was

lower than when they only had the initial response to work with. Cantor and Esposito

(1992) report that coders prefer less information: they asked coders to listen to the

interviews and indicate where additional probes would have helped them code the

response. The coders virtually never asked for additional probes, suggesting they

recognized that longer descriptions are harder to code than shorter ones.

More information could harm coder agreement for much the same reason that in

everyday classification people prefer categories at intermediate levels of abstractness – a

concept known as the basic level (e.g., Rosch et al. 1976). The idea is that categories that

are neither too abstract nor too concrete are most useful, for example, “dog” (basic level)

versus “Welsh Terrier” (more concrete) or “mammal” (more abstract). Thus description

length may be a proxy for level of abstraction: longer descriptions will facilitate coding to

the extent that they refer to basic-level jobs but will confuse matters if they describe overly

specific categories.

On the other hand, longer descriptions are likely to be more specific than shorter ones –

more words probably convey more detail. Perhaps for this reason, longer open responses

are often assumed to be of higher quality than shorter ones across a variety of domains

(e.g., Andrews 2005; Smyth et al. 2009; Israel 2010). Moreover, according to the 1997

CPS Field Interviewers Manual, as well as the current manual (U.S. Census Bureau, 2013),

interviewers are told that

One-word responses to the question on occupation (for example, clerk, manager, nurse,

engineer, teacher) are usually far too general to be coded accurately. Whenever very

brief responses are given, probe to obtain a more specific response.

So, one can imagine agreement would be higher for longer, or at least more detailed,

descriptions: with more detail, there is less opportunity for two coders to interpret the

description differently.

2.1. Measures of Coding Quality

Just as in assessing the quality of closed responses, validity and reliability are generally

used to characterize the quality of open responses. However, the notion of validity is not as

straightforward when applied to coded open responses as it is with respect to closed

responses, at least for facts and behaviors such as one’s job title or one’s duties at work.

Validity of closed responses can be determined, in principle, by comparing the responses

to a gold standard such as a set of administrative records; with coded data, validity is

typically operationalized as agreement with an expert. (With automated coding, validity is

typically defined as matching an open response to text in a reference dictionary that maps

text examples to categories, e.g, Macchia and D’Orazio 2001). This has much of the

character of an agreement or reliability measure: a valid code matches another code that is

treated as the gold standard; if there is not agreement the response is considered not valid.

This lacks the potential for objective verifiability that is part of response validity for closed

(factual) responses.

Reliability is simpler in concept – agreement between two or more classifications of an

open response – but it is less definitive than a validity measure in that two or more coders
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can agree with each other without necessarily being “correct.” They can both be “wrong”,

assuming the correct category is known or is knowable.

3. Current Study

In the current study we focus on characteristics of respondents’ occupation descriptions

from the CPS that might affect the quality of codes. As noted above, the CPS descriptions

come from one question about occupation, “What kind of work do you do, that is, what is

your occupation?” and one about duties, “What are your usual activities or duties at this

job?” After filtering out “special-case” occupations for which direct mappings between

descriptions and codes are provided and “combined occupations” for which, again, direct

mappings between descriptions and categories are provided, coders are instructed to

consider both the occupation and duties responses together in assigning a single numeric

occupation code to the description (see U.S. Census Bureau 2014). Consider the following

example:

OCC – Credit Manager

DUTIES – Directing operation of credit department

In a case like this, the coder is instructed to combine the word “department” from the

DUTIES line with the content of the OCC line (“Credit Manager”) and code “Manager,

Credit Department.” Much of the instruction concerns direction on how to proceed beyond

an impasse. For example, if the occupation and duties lines contain contradictory

information, coders are taught to use whichever is more specific. It is our assessment that

the training about the actual coding decision is not more detailed than instructions of this

sort: coders need to be very familiar with the occupation categories and use their judgment

about which words are important to consider and which ones are not. In the end, the coding

task relies more on coders’ knowledge of the job definitions and their aptitude for

determining which parts of the description to consider than on particular training in the

coding procedure. Although coders’ expertise in occupational classification is at the center

of the classification process, the coders searched electronic indices for occupation

categories corresponding to particular terms contained in the description by entering those

terms into a computer. The tool did not classify the description for the coder but returned

possible categories given the input. It was still the coders’ decision what category best fit

the description. Although not in place at the time of the current study, the Census Bureau

introduced an autocoder in 2012 that provided coders with suggested classifications for

particular descriptions.

The study we report has three parts. The first is designed to explore what characteristics

of occupation descriptions reduce coding reliability. We analyzed twelve months of CPS

occupation descriptions (March 1997 to February 1998); note that although these data

were collected and coded many years before the current article was written, the Census

Bureau confirmed that they currently process and code open-ended responses in essen-

tially the same way they did in 1997–1998. These descriptions represent 32,362 cases,

each of which was independently classified by two coders. More specifically, about ten

percent of all industry and occupation (I&O) descriptions were double coded, that is,

independently classified by a second coder. This process was conducted for quality
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assurance (QA), not production purposes; that is, the original code was not affected by the

second code. Once the second (QA) coder assigned a code, the initial (production) code

was revealed, and the coder had to decide whether to change his or her code to the original

code (assuming a discrepancy) or refer the case back to the field for more information.

The first part of the study consisted of analyses of this data set, including the effects of the

length of descriptions.

Second, we investigated how characteristics identified in the first part of the study

jointly affect coding agreement. To do this, we created a data set of occupation

descriptions that varied systematically on several characteristics and asked pairs of coders

to classify them. The experiment explicitly tested the joint effect of coding difficulty of

particular words in the description and the length of descriptions. To do so, we created a

set of 800 occupation descriptions systematically varied on the following dimensions:

(1) Length: one, two, and three or more words

(2) Difficulty of “primary” word: easy versus hard

(3) Difficulty of “secondary” word: easy versus hard

(4) Order of primary word: first, not first.

The easy primary words were selected by taking the eight words from the QA dataset

with the highest agreement ratio. The eight words chosen were: secretary, cashier, driver,

cook, teacher, nurse, waitress, and carpenter. A similar process was used to select the hard

primary words (high ratio of disagreement to agreement), resulting in the following

selection: owner, operator, laborer, director, technician, clerk, supervisor, and

administrator. The secondary words were chosen using similar procedures, that is, high

ratio of agreement to disagreement and vice versa, conditioning on each of the eight easy

and eight difficult primary words first. This produced equal numbers of easy-easy, easy-

hard, hard-easy, and hard-hard word pairs, for example, “school nurse” would be an easy-

easy word pair. We then randomly selected existing descriptions from the QA data

containing these word pairs. While the QA data set contained a large number of

descriptions (over 30,000), there were some word pairs for which no description existed in

the data set. In these cases, we created new descriptions by adding or removing words from

descriptions that partially matched the word pair. For example, if the word pair “research

supervisor” was not found in a description but “laboratory supervisor” was, we used that

description, including the duties, but substituted “research” for “laboratory.”

These 800 descriptions were then seeded into the ongoing production coding process,

using the same procedures as regular CPS coding, but with all of the experimental cases

being flagged for QA coding. In this way we obtained two codes for each of the

experimental descriptions from coders who were blinded to which cases came from the

experimental corpus.

Finally, we examined the coders’ strategies and the kind of information they brought to

bear while performing the coding task. In this third part of the study, we asked coders

to think aloud while classifying occupation descriptions excerpted from the set created

for the second part of the study. More specifically, we selected 100 cases from the

experimental corpus, and observed four coders each coding 50 cases. Multiple-word

descriptions from the experiment just described were overselected as these tend to produce

higher levels of overall disagreement. The authors interacted with the coders while they
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were coding, asking them to think out loud about their decision-making process, and

probing for reasons for specific actions, roughly following the procedure outlined by

Ericsson and Simon (1993).

4. Results

The analyses are reported separately for each of the three parts of the study. In the first

part, which concerned coder agreement in the QA dataset, we first report descriptive

statistics about agreement and disagreement, then examine whether disagreement is

concentrated at certain digits in the occupation codes. This is followed by analyses of

disagreement by occupation category. Finally we examine how attributes of the

description, in particular the length of the description, affects agreement. Although the

second coders could change their classifications once the first coders’ classification was

revealed, our focus here is on the initial code assigned to each case by the two coders, a

cleaner measure of agreement. While the data we examined included both industry and

occupation descriptions, we only analyze agreement on occupation, that is, not industry

classification.

In the second part (coding experiment) we test whether any length effects observed

in the first part are replicated in the experiment. We also test whether length interacts

with the “difficulty” (agreement to disagreement ratio) of words in the descriptions. In the

third part (coder observation) we analyze the coders’ verbal reports, in particular,

monitoring for evidence of what knowledge and conventions they use to facilitate coding

of ambiguous cases.

4.1. Analysis of Agreement in Quality Assurance Data

Table 1 contains more details on the outcome of the double-coding process. A referral

implies that the coder has insufficient information to classify the case, and refers the case

back to the field for more information. Our main focus is on the 2,749 occupation

descriptions (8.5% of all double-coded descriptions) where both coders assigned a code

Table 1. Occupation code agreements, referrals and disagreements

Outcome Number
Percent of
all cases

Percent of
nonreferred

disagreements

Agreements: 27,518 85.0
Agreement on substantive code 23,116 71.4
Agreement on referral 4,402 13.6

One coder refers 2,095 6.5

Disagreements: 2,749 8.5 100.0
Disagreement on first digit 1,251 3.9 45.5
Disagreement on second digit 888 2.7 32.3
Disagreement on third digit 610 1.9 22.2

Total 32,362 100.0
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but they disagree. In 22.2% of these cases (n ¼ 610), the disagreements were relatively

trivial, involving only the last of three digits in the code. However, for the balance of cases

the disagreements are more severe, with 45.5% (n ¼ 1,251) involving the first digit of the

code, and a further 32.3% (n ¼ 888) involving the second digit. In other words, 3.9% of all

cases yield genuine and major substantive disagreements between pairs of coders. As

indicated before, agreement does not guarantee accuracy – both coders could be wrong –

but disagreement guarantees at least one coder is wrong – both cannot be right.

Given that the coders are evaluated on both speed and accuracy, we suspected that some

of the errors may be due to “slips” (e.g., Norman 1981) such as transpositions (e.g., 234

versus 243) or single-digit offsets (e.g., 123 versus 223). We found that simple

transposition errors account for a very small fraction (0.2%) of discrepancies. While one-

digit offsets account for almost seven percent of discrepancies, many of these may be

intended: at the first digit, the substantive difference between categories is large, for

example, legal vs. health care. The majority of the descriptions whose code differed by

one digit (247 out of 318) involved a discrepancy on the last digit. In the occupation

coding system this represents a minor distinction in the detailed coding scheme, for

example, between bartenders (code 434) and waiters/waitresses (code 435). We concluded

that slips of this sort are a negligible source of error in occupation coding.

Another issue we explored was whether disagreements were more likely to occur

between certain occupation groups. Restricting our focus to those cases where both coders

assigned a substantive code and disagreed on the summary group (i.e., the first digit), we

found that 29.4% of all these disagreements occurred between two summary groups:

(1) managerial and professional specialty occupations, and (2) technical, sales and

administrative support occupations. A further 14.8% occurred between (5) precision,

production, craft and repair occupations and (6) operators, fabricators and laborers.

However, groups (1) and (2) account for only 11% of all occupation codes, while (5) and

(6) account for 4.7%. So while there appears to be some clustering of disagreements, the

majority of disagreements occur between all summary (first-digit) occupation groups.

While some job categories may be particularly prone to disagreement, the descriptions

themselves may affect agreement. One attribute of the descriptions that is potentially

relevant to coding agreement is their length. Figure 1 shows the relationship between the

number of words in the occupation description (the combined responses to both the

occupation and duties questions) and the percent of all cases that result in disagreements
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Fig. 1. Length of occupation description and disagreement and referral rates; percent is out of 32,362 cases
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(including any disagreements, irrespective of the digit at which the disagreement takes

place) and referrals (where at least one coder referred the case back to the field) respectively.

It is clear from this graph that the disagreement rate increases with increasing length of

the occupation description. Another way to see this relationship is to compare the mean

number of characters and words for the agreements and disagreements. The mean number

of characters in descriptions where coders agreed is 15.3 (s.d. 8.69) compared to a mean

of 18.6 (s.d. 9.92) for disagreements, a statistically significant (t ¼ 23.82; p , .001)

difference. Similarly, the mean number of words is 2.10 (s.d. 1.20) for agreement cases

and 2.56 (s.d. 1.52) for disagreement cases, which is also a statistically significant

difference (t ¼ 20.56; p , 0.001). Given that referrals to the field simply requested

more information (although coders now indicate what information they need), these

results suggest that such an approach may actually have been counterproductive. One

explanation is that more words simply create more opportunity for coders to disagree; each

word is open to interpretation, and given the variability in how different people interpret

the same words, the longer the description the greater the chance of disagreement. Of

course there are situations in which more information can help clarify a description, for

example, if the response is “teacher” and there are only three possible codes “preschool

and kindergarten teacher,” “elementary and middle school teacher,” and “secondary

school teacher,” clearly more information could disambiguate the description. But if

descriptions are already appropriately detailed then more information – more words – can

muddle the picture unless they correspond exactly to the definition. A one-word

description may well be too abstract (above the basic level) to be reliably classified, so

additional words may help. However, as more words are provided – unless they are very

similar to the actual definition of the job category – they are likely to confuse coders.

These results concur with Couper and Conrad’s (1996) findings mentioned at the outset:

they administered the standard CPS occupation and duties questions and then asked half

of the sample an additional question about job title. The first-digit coder agreement rate

for the standard CPS questions was 86.4% while that for the group asked the additional

question was 82.1%. One explanation offered for this finding was that the addition of the

job title question reduced the amount of information provided in the occupation

description (combined responses of occupation and duties). In fact, the opposite occurred;

when job title was asked before the occupation and duties questions, the occupation

description was significantly longer than when job title was not asked (23.5 versus 18.0

characters). Furthermore, the length of the occupation description was negatively

associated with coder agreement. For example, the average length of the occupation

description was 20.5 characters when the coders disagreed on the first digit of the code, but

17.5 when they agreed on the code.

Similar results are presented in an unpublished report (Westat/AIR 1989): The coder

agreement rate on summary (first-digit) occupation group using the standard CPS

questions was 88%, but only 75% when additional job identification questions were asked.

More specifically, the study compared agreement when the standard CPS questions

(occupation and duties) were asked to agreement after two additional questions, including

one job title probe about the identity of the respondent’s job (“What was : : :’s job at

[organization name]? If necessary, probe: What was : : :’s job title at [organization

name]?”) were asked. While it is not clear from the report how often the probe was
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actually administered in this experimental condition, the effect of these extra questions

could only have been to increase the length of the description and amount of information

compared to the standard CPS approach. This again lends support to the finding that the

provision of additional information (either in longer descriptions or through additional

questions or probes) is associated with lower levels of coder agreement. These consistent

findings that appear to run counter to common practice (seeking more information in the

case of uncertainty or disagreement) are certainly worth further exploration.

To elaborate further on the length effect, we speculated that length may interact with

particular occupations (or words used to describe them) in affecting agreement. For

example, some occupations may be easily described using a single word (e.g., waiter), and

adding words to the description may only serve to muddy the decision. On the other hand,

some occupations may be inherently complex, and cannot be described adequately using

only one or two words.

To test this, we separated the QA data file into agreement cases and disagreement cases,

and then measured the frequency of the words in each set of descriptions. We found that

words such as “administrative” were three times more likely to appear among the

disagreement cases than the agreement cases (a ratio of 3.16). Table 2 provides a list of

words with the highest disagreement to agreement ratio, and those with the highest

agreement to disagreement ratio. Thus, for example, when the word “waitress” appears in

the occupation description, there are over 18 coder agreements for every disagreement.

The words for which the disagreement ratio was highest are clearly more abstract and

general than the words for which the agreement ratio was highest. The more abstract

a term, the larger the number of legitimate interpretations.

Given that both length and the presence of certain words affected the likely coder

agreement, we sought to examine the combined effects of these two factors. We found this

difficult to do as some words (e.g., “assist”) rarely occurred alone, while other words (e.g.,

“waiter”) rarely occurred in combination with other words. However, an examination of a

set of selected words supports the possibility of an interaction effect. For example, when the

word (or part of word) “manage” appears in the description, coder agreement declines with

increasing length of description. On the other hand, coder agreement is higher when the

word “operate” appears with more words. Unfortunately, the QA data set was not perfectly

suited to this kind of analysis. In particular, the data set did not contain enough comparable

descriptions that were both long and short and involved the same easy (high agreement

ratio) and difficult (low agreement ratio) words. To address this issue we carried out an

experiment, which allowed us to control the characteristics of the descriptions.

Table 2. Words with high ratios of disagreement to agreement and agreement to disagreement (ratios in

parentheses)

High disagreement to agreement ratios:
Administrative (3.16); services (2.76); research (2.63), assist (2.34); maintenance
(2.16); administrator (2.15); general (2.11); service (2.03)

High agreement to disagreement ratios:
Waitress (18.54); registered (8.24); guard (6.45); carpenter (6.34); electrician (5.24);
secretary (5.19); accountant (5.16)
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4.2. Occupation Coding Experiment

The results from the experiment confirmed our earlier hypothesis that the length effect

depends on the presence of certain words. When the primary word is easy, longer

occupation descriptions (three or more words) decrease coder agreement, but when the

primary word is difficult, longer descriptions were coded with marginally greater

reliability. This is illustrated in Figure 2. When the interaction term is included in a logistic

regression model, the model is statistically significant (Wald chi-square ¼ 10.8, d.f. ¼ 3,

p ¼ 0.012) and the interaction term marginally so (Wald chi-square ¼ 2.74, d.f. ¼ 1,

p ¼ .098). The secondary words’ difficulty had no impact on coding reliability.

While the experimental results enabled us to elaborate on the earlier finding regarding

length of occupation description, they provide little insight into why this pattern occurs.

Our intuition was that we might gain some insight by examining coders’ thinking while

they make their classification decisions. Thus the last step in our investigation was to ask a

small number of coders to think aloud while coding a small number of the experimental

descriptions.

4.3. Coder Observations

All four coders reported following specialized coding rules that pertained to descriptions

with specific characteristics or that included specific terms. The coders could not produce

any of these rules in writing, nor could they provide a clear rationale for the rules or

comment on their origin. These rules tended to be concerned with superficial aspects of the

descriptions, rather than the concepts behind the relevant occupation or the logic of

the overall classification system. Such rules are likely to increase coder agreement to the

degree that they are followed by all coders on all occasions. However, there is no reason

that they should improve validity, given their atheoretical character, and in fact their use

may contribute to correlated coder variance (Martin et al. 1995; Sturgis 2004).

One of the rules that coders reported using could help to explain the interaction between

length and difficulty that we observed in the experiment:

When multiple occupations and multiple duties are described, select the occupation that

corresponds to the duty listed first, even if it is not the first occupation.
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Given the following description, this rule would dictate that the case should be coded as a

driver: although “driver” is listed second in the occupation description, the corresponding

duties (“delivery”) are listed first.

OCC: COOK, DRIVER

DUTIES: DELIVERY, COOKING

If we assume that occupation descriptions with multiple occupations and duties are longer

than descriptions with only one occupation, using such a rule could increase reliability for

long descriptions, irrespective of the inherent difficulty of their component words. In contrast,

for descriptions with a single (shorter) occupation, the rule does not apply; descriptions

with difficult terms will therefore be less reliably coded than those with easy terms.

If such a rule is consistently applied it will improve reliability, but it may well degrade

validity: in the CPS interview, respondents are first asked about their occupation, then about

their duties in that occupation. This could lead to identical occupation and duty answers, which

respondents might feel is uncooperative in the sense of Grice (1975). To avoid redundancy

(i.e., provide different answers to the different questions), respondents may simply reverse the

order of the duties relative to the occupations, irrespective of which duty best describes their

occupation. Thus the order of the duties may have little substantive meaning.

Another frequently mentioned type of rule involves directly coding specific terms:

If the word “secretary” appears in the occupation line, code to secretary and ignore all

other information.

The rule would require that the following description be coded as secretary, regardless of

the other information it contains:

OCC: SECRETARY, CUSTOMER SERVICE ADVISOR

DUTIES: BILLING CUSTOMERS, SCHEDULING SERVICE, ADVISING

This rule seems to be given priority over other rules, so even though the first rule for

multiple occupations and duties could apply here, the direct coding rule for secretary is

applied. In other cases the priority is less clear. For example, one rule was:

If you see “assistant anything,” drop the “assistant” and code to the other word.

But another rule stated

If you see “teacher’s assistant,” drop the “teacher” and code “assistant.”

Yet another rule applied to “assistant to : : : ,” in which case the coder was to look at the

duties rather than the occupation line. Hence, the rules themselves may be contradictory

under certain circumstances. Furthermore, the above suggests that the rules depend on the

order in which the words appear in the occupation description.

5. Conclusions and Implications

The current study of occupation coding produced three main findings. First, we found that

longer occupational descriptions were less reliably coded than shorter ones. The pattern
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appeared to depend on the particular occupation terms involved. Second, for easy

occupation terms longer descriptions were less reliably coded, but for difficult occupation

terms longer descriptions were slightly more reliably coded than short descriptions.

The third main finding was that coders rely on the use of arbitrary coding rules based on

superficial features of the description. It is possible coders’ use of one of these rules – the

rule for coding descriptions with multiple occupations and duties – could explain the

interaction of length and difficulty observed in the experiment because the rule is most

likely to be applicable to longer descriptions, making the difficulty of the words in those

descriptions less important than in shorter descriptions. While such rules are likely to

promote the reliability of coding, they are unlikely to improve validity. Although the rules

are likely to be specific to a particular survey operation, the general phenomenon seems to

be widespread (Hak and Bernts 1996; Campanelli et al. 1997).

We see several areas where concerted effort might directly improve the accuracy of

coding in most survey operations. The first involves the training for interviewers and

coders. The interviewers (who collect the occupation descriptions) can become more

skilled at eliciting descriptions that are not unnecessarily long or overly specific,

particularly for easy occupation terms. This should increase intercoder reliability and

reduce the effect of length of description (as it was most problematic for descriptions

containing easy terms). Concerning coders, if all coders are regularly exposed to a set of

cases producing high disagreement (or low quality by some other measure), the group can

discuss these cases and reach consensus on how to code them based on sound, theoretical

reasons. This should increase agreement for descriptions that would previously have led to

different codes from different coders. In addition, the informal coding rules of the sort we

observed should be carefully evaluated and, if deemed to improve valid classification,

should be formalized and made explicit; coders should be instructed to use them

consistently. It should be possible to identify and document exceptions and develop ways

to resolve conflicts among rules. Rules that are not found to improve the validity of

classification should be explicitly discouraged. In fact, since the time of our coder

observation in which we observed the use of many informal rules, some of these rules

have been made explicit as “Job Aids” in the coder instructional materials (U.S. Census

Bureau, 2014).

A second area ripe for improvement concerns the occupational coding software system

used by coders. The CPS coding system in use when we observed coders suffered from

numerous usability problems that could be identified and fixed with proper usability

evaluation. As with any software, usability engineering can greatly improve the speed,

accuracy and satisfaction of use. This is important because the way in which the software

provides results from searches to coders could facilitate the application of incorrect rules.

The appropriate rules used to resolve complex or ambiguous cases could be formally built

into the software system.

Similarly, a more usable and flexible coding system might allow coders to assign a

description that seems to belong to more than one job category to all appropriate

categories, in the way that respondents are sometimes allowed to choose more than one

race category to describe themselves. But this would involve a major departure from

current practice about occupation data, where traditionally a job is classified just once. If

jobs can be assigned to multiple categories, the number of such “composite” jobs would be
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vast, given that there are 501 occupations that can potentially be combined with each other

in contrast to, say, race categories for which this practice would result in far fewer

composite categories (see Jones and Bulock 2012).

Finally, the data collection process can be honed to improve the quality of descriptions

by more fully engaging interviewers in the coding process. Campanelli et al. (1997, 450)

remark that using interviewers for I&O coding may not achieve the same levels of

accuracy as specialized office coders, but interviewers who are responsible for coding

occupation should have a better sense of what constitutes a good occupational description

and probe accordingly for more information. At the very least, the interviewers should be

trained on the logic and rationale behind the coding structure so that they have a better

sense of the kinds of decisions coders need to make. In addition, decision criteria can be

implemented as part of the data collection software, making them available during the

interview to support the coding task. For example, when the interviewer types in a term

that is known to be problematic, the system would propose particular probes that should

resolve the coding problems.

The current study was restricted to interviewer administration of occupation and duties

questions and transcription of respondents’ descriptions – as is the case in most

government surveys that collect such data. But mode may matter. Self-administered

questionnaires that are used to collect occupation descriptions (e.g., the American

Community Survey is administered both online and by mail, as well as via telephone and

personal interviews) require respondents to type or write their answers. Because writing

and typing require more effort for most people than speaking, it could be the case that

occupation descriptions tend to be shorter in self-administered (visual) modes. If so, the

kinds of length-of-description effects we observed here might be reduced when responses

are textual. This is an area – especially with the growth of online survey administration –

that certainly warrants further study.

Another way in which the current study was restricted was the lack of information about

individual coders, in particular their experience and competence. This might affect

agreement and moderate the patterns observed here. Unfortunately we did not have access

to any information about individual coders, so we could not quantify such effects. Future

studies might extend the current findings by including coder information in analyses of

coding quality.

Coding open-ended responses is an overlooked source of survey error. More accurate

coding, rather than just more reliable coding, should be a priority. If this is achieved, then

more reliable coding will follow.
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Census Model Transition: Contributions to
its Implementation in Portugal

Carlos A. Dias1, Anders Wallgren2, Britt Wallgren3, and Pedro S. Coelho4

Given the high cost and complexity of traditional censuses, some countries have started to
change the census process. Following this trend, Portugal is also evaluating a new census
model as an alternative to an exhaustive collection of all statistical units. The main
motivations for the implementation of this census model transition in Portugal are related to
the decrease in statistical burden on citizens, improvements in the frequency of outputs, and
the reduction of collection costs associated with census operations. This article seeks to
systematise and critically review all alternatives to the traditional census methodologies,
presenting their advantages and disadvantages and the countries that use them. As a result of
the comparison, we conclude that the methods that best meet these objectives are those that
use administrative data, either in whole or in part. We also present and discuss the results of an
inventory and evaluation of administrative registers in Portugal with the potential to produce
statistical census information.

Key words: Administrative registers; register-based census; traditional census.

1. Introduction

Population and housing censuses are statistical operations performed across the world to

collect all data on the statistical units – living quarters (dwellings), households, and

persons – within a national universe. Traditionally, census operations are decennial and

require significant human, financial, and material resources. In addition to these high costs,

a considerable effort is required from citizens, who are “forced” to respond to questions

whose answers, in many cases, may already exist in several databases within the Public

Administration (Scheuren 1999). Given these constraints, some countries have started to

change the census process. This entails collecting data not from the traditional model

involving an exhaustive survey of all statistical units, but from administrative sources

(Redfern 1986).

This article aims to present a systematic critical review of alternative methodologies to

the traditional census, showing their advantages, disadvantages and the countries in which

they are used. The methods using administrative data are highlighted and an analysis of
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their situation in Portugal is included. The objective is to lay the foundations for the use of

administrative data, in whole or in part, in the country’s 2021 census round.

This article is organised in seven sections. Section 2 briefly presents the legal

framework at national and international level. Section 3 identifies the methods used to

obtain census information and explores a critical review of alternative methodologies to

the traditional census. Section 4 discusses the census model transition in Portugal.

Section 5 analyses the administrative registers in Portugal of potential use for statistical

purposes in the census context. Section 6 discusses possible models for the 2021 Census in

Portugal. The main conclusions of the article are presented in Section 7.

2. Legal Framework

In order to ensure the harmonisation and comparability of results, the UNECE (United

Nations Economic Commission for Europe) recommendations set out the basic rules to be

followed in population and housing censuses. They also establish the concepts and

definitions associated with the statistical units and variables to be observed (UNECE

2006). Based on these recommendations, for the 2010 census round (covering the period

2005–2014), the EU (European Union) adopted four regulations proposed by Eurostat

(Statistical Office of the European Union) after discussion with the representatives of all

member states. The regulations introduce a mandatory set of rules on the content to be

observed, the geographical breakdown for each variable and the quality indicators that

each member state should provide to Eurostat (Eurostat 2011). The existence of this

community legislation, as an instrument for regulating the EU censuses, guarantees

the availability and harmonisation of census information.

In Portugal, census operations are also supported by specific national legislation.

A specific law established the organisational arrangements and executive for the 2011

Census, the last traditional census operation held in Portugal. A feature of this legislation

is the explicit reference to the implementation of the census transition process, supported

by data from administrative sources. To this end, it includes the possibility for Statistics

Portugal, which was responsible for implementing the 2011 Census, to create databases for

individualised registers of living quarters/buildings, housing units/dwellings, households,

and persons. This legal framework at national level also underlies the Portuguese Statistics

Act, which regulates the National Statistical System (SEN) and establishes, for the first

time, the principle of the use of administrative data for official statistical purposes.

3. Alternative Methodologies

According to the international recommendations for obtaining census statistics, various

approaches can coexist in data collection, covering a wide spectrum from the exhaustive

collection of all statistical units (traditional method) to models based solely on

administrative information (register-based censuses). The mix of the two methods,

supplemented in some cases by sample surveys, allows several combinations.

Numerous studies have presented different method classifications (Valente 2010b;

UNECE 2013). In this article, we propose four main groups of methods that build on the

classification in Valente (2010b): traditional census, register-based census, combined

methods, and rolling census (Figure 1), which are detailed in the following subsections.
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3.1. Traditional Census

The traditional census approach collects basic characteristics from all individuals and

housing units (full field enumeration) at a specific point in time. In most countries,

including Portugal, this is the most common approach to census taking. In the 2011

Census, the census could be taken through a web questionnaire in 13 UNECE countries

(Valente 2010b). It is noteworthy that in Portugal approximately 50.5% of the population

responded via the Internet.

138 countries responded to the survey conducted worldwide by the UNSD (United

Nations Statistics Division) and the UNECE in 2009 concerning the 2010 census round,

and of these 83% planned to use the traditional method (UNSD 2010). Of all the UNECE

member countries, about 56% of the 50 responses indicated the traditional method as the

method to be adopted, while in the 27 EU member states, only 41% indicated this method

(Valente 2010a). These results indicate that the most highly industrialised and developed

countries are more likely to abandon the traditional method and adopt new alternative

census designs.

One of the main disadvantages of the traditional method is the high cost and complexity

of census operations regarding the short-term recruitment of a large number of

enumerators to carry out the field work. These costs represent about 50–60% of the

operation’s total budget (Valente 2010b). Another problem associated with this method is

presented by the increasing difficulty in conducting population surveys based on field data

collection. For security reasons, many citizens, especially the elderly and those living

alone, refuse to open the doors of their home to enumerators (Valente 2011). On the other

hand, the rate of change in modern societies increases the demand for statistical

information and the need for more frequent updates than traditional censuses allow.

3.1.1. Traditional Method with Long and Short Forms

The traditional census approach may also include the use of long and short forms, which

can ease the burden on respondents and reduce the cost of census operations. The short

form, with wider coverage (majority or all of the population), is intended to collect basic

information on the characteristics of housing and/or population (e.g., place of usual

residence, sex, age and number of household members). The long form is more detailed

Rolling census Traditional census Register-based census

Sample surveys

Combined traditional
and registers

Combined traditional 
and sample surveys 

Combined registers
and sample surveys

Fig. 1. Methods of obtaining census information for statistical purposes
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and only answered by a sample of the population, usually between 10 to 20% of the total

potential respondents. According to the UNSD, 14 countries, including Brazil, Canada,

Mexico, Russia, and the United States (up to the 2000 Census) use or have used a mixture

of short and long forms (UNSD 2010).

3.1.2. Traditional Method with Sampling Annual Updates

This method combines the traditional model, carried out at intervals of five or ten years,

with sampling-based annual updates. In the census year, the entire population of the

country is enumerated using a short form that collects only basic socioeconomic and

demographic characteristics. In the intercensus years, annual sample surveys are

conducted with more detailed questionnaires (long questionnaire).

After the 2000 Census, the United States started to use this method, which included the

exhaustive census, using a short questionnaire directed at the whole population and

repeated every ten years. In the intercensus years, an annual survey is carried out with

a larger number of variables – ACS (American Community Survey) – covering

approximately two percent of the total population, which in 2010 was about 320 million

(Herman 2008; Woods 2009). The ACS was fully phased in by 2005.

When compared with the decennial census, this method has the advantage of being able

to provide results with greater frequency and timeliness. In exhaustive census years, it also

reduces the complexity and burden involved in the use of the long form. Furthermore, in

the intercensus period, it allows for the methods and techniques of sample surveys to be

developed and readjusted. However, this method has certain disadvantages: the high

financial costs of carrying out the surveys annually and the technical complexity of the

associated procedures, especially the construction of the estimators; moreover, the data on

detailed characteristics are limited since they only come from a sample survey (the ACS).

3.2. Register-Based Census

The register-based census method does not use field operations and forms to collect data.

The census statistical information is produced solely and exclusively based on

administrative data, which are updated regularly according to input information from

administrative acts carried out by the population on a daily basis.

The Nordic countries were pioneers of this method. Denmark was the first country in the

world to move from the traditional census to a register-based census based entirely on

administrative registers. The long-term work and strategy behind the first register-based

census in 1981 is described in a book by Statistics Denmark (1995). In Finland, the use of

administrative records for statistical purposes began as early as 1970 and has increased

since that date (Statistics Finland 2004). Since 1990, the census has been based entirely on

information in the registers without using a single form (Myrskylä 1991). In Norway and

Sweden, as well as in Austria, exhaustive census operations have also been abandoned

and the 2011 Census was fully supported by administrative data (Tönder 2008; Andersen

and Utne 2011; Berka et al. 2010).

It is estimated that in Finland, the costs of conducting the census through the register-

based census method were less than a tenth of the cost of using a classical method with

postal questionnaires but without enumerators (Statistics Finland 2004). However, it
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should be noted that the costs required for establishing and maintaining a register-based

statistical system can be very significant. Other benefits associated with this method are

that the information processing is faster than the traditional method, which also implies

greater speed in the delivery of results. The main disadvantages in using this method result

from restrictions on access to administrative data and their limitations in terms of content

and quality. The variables used are defined by the administrative needs and rules of the

organisations that produce them and not from a statistical perspective. Administrative data

are often incomplete, inconsistent, outdated, or limited in their coverage. In many areas,

some of the mandatory variables, included in international recommendations, may be

difficult to obtain or impossible to find. Moreover, administrative data are focused on

individuals and generally provide limited information on families, which limits social

analysis (Dugmore et al. 2011; Zhang 2011). Finally, the concepts and classifications

associated with the variables may not correspond to the statistical concepts that must

be observed.

For a system of administrative registers to work effectively, it is necessary to ensure

the links between the different records, which is generally possible with a unique

identification key. This should correspond to an identifier which is not subject to mutations

over time and that unambiguously identifies only one statistical unit. In Denmark a crucial

component was the public administration’s introduction of a fixed personal identification

number for each individual, which replaced the different identifications previously used

(Borchsenius 2000). Equally essential was the coding of addresses, which are considered

a key link in the whole system. These are assigned a unique number (address code), thus

allowing an interconnection between, for example, the Central Population Register and the

Buildings/Dwellings Register. In countries without address codes, other methodologies of

matching files are under investigation (Maldonado et al. 2010; Winkler 2011; Conti et al.

2012; Zhang 2012).

3.3. Combined Methods

Some countries obtain the census information through a combination of methods,

designated as combined or mixed methods.

3.3.1. Traditional Method Using Administrative Registers

Some countries use administrative information to improve the accuracy of enumerations

and the quality of data. They use address lists to support field operations and may send the

questionnaires to respondents via mail. Part of the questionnaire may already be completed

with data obtained from administrative sources (e.g., housing address, occupant names,

sex, date of birth, etc.). The respondents or enumerators (through direct interview) only

correct or update the information and complete the remaining questions. The average time

of interview or completion is substantially reduced, which implies a positive impact on

costs and improves the quality of the data. In addition, coverage can be evaluated by

comparing the population register and fieldwork results.

When compared to the register-based census model, this method is more expensive,

complex in its implementation and increases the burden on respondents (Redfern 1989).

Some countries used this model in 2011: the Czech Republic, Estonia, Latvia, Lithuania,
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and Italy (Valente 2010b). Spain also considered using it (Ballano 2008), though it finally

opted for a combined method of administrative records, exhaustive collection of

information on buildings, and sample surveys of dwellings and population.

3.3.2. Administrative Registers and Sample Surveys

As the administrative registers do not contain all the information required, some countries

complement registers with sample surveys. The registers are used to ensure that the entire

population is counted and the survey results allow the missing individual characteristics to

be obtained. The surveys can be designed specifically for the census (ad hoc surveys) or

may already exist.

A mixed method, using administrative registers combined with sample surveys already

in use, was implemented in the Netherlands for the first time in the 2001 Census, and was

also adopted in 2011. This model, known as the Virtual Census (Nordholt 2005), does not

require specific field operations but implies a complex estimation process for the lower

levels of breakdown (Houbiers 2004), links between the records (Linder 2004; Nordholt

and Linder 2007) and strict quality control (Daas et al. 2009; Nordholt et al. 2011).

Slovenia also adopted this model in 2011 (Dolenc 2010). Germany complements this

model with additional specific surveys (Eppmann et al. 2006; Szenzenstein 2005). Even

using existing surveys, the model can also be combined with ad hoc surveys to evaluate the

accuracy and degree of record completion or to add new variables (such as in long forms).

Israel adopted this approach in the 2008 Census, thereby improving the accuracy of

population registers and adjusting their counts (Valente 2010b).

3.4. Rolling Census

France is the only country that uses the rolling census method, first proposed by Kish

(1986; 1990). Implemented in 2004, it is based on annual surveys, which each year cover

about 14% of the total population in parts of the country during a five-year cycle. The

nearly 37,000 communities in France are classified into two groups: small and medium-

sized communities (with fewer than 10,000 residents) and large communities (with 10,000

or more residents). Small and medium-sized communities, containing about half of the

country’s total population, are divided into five groups. Every year during the cycle, in

rotation, each group is subject to an exhaustive census of all dwellings and people. In large

communities, during the cycle, a sample survey, covering about eight percent of the

dwellings, is held annually. At the end of five consecutive years the whole population of

small and medium-sized communities and approximately 40% of the population of large

communities has been surveyed. Overall, about 70% of the French population is covered

during the entire lifecycle (Durr and Dumais 2002).

The advantages of this method are the possibility of distributing the efforts and costs

over five years and improvements in the frequency of results – annual results in contrast to

classical methods. The major disadvantage is the mobility of the census moment, which

implies that data are not collected simultaneously for the whole population. Even if the

data collected are adjusted to the same period, this poses certain difficulties in comparing

areas surveyed at different times. The respondents’ mobility over the five years also has

implications in the model – it can cause gaps or duplications in the population. It also has
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the disadvantage of involving a highly complex methodological approach, especially with

the use of sampling techniques and modelling.

4. Census Transition in Portugal

In recent years, Portugal has been promoting policies that will modernise public

administration services. In 2006, one of the most visible consequences of this strategy was

the creation of SIMPLEX, a national governmental programme for administrative and

legislative simplification that aims to improve and facilitate the interaction of citizens and

businesses with public administration. One example of such advancements is the IES

program – Simplified Business Information. This enables enterprises to reply to the Public

Administration only once, through an electronic form, replacing several surveys that

contained the same questions and were collected by different entities (Ministry of Finance,

Bank of Portugal, Statistics Portugal, etc.). With a view to continuing the modernisation

of the data collection process, the Action Programme for the 2011 Census provided

the assessment of administrative registers for statistical purposes and a methodological

review (INE 2010).

As mentioned above, a fundamental aspect resulting from other countries’ experience of

the use of administrative data is the existence of specific legislation that allows national

statistical institutes access to these data (Wallgren and Wallgren 2007). For the first time in

Portugal, the National Statistical Act allows Statistics Portugal to access individual

administrative data collected by public sector entities. Following the trend of other

UNECE countries, Portugal is thus also able to evaluate a new census model based on

administrative data. The need for census model transition is underpinned not only by the

high financial resources allocated to traditional census operations, but also the enormous

effort required of citizens every ten years. Accordingly, the main motives for the transition

are focused on contributions to society: to decrease the burden on citizens, to allow for a

greater frequency of census data (annual) and to reduce the high costs associated with

census operations. According to the description of census methods presented in Section 3,

the methods that best fit these goals are those based on administrative data: the register-

based census and combined methods. Their adoption reflects a change of paradigm in

census operations in Portugal because it involves (re)thinking the approach and

methodological design associated with the production of statistics based on administrative

sources. Furthermore, it requires coordination between the different entities that produce

and manage the administrative data (Statistics Portugal 2010). Thus the problem is to

define a new methodology, based wholly or partly on administrative data, so as to replace

the traditional population and housing censuses in Portugal. However, in order to achieve

this objective, we must first find answers to the following questions:

. What administrative registers are available and what information do they contain?

. Does the information that exists in administrative data meet the requirements of

census users, international recommendations and EU regulations?

. Do the available variables correspond to the fundamental questions of the census in

terms of coverage, content and quality?

. What gaps exist in terms of census variables and what methodologies should be

implemented to obtain the desired information?
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In order to answer these questions, it will be necessary to evaluate the existing

administrative registers in Portugal and their potential to produce census statistics.

5. Administrative Registers in Portugal

One of the main dimensions to consider when evaluating a transition model is whether

there are administrative files and registers with individual data (microdata) and unique

identification that will be of interest to the census. In countries that have implemented

systems of administrative records for statistical purposes, the combination of different

sources was also the key factor in the process. To achieve this combination, the quality of

the various sources was assessed by comparing and validating the information (UNECE

2007; Wallgren and Wallgren 2007). Following these principles, the research sought to

identify administrative sources covering the statistical units used in the census: housing

(buildings and dwellings) and population (households and persons). The first step

therefore consisted of identifying and assessing sources with statistical units of housing.

The second phase of activities focused on population data. Table 1 shows the main

administrative registers identified as having potential for the mandatory census variables

required by international recommendations, as well as the entities that manage them.

The records in the potential files of interest must be evaluated in terms of coverage,

content, quality and identifiers. This task involves the analysis of:

. Individual records, the level of harmonisation, standardisation and consistency of

information collected by different entities,

. Updating and management systems,

. Metadata associated with the data.

It is important to note that the information collected by administrative entities does not

necessarily correspond to the statistical concepts to be observed according to international

recommendations. In order to be used as statistical data, administrative registers undergo

several transformations: coding of variables and creation of derived variables and

validations, among others (Wallgren and Wallgren 2007).

Under the current legislation, Statistics Portugal has access to some administrative

registers with potential for characterising census variables. As far as housing units are

concerned, Statistics Portugal has access to the real estate register (municipal property

tax), income register (personal income tax) and energy register.

The access to administrative registers of individuals has posed some difficulties. Based on

different interpretations of the current Portuguese statistical act, register managers have been

reluctant to share their registers. They only allow access when the Portuguese Data

Protection Authority gives its consent. Statistics Portugal has assessed, among others, the

civil register, the social security register, the employment register and the foreigner register.

The following sections present the preliminary results of the analysis of available

administrative records for housing and population statistical units.

5.1. Housing

With regard to housing information, the real estate register is the core register among the

identified relevant administrative registers. It is the most extensive register available in
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regard to coverage, content and identifiers. Real estate register data are produced by

administrative acts covering municipal property tax. All properties (buildings or parts)

located in Portugal that pay these taxes are included. As shown in Table 2, the real estate

register covers around 57% (eight out of 14) of the mandatory variables of the EU

regulations for the 2010 Census Round (Eurostat 2011; UNECE 2006) concerning

building and dwelling characteristics. It will not be possible to ascertain the housing

arrangements, occupancy status, type of ownership, number of occupants, bathing

facilities and density standard.

Moreover, there are significant differences in terms of concepts and categories

associated with the real estate register variables and the census variables required. The

concepts of housing property and fraction, used in tax administration, are different from

the census statistical units building and dwelling. In addition to these problems, we

identified limitations in terms of harmonisation of fields and low rates of completion of

some variables. To complete the missing information, other potentially useful files must be

found; alternatively, the possibility of including new fields or making changes to existing

forms associated with the real estate register should be evaluated in collaboration with the

register managers.

The analysed data file from 2010 (referenced to December 31) only covers

administrative acts carried out between 2003 and 2010. The housing properties of this

flow of data only represent around 36% of total dwellings obtained in the provisional

results of the 2011 Census. Statistics Portugal also needs to request the real estate register

keepers’/managers’ permission to access the global stock of housing properties. In terms

of housing topics, the energy register (2008) and the income register (2008) were also

analysed. These registers do not provide census information, thus their potential is limited

to the use of additional information to update the housing addresses.

5.2. Population

As for population variables, about 92% (22 out of 24) of the mandatory census variables of

EU regulations (Eurostat 2011; UNECE 2006) are represented in some of the existing

registers (Table 3).

Some of these variables can only be obtained through the combination of two or more

registers. The data present important limitations in terms of content (suitable concepts)

and coverage. For example, with data from the income register and the civil register it is

Table 2. Available EU mandatory census variables related to housing

Variables available in the
real estate register

Variables not available in the
real estate register

Type of living quarters Housing arrangements
Location of living quarters Occupancy status
Useful floor space and/or number of rooms Type of ownership
Water supply system Number of occupants
Toilet facilities Bathing facilities
Type of heating Density standard
Type of building/number of dwellings
Period of construction
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possible to construct some private households and family nuclei, but these registers do not

cover the people exempt from income tax, such as persons with incomes lower than a

defined value. For tax purposes, a young adult over 18 years working and living at his or

her parents’ house (sharing food and possibly other essentials for living) is not included on

the same tax form (defining an income register household) as his parents. Instead, he or she

is represented with a separate tax form. In census concepts, a young adult and his parents

constitute a single household. At the moment, Statistics Portugal is unable to access the

complete file of the income register. Some attempts have been made to gain access to these

administrative data but so far without success.

The civil register file should be the core register for the population statistical units.

However, some population groups are not represented in the civil register file: the foreign

resident population (which has no Portuguese civil identification) with the exception of

Brazilian citizens with equal status (resulting from the Treaty of Porto Seguro agreed

between Portugal and Brazil), and children who were born before 2007 and do not have the

Table 3. Available EU mandatory census variables related to population

Variables
Civil

register

Social
security
register

Employment
register

Income
register

Foreigner
register

Place of usual residence x x x x
Location of place

of work or school
x

Sex x x x x x
Birth date (age) x x x x
Legal marital status x x x
Current activity status x
Occupation x x
Industry, branch of

economic activity
x x

Status in employment x x x
Educational attainment x
Country/place of birth x x x
Country of citizenship x x x x
Ever resided abroad,

year of arrival
Place of residence

before census year
x

Relation between
household members

x

Tenure status of households
Total population x x
Locality x
Household status x
Family status x
Type of family nucleus x
Size of family nucleus x
Type of private household x
Size of private household x
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Citizen Card (CC). The “Born Citizen” project, introduced in 2007, means that when

children are born and registered they receive a civil identification number even if this is not

requested (the CC is only compulsory from six years of age). Those numbers will stay the

same throughout their entire life. The only exhaustive coverage of all people legally residing

in Portugal is the combination of the civil register and foreigner register files. However,

none of these administrative registers covers the illegal population. In contrast, the

traditional census gives us a global “picture” and all individuals, regardless of their legal

status, should be enumerated. On the other hand, many people who are listed in the civil

register with a Portuguese residence effectively reside in another country and are not

enumerated in a traditional census. In the 2011 Census, an individual is considered resident

when he “lives in his usual place of residence in the twelve months preceding the time of the

census with the intention to stay for a minimum period of one year” (UNECE 2006).

The 2009 and 2010 civil register (referring to December 31) data files were analysed.

A set of strengths and points that require better assessment for their potential use were

identified for the 2010 data:

. The file presents a low percentage of null records (missing data) and a primary

numeric key for all records without duplication;

. The address fields of the individuals who already have the CC are standardised and

are of good quality, which may allow them to be matched with other sources;

. The administrative division classification maintains the existing code on the date

of occurrence. Thus the codes for geographic places of birth and residence are not

adjusted to the administrative division changes that have occurred over the years,

implying, for example, the existence of the same codes for different administrative

areas;

. It is clear that bilateral cooperation between Statistics Portugal and keepers/managers

is important in order to improve the quality of civil register data through

standardisation and joint verification of discrepancies.

The foreign population residing in Portugal was enumerated in Census 2011 but does

not appear in the civil register files. The total resident population in Portugal obtained in

the provisional results – the reference date was the census moment (21 March 2011) –

was 10,561,614. The civil register (on 31 December 2010) presents 7.1% more resident

persons than the 2011 Census. The two sets of data were not collected on the same date.

For a correct comparison it would be necessary to make adjustments for the same

reference date. However, since the gap is less than three months and the Census 2011

results are provisional, we do not make the adjustments here.

The protocol signed between Statistics Portugal and Social Security permits annual

access to the social security register data. The stock of 2008 to 2010 (referring to

December 31) social security register data files was analysed. The data present quality for

use: they contain an exhaustive primary key (Social Security Identification Number) for all

registers; the variables are standardised and present a low percentage of missing data; the

percentage of inconsistent data is small; and the classifications are those used by Statistics

Portugal. According to the keeper/manager of these administrative registers, the gaps

and incoherencies (e.g., geographic codes) in some variables are the result of a process

which occurred in the late 1990s. The Ministry of Solidarity and Social Security
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gathered all regional registers into one centralised database without a verification or

confirmation process. Currently, any update or correction of data concerning beneficiaries

is automatically registered in the database and subject to an intense validation process,

contributing to increased quality of data. The numeric field NIF (corresponding to the Tax

Identification Number) presents a fill rate of around 96%. Thus this field could be used as

a key liaison with other administrative files.

The employment register is obtained from the administrative data submitted

annually by all employers with workers employed under individual contract of employ-

ment. The online application used to capture information establishes a set of

validations that guarantee overall quality and consistency of this file. The stock of 2009

(referring to 31 October) employment register data files was analysed. The data present

quality for use: they contain an exhaustive primary key (NISS – Social Security

Identification Number) for all registers; the variables are standardised and present a

low percentage of missing data; and the classifications are those used by Statistics

Portugal. Later, it was found that the employment register keeper/manager has other

available mandatory variables that have not yet been provided: date of birth and branch

of economic activity.

Finally, the foreigner register can ensure the coverage and content of a very specific

portion of the population (foreigners legally residing in Portugal), completing the

information in the civil register files. The stock of 2009 (referring to 31 December) of the

foreigner register was analysed. The data present some problems for use for statistical

purposes: the identification key corresponds to a code number assigned by the foreigner

register, which prevents matching with other files; the geographical breakdown only exists

at municipal level; and some fields are not validated, notably in the address fields. Later, it

was found that the foreigner register keeper/manager had not provided other available

mandatory variables: country of last residence, Social Security Identification Number and

Tax Identification Number, which could be the key liaison with other administrative files

such as the social security register and employment register.

5.3. Integration

The development of an information system to store the individual registers of housing and

population must be part of the transition census process. This can be based on existing

models in other countries (UNECE 2007; Wallgren and Wallgren 2007), adapted to the

Portuguese reality. For statistical purposes, this system shall include the national files of

dwellings and persons, which may be based on the 2011 Census microdata and subsequent

updates with housing and population administrative data.

As already mentioned above, an important part of administrative information is

dispersed across multiple files managed autonomously by different entities. In addition to

storage issues, the various registers within the system must be linked if the administrative

registers are to be transformed into statistical records.

The geographical key location of buildings and dwelling, to be defined, could be address

type (full address information and postcode), coordinate ID type (X, Y) or a combination

of both. This key is fundamental in linking housing registers to population registers.

The real estate register uses geographical coordinates and address.
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The structure of the National Population Register for statistical purposes based on

administrative data requires a unique key. This key, which we shall call the administrative

key, is of great importance since it will ensure that all the administrative information

on the population can be successfully integrated. The key would ideally be composed of

only a single field, but due to the complexity of linking files (already experienced in the

analysis), we cannot rule out the need to develop a composite key. There are files that, due

to the absence of common fields, can only be related through a key from a third file. Table 4

presents the possible fields that might allow the links between files. For example, the

numeric field NIF (Tax Identification Number) could be used as a key liaison between the

income register, the social security register and the real estate register. In the same way,

the numeric field NISS (Social Security Identification Number) could be used as a key

liaison between the civil register and the social security register. In addition to the possible

connections through the numeric codes NIC (Civil Identification Number), NIF and NISS,

other possibilities could be tested, since the variables are standardised. For example,

“Address” connects statistical units of housing to units in the population associated with

aggregated “Name and Date of Birth” or “Address”.

6. Possible Models for the 2021 Census in Portugal

To prepare for the 2021 Census, a model for use could be established by comparing the

results of the 2011 Census with existing administrative data. To avoid an exhaustive

comparison of all administrative data and 2011 Census data, it should be possible to

implement a test structure: choosing a number of areas in the country (e.g., a sample of

municipalities) to compare data collected from the 2011 Census with the corresponding

administrative data at the micro level of each statistical unit. The comparison with existing

administrative records could provide answers to the following question: if the 2011 Census

had not been carried out using the traditional model, could we have obtained consistent

and relevant data on population and housing through administrative sources?

As identified in Section 4, the methods that best fit the objectives defined for the

Portuguese census transition are those based on administrative data: register-based

Table 4. Identities in registers that can be used as matching keys

Administrative registers Name Address Geo code NIC NISS NIF

Variables related to housing
Real estate register Address Geo code NIF
Energy register Address Geo code

Variables related to population
Civil register Name Address NIC
Social security register Address NIC NISS NIF
Employment register NISS
Income register Address NIF
Foreigner register Name Address

NIC Civil Identification Number.

NISS Social Security Identification Number.

NIF Tax Identification Number.
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census, or administrative registers and sample surveys, or traditional method using

administrative registers. These different approaches to census taking involve trade-offs

between: overall quality of census information; the cost, complexity, and frequency of

census data; and burden on citizens required for change. The register-based census is the

first priority model to develop for the post-2011 Census in Portugal because of the low

cost, the high frequency of data, and the fact that it is no burden on individuals. However,

there may be difficulties in moving directly from a traditional to a complete register-based

census as a result of the problems identified in the preliminary analysis of existing registers

(performed in Section 5) and the lack of experience in the use of administrative registers

for statistical census purposes. Only Austria has passed directly from a traditional census

in one round (2000) to a register-based census in the next round (2010) (Valente 2011;

Ralphs and Tutton 2011). This transition has generally taken several decades, according to

the experience of the Nordic countries.

The second priority could be the combined method of administrative registers and

sample surveys because of the reductions in cost and burden on individuals, when

compared to the traditional approach. In order to implement it and complement the

missing information in administrative registers, it will be necessary to evaluate all

existing surveys in the Portuguese statistical system. The integration of administrative data

and sample survey data requires a complex process of estimation and calibration,

especially for areas with lower levels of disaggregation. Thus it will be necessary to

evaluate and adapt existing models (Zanutto and Zaslavsky 2002; Houbiers 2004; Mulry

et al. 2006).

If the second priority cannot be implemented, an alternative model to be developed for

the 2021 Census could be the traditional method using administrative registers. With this

method, all individuals are enumerated but, as explained in Subsection 3.3.1., the use of

register data increases the efficiency in field operations: mailout of the questionnaires to all

households in the list of households and addresses (obtained from administrative registers)

and multichannel collection of responses (web, mail back, municipal office of collection).

This approach may help to improve the coverage and quality of the registers and, as a

result, it is often selected as the first step from a traditional census towards a register-based

one (Valente 2011).

In order to implement a census based on administrative data, some of the problems

identified in Section 5 need to be solved: incomplete coverage of the housing stock, excess

of population in the civil register, lack of coverage of the illegal and foreign population,

variables with small coverage of the population, incompatible identifiers and failure to

access the complete income-tax records. Some proposals are presented to solve these

problems. One fundamental element of a system for integrating administrative registers is

the availability of a definitive National Address Register, providing a list of all housing

addresses. To avoid the difficulties in accessing the global stock of housing properties, the

housing data from Census 2011 could be the basis for the National Address Register.

Additionally, it will be possible to check the coverage in the period 2003–2010 by

comparing census housing data with the real estate register. If the results present a good

coverage, the Address Register will be updated by the real estate register.

The problem of the excess of population in the civil register could be solved in the same

way. The population data from Census 2011 could be the basis for the National Population
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Register. If we compare the individual Census population data with the civil register, it

will be easier to understand the differences between the two files in recent years. The

results of this analysis may help to improve the quality of civil register data and evaluate

the use of the civil register to update the National Population Register. However, the civil

register update has more weaknesses than the real estate register updates. It will always be

a complex challenge to detect people who are legally resident in Portugal and have a

Citizen Card (included in the civil register) but who actually reside abroad all year and just

spend vacations in their dwellings in Portugal.

The lack of coverage of the illegal and foreign population and variables with small

coverage of the population could be overcome by implementing ad hoc sample surveys

specifically designed for this purpose. The problem of incompatible identifiers between

administrative registers could be minimised using the address as a key connection, since

this field is present in almost all registers. Despite the difficulties of using this field for

linking registers, new matching techniques developed in recent years have produced very

robust results (Maldonado et al. 2010). In addition to solving the failure to access the

complete income-tax records, it will be necessary to revise the National Statistical Act.

The new legislation should be strong, clear and unambiguous, giving Statistics Portugal

unrestricted access, for statistical purposes, to administrative data on unit level with

identification data and the possibility to link them with other administrative registers.

In order to accomplish the census information system for the transition, it will be necessary

to gain access to more administrative sources, particularly in the areas not yet covered:

education and unemployment.

7. Conclusions

Decennial census operations are important and require large human, financial and material

resources. Given these constraints and bearing in mind that statistical information is

essential, the implementation of the census transition in Portugal is focused on three goals:

to decrease the burden on citizens, to allow for a greater frequency of census data (annually

if possible) and to reduce the high costs associated with census operations. This article

presents a systematic critical review of alternative methodologies to traditional censuses,

identifying their advantages and disadvantages as well as the countries that use them.

Comparing several methods, it appears that those that best fit the objectives defined for the

Portuguese case are the methods that rely on administrative data. However, it is also clear

that the present legal framework and the nature and quality of available administrative

registers still require changes or improvements in order to enable such methodologies.

Under the current Portuguese Statistics Act, Statistics Portugal has access to some

administrative registers with individual data that have potential for obtaining census

variables related to housing and population. With regard to housing topics, a core register

has been identified – the real estate register file (municipal property tax). The real estate

register has great potential for use, although there are differences in concepts, limitations

in terms of harmonisation of fields and low rates of completion of some variables.

The real estate register contains information flows and does not include the stock of

buildings/properties. The data analysed between 2003 and 2010 represents around 36%

of total dwellings obtained in the provisional results of the 2011 Census.
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As for population variables, around 92% of the mandatory census variables are

represented in some of the existing registers. However, the administrative registers

identified present important limitations in terms of content (suitable concepts) and

coverage. The civil register should be the core register for the population statistical units.

Although they belong to different universes, we compared the total resident population in

Portugal, obtained in the provisional results of the 2011 Census, with the civil register file

(on 31 December 2010). The civil register file presents 7.1% more of the resident

population than the 2011 Census. The social security and employment administrative

registers (referring to 2010) were analysed and showed good quality for use in producing

census statistical information. On the other hand, the analysis of the results of the foreigner

register (referring to 2009) presented significant limitations in their use for statistical

purposes.

The different approaches to census taking based on administrative data involve trade-

offs between the overall quality of census information, the cost, complexity, and frequency

of census data, and the burden on citizens required for change. The register-based census

is probably the first priority model to develop for the post-2011 Census in Portugal.

However, there may be difficulties in moving directly from a traditional to a complete

register-based census as a result of the problems identified in the preliminary analysis of

existing registers. The second priority could be the combined method of administrative

registers and sample surveys. Nevertheless, the implementation of this model implies a

complex process to integrate administrative data and sample survey data. An alternative

model could be the traditional method using administrative registers. This approach

enables efficiencies in field operations and may help to improve the coverage and quality

of the registers. Therefore, this could be considered a first step in the right direction,

contributing towards a future register-based census.

It was also possible to identify some key points in evaluating administrative registers

that constitute challenges for the continuity of the work and for the strategy to be defined:

incomplete coverage of the housing stock, excess of population on the civil register, lack

of coverage of the illegal and foreign population, variables with small coverage of the

population, incompatible identifiers and failure to access the complete income-tax records.

In the article, some proposals have been presented that may contribute towards solving or

minimising these problems.

Although the work done so far is only the first step towards using administrative

registers for statistical purposes, a number of important lessons have already been learned

that might be useful for other statistical agencies at the same transitional stage. It is crucial

to have a strong legal basis that will provide the national statistics agency with the right to

access administrative data at unit level with identifiers, and with the right to link them with

other administrative registers for statistical purposes. On the other hand, there must be a

high level of coordination and cooperation with the register managers to improve the

quality of information that is collected administratively and when introducing potential

adjustments to the collection forms. In the potential files of interest, the records must be

evaluated in terms of coverage, content, quality, and identifiers. Identifiers play a

considerable role in linking information from various sources. A potential line of work in

overcoming the problem of incompatible identifiers between administrative registers is the

use of the address as a key connection.

Dias et al.: Census model transition 109

Unauthenticated
Download Date | 3/14/16 1:01 PM



8. References

Andersen, E. and H. Utne. 2011. “Censuses in a Register-Based Statistical System:

Norwegian Experiences.” Paper presented at the 58th World Statistics Congress ISI

2011, IP064.01, 21–26 August, Dublin, Ireland.

Ballano, C. 2008. “A Census of Population Based on an Administrative Register.” Paper

presented at the 24th International Methodology Symposium, Statistics Canada, 28–31

October, Ottawa, Canada.

Berka, C., S. Humer, M. Lenk, M. Moser, H. Rechta, and E. Schwerer. 2010. “A Quality

Framework for Statistics Based on Administrative Data Sources Using the Example of

the Austrian Census 2011.” Austrian Journal of Statistics 39: 299–308.

Borchsenius, L. 2000. “From a Conventional to a Register-Based Census of Population.”

Paper presented at the INSEE/Eurostat Seminar on the Censuses after 2001, 20–21

November, Paris, France.

Conti, P., D. Marella, and M. Scanu. 2012. “Uncertainty Analysis in Statistical Matching.”

Journal of Official Statistics 28: 69–88.
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Constructing Synthetic Samples

Hua Dong1 and Glen Meeden2

We consider the problem of constructing a synthetic sample from a population of interest
which cannot be sampled from but for which the population means of some of its variables are
known. In addition, we assume that we have in hand samples from two similar populations.
Using the known population means, we will select subsamples from the samples of the other
two populations which we will then combine to construct the synthetic sample. The synthetic
sample is obtained by solving an optimization problem, where the known population means,
are used as constraints. The optimization is achieved through an adaptive random search
algorithm. Simulation studies are presented to demonstrate the effectiveness of our approach.
We observe that on average, such synthetic samples behave very much like actual samples
from the population of interest. As an application we consider constructing a one-percent
synthetic sample for the missing 1890 decennial sample of the United States.

Key words: Sample survey; missing data; synthetic samples.

1. Introduction

The Minnesota Population Center (MPC) is an interdepartmental demography research

group at the University of Minnesota. One major goal of the MPC is to create databases

that can be utilized in the study of economic and social behavior. The Center has

developed the Integrated Public Use Microdata Series (IPUMS-USA), which is available

online and which consists, in part, of high-precision one-percent samples of the American

population drawn from fifteen decennial federal censuses. A sample is composed of

microdata consisting of a record for each person. These records are in turn organized into

households, making it possible to study the characteristics of people in the context of their

families or other coresidents. Unfortunately the complete records for the 1890 census were

destroyed and now only certain summary statistics are available. For example, the family

incomes for each particular family are missing but the average 1890 family income is

known for many small regions of the country. Hence the Center now does not have a one-

percent sample based on the complete 1890 census. In this article we will present a method

that will allow a synthetic sample to be created for 1890 using the partial information from

1890 and the samples from 1880 and 1900.

Since overall the 1890 US population should not be that different from the 1880 and

1900 populations, it should be possible to construct a synthetic one-percent sample for

1890 using the one-percent samples from the 1880 and 1900 populations. The records in

the synthetic sample should be chosen in such a way that their summary statistics closely
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match the partial information for 1890. To accomplish this, we define a function that

measures just how closely a possible synthetic sample matches the known population

means. Since there will be many possible synthetic samples that nearly achieve the

minimum of this function, our goal will not be to find an optimal synthetic sample. Instead

we will be looking for one which is nearly optimal. Before considering this problem,

however, we will first consider some simpler problems and present simulation results that

demonstrate that our approach works well in these cases. More information about the MPC

can be found at https://www.pop.umn.edu/.

From one point of view, the lack of a one-percent sample from the 1890 US population

can be thought of as a massive missing-data problem where the entire sample is missing.

Creating a synthetic sample is impossible unless there is some additional information that

can be used, and we believe that this is indeed the case here. In the following, we will

consider simpler versions of this problem and present simulation results which show that

our approach can work. These simulations might suggest that our approach could be

helpful in more standard missing-data problems where just some of the sample is missing.

Here, however, our focus will be on the problem of creating a synthetic one-percent

sample for the 1890 census.

In Section 2 we introduce a simple version of our problem. In Section 3 we propose an

adaptive random search algorithm that will find a nearly optimal synthetic sample. Given

an objective function defined over a large space, this technique is used to locate a point in

the space whose value given by the objective function is very close to the global optimum

of the objective function. In Section 4 we present simulations which show that our method

works well for some simple versions of our problem. In Section 5 we use our algorithm on

census data from 1900 and 1920 and partial information from 1910 to produce synthetic

samples for 1910. If our approach produces good synthetic samples for this situation, then

we believe it should produce a good synthetic sample for 1890 when using the 1880 and

1900 census data. Section 6 contains some final remarks.

2. A Simple Problem

Assume that there are three populations, Population 1, Population 2, and Population 3, and

we believe that in some sense Population 2 is the “average” of the other two. (For our

problem, the three populations can be thought as the records for 1880, 1890, and 1900

respectively.) Attached to each unit in the populations there is a pair of variables, say, X

and Z. We suppose that in the three populations X and Z are related, but we make no model

assumptions about this relationship. We do assume however that the mean of Z is known

for the second population, that we have independent random samples from the first and

third populations, and that for each unit in the samples the values of both X and Z are

observed. A simple version of our problem is to use this limited information about the

second population and the samples from the other two populations to construct a synthetic

sample that is formed by taking elements from the other two samples and that will behave

like an actual sample from the second population.

More formally, for i ¼ 1 and 3 let zi ¼ (zi,1, : : : ,zi,n) be the observed values of Z in the

random sample from population i where n ¼ 2m. These will be considered fixed in what

follows. If s1 ¼ (i1, : : : ,im) and s3 ¼ ( j1, : : : ,jm) where 1 # i1 , i2 , · · · , im # n and
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1 # j1 , j2 , · · · , jm # n we denote the two possible subsamples of size m by zs1
and zs3

and denote the synthetic sample of size n formed by their union as

zs1;s3
¼ ðzs1

; zs3
Þ ¼ ðz1;i1 ; : : : ; z1;im ; z3; j1 ; : : : ; z3; jm Þ ¼ ðzs1;s3;1; : : : ; zs1;s3;nÞ

Finally, let m2 be the known mean of Z for the second population.

We need a function to measure how good the synthetic sample based on s1 and s3

actually is. For example, suppose that the sample mean of zs1,s3
is equal to m2; then we

consider this to be an optimal solution for our problem. Although in theory there can be

more than one such optimal solution, in practice there will almost never be even one

synthetic sample that is optimal in this sense.

Let p ¼ ( p1, : : : ,pn) be a probability vector belonging to G, the n 2 1 dimensional

simplex, and let

Gm2
ðzs1;s3

Þ ¼ p : p [ G and
Xn

i¼1

pizs1;s3;i ¼ m2

( )

This is the set of all probability vectors on zs1
,s3

whose mean is equal to m2.

Let

hð pÞ ¼
Xn

i¼1

ð pi 2 1=nÞ2 and ð1Þ

ps1;s3
¼ arg min {hð pÞ : p [ Gm2

ðzs1;s3
Þ} ð2Þ

Then h( ps1,s3
) is our measure of how good zs1,s3

is as a synthetic sample for the second

population. Given two possible synthetic samples, we will prefer the one that yields the

smaller value of this function. So an optimal solution for our problem is any choice of s1

and s3 that gives the minimum value of h( ps1,s3
) over all possible synthetic samples. Our

approach involves two steps. First, for a given s1 and s3, we need to find ps1,s3
. The second

step involves searching for an s1 and s3 that minimize h( ps1,s3
).

Now for fixed s1 and s3, finding the value h( ps1,s3
) is just a standard quadratic

programming problem and many software packages will have a function that will find a

solution. That said, we do not know how to find explicitly the choices of s*
1 and s*

3, which

minimize h( ps1,s3
) over all possible synthetic samples. Instead we will conduct a random

search over this space to find an approximate solution for our problem. There are
�

2m
m

�2

possible choices for s1 and s3, so one possibility would be to just randomly select a large

number of choices for s1 and s3 and use the one that gives the best answer. But as m

increases, the space we are searching over can become quite large and there are better

search algorithms than random sampling. In the next section, we will explain our adaptive

random search algorithm that seems to give sensible answers to our problem.

Finally, we note that we can include constraints on more than one variable.

In particular, we could have more than one constraint involving the same variable. For

example, if the mean and variance of Z were known, we could add a second constraint

using its second moment.
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3. The Algorithm

As we noted in the previous section, we cannot find explicitly s*
1 and s*

3, a solution for our

desired problem. On the other hand, even though an optimal solution must exist, there will

usually be many other solutions that are almost as good. Our goal is not to find an optimal

solution but to find just one of the possibly many synthetic samples that are nearly optimal.

To do this we will carry out a random search in the space of all possible synthetic

samples. As we just noted above, one possibility would be to select at random a large

number of values for (s1,s3) and keep the one which gives the smallest value of h( ps1,s3
).

This is not very efficient, however, and better methods are available. One approach is to

pick a starting point at random and then select at random a second point that is close to it. If

the value of the function h( ps1,s3
) is smaller than its value at the first point, then we should

move to this new point. If it is not, then we can pick another point at random from the

neighborhood of the first point and repeat the process. If our function has a global

minimum and no local minimums, we will eventually arrive in the neighborhood of the

minimum. If there are local minimums, however, then we could get stuck at one of those

points and never reach the neighborhood of the global minimum. A way to avoid this is to

sometimes allow a move to a point with a larger h( ps1,s3
) value with positive probability.

This probability should depend on both the relative sizes of the two values of the h( ps1,s3
)s

and the point we are at in the search process.

More formally, suppose we are in step l of our search, where ðsl
1; s

l
3Þ is our current state

and we are considering moving to a new state or point in the space of synthetic samples,

say ðslþ1
1 ; slþ1

3 Þ. The first thing to note is that in the long run, rather than picking the new

point at random, it is more efficient to pick one that is close by the current state. In our

case, we will pick either sl
1 or sl

3 at random and then pick one of its entries at random and

replace it by a new member, selected at random, from the appropriate full sample. Once we

have determined ðslþ1
1 ; slþ1

3 Þ, we can check if

hð pslþ1
1
;slþ1

3
Þ , hð psl

1
;sl

3
Þ ð3Þ

If this is the case then we should move to the new state. If the converse is true, then

sometimes we will still want to move to the new state. This will allow us to escape from a

point in the space which is a local minimum. For example, if the above equation is false

then at step l one could move to the new synthetic sample with probability u where

u ¼
hð psl

1
;sl

3
Þ

hð pslþ1
1
;slþ1

3
Þ

t

aþ l
ð4Þ

where 0 , t # a are specified constants. Note that this makes it less likely that we will

move to a worse synthetic sample after lots of steps than earlier in the process. This makes

sense, since we are more likely to be close to the optimal solution after many steps than

when we were near the beginning of the process. We continue this process for a fixed,

large number of steps and then stop. It is important to note that the “best” synthetic sample

in the entire sequence need not be the state we were in when we stopped. It could have

occurred much earlier and we just moved away from it. In fact, this is what usually

happens in our problem.
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The form of the function for u in Equation 4 is just one of many that can be used in

practice but it seemed to work well in our problem. This algorithm is just a special case of

what is known as an adaptive random search. These methods have been used in a variety of

problems for more than 50 years.

4. Some Simulation Examples

We conducted some simulation studies to see how our approach could work in practice.

4.1. First Example

We began by constructing three similar populations where we expect our approach to work

well. Attached to each unit there are the values of two continuous variables and of two

binary variables. We will denote these variables by U, V, X, and Y. The variable U will be a

random sample from a gamma distribution with shape parameter g and scale parameter

one. The variable V will be a random sample from a gamma distribution with shape

parameter l and scale parameter one. The variable Y will be a random sample from a

Bernoulli distribution where u is the probability of observing a one. These variables will be

independent. The final variable, X, will be constructed using logistic regression with the

variable V. For a unit for which V ¼ v let p(v) be the probability that its X variable has the

value one. Then for our model

logð pðvÞ=ð1 2 pðvÞÞÞ ¼ bv

Using this model we generated three populations, each with 4,000 units. The parameter

values for the three populations are given in Table 1. Note that the parameter values for the

second population are the average of the other two in all cases. In addition, for each

variable their distributions across the three populations are quite similar. In the second

population the correlation between V and X was 0.18.

The first four rows of Table 2 give the results of 1,200 random samples, each of size 40,

taken from the second population, where the population mean of each variable was

estimated. For each variable the table gives the average value of the sample mean, its

average absolute error, the average lower bound and average length of the usual 95%

confidence interval and its frequency of coverage. The next four rows give the results

when synthetic samples were constructed assuming that the true mean of V in the second

population was known. These synthetic samples were also of size 40 and used 20

observations each from samples of size 40 taken from the other two populations. Note that

the two results are very similar except that the confidence intervals for the synthetic

Table 1. Parameter values used to generate the three populations with four

variables for the first example in Section 4

Population g l b u

1 6 7 0.10 0.4
2 5 8 0.15 0.5
3 4 9 0.20 0.6
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samples always contain the true mean of V. This must be the case because of the way they

were formed. The constraint guarantees this.

One might wonder how the synthetic samples do when estimating population quantiles.

In Table 3 the true values of the five quantiles of V in the second population are given. The

next two rows give the average values of their standard estimates along with their average

absolute error for 1,200 samples of size 40. The next two sets of two rows give the same

information for synthetic samples formed by constraining on the true means of U and X in

Table 2. Comparing the results from 1,200 samples of size 40 from Population 2 to 1,200 synthetic samples

formed by combining samples from Populations 1 and 3 constraining on knowing the population mean of V for the

first example in Section 4

Mean absErr lowBd Length Coverage Rate

Variable When sampling from the actual population

U 5.02 0.29 4.34 1.37 0.932
V 7.99 0.35 7.12 1.74 0.950
X 0.75 0.056 0.62 0.27 0.943
Y 0.51 0.063 0.35 0.31 0.947

Using synthetic samples

U 5.08 0.26 4.38 1.40 0.962
V 7.98 0.0 7.05 1.86 1
X 0.74 0.052 0.60 0.27 0.968
Y 0.49 0.061 0.34 0.31 0.955

Table 3. Comparing the results for estimating five quantiles of variable V for the first example in Section 4 when

sampling from the population and when using three different constraining variables to construct synthetic

samples. The results are based on 1,200 samples of size 40

0.10 quantile 0.25 quantile 0.50 quantile 0.75 quantile 0.90 quantile

True 4.61 5.92 7.65 9.64 11.77

When sampling from the actual population

Mean of est 4.78 6.02 7.68 9.62 11.58
absErr 0.44 0.41 0.41 0.52 0.84

Using synthetic samples formed by constraining on the mean of U

Mean of est 4.66 5.97 7.66 9.70 11.81
absErr 0.44 0.41 0.43 0.51 0.81

Using synthetic samples formed by constraining on the mean of X

Mean of est 4.62 5.91 7.64 9.73 11.84
absErr 0.42 0.37 0.43 0.54 0.79

Using synthetic samples formed by constraining on the mean of V

Mean of est 4.58 5.87 7.61 9.67 11.79
absErr 0.37 0.30 0.28 0.33 0.60
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the second population. We see that these results are very similar to those found using

actual samples from the second population. Finally, the last two rows of the table give the

results for synthetic samples formed by constraining on the mean of V from the second

population. We see that these results are significantly better than using actual samples

from the second population. What is the explanation for this perhaps surprising result?

This happens because knowing the mean of V in the second population is a very

important piece of information. This fact, along with samples from two very similar

populations, allows us to construct synthetic samples that on average are better than

random samples drawn from the actual population. This is not a common situation, but we

believe that something like this could hold for the 1890 census. Next we will consider an

example where our approach does not work as well.

4.2. Second Example

Perhaps it is not so surprising that we can find good synthetic samples when the three

populations are very similar. Here we will consider another example where they are less

similar and in particular where a mean of the middle population is not approximately

equal to the average of the means of the other two. In this example we assume that each

population has two continuous variables, say U and V, which are independent and of

course independent across the three populations. Suppose the mean of U in the ith

population is mu,i while the mean in the ith population of V is mv,i. In our simulation the

values of the mu,is were equal to 8, 10, and 12, for i ¼ 1, 2, and 3, while the corresponding

values of the mv,is were 8, 9, and 12 respectively. All the distributions were normal with a

common standard deviation equal to two. Each population contained 4,000 units and we

constructed synthetic samples of size 60 for the second population using random

samples of size 80 from the other two. Each synthetic sample contained 30 units from

each of the other samples. We considered estimating the mean and the population

quantiles of the variable U in the second population using synthetic samples based on

various constraints.

The results for estimating the means are in Table 4. When constraining on the E(V) our

point estimate for E(U) behaves just like the one based on samples from the actual

population because mu,2 ¼ (mu,1 þ mu,3)/2. On the other hand, our point estimate for E(V)

when constraining on E(U) performs poorly because mv,2 is not the average of the other

two means for V.

In addition, note that when constraining on E(V) the confidence intervals for E(U) are

too long. In other words, even though our synthetic samples are centered properly they are

too spread out. This happens despite the fact that the populations all have the same

variance. So even though the average of the means for U for the first and third populations

is equal to the mean of U for the second population, they are just too far apart to get good

synthetic samples using just this one constraint. We can overcome this problem if we have

more information about U for the second population. Suppose we know both its mean and

variance; then we can constrain on both the first and second moments of U when selecting

a synthetic sample. We did this in another simulation where we constrained on both E(U)

and E(U 2) and we see from Table 4 that the length of the intervals, on average, are nearly

the same as those based on random samples from U.
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To explore this further, we next considered the results for estimating the quantiles of U

for the second population. We see from Table 5 that when constraining on either E(U) or

E(V) our synthetic samples tend to underestimate the 0.10 quantile and overestimate the

0.90 quantile. That is, our synthetic samples are too spread out. However, when our

constraints include both E(U) and E(U 2), our estimates based on synthetic samples

perform better than random samples from the actual population. Although we have not

included the simulation results, the story is the same for estimating the quantiles of V.

4.3. Third Example

We produced another example where each population consists of samples from three

independent normal random variables, say U, V, and W. In all cases their standard

deviations were 1.5. The means of U across the three populations were 8, 10, and 12

respectively, while for V they were 8, 9, and 12 and for W 8, 11, and 12. Each population

contained 4,000 units. Then we took 1,000 samples of size 120 from the first and third

populations to construct a synthetic sample for the middle population of size 40 by using

20 units each from the two samples. We constructed synthetic samples where for each

variable their first two sample moments agreed with the first two population moments for

the middle population. For each sample we estimated the 0.10, 0.25, 0.50, 0.75, and 0.90

population quantiles by their corresponding sample quantiles. Both the real samples and

synthetic samples were approximately unbiased. Averaged over all samples and all

Table 4. Comparing the results for estimating E(U) and E(V) for the second example in Section 4 when

sampling from the population and when constraining on moments of U and V. The results are based on 1,000

samples of size 60

Mean absErr lowBd Length Coverage Rate

Variable When sampling from the actual population

U 9.97 0.20 9.47 1.00 0.949
V 9.01 0.20 8.52 0.99 0.950

When constraining on E(V)

U 10.02 0.19 9.31 1.42 0.998
V 9.01 0.0 8.29 1.45 1

When constraining on E(U)

U 9.98 0.0 9.27 1.42 1
V 10.07 1.06 9.34 1.45 0.11

When constraining on E(U) and E(U 2)

U 9.98 0 9.48 1.00 1
V 10.11 1.10 9.35 1.51 0.068

When constraining on E(U), E(U 2), E(V), and E(V 2)

U 9.99 0.01 9.49 1.01 1
V 9.03 0.02 8.52 1.01 1
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quantiles, the average absolute error for the real samples was 0.28 and for the synthetic

samples 0.17. We repeated this example but now using a standard deviation of 2 instead of

1.5. In this case, averaged over all samples and all quantiles the average absolute error for

the real samples was 0.28 and for the synthetic samples it was 0.20. So in both cases

the synthetic samples seem to give a good picture of the unsampled populations.

Once again, this shows that one can construct good synthetic samples from samples of

similar populations for a population for which some true population parameters are

known. How good the synthetic samples will actually be depends on how similar the

populations are and how much is known about the middle population.

4.4. Fourth Example

So far we have seen that our method seems to work well when the three populations are

quite similar and we are estimating means and quantiles. It is natural to wonder how our

method will work if we are interested in estimating more complicated population

parameters, say a regression coefficient.

Consider three populations, each of which consists of two variables X and Y. Let mi

denote the mean of X in the ith population. In population i, X is normally distributed with

mean mi and standard deviation 5. The distribution of Y given X ¼ x is normal with mean

50 þ bix and standard deviation 15. All three populations will contain 4,000 units.

Table 5. Comparing the results for estimating five quantiles of variable U for the second example in Section 4

when sampling from the population and when constraining on moments of U and V. The results are based on

1,000 samples of size 60

0.10 quantile 0.25 quantile 0.50 quantile 0.75 quantile 0.90 quantile

True 7.43 8.66 10.00 11.31 12.53

When sampling from the actual population

Mean of est 7.49 8.68 10.00 11.28 12.45
absErr 0.35 0.28 0.24 0.29 0.35

When constraining on E(V)

Mean of est 6.36 7.83 10.05 12.08 13.61
absErr 1.07 0.85 0.24 0.77 1.08

When constraining on E(U)

Mean of est 6.40 7.87 9.98 12.02 13.61
absErr 1.04 0.79 0.23 0.71 1.08

When constraining on E(U) and E(U 2)

Mean of est 7.49 8.68 10.00 11.28 12.33
absErr 0.23 0.20 0.14 0.11 0.28

When constraining on E(U), E(U 2), E(V), and E(V 2)

Mean of est 7.55 8.36 9.85 11.47 12.70
absErr 0.18 0.31 0.17 0.17 0.22
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In the first example we let mi ¼ 200, 205, and 210 for i ¼ 1, 2, and 3 and set bi to be

equal to 2 for all three populations. For the middle population the true value of the

regression parameter was 1.99 and the correlation between X and Y was 0.58. We then took

500 random samples of size 120 from the first and third populations and for each pair of

random samples found a synthetic sample of size 60 by selecting 30 units each from

the two random samples where we assumed the population means of X and Y were known

for the middle population. For these 500 synthetic samples, we found that the average

value of their estimates for b2 was 1.95 with average absolute error of 0.23. The average

length of their 95% confidence interval was 0.53 with a frequency of containing the true

value equal to 0.928. The corresponding values for 500 random samples from the middle

population were 2.01, 0.31, 0.78, and 0.930. So in this example the synthetic samples

perform very well.

In a second example we set the three mis equal to 200 but let the three bis be equal to

2.00, 2.15, and 2.30 for the three populations. For this case with 500 synthetic samples

formed as in the previous paragraph, we found that the average value of our estimates was

2.21 with an average absolute error of 0.70. The average length of the 95% confidence

intervals was 1.71 with a frequency of containing the true value equal to 0.924. The

corresponding values for 500 random samples from the middle population were 2.18, 0.33,

0.778, and 0.932. So here our synthetic samples are not doing so well. We believe this

happens because in this second example the three populations are not quite as similar as

those in the previous example. We find it interesting, however, that the confidence

intervals based on the synthetic samples have approximately the correct coverage

probability in both examples. In any case, it is clear from all our simulations that how well

synthetic samples work depends not only on how similar the three populations are but also

on what population parameters are being estimated.

4.5. Behavior of the Algorithm

Recall that our goal is not to find an optimal synthetic sample but just one among the large

group of those who are nearly optimal. For the example in Subsection 4.3 where the

standard deviation was 2, we ran our adaptive random search algorithm for 20,000 steps

for each sample. We kept track of how many times it moved to a new state, the time it

moved to the best state, our solution, and the time of the last move. For this example, on

average, our chain moved to 96 new states, the last move occurred at step number 8,500

and our solution occurred at step number 8,055. The average of the minimum of the pis in

our solution was 0.024. Note that if our solution satisfied the constraints exactly, all the pis

would equal 1/40 ¼ 0.025. For the case where the standard deviation was 1.5, we ran our

algorithm for 40,000 steps because there is more separation among the three populations.

For this case, on average, our chain visited 174 states with the last move happening at step

19,537 and our solution occurring at step 15,533. The average of the minimum of the pis in

our solutions was 0.023.

Readers might have been questioning the need for using an adaptive random search

algorithm and whether using random sampling for the searching could work just as well.

For the above problem we took 100 random samples and for each sample we selected

20,000 possible synthetic samples at random. For each sample we found the value of the
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vector ps1,s3
, which is the solution to the problem given in Equation 2. We then found the

synthetic sample, which minimized the function h in Equation 1 over all the random

samples. Averaged over these 100 samples the average minimum value of p was 0.0076.

We repeated this but now included 100,000 random samples in our search. In this case, the

average of the minimum values of p was 0.0084. Finally, we used 400,000 random

samples for our search and found that this average was 0.0102. So even taking 20 times the

number of synthetic samples that we do using our method, random sampling cannot find

any synthetic samples that are as nearly balanced as ours.

Clearly our solutions are not optimal, but they are good enough for the synthetic

samples to be good representations of real samples because we are constructing synthetic

samples from samples of two populations that are similar to the population of interest.

5. A Simulation Using Census Data

To look at the potential performance of the proposed method for the missing 1890

population problem, we tested the proposed method on some actual census data from

nearby decades. We used data supplied from the MPC for one geographical area out of a

total of 56 possible geographical areas. We had approximately 2.3% samples from 1900,

1910, and 1920, which we treated as the entire populations. Associated with each

individual was a vector of possible values indicating gender, age, marital status and race.

We then selected 100 random samples of size about 100 from the 1900, 1910, and 1920

populations. We assumed that the sample from 1910 is missing and only the population

means of five constrained variables were known. The five constrained variables were

“married males”, “single males”, “married females”, “single females”, and “Negroes”. We

used the population means of these five variables from our 1910 population as our mean

constraints and samples from the 1900 and 1920 “populations” to construct synthetic

samples which contained about 50 individuals each from 1900 and 1920.

Because individuals are members of households, when a person was selected to be in

our sample we included everyone in their household as well. Our samples always included

at least 100 individuals. Our synthetic samples also always included at least 100

individuals. At each step of the search it was possible that we would need to remove more

than one household to reduce the size of the current synthetic sample to be less than 100.

By the same token, we might also need to add more than one household to ensure the

number of individuals in the next synthetic sample would be at least 100. So a possible

synthetic sample need not contain exactly 50 observations from 1900 and 1920

respectively.

To see what happens in this case, we constructed 100 synthetic samples using samples

from 1900 and 1920 and the true 1910 population means as constraints. The results are

given in Table 6.

To gain a better understanding of how the synthetic samples work we did another

simulation where instead of constraining on the population means of the five variables we

used sample information. That is, each time we took a sample from the 1910 population as

well and used the sample means of our five constraining variables as the constraints

when constructing a synthetic sample for 1910 from the samples from 1900 and 1920.
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Table 7 contains the results and is based on 100 samples. For comparison, we also

calculated the estimates using the actual 100 samples from the 1910 population.

Note that the point estimates and the length of the confidence intervals based on the

synthetic samples are very similar in the two tables. The intervals in Table 6 have better

coverage rates, however. The better results occur because we are using better information,

true population means, as our constraints.

For our purposes the more important fact is that the results for the synthetic samples are

very similar to the results for the real samples in Table 6. This happens because the

difference between the 1910 means and the average of the 1900 and 1920 means is quite

small for most variables we considered. Because of the small size of our samples, it is not

surprising that, especially for the rarer categories, the coverage rates of the confidence

intervals can fall short of 95%. Moreover, we would expect the synthetic sample to

perform poorly for a category whose 1910 mean is different from the average of its means

from 1900 and 1920. For example, the coverage rate of the confidence intervals for

“mulattoes” from the true 1910 sample is 0.53, which is much higher than 0.31, the

coverage rate for the synthetic samples from 1900 and 1920. We believe that this stems

from fact that the population proportion of “mulattoes” in 1910 is about 0.068, which is

much higher than 0.028 which is the average of 1900 and 1920 population proportions.

Note also that the margin of errors for the actual and synthetic samples are very similar.

Because of the similarity of the three populations and the fact that the majority of the

variables are binary, we see that just constraining on first moments is enough to obtain

intervals with about the right length.

In our simulations, using the adaptive random search method based on Equation 4, we

stopped the iterations after 5,000 steps. When trying to find one particularly good synthetic

sample, there is no reason to stop after a particular number of steps. We did it here to make

the running of a set of simulations easier. Since for the 1890 problem we are only

interested in creating one sample, running the algorithm a long time is not a problem.

However, it could take some experimentation to come up with a good choice for the values

of t and a in Equation 4, as the number of variables used as constraints varies.

Table 6. The results for the synthetic samples for the 1910 population when the true population means are used

as constraints

Variable Mean absErr SD Margin of error Coverage rate

Married males 0.178 0.006 0.384 0.074 1.000
Divorced males 0.002 0.002 0.016 0.003 0.160
Widowed males 0.013 0.009 0.097 0.019 0.780
Single males 0.308 0.006 0.464 0.089 1.000
Negroes 0.352 0.004 0.480 0.092 1.000
Mulattoes 0.035 0.048 0.133 0.025 0.370
Married females 0.181 0.006 0.387 0.074 1.000
Divorced females 0.002 0.004 0.018 0.004 0.180
Widowed females 0.037 0.009 0.187 0.036 0.950
Single females 0.280 0.007 0.451 0.087 1.000
Foreign born 0.007 0.010 0.047 0.009 0.340
Age 23.093 1.451 18.628 3.571 0.950
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Another approach to the 1890 census problem could be to try to use the information

from the 1880 and 1900 censuses to create a model for the 1890 population that would then

be used to generate a sensible one-percent census for 1890. Although such an approach

could work, building a model for the entire US population would be a big problem. We

believe, however, that the approach used here is simpler, and it effectively uses the

information available in the 1880 and 1900 censuses in a simple and straightforward

manner that bypasses the difficult problem of trying to construct a sensible model.

On the other hand, when constructing a one-percent sample for 1890 for a particular

geographic area, historical information should be used when selecting the variables to

constrain upon. These variables could depend on which area of the country you are

considering. For rarer groups, you could make sure that each synthetic sample contains

about the right proportion of individuals of that type. For example, if a family with a

foreign-born individual is removed then it must be replaced by another family containing a

foreign-born individual. If a proposed synthetic sample does not have approximately the

correct mean for some variable not included in the constraining set, then one can always

add this variable to the constraint set and find a new synthetic sample. Since a synthetic

sample for the whole country will be made up of a collection of synthetic samples for a

Table 7. A comparison of actual and synthetic samples for the census data when constraints based on sample

information is used

Sample Variable Mean absErr SD
Margin
of error

Coverage
rate

1910 Married males 0.156 0.030 0.363 0.070 0.920
1910 Divorced males 0.001 0.002 0.008 0.002 0.080
1910 Widowed males 0.010 0.010 0.078 0.015 0.640
1910 Single males 0.333 0.042 0.471 0.091 0.950
1910 Negroes 0.325 0.101 0.450 0.087 0.510
1910 Mulattoes 0.077 0.052 0.224 0.043 0.530
1910 Married females 0.157 0.030 0.364 0.070 0.910
1910 Divorced females 0.003 0.004 0.029 0.006 0.280
1910 Widowed females 0.026 0.016 0.149 0.029 0.740
1910 Single females 0.314 0.050 0.463 0.089 0.870
1910 Foreign born 0.010 0.012 0.057 0.011 0.350
1910 Age 21.352 2.643 17.416 3.364 0.650

synthetic Married males 0.157 0.028 0.364 0.070 0.940
synthetic Divorced males 0.001 0.002 0.008 0.002 0.080
synthetic Widowed males 0.009 0.009 0.074 0.014 0.620
synthetic Single males 0.331 0.037 0.471 0.090 0.980
synthetic Negroes 0.326 0.099 0.452 0.087 0.530
synthetic Mulattoes 0.026 0.050 0.109 0.021 0.310
synthetic Married females 0.159 0.027 0.366 0.070 0.960
synthetic Divorced females 0.001 0.003 0.014 0.003 0.140
synthetic Widowed females 0.027 0.016 0.151 0.029 0.760
synthetic Single females 0.315 0.048 0.464 0.089 0.900
synthetic Foreign born 0.010 0.011 0.063 0.012 0.410
synthetic Age 21.614 2.170 17.418 3.336 0.810
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large number of many small geographic areas, the approach given here should be able to

construct a good synthetic sample for the 1890 population.

6. Final Remarks

Here we have considered the problem of constructing a synthetic sample from a population

for which we have limited information. We proposed a novel approach that assumes the

existence of two known populations which taken together are a good approximation to the

missing population. We have seen in some cases that a synthetic sample can be constructed

and used as a substitute for a missing sample and inferences based on it are as good as

those based on the actual sample. In particular, we saw that to get synthetic samples that do

a good job of estimating the quantiles of a variable one can constrain on the first two

moments of the variable. To obtain the synthetic sample, we used an adaptive random

search algorithm to solve an optimization problem which incorporates the available

limited information about the population of interest. Simulations demonstrated the good

performance of our approach for some small sample sizes.

As we have pointed out, creating a synthetic one-percent sample for the 1890 census is

an extreme missing-data problem, and as far as we know this problem has never been

considered in the literature. Although this is perhaps stating the obvious, we were not

interested in combining or merging two data sets, a problem which has often been

discussed in the literature (Kadane 2001). On the other hand, synthetic data has been

considered in several contexts. It has been recommended to replace missing or censored

observations with imputed or synthetic observations. In some such cases auxiliary

information is used to model the missing observations. In the survey-sampling context,

after a sample has been selected Hidiroglou and Laniel (2001) considered constructing

synthetic variables at the estimation stage. In situations where confidentiality is an issue,

Fienberg et al. (1998) considered constructing synthetic samples as part of a disclosure-

avoidance methodology, but they were modifying existing samples rather than

constructing new ones. Reiter (2002), Reiter (2005), and Drechsler and Reiter (2012)

recommended constructing many synthetic samples and then using multiple imputation

to make inferences. It was argued that valid inferences could still be made using such

synthetic data. Multiple imputation is not an option for the MPC since the goal is to create

a one-percent sample for the 1890 census. In a situation closer to our problem, Kohnen and

Reiter (2009) considered combining information from two populations, but again they use

multiple imputation to construct many synthetic samples. Meeden (2000) gives an

approach to the standard missing-data problem involving constraints that is closer in spirit

to what we are doing here. There, after one set of values are imputed for the missing

observations, the observed and imputed values are then adjusted so that confidence intervals

based on this adjusted sample will have the correct frequentist coverage probability under

repeated sampling.

Another possible application of our methods is to create a synthetic sample for a

population using samples from similar populations and constraints based on partial

information from a sample taken from the population of interest. In one case here, we saw

that such synthetic samples worked well. We have carried out other simulation studies, not

included here, and observed that if the three populations are not too different such
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synthetic samples behave very much like actual samples from the population. Although

real data are always preferred, it seems clear to us that in some cases inferences based on

synthetic data can perform almost as well as inferences based on actual data.
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A Discussion of Weighting Procedures for Unit Nonresponse

David Haziza1 and Éric Lesage2

Weighting procedures are commonly applied in surveys to compensate for nonsampling
errors such as nonresponse errors and coverage errors. Two types of weight-adjustment
procedures are commonly used in the context of unit nonresponse: (i) nonresponse propensity
weighting followed by calibration, also known as the two-step approach and (ii) nonresponse
calibration weighting, also known as the one-step approach. In this article, we discuss both
approaches and warn against the potential pitfalls of the one-step procedure. Results from a
simulation study, evaluating the properties of several point estimators, are presented.

Key words: Calibration; nonresponse bias; one-step approach; propensity-score adjusted
estimator; two-step approach; unit nonresponse.

1. Introduction

Weighting procedures are commonly applied in surveys to compensate for nonsampling

errors such as nonresponse errors and coverage errors. Brick (2013) provides an excellent

overview of weighting in the presence of unit nonresponse; see also Kalton and

Flores-Cervantes (2003). Two types of weight-adjustment procedures are commonly used

in the context of unit nonresponse: (i) nonresponse propensity weighting followed by

calibration, also known as the two-step approach and (ii) nonresponse calibration

weighting, also known as the one-step approach. In this article, our focus is to warn against

the potential pitfalls of the one-step procedure.

The two-step approach consists of adjusting the weights in two distinct steps: the basic

(design) weights of respondents are first multiplied by a nonresponse adjustment factor,

which is defined as the inverse of the estimated response probability. The adjusted weights

are further modified so that survey-weighted estimates agree with known population totals.

In the first step, survey statisticians aim at reducing the nonresponse bias, which may be

appreciable when respondents and nonrespondents are different with respect to the survey

variables. Whether or not one will succeed in achieving an efficient bias reduction depends

on the availability of powerful auxiliary information (Särndal and Lundström 2005),

which is a set of variables available for both respondents and nonrespondents. In the

second step, some form of calibration (e.g., poststratification) is performed in order to

ensure consistency between survey-weighted estimates and known population totals.
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Calibration procedures require that the auxiliary variables (called calibration variables) are

available for the respondents and that their population totals are known. In practice, the

calibration variables are often specified by survey managers, who wish to ensure

consistency with respect to some important variables (e.g., age and sex). Moreover, if the

calibration variables are related to the characteristics of interest, the resulting calibration

estimators tend to be more efficient than the noncalibrated ones.

The one-step approach pursues the same three goals as the two-step approach: reduce

the nonresponse bias, ensure consistency between survey estimates and known population

totals and, possibly, reduce the variance of point estimators. However, the weighting

process is performed in a single step and does not require explicit estimation of the

response probabilities.

In the absence of nonsampling errors, calibration consists of determining a set of

calibrated (or final) weights as close as possible to the basic weights, while satisfying

calibration constraints. A calibrated weight is expressed as the basic weight multiplied by

a calibration adjustment factor, which depends on a calibration function. Commonly used

calibration functions include the linear function, the exponential function, the truncated

linear function and the logit function; see Section 2. Deville and Särndal (1992) showed

that calibration estimators are asymptotically design consistent and that all the distance

functions are asymptotically equivalent in the sense that they all lead to calibration

estimators that are asymptotically equivalent to the calibration estimator based on the

linear calibration function. The calibration function is usually chosen so that the

distribution of the calibrated weights is “cosmetically attractive”. For example, a problem

that can be encountered with the linear function is the occurrence of negative weights,

which can be prevented by using the exponential function that ensures positive weights.

However, the latter may lead to extreme weights, which in turn may contribute to increase

the instability of point estimators for characteristics of interest weakly correlated with the

calibration variables. In this case, functions such as the truncated linear function or

the logit function can be used in order to ensure that the calibration adjustment factors lie

between prespecified lower and upper bounds.

How to choose the calibration function in the presence of unit nonresponse? In the case

of the two-step approach, calibration is performed after the weights have been adjusted for

nonresponse. As a result, the choice of the calibration function can be essentially made

using the same criteria as in the complete response case. This is discussed further in

Section 3. The situation is more intricate with the one-step approach, as different

calibration functions may lead to calibration estimators with substantially different

properties in terms of bias and mean square error. As a result, the choice of the calibration

function is generally important when calibration is used for treating nonresponse. While

the choice of calibration variables has been widely discussed in the literature (e.g., Särndal

and Lundström 2005 and Särndal 2011), the issues of how to select an appropriate

calibration function in the context of the one-step approach and the effect of function

misspecification on the properties of the resulting estimators have not received a lot of

attention. Two notable exceptions are Kott (2006) and Kott and Liao (2012). In this article,

we argue that, even though the one-step approach does not use estimated response

probabilities in the construction of point estimators explicitly, a wrong choice of the

calibration function can have inadvertent and detrimental effects, even in the presence of
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high association between the auxiliary variables and the study variable. The matter

deserves more careful attention than what it seems has hitherto been noticed in the

literature; see Section 4. In Section 5, we show empirically that an inappropriate

calibration function may lead to biased calibration estimators (sometimes exhibiting a bias

larger than that of unadjusted estimators). This is especially true in the presence of

quantitative auxiliary variables. The paper ends with a discussion in Section 6.

2. Calibration Weighting in the Complete Data Case

Let U ¼ {1, 2, : : : , N} be a finite population consisting of N elements. Most surveys

conducted by statistical agencies are multipurpose surveys, which are designed to provide

statistics for a possibly large number of variables. For simplicity, we use the generic

notation y to denote a characteristic of interest. In this paper, we are interested in

estimating a population total ty ¼
P

k[U yk, where yk denotes the k-th value of the

characteristic of interest y, k ¼ 1, : : : , N. A sample s, of size n, is selected from U

according to a given sampling design p(s). Let pk denote the first-order inclusion

probability of unit k in the sample and dk ¼ 1/pk denote its design weight. Applying the

basic weighting system, {dk; k [ s}, to a y-variable leads to the well-known Horvitz-

Thompson estimator

t̂yp ¼
k[s

X
dkyk: ð1Þ

The estimator (1) is design unbiased for ty regardless of the characteristic of interest y

being estimated. That is, Ep(t̂yp) ¼ ty, where Ep(�) denotes the expectation with respect to

the sampling design.

In practice, auxiliary information is often available at the estimation stage. Let

xi ¼ (x1i, : : : , xJi)
` be a J-vector of auxiliary variables attached to unit i. We assume that

the vector of population totals, tx ¼ ðtx1
; : : : ; txJ

Þ`, is known without error, where

txj
¼
P

i[U xji. While the basic weighting system ensures unbiasedness, that is, Epð t̂xpÞ ¼

tx; it does not generally produce an exact estimate for each of the J auxiliary variable; that

is, t̂xp – tx, in general. To overcome the problem, we seek a calibrated weighting system

{wk; k [ s} such that the weights wk are “as close as possible” to the design weights dk

while satisfying the calibration constraints

k[s

X
wkxk ¼ tx:

The resulting calibrated weight wk is given by

wk ¼ dkFðl̂`xkÞ; ð2Þ

where F(�) is a monotonic and twice-differentiable function such that F(0) ¼ 1 and

F 0(0) ¼ 1 and l̂ is a J-vector of estimated coefficients (Deville and Särndal 1992).

The weight wk in (2) is the product of the design weight dk and the calibration adjustment

factor F(l̂`xk). The calibration factor F(l̂`xk) depends on (i) the calibration function

F(�), (ii) the characteristics of unit k through xk and (iii) the vector of estimated

coefficients l̂, which can be viewed as a measure of sample imbalance. Under mild
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regularity conditions, Deville and Särndal (1992) showed that l̂! 0 in probability as

n ! 1 and N ! 1.

The resulting calibration estimator is

t̂C ¼
k[s

X
wkyk: ð3Þ

Several calibration functions F(�) are used in practice, each corresponding to a particular

calibration method. The most popular calibration methods are: (i) the linear method

FðuÞ ¼ 1þ u; ð4Þ

(ii) the exponential method

FðuÞ ¼ expðuÞ; ð5Þ

(iii) the truncated linear method

FðuÞ ¼

1þ u L 2 1 # u # M 2 1

M u . M 2 1

L u , L 2 1;

8
>><

>>:
ð6Þ

where L and M are the prespecified lower and upper bounds, respectively; and (iv) the

logit method

FðuÞ ¼
LðM 2 1Þ þMð1 2 LÞ exp ðAuÞ

M 2 1þ ð1 2 LÞ exp ðAuÞ
; ð7Þ

where

A ¼
M 2 L

ð1 2 LÞðM 2 1Þ
:

Assuming that the inverse of
P

k[s dkxkx`
k exists, the linear method leads to a closed-

form solution. In contrast, Methods (5)–(7) require some numerical methods that may fail

to converge in some situations. However, the linear method may produce negative

calibration adjustment factors, F(l̂`xk), resulting in negative calibrated weights. On the

other hand, the exponential method ensures that the calibration adjustment factors are

positive, although some could be extreme. To avoid unduly large calibration adjustment

factors, one can specify lower and upper bounds through the use of the truncated linear and

logit methods. Deville and Särndal (1992) showed that the calibration estimator (3) is

design consistent and approximately design unbiased for ty regardless of the characteristic

y being estimated and that all the calibration methods are asymptotically equivalent in the

sense that they all lead to the calibration estimator based on the linear method.

We now discuss two important situations that are frequently encountered in practice.

Let x1 and x2 be two categorical variables with J1 and J2 categories, respectively. The

population U is then divided into J1 £ J2 cells. Let Nj1 j2
be the population count

corresponding to the ( j1, j2) cell, j1 ¼ 1, : : : , J1 and j2 ¼ 1, : : : , J2. Two cases may occur

in practice: (i) the population counts Nj1 j2
are known. This case corresponds to a standard
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poststratification based on a vector of auxiliary information of size J ¼ J1 £ J2. It is worth

noting that, in this case, the choice of the calibration function F(�) is unimportant as all the

calibration functions lead to the same calibrated weighting system {wk; k [ s}. (ii) The

individual cell counts Nj1 j2
are not known but the population margins Nj1† ¼

PJ2

j2¼1 Nj1j2

and N†j2 ¼
PJ1

j1¼1 Nj1 j2 are known, leading to a vector of auxiliary information of size

J ¼ J1 þ J2. In this context, Deville et al. (1993) showed that the use of the exponential

method (5) leads to the raking ratio estimator. Unlike case (i), different calibration

functions generally lead to different calibrated weighting systems in case (ii). This

discussion can be extended to more than two categorical variables. In this instance, case

(ii) is often referred to as generalized raking procedures. We revisit both situations in

Section 6 in the context of nonresponse adjustment.

3. The Two-Step Approach: Nonresponse Propensity Weighting Followed by

Calibration

In the presence of unit nonresponse, the characteristics of interest are observed for a

subset, sr , of the original sample s. Let fk be the unknown response propensity attached to

unit k. We assume that fk . 0 for all k and that units respond independently of one

another. We postulate the following nonresponse model

fk ¼ mðzk; gÞ; ð8Þ

where m(�) is a given function, zk is a vector of auxiliary variables available for both

respondents and nonrespondents and g is a vector of unknown parameters. In this article,

we assume that the z-vector is correctly specified but not necessarily the functional form of

(8). The choice of the z-vector is discussed in Little and Vartivarian (2005).

In the first step, an estimate of fk is f̂k ¼ m(zk,ĝ), where ĝ is a suitable estimator of g.

The adjusted weight for nonresponse attached to unit k is defined as w̃k ¼ dk/f̂k for k [ sr ,

leading to a weighting system adjusted for nonresponse, {w̃k; k [ sr}. The factor f̂21
k is

often called the nonresponse adjustment factor for unit k. Applying the weighting system

{w̃k; k [ sr} to a characteristic of interest y leads to the Propensity-Score Adjusted (PSA)

estimator of ty (e.g., Lee 2006):

t̂PSA ¼
k[sr

X
dkf̂

21
k yk ¼

k[sr

X
~wkyk: ð9Þ

The rationale behind this type of weighting procedure is similar in spirit to weighting for

two-phase sampling.

Estimates of the fk’s may be obtained through the use of a parametric model; for

example, a logistic regression model as found in Ekholm and Laaksonen (1991). In the

context of parametric nonresponse models, Kim and Kim (2007) showed that the PSA

estimator (9) is asymptotically unbiased and consistent for ty regardless of the

characteristic y being estimated if (8) is correctly specified. However, parametric methods

are rarely used in practice because some estimates f̂k may be very small, leading to

extreme nonresponse adjustment factors, ultimately resulting in highly dispersed weights ~wk.

Moreover, parametric methods are vulnerable to the misspecification of m(�).
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In practice, nonparametric methods are preferred. A popular method, called the score

method (Haziza and Beaumont 2007), consists of first obtaining preliminary estimated

response probabilities ~fk using a parametric model (e.g., the logistic regression model)

and partitioning the sample into homogeneous weighting classes formed on the basis of the
~fk’s. The basic weight of a respondent in a given class is then adjusted using the observed

response rate within the same class (e.g., Little 1986; Eltinge and Yanaseh 1997). Other

nonparametric methods include smoothing methods such as kernel and local polynomial

methods (e.g., Giommi 1987; Da Silva and Opsomer 2006, 2009) and regression trees

(e.g., Phipps and Toth 2012). Nonparametric methods are expected to provide some

robustness if the form of m(�) is misspecified and protect (to some extent) against the

noninclusion of predictors accounting for curvature or interactions in the z-vector.

In the second step, the adjusted weights w̃k are further modified so that survey-weighted

estimates agree with known population totals. More specifically, we assume that a vector

of calibration variables x* is available for k [ sr and that the vector of population totals

tx* ¼
P

k[U x*
k is known. The x*-vector may contain one or more z-variables that were

used in (8). The final weighting system is given by {wk; k [ sr}, where

wk ¼ ~wkF l̂`x*
k

� �
ð10Þ

and l̂` is a vector of estimated coefficients. The final weights wk satisfy the calibration

constraints

k[sr

X
wkx*

k ¼ tx*: ð11Þ

The weight wk in (10) is the product of the adjusted weight w̃k and the calibration

adjustment factor F l̂`x*
k

� �
.

For example, the linear method (4) leads to

wk ¼ ~wk 1þ l̂`x*
k

� �
;

whereas the exponential method leads to

wk ¼ ~wk exp l̂`x*
k

� �
:

Alternative weighting methods are discussed in Kott and Liao (2012). Applying the

final weighting system, {wk; k [ sr}, to a characteristic of interest y leads to the two-step

calibration estimator

t̂C;2 ¼
k[sr

X
wkyk ¼

k[sr

X
dkf̂

21
k F l̂`x*

k

� �
yk: ð12Þ

We make the following remarks: (i) if the nonresponse model (8) is correctly specified

(and so the estimator (9) is asymptotically unbiased for ty for every characteristic of

interest), the two-step calibration estimator t̂C,2 is asymptotically unbiased for ty regardless

of the characteristic y being estimated. (ii) If the x*-vector is linearly related to y, then t̂C,2

is expected to be more efficient than t̂PSA. (iii) As for the complete data case, l̂ ! 0 in

probability as n ! 1 and N ! 1 if the nonresponse model (8) is correctly specified. (iv)

In the two-step approach, the calibration function is chosen using the same criteria as those
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encountered in the complete-data case. Most often, the distribution of the calibration

adjustment factors F l̂`x*
k

� �
drives the choice of the function F(�).

4. The One-Step Approach: Nonresponse Calibration Weighting

Following Särndal and Lundström (2005), we distinguish between two levels of auxiliary

information:

(1) U-level: a vector of auxiliary variables x*
k is minimally available for k [ sr and the

vector of population totals tx* ¼
P

k[U x*
k is known.

(2) s-level: a vector of auxiliary variables xo
k is available for k [ s but the vector of

population totals,
P

k[U xo
k , is unknown. Instead, the vector of complete-data

estimators, t̂xo ¼
P

k[s dkxo
k , is available.

We define the stacked vector of auxiliary variables for unit k as xk ¼
� x*

k

xo
k

�
and the

corresponding vector of totals tx ¼
� tx*

t̂xo

�
. The x o-variables are believed to be associated

with nonresponse and, possibly, with some characteristics of interest. Their role is similar to

that of the z-variables in the two-step approach: contribute to reducing the nonresponse bias.

The final weighting system is {wk; k [ sr}, where

wk ¼ dkF l̂
`

r xk

� �
; ð13Þ

and l̂ r is determined so that the calibration constraints

k[sr

X
wkxk ¼ tx

are satisfied. The final weight wk in (13) is the product of the design weight dk and the

nonresponse/calibration adjustment factor F l̂
`

r xk

� �
. Applying the final weighting

system, {wk; k [ sr}, to a characteristic of interest y leads to the one-step calibration

estimator

t̂C;1 ¼
k[sr

X
wkyk ¼

k[sr

X
dkF l̂

`

r xk

� �
yk: ð14Þ

Note that, unlike the two-step approach, the vector of estimated coefficient l̂r does

not converge towards 0 as n ! 1 and N ! 1. This is due to the fact that F l̂
`

r xk

� �
is

essentially an estimate of f21
k .

We now compare the one-step and the two-step approaches. To that end, note that it is

sufficient to compare the PSA estimator (which is the estimator resulting from the first step

in the two-step approach) and a calibration estimator based on the x o-variables only. The

second step in the two-step approach or the use of the x*-variables in the one-step

approach strive to make survey estimates and known population totals agree, which is not

the focus here. Below, we argue that the one-step based on the x o-variables imposes a

parametric model for the relationship between the response propensity and the vector of

auxiliary variables, which makes the resulting estimator vulnerable to a misspecification

of the calibration function.
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Recall that t̂PSA is asymptotically unbiased for ty regardless of the characteristic y being

estimated, provided that the nonresponse model (8) is correctly specified. Therefore, for

t̂C,1 in (14) to be asymptotically unbiased for ty regardless of the characteristic y being

estimated, we require

F l̂`
r xk

� �
¼ f̂21

k :

The previous expression suggests that the adjustment factor F l̂
`

r xk

� �
can be viewed

as an implicit estimate of f21
k .

Next, we examine the bias of t̂C,1, where the bias is defined as Bias(t̂C,1) ¼

EpEq(t̂C,1js) 2 ty, and the subscripts p and q refer to the sampling design and the

nonresponse mechanism respectively. Using a first-order Taylor expansion and ignoring

the higher-order terms, the bias of t̂C,1 can be approximated by

Biasðt̂C;1Þ < 2
k[U

X
ð1 2 f kFkÞ yk 2 x`

k Bf f

� �
; ð15Þ

where

Bf f ¼
k[U

X
f kf kxkx`

k

0

@

1

A

21

k[U

X
fkf kxkyk

with Fk ; F l`
N xk

� �
, f k ; F 0 l`

N xk

� �
and lN denotes the probability limit of l̂r.

In the case of linear weighting (4), Expression (15) reduces to

Biasðt̂C;1Þ < 2
k[U

X
ð1 2 fkÞ yk 2 x`

k Bf

� �
; ð16Þ

where

Bf ¼
k[U

X
f kxkx`

k

0

@

1

A

21

k[U

X
f kxkyk:

Expression (16) is identical to Expression (9.14) in Särndal and Lundström (2005). Note

that the more general expression (15) does not appear in Särndal and Lundström (2005),

where the focus is placed on linear weighting.

Expression (15) is interesting because it sheds some light on the conditions required for

asymptotic unbiasedness:

(1) On the one hand, the asymptotic bias (15) vanishes if the finite population covariance

between the residuals ek ¼ yk 2 x`
k Bf f

� �
and dk ¼ fkFk 2 1 is equal to zero.

This condition is satisfied if

yk ¼ x`
k bþ ek ð17Þ

with

EðekjxkÞ ¼ 0 ð18Þ
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and if the response probability fk is not related to yk after conditioning on x k. The

latter condition is essentially the customary MAR assumption (Rubin 1976).

In multipurpose surveys, it is unrealistic to presume that Model (17) holds for every

characteristic of interest y, in which case some estimates may suffer from bias. In fact, in

household and social surveys, most characteristics of interest are categorical, in which

case (17) is generally not appropriate.

(2) On the other hand, the asymptotic bias of t̂C,1 is equal to zero if

Fk ¼ f21
k : ð19Þ

Hence, selecting a calibration function F(�) such that (19) is satisfied ensures that

the one-step calibration estimator is asymptotically unbiased regardless of the

characteristic of interest y being estimated, even if (17) and (18) do not hold. For

linear weighting, it follows from (19) that t̂C,1 is asymptotically unbiased for ty for

every y if

f21
k ¼ 1þ l`xk for all k [ U; ð20Þ

for a vector of unknown constants l (see Särndal and Lundström 2005, ch. 9). For

exponential weighting, we require

f21
k ¼ exp l`xk

� �
for all k [ U; ð21Þ

see also Kott and Liao (2012) for a discussion of alternative weighting methods. In other

words, both the linear and exponential methods correspond to specific parametric

nonresponse models, which suggests that selecting either one is somehow equivalent to

(implicitly) selecting a nonresponse model. This begs the following question: how is t̂C,1

affected if (20) (respectively (21)) is not an appropriate description of the relationship

linking the x-vector and the fk’s, that is, if the calibration function is misspecified? This

aspect is investigated in Section 5.

A key aspect here is to realize that each calibration function corresponds to a specific

parametric nonresponse model. By choosing a given calibration function, one is

effectively making a strong statement about the underlying nonresponse mechanism.

Therefore, in order to avoid an incorrect functional form, a complete modeling exercise is

needed to validate the form of the function linking the response propensity fk to the vector

of auxiliary variable x k. Failing to do so may result in biased estimators. Furthermore,

there may be no calibration that corresponds to the inverse of the estimated response

probabilities. For instance, suppose that the relationship between the response probability

and a single auxiliary variable x is described by a nonmonotonic function. In this case, it

may be difficult to find a calibration function that provides an adequate description of the

relationship between the inverse of the response propensity and the x-vector.
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5. Simulation Study

We conducted a simulation study to illustrate the importance of carefully selecting a

calibration function F(�) in the context of a one-step approach. We generated a population

of size N ¼ 1,000, which consisted of an auxiliary variable x and four variables of interest

y1, y2, y3 and y4. The x-values were first generated from a uniform distribution (0, 80).

The y1-values were generated according to the linear model

yk1 ¼ 1;000þ 10xk þ 1k1;

where the errors 1k1 were generated from a normal distribution with mean 0 and variance

300. The y2-values were generated according to the exponential model

yk2 ¼ expð20:1þ 0:1xkÞ þ 1k2;

where the errors 1k2 were generated from a normal distribution with mean 0 and variance

300. The y3-values were generated according to the logistic model

yk3 , Bð1; pkÞ;

where pk ¼ [exp{20.5 (xk 2 55)} þ 1]21. The y4-values were generated according to

the quadratic model

yk4 ¼ 1;300 2 ðxk 2 40Þ2 þ 1k4;

where the errors 1k4 were generated from a normal distribution with mean 0 and standard

deviation 300. The relationships between yj and x are displayed in Figure 1, j ¼ 1, : : : , 4.

In order to focus on the nonresponse error, we considered the census case; that is,

n ¼ N ¼ 1,000 and dk ¼ 1 for all k. In each population, units were assigned a response

probability fk according to a given nonresponse mechanism. We simulated nonresponse

according to four nonresponse mechanisms, all presented in Table 1; see also Figure 2.

For each mechanism, the parameters were set so that the overall response rate was
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Fig. 1. Relationships between the characteristics of interest and x
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approximately equal to 50%. The response indicators Rk for k [ U were generated

independently from a Bernoulli distribution with parameter fk, resulting in a population of

respondents Ur of size Nr. The nonresponse process was repeated M ¼ 5,000 times,

leading to M ¼ 5,000 sets of respondents for each nonresponse mechanism. From Figure 1

and Figure 2, we note that both the response propensity and the characteristics of interest

y1 2 y4 are highly related to x in all the scenarios.

We were interested in estimating the populations totals tyj
, j ¼ 1, 2, 3, 4. For each total,

we computed three estimators: (i) The unadjusted estimator t̂un ¼ Nȳr where

�yr ¼
P

k[Ur
yk=Nr; (ii) The one-step calibration estimator t̂C,1 given by (14) based on

different calibration functions: linear, exponential and logit, given by (4), (5) and (7),

respectively, using xk ¼ (1, xk) as the auxiliary vector. In other words, the estimator t̂C,1

was calibrated on the population size N as well as the population total of x-values, tx;

(iii) the Propensity-Score Adjusted estimator t̂PSA, where the response propensities were

estimated using the score method described in Section 3. To that end, preliminary response

probabilities f̃k were first obtained using a logistic regression model with (1, xk)
` as the

vector of predictors. Then, the sample was partitioned into 20 weighting classes according

the f̃k’s and the response propensity of a unit in a given class was estimated using the

response rate observed within the same class. Although five imputation classes are often

sufficient for an effective bias reduction (Eltinge and Yansaneh 1997; Rosenbaum and

Table 1. Nonresponse mechanisms used for generating nonresponse

Nonresponse mechanism Name fk

1 Inverse linear (1.2 þ 0.024 xk)
21

2 Exponential exp(20.2 2 0.014xk)
3 Logistic type 0.2 þ 0.6{1 þ exp(25 þ xk/8)}21

4 Quadratic 0.7 þ 0.45 (xk/40 2 1)2 þ 0.0025 xk
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Fig. 2. Relationships between the response probability and x
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Rubin 1983), it may not be appropriate when the relationship between the characteristic of

interest and the auxiliary variable is highly nonlinear or contains a quadratic terms as it is

the case for y1 and y4, respectively (see Haziza and Beaumont 2007). This is why we used

20 imputation classes.

As we argued in Section 4, in order to show that one-step calibration is vulnerable to

the misspecification of the calibration function, it is sufficient to compare t̂PSA and t̂C,1

based on the x o-variables only. In other words, there is no need to perform the second step

in the two-step approach or to use x*-type variables in the one-step approach.

As a measure of bias of an estimator û of a parameter u, we used the Monte Carlo

percent relative bias (RB)

RBMCðûÞ ¼
100

M

XM

m¼1

ðûðmÞ 2 uÞ

u
;

where û(m) denotes the estimator û in the m-th repetition, m ¼ 1, : : : , M. We also

computed the percent relative root mean square error (RRMSE) of û:

RRMSEMCðûÞ ¼ 100 £
M 21

XM

m¼1
ðûðmÞ 2 uÞ2

n o

u

1=2

:

The results are shown in Tables 2–5. As expected, the unadjusted estimator was biased

in all the scenarios. This can be explained by the fact that the response probability was

related to the characteristics of interest via the auxiliary variable x and that the unadjusted

estimator did not account for x.

We now turn to the variable y1, which was linearly related to the variable x. We see from

Tables 2–5 that the resulting one-step calibration estimator t̂C,1 showed negligible bias

regardless of the calibration method F(�) used. This is consistent with the Expressions

(15)–(18). Furthermore, the choice of calibration method did not affect the efficiency

of the estimator for a given nonresponse mechanism. For example, in Table 2

Table 2. Monte Carlo percent relative bias and percent relative root mean square error (in parenthesis) of

several estimators under the inverse linear nonresponse mechanism: Fk ¼ (1.2 þ 0.024 xk)
21

t̂yC,1

F(u) ¼

t̂un 1 þ u exp(u)
LðM 2 1Þ þMð1 2 LÞ exp ðAuÞ

M 2 1þ ð1 2 LÞ exp ðAuÞ t̂PSA

y1 24.1 0.0 0.0 0.0 20.0
(linear) (4.2) (0.7) (0.7) (0.7) (0.8)

y2 228.1 20.1 2.8 3.3 20.1
(exponential) (28.7) (5.5) (6.1) (6.4) (3.0)

y3 227.5 20.1 1.7 2.1 20.1
(logistic) (27.9) (3.4) (3.6) (3.8) (2.3)

y4 24.8 0.1 22.0 22.4 20.1
(quadratic) (5.3) (2.8) (3.3) (3.5) (1.4)
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(which corresponds to the inverse linear nonresponse mechanism), the RRMSE of t̂C,1 was

equal to 0.7 for all the calibration methods. Finally, the PSA estimator showed virtually no

bias in all the scenarios corresponding to the y1-variable and showed the same efficiency as

that of t̂C,1, except in Table 2, where we note a slight loss of efficiency.

For the variables y2-y4 that were not linearly related to the x-variable, we note that the

resulting one-step calibration estimator was generally biased, except when the calibration

method F(�) was appropriate; see Expression (19). For example, in Table 2 (which

corresponds to the inverse linear nonresponse mechanism), the one-step calibration

estimator t̂C,1 showed no bias for the three variables under the linear calibration method

F(u) ¼ 1 þ u. These results are consistent with (20). On the other hand, the other

calibration methods (exponential and logit) led to some bias with an absolute RB ranging

Table 3. Monte Carlo percent relative bias and percent relative root mean square error (in parenthesis) of

several estimators under the exponential nonresponse mechanism: Fk ¼ exp(20.2 2 0.014xk)

t̂yC,1

F(u) ¼

t̂un 1 þ u exp(u)
LðM 2 1Þ þMð1 2 LÞ exp ðAuÞ

M 2 1þ ð1 2 LÞ exp ðAuÞ t̂PSA

y1 24.9 20.0 0.0 0.0 20.0
(linear) (4.9) (0.8) (0.8) (0.8) (0.8)

y2 235.1 24.0 20.0 0.7 20.1
(exponential) (35.5) (7.1) (5.8) (5.9) (3.2)

y3 233.8 22.5 0.0 0.6 20.1
(logistic) (34.1) (4.3) (3.3) (3.3) (2.3)

y4 23.6 2.9 0.0 20.6 20.0
(quadratic) (4.3) (4.2) (2.7) (2.8) (1.6)

Table 4. Monte Carlo percent relative bias and percent relative root mean square error (in parenthesis) of

several estimators under the logistic nonresponse mechanism: Fk ¼ 0.2 þ 0.6 {1 þ exp(25 þ xk/8)}21

t̂yC,1

F(u) ¼

t̂un 1 þ u exp(u)
LðM 2 1Þ þMð1 2 LÞ exp ðAuÞ

M 2 1þ ð1 2 LÞ exp ðAuÞ t̂PSA

y1 27.3 20.3 20.2 20.2 20.1
(linear) (7.3) (0.9) (0.9) (0.9) (0.9)

y2 251.5 210.0 20.4 0.9 20.2
(exponential) (51.7) (12.3) (7.0) (7.1) (3.7)

y3 253.4 212.1 25.6 24.5 20.3
(logistic) (53.5) (12.9) (6.7) (5.8) (3.0)

y4 21.0 11.7 4.3 3.1 20.0
(quadratic) (2.3) (12.3) (5.3) (4.3) (1.8)
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from 1.7% to 3.3%. Similarly, in Table 3 (which corresponds to the exponential

nonresponse mechanism), the one-step calibration estimator t̂C,1 showed no bias for the

three variables under the exponential calibration method F(u) ¼ exp(u). These results are

consistent with (21). On the other hand, the other calibration methods (linear and logit) led

to some bias with an absolute RB ranging from 0.6% to 4.0%.

In Tables 4 and 5, we note that the one-step calibration estimator showed some bias in

all the scenarios, which can be explained by the fact that none of the calibration methods

(linear, exponential or logit) provided an adequate description of the relationship

between the inverse of the response probability and the x-variable. For example, in

Table 5, all the calibration methods led to substantial bias with an absolute RB ranging

from 11.4% to 19.7%. It is worth noting that the one-step calibration estimator was

significantly more biased than the unadjusted estimator for the variables y2 and y3, which

illustrates that a poor choice of F(�) may result in significant biases, which can be larger

than that of the unadjusted estimator. Finally, the PSA estimator showed negligible

biases in all the scenarios corresponding to y2-y4. Moreover, its RRMSE was

considerably smaller than that of the one-step calibration estimator for these variables.

These results suggest that the score method, which is nonparametric in nature, is robust

to the misspecification of the form of the function m(�) in (8).

The results presented here suggest that a high association between the characteristic

variable and the auxiliary variables is not necessarily enough for the one-step calibration

method to yield good results, as in the cases of the variables y2 and y3. Also, as shown in

Table 5, the fact that various calibration functions yield about the same estimate is not

necessarily a sign that any of the choices will work well.

6. Discussion

In this article, we have discussed two weighting approaches in the presence of unit

nonresponse: the one-step approach and the two-step approach, the latter being the

Table 5. Monte Carlo percent relative bias and percent relative root mean square error (in parenthesis) of

several estimators under the quadratic nonresponse mechanism: Fk ¼ 0.7 þ 0.45 (xk/40 2 1)2 þ 0.0025 xk

t̂yC,1

F(u) ¼

t̂un 1 þ u exp(u)
LðM 2 1Þ þMð1 2 LÞ exp ðAuÞ

M 2 1þ ð1 2 LÞ exp ðAuÞ t̂PSA

y1 1.3 20.2 20.2 20.2 0.0
(linear) (1.4) (0.5) (0.5) (0.5) (0.5)

y2 28.3 219.7 219.2 219.0 20.4
(exponential) (9.4) (19.9) (19.5) (19.3) (2.3)

y3 20.5 211.8 211.5 211.4 20.1
(logistic) (3.2) (12.0) (11.7) (11.6) (1.0)

y4 13.1 13.7 13.4 13.2 0.2
(quadratic) (13.2) (13.8) (13.5) (13.4) (1.1)
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customary approach to weighting in statistical agencies. Although it is more complex to

implement than the one-step approach as two distinct weighting procedures must be

applied, the two-step approach offers several advantages: first, it makes it possible to

assess the impact of nonresponse adjustment and calibration adjustment on the distribution

of the weights separately. Furthermore, when multiple characteristics are collected, survey

statisticians prefer modeling the response probability to the survey as it does not require a

different model for each characteristic of interest. In this case, complete reliance is placed

on the nonresponse model in order to achieve an efficient bias reduction for every y. In

statistical agencies, the response propensities are typically estimated through

nonparametric methods such as weighting classes based on estimated response

probabilities or regression trees, as both types of methods provide protection against

misspecification of the functional and account for curvature and interactions. This is

especially important when the auxiliary variables are continuous and their association with

the response probability is not monotonic.

In contrast, the single-step calibration approach is simple to implement as the whole

weighting process is performed in a single step. Furthermore, it does not make explicit use

of estimated response probabilities, unlike the two-step approach. However, as we have

illustrated empirically, the choice of the calibration function F(�) is generally important.

In the simulation study conducted in Section 5, where we considered the case of a

quantitative variable x, the results suggested that the one-step calibration estimator

suffered from significant bias if the calibration function is inappropriate. Would the results

be similar if the calibration results were categorical? We revisit the case of two categorical

variables x1 and x2 described in Section 2. Let Nj1 j2
be the individual cell counts available

at the sample level (Info-s). Matching the individual cell counts results in a poststratified-

type estimator, in which case the choice of the calibration function is unimportant as

different F(�) would result in the same estimator. In other words, as long as the variables

x1 and x2 are related to nonresponse, the one-step calibration estimator should exhibit no

bias. In fact, in this case, the latter is identical to the PSA estimator based on weighting

classes obtained by cross classifying x1 and x2. On the other hand, if calibration is

performed to match the margins Nj1†
and N†j2

available at the sample level, choosing the

appropriate calibration function becomes an issue once again, as different F(�) would lead

to different one-step calibration estimators. In their Remark 10.1, Särndal and Lundström

(2005) suggest that categorizing the x-variables when the latter are quantitative may bring

some robustness. For a poststratification-type situation, we agree with this recommen-

dation. However, when calibration is performed on margins only, the extent to which the

one-step calibration estimators would be robust to the misspecification of the calibration

function F(�) is not so clear-cut.

Although the PSA estimator based on the score method performed well in all the

scenarios presented in Section 5, we are not suggesting that it would perform well in any

type of situations. If a causal relationship exists between one or more characteristics of

interest and the response propensity, some residual nonresponse bias will remain.

Furthermore, we have considered the case of a single quantitative variable x. Additional

studies are needed to investigate how the score method would perform in the presence of

multiple quantitative variables with, possibly, quadratic or cubic terms. The results simply

suggest that nonparametric methods are attractive from a practical point of view as they
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bring some robustness if the nonresponse model is not correctly specified. This is not true,

in general, for the one-step approach that imposes an implicit parametric model.
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A Note on the Effect of Data Clustering on the
Multiple-Imputation Variance Estimator: A Theoretical

Addendum to the Lewis et al. article in JOS 2014

Yulei He1, Iris Shimizu1, Susan Schappert1, Jianmin Xu1, Vladislav Beresovsky1,

Diba Khan1, Roberto Valverde1, and Nathaniel Schenker1

Multiple imputation is a popular approach to handling missing data. Although it was originally
motivated by survey nonresponse problems, it has been readily applied to other data settings.
However, its general behavior still remains unclear when applied to survey data with complex
sample designs, including clustering. Recently, Lewis et al. (2014) compared single- and
multiple-imputation analyses for certain incomplete variables in the 2008 National
Ambulatory Medicare Care Survey, which has a nationally representative, multistage, and
clustered sampling design. Their study results suggested that the increase of the variance
estimate due to multiple imputation compared with single imputation largely disappears for
estimates with large design effects. We complement their empirical research by providing
some theoretical reasoning. We consider data sampled from an equally weighted, single-stage
cluster design and characterize the process using a balanced, one-way normal random-effects
model. Assuming that the missingness is completely at random, we derive analytic expressions
for the within- and between-multiple-imputation variance estimators for the mean estimator,
and thus conveniently reveal the impact of design effects on these variance estimators. We
propose approximations for the fraction of missing information in clustered samples,
extending previous results for simple random samples. We discuss some generalizations of this
research and its practical implications for data release by statistical agencies.

Key words: Bayesian; complex survey design; data release; exploratory data analysis;
fraction of missing information; missing data.

1. Introduction

Data collected for scientific research often contain missing values. For example, the

National Ambulatory Medical Care Survey (NAMCS) has been conducted by the U.S.

Centers for Disease Control and Prevention’s National Center for Health Statistics

(NCHS) since 1973. The survey aims to provide nationally representative data on office-

based physician care. The ultimate sample unit is a doctor-patient encounter, drawn

systematically from the terminus of a multistage, clustered sample design. However,

NAMCS has considerable item nonresponse for race, one of the key demographics used in

various analyses. These missing data, if inadequately accounted for, might lead to invalid

inferences and misleading policy implications.
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Multiple imputation (MI) (Rubin 1987) is a popular approach to handling missing data

problems. In general, MI involves replacing each missing datum with several (D) sets of

plausible values drawn from a specified imputation model, resulting in several completed

datasets (i.e., data with missing values filled in by imputations). Each completed dataset

is analyzed separately by a standard complete-data method. The resulting inferences,

including point estimates, covariance matrices, and p-values, can then be combined to

formally incorporate imputation uncertainty using the formulae given in Chapter 3 of Rubin

(1987) and refined in Chapter 10 of Little and Rubin (2002). See also Subsection 2.3 for

more specifics. The implementation of MI in several major statistical packages, including

SAS (www.sas.com), R (www.r-project.org), and STATA (www.stata.com), has made this

missing data strategy increasingly popular among practitioners (Harel and Zhou 2007).

MI was originally proposed as a Bayesian, model-based approach to survey

nonresponse issues (Rubin 1978). However, it has been widely applied to data of various

types such as surveys, clinical trials, and observational studies. Despite its popularity,

limited research has been conducted to assess the general behavior of MI for survey data

with complex sample designs such as stratification and clustering. Rubin (1987, chap. 4)

provided some general, asymptotic arguments for the appropriateness of MI for survey

data. Rubin and Schenker (1986) used data from simple random samples (SRS) as

illustrations. Meng (1995) raised the issue of “uncongeniality” for MI inferences, which

occurs when imputation models might be incompatible with complete-data analysis

procedures. See also Kim and Shao (2014, chap. 4) for further discussion of this topic.

Reiter et al. (2006) demonstrated that bias can arise when complex survey-design features

are not accounted for in the imputation models.

Recently, Lewis et al. (2014) applied MI to the race variable (around 30% missing) in

the 2008 NAMCS and estimated race proportions at national and domain levels. They

compared the variance estimates from MI and single imputation (SI), and the study results

suggested that the variance increase due to MI decreases as the design effects of the

estimated proportions increase. That is, estimates with larger design effects are associated

with smaller increases in estimated variance after MI, despite having similar rates of

missingness. Similar patterns can also be identified in simulation studies conducted by

Reiter et al. (2006). It is generally expected that the variance increase due to MI is small

when the rate of missingness is small. That is, there is little difference for the variance

estimates between MI and SI when there is little missing data. However, the additional role

played by the design effect in MI variance estimation is unclear. This phenomenon was

termed “surprising” in Lewis et al. (2014), yet no convincing theoretical justification was

provided. Fully understanding the rationale behind this phenomenon is important, given

the increasing number of applications of MI to complex survey data (e.g., Schenker et al.

2006). This issue is also related to the emerging topics of research on conducting MI for

other types of data (e.g., clinical trials) with clustered (multilevel) structure (see van

Buuren 2012, sec. 3.8 and references therein).

In this article, we aim to provide some theoretical explanation as a complement to the

empirical study in Lewis et al. (2014). We elucidate the effect of data clustering on MI

variance estimation by deriving algebraic expressions and discuss its practical

implications. The remainder of the article is organized as follows. In Section 2, we

introduce a classic one-way normal random-effects model for balanced data to
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characterize the data sampled from a clustered design. This model-based setup is

convenient for studying the properties of MI inference. In Section 3, we derive formulae

for the between- and within-imputation variance components of MI analysis for the mean

estimate under this model. The variance increase due to MI is shown to decrease as

clustering (design) effects increase. Approximations for the fraction of missing

information are proposed. Finally, in Section 4, we propose topics for future research.

2. Method

2.1. Complete-Data Model

Complex survey designs (e.g., in NAMCS) often include multistage stratification and

clustering. It is often difficult to characterize such a process using explicit models. For

simplicity, we consider single-stage cluster sampling with clusters of equal sizes (Cochran

1977, chap. 9). That is, a simple random sample of m clusters, each containing n elements,

is drawn from M clusters in the population. We further consider a model-based

representation of this sample as follows:

yij ¼ mþ ai þ e ij; ð1Þ

ai
i:i:d:, Nð0; t2Þ;

e ij
i:i:d:, Nð0;s2Þ;

for i ¼ 1, : : : , m, j ¼ 1, : : : , n, where yij is the random variable, m is the (super)

population mean, the ais are between-cluster random effects, and the e ijs represent within-

cluster measurement error, and i.i.d. means “independent and identically distributed”.

Model (1) (a balanced, one-way normal random-effects model) and its variants are

frequently used in the analysis of clustered surveys (Valliant et al. 2000, chap. 8). Here we

use Model (1) as a basis to derive the corresponding MI variance estimators and relate

them to the design effects (Kish 1965) used in survey sampling. Model (1) and its

generalizations, the mixed-effects models, are also used in the emerging literature on

conducting MI for clustered data not limited to surveys (e.g., see Andridge 2011 for

clustered randomized trials and Schafer and Yucel 2002 for longitudinal data).

Under Model (1), Cov( yij, yij 0) ¼ t 2 for j – j 0 and j, j 0 [ (1, : : : , n), and Cov( yij,

yi0k) ¼ 0 for i – i0, i, i0 [ (1, : : : , m) and j, k [ (1, : : : , n). With complete data, the

typical unbiased estimator with minimum variance for m is the overall sample mean

m̂com ¼ �y��;com ¼

Pm

i¼1

Pn

j¼1
yij

mn
. The variance of the estimator is Var(m̂comjt

2,

s 2) ¼ t 2/m þ s 2/mn. Its unbiased variance estimator is

Pm

i¼1
ð�yi�;com2�y��;comÞ

2

mðm21Þ
, where

�yi�;com ¼
Pn

j¼1yij=n is the sample average at the cluster level. On the other hand, if we

were to wrongly ignore the within-cluster correlation and assume that

yij
i:i:d:, Nðm; t2 þ s2Þ, then the variance for the overall mean would be (t 2 þ s 2)/mn

under the misspecified model. The ratio between the two variances is
t 2=mþs 2=mn

ðt 2þs 2Þ=mn
¼ 1þ ðn 2 1Þr, where r ¼ t 2/(t 2 þ s 2) is the intraclass correlation

(coefficient). From the perspective of design-based inference, the factor 1 þ (n 2 1)r is

the design effect, showing how much the variance is changed by the use of cluster
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sampling instead of SRS. We let deffcom ¼ 1 þ (n 2 1)r, where deff denotes “design

effect” as in survey statistics literature (e.g., Cochran 1977, 242; Valliant et al. 2013, 5).

This design effect can also be interpreted as a model-based mispecification effect (Skinner

et al. 1989, chap. 2).

Note that Model (1) ignores other features in typical complex survey data such as

stratification, unequal cluster sizes, as well as multistage sampling. However, the simple

expression for the design effect is useful for illustrating its connection with MI variance

estimation. The limitations of Model (1) are discussed in Section 4.

2.2. Missing Data

Suppose that missing data occur in the original sample. For ease of notation, we assume

that within cluster i, the first ri out of the n observations are observed. That is, yijs are

observed for i ¼ 1, : : : , m, j ¼ 1, : : : , ri, ri , n and missing otherwise. Following Rubin

and Schenker (1986), we assume that the missingness is completely at random (MCAR)

(Little and Rubin 2002) for this univariate missing data problem. This simplified

assumption allows us to focus on the effect of clustering alone, excluding predictive

covariates from Model (1). Under MCAR, E(ri) ¼ r for i ¼ 1, : : : , m, also implying that

the missingness is unrelated to the clustering factor. See Section 4 for discussion related to

a more general assumption for the nonresponse mechanism such as missing at random

(MAR).

For simplicity of derivation, we let ri ¼ r for i ¼ 1, : : : , r. The rate of missingness

is therefore (n 2 r)/n. Under Model (1), it is easy to verify that the grand mean of the

observed data m̂obs ¼ �y��;obs ¼

Pm

i¼1

Pr

j¼1
yij

mr
is unbiased: E(m̂obs) ¼ m. Its variance is

Var(ȳ��,obsjt
2, s 2) ¼ t 2/m þ s 2/mr, and an unbiased variance estimator isPm

i¼1
ð�yi�;obs2�y��;obsÞ

2

mðm21Þ
, where �yi�;obs ¼

Pr
j¼1yij=r is the observed-sample mean at the cluster

level. Therefore the design effect based on the observed data is

deff obs ¼
t 2=mþs 2=mr
ðt 2þs 2Þ=mr

¼ 1þ ðr 2 1Þr.

2.3. A Brief Review of MI

Before we present more specifics, we briefly review the MI framework from a Bayesian

model-based perspective. For an incomplete dataset Y ¼ {Yobs, Ymis}, where Yobs and Ymis

denote the observed and missing components of Y, respectively, we are interested in

estimating a (scalar) population quantity Q. From the perspective of model-based

inference, Q can often be treated as a superpopulation parameter in a posited model (e.g.,

m in Model (1)). We further assume that the missingness is at random, which means that

the probability of missingness is only related to fully observed variables or is some

constant, the latter case being MCAR as a special case of MAR. According to Rubin

(1987, chap. 3) and Little and Rubin (2002, sec. 10.2.1), the underlying theory behind MI

analysis is

EðQjYobsÞ ¼ EYmis
EðQjYobs;YmisÞ; ð2Þ

VarðQjYobsÞ ¼ VarYmis
EðQjYobs; YmisÞ þ EYmis

VarðQjYobs; YmisÞ;
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where Ymis (the missing values for which imputations are created) are drawn from their

posterior predictive distributions PðYmisjYobsÞ.

In the imputation stage of MI, we draw Ymis independently D times to create D

completed datasets. Let Q̂ denote the complete-data estimate for Q. In the analysis stage,

the MI estimator for Q is Q̂MI ¼

PD

d¼1
Q̂
ðd Þ

Yobs ;Y
ðd Þ
mis

D
(the average of Q̂ evaluated using the

completed datasets). Its variance is estimated by a weighted sum of the average within-

imputation variance and the between-imputation variance. That is,

VarðQ̂MIÞ ¼ W þ 1þ 1
D

� �
B, where W ¼

PD

d¼1
VarðQ̂

ðd Þ

Yobs ;Y
ðd Þ
mis

Þ

D
the average within-imputation

variance), and B ¼

PD

d¼1
ðQ̂
ðd Þ

Yobs ;Y
ðd Þ
mis

2Q̂MIÞ
2

D21
(the between-imputation variance). The coefficient

of B, that is, 1þ 1
D

, approaches 1 as D ! 1. Rubin (1987) argued that as D ! 1,

Q̂MI ! E(QjYobs), W ! EYmis
Var(QjYobs, Ymis), and B ! VarYmis

E(QjYobs, Ymis).

The increase of variance due to the use of MI instead of SI (Lewis et al. 2014) can be

alternatively quantified using the fraction of missing information (FMI) (Rubin 1987),

a key element of MI analysis output. FMI is approximately the ratio of between-

imputation variance to total variance; FMI < B/(B þ W), with the approximate equality

approaching exact equality as D ! 1, also termed as the population fraction of missing

information (Rubin 1987, 86 and 114). It typically depends to some extent on the

percent of missingness. It also depends on the analysis of interest and the extent to

which the imputation model is predictive of the missing values. For example, for a

univariate missing data problem with no covariate in the imputation model, the FMI for

the mean estimator is approximately the rate of missingness (Rubin 1987, 114).

However, if the imputation model includes other predictive covariates, the FMI will

tend to be smaller than the item nonresponse rate, reflecting the gain in precision by

using these covariates.

For brevity and clarity, we mainly consider the scenario with an infinite number of

imputations (D ! 1). We discuss relevant issues with a finite number of imputations in

Section 4.

3. MI Variance Estimators under Model (1)

3.1. The Effect of Design Effects

We aim to relate the design effect to FMI in the scenario considered in Subsections 2.1 and

2.2. Let the imputed values from the dth imputation be y*ðd Þ
ij , i ¼ 1, : : : , m, j ¼ r þ 1,

: : : , n and d ¼ 1, : : : , D. Then for each completed dataset f{yij}; fy
*ðd Þ
ij gg, the completed-

data estimator is m̂ðd Þcom ¼ �yðd Þ��;com ¼

Pm

i¼1

Pr

j¼1
yijþ
Pm

i¼1

Pn

j¼rþ1
y*ðd Þ

ij

mn
. The MI estimator for m is

m̂MI ¼
PD

d¼1m̂
ðd Þ
com=D. For the dth dataset, the within-imputation variance estimator is

Pm

i¼1
�yðd Þ

i�;com
2�yðd Þ��;com

� �2

mðm21Þ
, where �y

ðd Þ
i�;com ¼

Pr

j¼1
yijþ
Pn

j¼rþ1
y*ðd Þ

ij

n
. The between-imputation variance

estimator is

PD

d¼1
m̂ðd Þcom2m̂MIð Þ

2

D21
.

In the Appendix, we consider two MI scenarios, one in which t 2 and s 2 are known and

the other in which they are unknown and require estimation that is embedded in the
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imputation. In both cases, it is shown that as D ! 1, Eðm̂MIÞ ¼ m, Var(m̂MI) ! t 2/m

þ s 2/mr, E(W) ! t 2/m þ s 2/mn, and E(B) ! s 2/mr 2 s 2/mn.

Under Model (1), the MI estimator is asymptotically equivalent to the complete-case

estimator m̂obs (Subsection 2.2). This is expected because of the MCAR mechanism and no

predictive covariate is included in the imputation model. This is also consistent with the

case of SRS (Rubin and Schenker 1986). In addition, the expected within-imputation

variance E(W) is asymptotically identical to Var(m̂com) as if data were not missing

(Subsection 2.1). This makes intuitive sense because under a correctly specified model, the

imputations are expected to retain the features of the unobserved data. Therefore the

completed-data statistics shall preserve the mean and variance structure of the original,

complete data. One might reasonably question the necessity of MI in this case. However,

the explicit expressions for E(B) and E(W) shed some light on the effect of clustering on

MI variance estimation.

Note that as D ! 1, FMI ! EðBÞ
Varðm̂MI Þ

¼
s 2=mr2s 2=mn

t 2=mþs 2=mr
¼

n2r
nr
ð12rÞ

rþ1
r
ð12rÞ

. Plugging in

r ¼ (deffobs 2 1)/(r 2 1) ¼ (deffcom 2 1)/(n 2 1) and we can shown that, in the limit,

FMI ¼
n 2 r

n

r 2 deff obs

ðr 2 1Þdeff obs

¼
n 2 r

n

n 2 deff com

n 2 r þ ðr 2 1Þdeff com

:

Let n ! 1 (so that r ! 1 for a fixed missingness rate). Then

FMI ¼
n 2 r

n

r 2 deff obs

ðr 2 1Þdeff obs

¼
n 2 r

n

1

1 2
1

r

� �
deff obs

2
1

r 2 1

2

664

3

775 <
n 2 r

n

1 2
deff obs

r
deff obs

;

and similarly,

FMI <
n 2 r

n

1 2
deff com

n
n 2 r

n
þ

r

n
deff com

:

However, practical surveys might have more complicated designs than the one-stage

cluster design that we consider. Thus it might be difficult to pinpoint n and r in those

contexts. To make the derived relationship widely useful, we aim to obtain expressions

that only involve the rate of missing data Pmis ¼
n2r

n

� �
and design-effect estimates, both of

which are readily available for general surveys. Therefore we consider the following

simplifications:

FMI <
Pmis

deff obs

; ð3Þ

and

FMI <
Pmis

ð1 2 PmisÞdeff com þ Pmis

; ð4Þ

where Pmis quantifies the rate of missingness.
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Note that Approximations (3) and (4) can be viewed as further approximations if

deffobs p r and deffcom p n (i.e., the design effects are much less than the cluster size).

Otherwise we can treat them as upper bounds which are simple to calculate. We use

Approximations (3) and (4) in the numerical illustrations (Subsection 3.2) and discuss

their practical use.

Moreover, the approximations are derived for clustered data, including SRS as a special

case. In the latter scenario, r ¼ 0) deffobs ¼ deffcom ¼ 1, and thus FMI < Pmis, matching

the results stated in Rubin (1987, 114). For data with a fixed missingness rate,

Approximations (3) and (4) imply that FMI decreases as deffobs or deffcom increases,

explaining the phenomenon identified in Lewis et al. (2014).

In the example considered in this section, the variance of the infinite–D MI estimator is

a sum of the between- and within-cluster variance, that is, t 2/m and s 2/mr. When the

intraclass correlation (or design effect) increases, the between-cluster variance dominates

the within-cluster variance. Correspondingly in MI, the imputations from each cluster

can be viewed as draws around the corresponding cluster average (i.e.,

y*
ij

:, Nð�yi�;obs; ð1þ 1=rÞs2Þ; see the Appendix). Thus the associated uncertainty, which

is reflected by the between-imputation variance B, is only of the magnitude of the within-

cluster variance s 2, implying that the between-imputation variance contributes little to the

total variance.

Although Approximations (3) and (4) are derived under the same Model (1), their uses

in more general scenarios might yield different results. Practically, Approximation (3) can

be calculated using the incomplete cases, while Approximation (4) can only be calculated

using imputed data (because we do not have complete data), assuming that the imputation

model adequately captures the complete-data structure and relationships. It is also

plausible that the approximations do not always agree when both the design and

missingness mechanisms of the survey data are more complicated than what we assume

in Model (1).

3.2. Numerical Illustrations

Subsection 3.1 presents some theoretical derivations under a simple one-stage clustering

design. As a follow-up study to Lewis et al. (2014), we assess the practical applicability of

our theoretical results (i.e., Approximations (3) and (4)) by comparing them with real-

study results of Lewis et al. (2014). Since the NAMCS data have a more complicated

sample design and nonresponse mechanism, we expect to see both agreements and

disagreements.

Lewis et al. (2014) estimated the ratio of the standard errors between MI and SI and used

it as a metric to summarize the main findings. This ratio is a monotonic transformation of

FMI as SEðm̂MIÞ=SEðm̂SIÞ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 FMI
p

. Figure 2 of Lewis et al. (2014) plots the

standard error ratios against the rates of missingness for a collection of race estimates from

the multiply imputed NAMCS data. Their discussion notes no clear trend in the plot, and

attributes that to the variability of design effects across the different estimates. Our

Figure 1 plots the ratios as a function of missingness rates across different design effects

(deffcom) based on Approximation (4), but with a different plotting symbol for each

designeffect (symbols A through F correspond to design effects 1, 2, 5, 10, 20, and 40,
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respectively). For a fixed design effect, the ratio increases as the rate of missingness

increases. However, when the design effect is large, the rate of increase of ratios

diminishes.

In addition, Figure 3 of Lewis et al. (2014) plots the ratios against the corresponding

design effects of the same collection of estimates, clearly showing an inverse relationship

between the ratios and design effects. Correspondingly, our Figure 2 plots the ratio as a

function of design effect across various missingness rates based on Approximation (4)

(symbols A through D correspond to 5%, 10%, 20%, 30% nonresponse rates,

respectively). The pattern shown from the actual estimates (Figure 3 of Lewis et al.

2014) is well mimicked here in our Figure 2: as the design effect increases, the ratios

decrease and approach 1 across different missingness rates.

Approximations (3) and (4) are based on the simple Model (1) under MCAR, and we

only consider the effect of intraclass correlation. The design effects from real complex

surveys can be affected by other factors such as unequal weighting, stratification, and

multistage sample selection. They can also be affected if the missingness mechanism is

more complicated than MCAR. To assess how well the simple approximations work, we

predict the ratio of standard errors using Approximations (3) and (4) and compare them

with the actual estimates from the NAMCS 2008 data.

The Appendix of Lewis et al. (2014) lists the estimated standard error ratios and design

effects from the MI analysis, as well as the nonresponse rates for a wide variety of race

estimates. We plug the design effects and nonresponse rates into Approximation (4) and

plot the predictions against the actual ratios in the left panel of Figure 3, which also

includes a 45-degree line. If the approximations work well, then we would expect to see

points clustered around the 45-degree line. It appears that the prediction is reasonable

overall and better with smaller standard-error ratios, which likely correspond to estimates
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Fig. 1. The Relationship between the Missingness Rate and Standard-Error Ratio (between MI and SI) across

Different Completed-Data Design Effects. The symbols A through F correspond to design effects 1, 2, 5, 10, 20,

40, respectively
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with large design effects. On the other hand, Approximation (4) works less well with

smaller design effects and tends to underpredict the actual ratios. We surmise that

estimates with smaller design effects are likely associated with smaller intracluster

correlations, and thus the effects of other factors on the design effect cannot be simply

ignored, as they are in the derivation of Approximation (4).

Furthermore, we obtain the design-effect estimates from the observed cases, plug them

into Approximation (3), and plot the predicted standard error ratios against the actual

ratios in the right panel of Figure 3. As noted at the end of Subsection 3.1, Approximations

(3) and (4) can behave differently in more complex situations than assumed in their
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Fig. 3. The Comparison between Actual and Predicted Standard-Error Ratios. Left Panel: by Approximation

(4). Right Panel: by Approximation (3)
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derivations. Correspondingly, in this example Approximation (3) performs worse than

Approximation (4), showing a more severe underprediction for estimates with smaller

design effects.

3.3. Practical Implications

From an analyst’s/imputer’s perspective, Approximations (3) and (4) have simple forms

and therefore can be practically useful in exploratory analyses, given the fact that

nonresponse rates are readily available and design effects from estimates in complex

surveys can be easily estimated from survey statistical packages such as SUDAAN

(www.rti.org). For example, before carrying out the combining step in an MI analysis, the

analyst might use a singly imputed dataset to obtain point estimates for the estimands of

interests and adjust their variance using Approximation (4). Even before conducting MI,

an imputer might use Approximation (3) to assess the increase of variance due to MI using

design-effect estimates obtained from the observed data. However, we emphasize that the

use of these approximations cannot replace principled analyses of missing data (e.g.,

carefully planned MI and analyses as in Lewis et al. 2014 and other literature).

From a statistical agency’s perspective, we recommend releasing FMI estimates for

variables with considerable missingness. This is in line with Wagner (2010), which

proposed to use FMI as an alternative to the nonresponse rate in data publishing. Despite

the common belief that multiply imputed data should be released for public use, we note

that releasing only singly imputed data still exists in practice. This might be due in part to

limited resources for data production and maintenance, as well as challenges encountered

in conveying the concepts of multiple imputation to practical data users (Lewis et al.

2014). Even if multiply imputed data are released, the typical number of data copies (e.g.,

D ¼ 5 or 10) might not be suitable if the FMI is relatively high in certain scenarios

(Graham et al. 2007). Therefore, one approach would be to release multiply imputed data

with a manageable number of copies to minimize the burden on resources. To compensate

for the fact that these numbers might be low in certain cases, the data release could be

augmented with the FMI estimates, which are obtained from a much larger D to ensure

their accuracy (Harel 2007). The computational burden in obtaining such FMI estimates

would be expected to be minimal with current MI software packages. Data users might be

able to decide if the number of imputations released are adequate for their analyses of

interest given the FMI estimate, for example, by using Rubin (1987, table 4.1) and Graham

et al. (2007).

4. Discussion

In this article, we use a one-stage equal clustering sampling design and its model-based

characterization to derive the variance components of the MI estimator for the mean

estimand. We show that the increase in variance due to MI (or the fraction of missing

information) is affected in opposite directions by the frequency of missingness and design

effect. Our research is a complement to the empirical investigation in Lewis et al. (2014),

one of the first studies identifying such a pattern in practice. Approximations (3) and (4)

might be used as simple rules of thumb to gauge the effect of design effects on MI variance

estimation.
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Approximations (3) and (4) are derived assuming the number of imputations D ! 1.

With a finite D, we conjecture that the main pattern still holds. To see that, note that

FMID ¼
rD þ 2=ðnD þ 3Þ

rD þ 1
; ð5Þ

where FMID defines the fraction of missing information with a finite D; rD ¼

ð1 þ D21ÞBD= �WD and vD denotes the degrees of freedom in MI analysis (Rubin 1987;

Barnard and Rubin 1999). As D ! 1, FMID approaches FMI which is used in our

derivation (Section 3). It could be cumbersome to plug the expressions for variance

components (see Appendix) into Equation (5). On the other hand, we can gauge the impact

of the design effect with finite D using a well-established large-sample result (Rubin 1987,

114): V(Q̄D) ¼ (1 þ FMI/D)V(Q̄1), which states that the efficiency of the finite-D

repeated-imputation estimator relative to the fully efficient infinite-D repeated-imputation

estimator is (1 þ FMI/D)21/2 in units of standard errors. In our scenario, we show that

FMI ! 0 as the design effect increases. This implies that V(Q̄D) < (1 þ 0/D)V(Q̄1)

¼ V(Q̄1) accordingly. Therefore the behavior of V(Q̄D) is expected to be similar to that

V(Q̄1) with an increasing design effect.

In addition, one of the key assumptions behind the MI combining rules is that the

variance of the within-imputation variance estimator is (asymptotically) much less than

the between-imputation variance (Rubin 1987, 89, eq. 3.3.3). That is, Var(Ŵ (d )) p E(B),

where Ŵ (d ) is computed from the dth completed dataset. Note that in the scenario

considered in this article, as the design effect increases, FMI ! 0, implying that E(B) ! 0.

Therefore we believe that using a singly imputed dataset can reliably estimate the within-

imputation variance with moderate or large sample size. Obviously using W ¼

PD

d¼1
Ŵ ðd Þ

D

(the average from multiply imputed datasets) would produce a more precise estimate for

the within-imputation variance. However, this improvement might be minimal compared

to the magnitude of the between-imputation variance. More importantly, the main need of

multiply imputed data is to reliably estimate the between-imputation variance.

There are several limitations to the current research. First, the derivation assumes

MCAR, which can be unrealistic. As a follow-up study to Lewis et al. (2014), the focus of

this article is to elucidate the effect of clustering alone on MI variance estimation. More

generally, this work can be treated as an extension of Rubin and Schenker (1986), which

also focused on MCAR, to clustered data. Assuming a more plausible MAR mechanism

implies accounting for the effect of predictive covariates. It is usually believed that FMI

would be reduced (i.e., be less than Pmis) if the imputation model contained predictive

covariates. However, in our limited experience, an explicit formula/relationship has not

been proposed and is presumably more complicated. We are currently working on this

problem.

Secondly, we conduct the derivations under a rather simplified design (model). The

original NAMCS sample design involves features such as stratification and multistage

sampling, leading to variable analysis weights which can also affect the design effects

(Valliant et al. 2013, sec. 14.4.1 and references therein). In future research, we will study

the effect of the design effect on MI estimator with unequal weighting schemes and other

factors involved in complex surveys. For example, we might consider a population model
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(Valliant et al. 2013, 364)

yhi , N mh;s
2
h

� �
; ð6Þ

Pðh ¼ 1Þ ¼ P1; : : : ;Pðh ¼ HÞ ¼ PH ;
XH

h¼1

Ph ¼ 1; ð7Þ

where h indicates the hth stratum (or poststratum), i ¼ 1, : : : , nh indicates the sample

selected from that stratum, and Ph indicates the population fraction of the hth stratum.

Under such a model, the population mean is u ¼
PH

h¼1Phmh. Unequal weighting occurs

when the Phs are not all equal. We also aim to further extend our work to a more general

scenario including both unequal weighting and clustering, understanding how they jointly

affect the multiple-imputation variance estimation.

The current research only focuses on the population mean estimand, yet many other

estimands such as regression coefficients (controlling for some covariates) are also of

major interest in MI analyses. Design effects for regression coefficients have recently

been studied (Lohr 2014), and thus it is of interest to include regression analyses in future

studies. Furthermore, we will consider extensions to noncontinuous variables, noting that

in NAMCS 2008 race is a categorical variable.

Although MI was originally proposed to handle survey nonresponse problems and has

been readily applied to a wide variety of data types, systematic methods studies are lacking

for understanding its behavior when applied to data with complex survey designs.

Together with Lewis et al. (2014), this study can be viewed as a building block for research

in this important area. In addition, further studies involving real data, such as that

discussed in Lewis et al. (2014), will be invaluable for suggesting theoretical research

as well as calibrating it to the real world.

Appendix

MI when t 2 and s 2 are known

We first consider the MI scheme which assumes that t 2 and s 2 are known. Rewrite

Model (1) as

yij ¼ mi þ e ij

mi
i:i:d:, Nðm; t2Þ

e ij
i:i:d:, Nð0;s2Þ: ð1Þ

Also let the cluster-level mean (from observed data) �yi�;obs ¼

Pr

j¼1
yij

r
; then

Varð�yi�;obsÞ ¼ t2 þ s 2

r
.

For simplicity, we impose a diffuse prior for m, i.e., p(m) / 1. The Bayesian imputation

scheme consists of

Step 1: Drawing m*
i , pðmijyobs; t

2;s2Þ

Step 2: Drawing e*
ij , Nð0;s2Þ

Step 3: Imputing y*
ij ¼ m*

i þ e*
ij for i ¼ 1, : : : , m and j ¼ r þ 1, : : : , n.
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First we establish the distributions of the multiply imputed data. After some algebra, m*
i in

Step 1 can be expressed as m*
i ¼

t 2 �yi�;obsþ
s 2

r
�y��;obs

t 2þs 2

r

þ a* þ b*
i , where a* , N 0; 1

m
ðs 2=rÞ2

t 2þs 2=r

� �

and b*
i , N 0; t 2s 2=r

t 2þs 2=r

� �
. Thus, the imputed value in Step 3 can be expressed as

y*
ij ¼

t2 �yi�;obs þ
s2

r
�y��;obs

t2 þ
s2

r

þ a* þ b*
i þ e*

ij; ð2Þ

for i ¼ 1, : : : , m and j ¼ r þ 1, : : : , n, where a* ’ b*
i

	 

’ fe*

ijg, and ’ indicates

independence. Note that a* is identical across all is whereas the b*
i s are different across is.

Note that when t2 q s 2

r
,

t 2 �yi�;obsþ
s 2

r
�y��;obs

t 2þs 2

r

< �yi�;obs, a* < 0, b*
i
:, N
�
0; s

2

r

�
, and the

distribution of the imputed value can be approximated as y*
ij

:,N �yi�;obs; 1þ 1
r

� �
s2

� �
.

By repeating the above process independently D times, we create D completed datasets

in which the missing data are imputed as

y*ðd Þ
ij ¼

t2 �yi�;obs þ
s2

r
�y��;obs

t2 þ
s2

r

þ a*ðd Þ þ b*ðd Þ
i þ e*ðd Þ

ij ; ð3Þ

for d ¼ 1, : : : , D. Note that a*(d1) ’ a*(d2), {bi}
*(d1) ’ {bi}

*(d2), and e*ðd1Þ
ij

n o
’ e*ðd2Þ

ij

n o

for any d1, d2 [ (1, : : : , D) and d1 – d2.

Secondly, we derive the forms of mean and variance estimates using Equations (1)

and (3). For the dth completed dataset {yij}; y*ðd Þ
ij

n on o
, its mean is

m̂ðd Þcom ¼

Xm

i¼1

Xr

j¼1
yij þ

Xm

i¼1

Xn

j¼rþ1
y*ðd Þ

ij

mn
ð4Þ

¼ �y��;obs þ
n 2 r

n
a*ðd Þ þ �b*ðd Þ þ �e*ðd Þ

��

� �
ð5Þ

where �b*ðd Þ ¼

Pm

i¼1
b*ðd Þ

i

m
, and �e*ðd Þ

�� ¼

Pm

i¼1

Pn

j¼rþ1
�e*ðd Þ
ij

mðn2rÞ
.

The MI estimator is m̂MI ¼

PD

d¼1
m̂ðd Þcom

D
. Because the m̂ðd Þcoms are identically distributed (yet

correlated with each other), we have

Eðm̂MIÞ ¼ E m̂ðd Þcom

� �
¼ Eð�y��;obsÞ ¼ m; ð6Þ

thus mMI is unbiased.

Its variance is Varðm̂MIÞ ¼ Var

PD

d¼1
m̂
ðd Þ
com

D

� �
¼ D21

D
cov m̂ð1Þcom; m̂

ð2Þ
com

� �
þ 1

D
Var m̂ð1Þcom

� �
. Let

D ! 1; then Varðm̂MIÞ! cov m̂ð1Þcom; m̂
ð2Þ
com

� �
¼ cov �y��;obs þ

n2r
n

�
a*ð1Þ þ �b*ð1Þ þ �e*ð1Þ

��

� �
;

�y��;obs þ
n2r

n
a*ð2Þ þ �b*ð2Þ þ �e*ð2Þ

��

� ��
. After some algebra, we have as D ! 1

Varðm̂MIÞ! t2=mþ
s2

mr
¼ Varðm̂obsÞ: ð7Þ

We now study the between-imputation variance B ¼

PD

d¼1
m̂ðd Þcom2m̂MIð Þ

2

D21
. Again, because

the m̂ðd Þcoms are identically distributed, EðBÞ ¼ D
D21

Var m̂ð1Þcom

� �
2 Varðm̂MIÞ

� �
. As D ! 1,

EðBÞ! Var m̂ð1Þcom

� �
2 Varðm̂MIÞ. In addition, Var m̂ð1Þcom

� �
¼ Varð�y��;obsÞ þ

n2r
n

� �2
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Varða*ð1ÞÞ þ Varð�b*ð1ÞÞ þ Var �e*ð1Þ
��

� �� �
. Plugging in Varða*ð1ÞÞ ¼ 1

m
ðs 2=rÞ2

t 2þs 2=r
, Varð�b*ð1ÞÞ ¼

1
m

t 2s 2=r

t 2þs 2=r
, and Var �e*ð1Þ

��

� �
¼ s 2

mðn2rÞ
, we obtain Var m̂ð1Þcom

� �
¼ t 2

m
þ 2 s 2

mr
2 s 2

mn
. Thus as D ! 1,

EðBÞ!
s2

mr
2

s2

mn
: ð8Þ

For the dth completed dataset, the within-imputation variance W (d ) is calculated asPm

i¼1
�yðd Þ

i�;com
2�yðd Þ��;com

� �2

mðm21Þ
. The average of the within-imputation variance is W ¼

PD

ðd Þ¼1
W ðd Þ

D
.

Because the W (d )s are identically distributed across ds, E(W) ¼ E(W (d )). For simplicity,

we ignore the notational index d in the following derivations. Note that EðWÞ ¼

E

Pm

i¼1
�yi�;com2�y��;comð Þ

2

mðm21Þ

� �
¼ E

�y2
1�;com

2�y2
��;com

m21

� �
given the identical distributions of ȳi�,com

across is. In addition, E(ȳi�,com) ¼ E(ȳ��,com) ¼ m, and Varð�y��;comÞ ¼
1
m

Varð�y1�;comÞ

þ m21
m

covð�y1�;com; �y2�;comÞ. Therefore EðWÞ ¼
Varð�y1�;comÞ2Varð�y��;comÞ

m21

¼
Varð�y1�;comÞ2covð�y1�;com;�y2�;comÞ

m
. After some algebra, we obtain that Varð�y1�;comÞ2

covð�y1�;com; �y2�;comÞ ¼
r
n
þ n2r

n
t 2

t 2þs 2=r

� �2

Varð�y1�;obsÞ þ
n2r

n

� �2
Var b*

1

� �
þ Var �e*

1�

� �� �
.

Plugging in Var(ȳ1�,obs) ¼ t 2 þ s 2/r, Varð�y��;obsÞ ¼
1
m
ðt2 þ s2=rÞ, Var b*

1

� �
¼

t 2s 2=r

t 2þs 2=r
,

and Var �e*
1�

� �
¼ s2=ðn 2 rÞ, we obtain

EðWÞ ¼
t2

m
þ

s2

mn
: ð9Þ

Based on (7), (8), and (9), we have E(W) þ E(B) ! t 2/m þ s 2/mr ¼ Var(m̂MI) as

D ! 1, consistent with Rubin’s variance combination formulae.

MI when t 2 and s 2 are unknown

More realistically, suppose MI is conducted without knowing t 2 and s 2. We impose

proper prior distributions for these parameters: pðmÞ , N 0;s2
m

� �
, pðt2Þ , IGðAt 2 ;Bt 2Þ,

and pðs2Þ , IGðAs 2 ;Bs 2 Þ, where IG denotes the inverse-gamma distribution. These priors

are often employed in hierarchical Bayesian models (Gelman et al. 2004).

The variance components and imputations are drawn from an integrated Gibbs sampling

algorithm sketched as follows:

Step 1: Draw t *2 from p(t 2jyobs, mi, s
2);

Step 2: Draw s *2 from p(s 2jyobs, mi, t
2);

Step 3: Draw m*
i from pðm*

i jyobs; t
2;s2Þ.

For a single imputation, we repeat Steps 1–3 until the Gibbs chain converges. We then

draw e*
ij , Nð0;s*2Þ, and impute y*

ij ¼ m*
i þ e*

ij for i ¼ 1, : : : , m and j ¼ r þ 1, : : : , n,

where m*
i and s *2 are the draws from the last iteration of the chain. We repeat this

procedure independently D times to construct D completed datasets.

The posterior distributions of t 2 and s 2 under a common class of priors (including ours

here) are very complicated (Box and Tiao 1973, chap. 6), and therefore it is difficult to

obtain their moments using explicit formulaes. Nevertheless, we can assess the MI

variance estimators asymptotically. In a general scenario, as stated in (Gelman et al. 2004,

587), the posterior distribution of a parameter u approaches normality with mean u0 and

variance [nJ(u0)]21 as the sample size n ! 1 and subject to some regularity conditions,
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where u0 is the value that minimizes the Kullback-Leibler information and J is the Fisher

information. Therefore E(u *) ! u0 and Eðu*2Þ! u2
0 as n ! 1, where u * is a draw from

the posterior distribution of u. In our context, u can be viewed as a smooth function, say f,

of t 2 and s 2, u0 as the same function evaluated at the true t 2 and s 2 (from the

frequentist’s perspective), and sample size n can be viewed as the number of clusters m.

Correspondingly, we have E[ f (t *2, s *2)] ! f (t 2, s 2) and E[ f (t *2, s *2)2] ! f 2(t 2, s 2)

as m ! 1, where t *2 and s *2 are draws from the posterior distributions of t 2 and s 2.

After the Gibbs sampler converges, imputation y*
ij can be expressed as

y*
ij ¼

t*2 �yi�;obs þ
s*2

r
�y��;obs

t*2 þ
s*2

r

þ a* þ b*
i þ e*

ij ð10Þ

for i ¼ 1, : : : , m and j ¼ r þ 1, : : : , n, and a* ’ b*
i

	 

’ fe*

ijg, where

a* , N
�
0; 1

m
ðs *2=rÞ2

t *2þs *2=r

�
, and b*

i
i:i:d:, N

�
0; t *2s *2=r

t *2þs *2=r

�
, and e*

ij
i:i:d:, Nð0;s*2Þ. Here t *2 and

s *2 are draws from their posterior distributions p(t 2, s 2jyobs).

Similar to the case in which t 2 and s 2 are known, it is not hard to show that

Eðm̂MIÞ ¼ Eðm̂ðd ÞcomÞ ¼ m: ð11Þ

As D ! 1,

Varðm̂MIÞ!
t2

m
þ

s2

mr
¼ Varð�y��;obsÞ: ð12Þ

Now, the between-imputation variance is computed as B ¼

PD

d¼1
m̂ðd Þcom2m̂MIð Þ

2

D21
. Again,

because the m̂ðd Þcoms are identically distributed, EðBÞ ¼ D
D21

Var m̂ð1Þcom

� �
2 Varðm̂MIÞ

� �
!

Var m̂ð1Þcom

� �
2 Varðm̂MIÞ as D ! 1. In addition, Var m̂ð1Þcom

� �
¼ Var

�
�y��;obs þ

n2r
n

a*ð1Þ
�

þ�b*ð1Þ þ �e*ð1Þ
�� Þ
�
¼ Varð�y��;obsÞ þ

n2r
n

� �2
Varða*ð1ÞÞ þ Varð�b*ð1ÞÞ þ Var �e*ð1Þ

��

� �� �
. More

specifically, Varða*ð1Þjt2;s2Þ ¼ Var½Eða*ð1Þjt*2;s*2Þ� þ E½Varða*ð1Þjt*2;s*2Þ� ¼

0þ E 1
m

ðs *2=rÞ2

t *2þs *2=r

� �
! 1

m
ðs 2=rÞ2

t 2þs 2=r
as m ! 1. The last convergence holds because of

the aforementioned Bayesian asymptotic arguments. Similarly, we have

Varð�b*ð1Þjt2;s2Þ ¼ E 1
m

t *2s *2=r

t *2þs *2=r

� �
! 1

m
t 2s 2=r

t 2þs 2=r
, and Var �e*ð1Þ

�� jt
2;s2

� �
¼ E s *2

mðn2rÞ

� �
!

s 2

mðn2rÞ
: This leads to

EðBÞ!
s2

mr
2

s2

mn
: ð13Þ

For ease of notation, we drop the conditioning on t 2 and s 2 in the following

expressions in evaluating the within-imputation variance W and assume m ! 1. Similar

to the case with t 2 and s 2 known, we have EðWÞ ¼
Varð�y1�;comÞ2Covð�y1�;com;�y2�;comÞ

m
. First,

Varð�y1�;comÞ ¼ Var r
n �y1�;obs þ

n2r
n

t 2

t 2þs 2=r �y1�;obs þ
n2r

n

s2
r �y��;obs

t 2þs 2=r
þ n2r

n
a* þ b*

1 þ �e*
1

� �h i
¼

Var r
n
þ n2r

n
t *2

t *2þs *2=r

� �
�y1�;obs

h i
þ Var n2r

n
s *2=r

t *2þs *2=r

� �
�y��;obs

h i
þ 2*
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Cov
r

n
þ

n 2 r

n

t*2

t*2 þ s*2=r

� �
�y1�;obs;

n 2 r

n

s*2=r

t*2 þ s*2=r

� �
�y��;obs

 �

þ
n 2 r

n

� �2

Varða*Þ þ Var b*
1

� �
þ Var �e*

1t

� �� �
:

In addition, Covð�y1�;com; �y2�;comÞ ¼ Cov r
n �y1�;obsþ

n2r
n

t *2

t *2þs *2=r �y1�;obsþ
n2r

n

s *2

r
�y��;obs

t *2þa *2=r
þ



n2r
n

a*þ b*
1þ �e*

1�

� �
; r

n �y2�;obsþ
n2r

n
t *2

t *2þs *2=r �y2�;obsþ
n2r

n

s *2=r�y��;obs

t *2þs *2=r
þ n2r

n
a*þ b*

2

�
þ �e*

2�Þ

�
¼

Cov r
n
þ n2r

n
t *2

t *2þs *2=r

� �h
�y1�;obs;

r
n
þ n2r

n
t *2

t *2þs *2=r

� �
�y2�;obs

i
þVar n2r

n
s *2=r

t *2þs *2=r

� �
�y��;obs

h i

þ2Cov r
n
þ n2r

n
t *2

t *2þs *2=r

� �
�y1�;

h
obs; n2r

n
s *2=r

t *2þs *2=r

� �
�y��;obs

i
þ n2r

n

� �2
Varða*Þ. Note that

unlike the scenario where t 2 and s 2 are known, there exists a covariance between

r
n
þ n2r

n
t *2

t *2þs *2=r

� �
�y1�;obs and r

n
þ n2r

n
t *2

t *2þs *2=r

� �
�y2�;obs (induced by t *2 and s *2) in spite of

the independence between ȳ1�,obs and ȳ2�,obs.

Therefore Varð�y1�;comÞ2 Covð�y1�;com; �y2�;comÞ ¼ Var r
n
þ n2r

n
t *2

t *2þs *2=r

� �
�y1�;obs

h i
2

Cov r
n
þ n2r

n
t *2

t *2þs *2=r

� �
�y1�;obs;

r
n

�h
þ n2r

n
t *2

t *2þs *2=r

�
�y2�;obs

i
þ n2r

n

� �2�
Var b*

1

� �
þVar �e*

1�

� ��
.

More specifically, Var r
n
þ n2r

n
t *2

t *2þs *2=r

� �
�y1�;obs

h i
¼ Var

n
E
h

r
n
þ n2r

n
t *2

t *2þs *2=r

� �
�y1�;

obsjt*2;s*2
io
þE Var r

n
þ n2r

n
t *2

t *2þs *2=r

� �
�y1�;obsjt*2;s*2

h in o
¼ m2Var r

n
þ n2r

n
t *2

t *2þs *2=r

� �

þðt2þs2=rÞE r
n
þ n2r

n
t *2

t *2þs *2=r

� �2

: Note that the second term ðt2þs2=rÞE

r
n
þ n2r

n
t *2

t *2þs *2=r

� �2

!ðt2þs2=rÞ r
n
þ n2r

n
t 2

t 2þs 2=r

� �2

.

Furthermore,

Cov
r

n
þ

n2r

n

t*2

t*2þs*2=r

� �
�y1�;obs;

r

n
þ

n2r

n

t*2

t*2þs*2=r

� �
�y2�;obs

 �

¼Cov

�
E

r

n
þ

n2r

n

t*2

t*2þs*2=r

� �
�y1�;obsjt

*2;s*2

 �
;

E

�
r

n
þ

n2r

n

t*2

t*2þs*2=r

�
�y2�;obsjt

*2;s*2

��

þE Cov
r

n
þ

n2 r

n

t*2

t*2þs*2=r

� �
�y1�;obs;

r

n
þ

n2 r

n

t*2

t*2þs*2=r

� �
�y2�;obs

 �� �

¼Cov
r

n
þ

n2r

n

t*2

t*2þs*2=r

� �
m;

r

n
þ

n2r

n

t*2

t*2þs*2=r

� �
m

 �

¼m2Var
r

n
þ

n2r

n

t*2

t*2þs*2=r

� �
:

Finally, Var b*
1

� �
!

t 2s 2=r

t 2þs 2=r
and Var �e*

1�

� �
! s 2

n2r
.
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Plugging all these expressions into E(W), we obtain

EðWÞ! t2=mþ s2=mn ð14Þ

Based on (12), (13), and (14), Rubin’s variance formulae are valid asymptotically.
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Sample Representation and Substantive Outcomes
Using Web With and Without Incentives Compared to

Telephone in an Election Survey

Oliver Lipps1 and Nicolas Pekari2

The objective of this article is to understand how the change of mode from telephone to web
affects data quality in terms of sample representation and substantive variable bias. To this
end, an experiment, consisting of a web survey with and without a prepaid incentive, was
conducted alongside the telephone Swiss election survey. All three designs used identical
questionnaires and probability samples drawn from a national register of individuals.

First, our findings show that differences in completion rates mostly reflect different levels
of coverage in the two modes. Second, incentives in the web survey strongly increase
completion rates of all person groups, with the exception of people without Internet access or
limited computer literacy. Third, we find voting behavior to be much closer to official figures
in the web with the incentive version compared to the two other designs. However, this is
partly due to the different sociodemographic compositions of the samples. Other substantive
results suggest that the incentive version includes harder-to-reach respondents. Unit costs are
much lower in the two web designs compared to the telephone, including when a relatively
high incentive is used. We conclude that in countries with high Internet penetration rates such
as Switzerland, web surveys are already likely to be highly competitive.

Key words: Web surveys; mode experiment; incentive effects; individual register frame;
national election survey.

1. Nonobservation and Measurement Issues in Web and Telephone Surveys

1.1. Nonobservation and Sample Composition Differences

In the early 2000s, survey methodologists began studying web surveys as an alternative to

traditional survey modes. From the outset, the major concern was the limited Internet

access of some groups regarding various demographic variables such as sex and age

(Brandtzæg et al. 2011; Zickhur and Smith 2012), education (Struminskaya et al. 2014;

Mohorko et al. 2013a), marital status (Struminskaya et al. 2014), and urbanicity (Mohorko

et al. 2013a). While in these studies those with Internet at home are more often male,

young, highly educated, unmarried, and live in more urbanized areas, Revilla and Saris

(2013) for instance find very little difference between the face-to-face European Social

Survey (ESS) and the Longitudinal Internet Studies for the Social Sciences (LISS) online

q Statistics Sweden
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panel in the Netherlands. The latter does make a strong effort to improve representativity,

including providing a computer with an Internet connection to those who lack one, but it

shows the potential for high-quality surveys using the web. The trend of increasing

Internet availability, with a penetration rate as high as 86.6% in Switzerland in 2014 and

82.1% in Europe 2015 (International Telecommunication Union, http://www.itu.int/en/

ITU-D/Statistics/Pages/stat/default.aspx), will also continue to work in favor of web

surveys in terms of an increasingly smaller substantive variable bias, with a smaller bias in

more economically developed countries (Mohorko et al. 2013a).

Conversely, in telephone surveys, the increasing landline telephone undercoverage in

Europe is causing an increasing bias in both demographic and substantive variables

(Mohorko et al. 2013b). For most Western European countries, the number of households

without a telephone plays a minor role (Busse and Fuchs 2012). This is due to an

increasing proportion of households who have substituted a mobile phone for their

landline (Ernst Stähli 2012; Joye et al. 2012; Blumberg and Luke 2013; Link and Fahimi

2008), and those with an unlisted landline number (Von der Lippe et al. 2011). In

Switzerland, the Swiss Federal Statistical Office (SFSO) recorded an average matching

rate of individuals sampled at random from their individual population register and

matched against their own register of landline numbers of around 76% (Joye 2012). The

SFSO does not provide unlisted landline numbers to other organizations.

Those without a landline differ in particular from those with a listed number. People

without a landline are younger (Joye et al. 2012; Blumberg and Luke 2013), live in larger

municipalities, and are more often unmarried (Von der Lippe et al. 2011; Lipps and Kissau

2012) or of foreign nationality (Cobben and Bethlehem 2005; Lipps and Kissau 2012).

In addition, the increasing volume of marketing calls is causing certain groups of potential

telephone-survey respondents, especially the more affluent, to employ gatekeeper

technologies to screen calls. These issues render the telephone increasingly problematic as

a survey tool in terms of achieving a representative sample of a population.

A number of studies have compared web with telephone surveys (Fricker et al. 2005;

Braunsberger et al. 2007; Chang and Krosnick 2009; Dillman et al. 2009; Nagelhout et al. 2010;

Yeager et al. 2011). However, most of the web surveys considered do not use a probability

sample. This is unfortunate as, according to the current state of research, nonprobability web

surveys might not be a viable alternative in terms of their representativity (Chang and Krosnick

2009; Baker et al. 2010; Yeager et al. 2011). Because representative lists of e-mail addresses of

the general population are not available, most web surveys use a sample drawn from an

Random Digital Dialing (RDD)-screened sample (Chang and Krosnick 2009; Yeager et al.

2011) or from online panels (Braunsberger et al. 2007; Baker et al. 2010; Nagelhout et al.

2010). Undercoverage, selection effects and panel conditioning might bias inferences drawn

from such samples (Warren and Halpern-Manners 2012), including estimates of population

frequencies and percentages, and often remain a neglected problem (Schonlau et al. 2009).

Other studies use subsamples with Internet access drawn from an RDD sample, which are

then randomly assigned to telephone or web (Fricker et al. 2005). One exception is Atkeson

et al. (2014), who compare a probability-based telephone poll and a web poll and find only a

few differences between survey modes regarding demographic characteristics. One data

source that allows for a comparison of web and telephone respondents, under the premise that

face-to-face respondents are representative of the population, is the ESS 2010. Among
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respondents of the ESS 2010, 24% of Swiss adults never use the Internet and ten percent do not

own a landline telephone. Our calculations reveal that older, female, married people, those

living in larger households, the Swiss-German-speaking part of Switzerland, or in smaller

municipalities are more likely to possess a landline. Internet use is more common among

younger individuals, men, or those living in larger households. With respect to substantive

variables, controlled for sociodemography, we find a positive correlation between Internet use

and both political interest and voting behavior, but no correlation of the latter variables with

landline possession.

Unlike undercoverage, differences in nonresponse between the two modes are not

directly comparable because this depends strongly both on sample matching effort in the

case of the telephone (if the sample was drawn from a source that does not include

telephone numbers; for the survey used in this article, see Lipps et al. 2015) and on

fieldwork effort. In addition, by optimizing the design for each mode, many factors vary

other than the mode of interview (Dillman 2000; 2011). Examples include sample

members contacted through different methods, or a difference in the number of calls or the

number of reminders, as well as the use of incentives. Despite the difficulties of comparing

response rates and respondent compositions across different modes, some authors have

attempted this, and there seems to be some agreement in that response rates to probability-

based web surveys are lower than those for comparable interviewer-based surveys. For

example, one meta-analysis finds that web surveys on average yield an 11% lower

response rate compared to other modes (Lozar Manfreda et al. 2008). A more recent

example is that of Sinclair et al. (2012), who compare web and telephone in a community-

based epidemiological survey in Melbourne, Australia, and find an Internet response rate

of 4.7% and a telephone response rate of 30.2%. When interpreting these figures, we must

bear in mind that response rates are very much dependent on contexts such as the topic, the

country, or fieldwork efforts (see e.g., Groves et al. 2004a,b).

Given the issues related to comparing specific effects, we choose to measure a “mode

system effect” (Biemer and Lyberg 2003, also Biemer 1988) in order to compare data

quality. This means that rather than trying to isolate the effects of mode with respect to

the quality indicators we use, we measure effects of the entire data-collection process

designed around a specific mode and thus compare whole systems of data collection. We

measure the difference between the two systems regarding completion rates,

sociodemographic composition, distributions of substantive variables, and the cost of

data collection. Note that we abstain from using the term “response rate”, because this

does not include errors arising from noncoverage. We instead talk of nonobservation or

completion rate (Callegaro and DiSogra 2008). In addition, we are able to measure bias

regarding sociodemographic and political behavior variables by comparing survey

outcomes with official figures.

1.2. Measurement Effects

In addition to differences in coverage and nonresponse between phone and web modes,

differences also arise because of the mode itself. In particular, interviewer-administered

surveys are known to produce more socially desirable answers (Krosnick 1991), whether

on the telephone (Kreuter et al. 2008; Chang and Krosnick 2009; Atkeson et al. 2014) or
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face-to-face (De Leeuw 2005). However, these differences can also be attributed in part to

selection effects (Chang and Krosnick 2009).

In addition, in visual modes, such as web-administered questionnaires, respondents tend

to think in the order in which the response categories are presented and are more likely to

choose those presented at the beginning of a list of response alternatives than those at the

end (primacy effect). On the contrary, in an aural format, such as telephone, respondents

are expected to wait until the interviewer has read all the response categories and are thus

more likely to start thinking about the last alternatives read to them (recency effect; e.g.,

Christian et al. 2008). De Leeuw (2005), Dillman and Christian (2005) and Dillman et al.

(2009) note, however, that the evidence found for this so far is not completely consistent.

Regarding the accuracy of reported political behavior and preferences, Stephenson and

Crête (2011) find the number of differences in point estimates to be relatively high.

Malhotra and Krosnick (2007), comparing web data with the 2000 and the 2004 American

National Election Study (ANES) face-to-face surveys, find accuracy to be higher for the

face-to-face probability-sample data than for the online-panel sample data in the majority

of the comparisons, in particular for voting turnout and party choice. However, more

recent research tends to show that high-quality web surveys are comparable to traditional

modes. For instance, Ansolabehere and Schaffner (2014) state that with the correct

sampling methods and weighting, web surveys can produce point estimates comparable to

a telephone survey.

2. Incentive Effects in Web Surveys

2.1. Effects on Response Rates

In addition to high nonresponse rates, partial completes (Peytchev 2009) may be a concern

in web surveys. Different types of incentives are thus often used to mitigate these problems

and a number of experiments have been designed to analyze the effects of different types

of incentives both for surveys that recruit online and offline. Regarding online recruitment,

one meta-analysis of 32 surveys showed that incentives significantly increased the

motivation to start a survey, and another meta-analysis of 26 studies found that incentives

were effective in motivating participants to finish a web survey (Göritz 2006). In addition,

studies using online access panels tend to support the reciprocity norm (Groves et al.

1992), in that prepaid incentives are more effective than conditional incentives in web

surveys (Bosnjak 2005; Su et al. 2008). In addition, the economic exchange theory (Ryu

et al. 2006) is supported because cash (Birnholtz et al. 2004; van Veen et al. 2011) and

larger incentives have been found to be more effective (Schaurer et al. 2012). Both effects

can also be found in telephone surveys (Singer et al. 2000; Curtin et al. 2007;

Sánchez-Fernández et al. 2010). However, in their study Bosnjak and Tuten (2003) find

that prepaid incentives do not increase completion rates.

Only a few studies test incentive effects for samples recruited offline. In the study by

Alexander et al. (2008), which recruited sample members by mail, the prepaid incentive

had better overall enrollment rates. The rates also slightly increased with greater incentive

value although men responded more to the $2 bill than either the $1 or the $5 bill. In an

address-based experiment, Messer and Dillman (2011) found that a $5 prepaid cash
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incentive was effective at improving both web and mail response rates. Providing an

incentive significantly increased web response rates by 17.9 percentage points.

Scherpenzeel and Toepoel (2012) also report positive prepaid incentive effects from an

offline (via telephone or face-to-face) recruitment for the Dutch LISS panel survey.

However, they do not find increased response rates in the 20 Euro and 50 Euro designs

compared to those seen at the 10 Euro level. Finally, Parsons and Manierre (2014) report

that the use of unconditional incentives improved response rates in a web survey based on

a random sample of college students.

In addition to incentives, Messer and Dillman (2011) tested the use of priority mail,

which did not improve response rates. However, the inclusion of an additional $5 incentive

in combination with priority mail produced slightly higher response rates, although the

differences were not statistically significant.

2.2. Effects on Sample Composition and Response Quality

Research on the effects of incentives on sample composition and response quality in web

surveys is scarce. Two possible hypotheses are generally advanced: according to the first,

the incentive draws respondents who would not have responded otherwise and whose

response quality is possibly poorer, and, according to the second, the reward from the

incentive leads to an improvement in the quality of answers (Singer and Ye 2013). The

results regarding these hypotheses are mixed, and most research has found no significant

difference in response quality. Göritz (2004), for instance, reports only small effects. In a

meta-analysis, Singer and Bossarte (2006) find that incentives may raise response rates

without decreasing the nonresponse bias because they motivate individuals who were

already more predisposed to respond. They conclude that “more research is needed on how

monetary incentives can reduce nonresponse bias rather than merely raising the rate

of response” (413). Parsons and Manierre (2014) in turn find that prepaid cash incentives

may actually produce results that are less representative of the target population. In a

metastudy, Singer and Ye (2013) report that most studies find no or only small effects on

sample compositions and call for additional research on the subject. Regarding the effect

of incentives on substantive results, Teisl et al. (2006) find that different incentive

conditions yield different responses, even when response rates and demographic

compositions are the same, concluding that incentives do draw different kinds of

respondents. However, direct effects of incentives on response distributions have not been

found (Singer and Ye 2013).

Although this literature review reports some inconsistent findings, we are able to draw

several preliminary conclusions:

. With respect to sample composition, respondents to web surveys tend to be younger,

male, better educated, unmarried, and live in more urbanized areas. Conversely,

respondents to landline surveys tend to be older, less educated, natives, and living in

less urban areas.

. Studies that compare differences in substantive variables in interviewer-based and

web mode are scarce. Most studies use the face-to-face mode as the interviewer-

based survey mode. There is a tendency for face-to-face surveys to achieve more

accurate results.
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. While unconditional cash incentives are able to increase response rates in web

surveys, the effect on the sample composition and on substantive answers is unclear.

However, the majority of studies uses samples of special population groups

(e.g., students), RDD-screened samples, or online panels.

In our view, the biggest issue with existing studies is that most mode comparisons,

including web surveys, are based on nonprobability samples or reference surveys (usually

face-to-face) that are biased by nonresponse. In addition, RDD-screened samples suffer

from undercoverage problems. As for substantive variables, comparisons using

interviewer-based surveys as the reference point are undermined by the fact that these

may suffer from a high social-desirability bias. Studies using random samples are rare and

there is a lack of information about unobserved sample members.

In this article, we approach the issues above by comparing a telephone survey with a

web survey, both based on a probability sample. We use three designs with a randomized

mode and incentive, all using the same questionnaire. The web survey includes a prepaid

cash-like incentive experiment. We address sampling shortcomings in past research by

using three samples that were drawn at random from an individual population register

maintained by the SFSO. This register has the added advantage of containing the

sociodemographic variables of age, sex, marital status, municipality size, and language

region for all sample members.

We analyze completion rates and sample composition in the three designs (telephone,

web without incentive, web with incentive). In addition, we compare voting behavior

(turnout and party choice) with the actual election results in all three designs and finally

discuss cost issues.

3. Data and Experimental Design

The Swiss quadrennial election survey Selects (http://www.selects.ch) set up a web

experiment alongside the regular CATI survey in the context of the 2011 survey. The

samples for all three designs were randomly drawn from the national individual register.

The CATI sample was stratified by the 26 Swiss cantons (NUTS 3 level) with small

cantons oversampled to a minimum of 100 respondents each (N ¼ 8,162 adult citizens).

The sample was matched against different telephone registers with a matching rate of

85%. The field period ran from October 24 (the day after the election) to November 25,

2011. No incentives were offered to CATI sample members. For the web survey, 1,481

additional Swiss citizens were selected in a simple random sample design from the

national individual register and recruited offline.

All sample members received an advance letter with the university letterhead and signed

by the director of the project. The basic content of all letters was the same: a description of

the study, including its purpose and why it is important that the person responds, the length

of the interview, which was estimated at around 30 minutes for both modes, and contact

information in case of questions. The only difference between the letters in the two modes

was that in one the modalities of the telephone interview were explained, whereas for the

web sample, the individuals were asked to complete the survey online using the Selects

2011 URL (www.selects2011.ch) and a unique code. No special Internet equipment was

provided in the context of the study. Web-sample members unable to access the Internet
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therefore had no possibility of taking the survey. Therefore, while the telephone-sample

members were told that they would be called by an interviewer in the coming days, the web-

sample members were expected to be proactive by accessing the questionnaire online.

In order to compensate for this difference, 485 of the 1,481 web-sample members

received a 20 CHF (CHF ¼ .82e ¼ 1.11$ (as of February 5 2014)) (prepaid) postal check

with the advance letter, whereas 996 did not receive this incentive. Postal checks can be

cashed at no cost at any post office in Switzerland. The wording of the letters for the two

web-sample members was identical except for the additional paragraph explaining the

incentive to those who received one. In both web designs, two reminders were sent to those

who had not yet responded within an identical timeframe. The announcement letters were

sent on Friday October 21 by regular mail so that they would be received on Monday

October 24 or Tuesday October 25, and the reminder letters were sent by priority mail on

Friday November 4 and Wednesday November 16, ensuring that they would be received

on the following day. This was done to minimize the number of individuals completing the

interview in the meantime and thus receiving a reminder even though they had already

completed the survey. Standard mail was used for the advance letter because for logistical

reasons it was not possible to send the letters from the university on a Saturday, and with

priority mail many would already have received the letter on the Saturday before the

elections. Priority mail was also the preferred method for conveying the reminders as some

individuals might think a letter sent by standard mail was an advertisement. The final

respondents included in the data responded on December 12.

The telephone and the web questionnaire were the same, with only slight changes made to the

wording of the questions to adapt them to a written mode. Each telephone-sample member was

called at different times and refusal conversions attempted using more experienced

interviewers. We summarize the contact dates and materials sent for each mode in Table 1.

4. Completion Rates and Sample Composition

In this chapter, we analyze response rates (RR1; AAPOR 2011) in the three designs for the

sample members distinguished by experimental design and the variables available from

the sampling frame. Unlike in the telephone mode, a general problem of the web mode is

that the two components of noncompletion (or nonobservation) – noncoverage and

nonresponse – cannot be separated. For a discussion of undercoverage and nonresponse

issues in the telephone survey used here, see Lipps et al. (2015). In a web survey,

noncompletion can only be further analyzed in the case of a break off, in which the sample

member was at least found and successfully contacted, but did not complete the survey.

For clarity, we consider incomplete responses as nonresponses. Note that incomplete

surveys play a minor role in the web designs since only 14 sample members (1.4%) broke

off the questionnaire in the without-incentive design and nine sample members (1.9%) in

the with-incentive design. For both telephone and web, people without access to the

contact mode are deemed “noncompleters”. Total and group-specific completion rates

(in proportions), as well as significance levels measured as chi2-differences between

completers and noncompleters across the three designs are presented in Table 2.

Telephone has only a slightly higher (6% points) overall completion rate than

web without incentive. Individuals who are older than 56 years, married, women, and
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Swiss-German speakers respond significantly (5% level) less in the web design. Comparing

the two web designs, the incentive increases completion rates for all groups (21% points

overall), and most comparisons are statistically significant except for the 70þ group.

In Table 3 we examine sample composition in the population, the total sample, and the

three designs. Compared to census data, young people, those in smaller villages, and

Swiss-German speakers are slightly overrepresented in the total sample. Comparing the

total sample with the respondents in the three designs, individuals who are young,

unmarried, from large municipalities (.100K inhabitants), and who speak French or

Italian are underrepresented among the telephone respondents, and older individuals are

underrepresented among the web respondents. The relative underrepresentation of older

people becomes worse with the incentive. Although the composition of the web-with-

incentive sample is quite different to that of the web-without-incentive sample, no group

of persons is significantly different due to the small sample sizes. Because the chi2-values

are not comparable between the designs, we analyze sample bias of the three designs using

the sum of the absolute percentage differences to the total sample across all 17 categories

of the five sociodemographic variables. The maximum absolute percentage difference

would be 500 percentage points if the samples were distributed completely differently

across the five variables (e.g., in the case of sex, the sample in one design has 100%

women, whereas the total sample has 100% men, and similarly for the other four

variables). This method gives percentage point differences of 40.9 in the telephone design,

61.0 in the web-without-incentive design, and 49.8 in the web-with-incentive design

across all categories. The telephone sample has the smallest representation bias for age,

sex, and municipality size, the web-without-incentive sample has the smallest

representation bias for marital status, and the web-with-incentive sample has the smallest

representation bias for language group.

The group-specific completion differences and sample composition mostly reflect

differential access to landline telephone or web (and its use), respectively (Alexander et al.

2008). On the one hand, compared with the average telephone matching rate (85%) of

sample members from the individual register, the underrepresented person groups (see

Table 3), the 18- to 30-year-olds (74%), the unmarried (79%), those in large municipalities

(.100,000 inhabitants, 77%), and French (83%) or Italian (81%) speakers, are less likely

to be matched. The 57 to 69-year-olds, who are overrepresented in the telephone sample,

have a telephone matching rate of 92%. For people aged 70 or over, noncooperation is

much higher than for other age groups, which is the reason why this age group is still

underrepresented among the telephone respondents, in spite of its above-average matching

rate (95%).

According to the SFSO’s Omnibus (2010) survey, 78% of the population over 15 uses

the Internet (at least once during the last three months), but the figure is much lower for

older groups: 45% for those aged 65 to 74 and only 20% for those aged 75þ . In our results,

there is a reverse effect of telephone and Internet coverage: people with higher telephone

coverage (older, Swiss-German speakers) tend to have lower Internet coverage and vice

versa. Exceptions are married people who have both high telephone and high Internet

coverage, probably due to economies of scale in larger households. For those with less web

access (and lower computer literacy) such as older people, even an incentive is not able to

substantially increase participation.
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5. Substantive Results

We analyze some key variables regarding political behavior, without and with

sociodemographic control variables. The variables included in the models are: age

group, gender, education, marital status, language region, municipality type, and religion.

As already seen, the composition of the samples varies between designs. We wish to know

whether the differences in substantive variables are due to this variation or whether there

are other sources of variation, such as mode effects. We prefer sociodemographic control

variables to weighting because the variables which the weights are based on can be

included in the regression models easily, avoiding possible errors that can arise from

creating weights (see e.g., Little and Vartivarian 2003). To control for sociodemographic

variables, we use logistic regressions (Poisson regression for the two likert scale variables

of political interest and participation) with the design as the sole independent variable in

the first part of the table and in conjunction with the sociodemographic variables in the

second. The predicted marginal values were calculated so as to compare coefficients

across different models (Mood 2010).

Generally, we note that due to the small sample sizes in the web designs, the number of

significant differences between the two web designs is very small, even though differences

in absolute terms are large for many comparisons.

A particular strength of the Selects survey is that questions about political behavior are

asked within a short timeframe immediately following the elections. This makes it

possible to compare turnout and party choice with the official results, see Table 4. It is

known that election surveys tend to overestimate turnout, due both to overreporting (social

desirability) and selection bias (Burden 2000; Holbrook and Krosnick 2010; Karp and

Brockington 2005; McDonald 2003; Selb and Munzert 2013). In our study, it appears that

the web-with-incentive design is more accurate, where the result of 65.7% is eight

percentage points closer to the actual figure of 48.5% compared to the telephone survey.

Without incentive, the result of the web survey is very similar to that of the telephone

survey. It would appear that in this case selection bias is probably a stronger reason for the

differences than overreporting, as the main change occurs when an incentive is added and

not between modes.

To analyze vote choice, a left/center/right variable was constructed. This combination is

necessary due to the large number of parties in Switzerland and the ensuing low number of

cases by party in the web conditions, especially after excluding non-voters. In Table 4, we

find the distribution to be much closer to the actual election results for the web-with-

incentive design. The change is particularly apparent in the case of right-wing parties,

whose voters are strongly underrepresented in the two other conditions.

Individuals who are more interested and active in politics are generally easier to reach in

surveys (see e.g., Groves et al. 2004a,b). In the web-without-incentive design, people

appear to be more interested in politics and vote more often, while the opposite is true

when an incentive is offered. The incentive thus seems essential if we wish to attenuate the

bias towards those who are interested and active in politics in a web survey.

Even though the differences are not significant between the telephone and the web-with-

incentive samples, there is a consistent tendency towards less politically interested

individuals in the latter. We thus hypothesize that this design is also able to reach people
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who would not respond to the traditional telephone survey. This is consistent with the

inclusion of more right-wing voters. Our results show that the web-with-incentive design

has certain advantages in obtaining a more representative sample of the studied population

regarding political behavior.

We then turn to the results of the predicted probabilities for turnout and vote choice after

controlling for sociodemographics in the right panel of Table 4. We find some changes

compared to the uncontrolled figures. For instance, turnout figures become larger for the

web design, in particular with incentive. This shows that some of the initial difference

between web and telephone is due to the inclusion of sociodemographic groups who vote

less in the web (with incentive). Regarding voting behavior, the numbers change slightly

for the telephone. For the web modes, the tendency is that the difference between support

for the right and the left increases in favor of the right, especially in the design without

incentive. In addition, the difference in support for center parties becomes significant as

the changes go in opposite directions. It would appear that while the web mode attracts

fewer individuals with the sociodemographic characteristics of voters in general, and

right-wing voters in particular (e.g., individuals from rural areas), the incentive is powerful

in attracting right-wing voters. In turn, sociodemographic groups linked with voting for the

left (e.g., individuals from urban areas) are overrepresented in the nonincentivized web

survey. Some of the differences regarding voting behavior between the three conditions

can thus be explained simply by the different sociodemographic composition of the net

samples. However, we find this to be only a very small part of the explanation, and it does

seem that the incentive, and to a lesser extent the mode, attracts individuals who are

different regarding their political preferences and behavior, net of their sociodemographic

profile. Finally, we tested primacy and recency effects in the two modes considered

elsewhere (Lipps and Pekari 2013) and found them to be insignificant.

6. Cost Issues

As the final part of our comparison of modes, we briefly present the cost by mode. For the

results to be more generalizable, we include two cost estimates for the web survey: the

costs of the actual in-house survey and the cost if the survey had been done by a survey

company. The costs are estimated based on two offers received during the call for tenders

for the Selects 2011 project. The in-house web survey was carried out by the Selects team,

consisting of a project leader, a junior researcher, a doctoral student, and students for the

administrative tasks. The centralized CATI survey was outsourced to a survey company.

The figures provide an indication of the cost savings that can be achieved by switching

from telephone to web survey. In Table 5, we present a summary of the survey costs by

design, assuming a targeted number of 2,000 respondents in each design. Costs for the

incentivized version of the web are listed in brackets.

As can be expected, the web-without-incentive design is by far the cheapest mode,

followed by web with incentive. Unit costs amount to about 23 CHF in the web-without-

incentive survey, to 43 CHF in the web-with-incentive survey (both in house), and to 94

CHF in the telephone survey. If the web survey had been carried out by a survey company,

the costs would have been 38 CHF without incentive, and 58 CHF with incentive.

Interestingly, the incentive design cost only an additional 4 CHF per sample member,

Journal of Official Statistics178

Unauthenticated
Download Date | 3/14/16 1:02 PM



although its nominal value amounts to 20 CHF, plus a 3.50 CHF administrative charge.

Primarily, this is due to the fact that only a part of the sample members actually cash the

check. Sending the same amount of cash would cost 20/.44 ¼ 45.5 CHF per respondent.

Ceteris paribus, the cost savings amount to 45.5–28.0 ¼ 17.5. CHF. Secondly, as much

as 8 CHF per sample member can be saved due to the almost twice as high response rate

by sending much fewer letters (announcement and reminder) in the web-with-incentive

condition. Whether this holds true for other surveys in other contexts needs further

examination. Absolute cost figures will depend very much on the survey and cultural

context, but we believe the cost structures to be roughly comparable in relative terms.

7. Summary of Findings

We find that completion rates in the telephone survey are only slightly higher than those in

the web-without-incentive design, but considerably higher in the web-with-incentive

design. Switching from telephone to web without incentive reduces completion rates for

people who are 57 years and older, married, women, or Swiss-German speakers. The

incentivized web survey increases participation almost across the board. The main concern

with using the web design are those aged 70 and above, who are simply likely to be unable

to complete the survey independent of their willingness to do so, whether for lack of an

Internet connection or for the lack of the necessary computer literacy.

When calculated as the absolute percentage differences to the census, sample

composition bias is highest in the web-without-incentive design, followed by the web-

with-incentive design, and finally the telephone. While in both web designs older people

are underrepresented, married people and Swiss-German speakers are overrepresented in

the telephone design, and young people in both web designs, especially in the incentivized

version. Swiss-German speakers are underrepresented in the web-without-incentive

design.

As for substantive outcomes, the web-with-incentive design comes closest to the official

voting results in terms of turnout and party choice. In addition, the mean values for

political interest and voting participation, typically overestimated in election surveys, are

Table 5. Calculated unit costs for the Selects 2011 survey (in CHF), assuming a targeted number of 2,000

respondents in each design. Figures in brackets are for the incentive condition. Data: Selects 2011

Cost Component Telephone Web In House Web Survey Firm

CATI total (survey firm) 94.-
Web total (survey firm) 38.- (30.-)
Programming and project

management web
7.-

Postage web (incl. reminders) 15.- (7.-)
Coding open questions web 1.-
Incentives web (28.-#) (28.-#)
Total 94.- 23.- (43.-) 38.- (58.-)
#Note: For a nominal value of 20 CHF, an uncashed postal check costs 3.5 CHF, a cashed postal check costs 23.5

CHF. 83% of the respondents cashed the check; of the nonrespondents, 13% cashed it. Given a response rate of

44%, the incentive per sample member costs .44*(.83*23.5 þ .17*3.5) þ .56*(.13*23.5 þ .87*3.5) ¼ 12.3

which makes 12.3/.44 ¼ 28.0 per respondent.
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lower than those for the other two designs. In contrast, telephone and web without

incentive overestimate turnout and underestimate voting for right-wing parties.

Sociodemographic controls lead to some changes, but do not explain the differences

found between the different conditions.

Finally, the web survey costs much less, even with a 20 CHF incentive. A rough

comparison between the three designs results in unit costs that are about four times as high

in the telephone design compared to the web-without-incentive design (provided the web

survey is conducted in house). Incentives increase the costs by about a sixth.

8. Conclusion

In the present study, we analyze the effects of two different modes (telephone and web)

and a randomized incentive experiment within the Swiss Electoral Study (Selects) 2011

survey. The aim of this study is to analyze the effects of a possible switch from telephone

to web due to cost and landline undercoverage issues. The innovation of our research is

that we use a probability sample in each design. We focus on mode system effects (Biemer

and Lyberg 2003). That is, we are interested in the systematic effects that are largely

independent of (unavoidable) sampling and fieldwork-related differences. We examine

completion rates and sample composition in the three designs distinguished by the frame

variable characteristics. We then analyze substantive results and finally compare unit costs

in the three designs.

The web-with-incentive design outperforms the web-without-incentive design not just

in terms of response rates but also in regard to sample composition and substantive

outcomes at comparatively small additional cost. It also outperforms the telephone mode

on all accounts, except for a small disadvantage in terms of sample composition. In

addition, the unit costs of the web-with-incentive survey are less than a half of that of

the telephone survey. An incentivized web survey thus already appears to be highly

competitive compared to the telephone survey in the context of an election study.

Compared to a survey of the general population, our findings must be seen as relating to

the special case of an election survey. First, we only sample adults, and second, foreigners

are excluded from the sample. Therefore, problems such as language, literacy, and – last

but not least – motivation to complete the survey are likely to play a smaller role in our

sample of adult Swiss citizens. Second, we are able to make use of an address register

which allows individualized invitation letters to be sent to the sample members.

Limitations include the comparatively small web-sample sizes, which make it difficult to

compare distributions or sample statistics with the larger telephone survey. In addition,

one would wish to have a full factorial design experiment, including a telephone-with-

incentive design, to better evaluate the incentive effect in both modes. An important

finding is that, while controlling for sociodemographics when comparing substantive

results shows some sample selection tendencies, it is not able to explain selection effects

related to other personal characteristics unrelated to sociodemographics (values, attitudes,

etc.), which are likely to constitute the lion’s share of the effects. Finally, we are unable to

uncover whether substantive differences across the designs result from selection or mode

(measurement) effects. We believe that fully identifying these effects is an important issue

for further research (see, e.g., Vannieuwenhuyze and Loosveldt 2013). Nevertheless,

Journal of Official Statistics180

Unauthenticated
Download Date | 3/14/16 1:02 PM



we are confident that we have been able to demonstrate the strong potential of web

surveys, compared with traditional telephone surveys, in an environment where

technological and societal trends clearly speak in favor of this mode.
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Bayesian Predictive Inference of a Proportion Under a
Twofold Small-Area Model

Balgobin Nandram1

We extend the twofold small-area model of Stukel and Rao (1997; 1999) to accommodate
binary data. An example is the Third International Mathematics and Science Study (TIMSS),
in which pass-fail data for mathematics of students from US schools (clusters) are available at
the third grade by regions and communities (small areas). We compare the finite population
proportions of these small areas. We present a hierarchical Bayesian model in which the first-
stage binary responses have independent Bernoulli distributions, and each subsequent stage is
modeled using a beta distribution, which is parameterized by its mean and a correlation
coefficient. This twofold small-area model has an intracluster correlation at the first stage and
an intercluster correlation at the second stage. The final-stage mean and all correlations are
assumed to be noninformative independent random variables. We show how to infer the finite
population proportion of each area. We have applied our models to synthetic TIMSS data to
show that the twofold model is preferred over a onefold small-area model that ignores the
clustering within areas. We further compare these models using a simulation study, which
shows that the intracluster correlation is particularly important.

Key words: Intracluster and intercluster correlations; credible intervals; goodness of fit;
hierarchical model; simulation study.

1. Introduction

We assume that there are several small areas and each area consists of several clusters;

each cluster consists of a number of units (individuals). A random sample of clusters is

taken from each area and within each sampled cluster a random sample of units is taken.

This is the twofold sample design. A hierarchical Bayesian model is used to make

inference about the finite population proportion of each small-area. In this model we have

an intracluster (between two units in the same cluster) correlation at the first stage and an

intercluster (between two units in two different clusters in the same area) correlation at the

second stage. We show that the intracluster correlation is important by comparing the
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twofold small-area model with a onefold small-area model (the intracluster correlation

is ignored). The Third International Mathematics and Science Study (TIMSS) uses a

similar design.

In Subsection 1.1 we describe the TIMSS data that we use to illustrate our methodology

and we discuss its importance. In Subsection 1.2 we introduce pertinent literature to show

what has been done in twofold modeling and related problems. In Subsection 1.3 we

clearly identify the innovations in this paper. Finally, we show a plan of the entire article.

1.1. Description of TIMSS Data

TIMSS is sponsored by the International Association for the Evaluation of Education

Achievement, an international organization of national research institutions and

government research agencies, and it is used to compare the performance of primary

school students in mathematics and science. TIMSS provides reliable and timely data on

the mathematics and science achievement of third-grade US students compared to that of

students in other countries. Of course, there are other studies used for this purpose with

similar objectives (e.g., the Program for International Student Assessment, PISA). These

studies provide information to “No Child Left Behind” and the “Race to the Top”

programs in the US; to date, the US has spent more than ten billion dollars on the Race to

the Top program since it was announced by President Barack Obama in 2009 (Hamilton

2009). Our study can potentially be used to suggest which regions and communities in the

US need funding to improve the education systems (e.g., qualified teachers, improved

equipment, parental participation, extramural programs, etc).

The basic sample design used in TIMSS for the population of third and fourth grade

students was a two-stage stratified cluster design. The first stage consisted of a sample of

schools; the second stage consisted of samples of one mathematics classroom from each

eligible target grade in the sampled schools. The design required schools to be sampled

using a probability proportional to size (PPS) systematic sampling (Foy et al. 1996), and

classrooms to be sampled with equal probabilities. Different aspects of the design were

adapted to national conditions and analytical needs. For example, many countries stratified

the school sampling frame by variables of national interest. As another example, if

geographic regions were an explicit stratification variable, then separate school sampling

frames would be constructed for each region. The multistage stratified cluster design

results in differential probabilities of selection and each student consequently has different

weights. In a realistic analysis of the TIMSS data we would need to incorporate the survey

weights into the analysis. However, because our main interest is to show how to handle the

clustering within small areas, we have ignored the survey weights.

The data set, which we used and collected in 1999, consists of 2,477 students (135

schools) who participated in TIMSS (see Calsyn et al. 1999). Clusters are schools while

the units within the clusters are the students. Areas are formed crossing region and

community. There are four regions of the US (Northeast, South, Central, and West) and

there are three communities (village or rural area, outskirts of a town or city, and close to

the center of a town or city), which the students come from. Thus there are twelve areas

(strata). The binary variable is whether a student’s mathematics score is below average.

We use synthetic data to illustrate our methodology and we take roughly half of the
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sampled data (i.e., a simple random sample of half the number of schools and a simple

random sample of half the number of third-grade students from each selected school) for

analysis and we use the other half to assess the predictive power of our procedure. The

finite population is the original sample. Our objective is to make inference about the finite

population proportion of students who earned below average scores in mathematics for

each small-area. This measure can be used to compare the regions and the communities in

the US.

The data (half) on the mathematics test scores are shown in Table 1, where we define the

twelve areas (e.g., NR is a village or rural area in the north east). There are some schools in

which all students were either below average or above average, thereby creating some

difficulties for estimation. Looking at Table 1, the numbers of schools sampled in the

twelve areas are 2, 4, 5, 4, 8, 6, 1, 3, 7, 3, 6, 15 and the numbers of students sampled in

the schools range from 4 to 13. Each area is too sparse for direct estimation even with the

complete data set.

1.2. Pertinent Literature

Nandram and Sedransk (1993) described a hierarchical Bayesian model to make

inference about the finite population proportion under two-stage cluster sampling, the

design we have within each area in a twofold sample design. The model can be viewed

as a discrete analogue of the model for two-stage cluster sampling with normal data

(Scott and Smith 1969) that has been extended in many directions (e.g., Malec and

Sedransk 1985). We note that the work of Nandram and Sedransk (1993) was extended

by Nandram (1998) to multinomial data and this extension may be viewed as a Bayesian

analogue of the Dirichlet-multinomial model for cluster sampling (Brier 1980). However,

our onefold model is different because in this design a simple random sample is

taken from each area, but in the twofold model a two-stage cluster sample is performed in

each area.

When there is a clustering effect, the units in a cluster are, in general, positively

correlated leading to a smaller effective sample size and therefore larger variability in the

estimates of the cell probabilities (i.e., the design effect is larger than one for each area).

For example, see Brier (1980), Bedrick (1983), Holt et al. (1980), and Scott and

Holt (1982). There is a similar issue in hypothesis testing. Clustering will evidently

result in larger p-values than what would be obtained under simple random sampling.

Rao and Scott (1981; 1984) have studied this problem very carefully for contingency

tables and obtained simple and familiar corrections to the standard chi-squared statistic

for the test of independence for two-way contingency tables arising from two-stage

cluster sampling and more generally. Nandram et al. (2013) have a Bayesian analogue of

these works.

From a Bayesian perspective, a related problem is when data are fitted to a hierarchical

model but actually follow a model with an additional unknown structure. This is like our

problem in which a onefold model is fitted and the second-stage cluster sampling within

each area is ignored. Using posterior predictive p-values, Yan and Sedransk (2007) studied

the situation where the data follow a normal model with a two-stage (three-stage) hierar-

chical structure while the fitted model has a one-stage (two-stage) hierarchical structure.
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They used several diagnostic procedures to help detect this additional structure. Yan and

Sedransk (2010) studied the ability to detect a three-stage model when a two-stage model

is actually fitted, and using Bayesian standardized residuals concluded that it is due to

the magnitude of correlation induced by the additional structure. This is the key point of

our work.

For twofold modeling, there have been some activities for continuous response

variables, not binary response variables, and most of this work has been within the

empirical Bayes framework. Onefold and twofold nested error regression models were

introduced by Fuller and Battese (1973) in which transformations to uncorrelated errors

with constant variance are obtained starting with a general error covariance matrix.

Transformations permit the calculation of generalized least-squares estimators and their

covariance matrices by ordinary least-squares regression. They have made an analogy

between survey sampling and experimental design via subsampling of primary, secondary,

and tertiary sampling units, and split-split-plot experiments. Ghosh and Lahiri (1988)

studied multistage sampling under posterior linearity using Bayes and empirical Bayes

methods. Estimation of regression models with nested error structure and unequal error

variances were further studied by Stukel and Rao (1997) under two-stage and three-stage

cluster sampling. Small-area models under twofold nested error regression models

were also studied by Stukel and Rao (1999); see also Rao (2003, sec. 5.5.3) and Datta and

Ghosh (1991).

1.3. Innovations

This is mainly a methodological article on twofold small-area modeling, and in attempting

to analyze the TIMSS data, we have made the following significant innovations.

1. Our models are for categorical data (binary). As can be seen from the literature,

twofold modeling has been done for continuous data. While the categorical data

models are related to the continuous data models, they pose additional difficulties for

methodology and model fitting.

2. We have a new reparameterization of the beta distribution in terms of correlation

(intracluster and intercluster). This permits modeling these correlations directly.

In fact, this opens up a new avenue for the analysis of data collected using a

twofold sample design and further analysis of more complex categorical (e.g.,

polychotomous) data.

3. With these reparameterizations we develop two hierarchical Bayesian models, a

onefold and a twofold model for binary data.

4. The computations pose some difficulties for the Gibbs sampler and we have

overcome these difficulties using random samples instead of the Gibbs sampler.

In our twofold model there are two weakly identified parameters, thereby causing

long-range dependence in the Gibbs sampler.

5. The TIMSS data will be analyzed using both our onefold and twofold models. We

demonstrate that the intracluster correlation creates an important difference between

the two models and provides additional insight to the analysis of these data.

A simulation study demonstrates the importance of the twofold model for TIMSS

data as well.
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In Section 2 we describe the onefold and twofold models and we describe how to fit

them. In Appendix A we describe how to perform the computation for the twofold model

without using the Gibbs sampler. In a technical report, Nandram (2014) now called

TRN14, we compare our sampling-based method with the Gibbs sampler. In Section 3, we

analyze the TIMSS data and we also compare the onefold and twofold models. We also

present a simulation study to compare the onefold and the twofold small-area model even

further. Section 4 contains concluding remarks, and some additional problems are

discussed. In Appendix B we briefly describe a multifold model.

2. Bayesian Small-Area Models

We make two simple observations. Let yijp ,iid Bernoulli( p), p , Beta{mt,(1 2 m)t},

where 0 , m , 1 is the mean of the beta random variable and t is the sum of the

parameters of the standard beta distribution.

First, the yi are exchangeable and the correlation between yi and yj is r ¼ (1 þ t)21

with t ¼ (1 2 r)/r. Thus, we can write the model as yijp ,iid Bernoulli(p),

p , Beta m 12r
r
; ð1 2 mÞ 12r

r

n o
.

Second, considering a single observation, y1 say, the posterior mean of p given y1 is

Eð pjr;m; y1Þ ¼ ry1 þ ð1 2 rÞm:

The prior density, r , Uniform(0,1), is called a shrinkage prior. Shrinkage priors have

good frequentist properties (see Natarajan and Kass 2000; Molina et al. 2014; Toto and

Nandram 2010). These observations motivate the construction of our small-area model for

binary data.

We have a population of l small areas and within the i th area there are Mi clusters.

Within the j th cluster there are Nij individuals. The binary responses are yij k, k ¼ 1,

: : : , Nij, j ¼ 1, : : : , Mi, i ¼ 1, : : : , l. A simple random sample of mi clusters is taken

from the i th area and a simple random sample of nij individuals is taken from the j th

cluster. Let ni ¼
Pmi

j¼1nij, sij ¼
Pnij

k¼1yijk, si ¼
Pmi

j¼1sij.

Letting Ni ¼
PMi

j¼1Nij, the finite population proportion for the i th area is

Pi ¼
XMi

j¼1

XNij

k¼1

yijk=Ni; i ¼ 1; : : : ; l:

Let T ð1Þij ¼
PNij

k¼nijþ1 yijk; j ¼ 1; : : : ;mi, denote the nonsampled total of the j th sampled

clusters and T ð2Þij ¼
PNij

k¼1 yijk; j ¼ mi þ 1; : : : ;Mi, the total of the j th nonsampled cluster.

Letting ni ¼
Pmi

j¼1nij, p̂i ¼
Pmi

j¼1

Pnij

k¼1yijk=ni, it is convenient to express Pi as

Pi ¼
n

nip̂i þ
Xmi

j¼1

T ð1Þij þ
XMi

j¼miþ1

T ð2Þij

o�
Ni; i ¼ 1; : : : ; l; ð1Þ

where the p̂i are observed. Bayesian predictive inference is required for T ð1Þij and T ð2Þij .

There is an expression similar to (1) for the finite population mean for each area (Stukel

and Rao 1999).
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2.1. A Onefold Model

We first construct the small-area onefold Bayesian model,

yijkjpi
ind, Bernoullið piÞ; j ¼ 1; : : : ;Mi; k ¼ 1; : : : ;Nij;

piju; g
iid, Beta u

1 2 g

g
; ð1 2 uÞ

1 2 g

g

� �
; i ¼ 1; : : : ; l;

where in a standard Beta(a, b), u ¼ a/(a þ b) and g ¼ (a þ b þ 1)21. Note that the

cluster effects are dropped (i.e., the pi do not have subscript j ). Noting that u and g are

really probabilities, a priori

u; g iid, Betaðao;boÞ;

where ao ¼ bo for a noninformative prior with small values (e.g., ao ¼ 1 for a uniform

prior and ao ¼ .5 for Jeffreys prior). Here, 0 , g , 1 strictly, and the uniform prior on

g is a shrinkage prior.

The model of Nandram and Sedransk (1993) for two-stage cluster sampling with binary

responses is similar to the current one. One important difference is in the prior

specification of u and the reparametrization of g, which unlike Nandram and Sedransk

(1993) is stochastic here. Furthermore, we predict the finite population proportion of each

area, not the overall finite population proportion.

The onefold model can be fitted easily by making random draws from the joint posterior

density of u and g, and samples of pi can be obtained using the multiplication rule.

Specifically,

pijsi; u; g
ind, Beta si þ u

1 2 g

g
; ni 2 si þ ð1 2 uÞ

1 2 g

g

� �
;

and

pðu; gjy~ Þ /
Yl

i¼1

B{si þ uð1 2 gÞ=g; ni 2 si þ ð1 2 uÞð1 2 gÞ=g}

B{uð1 2 gÞ=g; ð1 2 uÞð1 2 gÞ=g}
£ uao21

ð1 2 uÞbo21gao21ð1 2 gÞbo21; 0 , u; g , 1; ð2Þ

where B(�,�) is the beta function.

Because the posterior density of (u,g) is not in a simple form, we use a one-dimensional

grid method and numerical integration via Gaussian quadrature to draw samples from it.

We first integrate out u to get pðgjy~ Þ <
PG

g¼1wgpðxg; gjy~ Þ, where xg, g ¼ 1, : : : ,G, are the

G roots of a Legendre orthogonal polynomial with weights wg, g ¼ 1, : : : ,G; G ¼ 20 or so

provides a very accurate and fast procedure. Then, we use a one-dimensional grid to draw

g from pðgjy~ Þ. The unit interval is simply divided into 100 subintervals of equal width,

and the joint posterior density is approximated by a discrete distribution with probabilities

proportional to the heights of the continuous distribution at the midpoints of these

subintervals. Now, it is easy to draw a sample from this univariate discrete distribution of

pðgjy~ Þ. It is efficient to remove subintervals with small probabilities (smaller than 1026);

we call the others probable subintervals. To draw a single deviate, we first draw one of the

probable subintervals. After we have obtained this subinterval, a uniform random variable
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is drawn within this subinterval. This is a standard jittering procedure and it provides

different deviates with probability one. We call this random number generator the

univariate grid sampler that is also used to fit the twofold model.

Once samples of the pi are obtained, Bayesian predictive inference follows easily because

T ð1Þij jpi
ind, BinomialðNij 2 nij; piÞ and T ð2Þij jpi

ind, BinomialðNij; piÞ and, given pi, T ð1Þij and T ð2Þij

are independent. It follows easily that
Pmi

j¼1T ð1Þij þ
PMi

j¼miþ1T ð2Þij jpi , BinomialðNi 2 ni; piÞ.

Thus it is easy to make inference about Pi by using data augmentation. For each iterate pi,

we simply draw
Pmi

j¼1T ð1Þij þ
PMi

j¼miþ1T ð2Þij . We use 1,000 samples; convergence monitoring is

not required.

2.2. A Twofold Model

The twofold small-area model adds one layer to the onefold model. For a twofold Bayesian

model,

yijkjpij
ind, Bernoullið pijÞ; k ¼ 1; : : : ;Nij;

pijjmi; r
ind, Beta mi

1 2 r

r
; ð1 2 miÞ

1 2 r

r

� �
; j ¼ 1; : : : ;Mi;

miju; g
iid, Beta u

1 2 g

g
; ð1 2 uÞ

1 2 g

g

� �
; i ¼ 1; : : : ; l;

and a priori

r; u; g iid, Betaðao;boÞ

with the same comments about this prior as for the onefold model. We assume that

0 , u, r,g , 1 strictly. This can be achieved by taking e # u, r, g # 1 2 e, where e is a

small positive quantity (e.g., e ¼ 1026).

If we allow r to go to zero, then the pij almost surely go to the mi and the twofold model

becomes the onefold model. (In the limit, the mi in the twofold model become the pi in the

onefold model.) That is, if r is small, we anticipate very little difference between the two

models. Thus it is r that distinguishes the onefold and twofold models.

In Subsection 2.1 we stated that cor( yijk, yijk0jmi, r) ¼ r, k – k0. That is, within the same

area, the correlation between two units in the same cluster (intracluster) is r. Clearly,

cor( yijk, yij0k0jmi, r) ¼ 0 and within the same area the actual correlation between two units

in two different clusters (intercluster) is 0. It is also easy to show that

corð yijk; yij 0k 0 ju; r; gÞ ¼ g; j – j0; k – k 0:

That is, one can interpret g as the intercluster correlation between two units in two

different clusters in the same area. Finally, note that corð yijk; yijk 0 ju; r; gÞ ¼

gþ ð1 2 gÞr $ maxðr; gÞ.
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Using Bayes’ theorem and letting sij ¼
Pnij

k¼1yijk; p~ ¼ ð pij; j ¼ 1; : : : ;mi; i ¼ 1;

: : : ; lÞ0, and m~ ¼ ðmi; i ¼ 1; : : : ; lÞ0, the joint posterior density is

pðp~ ;m~; u~; r; gjy~ Þ /
Yl

i¼1

Ymi

j¼1

p
sij

ij ð1 2 pijÞ
nij2sij

p
mið12rÞ=r21
ij ð1 2 pijÞ

ð12miÞð12rÞ=r21

B{mið1 2 rÞ=r; ð1 2 miÞð1 2 rÞ=r}

£
Yl

i¼1

m
u ð12gÞ=g21
i ð1 2 miÞ

ð12uÞð12gÞ=g21

B{u ð1 2 gÞ=g; ð1 2 uÞð1 2 gÞ=g}

( )

uao21ð1 2 uÞbo21rao21ð1 2 rÞbo21gao21

ð1 2 gÞbo21; 0 , pij;mi; u; r; g , 1; j ¼ 1; : : : ;mi; i ¼ 1; : : : ; l:

We use both the Gibbs sampler and a random sampler to fit the model. The Gibbs

sampler is used after collapsing over the pij and then samples are obtained from

the posterior densities of the pij using the composition method (i.e., multiplication rule).

Once samples of the pij are obtained, Bayesian predictive inference follows easily

because T ð1Þij jpij
ind, BinomialðNij 2 nij; pijÞ; j ¼ 1; : : : ;mi, for the sampled clusters and

T ð2Þij jpij
ind, BinomialðNij; pijÞ; j ¼ 1; : : : ;Mi, for the nonsampled clusters. Given pij, T ð1Þij

and T ð2Þij are independent. However, the Gibbs sampler is not easy to use because there are

weakly identified parameters and this needs special attention. See TRN14 for the technical

details and convergence monitoring.

For the random sampler, first note that conditionally a posteriori the pij are independent

and

pijjsij;mi; r
ind, Beta{sij þ mið1 2 rÞ=r; nij 2 sij þ ð1 2 miÞð1 2 rÞ=r}:

Accordingly, once samples are obtained from the joint posterior density of m~; u; r; gjs~ ,

a sample of pij is easy to obtain. Then, after integrating out the pij, we have

pðm~; u; r; gjy~ Þ /
Yl

i¼1

ami

j¼1

B{sij þ mið1 2 rÞ=r; nij 2 sij þ ð1 2 miÞð1 2 rÞ=r}

B{mið1 2 rÞ=r; ð1 2 miÞð1 2 rÞ=r}

£
Yl

i¼1

m
u ð12gÞ=g21
i ð1 2 miÞ

ð12uÞð12gÞ=g21

B{u ð1 2 gÞ=g; ð1 2 uÞð1 2 gÞ=g}
£ uao21ð1 2 uÞbo21rao21ð1 2 rÞbo21

gao21ð1 2 gÞbo21; 0 , mi; u; r; g , 1; i ¼ 1; : : : ; l: ð3Þ

See Appendix A for the more detailed computations using the random sampler. For

the TIMSS data, the results from the Gibbs sampler and the random sample are similar

(see TRN 14).

3. Numerical Analysis

We discuss an illustrative example using data from the Third International Mathematics

and Science Study (TIMSS) and we perform a simulation study to confirm the superiority

of the twofold small-area model. This section has three subsections.

In Subsection 3.1 we describe the model diagnostic procedures used for analysis. In

Subsection 3.2 we analyze the TIMSS data. We compare the onefold and twofold models.
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We have used the posterior mean (PM), posterior standard deviation (PSD), and 95%

highest posterior density (HPD) interval to summarize the distributions. We also computed

the numerical standard error (NSE), which is based on the batch means method; NSE is a

measure of the repeatability of the entire sampling. In Subsection 3.3 we describe a

simulation study.

3.1. Model Diagnostics

We discuss three goodness-of-fit procedures, the deviance information criterion (DIC)

together with the complexity or effective number of parameters (PD), the conditional

predictive ordinate (CPO) along with the logarithm of the pseudomarginal likelihood

(LPML), and the Bayesian predictive p-value (BPP). The DIC, LPML, and BPP look at the

overall fit of the model; see Gelman et al. (2013) for further discussions of these measures.

We give expressions for the twofold model because it is easy to write down similar ones

for the onefold model.

In the twofold model sijjpij
ind, Binomialðnij; pijÞ, pijjmi

ind, Beta{mið1 2 rÞ=r; ð1 2 miÞ

ð1 2 rÞ=r}. Thus, integrating out the pij we get a product of beta-binomial probability

mass functions,

pðs~ jm~; rÞ ¼
Yl

i¼1

Ymi

j¼1

nij

sij

 !
B{sij þ mið1 2 rÞ=r; nij 2 sij þ ð1 2 miÞð1 2 rÞ=r}

B{mið1 2 rÞ=r; ð1 2 miÞð1 2 rÞ=r}
:

It is also true that E(sijjmi, r) ¼ nijmi and Var(sijjmi, r) ¼ nij{1 þ (nij 2 1)r}mi(1 2 mi).

Let

PD ¼ �D 2 Dð �u~ ; �gÞ; DIC ¼ �Dþ PD

respectively be the complexity of the model and the deviance information criterion, where

D̄ and Dð �u~ ; �gÞ are defined below for the onefold and twofold models.

Let mðhÞi ; i ¼ 1; : : : ; l; r ðhÞ; h ¼ 1; : : : ;M, denote the iterates of Gibbs sampling from

the twofold model, �mi ¼
PM

h¼1m
ðhÞ
i =M; i ¼ 1; : : : ; l, and �r ¼

PM
h¼1r

ðhÞ=M. Then,

Dð �m~ ; �rÞ ¼ 22log{pðs~ j �m~ ; �rÞ} and �D ¼ 22
PM

h¼1log{pðs~ jm~ðhÞ; r ðhÞÞ}=M.

Models with smaller DIC are preferred over models with larger DIC. Models are

penalized both by the value of D̄, which favors a good fit, and PD. Since D̄ will decrease as

the number of parameters in a model increases, PD compensates for this effect by favoring

models with a smaller number of parameters. However, DIC tends to select overfitted

models. The Bayesian predictive information criterion (BPIC) can protect against this

effect but it is difficult to compute, it is not meant for dependent data, and consistency (as

the sample size increases) is needed (see Ando 2007). The inconsistency problem can be

overcome by integrating out the pij and the mi, but this creates dependent data.

Similar to the DIC, the second measure is the LPML. Both measures are based on the

same cross-validation (leave-one-out) procedure. A summary statistic for CPO values is

LPML; unlike the DIC, larger values of LPML indicate better fitting models (e.g., Geisser
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and Eddy 1979). For the twofold model the CPO is given by

ĈPOij ¼
1

M

XM

h¼1

1

f sijjp
ðhÞ
ij

� �

8
<

:

9
=

;

21

; j ¼ 1; : : : ;mi; i ¼ 1; : : : ; l;

where pðhÞij ; h ¼ 1; : : : ;M, are the samples from pijjsij,mi, r and sijjpij
ind, Binomialðnij; pijÞ.

Again, it is interesting to note that for each (ij ), ĈPOij is the harmonic mean of the

likelihoods f ðsijjp
ðhÞ
ij Þ; h ¼ 1; : : : ;M. Then,

LPML ¼
Xl

i¼1

Xmi

j¼1

logðĈPOijÞ:

The LPML, like the DIC, can discriminate between the onefold and the twofold models.

We compute the CPO and the LPML at the cluster level, the LPML being preferable

(easy to use).

Our third measure is the BPP for the two models. For the twofold model, the

discrepancy function is

T2ðs~ ;m~; rÞ ¼
Xl

i¼1

Xmi

j¼1

{sij 2 Eðsijjmi; rÞ}
2

Varðsijjmi; rÞ
:

Then the BPP is P{T2ðs~
ðrepÞ;m~; rÞ $ T2ðs~

ðobsÞ;m~; rÞjs~}, where probability is calculated

over the iterates ðm~ ðhÞ; r ðhÞÞ; h ¼ 1; : : : ;M. Extremely small (near 0) or extremely large

(near 1) values of this probability indicate that the model does not fit well.

3.2. Illustrative Example

First, we compare the two models using the three measures. For the onefold (twofold) model,

PD ¼ 6.70 (PD ¼ 7.98), DIC ¼ 313 (DIC ¼ 282), LPML ¼ 2609 (LPML ¼ 2575), and

BPP ¼ .000 (BPP ¼ .467). The BPP tells us that while the twofold model fits the TIMSS data

reasonably well, the onefold model does not. The other two measures, DIC and LPML, tell us

that the twofold model provides a better fit to the TIMSS data.

Using the onefold model, for u PM ¼ .556, PSD ¼ .052, NSE ¼ .002, and the 95%

HPD interval is (.448,.654); for g PM ¼ .112, PSD ¼ .053, NSE ¼ .001, and the 95%

HPD interval is (.034,.215). Using the twofold model, for u PM ¼ .566, PSD ¼ .055, and

NSE ¼ .002, the 95% HPD interval is (.443,.662); for g PM ¼ .078, PSD ¼ .056,

NSE ¼ .002, and the 95% HPD interval is (.001,.187). Thus inferences about u and g are

very similar under the onefold and twofold models.

More importantly, the posterior mean of r is .217 with a standard deviation of .050,

NSE ¼ .001, and the 95% HPD interval of (.122,.309). This also shows that the twofold

model, which accommodates the two-stage cluster sampling via the intracluster

correlation, r, may be preferred.

In Table 2 we present posterior inference about the finite population proportions for the

mathematics scores. We see that the posterior means of the onefold model can be larger or

smaller than the posterior means of the twofold model. However, the posterior standard

deviations for the twofold model are always larger than those of the onefold model. This

clearly shows how the twofold model accommodates the clustering effect. In Table 2 we
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have also presented the direct estimates. The direct estimates and their standard errors

seem to be closer to the PMs and PSDs of the onefold model, but there are some

differences (e.g., areas CR and WR).

In Figure 1 we present plots of the empirical posterior densities of the finite population

proportions. These are obtained using the Parzen-Rosenblatt normal kernel density

estimator with an optimal window width (e.g., Silverman 1986). In both pictures (onefold

and twofold models) we observe a clear difference between the onefold and twofold

models. The distributions under the twofold model are more spread out than those of the

corresponding onefold model.

Using the TIMSS data (half sample) we perform two small empirical studies. First, we

study the quality of the Bayesian predictive inference. Then the ‘true values’ of the finite

population proportions (original sample) for the areas are .541, .347, .608, .600, .550, .667,

.436, .421, .560, .458, .522, .643. Under the twofold model the 95% HPD interval of the

finite population proportion of area SO misses the true value. But under the onefold

model the 95% HPD intervals for areas SO, SC, CC miss the true value (see Table 1 for

abbreviations). Thus, once again the twofold model provides a better fit than the

onefold model.

Second, we investigate the effect of a larger number of areas. As our half-sample dataset

has only twelve areas, we have artificially increased the number of areas. Specifically, we

have bootstrapped the twelve areas in the half sample to fill in the additional number of

areas to get 25, 50, 75, and 100 areas. Detailed comparisons between random sampling and

Gibbs sampling are given in TRN14. For example, in the computations random sampling

is twice as fast as Gibbs sampling, but the measures (e.g., DIC, LPML, and BPP)

are similar.

Table 2. Comparison of posterior inference from the onefold and twofold models for the finite population

proportions by areas for US students below average in mathematics

Onefold Twofold

Area Direct PM PSD 95% HPD PM PSD 95% HPD

NR .500.104 .515 .087 (.367, .696) .528 .116 (.316, .747)
NO .316.067 .355 .063 (.234, .480) .396 .093 (.234, .594)
NC .696.054 .682 .052 (.587, .785) .667 .075 (.523, .806)
SR .649.068 .636 .061 (.527, .760) .618 .087 (.440, .773)
SO .383.047 .395 .047 (.303, .483) .410 .067 (.288, .539)
SC .827.047 .795 .048 (.694, .877) .757 .071 (.617, .889)
CR .364.127 .427 .108 (.217, .609) .459 .152 (.196, .717)
CO .542.093 .548 .080 (.386, .707) .549 .111 (.336, .757)
CC .683.052 .667 .051 (.573, .766) .660 .068 (.516, .778)
WR .296.078 .345 .076 (.203, .484) .403 .107 (.203, .602)
WO .587.065 .582 .058 (.452, .683) .583 .080 (.448, .751)
WC .703.037 .694 .036 (.618, .760) .685 .051 (.591, .783)

NOTE: PM is the posterior mean, PSD is the posterior standard deviation and HPD is highest posterior density

interval. The Monte Carlo errors of the posterior means are smaller than .004 in all cases, and in most cases are

substantially smaller than .004. The direct estimate and its standard error are written as ab where a is the direct

estimate and b is its standard error.
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3.3. Simulation Study

We have performed a small simulation study to help understand how inferences about the

finite population proportions change with the intracluster correlation coefficient (r) and

the number (l) of small areas. We have studied r ¼ .01, .10, .25, .50, .75 and l ¼ 12, 25,

50, 75, 100. Thus, there are twenty-five design points in our simulation study.

We have set the number of schools in each area to be 100 and the number of students

within each school to be 15 (i.e., Nij ¼ 15, j ¼ 1, : : : , Mi, Mi ¼ 100, i ¼ 1, : : : , l).

We also hold u ¼ .60 and g ¼ .05, near the posterior means calculated for the real data.

We have taken a simple random sample of five schools from the 100 generated for the
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Fig. 1. Comparison of the onefold (solid) and twofold (dotted) models via posterior inferences of the finite

population proportions of the empirical densities of finite population proportions by area
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population, and a simple random sample of ten students from each selected school (i.e.,

mi ¼ 5 schools and nij ¼ 10 students). So there are up to 100 areas each having 100

schools and each school having up to 15 students. So we have up to 10,000 schools and

150,000 students. The number of areas can be as large as current computing facilities

allow because the area effects can be drawn using parallel computing via our method of

random sampling (not Gibbs sampling).

We have simulated binary data from the twofold small-area model,

miju;g
iid, Beta u

1 2 g

g
; ð1 2 uÞ

1 2 g

g

� �
; i ¼ 1; : : : ; l;

pijjmi; r
ind, Beta mi

1 2 r

r
; ð1 2 miÞ

1 2 r

r

� �
; j ¼ 1; : : : ;Mi;

yijkjpij
ind, Bernoullið pijÞ; k ¼ 1; : : : ;Nij:

Thus, we have the true value of Pi ¼
PMi

j¼1

PNij

k¼1yijk=
PMi

j¼1 Nij; i ¼ 1; : : : ; l. We have

taken 1,000 samples at each of the 25 design points.

In a similar way, we have generated data from the onefold model,

piju; g
iid, Beta u

1 2 g

g
; ð1 2 uÞ

1 2 g

g

� �
; j ¼ 1; : : : ;Mi;

yijkjpi
ind, Bernoullið piÞ; k ¼ 1; : : : ;Nij;

with a subset of the same design points (i.e., r ¼ 0).

For all generated data sets we fit the onefold and twofold models using random draws,

as described for the computations. We have used parallel computing to fit the models.

Note that we need to fit 25,000 simulated data sets.

Here, we have also studied the frequentist properties of our procedure. We compute the

absolute bias (AB), relative absolute bias (RAB), and root posterior mean squared error

(RPMSE). Specifically, we obtain ABih ¼ jPMih 2 Pihj; RABih ¼ ABih=Pih and

RPMSEih ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PSD2

ih þ AB2
ih

q
; i ¼ 1; : : : ; l; h ¼ 1; : : : ; 1;000. We have also computed

the 95% HPD interval for each of the 1,000 simulated runs. We have looked at the width

(Wih) and the credible incidence (Iih). Here Iih ¼ 1 if the 95% HPD interval contains the

true value Pi and Iih ¼ 0 if the 95% credible interval does not contain the true value Pi.

For each area and each design point we have taken the average of these quantities.

For example, the estimated probability content of the 95% HPD interval for the i th area is

Ci ¼
P1000

h¼1 Iih=1;000.

First, we discuss the simulations when data are generated from the twofold model. In

Table 3 we present a comparison of the onefold and twofold models using these measures.

The coverages for the twofold model are much closer to the nominal value of 95% than

those from the onefold model. In some cases the coverages from the onefold model are

much too small. However, the 95% HPD intervals from the twofold model are wider than

those from the onefold model. These effects are much larger as r increases for each l,

thereby clearly showing how the twofold model takes care of the clustering effect.

All measures (AB, RAB, RPMSE) for the twofold model are smaller than those for the
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onefold model. These effects become more intense for larger r. Again this shows the

superiority of the twofold model over the onefold model.

In Table 4 we present summaries of PD, DIC, LPML, and BPP. As expected, the PDs for

the twofold model should be larger than those for the onefold model. All the DICs for the

twofold model are smaller than the corresponding ones for the onefold model, and

this disparity becomes larger as l and r increase. The results are the same for the LPML.

Under the onefold model most of the BPPs are near 0, but under the twofold model the

corresponding BPPs are around 0.5. These measures show that while the twofold model is

more complex, it is superior to the onefold model. In TRN14 we compare plots of the

sample distributions of the negative LPML under the onefold and twofold models over the

1,000 runs by l and r. The negative LPML under the twofold model are smaller than under

the onefold model and this discrepancy increases with both r and l. There are overlaps of

distributions when r ¼ .10 but not for other values of r.

Second, we discuss the simulations when data are generated from the onefold model.

In Table 5 we present comparisons of the onefold and twofold models. As expected, the

onefold model is slightly better than the twofold model. AB, RAB, RPMSE are only

Table 3. Simulation for data drawn from the twofold model: Comparison of coverage and widths of 95% HPD

intervals and absolute bias, relative absolute bias and, root posterior mean squared error at twelve design points

l r Model C-HPD W-HPD AB RAB RPMSE

25 .10 TFM .940.0015 .276.0002 .056.0003 .098.0005 .096.0002

OFM .860.0022 .227.0001 .061.0003 .106.0005 .090.0002

.25 TFM .938.0016 .318.0002 .068.0003 .121.0007 .113.0002

OFM .732.0029 .227.0001 .081.0004 .142.0008 .107.0003

.50 TFM .918.0018 .355.0003 .077.0004 .136.0008 .127.0003

OFM .612.0031 .227.0002 .107.0005 .184.0009 .129.0004

.75 TFM .944.0015 .417.0003 .083.0004 .147.0009 .145.0003

OFM .495.0032 .222.0003 .137.0006 .239.0012 .157.0006

50 .10 TFM .940.0011 .273.0001 .058.0002 .104.0004 .097.0001

OFM .857.0016 .225.0001 .060.0002 .105.0004 .090.0002

.25 TFM .935.0011 .314.0002 .067.0002 .119.0005 .112.0002

OFM .727.0020 .228.0001 .082.0003 .143.0005 .108.0002

.50 TFM .936.0011 .350.0002 .074.0002 .133.0005 .124.0002

OFM .607.0022 .229.0001 .108.0004 .190.0007 .131.0003

.75 TFM .942.0010 .386.0002 .080.0003 .143.0006 .135.0002

OFM .492.0022 .222.0002 .137.0004 .240.0008 .157.0004

100 .10 TFM .946.0007 .275.0001 .056.0001 .100.0003 .096.0001

OFM .862.0011 .225.0001 .060.0001 .105.0003 .089.0001

.25 TFM .939.0008 .311.0001 .066.0002 .117.0003 .110.0001

OFM .752.0014 .229.0001 .080.0002 .140.0004 .106.0002

.50 TFM .930.0008 .340.0001 .075.0002 .136.0004 .122.0001

OFM .602.0015 .227.0001 .109.0003 .192.0005 .131.0002

.75 TFM .936.0008 .385.0001 .082.0002 .150.0005 .137.0001

OFM .485.0016 .222.0001 .140.0003 .248.0006 .160.0003

NOTE: TFM is the twofold model and OFM is the onefold model. W-HPD and C-HPD are respectively the width

and the probability content of a HPD interval. A, AB, and RPMSE are the absolute bias, relative absolute bias and

root posterior mean square error. The notation ab means that a is the estimate and b is the standard error.
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slightly smaller under the onefold model. However, the coverages of the HPD intervals

under the twofold model are closer to the nominal value of 95%, with those from the

onefold model being slightly smaller. This is due to the phenomenon that the intervals

under the onefold model are narrower.

In Table 6 we present summaries of PD, DIC, LPML, and the BPP. These measures are

very similar for the two models. While the BPPs are different, they show that the two

models fit equally well. However, the main difference is in PD, the complexity of the

model. While the twofold model is more complex than the onefold model, they fit equally

well when the onefold model is expected to hold.

Table 4. Summaries of the 1,000 simulation runs with (data drawn from the twofold model) for the complexity,

deviance information criterion, log pseudomarginal likelihood, and the Bayesian predictive p-value by l, r and

model

Onefold Twofold

l r PD DIC LPML BPP PD DIC LPML BPP

25 .10 4.998 553 21107 .010 15.61 521 21086 .462
.25 6.795 625 21190 .000 12.09 557 21087 .467
.50 9.289 717 21333 .000 9.38 530 21038 .478
.75 10.970 710 21465 .000 9.27 419 2953 .479

50 .10 4.980 1141 22303 .000 30.86 1081 22261 .461
.25 6.981 1291 22475 .000 23.60 1156 22260 .473
.50 9.566 1450 22773 .000 17.29 1107 22162 .479
.75 11.220 1465 23050 .000 15.06 870 21983 .495

100 .10 5.015 2278 24606 .000 61.67 2162 24522 .472
.25 6.889 2574 24943 .000 45.68 2316 24524 .476
.50 9.649 2873 25526 .000 31.90 2200 24320 .485
.75 11.420 2873 26104 .000 28.39 1720 23957 .496

NOTE: PD is the effective number of parameters, DIC is the deviance information criterion, LPML is the

log pseudomarginal likelihood and BPP is the Bayesian predictive p-value based on the chi-squared measure.

The standard errors are negligible.

Table 5. Simulation for data drawn from the onefold model: Comparison of coverage and widths of 95% HPD

intervals and absolute bias, relative absolute bias, and root posterior mean squared error

l Model C-HPD W-HPD AB RAB RPMSE

12 TFM .953.0019 .244.0002 .048.0003 .085.0007 .084.0002

OFM .933.0023 .223.0002 .047.0003 .084.0006 .079.0002

25 TFM .949.0014 .234.0001 .049.0002 .088.0005 .082.0002

OFM .929.0017 .219.0001 .046.0002 .083.0005 .078.0002

50 TFM .948.0010 .233.0001 .048.0002 .086.0003 .082.0001

OFM .943.0010 .220.0001 .047.0002 .083.0003 .078.0001

75 TFM .954.0008 .236.0001 .046.0001 .082.0003 .081.0001

OFM .945.0008 .221.0000 .045.0001 .080.0002 .077.0001

100 TFM .959.0006 .236.0001 .046.0001 .081.0002 .081.0001

OFM .948.0007 .221.0000 .045.0001 .079.0002 .077.0001

NOTE: TFM is the twofold model and OFM is the onefold model. W-HPD and C-HPD are respectively the width

and probability content of a HPD interval. A, AB and RPMSE are the absolute bias, relative absolute bias, and

root posterior mean square error. The notation ab means that a is the estimate and b is the standard error.
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4. Concluding Remarks

We have developed a twofold hierarchical Bayesian model to analyze binary data arising

from a twofold sample design for small areas. This model incorporates an intracluster

correlation, and it is an extension of the two-stage hierarchical Bayesian model of

Nandram and Sedransk (1993) and, more importantly, the twofold model of Stukel and

Rao (1997; 1999) for binary data. A onefold model ignores the intracluster correlation. We

have performed a Bayesian predictive inference for the finite population proportion of

each area. We have discussed how to study the onefold and twofold small-area models in

detail. As an illustrated example, we have used synthetic data from TIMSS, a study of the

performance of US students at the third grade in mathematics. We have also performed a

simulation study to compare the onefold and twofold models. We have shown how to

overcome a difficulty in running the Gibbs sampler that we initially used to fit the twofold

model (see TRN14).

We have shown that when there is clustering within each area, the onefold model gives

poor performance, and the twofold model is much more preferable. The onefold model can

lead to estimators that differ from the twofold model in terms of both location and spread.

Our simulation study provides strong evidence that the twofold model is to be preferred

when there is a two-stage cluster sampling design within each area. This is a direct

consequence of the effect of the intracluster correlation. The Bayesian measures (deviance

information criterion, log pseudomarginal likelihood, Bayesian predictive p-value) and

frequentist measures (bias, mean squared error, coverage) show that the twofold model is

better than the onefold model. While we have demonstrated that the twofold model is

preferred when data are available from a twofold sampling design with cluster sampling,

other sampling designs (e.g., stratification) in each area will give different results, and

these need to be investigated separately.

We have shown that the twofold model is preferable to the onefold model for the TIMSS

data. Although the two models give similar results, we have better point and interval

estimates from the twofold model. We can see from Table 2 that there are some possibly

interesting findings for TIMSS data even though we have not used all features of the data.

Table 6. Summaries of the 1,000 simulation runs (data are drawn from the onefold model) for the complexity,

deviance information criterion, log pseudomarginal likelihood, and the Bayesian predictive p-value by l and

model

Onefold Twofold

l PD DIC LPML BPP PD DIC LPML BPP

12 3.673 250 2530 .445 8.94 233 2531 .661
25 3.362 486 21055 .553 16.57 460 21059 .781
50 3.587 1023 22203 .479 34.43 962 22208 .772
75 3.574 1527 23301 .526 52.81 1438 23308 .852
100 3.692 2043 24401 .538 70.73 1914 24410 .882

NOTE: PD is the effective number of parameters, DIC is the deviance information criterion, LPML is the

log pseudomarginal likelihood, and BPP is the Bayesian predictive p-value based on the chi-squared measure.

The standard errors are negligible.
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Apparently a school in a western rural (WR) area is the best and city schools (NC, SC,

CC, WC) are not so good.

This research has opened up many avenues for future work on twofold small-area

models. First, for a more realistic analysis of the TIMSS data, it is possible to incorporate

the survey weights into our analysis. Second, it may be desirable to have the intracluster

correlation to vary with area. It is expected that the computation will be challenging

because with a single intracluster correlation there is long-range dependence among the

iterates from the Gibbs sampler. Third, it is desirable to study threefold models (states

within regions and counties within states). Fourth, we can look at polychotomous data

instead of binary data; in TIMSS one can use three levels for mathematics score (below

average, average, above average). Fifth, we can consider multivariate binary data; in

TIMSS there are both mathematics and science scores. This will lead naturally to consider

test of independence for two categorical variables. Sixth, benchmarking for small areas

is also an important problem (states within regions and counties within states). Seventh,

we can look at covariates via logistic regression; in TIMMS there are covariates. Eight,

we can use nonparametric models (e.g., Dirichlet process mixtures and mixture of finite

Polya trees) to help robustify our twofold model.

APPENDIX A: Computation Without Gibbs Sampling

Long-range dependence is a general problem for the hierarchical Bayesian model when

Markov chain Monte Carlo methods are used to fit it. Typically long-range dependence is

due to weak identifiability in some parameters and/or indirect functional relation among

the parameters, and this causes poor mixing in the Gibbs sampler. The solution of thinning

the iterates, used in practice, is not really efficient. These problems occur when the twofold

model is fitted, and so it is pertinent to present an alternative algorithm that uses just

random samples.

Our strategy is to use the composition method (i.e., multiplication rule) to draw random

samples from the posterior density pðm~; u; r; gjy~ Þ. That is,

pðm~; u; r; gjy~ Þ ¼
Yl

i¼1

pðmiju; r; g; y~ Þ

( )

gðu; r; gjy~ Þ:

Integrating out mi, i ¼ 1, : : : ,l, the joint posterior density of u; r; gjy~ is

pðu; r; gjy~ Þ ¼ A
Yl

i¼1

ð1

0

giðmiÞf ðmiÞdmi

� �" #

uao21ð1 2 uÞbo21rao21ð1 2 rÞbo21gao21

ð1 2 gÞbo21;

where A is a normalization constant hence forth omitted,

giðmiÞ ¼
Ymi

j¼1

B{sij þ mið1 2 rÞ=r; nij 2 sij þ ð1 2 miÞð1 2 rÞ=r}

B{mið1 2 rÞ=r; ð1 2 miÞð1 2 rÞ=r}
;
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and

f ðmiÞ ¼
m
u ð12gÞ=g21
i ð1 2 miÞ

ð12uÞð12gÞ=g21

B{u ð1 2 gÞ=g; ð1 2 uÞð1 2 gÞ=g}
:

Note that while gi (mi) is the ratio of two beta functions (computations discussed earlier)

both of which are functions of r but not u and g, f (mi) is a function of u and g but not r.

More importantly, f (mi) is a density function of a beta random variable. We can integrate

out the mi, one at a time, and form their product to obtain the complete integral. Thus, we

only need to discuss how to compute
Ð 1

0
giðmiÞf ðmiÞdmi; i ¼ 1; : : : ; l, for one area. Also,

note that f (mi) does not depend on i under the integral sign. While this integral can be

computed using Monte Carlo methods, it is much more efficient to use numerical

integration in the following way.

Let F(�) denote the cdf corresponding to f (�). Partition the interval (0,1) into a mesh of

G subintervals ½a0; a1�; ½a1; a2�; : : : ; ½aG21; aG� where a0 ¼ 0, ai ¼ i/G, i ¼ 1, : : : , G.

Then, using the Riemann middle sum, it is easy to show that

G!1
lim

XG

v¼1

gi

av21 þ av

2

� 	
{FðavÞ2 Fðav21Þ} ¼

ð1

0

giðxÞf ðxÞdx; i ¼ 1; : : : ; l:

Thus, for reasonably large G,
PG

v¼1gi
av21þav

2


 �
{FðavÞ2 Fðav21Þ} <

Ð 1

0
gi ðxÞ f ðxÞ dx;

i ¼ 1; : : : ; l.

Together with integrating out the mi, we have also integrated out u, r, where we use

Gaussian quadrature via Legendre orthogonal polynomials,

pðgjy~ Þ <
XG

g1¼1

XG

g2¼1

wg1
wg2

Yl

i¼1

ð1

0

pðmi; xg1
; xg2

;gjy~ Þdmi

( )

;

where wg, g ¼ 1, : : : ,G, are the weights and xg, g ¼ 1, : : : , G, are roots of the Legendre

polynomial with xg1
and xg2

corresponding to u and r respectively. Note that the single

integral over each mi is done as described above and the whole procedure is a three-

dimensional integral. Now, using univariate grids, samples of the posterior density of g are

obtained in exactly the same manner as described for the onefold model using the

univariate grid sampler.

Then, conditional on g, the posterior density of r is

pðrjg; y~ Þ <
XG

g¼1

wg

Yl

i¼1

ð1

0

pðmi; xg; rjg; y~ Þdmi

( )

:

Again using the univariate grid sampler, samples are drawn from the posterior density of r.

Next, conditional on (r,g), the posterior density of u is

pðujr; g; y~ Þ <
Yl

i¼1

ð1

0

pðmi; ujr; g; y~ Þdmi

( )

:

Again using the univariate grid sampler, samples are drawn from the posterior density of u.
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Finally, conditional on (u, r,g), the mi are independent and samples are again obtained

from pðmiju; r; g; y~ ) using the univariate grid sampler. We have always used 100 grids for

the mi, u, r and g.

APPENDIX B: A Multistage Hierarchical Bayesian Model

In TIMSS the countries can be compared, a task beyond the scope of the current article.

The small areas (regions and communities) are clustered within the countries and the

schools are clustered within these small areas. This is a generalization of the twofold

design, which we have discussed in detail in Section 2, to a threefold design. Thus we

describe the multistage model mainly for reasons of theoretical interest.

The multifold hierarchical Bayesian model is

yij1; : : : ; jk jmij1; : : : ; jk21

ind, Bernoulliðmij1; : : : ; jk21
Þ:

For s ¼ 1, : : : , k 2 1,

mij1; : : : ; jk2s
jmij1; : : : ; jk2ðsþ1Þ

; g1
ind, Beta mij1; : : : ; jk2ðsþ1Þ

1 2 g1

g1

; ð1 2 mij1; : : : ; jk2ðsþ1Þ
Þ

1 2 g1

g1

� �
:

and

miju; gk
iid, Beta u

1 2 gk

gk

; ð1 2 uÞ
1 2 gk

gk

� �
:

Finally, a priori

u; g1; : : : ; gk
iid, Uniformð0; 1Þ:

Note that in this hierarchical Bayesian model, the first two stages are conjugate and the

other stages are nonconjugate. More importantly, the correlation between two units at the

first stage is g1. Furthermore, when the first-stage means are integrated out, the correlation

between two units in two different clusters is g2, and so on. It is expected that the

correlations will decay as we go down the hierarchical structure of the model. That is,

the correlation between two units at the area level is expected to be the smallest while the

correlation at the last stage of the multistage cluster sampling design is expected to be

the largest.

While the multistage model is of practical importance, it would need significant

research to develop it into a useful methodology and it is expected that the computation

will be challenging.
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SELEKT – A Generic Tool for Selective Editing

Anders Norberg1

The aim of selective editing is to make the often resource-demanding traditional editing
process in business surveys more effective without a substantial loss in the precision of the
output statistics. Recently, Statistics Sweden has developed a generic software package for
selective editing called SELEKT. The method underpinning the software promotes continuous
measurement of the suspicion of error response rather than a dichotomous measure using
traditional edits. SELEKT is flexible and can be used in the production of surveys with different
designs. Business surveys have diverse output regarding the number of variables, statistical
measures, and domains of study definitions. The key objective of selective editing is to rank
suspected errors in data according to the anticipated impact on the output. The software
therefore has options to set different weights for different parts of the output to meet the needs
of the main users of the statistics. Statistics Sweden has implemented SELEKT in eleven
surveys to date. The experience gained will be used to provide recommendations on how to
perform selective editing. This article will give an insight into SELEKT and its underlying
theoretical base.

Key words: Edit rule; anticipated value; suspicion; impact; score function.

1. Introduction

The aim of statistical data editing is to detect and adjust errors in data resulting from

collection and processing. It is considered a necessary survey operation because errors in

survey data may distort estimates, complicate further processing, and decrease provider

and user confidence (Granquist 1984). The emphasis of the editing task is slowly moving

from just cleaning up the data, though this remains a necessary operation, to identifying

and collecting data on errors, problem areas, and the causes of error to provide a basis for a

continuous improvement of the whole survey vehicle (Granquist 1997). A further goal is to

provide information for the quality declaration of the output statistics.

Editing appears in various forms in the business survey process, from respondents

entering information into electronic questionnaires to the final checking of results prior to

publication. Methods and procedures are mainly divided into micro- and macroediting.

Microediting means the checking of individual data records, preferably as soon as data is

q Statistics Sweden

1 Statistics Sweden, Box 24 300, SE-104 51 Stockholm, Sweden. Email: anders.norberg@scb.se. For questions
regarding SELEKT, contact Karin Lindgren, Email: karin.lindgren@scb.se.
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available. Checking rules are logical conditions or restrictions applied in order to check the

validity, internal consistency, and plausibility of individual units’ data. A routine flags data

that fail the checking rule and enables the analyst, who performs the manual editing, to

change data interactively. The analyst must have knowledge of the survey, the population

and the kind of errors that are likely to occur. The flagged data can be compared to

reference data such as data on the same unit from previous survey rounds, data on similar

units, and data from an external register or information on the internet. Finally, the editor

may recontact a respondent to check whether a value is declared as correct or to obtain a

new value for a variable that was originally incorrect or was suspected to be incorrect.

Procedures like this are called manual editing, interactive editing, production editing or

simply microediting. Macroediting is performed when all, or most of, the data has been

collected. The so-called distribution method checks for outliers in the final data set, as

microediting does, but now the comparisons with similar units are more in focus. The

aggregation method analyses statistical output, in order to check that no influential errors

in microdata remain and that no processing error has been introduced.

Particularly in business surveys, editing is recognised as a time- and resource-

consuming survey process, especially when recontacts are necessary. The costs include

not only financial and human resources, but also loss in timeliness and excessive

respondent burden. Further, there is a danger of distorting true values to fit them to

preconceived models. This “overediting” gives users a false sense of security as far as data

quality is concerned (Granquist and Kovar 1997).

New theories and methods to reduce the resources spent on editing survey data have

been developed over the last thirty years or so. The leading idea is to concentrate resources

in microediting on observations that affect the estimates, accepting that final data sets do

contain errors with a negligible effect on the statistics produced (Granquist and Kovar

1997). Several methods have been implemented for this purpose. An early method, proven

successful by experience, was presented by Hidiroglou and Berthelot (1986). This method

considers both the level and the relative change from a previous survey round for a survey

variable. Robustness is achieved by using the median and quartiles in the analysis of data.

In the early 1990s, methods based on a score function for selective data editing,

henceforth abbreviated SE, emerged. In these methods, survey units that fail at least one

edit rule are ranked by the score in order to give priority to those units that have the largest

overall anticipated effect on the statistics produced. SE yields a global score for a primary

sampling unit, for all the data delivered for that unit, that is, for any cluster elements and

for one or many variables. The purpose of SE is merely to reduce the cost of the manual

follow-up work without a substantial loss in the precision of the output statistics. Reducing

manual follow-up with recontacts also lightens the workload of respondents. Macroediting

by the aggregate method and SE have apparent similarities in that both methods focus on

the set of estimates to be published. It turns out that early manual editing by SE can reduce

the late macroediting.

De Waal et al. (2011) emphasise the detection and correction of systematic errors as a

first step in an editing process. A systematic error occurs frequently between responding

units when they misunderstand or misread a survey question in the same way. Causes of

major systematic errors can be discovered through analysis of edit failures in data;

frequent failures of an edit rule are indications of a problem for the respondents.
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Data values with small systematic errors are difficult to distinguish from true values as

they lie in the interior of a statistical distribution. Causes of these so-called inliers must be

found by other methods than editing and the problems must be solved by improved data

collection instruments. SE methods, leaving a part of data without manual follow-up, are

not appropriate when the survey suffers from severe systematic errors.

The Australian Bureau of Statistics, ABS, has developed a form of selective editing

called “significance editing”, discussed in Latouche and Berthelot (1992), Lawrence and

McDavitt (1994), Farwell and Raine (2000), Lawrence and McKenzie (2000), and Farwell

(2004). A basic significance editing score is a prediction of the change in an estimate due

to correcting reporting errors, as it is an estimate of the reduction in reporting bias. If such

a score is not possible to approximate, a score which is correlated to the expected reduction

in reporting bias should be used. The approach has resulted in a noticeable improvement

in editing efficiency. ABS has developed the tool Significance Editing Engine, SigEE,

presented by Brinkley et al. (2011).

Di Zio and Guarnera (2013) present the generic tool Selemix, developed by the Italian

National Institute of Statistics, Istat. They assume a normal model for the true data, also

possible in log scale, and an “intermittent” error mechanism such that a proportion of data

is contaminated by an additive Gaussian error. Based on these assumptions, a latent class

model is used to derive the distribution of “true” data conditional on observed data. This

approach allows scores to be interpreted as anticipated impact of errors and allows a

selective editing procedure to be defined that identifies units containing the errors that

have the largest influence on the estimates of interest.

A series of projects was started at Statistics Sweden, SCB, in 2006 with the main

purpose of analysing which methods should be recommended for editing and for

construction of a generic IT tool. Case studies focused on how to use SE (Adolfsson and

Gidlund 2008). Nine of the most editing-intensive surveys were included in the project.

The case studies show that SE will lead to efficiency gains and likely cost reductions in

many surveys. The implementation of SE demands intensive testing in every specific

survey. The variation between the surveys regarding survey design, data structure, output

statistics, and so on, is large. A generic tool for editing must therefore be very flexible to

deal with these differences. Efficiency can also be increased by dealing with known or

encountered measurement problems in the auditing and picking low-hanging fruit that

would improve the surveys.

The next editing project documented the best methods used in the case studies for

various situations. Key algorithms for scores and the aggregation thereof were the

framework.

The third phase was developing an IT tool. SELEKT is SASw application for SE which

establishes a general solution that can be implemented in many different surveys. The

generic approach implies a set of parameters to be set instead of writing code.

This article will give an insight into the theoretical base for SELEKT. In the next section

SE is described, both generally and specifically for SELEKT. Section 3 includes methods

for computation of anticipated values and intervals of normal variation from background

data. Two major views on how to set the limit for the manual editing by SE are presented

in Section 4. Finally, experience from implementation and running of SE at Statistics

Sweden is summarised in Section 5.
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2. Selective Editing

Suspicion of a data value being in error and the potential impact of a suspected error on

output statistics are the two aspects to consider in the search for influential errors. SELEKT

produces local scores based on indicators of both suspicion and impact for all variables, all

statistical measures, and all domains of study that are considered important. These local

scores are aggregated up to a global score for the respondent.

Example 1: Jäder and Norberg (2006) compute a score function for the International

Trade in Goods statistics (ITG). Suspicion is based on observed price per quantity for a

transaction, relative to normal variation in product groups, countries and direction

(imports/exports). Potential impacts on estimates for domains of study are measured as the

difference between reported value and anticipated value of trade, relative to the normal

size of the domains. In this survey, suspicion and potential impact have a very low

correlation and both of these dimensions are important.

Suspicion indicated by traditional edit rules is described in Subsection 2.1 along with

alternative and supplementary methods to indicate suspicion. In Subsection 2.2, classes of

domains of study in the output statistics are established and impact of errors is defined.

In Subsection 2.3, suspicion and impact are combined and local scores are defined.

These local scores are then aggregated to the global score in Subsection 2.4.

2.1. Suspicion

An edit, also known as an edit rule or a checking rule, can indicate that a data value is or

might be in error. A fatal edit manifests if a data item is in error. Examples of fatal errors

are inconsistent responses, invalid entries, and item nonresponse. Query edits point to

suspicious data items. An example could be a value that, compared to historical data,

seems suspiciously high. SELEKT makes use of indicators of the degree of suspicion, not

only the traditional dichotomous results “accept” and “fail”. Three options are available

for assigning a level of suspicion with SELEKT: use of traditional edits, use of hit rates for

edits, and the SELEKT-type edits. These are presented in Subsections 2.1.1, 2.1.2, and 2.1.3

respectively.

log (Suspicion)

Flagged
observations

log (Potential impact)

Fig. 1. International Trade in Goods statistics. Suspicion is based on price per quantity; potential impact

reflects value of trade.

Journal of Official Statistics212

Unauthenticated
Download Date | 3/14/16 1:03 PM



2.1.1. Traditional Edits

An edit is a logical condition or a restriction on a variable value or a group of variable

values which must be met if the data is to be considered acceptable. In the absence of a

conceptual model for edits, Norberg (2011) proposes the notion of a test variable, which is

a function of one or more survey variables, possibly including register variables. The test

variable can be the survey variable as is. A common test variable is the ratio of the survey

variable to the corresponding variable in a previous survey round. Comparing received

data to register information is another example. The value of the test variable is compared

with an acceptance region, which is the range (or set) of acceptable values for the test

variable. The comparison is often made for subgroups of data that are homogeneous with

respect to the test variable so that the acceptance regions will be tight and thereby the edit

will be efficient. These so-called edit groups are defined by using auxiliary variables such

as stratification variables or variables used to define domains of study, but need not only be

these two types.

Example 2: Say that the survey variables Number of employees and Turnover

are measured for enterprises in different industries in a survey. The test variable

Turnover/Number of employees is tested with different acceptance regions for three sets

of industries. The name of the edit is A01.

Test variable: z ¼ Turnover / Number of employees

Edit groups:

+ Industry ¼ M (Manufacture)

+ Industry ¼ W (Wholesale trade)

+ Industry ¼ R (Retail trade)

Acceptance regions:

+ [257e, 550e] for Industry ¼ M

+ [505e, 1082e] for Industry ¼ W

+ [227e, 632e] for Industry ¼ R.

Edit rule A01 in the software code is:

if Industry ¼ ‘M’ and not (257 , z , 550)

or Industry ¼ ‘W’ and not (505 , z , 1082)

or Industry ¼ ‘R’ and not (227 , z , 632)

then Errcode_A01 ¼ ‘Fail’

A failed query edit like this does not necessarily imply that any of the observed, unedited

values of the two survey variables are in error. In the example, it may well be the Industry

code. The conceptual model, regardless of any lack of universality, is used to construct

implicit edits by SELEKT, which is described in Subsection 2.1.3.

At Statistics Sweden, the implementations of SELEKT primarily make use of the existing

traditional edits, simply for practical reasons. Suspicion is set to one if the edit is failed and

to zero if the data is accepted.

2.1.2. Traditional Edits and the Use of Hit Rates

The dichotomisation of suspicion by 0 / 1 or “Accept”/“Fail” entails a loss of information

compared to using varying levels of suspicion. For example, the level of suspicion by a
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traditional edit can be set equal to the hit rate of the edit, based on evaluations of previous

survey rounds. UNECE (2000) defines:

“Hit rate is the success rate of an edit; the proportion of error flags that the edit generates

which generate a change of data in the follow-up process”.

Example 3 (cont. from Example 2): Assume that the hit rate for edit rule A01 is known

from past survey rounds to be around 70%. Now add the software script: if

Errcode_A01 ¼ ‘Fail’ then Suspicion_A01 ¼ 0.7

When a hit rate is less than 0.8, say, the original edit can be made manifold to utilise

information.

Example 4 (cont. from Example 3): When the hit rate for edit A01 is known to be 70%,

evaluate previous survey data to find out which wider acceptance regions would have

yielded a hit rate of around 90%, say. Excluding the data outside this second acceptance

region but keeping data that were flagged by the first acceptance region, the hit rate will be

less than 0.7, say 0.6. Let us now make two edits A01a and A01b with the following script.

if Industry ¼ ‘M’ and not (257 , z , 550)

or Industry ¼ ‘W’ and not (505 , z , 1082)

or Industry ¼ ‘R’ and not (227 , z , 632)

then Errcode_A01a ¼ ‘Fail’

if Industry ¼ ‘M’ and not (182 , z , 697)

or Industry ¼ ‘W’ and not (360 , z , 1370)

or Industry ¼ ‘R’ and not (152 , z , 948)

then Errcode_A01b ¼ ‘Fail’

if Errcode_A01a ¼ ‘Fail’ then Suspicion_A01 ¼ 0.6

if Errcode_A01b ¼ ‘Fail’ then Suspicion_A01 ¼ 0.9

Varying the level of suspicion has a direct proportional effect on the score and thereby

makes a difference in terms of the priority given to observations far out from the other

observations.

Fatal errors could also be treated in SE, such that the suspicion is set to one. SELEKT has

an option to send all fatal errors to follow-up or only those that have a major impact on

output statistics. The rest can be imputed in a later stage of the production process.

2.1.3. SELEKT-Type Edits

SELEKT has a module which constructs implicit edits. Such edits can be used as a

complement to or substitute for the traditional edits described above. The user specifies an

edit by a test variable. A test variable is an existing variable or an expression of variables in

the dataset to be edited, as for traditional edits. Edit groups are automatically defined by

SELEKT according to a few specifications by the user. These groups are also used to

compute anticipated values, see Section 3. Implicit acceptance regions are computed by

SELEKT based on intervals of variation estimated from previous survey rounds.

Tukey’s exploratory data analysis, EDA, is an approach to analysing data sets to

summarise their main characteristics, often with visual methods. The box plot, based on

quartiles of a distribution, has been a basis for the development of the SELEKT-type edits.
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In this respect, SELEKT has similarities with the Hidiroglou-Berthelot method. Unlike the

Italian Selemix, there is no assumption of any explicit distribution of the errors.

Let k,l identify observed unit (element) l belonging to primary sampled unit (cluster) k.

Unit k,l implies data on two levels, say an enterprise delivers data for all employees or all

products. One-stage sampling is just a special case with this notation. The notation is also

valid for two-phase sampling.

Assume that quartiles and medians are preferred as the basis for the edits. Alternatives

are presented at the end of this subsection. Each observed unit k,l belongs to one and only

one edit group g. For a set of data from previous survey rounds, let

~zL
i;g ¼ lower quartile of the i:th edited test variable values for the edit group g

~zU
i;g ¼ upper quartile of the i:th edited test variable values for the edit group g

~zM
i;g ¼ median of the i:th edited test variable values for the edit group g.

Let

zi,k,l ¼ unedited value of the i:th test variable in the current, unedited data.

The parameter k . 0 defines the “gap” of the value range where suspicion shall be zero,

that is, the acceptance region. A small k yields suspicions larger than zero already at a

small deviation from the anticipated value ~zM
i;g.

The parameter t $ 0 defines the regions where suspicion grows from 0 to 1. With t ¼ 0

the suspicion equals 1 outside the acceptance region defined by k.

Definition of suspicion ji,k,l by i:th test variable zi,k,l:

If zi;k;l # ~zM
i;g 2 ðkþ tÞ� ~zM

i;g 2 ~zL
i;g

� �
then ji,k,l ¼ 1

if ~zM
i;g 2 ðkþ tÞ� ~zM

i;g 2 ~zL
i;g

� �
, zi;k;l , ~zM

i;g 2 k� ~zM
i;g 2 ~zL

i;g

� �
then

ji;k;l ¼
~zM

i;g 2 k� ~zM
i;g 2 ~zL

i;g

� �
2 zi;k;l

t� ~zM
i;g 2 ~zL

i;g

� �

if ~zM
i;g 2 k� ~zM

i;g 2 ~zL
i;g

� �
# zi;k;l # ~zM

i;g þ k� ~zU
i;g 2 ~zM

i;g

� �
then ji,k,l ¼ 0

if ~zM
i;g þ k� ~zU

i;g 2 ~zM
i;g

� �
, zi;k;l , ~zM

i;g þ ðkþ tÞ� ~zU
i;g 2 ~zM

i;g

� �
then

j i;k;l ¼
zi;k;l 2 ~zM

i;g þ k� ~zU
i;g 2 ~zM

i;g

� �� �

t� ~zU
i;g 2 ~zM

i;g

� �

if zi;k;l $ ~zM
i;g þ ðkþ tÞ� ~zU

i;g 2 ~zM
i;g

� �
then ji,k,l ¼ 1

When the lower quartile equals the median, the suspicion ji,k,l equals 0 for observed

values lower than the median and analogously for the right side of the distribution. This

could of course be considered to be a problem, so a manual intervention is recommended.

SELEKT gives easy access to the files of quartiles.

The suspicion function is illustrated in Figure 2. Notice that this function considers a

skewed population by an asymmetric acceptance region. Generally, a logarithmic

transformation for skewed test variables is also recommended.
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SELEKT has an option to use (arithmetic) mean – standard deviation, mean þ standard

deviation and the mean instead of the quartiles and the median. A new version of SELEKT

is planned that will make use of time-series analysis with forecasts.

Suspicion for the unedited value of a survey variable j to be in error can be assigned by

more than one edit. SELEKT simply uses jj,k,l ¼ the maximum of the suspicions ji,k,l

produced by all edits associated to survey variable j, both traditional and the SELEKT-type

edits. This is good enough in many cases, but not always. If a variable value in the current

survey round grossly fails an edit check compared with the previous month but is very well

accepted in a check with the same month last year, the received data can be accepted, that

is, the minimum of the two computed suspicions would be appropriate. In cases like this, a

composite edit rule of “traditional type” must be specified.

2.2. Impact

This section begins by structuring the output statistics in Subsection 2.2.1. An erratic value

in data can damage several estimated characteristics. In Subsection 2.2.2 the size of the

error’s impact on an estimate of a sum and on an estimate of a ratio are defined.

2.2.1. Produced Statistics – Output

Statistical information is built up from structured sets of estimates of statistical

characteristics, that is, statistical tables (Sundgren 2001). An estimated statistical

characteristic is defined as a statistical measure applied to the values of one or more

variables in a set of objects, a domain of study. The statistical measure is an aggregating

function, for example a function that counts the number of units, a function that

summarises the values of a variable, and a function that computes the ratio between the

sums of two variables. The domains of study are constructed by variables that cross

classify the population.

For SELEKT to be comfortably generic, an agreed organisation of the domains of study

and functions is required. The domains must be clustered into classes in such a way that

there is no overlap between the domains within a class, that is, no observed unit may

contribute to more than one domain in a class. It is described in Subsection 2.3 that classes

can be assigned a different importance that applies to all domains of each class.

Let d denote a domain in a class c of domains.

1

Test variable

Suspicion

Zi,k,l

ξi,k,l

* * *

0

Fig. 2. Illustration of the SELEKT-type method to measure suspicion. Assume that the test variable in historical

edited data is distributed as shown by the box plot. With the parameters k ¼ 3 and t ¼ 2, the suspicion function

for new unedited data is demonstrated by the dashed line. Tick marks denote the distances (median – lower

quartile) and (upper quartile – median), respectively.
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Example 5: Say that there are five domains in a survey, all based on Industry code;

M ¼ Manufacture, T ¼ Trade, subdivided into W ¼Wholesale trade and R ¼ Retail

trade and finally All ¼ M þ T. A “typical” table looks like this:

The five domains can be clustered into three classes in two alternative ways. One

clustering, seemingly attractive, is {All}, {M, T} and {W, R}. The other way is {All},

{M, W, R}, {T} where the second class is composed of domains at various levels of detail.

A class of domains need not cover all units, as exemplified by the class {W, R} which does

not cover employees in Manufacture.

2.2.2. Impact on Estimated Statistical Characteristics

Impact measures how much the unedited instead of the edited value would affect the

output statistics. Let

yj,k,l ¼ the unedited value of variable j and unit k,l
eyj,k,l ¼ the edited value of variable j and unit k,l.

Estimate the sum of variable j in domain d in class c by summing the units in the sample

that belong to the domain by:

T̂c; d; j ¼
X

wk;l�
eyj;k;l

where wk,l is the combined sampling weight for the primary sampled unit k and observed

unit l.

The impact on the estimate when retaining the unedited value for observed unit k,l

belonging to c,d instead of the edited data value is

hc;d;j;k;l ¼ wk;l� yj;k;l 2e yj;k;l

� �

In advance, eyj,k,l. is of course not available. As a proxy, an anticipated value ~yM
j;k;l is

used, which can be the value from a previous survey round or an average of similar units in

previous survey rounds. At this moment, it is not known whether the unedited value yj,k,l is

in error or will be accepted. Potential impact is defined as:

phc;d;j;k;l ¼ wk;l� yj;k;l 2 ~yM
j;k;l

� �

Table 1. Survey of employment and turnover (constructed data)

Point estimates Estimated standard errors

Industry

Sum of
number of
employees

Sum of
turnover

Turnover
per
employee

Sum of
number of
employees

Sum of
turnover

Turnover
per
employee

M 470 172,358 367 11.2 5,171 11.0
T ¼W þ R 473 246,345 521 9.5 12,317 20.9
W 197 141,950 721 0.0 0 0.0
R 276 104,395 379 13.8 9,396 30.3
All ¼ M þ T 943 418,703 444 10.6 13,359 9.1
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For the ratio of the sums of variables j1 and j2, the potential impact of k,l is:

phc;d; j1; j 2; k;l ¼
T̂c; d; j1 þ wk;l� yj1;k;l 2 ~yM

j1;k;l

� �

T̂c; d; j2 þ wk;l� yj2;k;l 2 ~yM
j2;k;l

� �2
T̂c; d; j1

T̂c; d; j2

¼ wk;l�

yj1;k;l 2 ~yM
j1;k;l

� �
2

T̂c; d; j1

T̂c; d; j2

� yj2;k;l 2 ~yM
j2;k;l

� �

T̂c; d; j2 þ wk;l� yj2;k;l 2 ~yM
j2;k;l

� �

where T̂c, d, j1 and T̂c, d, j2 are estimated sums for variables j1 and j2 in domain d of class c

from previous survey rounds. The ABS uses this potential impact as the local score

according to Farwell (2004). A Taylor’s approximation, which changes the denominator

slightly if the anticipated error yj2;k;l 2 ~yM
j1; j 2;g is relatively small, is used on SELEKT:

phc;d; j1; j 2; k;l ¼ wk;l�

yj1; k;l 2 ~yM
j1; k;l

� �
2

T̂c; d; j1

T̂c; d; j 2

� yj 2; k;l 2 ~yM
j 2;k;l

� �

T̂c; d; j2

If the anticipated error is large, the potential impact will be large anyway.

2.3. Local Scores

Early approaches to SE had two steps. First the units were either accepted or flagged for

having at least one variable value in error. Second, a potential impact of each suspected

unit on produced statistics was estimated. Only the units with the most potential impact on

the statistics would be prioritised for manual follow-up. The ABS tool for significance

editing, SigEE, works according to this approach (Farwell 2004).

SELEKT calculates an anticipated impact per variable, measure and domain as the

product of suspicion and potential impact. The local score for the observed unit k,l and the

estimated sum of variable j for the domain c,d to which unit k,l is assumed to contribute

is now defined as:

SCORE5c; d; j; k;l ¼
ac; d�bj� jj; k;l�

phc;d; j; k;l

�� ��

max SEðT̂c; d; jÞ; d�T̂c; d; j

� �gj

where SE(T̂c, d, j) is the estimated standard error of the estimated sum of variable j in

domain c,d from previous survey rounds, ac,d is an importance weight for domain c,d,

determined by subject-matter specialists and methodologists, bj is a similar importance

weight related to the estimated sum of variable j, also applied by Latouche and Berthelot

(1992), d and gj are parameters, d . 0 and 0 # gj # 1.

This local score is the anticipated impact primarily relative to the standard error of the

estimated sum. In sample surveys some domains may be totally enumerated, having zero

standard errors. Some domains may have “accidentally” small estimated standard errors.

SELEKT has one parameter d to remedy these cases. A rather small value, like a general

coefficient of variation in the survey, can be used as the value of d. If sum is preferred to

the standard error as the denominator, set d to a big enough value, say 100.
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SELEKT offers an option for assigning more importance to large domains and less

importance to small domains, within the same class of domains. The denominator of

the SCORE5 is raised to a power gj. The default value is 1. The value 0 reduces the

denominator to a constant and anticipated impact is not related to any indicator of size

of the domain. A “value in the middle” could be justified to obtain better relative quality

of a large rather than a small domain, for example for “cars” rather than for “motorcycles”

in the International Trade in Goods statistics.

In SE, as in survey design in general, it is necessary that the national statistical institute

can assess the quality demands on each output table from the client’s point of view.

The local score for two variables in a ratio estimated for a domain c,d is defined as

SCORE5c; d; j1; j 2; k;l ¼
ac; d�bj1; j2� jj;k;l�

phc;d; j1; j 2; k;l

�� ��

max SE
T̂c; d; j1

T̂c; d; j2

 !

; d�
T̂c; d; j1

T̂c; d; j2

( )gj1;j2

where SE
T̂c;d;j1

T̂c;d; j2

� �
is the estimated standard error of the estimated ratio and bj1,j2 is the

importance factor for the ratio of variables j1 and j2.

SELEKT produces a “weight matrix” with all the domains d as rows, grouped by classes c.

Variables for which sums and ratios of sums are estimated are represented as columns.

The cells of this weight matrix, denoted C, are ac,d�bj/max{SE(T̂c,d,j),d�T̂c,d,j}
gj for a sum

and ac; d�bj1; j2=max SE
T̂c; d; j1

T̂c; d; j2

� �
; d�

T̂c; d; j1

T̂c; d; j2

n ogj1; j2

for a ratio.

The domain importance weights ac, d are initially equal for all domains belonging to a

class c. Once the matrix is calculated, the product manager is free to change any value in

the matrix, for any reason.

Example 6 (cont. from Example 5): Number of employees and Turnover are measured

for enterprises in a survey. Estimates are produced for five domains. The five domains are

grouped into three classes in such a way that there is no overlap of domains within a class.

Let us set the following parameter values: d ¼ 0.02.

Table 2. Importance weights for classes of domains

Class of domains (c) ac, d

c ¼ 1: M, T 1
c ¼ 2: W and R 1
c ¼ 3: M þ T 0.5

Table 3. Importance weights for variables and measures

Variables/measures

Sum of Number of
employees j ¼ 1

Sum of Turnover
j ¼ 2

Turnover per employee
j1 ¼ 2 & j2 ¼ 1

bj, bj1,j2 1 1 5
gj, gj1,j2 0.5 0.5 1
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Now the resulting weight matrix C is computed (by SELEKT):

When the matrix is computed by SELEKT, it is available and it is possible to alter any

value, either ad hoc or by using an alternative model of computation.

2.4. Aggregation of Local Scores to Global Scores

There is a hierarchy of scores with five levels. Let r denote respondent. In most surveys,

the respondent answers for only one primary sampled unit, but there are examples where

the respondent has many sampled units. The levels are:

5: Domains (d ),

4: Variables/measures ( j or j1, j2),

3: Observed units (l )

2: Primary sampled units (k)

1: Respondent (r).

The numbering from 5 to 1 makes space for additional levels in future versions, if needed.

Additional levels conceivably could be survey round and edit rule.

Scores for respondents, if being calculated, are global scores. Most often the scores for

primary sampled units are considered the global scores. If the cost for recontacts in the

follow-up workload is negligible, the scores for observed units can be used as global scores.

The local score for variable/measure j or j1,j2 is an aggregate of scores defined above:

SCORE4j;k;l ¼
c

X
max 0; SCORE5c;d; j;k;l 2 u5

� �	 
l5

( )1=l5

or

SCORE4j1;j2;k;l ¼
c

X
max 0; SCORE5c;d; j1; j2;k;l 2 u5

� �	 
l5

( )1=l5

where the summing
P

c is over all classes of domains (or domains since each selected unit

contributes to one or no domain in each class of domains).

u5 is a threshold parameter. l5 is a parameter that defines the aggregation method.

Hedlin (2008) presents the simple function used here to distinguish between three options.

The value 1 implies sum, the value 2 implies sum of squares and the value 100 implies

maximum (in practice). Latouche and Berthelot (1992) suggest the sum of local scores for

variables, whereas Lawrence and McDavitt (1994) and Hedlin (2003) use the maximum of

Table 4. The weight matrix C (result)

Class and
domain
(c,d)

Sum of
number of
employees

Sum of
turnover

Turnover
per employee Examples of computation

1, 1: M 0.299 0.0139 0.455 1�1/max{11.2, 0.02�470}0.5 ¼ 0.299
1, 2: T 0.325 0.0090 0.240 1�1/ max{9.5, 0.02�473}0.5 ¼ 0.325
2, 3: W 0.504 0.0188 0.347 1�1/ max{0, 0.02�197}0.5 ¼ 0.0188
2, 4: R 0.269 0.0103 0.165 1�1/max{9 396, 0.02�104 395}0.5

¼ 0.0103
3, 5: M þ T 0.115 0.0043 0.278 0.5�5/ max{9.1, 0.02�444}1 ¼ 0.278
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the local scores. Farwell (2005) proposes the Euclidian distance, that is the value 2, as an

alternative to the maximum when there are many scores at the variable level. SELEKT has

four parameters; l5, l4, l3 and l2, one for each level to be aggregated.

The aggregation of local scores continues step by step up to the respondent level as:

SCORE3k;l ¼
j

X
max 0; SCORE4j;k;l 2 u4

� �	 
l4

8
<

:

9
=

;

1=l4

SCORE2k ¼
l

X
max 0; SCORE3k;l 2 u3

� �	 
l3

8
<

:

9
=

;

1=l3

SCORE1r ¼
k

X
max 0; SCORE2k 2 u2

� �	 
l2

8
<

:

9
=

;

1=l2

At all aggregations, SELEKT allows for a threshold value so that the maximum of zero

and the score minus this threshold is aggregated. A value . 0 in early aggregation steps

can be justified if there is a marginal cost of manual follow-up of extra variables, for

example, with the constraint that the respondent has already been contacted. There are four

threshold parameters u5, u4, u3 and u2. u1 is the threshold value for the global score, see

Subsection 4.1.

SCORE2k is the global score in most surveys. An aggregation of scores for primary

sampled units to SCORE1r , where r primarily denotes respondent, is of interest in special

cases. At Statistics Sweden the following situations have occurred:

. Respondents have several primary sampled units in the sample in the annual survey

Rents for Dwellings. The national sample consists of approximately 12,000 rented

dwellings. It turns out that there are only about 2,600 respondents, the real estate

owners. The selective editing is focused on minimising the number of recontacts to

respondents.

. The inflow of data for monthly surveys is irregular in the sense that two or more

monthly forms can be delivered in the same “batch”. Month is not defined as a level

in the hierarchy of data. The SCORE2k would be an aggregate of scores for all months

unless any action is taken. By defining Level 1 as the combination of primary

sampled unit and month, that is a more detailed level than Level 2, the SCORE1r

returns scores per primary selected unit and month.

3. Anticipated Value and a Measure of Variation

This section concerns methods and data to use for the computation of anticipated values

and a basis for the SELEKT-type edits.

3.1. Time-Series Versus Cross-Section Data

There are quite different approaches to find anticipated values for the survey variables ( j )

and the test variables (i ) and intervals of variation for the test variables for each observed

unit s (k,l):
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. Forecasts from the analysis of time-series data per observed unit.

. Latest observed values from previous survey rounds. Intervals of variation for the test

variables cannot be computed.

. Cross-sectional analysis of data from previous survey rounds. Firstly find

homogeneous groups of units, secondly compute the anticipated value as the

median, the arithmetic mean or any other central value in the homogenous groups and

also intervals of variation.

Intuitively, it makes sense to set the time-series measures as priority and the cross-

sectional measures as reserve. Most business survey designs include updates of samples

annually or more often. With a scheme of rotating samples, quite a significant proportion

of units are new in the sample each year. This implies that different methods need to be

used for different units if one wants to use the best method when possible.

3.2. Cold-Deck and Hot-Deck Data

The SE needs anticipated values and measures of variation before the editing of a survey

round to make editing of data possible as soon as the first data arrive. Calculations of these

measures are often based on edited data from past survey rounds, so-called cold-deck data.

Generally calculations are made without using sampling weights. A decision has to be

made whether to include imputed data. It seems most advisable from a theoretical point of

view not to use imputed data, but it is easier not to distinguish between imputed and

collected data. A decision must also be made about whether to include data that were

suspicious but not flagged because the potential impact was low. Again it seems to be a

good idea not to use highly suspected data, but it is easier not to make a difference.

For advanced time-series models, at least three years of monthly/quarterly data are

needed. The simplest method in this context is to use the latest value or a simple function

of it as anticipated value. If the survey measures phenomena with a heavy seasonal pattern,

such as turnover in retail trade, a better alternative can be the value of the same month

last year.

For cross-sectional data, one survey round can suffice, although several are preferable.

Data from the current survey round, so-called hot-deck data, can be used by successively

updating anticipated values and variation. The editing of prices for fresh fruits and

vegetables in the consumer price index preferably makes use of robust means of current

prices and price ratios. Prices from last month may be obsolete due to rapid price changes

for fresh products.

3.3. Homogeneous Groups for Cross-Sectional Analysis

Cross-sectional analyses require homogeneous groups for which anticipated values are

computed. The groups may, but need not, correspond to strata or domains of study. It is

more important to stress homogeneity rather than to have a large number of observations

in the homogeneous group. A well-known technique from the literature for imputation is

to use the value of the very nearest neighbour as the anticipated value. However, by doing

so, there is only one observation and it is not possible to compute an interval of variation

for the SELEKT-type edits.
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Homogeneous groups should be defined by multivariate analysis of cold-deck data.

There are various methods that can be used. Norberg (2012) demonstrates regression tree

analysis. The result of such an exercise is a new variable that identifies the groups.

SELEKT has one module that constructs joint homogeneous groups for the purposes of

computing anticipated values and edit groups for SELEKT-type edits. Classificatory

variables are listed by the user in hierarchical order and the minimum number of

observations needed in the groups is specified. The cold-deck data are successively split by

the classificatory variables, one by one, into one group for each value in the value set of the

classificatory variable, as long as the condition for minimum number of observations is

satisfied. The groups can be defined not only by different variables, but also by different

numbers of digits within the classification codes.

3.4. Anticipated Value and Variation

For time-series data, there are a few options. The simplest is to use the edited values from

the latest survey round for unit k,l. Here no measure of variation of the test variable can be

computed. Another option is to use observations across a number of previous survey

rounds and choose either the median, the lower and upper quartiles or arithmetic mean ^

standard deviation. A third option is to produce a forecast for unit k,l by performing a time-

series analysis including confidence intervals for the forecast.

For cross-sectional analysis, there are two natural sets of measures within the

homogeneous groups; firstly, the lower quartile, median and upper quartile computed

unweighted across the previous survey rounds for homogeneous groups, and secondly, the

arithmetic mean and standard deviation.

SELEKT allows for auxiliary variable values xj,k,l which might help to compute the

anticipated value ~yM
j;k;l of the j:th variable. If the ratios of yj,k,l/xj,k,l have a small variation,

the anticipated value should firstly be found for the ratio and secondly this anticipated ratio

should be multiplied by the individual xj,k,l to yield an anticipated value of ~yM
j;k;l. The

auxiliary variable should preferably be almost error free, so as not to cause many high

scores by itself. The International Trade in Goods statistics are a converse example; the

anticipated invoiced value of a transaction is the observed quantity multiplied by the

median of price per quantity for transactions in the homogeneous group. There are more

often errors in the quantity than in the invoiced value, but no better anticipated value can

be found for invoiced value.

Anticipated values can be estimated by regression analysis with several explanatory

variables. It is not a major problem to add files of anticipated values from tailor-made

analysis to the SELEKT system.

As already noted in Subsection 3.1, one must be prepared to use different methods for

computing the anticipated values and measures of variation. Different methods might be

used for variables but particularly for various parts of the data. The SE can be inefficient if

the “precision” of the anticipated values and intervals of variation varies. In Subsection

2.1.2 the indicator hit rate was defined. It is straightforward to compute this indicator for

new units in the sample and those with a long series of data. Anticipated values, used in the

impact dimension, can be analysed with edited values in scatter plots. The scores (being

anticipated impacts relative to the standard error of the estimated sum) include both
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dimensions. The graph in Figure 3 is a means to see if identified errors on average are

proportional to scores for a survey with one prioritised variable, the sum of which is

estimated. Some flagged units did not result in a change, some did. Batches of observations

along the scale of score make computations of sum of impacts possible. As the scores in

Figure 3 are fairly proportional to the changes on average, they could be considered useful

predictors in the search for frequent and/or big errors. With this technique, it would also be

possible to analyse any differences due to methods for estimation of anticipated values and

so on by plotting two or more series of data. Surveys with many variables, many classes of

domains and varying importance weights get a complex global score that it is scarcely

possible to analyse this way.

4. How Much is Enough?

This section presents two different ways to use the scores to identify data for follow-up.

The traditional selective data editing approach selects units with scores above a threshold,

called cut-off selection, as is discussed in Subsection 4.1. In Subsection 4.2 a new idea

suggesting probabilistic editing is presented briefly. This second method is not yet

implemented at Statistics Sweden.

4.1. Cut-Off Selection

To determine cut-off thresholds for the global score, many calculations have to be carried

out before the implementation using data from earlier survey rounds. Edited and unedited

data are required. The concept of pseudobias is easy to understand and use.

Latouche and Berthelot (1992) define absolute pseudobias for an estimate when Q

percent of the primary selected units with the highest scores are followed up as

8,600

8,800

9,000

9,200

9,400

9,600

9,800

10,000

10,200

10,400

7,500 8,000 8,500 9,000 9,500

log (Sum of changes)

log (Sum of scores)

Fig. 3. International Trade in Goods statistics. Vertical axis is sum of absolute values of changes on invoiced

value. Horizontal axis is sum of scores. Each point represents an aggregate of 50 observed units for 70 months, in

order of score. The very highest scores are far out and are not included in the graph.
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T̂c; d; j;Q 2 T̂c;d; j;Q¼100

T̂c; d; j;Q¼100

where T̂c, d, j,Q is an estimate of the sum of variable j in a domain c,d. T̂c, d, j,Q¼100 is the

estimated sum when all data that have been followed up are included (approximated by the

old traditional heavy editing).

Lawrence and McDavitt (1994) define relative pseudobias, RPB, as

RPBdðsÞ; j;Q ¼
T̂c; d; j;Q 2 T̂c; d; j;Q¼100

SEðT̂c; d; j;Q¼100Þ

where SE(T̂c,d, j,Q¼100) is the estimated standard error of T̂c,d, j,Q¼100. Whenever SE(T̂)

in the denominator is close to zero, it should be replaced with some fraction of T̂ as for

SCORE5 in Subsection 2.3.

Särndal et al. (1992, 165) show that a 20% RPB has little effect on the coverage

probability of an estimated confidence interval based on the estimated sampling variance.

Allowing various importance parameters for (classes of) domains and variables/measures

creates complications. It will not be as simple as requiring that all RPBs be less than 20%,

but primarily the RPBs of the most important output should be less than 20%, while the

rest can do with a somewhat higher RPB. Furthermore, the randomness of measurement

errors in an evaluation data set occasionally causes high RPB in some domains. Evaluation

as such should thus be done on more than one survey round. Hence, requiring RPBs less

than 20% is a rule of thumb for important variables and domains, while accepting a few

higher RPBs for less important statistical characteristics. Small domains can get a high

RPB by accident even though errors are completely at random. When systematic errors

frequently exist in data it will most likely be difficult to find a cut-off threshold that

reduces the editing workload. MEMOBUST (2014) has three remarks on the method:

. The assumption of this approach is that the edited data can be considered ‘true’ data.

This is a limitation because it rarely can be assumed.

. The simulation approach is frequently applied to data of a previous survey occasion

to obtain a threshold value to be used for the current survey. It is worthwhile to note

that in this case we assume that the error mechanism and the data distribution are the

same on the two occasions.

. The method cannot be applied when you deal with the first wave of a survey.

For smaller recurrent surveys, such as industrial production, a feasible approach is to allow

a real-time assessment by professional editing clerks based on the score itself, which may

or may not be complemented by a ranking variable.

As a supplement to cut-off selection of units to follow up, a random sample beyond the

threshold is useful for evaluating the performance of the SE in the long run. The results of

the sample will indicate when the thresholds need to be updated with current data. Lewis

(2014) discusses the need to formally maintain selective editing systems used in business

surveys. When selective editing is first introduced, it offers the opportunity for efficient

micro editing. However, without regular review, the thresholds can become out of date,

potentially leading to an inefficient process and low-quality outputs.
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4.2. Probabilistic Editing

Ilves and Laitila (2009) and Ilves (2010) propose quite a different editing procedure,

where the responses are selected for editing through Poisson sampling according to their

anticipated impact on final estimates, that is, the global scores. The probabilistic approach

uses simple tools known from sampling theory to describe the effect of editing on the

survey estimates. There is no need to restrict the follow-up to suspected data above a

threshold. A two-phase design approach is applied to the bias estimation and a bias-

corrected generalised regression (GREG) estimator and its variance are presented. Since

the impact of systematic measurement errors is possible to estimate, it is not as important

as for the cut-off method to identify and fix these errors before the selective editing.

5. Experience

Statistics Sweden has implemented selective editing in eleven surveys with extensive data

editing over the last years and further surveys are in the pipeline for implementation

(Norberg et al. 2014).

The experience is that implementation is a resource-intensive task that includes:

. staging tables of microdata and output statistics from SQL databases,

. creating performance indicators of the existing traditional edits,

. finding homogeneous edit groups by multivariate analysis,

. finding threshold values for local and global scores,

. integrating the SASw-based SELEKT with production systems programmed in VB6 or

VB.Net.

Efficient edit rules, as the result of reviewing the existing edits, are a basis for good data

quality. The implementation of SE should at an early stage render in an evaluation of the

existing traditional edit rules based on some hit-rate indicator. More efficient edit rules

have been implemented as a result of these reviews.

It is necessary to address the question “Is selective editing appropriate for the survey?”

as early as possible in the implementation stage. Statistics Sweden has developed a

checklist based on experience. The checklist contains considerations of the following

aspects:

. key variables are continuous,

. systematic measurement errors for known causes are dealt with in a first step,

. outputs are aggregates of microdata (statistical characteristics),

. anticipated values are possible to obtain.

The best profits were achieved for surveys where

. microediting is extensive, there is a potential for savings,

. the survey design is such that units have very different impacts on the estimates,

. there is a limited number of important variables and classes of domains, otherwise it

will not be possible to define the parameters for the score function and global

threshold so that the relative pseudobias is less than 20% percent for most statistical

estimates.
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The selective editing at Statistics Sweden has resulted in:

. reduction of error lists by 10–60% and consequently a reduction of cost for running

production,

. a replacement of late macroediting by early microediting which implies that follow-

ups can be done closer to data capture which is beneficent for respondents and

measurement quality,

. more effective, more interesting and less stressful work for the editing staff,

. reduction of mishaps of records slipping through the editing since the editing staff

now receive shorter error lists with a priority stated for all units.
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Synthetic Multiple-Imputation Procedure for Multistage
Complex Samples

Hanzhi Zhou1, Michael R. Elliott2, and Trivellore E. Raghunathan3

Multiple imputation (MI) is commonly used when item-level missing data are present.
However, MI requires that survey design information be built into the imputation models.
For multistage stratified clustered designs, this requires dummy variables to represent strata
as well as primary sampling units (PSUs) nested within each stratum in the imputation
model. Such a modeling strategy is not only operationally burdensome but also
inferentially inefficient when there are many strata in the sample design. Complexity only
increases when sampling weights need to be modeled. This article develops a general-
purpose analytic strategy for population inference from complex sample designs with
item-level missingness. In a simulation study, the proposed procedures demonstrate
efficient estimation and good coverage properties. We also consider an application to
accommodate missing body mass index (BMI) data in the analysis of BMI percentiles
using National Health and Nutrition Examination Survey (NHANES) III data. We argue
that the proposed methods offer an easy-to-implement solution to problems that are not
well-handled by current MI techniques. Note that, while the proposed method borrows
from the MI framework to develop its inferential methods, it is not designed as an
alternative strategy to release multiply imputed datasets for complex sample design data,
but rather as an analytic strategy in and of itself.

Key words: Finite population Bayesian bootstrap; Haldane prior; stratified sample; clustered
sample; sample weights.

1. Introduction

Stratified multistage sampling is the most common type of sample design for large-scale

surveys conducted by the U.S. federal statistical agencies. This type of sample design

combines the advantages of both stratification (for statistical efficiency) and cluster

sampling (for cost and logistical efficiency). Under this design, the primary sampling units

(PSUs) are stratified in such a way that they are homogeneous with respect to a stratum-

level aggregate of the variable(s) of interest. To permit a maximum degree of stratification
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and thus variance reduction, it is common practice to define a large number of strata where

only a small number of PSUs are selected in each stratum.

Multiple imputation (MI) (Rubin 1976, 1987) is a method commonly used when

item-level missing data are present. However, MI requires that survey design

information be built into the imputation models. Reiter et al. (2006) demonstrated the

importance of simultaneously accounting for stratum effects and clustering effects in

multiple imputation. They showed that when design features were ignored in the

imputation model, biases would occur on the estimated parameter, even if a design-

based analysis method was applied to the imputed data. Current MI methods typically

include dummy variables to represent strata as well as PSUs nested within each

stratum in the imputation model. When necessary, they also identify statistically

significant interactions between these dummies with other covariates through routine

variable selection procedures such as stepwise regression (Reiter et al. 2006; Schenker

et al. 2006). Such a modeling strategy is not only operationally burdensome but also

inferentially inefficient when there are hundreds of strata in the sample design and the

sample in each stratum consequently becomes sparse. For example, the Census

Bureau’s Current Population Survey design groups 1,768 nonself-representing PSUs

into 220 strata.

Possibly a better strategy is to consider clusters as random effects while treating strata as

either fixed (using dummies) or random effects. However, many of the popular software

packages that implement multiple imputation (e.g., SAS MI procedure, R packages mice

or mi, and IVEware) cannot be adapted easily to such an approach. While a few recent

software modules (such as R package pan and MLwiN module REALCOM-IMPUTE)

have started to incorporate mixed effects or multilevel modeling for imputation purposes,

they typically assume normal or latent normal distribution for variables with missing data.

Their performances for missing categorical variables (binary in particular) are unclear.

Moreover, there has been only little research that formally investigates their use in

incorporating strata as well as clusters.

To circumvent these problems with fully parametric model-based imputation

techniques, we develop a two-step semiparametric MI method. The idea is to separate

the need to account for complex sample designs from the treatment of missing data. In the

first step, sample designs are “reversed” through synthetic population data generation

using a weighted finite population Bayesian bootstrap (FPBB) (Cohen 1997; Little and

Zheng 2007; Dong et al. 2014). In the second step, missing values are imputed in the

created synthetic population based on a parametric model that assumes identically

independently distributed (IID) data elements. To account for stratum effects, we combine

a replication variance estimation method (Efron 1979; Kovar et al. 1988; Rao and Wu

1988; Rao et al.1992; Rust and Rao 1996) with the weighted FPBB. Under a standard

missing at random (MAR) assumption (Little and Rubin 2002), our method requires

neither complicated modeling of strata and clusters nor design-based analyses of the

imputed data. Note that while the proposed method borrows from the multiple-imputation

framework to develop its inferential methods, it is not designed as an alternative strategy

to release multiply imputed datasets for complex sample design data. Rather, it is intended

an alternative analytic strategy for population inference from complex sample design data

with item-level missingness.
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In this article, we focus on the estimation of two quantities: quantile estimates for a

continuous variable, and estimates of rare proportions and their associated logistic

regression estimates. We consider a stratified two-stage sample design and investigate a

full range of quantiles including tail behaviors. While design-based methods for quantile

estimation from complex survey data have been developed (Francisco and Fuller 1991;

Woodruff 1952), quantile estimation after imputation is less commonly addressed in the

literature. (A recent exception that considers nonparametric fractional imputation outside

of the complex sample design setting is Yang et al. 2013.) This is the case despite the rapid

development and increasing popularity of MI. We also consider MI for incomplete binary

variables, with a focus on rare outcomes. It is well known that maximum-likelihood

estimation of logistic regression models typically suffers from small sample bias, the

degree of which is strongly dependent on the number of sample cases in the less frequent

of the two categories (King and Zeng 2001). Thus when the dependent binary variable

represents the occurrence of rare events, the logistic regression coefficients can be

substantially biased even with a simple IID data structure. Random effects logistic models

are commonly used for fitting clustered binary data; however, these models rely heavily on

asymptotic theory assumptions, which may not be met in sparse samples. All these issues

might extend naturally to the missing-data context. As shown by Zhao and Yucel (2009),

sequential MI for binary data missing completely at random in a multilevel setting suffers

from severe bias and poor coverage in estimating probabilities that are close to 0 or 1,

particularly when the intraclass correlation is high.

The objectives of this article are: i) to develop a two-step synthetic MI method as a way

to simultaneously account for stratification, clustering, and unequal inclusion probability;

and ii) to demonstrate the effectiveness of the new method with respect to quantile

estimation and logistic regression for binary rare events data as compared with existing

fully parametric imputation strategies. Section 2 discusses the imputation strategies under

three different models: simple random sample, fixed effects for clusters/strata, and random

effects for cluster/strata. Section 3 introduces the newly proposed procedure and the MI

inference rules for quantile estimation under this method. Section 4 presents a Monte

Carlo simulation study as the validation tool to assess the repeated sampling properties

of MI under the various approaches. Section 5 applies different MI procedures to the

analysis of body mass index on youth data from the third National Health and Nutrition

Examination Survey (NHANES III). Some concluding remarks follow in Section 6.

We focus on the two-PSU-per-stratum design in this chapter, although the methods we

develop can accommodate any number of PSUs per stratum.

1.1. Fully Parametric Imputation Methods for the Two-PSU-per-Stratum Design

Here we briefly describe fully parametric multiple-imputation techniques with complex

sample design features incorporated to different degrees. We assume the missing data Yi is

a member of the exponential family, and that there are fully observed covariates Xi

(a ( p þ 1)-dimension vector) such that g(E(YijXi)) ¼ Xib for a known link function g(·)

(e.g., g(u) ¼ log(u/(1 2 u)) for binary outcomes (logistic regression), g(u) ¼ log(u) for

count outcomes (Poisson regression), or g(u) ¼ u for continuous outcomes (Gaussian

regression)).
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1.1.1. Standard Regression Model Assuming SRS

Based on the maximum-likelihood estimates b̂ and the associated asymptotic covariance

matrix V̂(b̂) for the generalized linear model g(E(YijXi)) ¼ Xib, the posterior predictive

distribution of the parameters can be constructed, which is then used to impute the missing

values (Rubin 1987, 169–170). Point and variance estimates of the regression parameters

can then be obtained using the usual MI combining rules (Rubin 1987, 76). For the p th

component of the regression parameter:

b̂p ¼
1

M

XM

m¼1

b̂
ðmÞ

p ; ð1Þ

V̂ðb̂pÞ ¼
1

M

XM

m¼1

V̂ b̂
ðmÞ

p

� �
þ

M þ 1

MðM 2 1Þ

XM

m¼1

b̂
ðmÞ

p 2 b̂p

� �2

ð2Þ

and

b̂p 2 bp

� �

ffiffiffiffiffiffiffiffiffiffiffiffi
V̂ðb̂pÞ

q ·,tn; n ¼ ðM 2 1Þ 1þ

XM

m¼1

b̂
ðmÞ

p

ðM þ 1Þ

ðM 2 1Þ

XM

m¼1

b̂
ðmÞ

p 2 b̂p

� �2

0

BBBB@

1

CCCCA

2

ð3Þ

where m ¼ 1, : : : , M imputations are taken from draws widely separated to practically

eliminate autocorrelation. Multivariate combining rules for the joint distribution of b̂ are

available as well (Schafer 1997, 112–118).

1.1.2. Fixed-Effects Model (FX_APR)

Compared to the predictive model using standard generalized linear regression, we can add

dummy variables indicating stratum and cluster memberships to account for stratification

and clustering effects. Note that we also need to include the log transformation of sampling

weight as a predictor if the missing-data mechanism depends on weights to make the

imputation model truly appropriate. The model takes the following form:

g EðYijXiÞ
� �

¼ Xibþ Digþ Eihþ ½z log ðwiÞ�; ð4Þ

where Di is a 1 £ (H 2 1) row vector of dummies representing the H strata, and Ei is a

1 £ Q row vector of dummies representing the clusters nested within each stratum. Note

that Q ¼
P

hQh 2 H, where Qh is the number of clusters in each stratum; in the case of the

two-PSU-per-stratum case, Q ¼ H. The parameter space under this model is expanded as

u ¼ (b,g,h,z), and the steps for imputation are similar to those in the SRS setting.

1.1.3. Mixed-Effects Model (RE_APR)

As there are only two PSUs selected from each stratum, it is not feasible to model clusters

as random effects separately within each stratum. Here we pool all Q þ H clusters in the

sample and model them using a single random-effect term. The imputation model is
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specified as follows:

g EðYjjXjÞ
� �

¼ Xjbþ Djgþ ui þ ½z log ðwjÞ�; ð5Þ

where ui , N 0;s2
u

� �
is a random intercept term representing cluster effects, for

i ¼ 1, : : : ,(Q þ H), and s2
u denotes the between cluster variance. Other terms are as

previously defined. (In the two-PSU-per-stratum case, Q þ H ¼ 2H.)

2. Synthetic MI Using the Weighted FPBB for Stratified Samples

In this section, we develop the two-step multiple-imputation methodology for a stratified

two-stage sample design where a combination of complex sampling techniques are

considered, namely, stratification, clustering, and unequal inclusion probability. We

develop methods for an unrestricted number of clusters per stratum, but for our simulations

and application we focus on the special case of two PSUs selected per stratum, which

mimics the form of a public-use dataset that is commonly released for analyses.

2.1. Synthetic Data Generation to Account for Complex Sample Designs

Consider a finite population P, which is stratified into H strata with Nh PSUs in the h th

stratum, and hence the population size of PSUs is
PH

h¼1Nh ¼ N. For the h th stratum, select

nh PSUs with/without replacement from some probability sampling plan, independently

across strata, and hence the total sample size of PSUs is
PH

h¼1nh ¼ n. Subsampling of mhi

elements (treated as the ultimate sampling units in this example) from a total of Mhi is then

conducted within the i th sampled PSU of the h th stratum for i ¼ 1, : : : ,nh, h ¼ 1,2, : : : ,H.

Hence the overall sample size and population size of elements are
PH

h¼1

Pnh

i¼1mhi ¼PH
h¼1mh ¼ m and

PH
h¼1

PNh

i¼1Mhi ¼
PH

h¼1Mh ¼ M, respectively, where mh and Mh are

the sample size and population size of elements for the h th stratum, respectively. The

population consists of four types of survey variables: a single outcome Y, a single covariate

X, a design matrix Z ¼ [S,C,w ] including the stratum indicators (S), the cluster indicator

(C) and the sample weight (w), and the response indicator R. Let D ¼ ðDs;DnsÞ ¼

fðYhij;Xhij; Zhij;RhijÞ; h ¼ 1; : : : ; H; i ¼ 1; : : : ;Nh; j ¼ 1; : : : ;Mhig denote the popu-

lation of values measured on the survey variables, which is divided into the sampled

component (Ds) and the nonsampled (Dns) component.

We generate synthetic populations using a two-stage procedure. The first stage

accommodates stratification and clustering and the second weighting. We have two broad

approaches. The first, which we term SYN1, assumes that first-stage (cluster-level) and

second-stage (element-level) sample weights are available for the analysis and implements

a weighted FPBB at each level to generate the synthetic population. The second, which we

term SYN2, assumes that only final weights are available for the analysis; it uses a

Bayesian bootstrap to account for stratification and clustering at the first stage and the

weighted FPBB to account for the final weight at the second stage.

2.1.1. Double-Weighted Finite Population Bayesian Bootstrap (SYN1)

For the h th stratum, let ts,h and tns,h index the sampled and nonsampled clusters,

respectively, and {b 1, : : : ,b q, : : : ,b rh, q ¼ 1, : : : ,rh} be the rh (1 # rh # Nh) distinct
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matrices of real numbers each of dimension jbq
rowj £ jb

q
colj with no row vectors in common.

Each cluster in the stratum can take the form of one of b qs. Let thi ¼ q when the i th cluster

takes on the values of b q, for i ¼ 1, : : : , Nh. Assume nh ¼ rh and mhi ¼ bts;hik k (the

number of distinct row vectors in b ts,hi) for convenience of exposition. Let wts,h
(i ) be the

sample weight of the i th sampled cluster in the h th stratum which equals b q, for

i ¼ 1, : : : , nh. Also let wts,hi
,Ds,h( j ) be the sample weight of the j th sampled element in the

i th sampled cluster which equals b
ts;hi

k , for j ¼ 1, : : : , mhi. Finally, let cts,h
(q) and ctns,h

(q) be

the number of sampled and nonsampled clusters that equal b q, and chi
th;Ds;h
ðkÞ and chi

th;Dns;h
ðkÞ

be the number of sampled and nonsampled elements that equal b
ts;hi

k .

It can be shown (cf. Zhou 2014) that, within a stratum h, the Polya posterior for the

counts of distinct unobserved elements Dns,h is given by

p Dns;hjDs;h

� �
¼

Qrh

q¼1 Gðw
t
0

h

ðqÞÞ=Gðwts;h
ðqÞÞ

n on o

GðNhÞ=GðnhÞ
� �

£

Qmh

k¼1 Gðwt
0

h
;Dns;h
ðkÞÞ=Gðwts;h;Ds;h

ðkÞÞ
n on o

GðMhÞ=GðmhÞ
� � ; ð6Þ

where wt0h
(q) ¼ wts,h

(q) þ ctns,h
(q) and wt

0

h
;Dns;h
ðkÞ ¼ wts;h;Ds;h

ðkÞ þ chi
th;Dns;h

ðkÞ, for mh ¼Pmh

k¼1chi
th;Ds;h
ðkÞ and m

0

h ¼ Mh 2 mh ¼
Pm

h

k¼1chi
th;Dns;h

ðkÞ. The full posterior is then given by

the product of the posteriors within each stratum, since these strata are independent and all

strata in the population are in the sample:

p DnsjDs

� �
¼
YH

h¼1
p Dns;hjDs;h

� �
: ð7Þ

A Monte Carlo procedure to simulate from this posterior distribution is then given as

follows:

(i) Draw the Nh 2 nh nonsampled clusters in the population based on the Polya

posterior distribution independently for each stratum. Each of the sampled clusters is

resampled with probability

6hi ¼

wts;h
ði Þ2 1þ lhi;k21 £

Nh 2 nh

nh

	 


Nh 2 nh þ ðk 2 1Þ £
Nh 2 nh

nh

	 
 ; k ¼ 1; : : : ;Nh 2 nh þ 1; ð8Þ

where lhi,k21 is the number of times that the i th cluster in the h th stratum has been

resampled at the (k 2 1)th resampling, and wts,h
(i ) is the weight for the i th sampled

cluster in the h th stratum which is normalized to sum up to the total number of clusters,

that is,
Pnh

i¼1wts;h
ði Þ ¼ Nh.

(ii) From Step 1, form a population of clusters {c11, c12, : : : , c1n1
, c

*

11, c
*

12, : : : ,

c
*

1N12n1
, : : : , cH1, cH2, : : : , cHnH

, c
*

H1, c
*

H2, : : : , c
*

HNH 2nH
}. Record the number of times

each of the clusters from the original sample appears in the FPBB population of clusters,

denoted by thi, i ¼ 1, : : : , nh,h ¼ 1, : : : , H., and
PH

h¼1

Pnh

i¼1thi ¼ N. Then update

the within cluster element-level conditional weights as follows: w
*

jjhi
¼ wjjhi £ thi;
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i ¼ 1; : : : ; nh; h ¼ 1; : : : ;H, where wjjhi is the inverse of the conditional probability

that element j is selected given cluster i in stratum h is selected. Now pool all elements

from these clusters together and treat them as a single FPBB sample (i.e., as if they

have no stratum or cluster boundaries). Note that this FPBB sample has the same

sample size m ¼
PH

h¼1

Pnh

i¼1mhi as the original sample, but different sampling weights.

We then once more apply the weighted FPBB to these pooled elements to generate

M 2 m units from the m units in the FPBB sample. We resample from each of the

resampled clusters M 2 m elements, cycling through M 2 m times and resampling

with probability

ljjhi ¼

w
*

jjhi
2 1þ lhij;k21 £

M 2 m

m

	 


M 2 mþ ðk 2 1Þ £
M 2 m

m

	 
 ; k ¼ 1; : : : ; ðM 2 mþ 1Þ; ð9Þ

where lhij,k is the number of times that the j th element in the i th cluster in the h th stratum

has been resampled at the k th resampling, and wjjhi is the updated conditional weight for

the j th element in the i th cluster in the h th stratum. Again, they are normalized to sum up

to the total number of units in the entire population, that is,
PH

h¼1

Pnh

i¼1

Pmhi

j¼1wjjhi ¼ M.

Thus we create a single synthetic population. Repeat Step 2 B times to obtain B FPBB

synthetic populations.

(iii) Repeat Steps 1-2 L times to obtain L bootstrap samples, yielding L £ B

FPBB populations P
syn
ðlbÞ ¼ P

syn
ðlbÞobs;P

syn
ðlbÞmis

� �
, l ¼ 1, : : : , L, b ¼ 1,: : :B, each of which

consists of both responding elements and nonresponding elements on a vector of

variables {Y,X,Z,R}.

2.1.2. Bootstrap –– Weighted Finite Population Bayesian Bootstrap (SYN2)

Because we often do not know the first- and second-stage weights in public-use datasets,

we consider an alternative to the procedure proposed in Subsection 2.1.1. Rather than

obtaining a sample of clusters from a draw from a Polya posterior, we use replication

methods (Rust and Rao 1996) to capture the cluster-level sampling variance. The final

sampling weights instead of the adjusted element-level conditional weights are then used

directly as input in the second-stage weighted FPBB. We use Rao and Wu’s (1988)

rescaling bootstrap, which is a generalized extension of McCarthy and Snowden’s (1985)

“with replacement bootstrap”. Once the PSUs have been sampled, we continue with

the weighted FPBB approach to complete the synthetic population data generation.

The proposed procedure is as follows:

(i) Select a sample of n
*

h ¼ nh 2 1 PSUs from the parent sample in each stratum via

SRSWR sampling;

(ii) Apply the “ultimate cluster principle” (Wolter 2007), that is, once a PSU is taken

into the bootstrap replicate, all elements in that PSU are taken into the replicate also.

Thus we obtain our first bootstrap sample;

(iii) Repeat the previous steps L times to obtain L bootstrap samples {Boot_l,

l ¼ 1, : : : ,L};
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(iv) Within each bootstrap sample, update the element-level sampling weights as:

w
*

hij ¼ whij £ thi
nh

n
*

h

	 

¼

¼ nh

nh21
whij; if the i th PSU selected in the bootstrap sample

¼ 0; if the i th PSU not selected in the bootstrap sample

8
<

:

As w
*

hij itself implicitly carries over the strata and PSU information in addition to

unequal inclusion probability, we can drop the subscripts hi henceforth by pooling all

elements in the bootstrap sample regardless of which stratum and PSU they originally

came from. Normalize w
*

j s to sum up to m
*
:
Pm

*

j¼1w
*

j ¼ m
*
, where m

*

is the bootstrap

sample size.

(v) For the l th bootstrap sample, l ¼ 1, : : : ,L, apply the weighted FPBB algorithm to

create an entire population D ¼ Dns;D
*

s

� �
based on the posterior predictive distribution

of elements in the nonsampled population Dns ¼ ðYj;Xj; Zj;RjÞ; j ¼ m
*
þ 1; : : : ;M

� �

given the elements in the bootstrap sample D
*

s ¼ ðYj;Xj; Zj;RjÞ; j ¼ 1; : : : ;m
*

� �
.

Operationally, we draw a Polya sample of size M
*
¼ M 2 m

*
from

mult M
*
; l1; : : : ; lK

� �
where the selection probability lk, k ¼ 1, : : : , K is a function

of w
*

j :

lk ¼

w
*

j 2 1þ lj;k21 £
M

*

m *

	 


M * þ ðk 2 1Þ £
M

*

m *

	 
 ; k ¼ 1; : : : ;M
*

þ 1; ð10Þ

Repeat Step (v) for B times to obtain L £ B FPBB populations.

2.2. Imputation of the Synthesized Populations

Once the set of FPBB synthetic populations Psyn ¼ Pðl ÞðbÞ; l ¼ 1; : : : ; L; b ¼ 1; : : : ;B
n o

,

where Pðl ÞðbÞ ¼ Y ðl ÞðbÞmis;P
ðl Þ
ðbÞobs

� �
are created using either the SYN1 method or the SYN2

method, we generate imputations Pimp¼ Pðl ÞðbaÞ;l¼1; : : :;L;b¼1; : : :;B;a¼1; : : :;A
n o

from the posterior predictive distribution p Y ðl ÞðbÞmisjP
ðl Þ
ðbÞobs

� �
based on a parametric model

that does not condition on sample design features, that is, a model taking a form similar to

the SRS model given in Subsection 2.1. We consider imputations based on the covariate

(X) only (SYN1_srs or SYN2_srs) or imputations that include the log of the sample

weights in the linear predictors (SYN1_lwt or SYN2_lwt).

To obtain the MI inference, denote the observed set of synthetic populations by PR ¼

Pðl ÞðbÞobs; b ¼ 1; : : : ;B; l ¼ 1; : : : ; L
n o

and the imputed set of synthetic populations by

P �R ¼ Y ðl ÞðbaÞmis; l ¼ 1; : : : ; L; b ¼ 1; : : : ;B; a ¼ 1; : : : ;A
n o

. The MI point estimator for

the population statistic of interest Q (mean, regression estimator, quantile) is then given by

the mean of the lba th point estimators:

Q̂MI ¼
1

LBA

X

l

X

b

X

b

Q̂lba: ð11Þ
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The MI variance estimator is:

V̂MI ¼ ð1þ L21ÞVL ¼ ð1þ L21Þ
1

L 2 1

X

l

Q̂l 2 Q̂MI

� �2
; where ð12Þ

Q̂l ¼
1

BA

X

b

X

a

Q̂lba:

We then construct the 95% interval estimate for quantiles based on t reference distribution

with degrees of freedom equal to min vcom ¼
P

h nh 2 H; vsyn ¼ L 2 1
� �

. These results

arise from the fact that, by the standard Rubin (1987) MI combining rules, we have

QjPimp ·,tL21
�QL; ð1þ L21ÞVL

� �
; ð13Þ

where �QL ¼
1
L

l

P
~Q ðl Þ, VL ¼

1
L21

l

P
~Q ðl Þ 2 �QL

� �2
, and ~Q ðl Þ ¼ lim

A!1
B!1

1
BA

b

P
a

P
Q̂lba.

Replacing Q̃ (l ) with its finite simulation estimator Q̂l replaces Q̄L with Q̂MI and gives

the results above. A complete theoretical justification for (13) is provided in Dong et al.

(2014) and Zhou (2014). Some intuition of the result can be gained by noting that the

generation of the synthetic population sets the within imputation variance to 0 so that the

posterior variance of Q can be obtained using the between-bootstrap variance only.

Moreover, (11) assumes that E(q̂ba) ¼ Q – a result guaranteed by our Bayesian bootstrap

estimator if the imputation model is also correct – as well as a sufficiently large sample

size for the t approximation is reasonable.

Lo (1988) showed that the variance estimator for the FPBB mean in a simple random

sample setting should be inflated by the factor (nþ1
n21

). In the double-weighted FPBB (SYN1)

setting, a small sample correction to the variance estimate thus needs to be used when the

number of clusters per stratum is small. When nh ¼ a is a constant across all strata, we use
nhþ1
nh21

(1 þ L 21) VL; otherwise we suggest �nhþ1
�nh21

(1 þ L 21) VL, where n̄h ¼ H 21P
hnh.

The Appendix provides the sample R code used to conduct the analyses in the

application in Section 4 and can easily be adapted to other settings.

3. Simulation Study

We conducted a simulation study to investigate the performance of the proposed method

for incorporating stratified cluster-sampling effects in multiple imputation. We targeted

three population statistics: 1) population quantiles, 2) proportions of binary event data, and

3) logistic regression parameters relating the covariate to the binary data. The simulation is

a 2 £ 2 factorial design based on the following factors:

1) keeping the first-stage sampling plan constant, we let the subsampling rate f2 of

elements within sampled clusters be

a) independent of or

b) dependent on the stratum effects, and

2) assume that

a) the missingness on the Y-variable (continuous or binary) depends only on the

covariate (X) (MAR_X), or

b) depends on both X and the final sampling weight W(MAR_X,W).
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We focus on a two-PSU-per-stratum sample design, both because it is a common design,

especially in public-use settings, and because it is a “limiting case” in terms of the number

of PSUs per stratum. In addition to the two variants of our synthetic MI estimators, we

consider standard parametric MI under the SRS, appropriate fixed-effect (FX_APR), and

appropriate random-effect (RE_APR) models.

3.1. Data Generation

Let i be the index for strata, j be the index for clusters, and k be the index for elements.

Suppose there are 50 strata in the population. First, the number of PSUs in each stratum is

randomly determined according to a uniform distribution, that is, Ci , Unif(2,54),

i ¼ 1, : : : , 50; second, the number of population elements within PSUs is randomly

generated as Nij , Unif(20,80), i ¼ 1, : : : ,50, j ¼ 1, : : : ,Ci. Thus we obtain a population

of size N ¼ 67385. The complete data for four survey variables Y ¼ (Y1,Y2,Y3,Y4)T are

generated from a superpopulation model according to a two-step process, In the first step,

Y1 and Y2 are randomly selected from a bivariate linear mixed-effects model; let N2(�)

denote a bivariate normal distribution function:

Y1ijk

Y2ijk

 !

, N2ðm;SÞ; wherem ¼
b1 þ Si þ u1ij þ 11ijk

b2 þ u2ij þ 12ijk

" #

;S ¼
s11 s12

s12 s22

" #

: ð14Þ

Let b1 ¼ b2 ¼ 15 be the fixed covariate effects, Si ¼
i
5

be the fixed stratum effects, and let
�

u1ij u2ij
�T

and
�
11ijk 12ijk

�T
be the random cluster effects and random error terms

drawn from two independent bivariate normal distributions: N2(0,Su) and N2(0,S1).

Elements of Su are set as: s2
u1
¼ 4, s2

u2
¼ 1, su1u2

¼ 0:2, and elements of S1 are set as:

s2
11
¼ 4, s2

12
¼ 3, s1112

¼ 1:732. This results in conditional intraclass correlations (ICC)

of Y1 and Y2 as rY1
¼ 0.5 and rY2

¼ 0.25 (note that the unconditional ICC for the two

variables may be smaller than these values). In the second step, a random-effects logistic

regression model (Anderson and Aitkin 1985; Stiratelli, et al. 1984) is used to simulate two

binary outcome variables Y3 and Y4 as a function of Y2. Under this model, a random effect

is added to the linear part of the logistic regression model for each element in the cluster.

The conditional mean of Y3ijk and Y4ijk is

pijk ¼ E Y�ijkjY2ijk; u�ij

� �
¼ Pr Y�ijk ¼ 1jY2ijk; u�ij

� �
¼

ea0þa1Siþa2Y2ijkþu�ij

1þ ea0þa1Siþa2Y2ijkþu�ij
; ð15Þ

where u3ij , N(0,62), u4ij , N(0,102) and a ¼ (a0,a1,a2)T is the vector of fixed covariate

effects. We fix a2 ¼ 1.5 and vary a0 and a1 to obtain two different binary variables Y3ijk

and Y4ijk, with either moderate (a0 ¼ 2 5,a1 ¼ 2 1.5) or rare probabilities

(a0 ¼ 28,a1 ¼ 26). Given u�ij, the Y�ijk s in the cluster are independent Bernoulli

variables, that is, Y�ijkju�ij , Bern(pijk).

Figure 1 shows the correlations between variables in the simulated population, with the

different shades of grey representing different degrees of association between any of the

two variables. The darker shades indicate higher correlation. All survey outcome variables

(Y1,Y3,Y4) have a moderate to strong (0.2,0.8) stratum effect (H or strID) and clustering

effect (U1,U3,U4), indicating that accounting for these effects in the analysis of missing

data is essential.
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3.2. Sample Design

Within each stratum, we draw a two-stage cluster sample according to the following

procedure: first, we draw a sample of two PSUs without replacement with probability

proportional to the cluster size f 1ij ¼
2*Nij

j

P
Nij

. Second, we sample elements from each

sampled cluster using two different subsampling schemes:

1) sampling probability independent of Si which is defined in (14): SRS with an equal

sampling fraction of f2kjij ¼ 1/5; and

2) sampling probability related to Si: SRS with varying sampling fractions across strata,

that is f2kjij ¼ expit(20.8 2 0.12*Si), where expit(x) ¼ 1/(1 þ e21(x)).

An average of 1,122 elements are selected in each of the 200 simulation replications. The

distributions of sampling weights are shown in Figure 2. The distributions of sampling

weights under the two subsampling schemes are generally very similar with somewhat

more skewness under subsampling scheme 2.

3.3. Imposing Missingness

Throughout the simulation study, we assume that Y2 is always completely observed and we

impose missing values on Y1, Y3, and Y4 independently according to the following deletion

Y1

Y2

Y3

Y4

H

U1

U2

U3

U4

E1

E2

cluslD

strlD 1.0

0.8

0.6

0.4

0.2

0.0

Fig. 1. Correlation between variables in the simulated population (darker shades ¼ higher correlation)
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function conditional on Y2 and/or log transformation of the weight:

Pr R ¼ 0jY2;W
� �

¼
exp ðl0 þ l1*Y2 þ l2* log ðWÞÞ

1þ exp ðl0 þ l1*Y2 þ l2* log ðWÞÞ
; ð16Þ

where R is the response indicator and W is the overall sample weight. Setting l2 ¼ 0, we

obtain the first MAR mechanism (i.e., MAR_X, note that we treat Y2 as a covariate X here),

under which we further set l0 ¼ 3.42, l1 ¼ 20.2 and l0 ¼ 22.58, l1 ¼ 0.2 for deleting

values on Y1 and Y3, Y4, respectively. Setting l2 ¼ 20.6, we obtain the second MAR

mechanism (i.e., MAR_X,W), under which we fix l1 ¼ 0.2 and set two values on

l0 ( ¼ 20.274 or 20.33) for deleting values independently on all three outcome variables

under subsampling scheme 1 and subsampling scheme 2, respectively. All deletion

functions result in approximately 40% missingness on each variable.

3.4. Parametric Multiple Imputation

Both simple random sample SRS (including SRS, SYN1_srs and SYN2_srs) and fixed-

effects model FX_APR can be implemented in R (R Core Team 2013) using mice routines;

for the logistic model associated with the binary outcome, the method ‘logreg’ must be

specified. We use the pan package in R for the mixed-effects imputation (RE_APR) for the

missing continuous outcome; logistic mixed-effects imputation is programmed in SAS for

the missing binary outcome, as there is no missing-data software package readily available

for use.

0.015

0.010

D
en

si
ty

0.005

0.000

0 100 200

Subsampling scheme 1

Weight distribution

Subsampling scheme 2

300 400

Weight

Fig. 2. Distribution of weights under the two subsampling schemes
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3.5. Parameters of Interest and Inference

We focus on inference for the following population parameters: the mean of the

continuous variable Y1, the mean of the binary variables Y3 and Y4 (i.e., Bernoulli

proportions), linear regression coefficients of Y1 on Y2, logistic regression coefficients of

Y3 (or Y4) on Y2, and the population percentiles of the continuous variable Y1.

Weighted analyses and sandwich variance estimators accounting for strata and clusters

are used to estimate smooth statistics (including proportions and regression parameters)

under the three fully parametric MI methods. For estimating quantiles of the distribution of a

continuous survey variable, we construct the sample-weighted point estimator with

confidence intervals based on the test-inversion method (Francisco and Fuller 1991). We

chose the test-inversion method instead of Woodruff’s method (Woodruff 1952) despite the

computational intensity, because the literature suggests that it may outperform Woodruff in

heavily stratified samples or in small-to-moderate-sized samples (Kovar et al. 1988). Based

on the a th imputed dataset, the empirical distribution function can be written as

F̂ ðaÞð yÞ ¼

X

SR

whijI yobs
hij , y

� �
þ
X

S �R

whijI yðaÞhij , y
� �

" #

X

S

whij

; ð17Þ

where SR and SR̄ are subsets of the sample data S, consisting of respondents and

nonrespondents respectively. The estimator F̂( y) and its associated estimated variance

v(F̂( y)) can then be obtained using the variance estimator proposed by Francisco and

Fuller (1991) together with standard Rubin combining rules as previously described.

The sample g th quantile estimator thus is q̂g ¼ ðF̂Þ
21ðgÞ, with 95% asymptotic confidence

interval (CI) given by

½L;U� ¼ ½F̂�21 g 2 t0:025

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var ðF̂ðqgÞÞ

q	 

; ½F̂�21 gþ t0:025

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var ðF̂ðqgÞÞ

q	 
 �
: ð18Þ

3.6. Results

Table 1 compares the average width £ 1022 and average coverage rates of the 95% CI of

q(a), where a ¼ 0.05, 0.10, 0.25, 0.50, 0.75, 0.90, and 0.95, corresponding to seven

selected population quantiles. Among all methods considered, the SRS imputation model

yields the poorest coverage. This results from the compounding effects of biases and

variance underestimation, due to ignoring stratum effects and clustering effects

respectively. As we increase the dependence of both the sampling mechanism and

response mechanism on stratum effects and sampling weights, the performance of SRS

becomes even worse, as exhibited by the markedly increased RelBias and decreased

coverage rates. In addition, ignoring stratum and/or weight effects that are highly relevant

to either mechanism seems to impact the median and second and third quartiles more than

the tail quantiles under SRS, as evident in the relatively lower coverage rates in the right

part of Table 1.
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The FX_APR model (Reiter et al. 2006; Rubin 1996; Schenker et al. 2006), generally

performs fairly well in our simulation study with respect to the estimation of population

quantiles. There is some modest underestimation of the small percentile quartiles with the

second-stage sampling constant. The RE_APR model also performs well, with the

exception of moderate to high overcoverage when the second-stage sampling probability

is associated with the stratum mean and the missingness mechanism.

In contrast, our synthetic MI (SYN2 in particular) compares favorably with all of its

competitors, and in most cases yields results comparable to the RE_APR, which is

regarded as a “gold standard” as it is compatible with the data-generating mechanism

(Meng 1994). There is some undercoverage when the stratified double-weighted FPBB

estimator (SYN1) is used, perhaps due to the fact that the Lo small-sample adjustment is

not as accurate when nh ¼ 2. However, use of a stratified bootstrap-weighted FPBB

estimator (SYN2) generally eliminates this issue. Although an imputation model assuming

SRS suffices for the synthetic MI method in most scenarios, we need to include the

sampling weight as a predictor when the outcome Y and the response indicator R are

strongly associated with each other through the sampling mechanism I, as is the case with

the second subsampling scheme, when both the missingness indicator and the second-

stage sampling rate are functions of the stratum mean.

Tables 2 and 3 compare the absolute relative bias relbias ¼ 100 £
û2ucompletej j
ucomplete

%, RMSE

and 95% nominal CI coverage for the estimated mean/proportions of Y1, Y3 and Y4 and the

slopes of the three outcome variables on Y2, respectively. (ucomplete is the estimated

parameter with complete data, and û is the estimated parameter under one of the different

MI methods.) As in the estimation of the quantiles, the SRS imputation model is biased

and has poor coverage as it ignores stratum and cluster effects. Again, dependence of

subsampling on stratum effects and dependence of response on sampling weights damage

the performance of SRS even further.

FX_APR generally performs well in estimating the mean of a continuous variable

(Y1) and a regular binary variable (Y3) with moderate probability as well as the slopes.

However, it fails for proportion estimation for rare events data (Y4), yielding biased

point estimates and less than nominal coverage throughout all scenarios. One

interpretation might be that overfitting occurs when too many dummies are included to

account for fixed strata and cluster effects, yielding dummy variables where all

observed cases are 0 or 1. In this case, “complete separation” yields unstable coefficient

estimates, damaging the predictive efficacy when the fitted model is used for drawing

missing values. The problem is particularly prominent when the logistic fixed-effects

imputation model is used along with the current sampling design, where an average of

only ten elements are selected per PSU within each stratum; this results in even more

substantial biases on Ȳ4 than the SRS model. (Use of a Bayesian approach with an

informative prior of the form t1(0,2.5) on the fixed-effect parameters using the mi

function in R (Gelman et al. 2008) reduced but did not remove the impact of complete

separation. A relative bias of 12–13% remained for the estimation of of Ȳ4 under the

MAR_X missingness mechanism, with 95% nominal coverage of 89%, while a relative

bias of 17–22% remained under the MAR_X,W mechanism, with nominal coverage

of 84%.) The random-effects model RE_APR more effectively avoids the overfitting

issue through shrinkage effects: note that under RE_APR, we pooled all PSUs from all
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strata as if there were no strata bounds, and the stratum effects can be thought as being

implicitly modeled in the random intercept term (uj ¼ Ih þ uh( j )).

As in the quantile estimation setting, our synthetic MI compares favorably with all of its

competitors, and in most cases yields comparable results to the RE_APR for estimation of

means and logistic regression parameters. In the case of rare events data, our proposed new

method increases the analytical size through generating synthetic population data thus is

even superior to RE_APR, consistently yielding negligible biases and close to nominal

coverage. The impact of ignoring the weights in the imputation (under MAR_X,W

mechanism) is less than in the quantile estimation setting, with the exception of the

estimation of the continuous mean Ȳ1, where including the weight is required to obtain

approximately correct coverage.

A disadvantage of the method lies in its relative inefficiency for estimating nonlinear

parameters (regression coefficients) (e.g., the synthetic MI results in unbiased point

estimates but a larger RMSE than the two model-based MI methods). This is typical in that

nonparametric methods cannot typically compete with their fully parametric counterparts

under the correct model, and is a tradeoff made to improve robustness to model

misspecification.

4. Application to NHANES III

We apply our method to the National Health and Nutrition Examination Survey

(NHANES) III (1988–1994), which is designed to provide national estimates of the health

and nutritional status of the civilian noninstitutionalized population of the United States

aged two months and older (National Center for Health Statistics 1996). The data are

obtained from a stratified, multistage area probability sampling design with oversampling

of certain age and ethnicity groups. For confidentiality and computational reasons, the

public-use data provides two pseudo-PSUs per stratum. Another unique feature of

NHANES is that data are collected through both interview and actual physical

examinations of the sampled persons. Both unit- and item-level nonresponse occurs in

both components of the survey, and there is a particularly high missing rate on the body

mass index (BMI) measure for youth data in the physical examination component (30%).

As a popular measure of overweight status and obesity, the percentiles of BMI for children

and youths are of particular interest for public health reasons. The upper percentiles and

the lower percentiles are also closely monitored for overweight and underweight status,

respectively. As a result, we restrict our analysis sample to children and youths from two

months to 16 years of age. The Appendix provides the sample R code used to conduct the

analyses below.

We estimate population quantiles (from 0.05 to 0.95 with an increment of 0.05 along

with two extreme percentiles: 0.03 and 0.97) of BMI for children and youths by gender.

We also estimate the proportion of such a population being covered by health insurance,

overall and by race. To assure congenial inference, we include the following variables that

are either of primary interest in the substantive analysis or are important predictors for

BMI measures in the imputation model: age, gender, race, education, mother’s BMI,

father’s BMI and family income (Yuan and Little 2007). We compared three different

methods in our treatment of the missing data:
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1) complete case analysis (CC) with design-based estimation;

2) fully parametric model-based MI using design-based estimation, within which we

apply both an imputation model assuming SRS and the appropriate model conditional

on all three sample design features (i.e., dummy variables indicating cluster and stratum

memberships as well as the log transformation of sampling weights); and

3) our proposed finite population Bayesian bootstrap method (using SYN2 since we do

not have separate weights for the first and second stages of sampling), and including the

log of the weight in the imputation model.

Estimates of the median BMI and the proportion of children with health insurance are

given in Table 4. The CC method appears to overestimate the median of both the BMI

measure and health-insurance coverage for the full sample and race domains relative to the

MI approaches, and yields the widest confidence intervals or largest standard errors as a

result of decreased sample size. Then again, the median of BMI obtained from synthetic

MI is quite similar to that from the model-based MI, while demonstrating some advantages

in efficiency by yielding shorter intervals. The generally lower health-insurance coverage

estimates under the synthetic MI relative to model-based MI might be attributable to the

fact that the synthetic MI are able to capture certain interactions between the sample

design variables and the regular covariate matrix which are not explicitly modeled in the

fully model-based MI.

Figure 3 displays a visual comparison of the percentile estimation for the three methods

under consideration. We look at how those methods perform in three different percentile

ranges by gender domains: the middle percentiles from 0.5 to 0.75, the upper percentiles

from 0.90 to 0.97 and the lower percentiles from 0.03 to 0.1. We chose these percentile

ranges because the extreme lower and upper percentiles of BMI are typically used to

monitor under- and overweight for children and youths, and there is evidence that gender

difference exists in these BMI percentile ranges (particularly when age is considered, i.e.,

growth patterns in BMI). In general, both MI methods result in very similar BMI estimates,

and they are lower than those obtained from CC analysis. This makes sense since our

comparison of the distributions of age for complete cases and for missing cases on the BMI

measure revealed that younger children are more susceptible to missingness, and therefore

CC analysis tends to overestimate BMI by excluding those younger missing cases. The

inclusion of the age variable as a predictor in the imputation model corrects such an

Table 4. Alternative methods in estimating the median of BMI and the health-insurance coverage rate, for full

sample and by gender and race, respectively

Methods

Variable Domain CC Model-based MI Synthetic MI

BMI Overall 17.2 [17.1, 17.4] 17.1 [16.9, 17.3] 17.0 [16.9, 17.2]
Male 17.2 [16.9, 17.4] 17.0 [16.7, 17.2] 17.0 [16.8, 17.2]
Female 17.3 [17.0, 17.7] 17.1 [16.8, 17.4] 17.1 [16.8, 17.3]

Health insurance Overall 0.785 (0.020) 0.778 (0.019) 0.761 (0.019)
White 0.822 (0.018) 0.815 (0.017) 0.799 (0.016)
Nonwhite 0.645 (0.036) 0.643 (0.033) 0.634 (0.036)
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overestimation. The magnitude of this correction for boys is bigger than that for girls in

estimating the lower percentiles (0.03, 0.05). When examining a report on BMI-for-age

percentiles by gender released by the Center for Disease Control and Prevention (http://

www.cdc.gov/nchs/data/series/sr_11/sr11_246.pdf), we find that baby boys (corresponding

to the lower quantiles here) have a relatively higher BMI, which might be at least part of the

explanation.

5. Discussion

While multiple imputation has become a popular option for the analysis of missing data, some

issues remain unresolved in its practical application to complex sample survey data. The

complex features of sampling compounded with nonresponse in survey data often result in a

rather complicated data structure, which prevents the straightforward application of the

standard MI techniques (such as a multivariate normal model assuming simple random

sampling). In this article, we develop a general-purpose approach to account for various

design features in a highly stratified two-stage sample using a two-step synthetic MI

framework. We have focused on evaluating the performance of the new method compared

with existing methods with respect to several missing-data issues frequently encountered in

large population-based socioeconomic and epidemiological studies. These include:

i) accommodating stratification and multistage sampling in the imputation process; ii) the

employment of nonstandard or non-normal imputation models for estimating probabilities of

rare events; and iii) the estimation of population quantiles with multiply imputed data. (For

examples that consider alternative sample designs, such as independent unequal probability of

selection designs, or cluster and weighted designs without stratification, as well as estimators

of quantities such as means and linear regression parameters, see Zhou (2014).
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Fig. 3. Comparison of methods for quantile estimation of BMI, by gender
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Although multiple imputation is technically valid only for maximum-likelihood

estimates (Kim et al. 2006), we demonstrate that the coverage properties of the proposed

method are fairly good for nonsmooth statistics. Specifically, our stratified variations of the

weighted Polya posterior exhibits robustness to the loss function for estimating the upper

and lower tails of the distribution function where even the appropriate model-based method

(i.e., FX_APR) fails. In contrast with existing fully parametric MI methods, most of which

perform poorly when applied to rare outcome binary data, the proposed method yields quite

stable parameter estimates regardless of the rarity of the outcome. An alternative approach

for MI estimation of quantiles that relies on estimating the CDF using a smooth regression

curve is given by Wei et al. (2012), and could be used at the second-stage imputation step

after the weighted finite population Bayesian bootstrap has been implemented.

It is worth stressing that our method requires only the most straightforward form of

imputation modeling and combining rules for inference. This is because the effects of the

complex sample design and the effect of estimating the nuisance parameters in imputation

(e.g., regression parameters when the main quantity of interest is a quantile of Y) are both

correctly reflected in the replication variance estimation given the design-reversed and

multiply imputed synthetic populations. Any higher-level and nonlinear interactions in the

covariate data, including those with the weights, clusters, or strata, will automatically be

captured in the synthesizing step. However, when the imputation is conducted

parametrically, as it is here, such design-variable interactions will still need to be

considered if they are associated with the missingness mechanism, although the impact of

misspecification will generally be attenuated. Similarly, not-missing-at-random

mechanisms that are dependent on the missing values are not accommodated in this

framework. Finally, we note that assuming SRS for imputation results in correct inference

only at the population level: correct inference for domain estimation requires that the

domains be included in the imputation model. For example, if variables X and Y are

positively correlated in stratum A but negatively correlated in stratum B, this interaction

will be correctly averaged over for the population inference using weighted FPBB, but if

this interaction is of direct interest, it will be attenuated unless incorporated in the

imputation model for the synthetic population. Further, imputing under SRS does not

absolve the imputer from correctly modeling the data. To give a trivial example, assume

data are sampled from two strata denoted by Z ¼ {1,2}, where P(Z ¼ 1) ¼ P(Z ¼ 2) ¼ .5

in the population, and YjZ ¼ 1 , N(5,1) and YjZ ¼ 2 , N(25,1), and stratum 1 is

oversampled with P(IjZ ¼ 1) / .8 The method proposed here will correct the imbalance

between the strata, and assuming a two-component normal mixture model will allow

imputations of Y that maintain the correct marginal distribution of Y with equal-sized

components. This will allow for correct estimation of percentiles, whereas simply

assuming a unimodal normal distribution will only consistently estimate the mean. Correct

estimation of percentiles within the strata will require also conditioning on the strata, as

mentioned above. We note that one advantage of the proposed method is that, with design

issues cleared out of the way, more focus can be given to developing missing-data models.

We also note that the method developed here does not allow for the release of a small

number of multiply imputed datasets to be combined using the standard Rubin rules.

It would be possible to publically release all L £ B £ A multiply imputed datasets to be

analyzed using the methods developed here, although this would typically involve
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hundreds to thousands of datasets. Methods to allow a more modest release, with minimal

impact on inference, are a topic for future research.

Future research will investigate the inferential properties of the proposed method in

situations where auxiliary information on all population units is available, using a

constrained version of the Polya posterior. Two other possible research directions include:

(i) extending the two-step synthetic MI framework to deal with unit nonresponse problems,

and (ii) extending it to deal with generating synthetic data for disclosure risk limitation.

Appendix: R Code for Using the Proposed Two-step MI Method on NHANES III

require(survey)

require(mice)

require(polyapost)

set.seed(seed #)

syn_bmi , -function(dt, N, Bt1, Bt2, Mt){

##Step 1: Generate synthetic populations with missing data;

#Stage 1: Create bootstrap samples from the parent sample;

dsgn , - svydesign(ids ¼ , predcl, strata ¼ , pstrat, nest ¼ TRUE, data ¼

dat, weights ¼ , predwt)

dsgn.RW, -as.svrepdesign(design ¼ dsgn, type ¼ “subbootstrap”, replicates

¼ Bt1)

dim(dsgn.RW$repweights)

repwt, -as.matrix(dsgn.RW$repweights)

repwt[repwt ¼ ¼0], -NA

dim(repwt)

#set up arrays to hold point estimates from bootstrap samples;

btm, -matrix(0,nrow ¼ Bt1,ncol ¼ 3)

btqt, -matrix(0,nrow ¼ Bt1,ncol ¼ 21)

btqtm, -matrix(0,nrow ¼ Bt1,ncol ¼ 21)

btqtf, -matrix(0,nrow ¼ Bt1,ncol ¼ 21)

for (j in 1:Bt1){

st.bb , -cbind(dat,repwt[,j])

#delete those units with zero weights for each bootstrap sample;

st.BB , -na.omit(st.bb)

#recode those 999 back to NA so that the mice package can be used for

imputation;

st.BB$pybmi[st.BB$pybmi ¼ ¼ 999] , -NA

#need to calculate the replicate weights;

Samwt , -st.BB[,9]*st.BB[,13]

#normalize again the adjusted weights;

Samwts , -Samwt*N/sum(Samwt)

np , -nrow(st.BB)
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ids , -seq(np)

ns , -N-np

##Stage 2: Create unweighted synthetic populations within each bootstrap sample;

#Set up arrays to hold point estimates from imputed unweighted synthetic populations;

fbm , -matrix(0,nrow ¼ Bt2,ncol ¼ 3)

fbqt , -matrix(0,nrow ¼ Bt2,ncol ¼ 21)

fbqtm , -matrix(0,nrow ¼ Bt2,ncol ¼ 21)

fbqtf , -matrix(0,nrow ¼ Bt2,ncol ¼ 21)

for(boott in 1:Bt2){

l , -vector()

smp , -wtpolyap(ids, Samwts, ns)

#input the adjusted weights in the weighted Polya sampling algorithm;

for (k in 1:np){

l , -c(l,length(smp[smp ¼ ¼ k]))

}

#check if the vector of l sums up to the number of synthetic population size;

sum(l);

predY1 , -c(rep(st.BB[,1],l)) #bmi

predY2 , -c(rep(st.BB[,2],l)) #race

predY3 , -c(rep(st.BB[,3],l)) #gender

predY4 , -c(rep(st.BB[,4],l)) #income

predY5 , -c(rep(st.BB[,5],l)) #education

predY6 , -c(rep(st.BB[,6],l)) #mother’s bmi

predY7 , -c(rep(st.BB[,7],l)) #father’s bmi

predY8 , -c(rep(st.BB[,8],l)) #age

predwt1 , -c(rep(st.BB[,9],l))

predlwt , -log(predwt1) #log of sample weight

predCID , -c(rep(st.BB[,12],l)) #cluster ID

predSTID , -c(rep(st.BB[,11],l)) #stratum ID

##Step 2: Multiple imputation of the unweighted synthetic populations;

#use the imputation model including log of weight as a predictor (syn_lwt);

temp1 , -data.frame(cbind(predY1, predY2, predY3, predY4, predY5, predY6,

predY7, predY8, predlwt))

temp1_imp , -mice(temp1,method ¼ “norm”, m ¼ Mt)

ml , -complete(temp1_imp, ‘long’)

ml$bmit , -exp(ml$predY1) #back transform bmi to its normal scale

mlmale , -subset(ml, predY3 ¼ ¼ 1)

mlfem , -subset(ml, predY3 ¼ ¼ 2)

multm , -cbind(as.vector(by(ml$bmit,ml$.imp,mean)),

as.vector(by(mlmale$bmit,mlmale$.imp,mean)),

as.vector(by(mlfem$bmit,mlfem$.imp,mean)))
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multqt , -sapply(with(ml,by(ml,.imp,function(x)quantile(x$bmit,

c(0.03,seq(0.05,0.95,0.05),0.97)))),as.vector)

multqtm , -sapply(with(mlmale,by(mlmale,.imp,function(x)quantile(x$bmit,

c(0.03,seq(0.05,0.95,0.05),0.97)))),as.vector)

multqtf , -sapply(with(mlfem,by(mlfem,.imp,function(x)quantile(x$bmit,

c(0.03,seq(0.05,0.95,0.05),0.97)))),as.vector)

fbm[boott,] , -t(apply(multm,2,mean))

fbqt[boott,] , -t(apply(multqt,1,mean))

fbqtm[boott,] , -t(apply(multqtm,1,mean))

fbqtf[boott,] , -t(apply(multqtf,1,mean))

print(boott)

}

btm[j,] , -t(apply(fbm,2,mean))

btqt[j,] , -t(apply(fbqt,2,mean))

btqtm[j,] , -t(apply(fbqtm,2,mean))

btqtf[j,] , -t(apply(fbqtf,2,mean))

print(j)

}

smpm , -apply(btm,2,mean)

smpv , -(1 þ 1/Bt1)*apply(btm,2,var)

smpse , -sqrt(smpv)

smpqt , -apply(btqt,2,mean)

smpqtv , -(1 þ 1/Bt1)*apply(btqt,2,var)

smpqtse , -sqrt(smpqtv)

smpqtm , - apply(btqtm,2,mean)

smpqtvm , -(1 þ 1/Bt1)*apply(btqtm,2,var)

smpqtsem , -sqrt(smpqtvm)

smpqtf , -apply(btqtf,2,mean)

smpqtvf , -(1 þ 1/Bt1)*apply(btqtf,2,var)

smpqtsef , -sqrt(smpqtvf)

tt , -cbind(smpqt,smpqtm,smpqtf,smpqtse,smpqtsem,smpqtsef)

ss , -cbind(smpm,smpse)

write.table(tt,file ¼ “D:/Dissertation/paper3/nhanes/synbmiqt_lwt.csv”,row.

names ¼ FALSE,sep ¼ “,”)

write.table(ss,file ¼ “D:/Dissertation/paper3/nhanes/synbmimn_lwt.csv”,

row.names ¼ FALSE,sep ¼ “,”)

}

##Example##

syn_bmi(dt ¼ dt, N ¼ 100000, Bt1 ¼ 50, Bt2 ¼ 5, Mt ¼ 5)

dt , -read.csv(“D:/Dissertation/paper3/nhanes/synbmi.csv”)

#Set the synthetic population size about 10 times the sample size;

N , -100000
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#Normalize the weights to sum up to the assumed synthetic population size;

dt[,“predwt”] , -dt[,“predwt”]*N/sum(dt[,“predwt”])

sum(dt$predwt)

#Recode the missing values to 999;

dat[is.na(dat)] , -999
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Book Review

Carol House1

Lin, X., Genest, C., Banks, D., Molenberghs, G., Scott, D., and Wang, J. Past, Present, and

Future of Statistical Science. 2014. Boca Raton, FL: CRC Press. ISBN 9781482204964, 646 pp.,

£47.59.

This volume was commissioned by the Committee of Presidents of Statistical Societies

(COPSS) (the societies are the American Statistical Association, the Institute of

Mathematical Statistics, the Statistical Society of Canada, and the Eastern and Western

North American Regions of the International Biometric Society) to celebrate the

Committee’s 50th anniversary and the International Year of Statistics. It is a celebration of

statistical science – its past, its people, and its influence on important issues of our time.

It is a book of reflections and personal stories that provide insight into these past

developments and the role of statisticians within the broader science community. The book

contains 52 essays in which the authors speak personally about their interests, their career

decisions, the barriers they faced, and their passion for their chosen field. The contributors

are award winners, having received one or more of the prestigious awards sponsored by

COPSS (the awards are the R. A. Fisher Lectureship, the Presidents’ Award, the George

W. Snedecor Award, the Elizabeth L. Scott Award, and the F. N. David Award). The

preface presents the purpose behind the volume’s construction: “through the contributions

of a distinguished group of statisticians, this volume aims to showcase the breadth and

vibrancy of statistics, to describe current challenges and new opportunities, to highlight

the exciting future of statistical science, and to provide guidance for future generations of

statisticians” (p. xvii). They have succeeded.

Who should read this book? I would include anyone opening a copy of the Journal of

Official Statistics among the target readership. This is a collection of essays that is meant to

be read in a nonlinear fashion. Each essay is personal – imparting some knowledge from

the past and providing inspiration. Each is short and enjoyable to read. Many of the essays

are directed at young researchers. This volume would thus be of particular interest to those

younger individuals and of use to their educators and mentors – those individuals who are

helping develop the next generation of statisticians. Others will read the essays, smile and

remember their own journeys. The essays provide important and very personal links to our

past as a profession. They also provide a sense of enthusiasm for working in our profession

and tackling challenges and solving problems that can have real impact on society.

The book is divided into five parts. The first part is a brief overview of the 50-year

history of COPSS. It provides an appropriate introduction to the overall volume, though in

itself it is not exciting reading. However, I found the tables listing all recipients of the five
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aforementioned awards interesting. For example, the R. A. Fisher Lectureship was first

awarded in 1964 to Maurice S. Bartlett, whose lecture was entitled R. A. Fisher and the

Last Fifty Years of Statistical Methodology. Florence N. David was the first recipient

(1992) of the Elizabeth L. Scott Award, and a separate award in David’s name was later

created in 2001.

Part II, Reminiscences and Personal Reflections on Career Paths, tells personal stories of

the various paths that brought these individuals from different backgrounds to a passionate

pursuit of statistics. Brogan says that her “educational and career paths had twists and turns

and were not planned in advance, but an underlying theme throughout was my strong

interest and ability in mathematics and statistics” (p. 73). Lindsay confides: “I must confess

that at this time I was still a long ways from being a fan of statistics. It seemed like a messy

version of mathematics constructed from a variety of disconnected black boxes : : : but the

seeds of change had been planted in me” (p. 85). And there were barriers. Shaffer reflects on

her high-school preparation, saying: “I wanted to take four years of mathematics, but that

turned out to be a problem : : : boys were automatically enrolled in mathematics in the first

semester of 9th grade, and girls in a language of their choice” (p. 50).

Part III, Perspectives on the Field and Profession, provides insight into such things as

the impact of statistical science on society and the role of statisticians in the interplay

between statistics and science. Fienberg talks about the role of the statistician “in service

to the nation” and the importance of practical problems. He advises readers, especially

students and junior faculty, “to get engaged in the kinds of problems I’ll describe, both

because I’m sure you will find them interesting and also because they may lead to your

own professional development and advancement” (p. 142). Hall discusses the beginnings

of computer-intensive statistics, which started about the same time as his involvement in

statistical research. Lin emphasizes the importance of collaboration within the science

community, saying: “I appreciate more and more to be a scientist first and then a

statistician : : : [and to] closely collaborate with subject-matter scientists” (p. 192).

Part IV, Reflections on the Discipline, contains 24 essays that collectively cover many

important past developments in statistics along with challenges and opportunities into the

future. For example, Berger discusses the importance of conditioning in statistics. Dunson

reflects on the “past, present, and future of nonparametric Bayesian statistics : : : on the

landscape, open problems and promising directions in modern big data applications”

(p. 281). Prentice discusses contributions that the statistics discipline has made, and

continues to make, in the area of public health research. In the shadow of the recent

financial crisis, Lai discussed statistics in the new era of finance.

Part V, Advice for the Next Generation, provides examples of inspiration, points to the

importance of working in collaboration with others, getting published, and ends with

“thirteen rules for giving a really bad talk.”

In summary, Past, Present, and Future of Statistical Science is an excellent volume that

helps us connect both to our roots and our future. The essays are independent of one another

and can be read in any order. It is easy to pick up the volume, select an essay, and enjoy

20 minutes of reflection. Lindsey opines on the importance of such reflection: “one aspect

of academic life that has been frustrating to me is its ruthless vitality, always rushing

forward, often ending up looking like a garden sadly in need of weeding. I wish there were

more reflection, more respect for the past” (p. 84). This volume assists with that reflection.
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