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Unit Root Properties of Seasonal Adjustment and
Related Filters: Special Cases

William R. Bell1

Bell (2012) catalogued unit root factors contained in linear filters used in seasonal adjustment
(model-based or from the X-11 method) but noted that, for model-based seasonal adjustment,
special cases could arise where filters could contain more unit root factors than was indicated
by the general results. This article reviews some special cases that occur with canonical
ARIMA model based adjustment in which, with some commonly used ARIMA models, the
symmetric seasonal filters contain two extra nonseasonal differences (i.e., they include an
extra (1 2 B)(1 2 F)). This increases by two the degree of polynomials in time that are
annihilated by the seasonal filter and reproduced by the seasonal adjustment filter. Other
results for canonical ARIMA adjustment that are reported in Bell (2012), including properties
of the trend and irregular filters, and properties of the asymmetric and finite filters, are
unaltered in these special cases. Special cases for seasonal adjustment with structural ARIMA
component models are also briefly discussed.

Key words: time series; linear filter; ARIMA model-based seasonal adjustment; canonical
decomposition.

1. Introduction

Linear filters used in seasonal adjustment contain various unit root factors. Seasonal unit

root factors are those of the seasonal summation operator UsðBÞ ¼ 1þ Bþ · · ·þ Bs21,

where B is the backshift operator (Byt ¼ yt21 for any time series yt) and s is the seasonal

period. A filter that contains Us(B) will annihilate fixed seasonal effects, a desirable

property for seasonal adjustment, trend, and irregular filters. The other unit root factors of

interest are powers of the differencing operator 1 2 B. A filter that contains (1 2 B)d for

d . 0 will annihilate polynomials in t up to degree d 2 1. This is generally the case for

seasonal and irregular filters, and it implies that the corresponding seasonal adjustment and

trend filters will reproduce polynomials up to degree d 2 1. This property has been of

significant interest historically, as many empirical trend filters were explicitly designed to

reproduce polynomials of a certain degree. For example, the symmetric Henderson trend

filters will reproduce cubic polynomials (Kenny and Durbin 1982).
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Bell (2012) gave general results on unit root factors contained in linear filters used in

model-based and X-11 seasonal adjustment. It was noted there that special cases could

arise for model-based adjustment where the filters contain more unit root factors than is

obvious from the general results. The present article focuses on this point, examining some

special cases for canonical ARIMA model-based adjustment (Hillmer and Tiao 1982;

Burman 1980; Gomez and Maravall 1996) where the symmetric seasonal filters include

two extra differencing operators, written as (1 2 B)(1 2 F), where F ¼ B 21 is the

forward shift operator (Fyt ¼ ytþ1). In these cases the symmetric seasonal adjustment

filters will reproduce polynomials of two degrees higher than is indicated by the general

results given in Bell (2012).

Section 2 defines notation and the framework used for linear model-based seasonal

adjustment. Sections 3 and 4 provide results showing when the extra (1 2 B)(1 2 F)

factor occurs in two models considered explicitly by Hillmer and Tiao (1982), which we

hereafter cite as HT: the ARIMA(0,0,1)(0,1,1)s model and the ARIMA(0,1,1)(0,1,1)s

(airline) model. Values considered for the seasonal period s are 2 (biannual), 4 (quarterly),

and 12 (monthly). Section 5 discusses some additional related results for canonical

ARIMA model-based adjustment, while Section 6 briefly considers special cases for

structural component models. Technical details of the derivations in Sections 3 and 4 are

reserved to two Appendices.

2. Notation and Framework for Model-Based Seasonal Adjustment

The additive decomposition used in seasonal adjustment is:

yt ¼ St þ Tt þ It ð1Þ

where yt is the observed time series (possibly after transformation, e.g., taking logarithms),

and St, Tt, and It are the seasonal, trend, and irregular components. We also let Nt ¼

Tt þ It ¼ yt 2 St denote the nonseasonal component, the estimate of which is known as

the seasonally adjusted series. Many of the models proposed for model-based seasonal

adjustment use component models that can be written in the following form:

UsðBÞSt ¼ ut

ð1 2 BÞdTt ¼ vt ð2Þ

It , i:i:d:Nð0;s 2
I Þ

where ut and vt are stationary time series that are independent of each other and of It. Often

ut and vt are assumed to follow stationary autoregressive-moving average models (Box and

Jenkins 1970), in which case yt follows an ARIMA (autoregressive-integrated-moving

average) model that can be written:

fðBÞð1 2 BÞd21ð1 2 BsÞyt ¼ uðBÞat ð3Þ

where fðBÞ ¼ 1 2 f1B 2 · · · 2 fpBp is the AR operator, uðBÞ ¼ 1 2 u1B 2 · · · 2 uqBq

is the MA operator, and at is white noise, independent and identically distributed Nð0;s 2
a Þ.

The operators f(B) and u(B), which may be products of nonseasonal and seasonal
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polynomials in B, are assumed to have all their zeros outside the unit circle. The

expression of the model as presented in (3) requires d $ 1, which is standard in seasonal

adjustment practice. Note that 1 2 Bs ¼ ð1 2 BÞUsðBÞ so ð1 2 BÞd21ð1 2 BsÞ ¼

ð1 2 BÞdUsðBÞ.

This model framework covers the ARIMA model-based approach to seasonal

adjustment as developed in HT and Burman (1980), and implemented in the TRAMO-

SEATS software of Gomez and Maravall (1996) and in the X-13-ARIMA-SEATS

program (Monsell 2007). It also covers the structural components models of Harvey

(1989), Durbin and Koopman (2001), and Kitagawa and Gersch (1984). Though Harvey

did not formulate all his component models in ARIMA form, they can generally be written

this way – see Bell (2004).

Let wt ¼ ð1 2 BÞdUsðBÞyt be the differenced observed series. From (1) and (2),

wt ¼ ð1 2 BÞdut þ UsðBÞvt þ ð1 2 BÞdUsðBÞIt: ð4Þ

Let gwðkÞ ¼ Covðwt;wtþkÞ and let gw(B) be the autocovariance generating function

(ACGF) of wt, defined as gwðBÞ ;
P1

k¼21gwðkÞB
k, where we treat B for this purpose as a

complex variable. Given the ARMA model fðBÞwt ¼ uðBÞat, and the orthogonality of the

components in (4), it follows that (Box and Jenkins 1970, 49)

gwðBÞ ¼s 2
a uðBÞuðFÞ=fðBÞfðFÞ ð5Þ

¼ ð1 2 BÞdð1 2 FÞdguðBÞþUsðBÞUsðFÞgvðBÞþð1 2 BÞdð1 2 FÞdUsðBÞUsðFÞs
2
I : ð6Þ

Given ARMA models for ut and vt, analogous expressions to (5) can be given for their

ACGFs, gu(B) and gv(B). From wt¼ ð1 2 BÞdUsðBÞyt, the pseudo ACGF of yt is defined

as gyðBÞ ¼ gwðBÞ=½ð1 2 BÞdð1 2 FÞdUsðBÞUsðFÞ�: We also define zt¼ ð1 2 BÞdNt ¼ vtþ

ð1 2 BÞdIt with ACGF gzðBÞ ¼ gvðBÞþ ð1 2 BÞdð1 2 FÞds2
I .

Bell (1984 and 2012, 445) notes that the minimum mean squared error (MMSE)

linear signal extraction estimate of St, given the full doubly infinite realization of the

series {yt}, is

Ŝt ¼ vSðBÞyt where vSðBÞ ¼
guðBÞ

gwðBÞ
ð1 2 BÞdð1 2 FÞd: ð7Þ

Analogous to (7), the linear filters for the MMSE estimates of Nt, Tt, and It are

vNðBÞ ¼
gzðBÞ

gwðBÞ
UsðBÞUsðFÞ ð8Þ

vT ðBÞ ¼
gvðBÞ

gwðBÞ
UsðBÞUsðFÞ ð9Þ

vIðBÞ ¼
s2

I

gwðBÞ
UsðBÞUsðFÞð1 2 BÞdð1 2 FÞd: ð10Þ

Note also that since N̂t ¼ yt 2 Ŝt and T̂t ¼ N̂t 2 Ît, it follows that vNðBÞ ¼ 1 2 vSðBÞ and

vT ðBÞ ¼ 1 2 vSðBÞ2 vIðBÞ.
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Simple inspection of (7)–(10) led to the results reported in Bell (2012) for unit root

factors contained in these symmetric filters. The specific result of interest here is that vS(B)

contains (1 2 B)d(1 2 F)d, implying that vS (B) annihilates, and vN(B) thus reproduces,

polynomials up to degree 2d 2 1. The models most commonly used in seasonal

adjustment have d ¼ 2, in which case the symmetric seasonal adjustment filter must

reproduce cubic polynomials in t. Less commonly used models have d ¼ 1, in which case

the symmetric seasonal adjustment filter must reproduce linear polynomials in t. Values of

d other than 1 or 2 are uncommon in practice.

Bell (2012, 446–447) also noted that:

Something not clear from [(7)–(10)] is whether these filters contain additional unit root

factors beyond those obvious from inspection. Bell (2010) notes that vI(B) will not

include additional unit root factors, while for vS (B), vN (B), and vT (B), additional unit

root factors are possible if they appear in the MA polynomials of the ARIMA models for

St, Nt, or Tt. For example, Hillmer and Tiao (1982, p. 67) examine a model for which

the canonical trend component has a factor of (1 þ B) in its MA polynomial. While

potential additional unit root factors in the filters considered can obviously be examined

for any particular model, general results are difficult to give.

The polynomial factors in the MA operator of any ARMA model, such as u(B) in (3),

correspond to double factors in the numerator of the autocovariance generating function –

note u(B)u(F) in Equation (5). So 1 2 B is a factor of the MA polynomial of the model for

ut if and only if the numerator of gu(B) contains (1 2 B)(1 2 F).

Sections 3 and 4 examine special cases that occur with canonical ARIMA model-based

seasonal adjustment where, for two commonly used models, and depending on the

seasonal period s and on the model parameter values, gu(B) indeed contains a factor of

(1 2 B)(1 2 F). From (7), this implies that vS (B) contains an extra (1 2 B)(1 2 F) so it

will annihilate, and vN (B) will reproduce, polynomials in t up to degree 2d þ 1, which is

two degrees higher than would otherwise be the case. For the common cases of d ¼ 1 or 2,

the extra (1 2 B)(1 2 F) means that the seasonal adjustment filter will reproduce cubic

and quintic polynomials, respectively, instead of just linear and cubic polynomials. This

property will not be shared by the corresponding trend filter vT (B) ¼ 1 2 vS(B) 2 vI(B)

because, as noted in the quotation above, the corresponding canonical irregular filter will

not include the extra (1 2 B)(1 2 F ) factor.

3. Results for the ARIMA(0,0,1)(0,1,1)s Model

The ARIMA(0,0,1)(0,1,1)s model is

ð1 2 BsÞyt ¼ ð1 2 u1BÞð1 2 u2BsÞat: ð11Þ

The nonseasonal and seasonal MA parameters u1 and u2 are both restricted to lie in the

interval (21, 1), though for seasonal adjustment interest focuses on the case of u2 $ 0, for

which the existence of the canonical decomposition is assured (HT, 68). Without loss of

generality for the derivations and results presented here, we assume that Var(at) ¼ 1.

HT’s canonical decomposition starts with a partial fractions decomposition of the

ACGF for yt. For the Model (11), HT (p. 68) observe that the seasonal part of this partial
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fractions decomposition can be expressed as Q*
s ðBÞ=UsðBÞUsðFÞ, where

Q*
s ðBÞ ¼

ð1 2 u2Þ
2ð1 2 u1BÞð1 2 u1FÞ

ð1 2 BÞð1 2 FÞ
1 2

1

s2
UsðBÞUsðFÞ

� �

: ð12Þ

Appendix A observes that 1 2 1
s 2 UsðBÞUsðFÞ contains (1 2 B)(1 2 F), and so can be

expressed as (1 2 B)(1 2 F)as(B), where as(B) is a symmetric polynomial in B and F.

Appendix A also gives as(B) for the cases of s ¼ 2, 4, and 12. Cancelling the

(1 2 B)(1 2 F) factors in the numerator and denominator, Q*
s ðBÞ simplifies to

(1 2 u2)2(1 2 u1B)(1 2 u1F)as(B). The spectrum of the canonical seasonal is then

(2p)21 times f sðlÞ ¼ Q*
s ðe

ilÞ=jUsðe
ilÞj

2
2 e s, where

e s ¼
l[½0;p�
min

Q*
s ðe

ilÞ

jUsðe ilÞj
2
¼
l[½0;p�
min

ð1 2 u2Þ
2½ð1þ u2

1Þ2 2u1cosðlÞ�asðe
ilÞ

jUsðe ilÞj
2

: ð13Þ

The value es becomes part of the canonical irregular variance. If the minimum value es

occurs at l ¼ 0, then the resulting canonical seasonal spectrum (2p)21fs(l) will be zero at

l ¼ 0, and the pseudo-ACGF of St, which is gu(B)/Us(B)Us(F), must include a 1 2 B

factor in gu(B) (so that gu(ei0) ¼ gu(1) ¼ 0). By symmetry of gu(B), it must then also

include a 1 2 F factor, and so in such cases the canonical seasonal filter vS(B) given by (7)

will include an extra (1 2 B)(1 2 F) in its numerator. In these cases, the canonical vS(B)

for the (0,0,1)(0,1,1)s model includes in total (1 2 B)2(1 2 F)2. Then vS(B) will

annihilate, and vN(B) will reproduce, cubic polynomials in t, not just linear polynomials

(the standard result for this model, which has d ¼ 1).

For given values of the nonseasonal MA parameter u1, the value of l that minimizes

fs(l) was determined through inspection by computing fs(l) over a detailed grid of l

values (from 0 to p in increments of .01) and picking off the minimizing value of l.

Examining the results for a detailed set of u1 values revealed those values of u1 for which

the minimum of fs(l) occurs at l ¼ 0, so that vS(B) from the (0,0,1)(0,1,1)s model contains

(1 2 B)2(1 2 F)2 and not just (1 2 B)(1 2 F). Table 1 gives the results. Note that for

s ¼ 2, vS(B) contains (1 2 B)2(1 2 F)2 for any value of u1, while for s ¼ 4 and s ¼ 12,

vS(B) contains (1 2 B)2(1 2 F)2 only for limited intervals of u1. In fact, the result for

s ¼ 2 can be established analytically, since it is easy to show that f2(l) is increasing in l

over [0,p ] for any value of u1. Another point worth noting is that, for u1 . 0, the

ð1þ u2
1Þ2 2u1cosðlÞ factor in (13), which does not depend on s, is an increasing function

of l on [0,p ], while as(e
il)/jUs(e

il)j2, which does not depend on u1, has a global minimum

at l ¼ 0. Hence, for each s and for all u1 . 0, the minimum of fs(l) occurs at l ¼ 0.

Finally, note that the results of Table 1 are not affected by the value of u2.

To provide further insight into the results of Table 1, Figure 1 shows plots of fs(l) (but

omits the (1 2 u2)2 factor, since it does not depend on l) for both the quarterly and

Table 1. Range of values of u1 for which the canonical seasonal filter vS(B) from (7) for the

ARIMA(0,0,1)(0,1,1)s model (11) includes (1 2 B)2(1 2 F)2, not just (1 2 B)(1 2 F).

Seasonal period s 2 4 12

Range of values of u1 all u1 [ (21,1) 2 .35 , u1 , 1 2 .28 , u1 , 1
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monthly cases, for three values of u1: 2 .2, 2 .3, and 2 .4. Features common to these plots,

and to plots of fs(l) for other values of u1, include: a local minimum at l ¼ 0; infinite

peaks at the seasonal frequencies; and, necessarily, dips between the seasonal frequencies.

The plots also show, consistent with Table 1, that (i ) for u1 ¼ 2 .2, fs(l) is minimized at

l ¼ 0 for both the quarterly and monthly cases, (ii ) for u1 ¼ 2 .3, this occurs for the

quarterly but not the monthly cases, and (iii ) for u1 ¼ 2 .4, this occurs for neither the

quarterly nor the monthly cases. In fact, as u1 decreases from 1 towards 21, the dips in
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Fig. 1. Plots of the (rescaled) canonical seasonal component spectrum, fs(l)/(1 2 u2)2, for the

ARIMA(0,0,1)(0,1,1)s model. Plots are given for both the quarterly (left) and monthly (right) cases, for three

values of u1: 2 .2, 2 .3, and 2 .4. When the minimum of fs(l) occurs at frequency zero, the canonical symmetric

seasonal filter includes (1 2 B)2(1 2 F)2. When the minimum occurs at a nonzero frequency, the canonical

symmetric seasonal filter includes only (1 2 B)(1 2 F ).

Journal of Official Statistics6

Unauthenticated
Download Date | 2/28/17 9:43 AM



fs(l) between the seasonal frequencies decrease relative to the local minimum at l ¼ 0.

Eventually, a u1 value is reached beyond which the global minimum of fs(l) occurs at the

dip between the last two seasonal frequencies, rather than at l ¼ 0. These u1 values define

the lower limits of the ranges given by Table 1.

4. Results for the ARIMA(0,1,1)(0,1,1)s (Airline) Model

The ARIMA(0,1,1)(0,1,1)s (airline) model is (Box and Jenkins 1970, sec. 9.2)

ð1 2 BÞð1 2 BsÞyt ¼ ð1 2 u1BÞð1 2 u2BsÞat: ð14Þ

As with the (0,0,1)(0,1,1)s model, the nonseasonal and seasonal MA parameters u1 and u2

are restricted to lie in the interval (21,1), though again interest focuses on the case of

u2 $ 0, for which existence of the canonical decomposition is assured. We again assume

without loss of generality that Var(at) ¼ 1.

HT (p. 67) observe that, for yt following Model (14) with u2 $ 0, the seasonal part of the

partial fractions decomposition ofgy(B) can be expressed as Q*
s ðBÞ=UsðBÞUsðFÞ, where now

Q*
s ðBÞ ¼

ð1 2 u2Þ
2

ð1 2 BÞ2ð1 2 FÞ2

£
ð1 2 u1Þ

2

4
ð1þ BÞð1þ FÞ 1 2

1

s2
UsðBÞUsðFÞ2

s2 2 1

12s2
ð1 2 BsÞð1 2 F sÞ

� ��

þ
ð1þ u1Þ

2

4
ð1 2 BÞð1 2 FÞ 1 2

1

4s2
UsðBÞUsðFÞð1þ BÞð1þ FÞ

� ��

:

ð15Þ

Appendix B simplifies the expression in braces in (15), showing that both of its terms

contain (1 2 B)2(1 2 F)2, so that after cancellation with the (1 2 B)2(1 2 F)2 of the

denominator, Q*
s ðBÞ simplifies to

Q*
s ðBÞ ¼ ð1 2 u2Þ

2 ð1 2 u1Þ
2

4
ð1þ BÞð1þ FÞms1ðBÞ þ

ð1þ u1Þ
2

4
ms2ðBÞ

� �

where ms1(B) and ms2(B) are symmetric polynomials given in Appendix B. The spectrum of

the canonical seasonal is then (2p)21 times f sðlÞ ¼ Q*
s ðe

ilÞ=jUsðe
ilÞj

2
2 e s, where now

e s ¼
l[½0;p�
min

ð1 2 u2Þ
2

jUsðe ilÞj
2

ð1 2 u1Þ
2

4
2½1þ cosðlÞ�ms1ðe

ilÞ þ
ð1þ u1Þ

2

4
ms2ðe

ilÞ

� �

:

For s ¼ 2, 4, and 12, and for a detailed set of values of u1, the minima es were again

determined by inspection, noting cases when the minimum occurs at l ¼ 0, so gu(B)

contains (1 2 B)(1 2 F), implying that vS(B) contains (1 2 B)3(1 2 F)3 and not just

(1 2 B)2(1 2 F)2. Table 2 gives the results which, as for Table 1, are unaffected by the value

of u2. Analogously to Table 1, we see that, for s ¼ 2, vS(B) contains (1 2 B)3(1 2 F)3 for

any value of u1, while for s ¼ 4 and s ¼ 12, this occurs only for limited intervals of u1. This

is unsurprising, since plots of fs(l) (not shown) reveal broadly similar patterns to the plots of

Figure 1. However, the limited intervals for s ¼ 4 and s ¼ 12 given in Table 2 are much
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smaller than the corresponding intervals given in Table 1, and they exclude some positive

values of u1.

To illustrate the results of Table 2, the symmetric seasonal filter vS(B) from the

canonical decomposition of the quarterly airline model was applied to polynomials of

the form pðkÞt ¼ 100 £ ðt 2 1Þk=30k for k ¼ 4 and k ¼ 5. These two polynomials both

take the values 0 at t ¼ 1 and 100 at t ¼ 31, while at t ¼ 61, the last time point used, they

take the values 1,600 (for k ¼ 4) and 3,200 (for k ¼ 5). Figure 2 plots the resulting values

of vSðBÞp
ð4Þ
t for t ¼ 31 against the value of the airline model parameter u1, for values of u1

covering the interval 2 .5 # u1 # .5. The parameter u2 was set to zero to minimize the

effective length of vS(B), so that its application at the mid-point of the series (t ¼ 31)

would be negligibly affected by the absence of data prior to t ¼ 1 and after t ¼ 61.

Computations were done with the X-13-ARIMA-SEATS program.

Table 2 says that the values vSðBÞp
ð4Þ
t should be zero for u1 . .11, which is indeed the

case in Figure 2. For u1 , .11, the values are positive, and they increase as u1 decreases

further and further below .11. However, considering that the value of pð4Þt is 100 at t ¼ 31,

and increases as t increases past 31, the seasonally filtered values seem quite small. The

analogous plot of vSðBÞp
ð5Þ
t (not shown) is visually identical to Figure 2, but the values of

vSðBÞp
ð5Þ
t are about twice those of vSðBÞp

ð4Þ
t , so they are still small. Thus, even for

u1 , .11, the symmetric quarterly canonical seasonal filter comes close to reproducing

these fourth and fifth degree polynomials.

−0.4 −0.2 0.0 0.2 0.4

0.0000

0.0010

0.0020

θ1

Fig. 2. Canonical decomposition of quarterly airline model for various values of u1: Results from applying the

symmetric seasonal filter to a fourth degree polynomial, pð4Þt , in t. The solid curve shows the values of vSðBÞp
ð4Þ
t at

time point 31 (where pð4Þ31 ¼100), plotted against the value of u1 from the airline model. The dotted vertical line is

at u1 ¼ .11. See text for further details.

Table 2. Range of values of u1 for which the canonical seasonal filter vS(B) from (7) for the

ARIMA(0,1,1)(0,1,1)s (airline) model (14) includes (1 2 B)3(1 2 F)3, not just (1 2 B)2(1 2 F)2.

Seasonal period s 2 4 12

Range of values of u1 all u1 [ (21,1) .11 , u1 , 1 .58 , u1 , 1

Journal of Official Statistics8

Unauthenticated
Download Date | 2/28/17 9:43 AM



5. Additional Results for Canonical ARIMA Model-Based Seasonal Adjustment

For any particular seasonal ARIMA model for which the canonical decomposition exists,

one can obviously check for the presence of additional unit root factors in the various

filters by examining the component models from the canonical decomposition. The

computations can be done with the original SEATS program (Gomez and Maravall 1996)

or the X-13-ARIMA-SEATS program (Monsell 2007), either of which will provide output

tables giving the roots of the AR and MA polynomials of the component models. This

approach was applied to the (1,1,0)(0,1,1)12 model (1 2 fB) (1 2 B)(1 2 B 12)yt ¼

(1 2 uB 12)at, for a range of values of f and specific values of u. This revealed that for

u ¼ .7, vS(B) contains an extra (1 2 B)(1 2 F) factor for f , 2 .6, while for u ¼ .8 this

occurs for f # 2 .5. The dependence of these results on the seasonal MA parameter is in

contrast to the results of Tables 1 and 2.

As noted earlier, for models of the form of (2) with s 2
I . 0, extra unit root factors are

not present in the symmetric canonical irregular filter, and so the symmetric canonical

trend filter will reproduce only polynomials up to degree 2d 2 1, not degree 2d þ 1.

For models with d ¼ 2 and when vS(B) does contain the extra (1 2 B)(1 2 F), vS(B)

then contains (1 2 B)3(1 2 F)3 while vI(B) contains only (1 2 B)2(1 2 F)2, so vN(B)

reproduces quintic polynomials in t while vT(B) reproduces only cubic polynomials. This

matches analogous results for X-11 symmetric filters reported in Bell (2012, 449).

The quotation in Section 2 noted that HT considered a model for which the canonical

trend model had a 1 þ B factor in its MA polynomial. This implies that gv(B) contains

(1 þ B)(1 þ F), so that vT (B) given by (9) has this extra (1 þ B)(1 þ F). In fact, HT’s

derivations for the (0,0,1)(0,1,1)s and the (0,1,1)(0,1,1)s models (the latter with u2 $ 0)

show that the canonical trend spectrum is minimized at l ¼ p. Thus, for both these

models, gv(B) contains (1 þ B)(1 þ F), so that vT (B) contains Us(B)Us(F)(1 þ B)

(1 þ F), which includes (1 þ B)2(1 þ F)2.

Extra 1 2 B factors will not be present in asymmetric seasonal filters because

application of such filters is equivalent to application of the corresponding symmetric

seasonal filter vS(B) after forecast and backcast extension of the time series. Since the

forecast and backcast extension will reproduce polynomials only up to degree d 2 1, this

becomes the limiting factor in the degree of polynomials reproduced by the asymmetric

seasonal adjustment and trend filters (Bell 2012, 447). The same argument applies to

seasonal unit root factors contained in the asymmetric seasonal adjustment, trend,

and irregular filters. For example, though we noted above that, for the models examined

by HT, gv(B) contains (1 þ B)(1 þ F) so that vT (B) includes (1 þ B)2(1 þ F)2 instead

of just (1 þ B)(1 þ F), the asymmetric trend filters will include only the single 1 þ B

factor.

The symmetric finite filters (the filters applied at t ¼ m þ 1 for a time series of length

2m þ 1) provide some further exceptions to the results for both canonical ARIMA and

structural component models. For the case of d ¼ 1, all the finite seasonal and irregular

filters will include 1 2 B, so all will annihilate constants, which are then reproduced by the

corresponding finite seasonal adjustment and trend filters (Bell 2012, Table 1). However,

the finite symmetric seasonal and irregular filters must, by symmetry, then include

(1 2 B)(1 2 F), so they will annihilate linear polynomials in t, which are then what is
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reproduced by the symmetric finite seasonal adjustment and trend filters. The symmetry

argument extends to odd values of d . 1, though values of d $ 3 are seldom used in

practice. Finally, since all the finite trend filters include Us(B), which includes the factor

1 þ B, the symmetric finite trend filters must include (1 þ B)(1 þ F) (Findley and

Martin 2006, 29).

6. Special Cases for Structural Component Models

Special case results for the structural models proposed by the references cited in Section 2

differ from the special case results presented for canonical ARIMA seasonal adjustment.

For the structural models, a zero in the spectrum of a component will, in most cases, arise

only if model fitting estimates zero for the variance of the component’s stationary part –

ut, vt, or It in (2). If that happens, the component becomes deterministic, not stochastic. If

ŝ2
I ¼ 0, then It ¼ 0, so it can be dropped from the model, and Nt ¼ Tt. Assuming no other

components have variance zero, the previous results on unit root factors in the seasonal

and seasonal adjustment filters still apply.

If var(vt) is estimated to be zero, the fitted model then has (1 2 B)dTt ¼ 0, implying that

Tt is a polynomial in t of degree d 2 1. We cannot leave the component model as

(1 2 B)dTt ¼ vt with var(vt) ¼ 0 and apply the infinite filter signal extraction formulas

(7)–(10) since, from (6), setting gv(B) ¼ 0 will produce a factor of (1 2 B)d(1 2 F)d

in gw(B), violating an assumption that underlies these formulas. Instead, we replace

the stochastic component Tt in the model by a polynomial regression function b0 þ b1t

þ · · · þ bd21t d21. If this form of signal extraction estimation (including regression

estimation of the bjs) is applied to a time series yt that is exactly a polynomial in t of degree

d 2 1 or less, the polynomial will be reproduced in T̂t, and thus also in

N̂t ¼ T̂t þ vIðBÞ½yt 2 T̂t�. This contrasts with the symmetric infinite filter estimates for

seasonal adjustment and trend estimation that apply with var(vt) . 0, which reproduce

polynomials of degree 2d 2 1. For related discussion on treatment of trend constants, see

Bell (2010, 5–6), including the proof given of Theorem 2.

Having var(vt) ¼ 0 is acceptable for finite sample signal extraction, but will produce the

same results as modeling Tt as a d 2 1 degree polynomial regression function. Analogous

results to those just described hold if ut is estimated to have zero variance so St becomes

fixed seasonal effects. See Harvey (1981) and Bell (1987) for discussion related to these

two points.

Special case results are more involved for the local linear trend model of Harvey (1989,

37), which is

ð1 2 BÞTt ¼ bt þ 11t where ð1 2 BÞbt ¼ 12t

with 11t and 12t independent white noise series with variances s2
11

and s2
12

. To summarize

the results, if s 2
12

. 0, then vN(B) and vT(B) in (8) and (9) reproduce cubics, while if

s2
12
¼ 0, then signal extraction estimation of Nt and Tt reproduces only linear functions of

t. Note that estimating s2
12
¼ 0 but s 2

11 . 0 occurs frequently in practice (Bell and Pugh

1990; Shephard 1993). For further discussion, see Bell (2015).

Journal of Official Statistics10

Unauthenticated
Download Date | 2/28/17 9:43 AM



Appendix A: Derivation Details for the ARIMA(0,0,1)(0,1,1)s Model

We consider (12):

Q*
s ðBÞ ¼

ð1 2 u2Þ
2ð1 2 u1BÞð1 2 u1FÞ

ð1 2 BÞð1 2 FÞ
1 2

1

s2
UsðBÞUsðFÞ

� �

:

Applying Us(B) or Us(F) to a constant k yields s £ k. Thus, applying 1 2 1
s 2 UsðBÞUsðFÞ to 1

yields 0, showing that 1 2 1
s 2 UsðBÞUsðFÞ contains a factor (1 2 B). Since 1 2 1

s 2 UsðBÞUsðFÞ

has symmetric coefficients, it must also contain (1 2 F), and so can be expressed as

(1 2 B)(1 2 F)as(B), where the polynomialas(B), which is of degree s 2 2 in B and F, also

has symmetric coefficients. Cancelling the (1 2 B)(1 2 F) factors in the numerator and

denominator of Q*
s ðBÞ then simplifies it to ð1 2 u2Þ

2ð1 2 u1BÞð1 2 u1FÞasðBÞ.

The coefficients of as(B) can be obtained using the following easily verified Lemma on

division of polynomials in B by 1 2 B and 1 2 F.

Lemma: Let aðBÞ ¼ a0 þ a1Bþ · · ·þ akBk be a polynomial in B of degree k . 0. Then

(i) aðBÞ
12B
¼ a0 þ ða0 þ a1ÞBþ · · ·þ ða0 þ · · ·þ ak21ÞB

k21 þ ða0þ· · ·þakÞB
k

12B
, and

(ii) aðBÞ
12F
¼ akBk þ ðak þ ak21ÞB

k21 þ · · ·þ ðak þ · · ·þ a1ÞBþ
ðakþ· · ·þa0Þ

12F
:

If a0 þ · · ·þ ak ¼ 0, then a(B) contains 1 2 B (equivalently, contains 1 2 F) as a factor.

Note from the Lemma that the coefficients of the k 2 1 degree polynomial that results from

dividing a(B) by 1 2 B can be obtained by cumulatively summing the coefficients of a(B) or,

for division by 1 2 F, by cumulatively summing the coefficients of a(B) in reverse order.

Applying this approach to 1 2 1
s 2 UsðBÞUsðFÞ yields the followingas(B) for s ¼ 2, 4, and 12:

s ¼ 2 : a2ðBÞ ¼
1

4

s ¼ 4 : a4ðBÞ ¼
1

16
½10þ 4ðBþ FÞ þ ðB2 þ F 2Þ�

s ¼ 12 : a12ðBÞ ¼
1

144
½286þ 220ðBþ FÞ þ 165ðB2 þ F 2Þ þ 120ðB3 þ F 3Þ

þ 84ðB4 þ F 4Þ þ 56ðB5 þ F 5Þ þ 35ðB6 þ F 6Þ þ 20ðB7 þ F 7Þ

þ 10ðB8 þ F 8Þ þ 4ðB9 þ F 9Þ þ ðB10 þ F 10Þ�:

Appendix B: Derivation Details for the ARIMA(0,1,1)(0,1,1)s (Airline) Model

For the airline model, we consider (15):

Q*
s ðBÞ ¼

ð1 2 u2Þ
2

ð1 2 BÞ2ð1 2 FÞ2

£
ð1 2 u1Þ

2

4
ð1þ BÞð1þ FÞ 1 2

1

s2
UsðBÞUsðFÞ2

s2 2 1

12s2
ð1 2 BsÞð1 2 F sÞ

� ��

þ
ð1þ u1Þ

2

4
ð1 2 BÞð1 2 FÞ 1 2

1

4s2
UsðBÞUsðFÞð1þ BÞð1þ FÞ

� ��

:
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We know that 1 2 1
s 2 UsðBÞUsðFÞ ¼ ð1 2 BÞð1 2 FÞasðBÞ and ð1 2 BsÞð1 2 F sÞ ¼

ð1 2 BÞð1 2 FÞUsðBÞUsðFÞ. The first term in brackets on the right-hand side above is

thus (1 2 B)(1 2 F) times asðBÞ2 s 221
12s 2 UsðBÞUsðFÞ. If, for each of the cases s ¼ 2, 4, and

12, we cumulatively sum and reverse sum the coefficients of asðBÞ2 s 221
12s 2 UsðBÞUsðFÞ, the

first and last values in this twice-summed sequence are both zero. Thus, from the Lemma,

asðBÞ2 s 221
12s 2 UsðBÞUsðFÞ ¼ ð1 2 BÞð1 2 FÞms1ðBÞ, where ms1(B) is the symmetric

polynomial whose coefficients are the nonzero terms of the sequence produced by

the summing and reverse summing. For the second term in brackets on the right-hand

side above, if we cumulatively sum and reverse sum the coefficients of

1 2 1
4s 2 UsðBÞUsðFÞð1þ BÞð1þ FÞ, we again get zero for the first and last coefficients,

so 1 2 1
4s 2 UsðBÞUsðFÞð1þ BÞð1þ FÞ ¼ ð1 2 BÞð1 2 FÞms2ðBÞ for the symmetric poly-

nomial ms2(B) whose coefficients we just produced. The terms in the second and third lines

of the Expression (15) for Q*
s ðBÞ thus both contain (1 2 B)2(1 2 F)2, and cancelling this

with the (1 2 B)2(1 2 F)2 in the denominator shows that

Q*
s ðBÞ ¼ ð1 2 u2Þ

2 ð1 2 u1Þ
2

4
ð1þ BÞð1þ FÞms1ðBÞ þ

ð1þ u1Þ
2

4
ms2ðBÞ

� �

:

The polynomials ms1(B) and ms2(B) for the cases of s ¼ 2, 4, and 12 are given below.

s ¼ 2 : m2;1ðBÞ ¼
1

4
and m2;2ðBÞ ¼

1

16
ð6þ Bþ FÞ

s ¼ 4 : m4;1ðBÞ ¼
3

16
½26þ 16ðBþ FÞ þ 5ðB2 þ F 2Þ�

m4;2ðBÞ ¼
1

64
½44þ 19ðBþ FÞ þ 6ðB2 þ F 2Þ þ ðB3 þ F 3Þ�

s ¼ 12 : m12;1ðBÞ ¼
1

1; 728
½16; 874þ 16; 016ðBþ FÞ þ 14; 091ðB2 þ F 2Þ

þ 11; 616ðB3 þ F 3Þ þ 8; 988ðB4 þ F 4Þ þ 6; 496ðB5 þ F 5Þ

þ 4; 333ðB6 þ F 6Þ þ 2; 608ðB7 þ F 7Þ þ 1; 358ðB8 þ F 8Þ

m12;2ðBÞ ¼
1

576
½1; 156þ 891ðBþ FÞ þ 670ðB2 þ F 2Þ þ 489ðB3 þ F 3Þ

þ 344ðB4 þ F 4Þ þ 231ðB5 þ F 5Þ þ 146ðB6 þ F 6Þ

þ 85ðB7 þ F 7Þ þ 44ðB8 þ F 8Þ þ 19ðB9 þ F 9Þ

þ 6ðB10 þ F 10Þ þ ðB11 þ F 11Þ�:
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A Simple Method for Limiting Disclosure in Continuous
Microdata Based on Principal Component Analysis

Aida Calviño1,2

In this article we propose a simple and versatile method for limiting disclosure in continuous
microdata based on Principal Component Analysis (PCA). Instead of perturbing the original
variables, we propose to alter the principal components, as they contain the same information
but are uncorrelated, which permits working on each component separately, reducing
processing times. The number and weight of the perturbed components determine the level of
protection and distortion of the masked data. The method provides preservation of the mean
vector and the variance-covariance matrix. Furthermore, depending on the technique chosen
to perturb the principal components, the proposed method can provide masked, hybrid or fully
synthetic data sets. Some examples of application and comparison with other methods
previously proposed in the literature (in terms of disclosure risk and data utility) are also
included.

Key words: Statistical disclosure control; microdata protection; hybrid microdata; masking
method; propensity score.

1. Introduction and Motivation

Limiting disclosure risk is a very important and hard task that agencies that publish

collected data must deal with. The objective is to prevent users from being able to learn

personal information about a certain individual (data can refer to people, enterprises, etc.)

from any published data product. Statistical Disclosure Control (SDC) methods provide

means of protecting the providers’ confidential data, and approaches range from the

simplest methods such as noise addition (see Brand (2002) for a survey and comparison of

different SDC methods based on noise addition) to more complex ones such as synthetic

data generation based on multiple imputation (see Rubin 1993).

Roughly speaking, SDC methods can be divided into three main categories: masking

methods, (fully or partially) synthetic data generators, and hybrid data generators (for a full

review on SDC methods see Hundepool et al. 2012). Masking refers to the process of

producing a modified safe data set from the original, whereas synthetic data generators

replace the original data for all or some variables with modeled (synthetic) data designed to
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preserve specified properties of the original data. Finally, hybrid data generators combine

original and synthetic data in order to obtain protected data sets closer to the original one.

Regarding masking methods, Duncan and Pearson (1991) showed that many of them,

such as noise addition or microaggregation, fall into the broader category of “matrix

masking”, which consists of masking a matrix X as: ~X ¼ M1XM2 þM3, where ~X is the

masked matrix, M1 is a record-transforming mask, M2 is a variable-transforming mask,

and M3 is a displacing mask. For instance, simple noise addition is a particular case of

matrix masking where M1 and M2 are identity matrices and M3 is a matrix containing

realizations of a specific random vector. Another example of matrix masking is

microaggregation (which groups similar records together and releases the average record

of each group), where M2 and M3 are the identity and zero matrices, respectively, and M1 is

a block diagonal matrix such that the elements in a block can be considered similar and,

therefore, are aggregated together.

An interesting method that is worth mentioning, and which does not belong to the

previous category, is data swapping, which consists of swapping the values of the records

univariately. So as to maintain the variance-covariance matrix as close as possible to the

original one, rank swapping, a particular case of data swapping proposed by Moore (1996),

limits the range of swapping values to the ones whose rank does not differ more than a

prespecified threshold. As noted by Muralidhar et al. (2014), data swapping has a high

level of user acceptance, as the values themselves do not suffer any modification and the

unidimensional distributions are preserved.

As for synthetic data generators, the first and simplest method in this category was

proposed by Liew et al. (1985) and consists of releasing a random sample from the

statistical distribution underlying the original data set. However, it is not always possible

to find the underlying distribution. Alternatively, Rubin (1993) proposed to generate

synthetic data sets by means of the multiple imputation methodology, considering the

records to be protected as missing and imputing them. Although this method provides data

sets with very high utility, it is quite complex (see Raghunathan et al. (2003) or Drechsler

(2011) for more information on multiple imputation-based SDC methods). Therefore,

simpler alternatives to generate synthetic data have been explored, such as the Information

Preserving Statistical Obfuscation (IPSO) proposed by Burridge (2003). The IPSO method

basically sustitutes the original confidential variables with draws from a multivariate

normal distribution with parameters obtained conditional on the non-confidential

variables. Another alternative includes the synthetic data by bootstrap in Fienberg (1994),

which has some similarities with the methods in Liew et al. (1985) and Rubin (1993), and

consists of releasing a random draw from the smoothed empirical cumulative distribution

function of the original data.

When this kind of SDC methods are applied, it is possible to release only synthetic

variables (fully synthetic data) or to replace only the most sensitive or identifying

variables with synthetic ones and release the remaining original ones (partially synthetic

data). The main advantage of synthetic data is that, at first glance, no respondent re-

identification seems possible as the data are artificial. However, this is not always true, as

synthetic values can be very close to original ones if overfitting takes place. Nevertheless,

as stated by Hundepool et al. (2012), the intruder never knows if a unit in the released data

was actually in the original data set.
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Some authors, as noted in Muralidhar and Sarathy (2008), argue that the utility of

synthetic data sets is limited to the properties initially selected by the generating method.

For this reason, and as an attempt to obtain synthetic data sets closer to the original ones,

hybrid data generators have been proposed. Hybrid data methods combine original and

synthetic data and, depending on how the combination is computed, they can lead to data

closer to the original data or to the synthetic data (the definition of “combination” is

different depending on the author). Interesting references of this kind of methods are

Muralidhar and Sarathy (2008) and Domingo-Ferrer and González-Nicolás (2010), both of

whom proposed methods that exactly preserve the mean vector and the covariance matrix

of the original data and use the IPSO method in Burridge (2003) as a special case.

The method in Muralidhar and Sarathy (2008) (named MS in the sequel) essentially

proposes to substitute the confidential variables by a convex linear combination of the

original variables and the synthetic ones given by the IPSO method. Regarding the method

in Domingo-Ferrer and González-Nicolás (2010), which is known as MicroHybrid (MH),

the idea is to obtain the same groups as with the classical microaggregation but, instead of

releasing an aggregated value of the records in the group, they propose to apply the IPSO

method independently in each group and release the resulting synthetic values. Note that,

for both cases, the extreme cases imply releasing the original data set or a partially

synthetic one (as only the confidential variables are protected when applying these

methods).

The quality of an SDC method depends on the data utility and the disclosure risk of the

output data set. However, no general measure exists to evaluate those features as,

depending on the posterior use, preservation of some data characteristics may be more or

less important (see, for example, Sarathy and Krishnamurty 2002). Mateo-Sanz et al.

(2005) proposed the probabilistic information loss index in order to measure the

preservation of certain statistics, such as the mean or the variance. Similarly, Woo et al.

(2009) proposed to use propensity scores as a measure of global data utility. From the

disclosure risk perspective, a very common measure is distance-based record linkage,

which was first proposed in Pagliuca and Seri (1999). All these methods will be further

explainedand used in Section 4.

In this article we propose a simple method for limiting disclosure in continuous

microdata based on Principal Component Analysis (PCA). The use of PCA is not new in

the SDC literature. Banu and Nagaveni (2009) proposed a privacy-preserving clustering

method that released masked data obtained from projecting the original data onto a

transformation matrix built from the principal component loading matrix (which is

obtained from a subset of the original data). However, the utility of this method is limited

to cluster analysis, as it permits obtaining similar clusters but does not preserve any other

statistic.

Instead of perturbing the original variables directly, the proposed method alters the

principal components, as they contain the same information but are uncorrelated, which

permits working on each component separately. Due to this last fact, the computation cost

can be reduced, as it is less computationally intensive to work univariately than

multivariately. However, it is important to highlight that the method is only applicable to

continuous data, as it makes use of the classic PCA, which also requires continuous

variables. Extending the methodology to categorical variables is still an open question.
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The main advantages of the proposed method are:

1. Along the lines of the IPSO method in Burridge (2003) and the one proposed by

Muralidhar and Sarathy (2008), the proposed method aims to preserve the mean

vector and covariance matrix, as they are sufficient statistics for the multivariate

normal distribution. Moreover, even in the absence of normality, many parametric

statistical analyses (such as linear regression) will lead to the same result if those

statistics are preserved.

2. The proposed method is very flexible, as it permits choosing any (univariate or

multivariate) SDC method on the principal components as long as they preserve (at

least asymptotically) the mean and variance of the principal components. In this

sense, the method can provide masked, hybrid, or fully synthetic data sets depending

on the choice of method. This is a great advantage as it gives the user the freedom to

choose the kind of data set they need.

3. The proposed method is also fast, as the protection can be applied univariately, thus

reducing computation times and making the protection process easier and more

effective.

4. If one of the variables is a linear combination of the others, the number of

components is less than the number of the variables and this variable is not involved

in the protection process. This, however, does not represent a problem, because a

protected version of this variable can still be obtained by adding the corresponding

protected variables.

5. Some of the methods proposed in the literature (such as the IPSO method proposed

by Burridge 2003) impose the same level of perturbation in all the variables of the

data set. The proposed method, on the other hand, allows a choice of different levels

of perturbation by means of the weights of the original variables in the principal

components.

6. The proposed method is very simple and, therefore, more accessible to the public

than more complex alternatives. Nevertheless, it still leads to a good balance between

data utility and disclosure risk, as will be shown in Section 4. Finally, its

computational effort is linear in the number of records, making it suitable for large

data sets (see Subsection 3.4).

The article is organized as follows. In Section 2, we provide background on Principal

Components Analysis, including specific details on procedures. Section 3 is devoted to the

proposed model and analysis of its characteristics. Some examples of application and

comparison with other methods previously proposed in the literature (in terms of

disclosure risk and data utility) are shown in Section 4. Section 5 includes some guidelines

for the application of the proposed method. Finally, in Section 6 we give some conclusions

and future research lines.

2. Principal Component Analysis

In this section, we review PCA and how it is performed. PCA is a classic statistical

technique designed to identify the causes of data variability and to order them by

importance. PCA builds a linear transformation that chooses a new orthogonal coordinate
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system and changes the data coordinates such that the largest variance is captured by the

first axis, the second largest by the second, and so on. For a more comprehensive

description of PCA, see Jolliffe (2002).

Mathematically speaking, the principal components are found as follows. Let X be the

n £ m matrix containing n observations of m random variables with column-wise zero

empirical mean. PCA seeks to find a linear transformation of X as

Y ¼ XW; ð1Þ

where Y is the transformed data and W is the transforming matrix, whose columns (wi) are

the unit loading vectors.

The variance of the first principal component (y1) is given by:

y1 ¼ w 01X 0Xw1: ð2Þ

As we look for the most informative component, w1 must lead to a vector y1 with maximum

variance, that is,

w1 ¼ arg
t=ktk¼1
max {t0X 0Xt} ¼ arg

t
max

t 0X 0Xt

t0t

� �
: ð3Þ

Note that the right-most quotient corresponds to the renowned Rayleigh quotient, which

reaches its maximum value lmax (the highest eigenvalue of X 0X) when t is the

corresponding eigenvector. Therefore, y1 has maximum variance when w1 equals the

eigenvector associated with the highest eigenvalue of X 0X.

Following the same idea, it can be shown that the remaining loading vectors are given

by the remaining eigenvectors of X 0X sorted by importance (variability) according to its

corresponding eigenvalue.

To sum up, the principal components of an n £ m matrix X are given by the columns of

Y ¼ XW such that the columns of W are the eigenvectors of X 0X.

It is important to highlight the fact that the variables need to be standardized prior to

applying PCA, if they are not in the same unit (i.e., height and weight) or if, although being

in the same unit, they have greatly varying sizes (i.e., state level population and number of

employed persons), as the components are obtained as sums of the original variables.

3. Proposed Method

The proposed method consists of obtaining the principal components of the original data,

to later perturb them. The reason to choose to work with the principal components is

twofold: first, they are uncorrelated, which permits modifying them independently without

perturbing the variance-covariance structure; and second, the components can be sorted

by importance, which permits us to choose what components to alter, based on this

information. Furthermore, the components are obtained by linear combinations of the

original variables and, therefore, when perturbing a certain component, we are perturbing

mainly the original variables with corresponding higher weights. There might be cases

where the data owner is interested in perturbing a very sensitive variable more than others.

In that case, we can analyze the scores (or weights) of the original variables on the
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components and decide to perturb only those with highest weights for the sensitive

variable.

By using this method, all the variables in the data set need to be considered as,

otherwise, the correlation structure with other variables could be destroyed. However, as

mentioned above, it is possible to alter the sensitive variables more than the nonsensitive

ones by means of a careful selection of the components to be altered. Note that it is not

possible to leave any variables unchanged (unless no correlation exists between the

confidential and nonconfidential variables).

3.1. Illustrative Example

In this section we show an example of the PCA-based method, in order to better illustrate

the following sections. Consider the data set in Table 1, which consists of three continuous

variables X, Y, and Z, such that X and Y are highly correlated, and Z is negatively correlated

with both X and Y. Table 1 also contains the principal components (PCs) of the data set.

The weights of the variables on the principal components are:

As already stated, the basis of the method is to perturb the principal components. This

perturbation can be made univariately because of the uncorrelation of the principal

components (note that the correlation matrix of the PCs in Table 1 is the identity matrix).

In order to illustrate the method, we apply data swapping to the first components (the one

with highest variance) and undo the transformation given by the matrix in Equation (4).

The data swapping process consists of randomly sorting the observations, which is done by

generating a random vector whose elements range from 1 to n and by rearranging the

observations according to this new order.

The results are shown in Table 2, where the perturbed components are on the left and the

resulting variables are on the right.

As can be seen, compared with Table 1, the preservation of means is exact, while

standard deviations and correlations are very close to the original values. Regarding

protection, there are two records that remain unchanged, while the remaining ones get very

different values. The reason why two records have remained unchanged is that there are

only ten records altogether and, therefore, the swapping can lead to no changes with a

relatively high probability taking into account that we have perturbed only the first

component. If more components are perturbed, this probability decreases, as the

probability of not swapping an observation equals 1
n
.

Table 3 shows the results obtained if PC1 and PC2 are swapped and when all the three

components are swapped. Note that in both cases the level of protection and data utility is

high. Moreover, no record is left unchanged and the contribution of PC3 is minimal as it

contains less than four percent of the total variability (the records in the right table are not

very different from those in the left one).
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3.2. Mathematical Formulation

Let X be the n £ m matrix containing the n observations of the m random variables such

that m and s are the X’s mean and standard deviation vectors, respectively.

In order to correctly apply PCA, we first need to standardize X. In matrix form this is

equivalent to:

X1 ¼ ðX 2 MÞS; ð5Þ

where X1 is the standardized data set, M is an n £ m matrix with rows equal to m and S is a

m-diagonal matrix with non-zero elements equal to sjj ¼ 1=sj.

Next, we obtain the scores X2 of the observations on the principal components as:

X2 ¼ X1A; ð6Þ

where A is a matrix whose columns are the normalized (to unit vectors) eigenvectors of

X 01X1.

As already stated, instead of perturbing the data directly, the basis of the proposed

method consists of perturbing the scores X2. Mathematically speaking, the perturbation

process can be written as:

X3 ¼ X2Bþ e; ð7Þ

where B is an m £ m diagonal matrix with ones in the rows corresponding to the mc

components left unchanged and zeros otherwise and e is an n £ m matrix with mc columns

equal to zero and the remaining (mr) ones contain the variables that are replacing the

original principal components.

Finally, we obtain the masked data ~X by undoing the PCA transformation and

recovering the original means, variances and covariances:

~X ¼ ðX3A 0S21Þ þM; ð8Þ

where A0 is the transpose of A and S21 is the inverse of S. Recall that matrix A is composed

of normalized eigenvectors and, therefore, its inverse equals its transpose.

It is important to highlight that any SDC method can be applied as long as it preserves

the properties of the original principal components, that is, the mean vector is equal to zero

and it has the same diagonal variance-covariance matrix (note that the preservation of

higher moments in the perturbed components leads to a better data utility of the final data

set). The “protected” components obtained when applying the SDC method form matrix e

in Equation (7). Some examples of possible SDC methods are random scores, noise

addition, and swapping.

An interesting feature of this method is that depending on the method chosen to perturb

the principal components, we can get masked, hybrid or fully synthetic data. In particular,

if a masking method is chosen to alter the principal components, such as data swapping

(Moore 1996), the resulting data set is masked, as the original values have been modified

but not substituted. Similarly, if the components are substituted by random vectors (by

means of the methodology in Liew et al. (1985) or Fienberg (1994)), we get fully synthetic

data sets if no component is left unchanged and hybrid data sets, otherwise.
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As previously noted, the principal components can be sorted by importance based on

quantity of variability and, therefore, perturbing the first component does not lead to the

same level of protection and data utility of the output data as perturbing the last

component. The larger the total weight of altered components, the lower the data utility

and disclosure risk.

Note that one remarkable difference with regard to this method compared to others

previously suggested is that the level of perturbation is fixed, in the sense that we can only

modify a certain number of components between 1 and m, whereas in other methods, such

as noise addition, any quantity of noise can be added. It is important to take into account

that, although the level of perturbation of the components is not limited, the effect on the

final data set is, as the weight of the components is fixed. In other words, if only the “last”

component is perturbed, even if the protected component has no resemblance to the

original one, the effect on the final data set will be small, as only a small portion of the

original variability has been changed.

3.3. Verifying the Preservation of the Mean Vector and the Variance-Covariance Matrix

Preserving the mean vector and the variance-covariance matrix of the original data is a

very important feature of a masking method which is very common in the SDC literature.

For this reason, we will now show that the proposed method preserves both the mean

vector m and the variance-covariance matrix SX .

So as to facilitate the computations, we first show the direct relation between X and ~X,

following from (5)-(8):

~X ¼ ½ðX 2 MÞ SABþ e�A 0S21 þM ¼ ðX 2 MÞ SABA 0S21 þ eA 0S21 þM: ð9Þ

First, we deal with the mathematical expectation of the masked data set ~X:

E½ ~X� ¼ E½ðX 2 MÞ SABA 0S21 þ eA 0S21 þM�

¼ ðE½X�2 E½M�Þ SABA 0S21 þ E½e�A 0S21 þ E½M�

¼ ðm 2 mÞ SABA 0S21 þ 0 A 0S21 þ m ¼ m:

ð10Þ

Next, we focus on the variance of ~X. From now on, SX refers to the variance-covariance of

data set X.

S ~X ¼ ðSABA 0S21Þ0SXðSABA 0S21Þ þ ðA 0S21Þ0SeðA
0S21Þ þ 0

¼ ðS21Þ0AS1A 0S21 þ ðS21Þ0ASeA
0S21

¼ ðS21Þ0AðS1 þ SeÞA
0S21:

ð11Þ

where S1 ¼ B 0A 0S 0SXSAB ¼ B 0SX2
B.

Without loss of generality, we assume that the components have been sorted in such a

way that the ones that remain unaltered are the first ones and the altered ones are the

last ones. Note that S1 and Sehave a special block structure as shown below. This is due to

the fact that S1 is obtained by multiplying and premultiplying SX2
, which is a diagonal
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matrix as it refers to the variance-covariance matrix of the principal components,

by matrix B, which is a diagonal matrix with zeros in the rows associated to altered

components. On the other hand, e has been defined to be an n £ m matrix with mc columns

equal to zero and the remaining (mr) ones replacing the original principal components.

Therefore, the variance and covariance associated with the “zero” columns are also zero

and we have forced the altered components to maintain the variances of the original

principal components. Then,

,

,

where, abusing notation, we have defined SX2
½mc� and SX2

½mc� to be the submatrices

associated to the mc unaltered components and mr to the altered components, respectively.

Taking (12) and (13) into account, we have

,

and, thus,

S ~X ¼ ðS
21Þ0ASX2

A 0S21 ¼ SX: ð15Þ

The perturbing method chosen for the principal components determines whether the first

and second moments are exactly or asymptotically preserved. For example, if we choose to

substitute component i with a realization of a random variable with expectation and

variance equal to mi and s2
i , respectively, it is very unlikely that the observed mean and

variance equals mi and s2
i . In that case, the original mean vector and variance-covariance

matrix are asymptotically (but not exactly) preserved. On the other hand if we choose

swapping – as the values are the same – the mean is preserved exactly. However, this is

not the case with the variance-covariance matrix, as the covariance of the perturbed

principal components is not numerically zero.

Although, as previously stated, many perturbing methods are valid, we suggest using

data swapping and random draws from the smoothed empirical cumulative distribution

functions (see Fienberg 1994) for masking and hybrid/synthetic data sets, respectively, as

they permit maintaining not only the first and second moments but the whole distribution

on the univariate components. Note that rank swapping is not necessary here, as the

components are uncorrelated and, therefore, the covariance structure does not need to be

preserved. This, in turn, helps to preserve the distribution of the original data. Moreover,

note that when the number of altered components is high, the resulting records do not

clearly represent any of the original records. These are obtained by means of the

components’ scores of other records, selected randomly and, thus (although the resulting

data set is not strictly synthetic), it does bear some similarity to the synthetic data

generation philosophy.
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3.3.1. On the Preservation of the Third Moment

In this section we deal with the preservation of the third moment (m3), which is related to

the symmetry of the variables. We remind the reader that the third moment is given by:

m3ðXÞ ¼ E½ðX 2 EðXÞÞ3�; ð16Þ

and, if X ¼ Y þ Z, then it holds that:

m3ðXÞ ¼ m3ðYÞ þ m3ðZÞ2 6CovðY;ZÞðEðYÞ þ EðZÞÞ

þ 3ðCovðY;Z2Þ þ CovðY2;ZÞÞ:
ð17Þ

The proposed method essentially decomposes the original variables into some

uncorrelated ones and then undoes the decomposition. Without loss of generality, let’s

assume that we want to preserve the third moment of an original variable X, whose

principal components are Y and Z. As the principal components are uncorrelated, it holds

that:

m3ðXÞ ¼ m3ðYÞ þ m3ðZÞ þ 3 ðCovðY;Z2Þ þ CovðY2;ZÞÞ; ð18Þ

and, therefore, the third moment of X is preserved as long as the addends on the right-hand

side are preserved. If a perturbation method is chosen such that the third moment of Y and

Z are preserved (as univariate data swapping), then the preservation of m3ðXÞ depends on

the preservation of CovðY;Z2Þ and CovðY2;ZÞ, which, in turn, depends on the number and

weight of the perturbed components.

It is important to highlight that, if the principal components are independent (and not

only uncorrelated), it holds that:

m3ðXÞ ¼ m3ðYÞ þ m3ðZÞ; ð19Þ

and, in that case, the preservation of the third moment of the original variables can be

ensured, as the perturbed principal components are also independent. If multivariate

normality holds, the principal components are also normal (as a consequence of the infinite

divisibility of the normal distribution) and, in that case, uncorrelation implies

independence. However, although generally uncorrelation does not imply independence,

multivariate normality is not the only case.

To sum up, the preservation of the third moment depends on the preservation of the third

moment of the perturbed principal components, as well as on the independence of the

principal components.

3.4. Computational Effort

As has been shown, the proposed method essentially consists of obtaining the eigenvectors

of the correlation matrix (or equivalently the variance-covariance matrix of the

standardized data set) and then applying products and/or sums to the original matrix data

X and the transformation matrix A. Finally, there might be a random number generation

phase associated with the altering components phase. Therefore, the running time of the

method is O(nm2), where n is the number of records and m is the number of variables.
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Generally, the number of records is much larger than the number of variables and,

therefore, the proposed method is suitable for large data sets.

4. Empirical Results

In this section a simulation study for the PCA-based method is shown. In particular, we

evaluate its performance in terms of data utility and disclosure risk in two scenarios:

a) when it is applied to get a masked data set that protects all the variables in the data set, and

b) when only a subset of variables needs to be protected and the output is a hybrid data set.

The results have been obtained using R project (R Core Team 2014) and, more speci-

fically, package sdcMicro (Templ 2008) when possible. Some ad hoc functions and programs

also needed to be developed. Data sets Tarragona and Census have also been provided

by this package. Regarding computation times, anonymizing a data set (of up to 55,000

records and 35 variables) by means of the proposed method takes less than one second on a

Toshiba satellite L50-B-11W laptop, Intel Core i7-870 1.8GHz, 4MB, RAM: 8GB.

4.1. Fully Masked Data Set

In this case, the proposed method is applied to the Tarragona data set in Brand et al.

(2002). It consists of 13 quantitative variables associated to 832 real companies in the

province of Tarragona in 1995.

For the sake of completeness, we compare the results derived from the proposed method

with two well-known masking methods that have been identified as well-performing in

terms of data utility and disclosure risk: rank swapping (see Domingo-Ferrer and Torra

(2001) or Jiménez et al. (2014)) and microaggregation plus noise addition (see Oganian

and Karr (2006), or Woo et al. (2009)).

Following the ideas of Domingo-Ferrer and Torra (2001) or Jiménez et al. (2014), we

compute a score as the mean average of disclosure risk and data utility in order to be able

to compare the three methods. The disclosure risk and data utility measures also consist of

a score made of the mean average of two different criteria. In particular, disclosure risk

is evaluated by means of distance-based record linkage and interval disclosure (see

Domingo-Ferrer and Torra 2004), while data utility is computed based on the Probabilistic

Information Loss (PIL) measure proposed by Mateo-Sanz et al. (2005) and the propensity

scores proposed by Woo et al. (2009). In the following we briefly described these four

measures:

. Distance-based record linkage (DBRL): DBRL is one of the most common methods

for evaluating the disclosure risk of a masked data set. It consists of obtaining the

closest masked record (in terms of normalized euclidean distance) to all original

records and determining how many of them were generated by the corresponding

original record. As noted in Domingo-Ferrer and Torra (2004), variables should be

standardized when using distance-based record linkage in order to avoid scaling

problems. This index can take values between zero percent (no record linkage) and

100% (total record linkage).

. Interval disclosure (ID): It consists of determining the proportion of original records

that lay in an interval whose center is the corresponding masked record. The extremes
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of the interval are given by the two masked values whose ranks differ ^ p percent of

the total number of records. The measure associated with ID is obtained by averaging

this proportion for p, taking values from one percent to ten percent with one percent

increments. In the simulation study that follows, we have substituted the

corresponding masked record by the closest record in order to be able to analyze

the attribute disclosure, that is, how much the intruder can learn if re-identification

takes place. Moreover, as noted previously, when the number of altered components

is large, masked records have a very weak connection with the corresponding original

ones (this also happens for microaggregation plus noise addition when the parameter

is large). In this way, we can work with an homogeneous measure independently

of the parameters of the method. This index also takes values between zero percent

(no attribute disclosure) and 100% (total attribute disclosure).

. Probabilistic Information Loss (PIL): It consists of evaluating, from a

probabilistically point of view, the information loss suffered from the masking

processes based on the observed difference between some statistics obtained from the

original and the masked data set. Given a certain parameter u and its masked value û,

the probabilistic information loss can be measured as the standardized sample

discrepancy as follows:

pilðuÞ ¼ 2�P 0 # Nð0; 1Þ #
ju 2 ûjffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðûÞ
p

 !
; ð20Þ

where N(0,1) is a standardized normal distribution. The variances of the considered

statistics are given in Mateo-Sanz et al. (2005). The final PIL measure is given by

the mean average of the pil associated with the means, variances, covariances,

Pearson’scorrelation coefficients and quantiles. The pil given by Equation (20) takes

values between 0 (no information loss) and 1 (total information loss) and, therefore,

the total PIL also takes values in that range.

. Propensity scores (PS): Propensity scores were adopted from the statistical literature

by Woo et al. (2009) in an attempt to define new global measures of data utility. In the

observational study literature, propensity scores are the probabilities of being

assigned to a treatment, given other variables (covariates). When two large groups

have the same distributions of propensity scores, the groups should have similar

distributions on the covariates. Therefore, one can consider the masked data as the

treatment and estimate the probability of being assigned to the treatment (the

propensity scores) for both the masked and the original data sets. If the distributions

of the propensity scores of both sets are similar, we can conclude that the distributions

of the original and masked data are also similar and, therefore, the data utility should

be relatively high. Woo et al. (2009) propose to evaluate the similarity of the

propensity scores using the following formula:

PS ¼
1

N

XN

i¼1

ðp̂i 2 0:5Þ2; ð21Þ

where N ¼ 2n and p̂i is the propensity score for unit i. Note that when the original and

the masked data sets have similar distributions, it is difficult to distinguish them and,
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therefore, the propensity scores are close to 0.5 and PS equals 0. On the other hand,

if the distributions are very different, they are perfectly distinguishable and the

propensity scores for the original and masked data take approximately value 0 and 1,

respectively. In that case, PS is close to 0.25. The main disadvantage of this method

is that it relies on the choice of the model used to estimate the propensity scores.

Nevertheless, the authors suggest to use a logistic regression using a second-order

polynomial in all the variables, as well as in their interactions. In this article, we have

considered the model suggested by the authors as well as a logistic regression with

third-order polynomials in all the variables, and the same interactions.

It is important to highlight that we are considering all the variables at the same time in

the disclosure risk phase, which is equivalent to assuming that the intruder has infor-

mation about all the variables in the data set. Therefore, as this is rarely the case, the

disclosure indexes should be taken as worst case ones. However, this is done with all

the three methods and, thus, this fact will not affect the conclusions derived from the

comparison.

On the other hand, all the indexes, except for the propensity scores, lay between 0 and 1

and, thus, when computing their mean average we get a score that also lies between 0

and 1. To overcome the inconvenience of the propensity score, we multiply it by a factor of

four, thus obtaining an index that takes values between 0 and 1. Finally, note that the larger

the score is, the worse the method is, as it has higher disclosure risk and less data utility.

We have decided to rely on several data utility and disclosure risk indexes, as each of

them measures a different concept and permits obtaining a global score. Table 4 shows the

results, including the four indexes explained previously (the propensity score is shown

with its two variants) and the resulting score (two different scores arise because of the

propensity score), of a simulation study performed in order to be able to evaluate the

results of our method and compare it with microaggregation plus noise and rank swapping.

As the three methods depend on random values in one way or another, and thus, very good

or bad results can be obtained by chance and mask the real behavior of the method, we

have to resort to a simulation study, which takes into account several realizations.

In order to be able to determine the better performance of a method, comparing the

mean values of the score is not enough. For this reason, we have computed the confidence

interval (CI) of the scores of the methods along with the mean average, based on 100

realizations. As the score does not belong to any known distribution, we resort to bootstrap

techniques, in particular to the Percentile Bootstrap CI. The bootstrap method, which is

one of a broader class of resampling methods, uses Monte Carlo sampling to generate an

empirical sampling distribution of the estimate (see Efron and Tibshirani (1993) for more

details on bootstrap methods).

For the PCA-based method, parms refers to the number of components that have been

swapped starting by the one with more variance. The total proportion of altered variance is

also shown in parentheses. With respect to microaggregation plus noise, parms refers to

the number of records grouped together in the microaggregation phase. Finally, parms

refers to the maximum relative rank difference allowed in rank swapping.

The skewness and kurtosis relative bias has been calculated as well, and, in addition, the

mean average for all the variables and all the realizations is shown in Table 4.
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The smallest score for each of the methods has been boldfaced. It can be seen that,

independently of the chosen propensity score, the smallest scores are taken by the

“microaggregation plus noise” and the proposed methods. Rank swapping, which has been

recognized as a very well-performing technique by Domingo-Ferrer and Torra (2004)

among others, leads to worse results, as its scores are higher and its confidence intervals

do not overlap with those of the other methods (this is due to the fact that the variance-

covariance matrix is not very well preserved). However, rank swapping is the only method

that leads to zero bias on the skewness and kurtosis of the variables.

Regarding second-degree propensity scores, we see that the best results are around 0.17

for both the “microaggregation plus noise” and the proposed methods. For the PCA-based

method, the best balance between data utility and disclosure risk is taken for a high number

of altered components, in which case the DBRL gets very low values because of the

“synthetic” aspect of the resulting masked data set. Furthermore, the data utility from the

PS perspective does not decrease dramatically with increasing numbers of swapped

components. However, the CIs of Score2 almost coincide for more than 94% of the

variability perturbed. This is due to the fact that the utility remains almost constant and the

risk, although it decreases with the number of components, is already very small.

As for microaggregation plus noise, which has been recognized as a very well-performing

method in Woo et al. (2009), the lowest score takes place for parms ¼ 5, although the

results are not statistically different up to parms ¼ 10, as can be deduced from the CIs. It

can be seen that this method provides better attribute disclosure protection, but worse

record linkage compared with the PCA-based method, and that it has a slightly bigger score.

As regards third-degree propensity scores, we can see that the utility is worse, as both

“microaggregation plus noise” and the PCA-based methods fail at preserving third

moments. Note that the relative bias is similar for both methods for the best parameters and

increases with the number of perturbed components and the size of the groups. For this

reason, the proposed method now reaches its best value for parms ¼ 3, as the bias is

smaller. Nevertheless, it can be seen that very similar results (in fact, they are not

statistically different) are obtained for any number of components larger than three.

Again, the best results are reached for small parameters for the “microaggregation plus

noise” method. Its CI overlaps with those of the proposed method, meaning that the

balance between data utility and risk disclosure achieved is similar for both methods.

All in all, the proposed method has led to statistically similar results to “microaggregation

plus noise”. In spite of that, microaggregation techniques are usually slower than the proposed

method and, thus, the proposed method is preferable as it can provide data sets with similar

quality, but faster. For the computer specified above, the “microaggregation plus noise”

method (using the “mdav” algorithm for the microaggregation phase), took between 5 and 30

times longer than the proposed method, depending on the data set.

4.2. Hybrid Data for Partial Protection

As stated in Section 3, the proposed method also permits perturbing some variables more

than others by selecting the components more related to the target variables and just

modifying them. This is an interesting feature, as it also allows preserving the whole

original correlation structure.
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We now show how to do it in the Census data set in Brand et al. (2002), which contains

1,080 records and 13 variables and has been previously used in Domingo-Ferrer and Torra

(2004), Domingo-Ferrer and González-Nicolás (2010) or Jiménez et al. (2014). It is

important to highlight that one of the 13 variables is a linear combination of other variables

and, therefore, it is omitted from the analysis. However, after the masking is performed on

the remaining variables, one can directly obtain its protected version by simply adding the

corresponding protected variables.

In this example, we assume that only the first variable needs special protection. In order

to proceed, we first need to obtain the weights of the first variable on the twelve components.

The left plot in Figure 1 shows these weights. It can be seen that this variable has very little

influence on many components, as their weights are close to zero, but has a great influence

on the third component (represented by a gray circle). In fact, the weight of the third

component on the first variable represents 59.91% of the total components’ weights.

Therefore, to protect the first variable, perturbing the third component is enough.

In order to check how the remaining variables can be affected with the perturbation of

the third component, we can analyze the weights of the original variables on this

component (shown in the middle plot of Figure 1). Note that the only significant weights

are those associated with variables 1 and 8 (represented by a gray circle) and, therefore,

only those variables will be significatively affected. Finally, looking at the weights of the

eighth variable on all the components (see the right plot in Figure 1), we can observe that

the third component is not the one with the highest weight and, thus, the effect of

perturbing it will not be significant, as most of the information (around 87%) of this

variable will be left unchanged.

As already stated, with this example we aim to show how to obtain hybrid data sets. For

this reason, instead of using swapping to alter the components, we substitute them with a

random draw from its smoothed empirical cumulative distribution function (see Fienberg

1994). Furthermore, we compare the results with the ones obtained using the methods

proposed in Muralidhar and Sarathy (2008) and Domingo-Ferrer and González-Nicolás

(2010) (as previously noted, we will refer to them as MS and MH, respectively). Both

12
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Fig. 1. Illustrative example: representation of the weights of the first and eighth variables on all the components

(left and right plots, respectively) and of the third component on all the variables (middle plot).
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methods provide very good results and require some sensitive and some nonsensitive

variables. In our example, we assume that the first variable in the census data set is the

sensitive one. Moreover, for the MS method we show the results associated with the

following selected parameters:

. a equal to 0: In this case, the MS method equals the IPSO method in Burridge (2003).

. a equal to 0.4: In order to perform a fair comparison between the methods, we have

selected this parameter as it leads to a result that takes 40% of the information from

the original record, as it is the case with the PCA method, where we are only

perturbing the third component and it represents almost 40% of the total variability of

the first variable.

. a equal to 0.9: a case where the result is highly dependent on the original record.

Regarding MH, we show the results for group sizes of 54, 180, and 540, which

correspond to 20, 6, and 2 microaggregated groups, respectively. Note that for the ease of

brevity we only show a subset of the results obtained when comparing the methods.

After applying the method, we can analyze the characteristics of the resulting data set.

In particular, Table 5 shows Pearson’s correlation coefficients of the original and resulting

variables after applying the PCA-based method. It can be seen that the coefficients are

larger than 0.99 for all the variables except for the first one, which is low as a result of the

masking process, and the eighth one, as we predicted. However, it is still higher than 0.9,

so it has only suffered a mild perturbation. As for the MS and MH methods, the

nonsensitive variables remain unchanged and Pearson’s correlation coefficients of the

original and resulting first variable are 0.0331, 0.4199, and 0.9033 for a equal to 0, 0.4, and

0.9 after applying the MS method, respectively, and 0.6528, 0.3877, and 0.0512 for k equal

to 54, 180, and 540, respectively.

With regard to the preservation of the original Pearson’s correlation coefficients,

Table 6 contains the original and resulting Pearson’s correlation coefficients of the first

and third variables for the proposed method (for the ease of brevity we do not show all

variables, but the results are similar to those of the third variable). It can be seen that the

coefficients are similar for the masked variable (the absolute difference is around four

percent) and almost coincide for the remaining ones. We did not show these coefficients

for the MS and MH methods, as both exactly preserve means, variances and covariances.

Furthermore, we have analyzed how close the original records are to the masked ones by

means of the classic rank interval disclosure, defined in the previous subsection. We remind

that it computes the proportion of records that lie in a narrow interval around its masked

value. Again, we have obtained 1,000 hybrid data sets and we have computed this proportion.

Table 7 shows the mean value of this index for the sensitive variable. Moreover, the centered

95% percentile bootstrap confidence interval of the proportion has been obtained.

Table 5. Pearson’s correlation coefficient between the original and the protected variables applying the PCA-

based method.

Variable

1 2 3 4 5 6 7 8 9 10 11 12

0.1736 0.9986 0.9970 0.9968 0.9989 0.9945 0.9978 0.9181 0.9984 0.9983 0.9988 0.9988
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Based on the mean and CI disclosure risk values, it can be seen that the proposed

method, the IPSO method (MS a ¼ 0 and MH k ¼ 1,080) and MH (k ¼ 540) lead to very

similar levels of protection. However, this is not the case for large and small values of a

and k, respectively, as their mean values are larger and their CIs do not overlap with the

one associated with the PCA-based method.

Finally, although it is clear that the MS method preserves better the sufficient statistics

(mean and variance-covariance matrix), the PCA-based method also provides good

approximations. For this reason, it would be interesting to compare the results based on

other indexes that take into account different features of the data sets, such as the

propensity score. Table 7 shows the mean propensity score of 1,000 hybrid data sets, as

well as its centered 95% bootstrap confidence interval.

As expected, for the MS method, the larger a is, the larger data utility is obtained with

the MS method. It can be seen that the PCA-based method leads to more useful data sets if

the parameter a is smaller than 0.4, as its mean propensity score is smaller than the others,

and the CIs for a equal to 0 and 0.4 do not overlap with the PCA-based one. Similar

conclusions can be drawn for the MH method: large values of k lead to data sets with lower

utility. Moreover, the MH method leads to worse, similar and better utility levels than the

PCA-based method for k equal to 540, 180, and 54, respectively.

However, in this case, we can conclude that the PCA-based method outperforms the MS

and the MH methods in Muralidhar and Sarathy (2008) and Domingo-Ferrer and

González-Nicolás (2010), respectively, as it provides data sets with a better balance

between data utility and disclosure risk (as neither MS nor MH provide at the same time

better disclosure risk and data utility than the proposed method).

It is important to highlight that the good or bad performance of the proposed method in

the case of partial protection is data-dependent in the sense that depending on the

correlation structure, more or fewer variables will be affected by the protection process.

For example, if the confidential variables to be protected show low-medium correlation

with the non confidential ones, the principal components with high weights on the

confidential ones will then tend to show low weights on the nonconfidential ones and, thus,

the perturbation process will affect them mildly. On the other hand, if the confidential

variables are highly correlated with the nonconfidential ones, the perturbed principal

components with high weights on the confidential variables will also have high weights on

the nonconfidential one, and, therefore the nonconfidential variables will be highly

affected. The example showed in this subsection is of the first type. Better results than in

the proposed method are expected for the MS and MH methods for the second type of

situation, as the nonconfidential variables are not perturbed and that leads to better overall

utility (although similar levels of protection).

5. Final Considerations

In light of the previous examples, we can give some guidelines on how to apply the

proposed method:

. The proposed method is expected to lead to better results than other proposed

methods where all variables need protection. If there is only a subset of confidential

variables, the performance of the method depends on the correlation structure of
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the confidential and nonconfidential variables. If this correlation is low, then the

proposed method outperforms other methods previously proposed in the literature.

Otherwise, it is preferable to resort to other methods.

. If all variables need protection, selection of the components to be perturbed depends

on the desired results. If third or higher moments are not critical, then it is

recommended to alter all of them, as the utility achieved is similar to that obtained

with fewer components, but the record linkage gets reduced.

. On the other hand, if third or higher moments are critical, we recommend starting

perturbing the first components (those with higher variance) until the desired

protection level has been reached.

. If all variables need some kind of protection but we wish to perturb some more than

the others, then the matrix of weights needs to be analyzed for a careful selection of

the components.

. Perturbing only a few of the “last” components leads to very little protection, as its

corresponding variance is very small.

The proposed method cannot guarantee that the protected variables lie in a predefined

interval. For those cases, we suggest applying one of the methods proposed in Kim et al. (2015).

6. Conclusions and Future Work

In this article we have presented a simple and versatile method for limiting disclosure in

continuous microdata based on PCA that preserves the mean vector and the variance-

covariance matrix. The versatility of the method comes from the fact that it can provide

masked, hybrid or fully synthetic protected data sets and it can be used to protect all or

only some of the variables in a data set.

The method is very simple and, thus, does not require complex or very powerful

software. We have not compared the method with more sophisticated techniques, such as

multiple imputation, as we aim to provide an easy and efficient tool, in terms of good and

fast results that can be widely applicable.

Some simulation studies have been performed to compare the proposed method with

other well-performing techniques in terms of data utility and disclosure risk. Regarding the

application of the proposed method to protect all variables at the same time, it has been

shown that the PCA-based method offers a very good balance between data utility and

disclosure risk and provides much better results than rank swapping and similar ones

compared to “microaggregation plus noise”.

As for what we call hybrid data for partial protection, the PCA-based method has

provided better data sets than the methods proposed in Muralidhar and Sarathy (2008) and

Domingo-Ferrer and González-Nicolás (2010), in the sense that, when comparing

protected data sets with these three methods with similar data utility in terms of disclosure

risk, the proposed method leads to safer data sets and the same happens with data sets with

similar disclosure risk. As it has been already highlighted, the PCA-based method

outperforms the MS and the MH method only if the confidential variables are not highly

correlated with with the nonconfidential ones.

Regarding future work, the method could be extended to categorical variables by means

of Categorical Principal Components Analysis. Moreover, other types of orthogonal
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transformations, such as the Independent Component Analysis, are to be explored in the

future to check if they can lead to better results. Finally, in order to improve the usage of the

method in the case of partial protection, we plan to use Factor Analysis instead of PCA, as it

is possible to rotate the factors obtained, isolating the effect of the variables on the factors.
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Domingo-Ferrer, J. and U. González-Nicolás. 2010. “Hybrid Microdata Using

Microaggregation.” Information Sciences 180: 2834–2844. Doi: http://dx.doi.org/10.

1016/j.ins.2010.04.005.

Domingo-Ferrer, J. and V. Torra. 2001. “A Quantitative Comparison of Disclosure

Control Methods for Microdata.” In Confidentiality, disclosure, and data access:

Theory and practical applications for statistical agencies, edited by P. Doyle, J. Lane,

J. Theeuwes, and L. Zayatz. 111–133. Elsevier. Available at: https://www.iiia.csic.

es/es/publications/quantitativecomparison-disclosure-control-methods-microdata

(accessed August 2016).

Domingo-Ferrer, J. and V. Torra. 2004. “Disclosure Risk Assessment in Statistical

Data Protection.” Journal of Computational and Applied Mathematics 164: 285–293.

Doi: http://dx.doi.org/10.1016/S0377-0427(03)00643-5.

Drechsler, J. 2011. Synthetic datasets for statistical disclosure control: theory and

implementation, volume 201. Springer Science & Business Media.

Duncan, G. and R. Pearson. 1991. “Enhancing Access to Microdata While Protecting

Confidentiality: Prospects for the Future.” Statistical Science 6: 219–239.

Efron, B. and R. Tibshirani. 1993. An introduction to the Bootstrap. New York: Chapman

and Hall.

Fienberg, S. 1994. A Radical Proposal for the Provision of Micro-Data Samples and

the Preservation of Confidentiality. Technical Report 611, Department of Statistics,

Carnegie Mellon University.

Hundepool, A., J. Domingo-Ferrer, L. Franconi, S. Giessing, E. Nordholt, K. Spicer, and

P. de Wolf. 2012. Statistical Disclosure Control. Chichester, UK: John Wiley & Sons.

Calvino: A PCA-Based Method for Limiting Disclosure 39

Unauthenticated
Download Date | 2/28/17 9:58 AM

http://neon.vb.cbs.nl/casc
https://www.iiia.csic.es/es/publications/quantitativecomparison-disclosure-control-methods-microdata
http://dx.doi.org/10.1109/ARTCom.2009.159
http://dx.doi.org/10.1007/3-540-47804-38
http://dx.doi.org/10.1023/A:1025658621216
https://www.iiia.csic.es/es/publications/quantitativecomparison-disclosure-control-methods-microdata
http://dx.doi.org/10.1016/S0377-0427(03)00643-5
http://dx.doi.org/10.1016/j.ins.2010.04.005
http://dx.doi.org/10.1016/j.ins.2010.04.005
http://dx.doi.org/10.1109/ARTCom.2009.159
http://dx.doi.org/10.1007/3-540-47804-38
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Estimating the Count Error in the Australian Census

James Chipperfield1, James Brown2, and Philip Bell3

In many countries, counts of people are a key factor in the allocation of government resources.
However, it is well known that errors arise in Census counting of people (e.g., undercoverage
due to missing people). Therefore, it is common for national statistical agencies to conduct
one or more “audit” surveys that are designed to estimate and remove systematic errors in
Census counting. For example, the Australian Bureau of Statistics (ABS) conducts a single
audit sample, called the Post Enumeration Survey (PES), shortly after each Australian
Population Census. This article describes the estimator used by the ABS to estimate the count
of people in Australia. Key features of this estimator are that it is unbiased when there is
systematic measurement error in Census counting and when nonresponse to the PES is
nonignorable.

Key words: Undercount; capture-recapture; Dual System Estimator.

1. Introduction

In many countries, counts of people are a key factor in the distribution of government

resources. However, the (observed) Census counts differ from the (unobserved) true

counts for an area because of overcoverage (e.g., a person is counted multiple times or

counted once in the wrong location) and undercoverage (e.g., people are missed). In

addition, the Census may count individuals on a ‘person present’ basis (de facto) while

counting on a ‘usual residents’ basis (de jure) is typically more relevant for government

policy. ‘Usual residents’ counts may be significantly smaller than ‘persons present’ counts

in certain locations (e.g., tourist areas and city centres) and this will have implications for

the type and size of government infrastructure projects.

Methods have been developed to correct for systematic errors in the observed Census

counts (for a review see Belin and Rolph 1994). A classical approach to estimating person

counts is the Dual System Estimator (DSE) as developed in Sekar and Deming (1949).

In this traditional form, the DSE has been widely used by national statistical agencies,

including the US Census Bureau Bureau (see Xi Chien and Tang 2011; Mule 2008; Griffin

and Mule 2008; Alho et al. 1993; and Hogan 1993) and the Office for National Statistics
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(ONS) (see Brown et al. 1999; Brown et al. 2006). However, in the Australian context,

the Australian Bureau of Statistics (ABS) has developed an approach that differs

fundamentally from the US and UK approach on perhaps three points.

First, in the US, the approach has developed with two independent ‘audit’ sample

surveys of the Census (see Hogan 1993). In the UK (see Large et al. 2011), the approach

has developed from a single independent coverage survey (audit sample) but with separate

adjustments for erroneous enumerations (overcoverage and undercoverage). In contrast,

the ABS approach integrates measurement of undercoverage and overcoverage of its

Census from a single survey, called the Post Enumeration Survey (PES).

Second, while the Australian Census counts on a ‘persons present’ basis, the PES counts

on a ‘usual residents’ basis, so the second count (PES) is not just a repetition of the first

count (Census).

Third, as we will see, the ABS approach has also been developed to handle people who

are classified differently by the PES and the Census (e.g., a person may be classified as an

Aboriginal and Torres Strait Islander by the PES, but not by the Census). The assumption

here is that the PES classification is correct. This is perhaps reasonable, since the PES

consists of a face-to-face interview conducted by ABS’s professional interviewers, while

the Census typically uses self-completion, supported by a large temporary field-force.

In Section 2 we review the general DSE framework, as applied by the US Census

Bureau. Section 3 introduces the standard regression estimator of person counts and

motivates the more robust estimator that was used in 2011. Section 4 describes a small

simulation study of the two estimators in Section 3. Section 5 describes a more realistic

and involved simulation study of the two estimators in Section 3. Section 6 contains some

concluding remarks.

2. Traditional Approach

In the traditional approach, a population set, U, is defined of people indexed by j. The

population can be categorised into H subgroups, defined in terms of characteristics such as

age, sex, Aboriginal and Torres Strait Islanders status, country of birth, and geography.

Subgroups need not be mutually exclusive. The aim is to estimate the number of people in

the hth subgroup Th ¼
P

j[U tjh where tjh ¼ 1 if the jth person in the population belongs to

subgroup h and tjh ¼ 0 otherwise and h ¼ 1, : : : H. The population is counted by the

Census. The Census count is denoted for subgroup h by Xh for h ¼ 1, : : : , H. While in the

traditional DSE approach Th and Xh are conceptually the same, in the Australian situation

they are not (see Section 3).

Consider the situation where following the Census, we conduct an independent PES

of the population, typically by sampling dwellings. In the context of the US Census

Bureau, the reference date for PES counting would be Census Night and the PES is

referred to as the P-sample, as it is a sample of the population (Hogan 1993, 2003).

The PES will, of course, have nonresponse (undercoverage), but overcoverage can be

assumed to be zero because it uses ABS professional interviewers who are familiar with

applying rigorous procedures to correctly identify and avoid double-counting usual

residents within selected dwellings. For example, these procedures ensure that overseas

visitors are identified and discarded from estimation and that each person can only be
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selected via a single dwelling. Let the PES responding sample size be n people, and denote

the sample set by s. The PES collects tih where tih ¼ 1 if the ith sample person belongs to

subgroup h and tih ¼ 0, h ¼ 1, : : : H, and i ¼ 1, : : : n. After matching the PES to the

Census, we can then derive an indicator, mih, for ‘correct Census enumeration’, where

mih ¼ 1 if person i is counted in subgroup h by both the PES and Census, and otherwise

mih ¼ 0. Let wi ¼ p21
i , where pi is the probability, with respect to the PES sample design,

that person i was selected.

2.1. Estimating Undercoverage Using a P-Sample

Now, if we impose the assumption that the PES and Census enumerate the populations

independently, the classic DSE of Th without an adjustment for overcoverage (previously

used by the US Census Bureau, see Hogan 1993) is

T̂h ¼ R̂h £ Xh: ð1Þ

where

R̂h ¼

X

i[s

witih

X

i[s

wimih

; ð2Þ

is an estimate of the probability that an individual is missed by the Census, for all

h. ¼ 1, : : : H.

This probability, R̂h, adjusts the total Census count, Xh, for Census undercoverage.

2.2. Estimating Over- and Undercoverage Using E- and P-Samples

For several practical reasons, such as enumerators following up the wrong households

when the forms are posted-out, the Census count Xh will have a typically low level of

overcoverage. Table 1 in Large et al. (2011) shows that historical levels of overcount have

been less than one per cent in Switzerland, Canada, Australia, and the UK; the US being an

Table 1. Description of the simulation scenarios.

Error rates*

Scenario
Census

misclassification
Census
duplication

Census
missing

PES
missing

1 0.1 LOW LOW LOW
2 0.1 MEDIUM MEDIUM MEDIUM
3 0.2 LOW LOW LOW
4 0.2 MEDIUM MEDIUM MEDIUM
5 0.3 MEDIUM MEDIUM MEDIUM
6 0.3 HIGH HIGH HIGH

*Low scenario ¼ 0.1 in communities and 0.05 outside communities

*Medium scenario ¼ 0.2 in communities and 0.1 outside communities

*High scenario ¼ 0.3 in communities and 0.15 outside communities
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exception, due to a post-out Census in most areas for several decades. Recently, Census

overcount has been increasing; in the 2011 Canadian Census it was 1.85%.

If there is overcoverage in the Census count, Xh, using (1) will be positively biased for

Th. Thus, an additional adjustment is required. In the US context, this involves selecting a

sample of Census records and confirming whether the enumerations were correct. This

sample is referred to as the E-sample (Hogan 1993). For the kth Census record sampled in

the E-sample, we resolve whether the record should have been enumerated (ek ¼ 1) or

should not have been enumerated (ek ¼ 0). The DSE of Th is now

T̂
ðDSEÞ

h ¼ R̂h £ Xh £ Êh ð3Þ

where R̂h still adjusts for undercoverage, while

Êh ¼

X

kh

vkek

X

kh

vk

ð4Þ

is an estimate of the probability that an enumerated Census record is actually a correct

enumeration in subgroup h,
P

kh is the summation of records in the E-sample classified to

subgroup h, and vk is the appropriate sampling weight for the kth record in the E-sample.

As already stated, both (1) and (3) assume that enumerations in Census and PES occur

independently, conditional on subgroup. When this independence assumption is not true,

the DSE will be biased for Th (see, for example Wachter and Freedman 2000). Reducing

this ‘correlation bias’ is possible by bringing in external information, such as a known sex

ratio, as developed in Wolter (1990) and implemented in Bell (2001), or some other

additional information (Brown et al. 2006).

In the 2010 Census, the US Census Bureau (see Mule 2008) extended (3) by modelling

the probability of correct enumeration and the probability of incorrect enumeration at an

individual level (i.e., by fitting a logistic regression to mi in the P-sample and ek in the

E-sample).

3. The ABS Approach

3.1. Differences Between the Australian and Traditional Approaches

Now we bring in the Australian context, which has additional complications. First, there is

only one additional sample - a P-sample (i.e., there is no E-sample). This must be taken

into account when estimating overcoverage in the Census.

Second, there are systematic differences between Census counts and PES counts where,

for the reasons outlined below, we are interested in the latter. The Census counts people on

a ‘person present’ basis, while the PES counts people on a ‘usual residents’ basis. The

latter is typically more useful to the government when allocating resources. This means it

is quite legitimate for a person to be in one geographic area in the Census and in a different

area in the PES. (To facilitate matching a person’s Census and PES records, the PES asks

respondents about possible locations for their Census enumeration.) The number of

‘movers’ is expected to be small, given that the Census and the PES are carried out only a
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couple of weeks apart. In the US approach, in which the time between Census and survey

is longer, an adjustment is made to account for ‘movers’ (Griffin 2000). It is also possible

for the Census and the PES to classify a person in different subgroups, even if they are

enumerated at the same geographic location. This discrepancy in classification is more

noticeable in some subgroups, in particular to a more significant extent in Aboriginal and

Torres Strait Islanders status than in others. Since the Census uses self-enumeration,

usually with one individual responding for all household members; the PES is more likely

to be ‘correct’ in the Australian context, where the ABS utilises its professional field-force

for the PES interviews. For the reasons mentioned, it is assumed here that the PES always

correctly classifies a person to subgroup. No such assumption is made with regard to

census classification. (It is worthwhile to note here that the traditional DSE in Section 2

does not correct for systematic differences in PES and Census classification of people to

subgroup).

The observed Census counts X T ¼ ðX1; : : :Xh; : : : ;XHÞ are calculated by summing

over all Census records in each of the H subgroups. We may consider expressing the

Census counts by X ¼
P

j[U xj, where xT
j ¼ ðxj1; : : : xjh; : : : ; xjHÞ, Xh ¼

P
j[U xjh, and

xjh is the number of times person j was counted by the Census in subgroup h for j [ U. If

person j in the population is missed by the Census (i.e., not counted in any subgroup), then

we can notionally set xj ¼ 0, where 0 is an H column vector of zeros. While we can

calculate X, we do not observe xj for all j, as this would require that each person in the

population is identified and explicitly assigned a value for x.

In other contexts, x can define characteristics of people in administrative data. Many

countries now use administrative data as either the entire basis for their census or as

a major component of their census. Valente (2010) provides a review of different

approaches taken by different European countries. In the case of the Netherlands (see

Nordholt 2005), x contains classification errors, and the PES functions somewhat as a

quality correction for the administrative data, rather than as a coverage check (Brown and

Honchar 2012).

After matching PES and Census records, we can establish xih, the number of times the

ith PES respondent was counted by the Census in subgroup h. Again, xih ¼ 0 if the Census

did not count the ith PES respondent in subgroup h (i.e., if the ith PES record could not be

matched to any Census record in that subgroup). The variable xih captures information

about overcoverage (if greater than 1) and undercoverage (if zero). This is important since

here, unlike in the DSE approach, we only have a single audit sample (i.e., there is a

P-sample but no E-sample) to capture information about over- and undercoverage.

Integrating the two also recognises that both errors are inherent in the Census, and our

target is to recognise this in our estimation. We now have several possible types of

coverage outcomes; the main ones being:

. tih ¼ 1, xih ¼ 1, and xig ¼ 0 and tig ¼ 0 for all g – h

W the PES and Census counts a person once in the same subgroup,

. tih ¼ 1 and xih ¼ 2

W the PES and Census counts a person once and twice in the same subgroup,

respectively (e.g., duplication),
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. tih ¼ 1 and xig ¼ 0 for all g

W the PES counts a person but the Census did not count them at all,

. tih ¼ 1, xih ¼ 0, xif ¼ 1, xig ¼ 0 for all g – h or g – f

W the PES and Census counts a person in different subgroups. This could be due to

Census misclassification or because a person was enumerated by the PES and

Census in different geographic locations, and

. tih ¼ 1, xih ¼ 1, xif ¼ 1, xig ¼ 0 for all g – h or g – f

W the PES and Census counts a person once in the same subgroup but the Census

also counts the person in a different subgroup.

Third, we know that certain subgroups of the population are more likely to be missed by

the PES, even after conditioning on auxiliary information available from the Census. As

we see in the next section, this would mean that the standard generalised regression

estimator (Subsection 3.2) for the PES in the Australian context would be biased, and so

we consider an alternative (Subsection 3.3).

3.2. Generalised Regression Estimator Using a Prediction Model

For simplicity, in the rest of this article we replace tih with ti, where ti ¼ 1 if person i is in

an arbitrary subgroup of interest (i.e., we drop the h subscript). Similarly, we replace tjh
with tj. Now we are interested in estimating T ¼

P
j tj the usual resident population in an

arbitrary subgroup.

Consider the ‘working’ linear prediction model

tj ¼ xT
j aþ ej ð5Þ

EðejjxjÞ ¼ 0

where the ej s are independent and identically distributed and a is an H column vector of

coefficients that relate to membership of the H subgroups. We call (5) a ‘working’ model

because a linear model is not ideal for a binary variable such as t. Nevertheless, we may

use this model to motivate the classic generalised regression estimator,

T̂ ðGREGÞ ¼
X

i[s

wi ti 2 xT
i â

� �
þ X Tâ

where â ¼
P

i[s wixix
T
i

� �21 P
i[s wix

T
i ti

� �
is the standard ‘survey weighted’ least squares

estimator of a (see Särndal et al. 1992).

If we now allow for nonresponse in the PES, we need to consider whether or not the

condition under which T̂ ðGREGÞ is asymptotically unbiased is reasonable. Denote the

response indicator by Ij, where Ij ¼ 1 if person j in the population would respond if

selected in the PES and otherwise Ij ¼ 0. Now consider the distribution of t given x in the

population,

½tjjxj; j ¼ 1; : : :N� ¼ ½tjx�

and the distribution of t given x in the population of PES respondents,

½tjjxj; Ij ¼ 1; j ¼ 1; : : :N� ¼ ½tjx; I ¼ 1�:
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If these two distributions are equal, we may write

½tjx� ¼ ½tjx; I ¼ 1�: ð6Þ

From (5) and (6) it follows that T̂ ðGREGÞ is asymptotically unbiased in the presence

of nonresponse (see also Kott and Chang 2010). The condition in (6) means that the

distribution of t given x is the same for PES respondents and PES nonrespondents and so

we may say that nonresponse is ignorable given x (see Rubin and Little 2002); we may

also say that the response, t, and the indictor for response, I, are independent conditional on

x and so we may write [t, Ijx ] ¼ [Ijx ][tjx ].

However, there is strong evidence against (5) or (6) holding in the case of the PES. To

illustrate this, consider breaking up the population U into Census respondents (xj – 0) and

Census nonrespondents (xj ¼ 0). For Census nonrespondents, (5) and (6) become

tj ¼ ej ð7Þ

Eðejjxj ¼ 0Þ ¼ 0

½tjx ¼ 0� ¼ ½tjx ¼ 0; I ¼ 1� ð8Þ

for all j [ U. Equation (7) implies that, for Census nonrespondents, the unconditional

mean of t in the population and in the population of PES respondents is zero. That is, if a

person is missed by the Census, the model expects them to be missed by the PES. This is

clearly not an appropriate assumption, since the PES is designed to capture information

about Census undercoverage.

Equation (8) is equivalent to the assumption that, within the population of Census

nonrespondents, nonresponse occurs completely at random; that is, within the population

of PES nonrespondents, t, and the nonresponse indicator, I, are unconditionally inde-

pendent (Rubin and Little 2002). There are at least two reasons why (8) is unlikely in the

case of the PES. First, there is strong practical evidence that Aboriginal and Torres Strait

Islanders people living in remote communities and people aged 20–29 have a higher rate

of being missed by the PES.

Second, it is reasonable to suppose that whether a person responds to the PES may be

correlated in some way to whether the person responds to the Census. For example, people

may avoid the PES interviewer specifically because they do not want to own-up to being a

Census nonrespondent. This would lead to the PES sample having an unrepresentatively

high rate of completed Census forms. This creates the ‘correlation bias’. In dual sampling

literature this correlation is sometimes assumed to be negligible after conditioning on an

appropriate set of covariates. However, for Census nonrespondents, there are effectively

no covariates (x) on which to condition.

In order to reduce any impact of the PES on the Census response (another potential form

of ‘correlation bias’), the PES is conducted four weeks after Census night. Census records

matched with PES records (i.e., x in this article) are those that were received before the

date that PES field operations began, Census forms that were returned by mail or by

Internet after this date are essentially ignored. In addition, data collected by the PES and

Census are processed independently.

In short, for the reasons outlined above, nonresponse is not ignorable given x. Given

T̂ ðGREGÞ is biased in this case, next, we consider an alternative.
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3.3. Using a Two Stage Prediction Model

Now consider a vector z that is comprised of variables on people selected in the PES.

Accordingly, z may be a function of x or t. Now, instead of (6) consider assuming

½tjjzj; Ij ¼ 1� ¼ ½tjjzj� for j ¼ 1; : : :N ð9Þ

½xjjzj; Ij ¼ 1� ¼ ½xjjzj� for j ¼ 1; : : :N ð10Þ

Assumption (9) is that the distribution of tjz in the population and in the population of PES

respondents is the same. Assumption (10) is that the distribution of xjz in the population

and in the population of PES respondents is the same. If z is a function of only x, then (9)

and (10) collapse to (6). In an attempt to overcome the failings of (6), we allow z to be a

function of t. By allowing z to be a function t we allow the indicator for nonresponse, I, to

depend upon the response value itself (see Little and Rubin 2002). In this case,

nonresponse is said to be nonignorable given x.

To make the ideas more concrete, consider the underlying working model

tj ¼ zT
j uþ 11j ð11Þ

xj ¼ zT
j gþ 12j;

Eð11jjzjÞ ¼ 0

Eð12jjzjÞ ¼ 0

where 11j and 12j are independent over j. Using (11) in a regression of t on x, it follows that

a and ej from (5) can be expressed by a* ¼ g21u and e
*

j ¼ 11j 2 12jg
21u. We may then

re-consider the working model of (5) and write

tj ¼ xT
j a

* þ e
*

j ð12Þ

E e
*

j jxj

� �
¼ 0

We know from (9), (10), and (11) that (12) holds in the population and in the population

of PES responders. So while (5) and (12) are both linear regressions with the same

dependent and independent variables, only (12) holds in the population.

Now we may use (12) in a standard generalised regression estimator. Accordingly,

unbiased estimates of u, g, and a * are

~u ¼
X

i[s

wiziz
T
i

 !21
X

i[s

wiziti

 !

;

~g ¼
X

i[s

wiziz
T
i

 !21
X

i[s

wizixi

 !

and

~a* ¼ ~g21 ~u ¼
X

i[s

wizix
T
i

 !21
X

i[s

wiziti

 !
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and the classical regression estimator of T under (12) is

T̂ ðPREGÞ ¼
X

i[s

wi ti 2 xT
i ~a*

� �
þ X T ~a* ð13Þ

Since under (12), we know that EðTÞ ¼ X Ta* and E
�P

i[s wie
*

j

�
¼ 0 it follows that,

since ~a* is unbiased for a*; EðT̂ ðPREGÞÞ ¼ T . Kott and Chang (2010) show that (13) is

unbiased and note that for ~a and ~g21 to exist the inverse of
P

i[s wizix
T
i must exist and so

constrain the dimension of x and z to be the same. Since (13) is essentially a function of

means, the jackknife can be used to give an asymptotically unbiased estimate of the

sampling variance of T̂ ðPREGÞ in large samples.

If we let the predicted value of xi be ~xi ¼ zT
i ĝ it is easy to show that an alternative

expression for (13) is T̂ ðPREGÞ ¼
P

i[s wigiti, where gi ¼ 1þ X 2
P

i[s wi ~xi

� �T

P
i[s wi ~xi ~x

T
i

� �21
~xi - the same as T̂ ðGREGÞ but with ~x replacing x. In other words, the

Predicted value of x is used in an otherwise standard REGression estimator (PREG). In

other words, the weight adjustment gi depends upon zi (via ~xi;) instead of xi and so

the weight adjustment does not depend on whether or not person i is a Census respondent.

This is analogous to classic DSE, where membership of a subgroup defines the PES

nonresponse adjustment for both the Census responders and nonrespondents.

In 2011, the ABS application of x and z contained the number of times a person was

counted on a ‘persons present’ basis (collected by Census) and ‘usual –residents’ basis

(collected by the PES) in each subgroup, respectively, where subgroup was defined by

cross-classifying age, sex, Aboriginal and Torres Strait Islanders status collected by the

PES. The dimension of x and z was about H ¼ 450 (i.e., 450 subgroups indicators). Defining

z completely in terms of PES counts allowed for nonignorable nonresponse in the PES.

The proposed estimator of (13) relies on assumptions similar to the DSE:

. Assumptions (9) and (10) correspond to the assumption of independence between the

PES and the Census. If the independence assumption was violated then the distributions

in the sample and populations would not be the same, as required by (9) and (10);

. The assumption of perfect matching between the PES and the Census ensures the

values of x that are assigned to PES respondents are correct;

. The closed population assumption is implicit in the definition of the population set U.

We assume that everyone who responds to the Census must be in U and all people in

U have a chance of being selected by the PES. The closed population assumption will

be violated (and (13) will be biased) if a Census respondent does not correctly

identify as an overseas visitor and leaves Australia before the PES; and

. The homogeneity of response assumption is implicit in the response model of (11).

Chang and Kott (2008) consider a response propensity model, rather than a prediction

model, such as (11), to justify (13). We may suppose that pj ¼ EðIjÞ ¼ 1=f zT
j u

� �
, where

f () is some appropriate nonlinear function and u is a matrix of coefficients. Chang and Kott

(2008) show that under this response propensity model (and certain conditions), an

unbiased estimator of T is

T̂ ðRESPÞ ¼
X

i[s

wi f zT
i v

� �
ti
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where v is an H vector (same dimension as z) of constants that satisfies X ¼
P

i[s wif zT
j v

� �
xi: Chang and Kott (2008) show that the estimators T̂ ðRESPÞ and T̂ ðPREGÞ

have the same form if f zT
j v

� �
¼ 1= 1þ zT

j v
� �

. Here, it may be more appropriate to

consider a response propensity model rather than a linear model, such as (5), for a binary

variable such as t. This will be the subject of future work.

4. Simulation to Demonstrate the PREG

This section describes a simple but illustrative simulation study of the PREG and GREG.

Given that we are working in a situation in which there is no E-sample, the DSE was not

evaluated. In this simulation, the population is made up of four subgroups of interest (i.e.,

there are four different ways of defining t). The subgroup population totals of interest are

5000 (Subgroup 1: non-Aboriginal and Torres Strait Islanders males), 2000 (Subgroup 2:

Aboriginal and Torres Strait Islanders males), 2000 (Subgroup 3: non-Aboriginal and

Torres Strait Islanders females), and 1000 (Subgroup 4: Aboriginal and Torres Strait

Islanders females). The proportion of people in subgroup 1, 2, 3, 4 living in Aboriginal

communities is 0.2, 0.8, 0.3, and 0.7, respectively. Using these proportions, each person in

a subgroup is randomly assigned a value for c, where c ¼ 1 if a person lives in an

Aboriginal community and otherwise c ¼ 0. In reality, Census and PES coverage of

Aboriginal communities is potentially more difficult due to their remoteness and the wide

geographic area that they cover.

The population is counted by the Census. Each person in the population is assigned a value

for x ¼ (x1, x2, x3, x4) where xhj is the number of times the person was counted in subgroup h

by the Census. The type of errors in the Census counting include misclassification (records in

subgroup h ¼ 2 are misclassified to subgroup h ¼ 1), duplication (person counted twice),

and missing (person not counted). Consistent with earlier notation, if a person is missed, then

x ¼ 0, if a person in subgroup h ¼ 1 is duplicated in the subgroup, then the first element of

x is 2 and all other elements are zero. The probability of these Census counting errors

occurring depends only on c. Table 1 gives these probabilities for a range of scenarios. For

example, in Scenario 1 the Census rate of misclassification, duplication and missing for

people living in Aboriginal communities was 0.1.

A simulated PES sample of size 1,000 people was selected by SRSWOR from the

population. From the sample the variable c and subgroup membership variables zhi were

collected, where z1i ¼ 1 of person i belonged to population h and is otherwise zero.

However, the PES did miss people. As in the Census, the probability of the PES missing a

person depended upon c. Table 1 gives these probabilities for a range of scenarios. For

example, in Scenario 1 the probability of missing a person living within and outside an

Aboriginal community was 0.1 and 0.05, respectively. Since it is difficult, in practice, to

measure the probability of missing a person when the ‘missing’ mechanism itself is

nonignorable, the range of scenarios aims to explore a wide scope of possibilities (rather

than be motivated by a particular case study).

The PREG and GREG used the same definition of x. The following estimators were

considered:

PREG1: Equation (13) with z ¼ 1. This assumes that the PES provides a

representative sample of t and of x from the population.
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PREG2: Equation (13) with z ¼ (1, r), where r ¼ z2 þ z4 is an Aboriginal and Torres

Strait Islanders status indicator. If it is suspected that PES nonresponse

depends on Aboriginal and Torres Strait Islanders status alone then there

would be substantive reasons for defining z in this way. In this situation r is a

good proxy for c, which drives the PES nonresponse mechanism.

PREG3: Equation (13) with z ¼ (1, c). This is the estimator that would be used if the

mechanism generating the count errors in Census and PES were known.

GREG: Generalised regression estimator with auxiliary x. This estimator assumes

that the distribution of tjx in the PES and in the population is the same.

The results are presented in Table 2 in terms of Relative Bias of T̂ ¼ ðT̂ 2 TÞ=T . Since the

dimension of x and z were not the same, we calculated the generalised inverse of
P

i[s wizix
T
i

� �
to calculate the PREG.

Table 2 shows that the GREG is consistently biased, but that reduced the bias in the

observed Census counts. The table shows that PREG1 is biased because it is not well

specified. PREG2 assumes PES nonresponse depends on ‘Aboriginal and Torres Strait

Table 2. Bias (%) in population estimates for various scenarios.

GREG PREG1

Subgroup

Scenario 1 2 3 4 1 2 3 4

1 5.6 9.8 6.0 9.0 20.9 2.2 20.8 2.5
2 11.0 20.0 12.0 17.8 21.8 5.5 22.3 4.7
3 5.3 11.0 6.0 8.8 20.6 1.5 21.9 1.2
4 10.7 21.9 11.6 17.6 22.5 5.0 22.5 4.3
5 10.6 22.1 12.0 18.5 22.1 4.9 21.8 3.5
6 15.5 34.9 17.5 26.9 23.8 8.2 3.9 5.8

PREG2 PREG3

Subgroup

Scenario 1 2 3 4 1 2 3 4

1 20.4 0.3 0.5 20.1 20.3 20.3 0.1 0.5
2 20.0 20.1 20.4 23.1 20.1 20.1 0.3 0.3
3 20.4 0.6 1.5 0.5 20.2 21.2 20.7 20.2
4 20.1 20.3 20.3 0.4 20.8 1.5 0.7 1.7
5 0.2 0.6 1.2 1.8 0.1 20.3 20.4 0.0
6 20.9 20.1 20.0 1.3 0.0 21.3 20.6 0.5

Census counts

Subgroup

Scenario 1 2 3 4

1 210.2 26.5 0.3 2.0
2 29.1 29.0 0.4 21.5
3 220.7 53.7 20.2 20.6
4 229.5 80.8 20.5 21.9
5 221.3 60.7 0.85 1.4
6 227.5 84.5 0.9 0.3
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Islanders’ status. Interestingly, PREG 2 only has a small biase because ‘Aboriginal and

Torres Strait Islanders’ and ‘Community’ are well-correlated. As expected, PREG3 is

unbiased in all scenarios, as it correctly assumes that PES nonresponse is due to

‘community’.

5. Set-Up of the Simulation

Subsection 5.1 creates a synthetic version of the population, U, and simulates Census

counting of the population. Subsection 5.2 simulates PES sampling from the synthetic

population. Subsection 5.3 evaluates the GREG and PREG. The aim was for the

simulation to be realistic.

5.1. Simulating the Population

Records of the 2001 Census define the synthetic population U and subgroup t. The

different subgroup totals of interest, T, are given in Tables 3 and 4 (e.g., in the last row of

Table 3, t is defined as the membership indicator for the Australian Capital City and T is

the population total of the Australian Capital City).

Define z to be a H ¼ 449 vector of 2001 Census variables given by Aboriginal and

Torres Strait Islanders status and the cross-classification of region, sex, and age. This

defines z j for all j [ U. Given that t and z are defined in terms of the same source of data

(i.e., the 2001 Census), their values are consistent.

In the simulation, x has the same categories as z. However, to allow for errors in the

Census counting, x and z can be different. To do this, we used the 2001 PES to model

the following three probabilities, conditional on a range of dwelling and person-level

covariates (including covariates in z) from the 2001 Census:

p (1) ¼ the probability that a person was counted correctly by the Census (i.e., Census

and PES classification is the same),

p (2) ¼ the probability that a person is misclassified by the Census (i.e., Census and

PES classification is not the same), and

p (3) ¼ the probability that a person is missed (i.e., not counted) by the Census.

Table 3. Relative Bias (RB), Relative Root Mean Squared Error (RRMSE) and Relative Standard Error at State

and National Level.

RB (%) RSE (%) RRMSE (%)

Subgroup PREG GREG PREG GREG PREG GREG

Australia 20.03 20.02 0.10 0.10 0.11 0.10
New South Wales 20.03 20.01 0.21 0.21 0.22 0.21
Victoria 20.03 20.02 0.21 0.20 0.21 0.20
Queensland 20.03 20.01 0.25 0.25 0.25 0.25
South Australia 20.04 20.04 0.28 0.27 0.28 0.28
Western Australia 20.06 20.05 0.30 0.29 0.30 0.30
Tasmania 20.07 20.07 0.40 0.39 0.41 0.40
Northern Territory 20.11 20.08 1.00 0.97 1.01 0.98
Australian Capital Territory 20.04 20.05 0.53 0.51 0.53 0.52
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Each person in the simulated population was assigned these three probabilities under the

model, giving pð1Þj ; pð2Þj ; pð3Þj

� �
for all j [ U. Then the value of xj for population record j was

equal to:

† z j with probability pð1Þj .

† z*
j with probability pð2Þj , where z*

j is same as zj but changed to an ‘adjacent’ category in

one dimension (e.g., if zj indicates a male aged 20–25, then z*
j may indicate a male

aged 26–30, where the dimension that is changed is age and the ‘adjacent’ categories

are 20–25 and 26–30).

† 0 with probability pð3Þj

† 2zj with probability 1 2 pð1Þj 2 pð2Þj 2 pð3Þj (i.e., person j is counted twice).

Finally, all people in the simulated population were assigned a value for hj, the

probability that person j would respond to the PES. The important point here is that hj

was allowed to be a function of z. It is worth noting here that Aboriginal and Torres

Strait Islanders status had a strong influence on the propensity to respond. (The coefficients

in the propensity model were obtained from the logistic regression of 2001 Census response

propensity using the 2001 PES. One difference between the variables in the models used

to obtain pð3Þj and hj is that the latter included additional dwelling and person-level

covariates, such as whether born outside of Australia, dwelling type, and marital status).

5.2. Simulating the PES Samples

Repeated PES samples of size 90,000 people were drawn from the synthetic population.

The simulated PES sampling scheme was designed to mimic the actual PES sampling

scheme. The first stage of this sampling scheme divides the Census Collector’s Districts

Table 4. Mean squared error and bias for other subgroups.

MSE (relative to PR) Bias (%)

PREG GREG PREG GREG

Male, age 0–19 100 94 20.04 0.00
Male, age 20–29 100 92 20.03 0.24
Male, age 30–59 100 89 20.03 0.05
Male, age 60þ 100 93 20.03 0.27
Female, age 0–19 100 97 20.02 20.10
Female, age 20–29 100 91 0.06 0.02
Female, age 30–59 100 104 20.01 20.17
Female, age 60þ 100 91 0.04 0.06
Not Aboriginal and Torres

Strait Islanders
100 111 20.02 20.07

Aboriginal and Torres
Strait Islanders

100 139 0.08 2.80

Born in Australia 100 100 20.01 0.00
Born overseas 100 99 0.00 0.02
Not married 100 100 20.02 0.00
Married 100 97 20.02 20.01
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(CDs) into strata, and chooses a sample of these CDs with probability proportional to the

number of dwellings in the CDs. The second stage divides the CDs into blocks, and selects

a block at random. Finally, a cluster of dwellings is selected within each selected block

by skipping through the list of dwellings. The skip lengths are such that each dwelling has

an equal probability of selection in a state. Once the PES sample was selected from

the synthetic population, each selected person was randomly assigned to be a PES

nonrespondent with the probability 1-hj. The variable t was collected from PES

respondents.

Given that the propensity to respond to the PES depends upon on z (and not x),

nonresponse is nonignorable given x. If the propensity to respond was based only on x,

nonresponse would be ignorable given x. The nonresponse rate was simulated to be about

94% (of those who were contacted by the 2011 PES, 94% responded).

5.3. Evaluation of Alternative Estimators Using Simulation

The estimators in the simulation are:

GREG: Generalised regression estimator, T̂ ðGREGÞ where x is defined in Subsection 5.1.

PREG: The proposed regression estimator, T̂ ðPREGÞ where x and z are defined in

Subsection 5.1 This definition of x and z was used in estimation for the actual

2011 PES.

For each of 1,000 simulated PES samples, we calculated the

. Relative Bias (RB) ðT̂ 2 TÞ=T

. Relative Standard Error (RSE) of T̂ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dVarðT̂ÞVarðT̂Þ=T

q

. Relative Root Mean Squared Error (RRMSE) of T̂ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðT̂ 2 TÞ=T

q

for the GREG and PREG estimators, where dVarðT̂ÞVarðT̂Þ is calculated using the group jackknife.

Table 3 gives the average RB, RSE and RRMSE over these 1,000 simulations. Table 3

shows that GREG and PREG perform equally well. However, Table 4 shows that PREG

outperforms GREG for estimates of the Aboriginal and Torres Strait Islanders population.

This is driven by the fact that the Aboriginal and Torres Strait Islanders population was

simulated to have significant and nonignorable influence on PES nonresponse status.

While the results are not shown here, the coverage rates of PREG were close to their

nominal level of 95%.

6. Discussion

The development of the ABS’s Census coverage estimation strategy for Australia has

been driven by Census counting on a ‘persons present’ basis and PES counting on a

‘usual residents’ basis, Census misclassification, and by nonignorable nonresponse in

the PES.

The estimator proposed here also has the potential to aid population estimation

when using an imperfect administrative source as the basis, rather than a traditional

Census. In such a situation, the estimation strategy has to deal with individuals having

some characteristics poorly defined and being in the wrong locations in the adminis-

trative data, as well as having people completely missing from the administrative data.
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This concept of a survey for quality assessment of administrative data has been

proposed in Brown and Honchar (2012), where they suggest the ABS PREG estimator

as an approach.

Completely erroneous returns was part of the reason for the E-sample, as adopted by

the US Census. In part because there is no E-sample, the proposed estimator is biased

if there are completely erroneous returns. More generally, it is biased if people who

cannot be counted by the PES can be counted by the Census. Although there is no

evidence of an erroneous returns problem in the Australian context, it does mean that

temporary residents should be excluded (i.e., excluded from X). In the context of

estimating people counts from an administrative list (instead of a Census), this means

that individuals who have emigrated, but erroneously remain on the list, need to be

removed using other approaches, such as evidence of activity within the system prior to

estimation.

As discussed, the PREG relies on the same assumptions as classic DSE, including

independence between the Census and PES. Gerritse et al. (2015) explicitly explored

issues of dependence with two lists. More generally, within the classic capture-recapture

framework work has been done exploring the use of multiple systems to tackle the issue

of dependence. A recent review is given by Baffour et al. (2013); while Zhang (2015)

makes an interesting contribution to using multiple administrative sources with a survey

to deal with completely erroneous returns. Clearly, looking at how the ABS PREG can

fit into this multiple system situation is important future work, as many countries now

using a traditional Census are looking to use multiple administrative sources as an

alternative.
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Space-Time Unit-Level EBLUP for Large Data Sets

Michele D’Aló1, Stefano Falorsi1, and Fabrizio Solari1

Most important large-scale surveys carried out by national statistical institutes are the
repeated survey type, typically intended to produce estimates for several parameters of the
whole population, as well as parameters related to some subpopulations. Small area
estimation techniques are becoming more and more important for the production of official
statistics where direct estimators are not able to produce reliable estimates. In order to exploit
data from different survey cycles, unit-level linear mixed models with area and time random
effects can be considered. However, the large amount of data to be processed may cause
computational problems. To overcome the computational issues, a reformulation of predictors
and the correspondent mean cross product estimator is given. The R code based on the new
formulation enables the elaboration of about 7.2 millions of data records in a matter of
minutes.

Key words: Small area estimation; time series; linear mixed model; small area estimation
software.

1. Introduction

Large-scale surveys are usually aimed at providing estimates of target parameters for the

whole population, as well as for relevant subpopulations defined at the sampling stage.

Design-consistent and design-unbiased direct estimates are produced for the parameters of

interest. However, in most surveys, the sample size is not large enough to guarantee

reliable estimates for all the target subpopulations. When direct estimates cannot be

provided, small area estimation (SAE) methods should be used to overcome the problem

(see Rao 2003; Pfeffermann 2002, 2013). SAE methods, usually referred to as indirect

estimators, cope with the lack of information from each domain by borrowing strength

from samples that belong to other domains, with the result that it increases the effective

sample size for each small area.

The most important surveys carried out by national statistical institutes are repeated

surveys (see Duncan and Kalton 1987, and Kish 1987). The repeated nature of these

surveys allows them to borrow strength not only from other areas but also from other

survey cycles.
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In this context, Saei and Chambers (2003) proposed the use of unit-level linear mixed

models (LMMs) with area and time random effects. However, this presents a

computational challenge, since large amounts of data from different survey cycles have

to be processed. The aim of this article is propose a method to overcome computational

problems that may arise from using the predictors and correspondent errors given by Saei

and Chambers (2003). For this reason, a reformulation of these expressions will be

presented. Furthermore, these more efficient expressions will be applied to the estimation

of the unemployment rate at Labour Market Area (LMA) level, using data from the Italian

Labour Force Survey (LFS). The case study aims to show the potential gains in efficiency

as a result of SAE methods borrowing strength from space and time. It does not aim to

suggest a ready solution for official LFS statistics, which necessarily involves many other

issues and considerations that are outside the scope of this article.

The LFS is a quarterly survey based on a two-stage stratified cluster design. Municipalities

are the primary sampling units, and households are the secondary sampling units. The survey

follows a rotating panel sample design, according to the rotation design 2-(2)-2. Households

are interviewed in two consecutive quarters. After a two-quarter break, they are interviewed

for an additional two consecutive quarters. The sample is uniformly spread across all the

weeks, such that all territorial domains are represented in each month and in each of the four

waves. The LFS is the main source of information on the Italian labour market and aims to

produce monthly, quarterly, and yearly estimates of employment, unemployment, and

inactivity rates for different planned territorial domains. Each sample contains information

about approximately 170,000 respondents. LMAs, on the other hand, are unplanned areas

that are defined every ten years based on daily commuting flows detected by the Population

Census. At present, there are 611 LMAs, of which about 450 are included in at least one of

the LFS samples in the years 2004–2014. The most unstable estimates refer to the estimation

of the unemployment rate. In this case, the Coefficient of Variations (CVs) of the direct

estimates are very large, and about three out of four CVs are larger than 30%. Therefore,

SAE methods are needed in order to obtain more precise estimates of the unemployment rate

that are suitable for dissemination. However, the areas are sampled with unequal selection

probabilities in relation to the values of the target variable values. In such situations, standard

SAE methods are biased; the magnitude of the bias depends on the sampling fraction and the

covariance between the sampling weights and the target variable. However, in the LFS, bias

resulting from informative sampling is considered to be small. Treatment of informative

sampling in SAE is not considered in this article.

As mentioned above, when LMMs with area and time random effects are assumed,

computational problems may result from the large amounts of data to be used in the

estimation process. For instance, the data used in this article comes from the 44 LFS

quarterly samples in 2004 to 2014, and the overall data size processed comprises about

7,200,000 records.

Usually, in order to overcome the computational problems deriving from large data sets,

area-level models are applied. For instance, Rao and Yu (1994) proposed an extension of

the basic Fay-Herriot (Fay and Herriot 1979) model to handle time series and cross-

sectional data by means of an AR(1) model specification. Datta et al. (2002) and

You (1999) used the Rao-Yu model but replace the AR(1) model specification with a

random walk model. Pfeffermann and Burck (1990) proposed a general model involving
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area-by-time specific random effects. Hidiroglou and You (2016) compared the

performances of unit- and area-level models, showing that the former outperforms the

latter in terms of bias and mean squared error. Furthermore, Gershunskaya (2015) showed

that due to errors associated with the variance of direct estimates, in terms of mean squared

error, there is no benefit to introducing temporal correlations between small areas over

using the regular Fay-Herriot model. The benefits only become apparent when theoretical

variances of direct estimates are used in Rao-Yu model specification.

To avoid the computational issues related to unit-level LMMs, formulas given in Saei

and Chambers (2003) have been rewritten in order to involve only small dimensional

matrices. The revised expressions, implemented in the ad hoc R function, enable the

processing of millions of survey records from different survey cycles in a matter of minutes.

The two-way unit-level linear mixed model with area and time random effects is

described in Section 2, while Section 3 is devoted to the reformulation of the expressions

needed to compute small area estimates and errors. Section 4 describes some particular

SAE methods obtained from the general model. Section 5 includes a case study based on

LFS data that aimed to compare the empirical performances of alternative model

specifications. Section 6 compares the computational performances of the available SAE

software tools with the R function implementing the new expression presented in

Section 3. In conclusion, Section 7 presents the most important conclusions of the work.

2. Two-Way Linear Mixed Model

Let d (d ¼ 1, : : : , D) and t (t ¼ 1, : : : ,T ) denote the generic domain and time indices

respectively. For domain d and time t, let Ndt and ndt denote population and sample sizes,

respectively, and let ydti be the observed value of the target variable for the generic unit i.

The parameter of interest is the vector u including the population means

�ydt ¼ ð1=NdtÞ
P

i ydti, for all domains and times (d ¼ 1, : : : , D, t ¼ 1, : : : , T ). Other

relevant parameters for large-scale repeated surveys, such as totals, or net changes

between two survey cycles, can be expressed as a linear combination of u. For this reason,

the results in this article can be easily extended to the other types of parameters.

Let us suppose that the data follows the two-way unit-level additive LMM (see Searle

et al. 1992; Saei and Chambers 2003)

y ¼ Xbþ Z1u1 þ Z2u2 þ e; ð1Þ

where X, Z1, Z2 are known full rank matrices, and u1, u2, e are random vectors,

independently distributed from each other. The random effect vectors, u1 and u2, modeling

between area and time variations not explained by fixed effects, include D and T levels

respectively. Furthermore, we assume for a ¼ 1, 2, ua , N(0,Ga), and e , N(0, R), where

the covariance matrices Ga ¼ s2
aVaðraÞ and R ¼ s2W21, with W as a known diagonal

matrix. In particular, for a ¼ 1, 2, s2
a and ra denote, respectively, the variance and a

measure of correlation for the elements of ua, while s 2 is the variance of the generic

element of e. For notational simplicity, it will be useful to introduce the parametrisation

fa ¼ s2
a=s

2. Hence, y is N(Xb,S), with S ¼ S(v) given by

SðvÞ ¼ s2ðW21 þ ZVV 0Þ;
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where v ¼ (s 2, f1, r1, f2, r2) is the overall variance component vector, Z ¼ [Z1, Z2], and

V ¼ diaga{faVaðraÞ}. The uncorrelated random effect case is obtained by setting

V1(0) ¼ ID and V2(0) ¼ IT. For models with correlated area effects and correlated time

effects, different structures of covariance matrices of random effects can be assumed. For

example, V1(r1) may depend on the distances among the areas, while V2(r2) may follow

an auto-regressive model.

Once the sample is collected, it is useful to partition Model (1) into two parts, depending

on whether or not units are observed. In the following, we use the subscripts s and r to refer

to sampled and nonsampled population units, respectively. The predicted values for

nonsampled population units of hr ¼ E½yrjXr;b; u� ¼ Xrbþ Zru are (see Royall 1976)

~hrðvÞ ¼ Xr
~bþ Zr ~u; ð2Þ

where ~b ¼ ~bðvÞ, the Best Linear Unbiased Estimator (BLUE) of b, is given by

~b ¼ X
0

sS
21
ss Xs

h i21

X
0

sS
21
ss ys;

and ~u ¼ ~uðvÞ, the Best Linear Unbiased Predictor (BLUP) of u 5 u 01u 02
� � 0

, is

~u ¼ VZ
0

sS
21
ss ys 2 Xs

~b
� �

:

Then, the BLUP of the target parameter u is

~uðvÞ ¼ Lsys þ Lr ~hrðvÞ; ð3Þ

where matrices Ls and Lr have the block-wise structure diagd diagt l
0

dt

� �� �
, being l

0

dt ¼

N21
dt 1

0

ndt
and l

0

dt ¼ N21
dt 1

0

Nr;dt
for Ls and Lr, respectively, and Nr;dt ¼ Ndt 2 ndt is the number

of nonsampled units in area d at time t.

The BLUP estimator ~uðvÞ, given in (3), depends on the variance component vector v,

which is unknown in practical applications. By replacing v by an estimator, v̂, a two stage

estimator called the Empirical Best Linear Unbiased Predictor (EBLUP) is obtained.

Maximum Likelihood (ML), Restricted Maximum Likelihood (REML) and the method of

fitting constants can be applied to the estimation of fixed effects and variance components

(for details see Harville 1977; Searle et al. 1992; Cressie 1992; Rao 2003; Saei and

Chambers 2003). Then, the EBLUP of u is given by

ûðv̂Þ ¼ Lsys þ Lrĥrðv̂Þ;

where ĥrðv̂Þ is the EBLUP correspondent to (2).

3. Reformulation

In this section, computationally more efficient expressions for predicted area means and

the mean cross product error are derived. Results 1 to 5 consist in rewriting the expressions

given in Saei and Chambers (2003) as a function of terms dependent on area and time level

matrices instead of unit-level matrices. In particular, Result 1 gives the expression of the

predicted value for u1 and u2, while Result 2 provides the estimate of the regression

coefficient b. Result 3 gives the mean cross-product error (MCPE) for the BLUP of u.

Result 4 computes the expression for updating the variance component estimates when
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EBLUP is performed, and finally Result 5 provides the MCPE of the EBLUP of u. For

the sake of simplicity and with obvious notation, we will use matrix operators col{�},

row{�}, diag{�}, and matr{�}. Different types of correlation matrices V(r) can be used

for both area and time effects, provided that they depend on a one-dimensional correlation

parameter r. For instance, the spatial correlation can be specified either as a SAR model

based on an adjacency matrix (Cressie 1993), or as exponential or gaussian correlation

structures, while the time correlation can follow an AR(1) process.

Two alternative cases for fixed effects are considered. In the first case (Case A), a

different regression coefficient vector bt, of dimension K, is defined for each time t,

determining b ¼ b
0

1; : : : ;b
0

T

� 	 0
to be a (T £ K)-dimensional vector. In the second case

(Case B), a common regression coefficient vector b, of dimension K, is considered for all

times t. The block-wise structure of matrix X under the two cases is given by

X ¼
cold{diagt{Xdt}}; for case A

cold{colt{{Xdt}}; for case B

(
;

where Xdt is the Ndt £ K design matrix for area d and time t. The ith row of Xdt is

xdti ¼ ðxdti;1; : : : ; xdti;KÞ
0

.

For the random effect part of the model, u ¼ cola{ua}, and Z ¼ rowa{Za}, where

Za ¼
diagd{colt{1Ndt

}}; for a ¼ 1

cold{diagt{1Ndt
}}; for a ¼ 2

(
:

Finally, W ¼ diagd{diagt{Wdt}} in which Wdt is a diagonal Ndt 2 dimensional matrix,

whose generic element, wdti(i ¼ 1, : : : , Ndt), is a known constant expressing the

heteroscedasticity weight for the unit i in area d at time t.

It is worthwhile to note that matrices and vectors partitioned into sampled and

nonsampled units have the same block-wise matrix structure of the corresponding

nonpartitioned matrices and vectors, but matrices or vectors referred to area d and time t

are, respectively, of size Ndt and Nr,dt instead of Ndt.

Let us define the following quantities referred to as area d and time t:

f dt ¼ ndt=Ndt;

�ys;dt ¼ n21
dt

X

i

ys;dti;

�yw;dt ¼ w21
dt

X

i

wdtiydti;

�xw;dt ¼ w21
dt

X

i

wdtixdti;

�xr;dt ¼ N21
r;dt

X

i

xr;dti:
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Then, the general aggregated expression of ~uðvÞ is

~u ¼ cold colt �y~dt

� �� �
;

where �y~dt ¼ �y~dtðvÞ is

�y~dt ¼ f dt �ys;dt þ ð1 2 f dtÞ �x
0

r;dt
~bþ ~u1;d þ ~u2;t

� 	
; ð4Þ

in which ~u1;d and ~u2;t are the dth and tth element of ~ua, a ¼ 1, 2. Let us define

T* ¼ T*ðvÞ as

T* ¼ Z
0

sWsZs þV21
h i21

¼
diagd{wd}þ f21

1 V21
1 ðr1Þ matrdt{wdt}

matrtd{wdt} diagt{wt}þ f21
2 V21

2 ðr2Þ

2

4

3

5

21

¼
T*

11 T*
12

T*
21 T*

22

2

4

3

5;

being wd ¼
P

t wdt and wt ¼
P

d wdt, in which wdt ¼
P

i wdti. Note that matrtd{wdt} is the

transpose of matrdt{wdt}.

Result 1. The predicted values ~ua ¼ ~uaðvÞ, a ¼ 1,2, are obtained as

~ua ¼ T*
a1�cold wd �e~w;d

� �
þ T*

a2�colt wt �e~w;t

� �
; ð5Þ

for wde�~w;d ¼
P

t wdte�~w;dt and wte�~w;t ¼
P

d wdte�~w;dt, being e�~w;dt ¼ e�~w;dtðvÞ given by e�~w;dt ¼

�yw;dt 2 �x
0

w;dt
~b:

Result 2. When case A is considered, the aggregated expression of ~b ¼ ~bðvÞ is

~b ¼ ½Bs;11 2 ~Bs;12�
21½bs;21 2 ~bs;22�; ð6Þ

being

Bs;11 ¼ diagt

d

X

i

X
wdtixdtix

0

dti

8
<

:

9
=

;
; ð7Þ

bs;21 ¼ colt

d

X

i

X
wdtix

0

dtiydti

8
<

:

9
=

;
; ð8Þ

~Bs;12 ¼ B �xw
T*B

0

�xw
;

~bs;22 ¼ B �xw
T*b �yw

;

where

B �xw
¼ ½matrtd{wdt �xw;dt}; diagt{wt �xw;t}�;

b �yw
¼ ½rowd{wd �yw;d}; rowt{wt �yw;t}�

0

;
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Under Case B, the external block-wise matrix operators in (7) and (8), diagt{�} and

colt{�}, are substituted by
P

t{�}, B �xw
¼ ½rowd{wd �xw;d}; rowt{wt �xw;t}�, and b �yw

does not

change.

Result 3. Following Saei and Chambers (2003), the MCPE matrix of the BLUP ~u is

given by

MCPEð ~uÞ ¼ E½ðu 2 ~uÞðu 2 ~uÞ
0

� ¼ G1ðvÞ þG2ðvÞ þG4ðvÞ; ð9Þ

where the aggregated expressions of G1(v), G2(v) and G4(v) are:

G1ðvÞ ¼ s2Z*
r T*Z*

0

r ¼
a

X

a 0

X
aaT*

a;a 0aa 0 ; ð10Þ

G2ðvÞ ¼s
2 X*

r 2 Z*
r T*Z

0

sW
21
s Xs

� 	�
Bs;11 2 ~Bs;12

�21

£ X*
0

r 2 X
0

sW
21
s ZsT

*Z*
0

r

� 	
;

ð11Þ

G4ðvÞ ¼ s2LrW
21
r L

0

r ¼ s2ðdiagd{diagt{Wr;dt}}Þ; ð12Þ

being

X*
r ¼ LrXr ¼ cold diagt Nr;dt �x

0

r;dt

n on o
;

when case A is considered, while the internal operator diagt{�} is substituted by colt{�}

under case B. In addition,

Z*
r ¼ LrZr ¼ ½rowd{diagt{Nr;dt}}; diagd{rowt{Nr;dt}}�; ð13Þ

in which a1 ¼ cold{diagt{Nr;dt}}, a2 ¼ diagd{colt{Nr;dt}}, a3 ¼ a
0

1 ¼ rowd{diagt{Nr;dt},

a4 ¼ a
0

2 ¼ diagd{rowt{Nr;dt}}.

Hence, the BLUP estimator, ~u, given in Results 1 and 2, depends on the variance

components vector v, which is unknown in practical applications. Replacing v by an

estimator, v̂, the correspondent EBLUP is obtained.

Result 4. The EBLUP û ¼ ûðv̂Þ of u corresponding to (4) is given by

û ¼ cold colt �ŷ dt

� �� �
; ð14Þ

where �ŷdt is the EBLUP of �ydt. The explicit expression of �ŷdt ¼ y�̂dt v̂ð Þ is obtained by

substituting the estimate v̂ of the variance component vector v into (6) and (5), namely

b̂ ¼ b̂ðv̂Þ, û1 ¼ û1ðv̂Þ and û2 ¼ û2ðv̂Þ.

REML estimates of model parameters are obtained following the iterative algorithm

given in Saei and Chambers (2003). Compact expressions for updating the variance

components from iteration k to iteration k þ 1 are:

D’Aló et al.: Space-Time Unit-Level EBLUP for Large Datasets 67

Unauthenticated
Download Date | 2/28/17 10:01 AM



ŝ2 ¼ ðn 2 QÞ21

d

X

t

X

i

X
wdtiydti ydti 2 x

0

dtib̂
� 	

þ û11D þ û21T

0

@

1

A;

ŵ1 ¼
1

T
tr T̂s;11 þ P̂1 B̂11 2 B̂21

� �21
P̂
0

1

n o
þ ŝ22û

0

1V
21
1 û1

� 	
;

ŵ2 ¼
1

D
tr T̂s;22 þ P̂2 B̂11 2 B̂21

� �21
P̂
0

2

n o
þ ŝ22û

0

2V
21
2 û2

� 	
;

where Q denotes the number of columns of X, T̂s ¼ T̂* þ P̂ðB̂11 2 B̂21Þ
21P̂ 0, with

T̂* ¼ T*ðv̂Þ and

P̂ ¼
P̂1

P̂2

2

4

3

5 ¼
matrdt Ndt �x

0

dt

� �
T̂

*

11 þ diagt Nt �x
0

t

� �
T̂

*

12

matrdt Ndt �x
0

dt

� �
T̂

*

21 þ diagt Nt �x
0

t

� �
T̂

*

22

2

4

3

5;

r̂1ðk þ 1Þ ¼ r̂1ðkÞ þ Iðr̂1Þ þ DðlREMLðr̂1ÞÞ; ð15Þ

r̂2ðk þ 1Þ ¼ r̂2ðkÞ þ Iðr̂2Þ þ DðlREMLÞðr̂2ÞÞ; ð16Þ

where DðlREMLÞð�Þ is the derivative of the likelihood function with respect to the

parameter of interest, whereas I(�) is the relevant element of the inverse of the information

matrix. The expressions given above are updated iteratively together with the expression

(6) for ~b given in Result 2 until convergence is attained.

Result 5. The MCPE of the EBLUP û is given by the diagonal elements of the following

matrix

MCPEðûÞ ¼ MCPEð ~uÞ þ 2G3ðv̂Þ ¼ G1ðv̂Þ þG2ðv̂Þ þ 2G3ðv̂Þ þG4ðv̂Þ;

where G1ðv̂Þ, G2ðv̂Þ, G4ðv̂Þ are computed, respectively, plugging into (9), (10), (11), and

(12) the estimated values of the variance components. Matrix G3ðv̂Þ takes into account the

uncertainty of the estimation of the variance components. The explicit expression of

G3ðv̂Þ is

G3ðv̂Þ ¼ ŝ2 tr 7aŜ
*

s7
0

a
0 B̂

� 	h i
;

where B̂ is the asymptotic covariance matrix of the REML estimates of the variance

component vector v. It depends on the diagonal elements of the inverse of the Fisher

information matrix of REML estimators v̂. For more details, see Saei and Chambers

(2003). Furthermore, 7a and S*
s have the following expression

7a ¼ 2 Z*
aT̂*^IH

� � dV21

dv


 �

v¼v̂

T̂*;

S*
s ¼ Aþ AVV;
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where, denoting with ^ the Kronecker product, Z*
a is the ath row of matrix Z*

r given in

(13), IH is the identity matrix of dimension H¼4, and A is given by

A ¼
diagd{ws;d} matrdt{ws;dt}

matrtd{ws;dt} diagt{ws;t}

" #

;

for ws;d ¼
P

t ws;dt, ws;t ¼
P

d ws;dt and ws;dt ¼
Pndt

i wdti.

4. Particular Cases

Starting from the general LMM specification in Saei and Chambers (2003), we describe

the more relevant model, and two random effect model specifications presented in the

literature. The general model (1) will be denoted by MST
CC, where the superscript ST stands

for model with spatial and temporal random effects, and subscript CC stands for using a

correlation structure for both the random effects.

When Nd is large, fdt ø 0 and �xr;dt ø �xdt, and the general formula (4) of the unit-level

EBLUP with space and time correlation, �ŷdt, can be approximated by

MST
CC : �ŷdt ¼ �x

0

dtb̂þ

d
0

X

t
0

X
ĝd

0
t
0 �êw;d

0
t
0 ; ð17Þ

where ĝd
0
t
0 ¼ wd

0
t
0 Ĝdtðd

0; t 0Þ, being Ĝdtðd
0; t 0Þ ¼ T̂

*

11;dd
0 þ T̂

*

12;dt
0 þ T̂

*

21;td
0 þ T̂

*

22;tt
0 . The

corresponding estimator û of u is obtained by means of (14).

Special cases of (17) are obtained through particular settings for Ĝdtðd
0; t 0Þ. Using

analogous notation, MST
II is the two-way model with independent and identically

distributed area and time effects, while MST
IC and MST

CI denote, respectively, the two-way

linear mixed model with independent area effects and correlated time effects, and spatially

correlated area effects and independent time effects.

The case of two independent random effects, MST
II , is obtained when

Ĝdtðd
0; t 0Þ ¼ T̂

*

11;dd þ T̂
*

22;tt. Therefore, the expression for the estimator is given by

MST
II : �ŷdt ¼ �x

0

dtb̂þ ĝd �êw;d þ ĝt �êw;t;

where ĝd ¼ wdT̂
*

11;dd ¼ ŝ2
1 = ŝ2

1 þ ŝ 2=wd

� �
and ĝt ¼ wtT̂

*

22;tt ¼ ŝ2
2 = ŝ2

2 þ ŝ2=wt

� �
. This

estimator may be applied in many real situations, for example, when the spatial and

temporal correlation between area and time effects is lower than a given threshold.

Furthermore, it may be useful for cross-sectional surveys in which index t, instead of

representing time, represents a set of T domains which form a different partition of the

population than the D areas.

In many practical situations, it may be useful to consider the two estimators MST
CI and

MST
IC . Model MST

IC can be used for repeated business surveys, in which the small areas

of interest are small domains different from territorial subpopulations (e.g., industry

segments) and it is not possible, or straightforward, to define spatial correlation among

domains.

One-way models MS
C and MS

I , respectively, with spatially correlated area effects and

independent and identically distributed area effects, allow traditional cross-sectional small
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area estimation to borrow strength from other domains, but not from other survey cycles.

Specifically, MS
I corresponds to the standard model defined by Battese et al. (1988), while

examples for MS
C are given in Saei and Chambers (2003), and Petrucci and Salvati (2004).

To borrow strength from other survey cycles but not from other domains, alternative

modelisations for usual time series models are MT
C and MT

I , that is, linear mixed models

with correlated time effects and independent and identically distributed time effects.

5. Application to Real Data

In this section we present a case study aimed at comparing several alternative SAE models

and at testing different SAE software estimation tools. To this end, LFS data from 2004 to

2014 has been used to produce estimates of the unemployment rate at LMA level. The

overall amount of data is about 7,200,000 records and about 25% of LMAs are not covered

by the samples.

LMMs with both area and time random effects are considered, and their estimation is

made possible by means of the expressions described in Section 3. The corresponding

estimator has been applied to compute quarterly LMA unemployment rates and compared

with other standard SAE methods.

The binary nature of the target variable should suggest the use of non-normal mixed

models, for instance a binomial with a logistic link function. However, D’Aló et al. (2012)

showed that the use of logistic models does not improve substantially the quality of the

estimates with respect to normal model. Furthermore, Boonstra et al. (2007) do not find

evidence for the superiority of logistic mixed models over their normal counterparts in the

estimation of unemployment counts in Dutch municipalities. In addition, we are not

usually interested in individual predictions, but rather in predicting area and time

aggregates. Besides, for non-normal mixed models, easy interpretable closed-form

expressions for predictors are not available. Linear mixed models only need area and time

population totals for prediction, while non-normal models require cross-classified

population totals for the fixed effects, even though only marginal effects are included in

the model specification.

The LMMs and the correspondent estimators considered in the experimental study are

reported in Table 1.

In addition to the direct estimator, EBLUPs arising from one-way and two-way unit-

level LMMs are considered. Therefore, the estimator with area- and time-correlated

Table 1. List of models and estimators considered.

Model Estimator

– Direct
MS

I EBLUPS
I

MS
C EBLUPS

C

MST
CC EBLUPST

CC

MSð**Þ
I EBLUP ALLS

I

MSð**Þ
C EBLUP ALLS

C
(**)Model parameters are estimated using all LFS data from 2004 to 2014.
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random effects, EBLUPST
CC, is compared with two SAE cross-sectional methods,

specifically with the EBLUP with uncorrelated area random effects, EBLUPS
I , and with

spatially correlated area random effects, EBLUPS
C. Furthermore, EBLUPST

CC is computed

using the whole set of available time series data, while the cross-sectional methods exploit

only the last quarter data set. Then, in order to be able to set aside the effect of the amount

of data, when comparing EBLUPST
CC with its competitors, the one-way model parameters

have also been estimated using the overall set of data. These last two estimators are

denoted by EBLUP ALLS
I and EBLUP ALLS

C, respectively.

In particular, for EBLUPST
CC, the between-area correlation matrix proposed by Saei and

Chambers (2003) has been considered. This matrix is dependent on the distances among

the areas and on a scale parameter r1 connected to the spatial structure of the areas, and is

given by

V1ðr1Þ ¼ 1þ dd;d 0exp
distðd; d 0Þ

r1


 �� 
21

;

with dd,d 0 ¼ 0 if d ¼ d0 and dd,d 0 ¼ 1 otherwise and dist(d,d0) denoting the Euclidean

distance between area d and d0. Instead, the between-time correlation matrix arises from an

autoregressive AR(1) process whose expression is

V2ðr2Þ ¼
1

1 2 r2
2

1 r2 · · · rT21
2 r2

1 · · · rT22
2

..

. ..
.

. .
. ..

.
rT21

2 rT22
2 · · ·

1

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

:

The scope of the empirical study is to assess the statistical properties of the estimators. To

this aim, the estimates computed for the last quarter of 2011 (October 2011–December

2011) are compared with the correspondent 2011 Census values, which are referred to on

9 October 2011.

The auxiliary information used in the experimental study, that is, the cross-classification

of 14 age groups by sex, is similar to what is used in the LFS calibration process. A

common regression coefficient vector is defined for all the quarters. This is the hypothesis

defined in Section 2 as Case B. We note that the assumption of fixed effects over time is

not very realistic, but the correlated random effects are expected to smooth the estimates.

A first comparison among the estimators has been carried out by means of Average

Absolute Relative Error (AARE) and Average Squared Error (ASE), defined as

AAREðûÞ ¼
1

D

XD

d¼1

AREd ¼
1

D

XD

d¼1

ûd

ud

2 1

�
�
�
�

�
�
�
�;

ASEðûÞ ¼
1

D

XD

d¼1

SEd ¼
1

D

XD

d¼1




ûd 2 ud

�2

;

where for domain d, d ¼ 1, : : : , D, ûd and ud are, respectively, the estimate computed with

a given estimator and the true parameter of interest.
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Table 2 displays the values of AARE and ASE evaluated over the 611 LMAs. The

EBLUPST
CC outperforms the others estimators both in terms of AARE and ASE. It shows

better performances than EBLUPS
I and EBLUPS

C. EBLUPS
I and EBLUPS

C performed

similarly, with a slight preference for the EBLUPS
C. This implies there is no strong

evidence for a significant spatial correlation. Therefore, the introduction of the time

random effect substantially increases the efficiency of the estimates. In fact, the estimated

value of the time correlation coefficient r2, computed with (16), is equal to 0.73, while the

estimate of the spatial parameter, obtained by means of (15), is 0.29. The spatial correlation

defined for the area random effects allows us to obtain more accurate estimates for out-of-

sample areas than the corresponding estimates computed only by synthetic prediction.

Furthermore, the better performance of EBLUPST
CC is not only due to the larger set of data

involved in the estimation process. In fact, EBLUP ALLS
I and EBLUPS

C, which use the same

data as EBLUPST
CC, perform poorly because they do not capture the true time pattern of data.

Table 3 reports the value of the coefficients of variation for all the estimates, with the

exception of EBLUP ALLS
I and EBLUP ALLS

C. It shows that EBLUPST
CC outperforms the

other methods, aside from minimum and maximum values. The direct estimator shows a

better coefficient of variation value only for the minimum value.

Figures 1a and 1b show the distribution of ARE and SE, respectively. The error

distribution of the direct estimator is not included due to its poor performance. In

accordance with Table 2, in both cases the distribution of the errors for EBLUPST
CC is more

concentrated around zero than the other distributions, with the exception of EBLUP ALLS
I

and EBLUP ALLS
C for the ARE.

Figure 2 displays the spatial distribution of the estimates for direct estimator (a),

EBLUPS
I (b), EBLUPS

C (c) and EBLUPST
CC (d). The direct estimates are plotted for

Table 2. AARE and ASE with respect to 2011 Census data.

Estimator AARE ASE(*)

Direct 0.65 18.86

EBLUPS
I 0.34 2.67

EBLUPS
C 0.33 2.59

EBLUPST
CC 0.26 2.07

EBLUP ALLSð**Þ
I 0.36 3.56

EBLUP ALLSð**Þ
C 0.36 3.56

(*)ASE is multiplied by 1,000.
(**)Model parameters are estimated using all LFS data from 2004 to 2014.

Table 3. CV% distribution.

Estimator Min. 1st Q Median Mean 3rd Q Max.

Direct(*) 0.72 31.57 52.01 54.56 77.34 119.80

EBLUPS
I 4.83 19.83 26.99 26.42 33.95 45.46

EBLUPS
C 4.83 19.71 27.18 26.35 33.79 45.60

EBLUPST
CC 1.19 4.23 6.16 7.80 9.44 27.97

(*)There are 158 empty LMAs.
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provinces, while the estimates for the EBLUPs are plotted on LMAs. This is because the

110 provinces are planned domains for which the direct estimator produce reliable

estimates. The spatial distribution of the direct estimates can be considered as a good

picture of the spatial distribution of the true unemployment rates, and for that it can be

used to benchmark SAE estimates. As showed in Figure 1, all the EBLUPs have analogous

spatial patterns to the distribution of the direct estimates.

6. SAE Software for Unit-Level Linear Mixed Models

We implemented the new formulation given in Section 3 in an R function named

space.time.eblup, which allows the computation of (a) estimates of the model parameters;

(b) SAE estimates and their MSEs for sampled areas; (c) SAE estimates and their MSEs

also for out-of-sample areas. In this section, the performance of this function is compared

with the most used software tools, available for SAE or for LMMs fitting. An exhaustive

review of available SAE software tools is provided by the Essnet SAE project.

The available SAE software packages carry out a complete estimation process with the

computation of (a) and (b), but, usually, do not allow (c). LMMs can be estimated using

general software tools for model fitting. In this case, they allow only (a), and extra work is

needed to complete the estimation process, that is, (b) and (c).

The result of the comparative analysis of space.time.eblup compared with the other

available functions and SAE packages shows evidence that space.time.eblup, in addition

to performing a more complete estimation process, is more efficient in terms of runtime.

Table 4 reports SAE software tools developed recently by national or international

projects dealing with small area estimation. All SAE software provides a complete tool for

treating SAE problems, but only the R functions produced by SAMPLE are able to deal

with LMMs that include area and time random effects. Specifically, time random effects

are nested within area random effects instead of including additive random effects as in

(1). Furthermore, no correlation structure can be specified for the area random effects.

Besides the software tools described in Table 4, R packages specifically dedicated to

SAE are available for download at the CRAN, https://cran.r-project.org/. The SAE

S-I S-C ST-CC ALL S-I ALL S-C

EBLUP

(a)   ARE. (b)   SE.

S-I S-C ST-CC ALL S-I ALL S-C

EBLUP

4

3

2

1

0

3

2

1

0

Fig. 1. ARE and SE distributions. SE is multiplied by 1,000.
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packages implementing unit-level LMMs are hbsae, JoSAE, rsae, sae, but do not include

time random effects in the model. Furthermore, as far as the software toos describe in

Table 4 are concerned, it is worthwhile to underline that they can only handle sets of data

much smaller than the 7,200,000 records processed for the case study.

Besides SAE packages, there are many R packages that provide functions for fitting

LMMs. A general package for LMMs is lme4. It can fit linear mixed models by means of

the function lmer. These models can also be fitted using the function lme from the package

estimates

[1.8, 2.7]
[2.7, 3.4]
[3.4, 4.04]
[4.04, 5.12]
[5.12, 9]

estimates

[1.8, 2.7]
[2.7, 3.4]
[3.4, 4.04]
[4.04, 5.12]
[5.12, 9]

estimates

(a) Direct at province level. (b) EBLUPS at LMA level.
I

(c) EBLUPS at LMA level.
C

(d) EBLUPST at LMA level.
CC

[1.8, 2.7]
[2.7, 3.4]
[3.4, 4.04]
[4.04, 5.12]
[5.12, 9]

estimates

[1.8, 2.7]
[2.7, 3.4]
[3.4, 4.04]
[4.04, 5.12]
[5.12, 9]

Fig. 2. Unemployment rate estimates for direct (a), EBLUPS
I (b), EBLUPS

C (c), EBLUPST
CC (d). Legends display

the estimated unemployment rate classes.
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nlme. This package supports various correlation and heteroscedasticity structures for the

variance within.

Concerning the statistical software SAS, (see https://www.sas.com/), apart from the

macro program codes developed by the EURAREA project, no ad hoc SAE software is

available. The SAS procedure MIXED can fit a variety of LMMs. It performs model

estimation that provides both fixed and random effects estimates, and variance

components estimates.

Table 5 compares, in terms of computation times, the performances of the most used

SAS and R functions to fit LMMs with the space.time.eblup function. Only the procedure

MIXED in SAS allows us to handle the whole set of data used in the case study of the

Italian LFS. However, when spatial and temporal correlation is introduced, it can only

process much smaller data sets. The R functions tested to fit LMMs were not able to

process the whole set of data, but only a subset including about 3,000,000 records related

to the first 18 survey occasions. Furthermore, similarly to the SAS procedure MIXED, lme

and lmer can fit models with correlated random effects only for very small sets of data. For

this reason, the only comparison framework that can be set up is restricted to the 18 survey

occasions sets of data, and without taking into account any type of correlation structure.

Moreover, the space.time.eblup function is a complete SAE tool providing computation of

(a), (b), and (c).

All the performances of R and SAS codes were run on an Intel CoreTM i7-3770K

3.50 GHz processor with 8 GB RAM on a 64 bit Windows 7 personal computer.

7. Conclusions

Since the most important surveys carried by national statistical institutes are repeated

surveys, it is important to carefully consider SAE problems within this broad and relevant

survey framework. Standard small area models usually take into account cross-sectional

Table 5. Comparison of performances, in terms of computer time, for R and SAS functions fitting unit-level

LMMs and space.time.eblup R function for Italian LFS data, complete and reduced.

Package Complete data set Restricted data set

PROC MIXED(*) 30 sec 12 sec
lme(*) – 3 min 00 sec
lmer(*) – 2 min 21 sec
space.time.eblup 4 min 54 sec 2 min 18 sec
(*)Elaboration times are related to independent area and time random effects.

Table 4. Description of SAE software based on unit-level LMMs produced by projects on small area estimation.

Project Enviroment Area random effects Time random effects

EURAREA SAS Correlated No
BIAS R Uncorrelated No
SAMPLE R Uncorrelated Nested, Correlated
AMELI R Uncorrelated No
ESSnet SAE R Correlated No

D’Aló et al.: Space-Time Unit-Level EBLUP for Large Datasets 75

Unauthenticated
Download Date | 2/28/17 10:01 AM

https://www.sas.com/


estimation. Nonetheless, in the context of repeated surveys, more realistic and efficient

models can be considered by adding a temporal random effect for exploiting previous

survey occasions data. It potentially allows us to increase the efficiency of results by using

more realistic SAE models that can better capture the real variability of the phenomena

under study. Furthermore, unit-level models have potentially more predictive power than

area-level models, and they are able to exploit the individual correlations between target

variable and fixed effects covariates.

As a consequence, large amount of data have to be processed and computational

problems may occur. The empirical test, conducted on Italian LFS quarterly data,

displayed good statistical performance, outperforming the other estimators. Furthermore,

the new formulation was shown to be effective when dealing with extremely large

amounts of data. As a matter of fact, the function space.time.eblup, implementing the new

expressions was able to process 7,200,000 survey records from the 44 LFS quarterly

samples from 2004 to 2014 in about five minutes. Therefore, the new formulation allows

us to manage very large amounts of data, overcoming the computational limits underlying

the software currently available. Moreover, it can provide a valuable starting point for

building more sophisticated models.

Currently, only the R function is available for use. However, an R package will be

produced and made available as soon as possible.
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Official Statistics and Statistics Education: Bridging the Gap

Iddo Gal1 and Irena Ograjenšek2

This article aims to challenge official statistics providers and statistics educators to ponder on
how to help non-specialist adult users of statistics develop those aspects of statistical literacy
that pertain to official statistics. We first document the gap in the literature in terms of the
conceptual basis and educational materials needed for such an undertaking. We then review
skills and competencies that may help adults to make sense of statistical information in areas
of importance to society. Based on this review, we identify six elements related to official
statistics about which non-specialist adult users should possess knowledge in order to be
considered literate in official statistics: (1) the system of official statistics and its work
principles; (2) the nature of statistics about society; (3) indicators; (4) statistical techniques
and big ideas; (5) research methods and data sources; and (6) awareness and skills for citizens’
access to statistical reports. Based on this ad hoc typology, we discuss directions that official
statistics providers, in cooperation with statistics educators, could take in order to (1) advance
the conceptualization of skills needed to understand official statistics, and (2) expand
educational activities and services, specifically by developing a collaborative digital textbook
and a modular online course, to improve public capacity for understanding of official statistics.

Key words: Statistical literacy; skills and competencies; official statistics literacy;
dissemination; adult education.

1. Background and Motivation

In recent years, both national and international statistical offices as well as other producers

of official statistics (hereafter: official statistics providers) have been paying increasing

attention to the formal training of professional statisticians who work in national and

international statistical systems, and sometimes to the training of other user groups.

Programs awarding either a diploma or a full academic degree related to official statistics

are offered by several intergovernmental institutions or networks, such as the European

Master in Official Statistics (EMOS; Zwick 2016), the Statistical Institute for Asia and the

Pacific (SIAP), and the University of the South Pacific. Several national statistical offices

(some via institutional collaboration) are very active in this regard as well. For example, in

New Zealand, a postgraduate course in official statistics is offered that covers areas such as

data visualization, confidentiality, geographic information system, demography, health
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statistics, and economic statistics (Harraway and Forbes 2013), in collaboration with New

Zealand’s National Certificate of Official Statistics (Forbes and Keegan 2016). The

Central Statistics Office Ireland (MacCuirc 2015) or Statistics Finland (Helenius and

Mikkelä 2011) have also developed training modules, or full diploma programs, for

specific target groups of users such as government employees and analysts, business

managers, or journalists, who are usually not statisticians but who work with official

statistics in various ways.

This article focuses on a gap in the world of formal training in official statistics,

pertaining to wider, non-professional audiences. These include, among other groups

within the adult public at large, the many educators who may teach non-specialists about

statistics (for example, lecturers in introductory statistics at the undergraduate level in

many different disciplines and departments, mathematics teachers who also teach statistics

at the high school level), their many students (who would soon be adults and enter the

workforce), or various administrators, and managers in diverse sectors.

On the one hand, official statistics providers are interested in increasing the use of their

information products through multiple user groups that include the general public. They

are taking many steps to improve the quality of their information services: they have been

opening up free access to their information products through digital portals, and have been

continuously seeking ways to improve levels of public trust and confidence in official

statistics, as well as the level of satisfaction with their information products (Biemer et al.

2014; Steenvoorden et al. 2015).

On the other hand, the provision of training or resources related to official statistics for

wider, non-professional audiences, has been largely left aside. Even if official statistics

websites are being made more user-friendly, comprehension of the statistical information

in them is far from optimal (Schield 2011). Very few official statistics providers offer

structured materials designed to enable the public, or stakeholders from the education

sector (i.e., teachers and students), to better understand official statistics on their websites.

Even leading national statistical offices such as Statistics Canada or the Australian Bureau

of Statistics have cut down on their support to statistics education at schools over the last

few years.

The gaps noted above also exist within the professional field of statistics. Official

statistics providers have been operating for decades around the world, and represent an

indispensable element in the information system of a democratic society (United Nations

2014). However, a dire and surprising lack of solid educational materials designed for

professionals (i.e., statistics or economics majors entering careers in official statistics) has

been noted by numerous scholars involved in the training of statisticians (Murphy 2002;

Nathan 2007). Pfeffermann (2015) has recently reviewed curricula of statistics

departments at over 20 leading universities and concluded that most departments pay

little attention to formal instruction in key aspects of official statistics (such as survey

sampling, seasonal adjustment, or national accounts). Given that official statistics is a

prime employment area for statistics graduates, this is a very surprising finding.

Furthermore, a literature search we conducted did not find a single current textbook that

describes key knowledge bases that have to be emphasized in detail when educating

statistics majors about official statistics. Over 20 years ago the modular online Course

on European Economic Statistics (CEES) was developed with the support of Eurostat
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(in cooperation with the Institute for Training of European Statisticians – TES) within the

Phare Multi-Country Co-Operation for Distance Education Programme (Bregar et al.

2000). Unfortunately, it seems to have been published too early to be adopted by

traditional universities, most of which at that point in time had not begun to recognize

digitalization as the future of educational systems. Lacking solid marketing support at its

launch, the course therefore remained a short-lived attempt to fill in the gap that was

identified decades ago and still exists today.

The only book currently available that appears to be dedicated to the role of an official

statistics provider is Citro and Straf (2013), which is also in use by the EMOS programme.

This US-based text focuses on key aspirations or expectations from an official statistics

provider (for example, relevance to policy issues, credibility among data users, trust

among data providers, independence from political and external influences), and on

numerous important administrative and organizational practices and roles (such as mission

clarity, confidentiality, continuous development of useful data, openness about sources,

data limitations transparency, and more). These are core issues for all official statistics

providers around the world, yet they are not related to a comprehension of the actual

products from the contents’ point of view. Consequently, the text should be regarded as

a very incomplete basis from which to define what non-specialists need to know to

understand official statistics products.

The situation described above implies that educators who wish to introduce non-majors,

high school students, business graduates or adults in general to the fundamentals of official

statistics do not have a set of suitable resources geared for their needs, even at the

beginning of the twenty-first century. If one accepts the tenet that citizens should know

something useful about official statistics, many questions arise: first of all, the question of

“what are the basics that citizens (or non-specialists) should know about official

statistics?”.

While this question seems simple, the answer is not straightforward. It has not been

discussed in detail in the professional literature on official statistics; and certainly not with

regard to non-majors and adults at large. Other related questions are “whose responsibility

is it to develop materials on official statistics for non-specialists?”, and “to what extent

(if at all) should official statistics providers divest resources in order to increase public

knowledge of official statistics?”.

Our goal in this article is to assist, but also to challenge official statistics providers to

ponder the questions raised above. We focus our contribution on specific issues that

official statistics providers may face if they want to help non-specialist users develop the

aspects of statistical literacy (Gal 2002) that pertain to knowledge of, and engagement

with, official statistics (for brevity we refer to this desired knowledge base as official

statistics literacy or OSL). To this end, in our article we first briefly review the general

ecology of skills and competencies that adults may need in order to make sense of

statistical information regarding societal matters. We then examine possible building

blocks of the desired knowledge base that is specific to OSL in more detail. Based on this

conceptualization, we then discuss some directions for future developments that official

statistics providers could make in order to contribute to educational efforts aimed at

increasing official statistics literacy, thereby enriching the course for the development of

statistics education in general.
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2. On Quantitative Competencies and Literacies

A discussion of the statistical capacity needed to understand and engage with official

statistics requires that we first describe the larger environment within which understanding

of official statistics (by non-specialists) is situated.

Over the last few decades, the academic and professional literature has identified several

related but separate constructs that describe general competencies that adults should

possess in order to effectively cope with the quantitative demands of the adult world,

including those related to statistics and probability. Key constructs that have so far been

defined and discussed at some length are (adult) numeracy and mathematical literacy (Gal

et al. 2005; PIAAC Numeracy Expert Group 2009; Geiger et al. 2015; Stacey 2015; Tout

and Gal 2015), quantitative literacy and quantitative reasoning (Steen 2001; Madison

2014; Karaali et al. 2016), as well as statistical literacy and probability literacy (Gal 2002,

2005; Watson 2016). Separate constructs such as health numeracy (Ancker and Kaufman

2007), scientific literacy (Rutherford 1997), financial literacy (Lusardi and Mitchell 2014;

Xu and Zia 2012) or media literacy (Coddington 2015) also encompass, among other

components, diverse quantitative skills which incorporate understanding of specific types

of statistics and data collection methods. Examples include an understanding of long-

range trends in the economy or in ageing which affect pensions or poverty levels; risk

estimates associated with health conditions, pollution levels, and mortality rates; or

notions of (the strength of) evidence.

The usage of ‘literacy’ when coupled with a term denoting an area of human activity

(e.g., ‘statistical literacy’) may conjure an image of a minimal subset of basic skills

expected of all citizens in this area, as opposed to a more advanced set of skills and

knowledge that only specialists may achieve. Yet, many scholars warn against such a

restrictive interpretation, and argue that “literacy”, when used to describe people’s

capacity for goal-oriented behavior in a specific domain, suggests a complex cluster of

skills that may range on a continuum from very low to very high; and furthermore, that

such skills involve not only certain formal and informal knowledge, but also desired

beliefs and attitudes, habits of mind, and a critical perspective (Gal 2002; Geiger et al.

2015). This has already been recognized in the area of mathematics education, where

conceptions of mathematical literacy (Kilpatrick 2001) or quantitative literacy (Steen

2001) have extended the definitions of the mathematical knowledge desired of school

graduates, in light of the complex nature of everyday situations adults have to understand

and manage.

The literacies pertaining to the area of statistics usually fall under the umbrella term

statistical literacy, though there are several related constructs, such as probability

literacy (Gal 2005), data literacy, or risk literacy. According to Gal (2002), statistical

literacy refers to people’s ability to interpret, critically evaluate, and (when relevant)

express their opinions regarding statistical information, data-related arguments, or

stochastic phenomena. He further argues that statistically literate behavior requires the

joint activation of dispositions (supporting motivation, positive attitudes, and a critical

stance), coupled with five cognitive knowledge bases: literacy skills, statistical

knowledge (also including some knowledge of probability, albeit informal),

mathematical knowledge, contextual or world knowledge, and knowledge of critical
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questions that have to be asked. Watson (2002), as well as Watson and Callingham

(2003), have described three levels that reflect increasing degrees of sophistication in

statistical literacy and can be viewed as a developmental trajectory through which

learners may progress: (1) basic understanding of probabilistic and statistical

terminology; (2) understanding of statistical language and concepts when they are

embedded in the context of wider social discussion; (3) and the ability to apply a

questioning attitude to statistical claims and arguments.

Several of the constructs described above have also been defined and evaluated as part

of large-scale international comparative assessments and, in some countries, as part of

national assessments. Consequently, we do have some information about proficiency

distributions. For instance, results from the Programme for International Assessment of

Adult Competencies (PIAAC, also referred to as the OECD Survey of Adult Skills) for 33

countries that participated in the first two waves of this comparative assessment show that

in the area of adult numeracy, a large percentage of adults in most countries, usually

between 20–40%, has low or very low numeracy skills. In most countries few adults

(less than eight percent) reach the highest proficiency levels possible in the assessment,

though there is considerable variation around these general patterns at the country level

(OECD 2013b).

International comparative data that shed some light on knowledge and skills of adults in

the specific area of statistical knowledge comes mainly from the OECD’s Programme for

International Student Assessment (PISA). While PISA assesses proficiencies of students

aged 15–16 years, it shares many similarities with the PIAAC assessment of adult

proficiencies (Tout and Gal 2015), both in terms of its conceptual framework and its use

of assessment items that purport to simulate real-world demands facing future adults.

Specifically, the PISA 2003 and PISA 2012 assessment cycles have reported separate

findings in four subareas of mathematical literacy, one of which is ‘uncertainty & data’

(i.e., statistics & probability). In PISA 2003 (OECD 2004), whose test-takers now

approach 30 years of age and thus classify as adults, results were reported for six levels of

proficiency, from 1 (lowest) to 6 (highest), including a seventh group of ‘below level 1’. At

the risk of oversimplifying the complex pattern of reported results, the findings suggest

that, across all 25 participating countries, on average, 46% of the respondents did not reach

level 3, showing poor ability to read and interpret statistical displays and statistical

messages that involve more than a few straightforward data elements. A similar pattern

was reported in PISA 2012 (OECD 2013a), whose participants are now aged around

18 years.

Results concerning numeracy (in PIAAC) and mathematical literacy (in PISA)

proficiencies thus suggest that in many countries the adult population is very diverse in

terms of its ability to comprehend quantitative and statistical messages. Further, PIAAC

also shows similar patterns regarding other skills that are involved in finding,

understanding and engaging official statistics, in particular reading literacy and the

ability to solve problems in [information] technology-rich environments. It is, of course,

possible that quantitative and statistical competencies at the individual level change (even

evolve positively) over time. Nevertheless, when viewed together, findings and gaps

documented by PISA and PIAAC, motivate and inform further dialogue about ways to

conceptualize, and in turn improve, official statistics literacy.
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3. Towards a Definition of Official Statistics Literacy

3.1. Making Sense of Official Statistics: An Overview of Sources

In this section we reflect on what are the unique or specific knowledge bases and skills that

citizens at large and non-specialists need in order to make sense of official statistics in

addition to having the knowledge bases and skills subsumed under the more generalized

constructs reviewed in the previous section. A specific point of comparison pertains to the

knowledge expected of students who have taken an introductory statistics course at the

undergraduate level, which may be the last, and for some students the only, structured

exposure to statistics (Moore 1998).

The traditional content of introductory courses for non-specialists is reflected in the

table of contents of basic statistics textbooks. There is no single structure for an

introductory course across textbooks and disciplines, and even well-established series

(such as Freedman et al. 2007; or Moore 2012) change some of their internal elements over

time. That said, a typical introductory course for non-majors may cover a mix of ideas and

techniques related to topics such as:

. the purpose of statistics,

. descriptive statistics (e.g., measures of center and spread), normal curve and

distributions such as z and t,

. some graphing,

. notions of association and correlation as well as some regression,

. sampling and sampling error,

. basic ideas concerning probability and binomial distribution,

. basics of statistical inference (including expected values, confidence intervals and

simple statistical significance tests),

. and possibly other subtopics such as data collection methods (surveys and

experiments), measurement and questionnaire design.

Not surprisingly, the contents of an introductory course and related teaching approaches,

have been the subject of expert analysis over several decades, in the United States in

particular. Numerous scholars have debated the sequencing as well as relative importance

and weight of some components (Moore and Cobb 2000; Chance and Rossman 2001;

Cobb 2007; Malone et al. 2012). There are calls to change the balance between conceptual

understanding and computations or the use of technology, along with the need to deepen

understanding of big ideas in statistics via the use of randomizations or simulations (e.g.,

Tintle et al. 2015), for examining alternative approaches to teaching (Vehkalahti 2016), or

for expanding the attention to qualitative ideas in statistics (Ograjenšek and Gal 2016).

There is a plethora of introductory textbooks and scholarly interest in, and debates on,

the content of introductory statistics courses for university and high-school students.

However, there are virtually no scholarly debates or sources that provide an integrative

view of basic knowledge elements regarding official statistics expected of the same

students, and adults at large. In this context, we note the work by the United Nations

Economic Commission to Europe (UNECE), which, as part of its efforts to improve good

practices for communicating and using official statistics, has also aimed to define general
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knowledge elements in statistics required of decision-makers and citizens. The UNECE

(2012) proposed four primary areas:

(1) data awareness,

(2) ability to understand statistical concepts,

(3) ability to analyse, interpret and evaluate statistical information, and

(4) ability to communicate statistical information and understandings.

We believe that these areas are generally important, but not sufficiently specific to the

area of official statistics.

To contribute to further thinking in this regard, we have reviewed and integrated

information from the references mentioned in this section so far, along with references

from the following three types of sources:

. Syllabi of established programs that impart either graduate degrees or diplomas related

to official statistics (e.g., by Central Statistics Office Ireland or Statistics Finland);

selected key publications on the websites of national official statistics providers active

in statistics education (e.g., Australian Bureau of Statistics, Statistics New Zealand,

Statistics Canada); and texts from Eurostat’s Statistics Explained website.

. Preliminary insights from ProCivicStat, a new collaboration effort by six universities in

five countries (Germany, Hungary, Israel, Portugal, and the United Kingdom) funded

by the European Commission’s ERASMUSþ program. The project (see http://

community.dur.ac.uk/procivic.stat) aims to promote civic engagement and under-

standing among young adults regarding ‘civic statistics’ about key societal phenomena

(Engel et al. 2016). Among other things, the consortium of partners has analyzed the

cognitive demands of texts and displays in publications of official statistics providers,

news media, and other stakeholders, and is developing a new framework regarding

skills and attitudes needed to understand civic statistics and related teaching resources.

(1) the system of official
statistics and its work

principles

(2) the nature of
statistics about

society

(3) indicators

(4) statistical techniques
and big ideas

(5) research
methods and data

sources

OFFICIAL STATISTICS
LITERACY

(6) awareness & skills
for citizens’ access to
statistical reports

Fig. 1. Proposed model of six building blocks (areas) of official statistics literacy.
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. Analyses of products, users of official statistics providers, and discussions of official

statistics aspects of media literacy and science literacy (e.g., Bregar et al. 2000; Gal

2003a, 2003b; Gal and Bosley 2005; Gal and Murray 2011; Lancaster 2011;

Ograjenšek et al. 2013; von Roten and de Roten 2013; Poljičak Sušec et al. 2014;

Coddington 2015).

While a full analysis of information from these diverse sources is still in progress, at this

interim stage we can propose a new model, depicted in Figure 1 and explained later in this

section in more detail.

The model encompasses six elements about which non-specialists and adults in general

should possess knowledge to be considered literate in official statistics:

(1) the system of official statistics and its work principles,

(2) the nature of statistics about society,

(3) indicators,

(4) statistical techniques and big ideas,

(5) research methods and data sources, and

(6) awareness and skills for citizens’ access to statistical reports.

3.2. The System of Official Statistics and Its Work Principles

Adults can be expected to know that their country has a system of statistics producers or

official statistics providers that work cooperatively on the basis of fundamental principles

(United Nations 2014). These official statistics providers aim to make data and diverse

information products available to keep policy-makers, various user groups, and the general

public apprized of the current economic and social situation. Their aim is also to facilitate

description of changes over time (historical analysis) and to create predictions (e.g.,

population projections) in order to anticipate future trends for a wide range of topics

relevant to society.

Towards these goals, official statistics providers employ scientific principles, accepted

procedures and standards, as well as quality criteria for data collection, analysis, reporting,

release, and dissemination (Biemer et al. 2014). Official statistics providers aim to collect,

analyze data and report findings in an impartial and ethically sound way, and work in ways

that create and retain public trust and confidence in the national statistical system (Holt 2008).

We argue that citizens may also need to know about seemingly more technical aspects

of the broad statistical system that affect how, and what types of, statistics are reported to

the public. For example, the fact that official statistics providers release certain statistics

(e.g., regarding economic indicators such as the CPI, the GDP, or population statistics)

using prescribed release schedules; that they may revise and correct already published

findings due to methodological or other considerations; or that they have to use

international standards for collecting and reporting key statistics in order to enable

comparability across societies. These, and related details about the statistical system, are

normally not included in introductory statistics courses, yet are essential for adults to

understand, in general terms, where official statistics come from, how they are produced

and reported, and why they are produced and reported in specific ways.
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3.3. The Nature of Statistics about Society

Based on work by the ProCivicStat project noted earlier, Engel et al. (2016) claim that to

be fully engaged, citizens need to understand ‘civic statistics’ with regard to past trends,

present situations, and possible future changes in diverse areas of importance to society

such as demographics, employment, wages, migration, health, crime, poverty, access to

services, energy, education, human rights, and other domains. The ProCivicStat analysis

points to five general characteristics of civic statistics and the ways in which they are

reported to the public:

. Multivariate phenomena. Data about social variables of interest usually do not stand

in isolation; their description and understanding involves other variables that are

correlated, interact with each other, or have non-linear relationships.

. Aggregated data. Statistics about society are often reported not with regard to

continuous raw variables per se, but involve data that are grouped in diverse ways,

sometimes using qualitative variables (Ograjenšek and Gal 2016). Thus, data may be

combined into indicators, or reported for multiple subgroups.

. Dynamic data. Civic statistics are often not the result of a one-time data collection

effort (e.g., unlike a single survey discussed in an introductory statistics course) but

based on data collected periodically (e.g., each month, quarter, year) or on a

comparative basis (e.g., in multiple countries). Consequently, data are often reported

as a trend over time, and may be updated when new data become available or old data

are re-evaluated, leading to the creation of an information space and displays that are

more complex and dense compared to the simplified data used in teaching

introductory statistics.

. The use of rich texts. Statistical information about society is brought to the public

mainly via texts published by statistics producers (e.g., press releases or brief reports)

or via articles in the media. Thus, text is a primary medium for communicating

statistics (Gal 2002), and the public needs to be capable of comprehending and

critically interpreting different genres of writing, such as formal language used in

official reports, journalistic writing, and more.

. Diverse visualizations. Since data and findings about social phenomena are

multivariate, dynamic, and aggregated, their description across time or comparison

units requires the use of diverse types of representations. Hence, today users

encounter a range of static, dynamic, and interactive visualizations (Ridgway 2016)

that are much broader and more sophisticated compared with the limited range of

graphs and histograms used in introductory classes.

The five broad characteristics of ‘civic statistics’ outlined by the ProCivicStat project

influence the nature of the data and statistical messages from statistics providers that reach

the general public and non-specialist user groups, albeit in different ways. Information

products describing statistics with the above characteristics are made available to the

public via multiple channels, including traditional (printed and visual) media, social

media, private entities such as NGOs, advocacy groups, independent research centers, and

other information or data intermediaries (e.g., bloggers). These ‘secondary players’

usually present only selected aspects of the original publications or findings, and may
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sometimes re-analyze or present them in ways that aim to explore specific topics of social

or political significance or advance specific points of view. Some findings may also be

redistributed via social or digital networks and discussed by private citizens, NGOs, or

academic instructors, outside the purview of the original producers.

3.4. Indicators

What kind of official statistics are conveyed to the public (and to policy-makers) via media

channels? The answer is complex, of course, as many types of findings and insights are

shared, and their flavor may change across topics or countries. Yet all official statistics

providers create messages regarding levels or changes in dozens of indicators, such

as unemployment level, child mortality, gross domestic product, or income inequality

(e.g., Gini coefficient), that reflect the state of some aspect of our society, economy, or

well-being.

These and many other indicators in use by official statistics providers are often not raw

variables, such as those encountered in introductory statistics, but rather combinations of

data elements that may be expressed as percentages, ratios, or numbers on arbitrary scales.

They may be computed or derived, from simple rates to complex aggregates of weighted

elements. They may be based either on objective (e.g., consumer spending) or subjective

data (e.g., consumer confidence), and their definitions may develop and change over time

to reflect society’s needs for information about itself. However they are defined, indicators

are widely used by official statistics providers to report on a wide range of issues, and their

understanding is essential for all citizens.

Although they are seemingly included in the broad description of the prior aspect

regarding the nature of statistics about society, we highlight indicators as a separate aspect

of official statistics because of their privileged role in public discourse and as a key

product category that may influence policy-makers. Yet, surprisingly, despite their

centrality in society and their prevalence in public and political discourse, indicators are

hardly ever described or analyzed in textbooks and statistics curricula for non-specialists.

(That said, see Haack’s 1979 textbook for non-statisticians for an early, yet quite

comprehensive, treatment of indicators.)

3.5. Statistical Techniques and Big Ideas

There is a vast range of techniques used by official statistics providers. The basics of

descriptive statistics and statistical inference may be encountered by the subgroup of those

who learn statistics at an introductory level at the high school or college level.

In this section, however, we refer to an array of additional techniques and ideas that are

frequently used in official statistics, such as moving averages, seasonal adjustment, data

smoothing, case weighting, and the like. Specific areas of official statistics may have

additional important approachs, such as the use of models and assumptions for population

projections, or national accounts and purchasing power parities in economic statistics

(Pfeffermann 2015).

Understanding of these and related techniques may not be essential for the understanding

of statistics reported in the media, as technical terminology related to the methods listed

above is quite often not used in the regular media, except in the business section of

Journal of Official Statistics88

Unauthenticated
Download Date | 2/28/17 10:03 AM



newspapers. However, knowing about their existence, even if they are treated as a ‘black

box’ and their actual computational nature is not learned, may be important if an adult wants

to adopt a questioning stance or desires to understand more deeply how certain conclusions

are derived, or how credible the underlying data are. For instance, how is it possible to

conduct comparisons across different economic, financial and social systems that have

monetary systems with different characteristics, or if social or economic conditions (e.g.,

inflation) have changed the base against which comparisons are being made?

Furthermore, critical interpretation of the statistical findings released by official

statistics providers also requires an understanding of notions pertaining to confounding

variables or conditioning of probabilities (Schield 2011) and related statistical ideas and

techniques that are usually not afforded much attention in introductory-level classes.

3.6. Research Methods and Data Sources

Knowledge bases related to methodological issues are often spread between the discipline

of statistics and the domain loosely called ‘research methods’ (Murtonen 2015). There is

an overlap between them (Gal 2007; Meng 2009), and consequently there are long-

standing debates as to where statistics ends and research methods begin. What statisticians

view as fitting under ‘methodology and enquiry processes’ may only cover some elements

of what experts from other disciplines may have in mind (Gal and Ograjenšek 2010;

Ograjenšek and Gal 2016).

At university, the learning of research methods is spread over multiple degree levels

(e.g., undergraduate, graduate, doctoral), and is organized in diverse ways across different

academic institutions and departments (Deem and Lucas 2006). Regardless of the existing

diversity, however, the logic of the statistical enquiry process (Wild and Pfannkuch 1999)

or the PPDAC (problem, plan, data, analysis, conclusion) cycle (MacKay and Oldford

2000) is likely to be encountered.

Consequently, some students may learn about surveys vs. experiments, sampling and

randomization, some aspects of measurement or questionnaire design, or sources affecting

internal and external validity of different research designs. Official statistics providers,

however, make use of a wider range of data sources and methods for data collection.

Examples include the use of a national census, the increasing role of administrative

records or public registers, and the many potential types of ‘big data’ (Daas et al. 2015)

that accumulate from sources that fall outside the traditional distinction between surveys

and experiments. Further, even when samples are used by official statistics providers, they

are usually utilized on a large scale or a cycling basis (e.g., social surveys, employment

surveys, employer-based or enterprise surveys) and involve weighting issues if a whole

country or sector is to be represented. Given the repeated nature of many official surveys

or data-collection efforts and the high-stakes nature of the findings derived from them,

issues related to various error sources such as sample design, nonresponse, or respondent

bias that determine data quality or credibility receive much attention in official statistics.

3.7. Awareness and Skills for Citizen Access to Statistical Reports

As already explained, citizens need to know that much of the statistical information or

statistics-based messages that appear in the media, in fact, originate in a release or report
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prepared by a statistics provider (Gal 2003b). This is a source differentiated from reports

generated by journalists based on ‘open data’ sources (Coddington 2015), even though

such open data sources themselves may, in fact, have been created by an official statistics

provider.

Hence, as UNECE (2012) also recognizes, engaged citizens need to be aware of the fact that

they can access the website of an official statistics provider and often get free and easy access to

the same data products or publications used by the media (i.e., a press release or a technical

report). This means that adults can verify or cross-check claims they have encountered in the

media, and learn about a certain topic beyond the selective information in a media article.

However, the website of a typical official statistics provider presents a complex

environment, certainly to newcomers and often even to more experienced users (Gal

2003a, 2005; Bregar et al. 2006; Ridgway 2015). Citizens have to search for information

without necessarily knowing how to search for it, or how to use glossaries or help systems

that are often written for professionals and not for the general public (Gal and Bosely

2005). Further, they need to be aware of the fact that on the provider’s website, they may

find prior versions of the same information products (e.g., press releases and reports from

the same survey which was conducted earlier). In addition, official statistics providers also

publish technical information, ‘metadata’, about how the data were gathered or a survey

was implemented, how variables were defined and measurements performed, including

access to the actual phrasing of survey questions. Finally, some official statistics providers

enable citizens to use data visualizations in order to view certain data from multiple

viewpoints, and in some cases even provide online analytic tools that enable citizens to

conduct their own analysis on aggregated data.

The upshot is that the scope of the information presented on an official statistics

provider’s website about a topic is much broader and deeper compared with the simplified

information or data that students encounter in a statistics class, and may require more

sophistication and mental flexibility on the part of the users.

4. Discussion: Achieving Official Statistics Literacy

4.1. Critical Examination of Past and Present Efforts to

Promote Official Statistics Literacy

To date, discussions of the connections between official statistics providers and statistics

educators have focused in large part on how official statistics providers can facilitate

improvement of generic statistics education at the school or university level. Within this

framework, official statistics providers have been contributing to teachers’ professional

development by offering datasets, lesson plans, ideas for projects and poster competitions,

and other resources that can inform class activities or highlight the importance of official

statistics. Some official statistics providers have also developed specialized sections on

their websites that are geared towards teachers and students, or support the international

CensusatSchool project and its various derivatives (Davies 2011). The richness

and importance of such and related activities have been noted and appreciated around

the world (see e.g., Sanchez 2008; Townsend 2011; Helenius and Mikkelä 2011; or

MacCuirc 2015).

Journal of Official Statistics90

Unauthenticated
Download Date | 2/28/17 10:03 AM



As valuable as these efforts to increase general statistical literacy are, it needs to be

pointed out that they did little to systematically promote understanding of issues pertaining

specifically to official statistics.

In this article we sketched a new model of six interconnected knowledge elements of the

world of official statistics, about which non-specialists and adults at large should possess

knowledge to be considered literate in official statistics. In the prior sections, we analyzed

how such knowledge elements go above and beyond what is usually associated with

learning introductory statistics, or how statistical literacy related to official statistics is

understood by bodies such as the UNECE (2012). All our findings imply that unique

efforts are needed to promote official statistics literacy.

We believe that improvements that may affect knowledge levels of current (primary

and secondary) school pupils or tertiary students, as valuable as they are, do not

directly impact the skill set of the current adult population, which is outside of formal

education systems’ range, yet comprises the main audience that statistics providers try

to reach. Given the relatively slow rate at which the adult population is replaced by

younger cohorts, even if knowledge among school and university graduates about

official statistics vastly improved overnight, it would still take two to three decades for

new knowledge gained at school level to be shared among (the younger) half of the

adult population. Consequently, many adults will still lack such knowledge for decades

to come.

For these reasons, it is important to continue existing specially targeted collaborations

between official statistics providers and school-level educators, as noted by sources

discussing the development of statistical literacy at school level (e.g., Gal 2002; Sanchez

2008; Watson 2013). Townsend (2011), Helenius and Mikkelä (2011), UNECE (2012),

MacCuirc (2015), de Smedt (2016), and others, describe numerous relevant initiatives and

services aiming to promote official statistics literacy that have been implemented over the

years by statistics providers at national and sometimes international level.

Examples include:

. the provision of workshops, brief online courses and supportive training materials

about official statistics designed for specific non-specialist user groups with known

characteristics such as journalists, business leaders, or government workers,

. the provision of short leaflets about key indicators that affect the general public, such

as the consumer price index,

. the preparation and posting of answers to frequently asked questions about finding or

interpreting selected key official statistics on the provider’s website,

. the provision of simplified explanations about official statistics in selected key areas

(e.g., Eurostat’s Statistics Explained mini-website on migration statistics),

. the preparation and posting of answers and non-technical explanations about selected

basic statistical terms, statistical glossaries, and more.

Such initiatives and activities are essential and have the potential to contribute to the

mission of official statistics providers and to the ability of users to comprehend specific

information products in several important ways. Yet, we believe the vision of

systematically promoting official statistics literacy within the general adult population

(including actions in countries with characteristics that differ from the few that have
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spearheaded educational services and activities) requires an examination of additional

directions –from a long-range future collaborative perspective.

4.2. Proposed Directions for Future Collaborative Actions to

Promote Official Statistics Literacy

Taken together, the six elements of official statistics proposed in this article and depicted

in Figure 1 imply that if citizens aim to understand official statistics about society

(i.e., civic statistics) to which they are exposed through the media, or if citizens attempt to

find, read, and critically comprehend actual products (e.g., press releases, highlights,

annotated visualizations) on the website of an official statistics provider, they need a

knowledge base that is above and beyond what is taught in regular introductory statistics

classes for non-specialists.

Figure 2 presents an illustrative example for how several of the six elements or

knowledge areas in our proposed model co-exist in a seemingly simple product from an

official statistics provider. The text in Figure 2 is an excerpt from a one-page regular press

release by a national statistics provider (Statistics Portugal) that the public may hear about

via a news website or a newspaper item. The example is taken (with permission) from Gal

et al. (2016) who developed it for a workshop on understanding ‘civic statistics’ that is part

of ongoing work by the aforementioned ProCivicStat project.

Despite its brevity, this excerpt can be used to show how multiple areas in our proposed

model are all called upon to comprehend the given text. The text refers to:

. the production of statistics as part of a system of official statistics that relies on

general international standards, and generates modifiable or provisional data (area 1),

. the nature of statistics about society, that is, use of rich text to convey a statistical

finding, or the dynamic and aggregated nature of statistics (area 2),

At risk of poverty rate, in 2014–15

Press release, Statistics Portugal

The 2015 EU Statistics on Income and Living Conditions
survey provisional data on previous year incomes indicates
that 19.5% of people were at risk of poverty in 2014, keeping
the value of the previous year.

The risk of poverty for the elderly population has increased for
the second consecutive year.

The presence of children in a household is associated to a
higher risk of poverty, reaching 22.2% for households with
dependent children vis-à-vis 16.7% for households without
dependent children.

Instituto Nacional de Estatística
Statistics Portugal

Fig. 2. News about poverty – press release from an official statistics provider.
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. the use of an indicator, that is, risk of poverty (area 3),

. big ideas in statistics, for example, risk (area 4),

. the use of specific research methods (area 5).

As Gal et al. (2016) explain, the example in Figure 2 also illustrates the need for adults to

be able to critically reflect on the origin and quality of data, and on how variables or social

phenomena are defined and measured.

With the above in mind, we outline two possible initiatives at the international level,

and some additional ideas that specific official statistics providers can implement at a

local level.

Firstly, we propose the development of a textbook on official statistics geared towards

statistics majors as well as non-majors who may study selected topics in statistics. We note

that there are many more non-majors than majors who take only introductory statistics, and

the provision of an accessible textbook may be the first step to helping educational

institutions develop new modules or whole courses related to official statistics that are

currently lacking.

Secondly, we propose the development of an MOOC or a collection of digital (video

and audio) teaching modules for entry-level majors, non-majors, and other groups of

interest among the general public.

It is hard to expect a single official statistics provider to shoulder responsibility and

allocate resources related to both initiatives outlined above, although it would be

technically possible. Both initiatives thus call for an international collaborative effort of

official statistics providers, statistics educators, specialists in applied fields that rely on

official statistics when discussing major concepts inherent to their disciplines, and other

stakeholders. Such an effort can, of course, benefit from existing materials and

frameworks developed in the context of existing diploma and degree programs listed in the

previous sections of this article. Textbook developers participating in this collaborative

effort could build on experiences gained within the framework of the already mentioned

Phare project, which resulted in the modular online Course on the European Economic

Statistics (Bregar et al. 2000).

Several organizations, of which some have been referred to earlier in this article, appear

to have both the infrastructure, resources, and interest necessary to promote both a

textbook and a MOOC as outlined above. These include, among others, the EMOS

community, which presently includes over 20 universities and cooperating national

statistics offices, with support from Eurostat or UNECE, as well as SIAM and networks of

official statistics providers in Asia and Oceania. Furthermore, PARIS21 and the UNESCO

Institute of Statistics, and other organizations involved in statistical capacity-building in

developing countries are well positioned to further clarify the knowledge needs of non-

specialists who engage official statistics in such countries.

In addition, large professional associations with an international outreach and long-

standing interest and activities in statistics education can also facilitate collaborations and

the long-term development of a textbook and a MOOC. Key actors may be the

International Statistical Institute (ISI) and its relevant divisions (the International

Association for Statistics Education – IASE and the International Association for Official
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Statistics – IAOS) as well as the Royal Statistical Society (RSS), the American Statistical

Association (ASA), and others.

The need for a comprehensive knowledge base related to official statistics may raise

questions about the relative importance of the six knowledge elements outlined in our

proposed model, as well as about preferred learning trajectories. Such questions may seem

useful, given the need to prioritize development efforts when writing a new textbook or

developing a new MOOC. We believe that all six areas are important in the long term, and

there is no known consensus yet as to what may be considered ‘basic’ or more ‘advanced’

levels of knowledge in this regard, or a best learning sequence. One needs to take into

account possible learning trajectories for learners with different starting points (e.g., in

terms of basic knowledge in statistics or other parameters), and the need to motivate

learners diverse in their background, learning styles, and so on, along the way. Arguably,

at an initial stage of development, it may be advisable to select a few high-visibility, some

simple and some more advanced indicators or findings of interest to the general public,

and discuss some basic methodologies and working principles related to them. At a later

stage, it is possible to expand the coverage of these and all other areas in our model.

The above preliminary ideas notwithstanding, we believe that the design of a textbook

and a MOOC can, and should, benefit from current technological flexibilities, and be

conceived from the outset as an integrated collection of digital learning resources that will

be developed in parallel by multiple partners. This may reduce the need for topic

prioritization. Many potential development partners that were mentioned above can build

on the already existing partial resources (shareable materials from existing diploma and

degree programs aimed at non-specialists) as well as ongoing work by other stakeholders

(e.g., the already mentioned ProCivicStat, or individual instructors around the world) who

can be called upon to share their teaching materials.

The envisioned collaborative digital resource enables the development of multiple

variants of textbook chapters or MOOC units, distributed across multiple partners who

work in parallel; with common as well as nation-specific modules. Subsequent review and

revision processes can also move in parallel, with new resources added and hyperlinked in

iterative stages. Such an approach can help to shorten the development timeline to a degree

that enables the coverage of all six areas in our proposed model, initially in English, given

its position in the international statistical system, with translation to other languages and

localized adaptations moving ahead as materials in English become available.

Finally, apart from the two initiatives envisioned above, at the local level official

statistics providers can take additional steps in order to help educate providers who work

with adult learners and college or school-level populations. Educators can be equipped

with collections of examples of how the media reports about press releases or other official

publications, since virtually all official statistics providers nowadays use clipping services

or media analysis companies that monitor all media channels. Hence, official statistics

providers could develop focused packages, organized around specific issues of social

significance, including the original press release and several real-life examples of how data

and findings were reported in diverse media channels, selected to illustrate proper, as well

as distorted, or one-sided use of statistics. Such packages could be accompanied by

suggestions for in-class discussion and take-home assignments.
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In summary, it is important to state that the conceptualization of the building blocks of

official statistics literacy presented in this article is preliminary and open to debate, since

we live in a dynamic world. Discussions emerge in professional channels on the era of

‘open data’ and its implications for both producers and users of statistics, and on the need

for public understanding of statistics (von Roten 2006; von Roten and de Roten 2013).

Ridgway (2016) points out that significant developments such as open data, big data, data

visualisation and the rise of data-driven journalism, provoke new sorts of questions, make

possible new sorts of answers and are changing the nature of available evidence, the ways

in which it is presented and used to influence policy, public opinion and business practices,

and the skills needed to interpret it.

The six elements we identified combine both abstract ideas and a general understanding

of a complex working system in its social ecology, as well as knowledge bases of a more

technical nature. Details of these elements and their operationalization have to be further

examined and developed in more detail, both because official statistics itself is practiced

in somewhat different ways in different contexts or by official statistics providers with

different missions, and because it is evolving over time, as outlined above. We hope that

the ideas proposed in this article will initiate a productive dialogue and ultimately lead to

further pragmatic development-friendly decisions among statistics providers and other

stakeholders interested in active promotion of official statistics literacy.
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Three Methods for Occupation Coding Based on
Statistical Learning

Hyukjun Gweon1, Matthias Schonlau1, Lars Kaczmirek2, Michael Blohm2, and

Stefan Steiner1

Occupation coding, an important task in official statistics, refers to coding a respondent’s text
answer into one of many hundreds of occupation codes. To date, occupation coding is still at
least partially conducted manually, at great expense. We propose three methods for automatic
coding: combining separate models for the detailed occupation codes and for aggregate
occupation codes, a hybrid method that combines a duplicate-based approach with a statistical
learning algorithm, and a modified nearest neighbor approach. Using data from the German
General Social Survey (ALLBUS), we show that the proposed methods improve on both the
coding accuracy of the underlying statistical learning algorithm and the coding accuracy of
duplicates where duplicates exist. Further, we find defining duplicates based on ngram
variables (a concept from text mining) is preferable to one based on exact string matches.

Key words: Automated coding; Machine learning; ISCO-88; ALLBUS.

1. Introduction

Classifying a respondent’s occupation is essential in official statistics and social science

research. It enables the international comparison of the official statistics on occupation and

work and is the starting point for numerous status scales or prestige measures. It is a

“foundation of much, if not most research on social stratification” (Ganzeboom and

Treiman 2003, 159) and social inequality. Because occupation is a risk factor in many

diseases, classifying occupations is an important first step for epidemiological analyses,

industrial hygiene, and other biomedical sciences.

There are quite a few different classification schemes, but all have hundreds of

occupation codes and the codes are always nested in hierarchies. For example, the

International Standard Classification of Occupations 1988 (ISCO-88) (Elias 1997) is a

classification of four nested levels characterized by four digits. The first digit distinguishes

nine major groups, and an undifferentiated tenth major group for the Armed Forces.

There are 28 sub-major groups (two-digit combinations), 116 minor groups (three-digit
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combinations) and 390 unit groups (four-digit combinations). Table 1 gives coding for

sub-major group 71, extraction and building trades workers.

To ascertain a survey respondent’s occupation, typically an open-ended question is

asked (Belloni et al. 2014). Alternative ways to find a respondent’s occupation include the

use of search trees in web surveys (Tijdens 2014, 2015), but open-end questions are most

common. The main example in this article is the biannual ALLBUS survey (ALLBUS

2015) conducted by GESIS – Leibniz Institute for the Social Sciences. The ALLBUS

survey uses open-ended questions to ask about occupation (Scholz and Wasmer 2009).

Using multiple choice questions to elicit four-digit occupation codes is not sensible

because there are too many codes, and more importantly, respondents often would not

know how to classify themselves because occupation coding rules are complex

(International Labour Office 1990; Geis 2011; Elias 1997; Belloni et al. 2014).

Traditionally, assigning an occupation code to each answer text has been conducted

manually by human coders. Manual coding is time-consuming and expensive, requiring

professional knowledge. Occupation coding is also difficult: there are hundreds of

predefined occupation codes and even more occupation titles. For example, the ISCO-88

classification contains 390 four-digit occupation codes. Another difficulty is that coding

even by professional coders may be inconsistent. The coding quality of a record depends

on the length of the occupation description as well as the difficulty of the words in the

record (Conrad et al. 2016).

Table 1. ISCO-88 Sub-Major Group 71: extraction and building trades workers.

71 Extraction and building trades workers

711 Miners, shotfirers, stone cutters and carvers

7111 Miners and quarry workers
7112 Shotfirers and blasters
7113 Stone splitters, cutters and carvers

712 Building frame and related trades workers

7121 Builders
7122 Bricklayers and stonemasons
7123 Concrete placers, concrete finishers and related workers
7124 Carpenters and joiners
7129 Building frame and related trades

workers not elsewhere classified

713 Building finishers and related trades workers

7131 Roofers
7132 Floor layers and tile setters
7133 Plasterers
7134 Insulation workers
7135 Glaziers
7136 Plumbers and pipe fitters
7137 Building and related electricians
7139 Building finishers and related trade workers not elsewhere classified

714 Painters, building structure cleaners and related trades workers

7141 Painters and related workers
7143 Building structure cleaners
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In an attempt to partially automate coding, researchers have implemented various rule-

based coding schemes. For example, if the text answer contained a word matching an entry

in a predefined dictionary, then the corresponding code in the dictionary was assigned.

More recently, statistical learning or machine learning approaches have been employed:

a model is trained on manually coded training data and is then used to predict the

most probable code for new data (Statistical learning and machine learning are

synonymous for the purpose of this article. For brevity we just use the phrase “statistical

learning” for the remainder of the article). This approach is favored, for example, by the

Australian Bureau of Statistics (Clarke and Brooker 2011). Autocoders based on statistical

learning have also been developed in the United States (Day 2014) and in Germany

(Bethmann et al. 2014).

Although the automated methods reduce costs for occupation coding, fully automated

coding remains challenging. With partial automatic coding, easy-to-code answers are

coded automatically, and-hard-to-code answers are coded manually. A measure of

confidence – a numerical score – is used to distinguish between easy-to-code and hard-

to-code text answers (Scholtus et al. 2014). For example, the CASCOT system proposes

manual coding when a score for the coding quality drops below a modifiable threshold

(Jones and Elias 2004).

In this article we consider three new techniques for improving automated coding:

(a) a combination of two statistical learning models for different levels of aggregation,

(b) a combination of a duplicate-based approach with a statistical learning one, and

(c) a modified nearest neighbor approach.

The remainder of this article is organized as follows: In Section 2 we give background on

approaches to automated occupation coding. In Section 3, we introduce the three

techniques for improving automated coding. In Section 4, we evaluate the proposed

approaches with data from the 2006 German ALLBUS survey coded by GESIS based on

ISCO-88 codes. In Section 5, we conclude with a discussion.

2. Automated Occupation Coding

This section gives an overview of how to evaluate the performance in automated occu-

pation coding, as well as two types of commonly used approaches: rule-based approaches

and approaches based on statistical learning. The new approaches we introduce in this

article are mostly based on statistical learning.

2.1. Production Rate and Accuracy

When some answer texts are coded automatically and some are coded manually, a score or

a probability is needed to distinguish between hard-to-code and easy-to-code answers. All

new records with scores above a threshold are coded automatically; all others are coded

manually. The threshold is set according to the desired combination of accuracy and

production rate. The production rate is the proportion of observations that can be coded

automatically. For a given production rate, accuracy is the proportion of codes that are

coded correctly. Note that there is a tradeoff between accuracy and production rate. High

accuracy can be achieved for a small number of easy-to-code records. However, as the
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production rate increases and more difficult answers are included, accuracy tends to

decrease. The tradeoff relationship was illustrated in Chen et al. (1993).

2.2. Preprocessing

Before automated coding begins, text is often preprocessed. There is no standardized way

of preprocessing, but there are a range of options, such as lower or upper casing all letters,

removing duplicate blank spaces, automatically correcting spelling errors, removing very

common words (so-called stopwords), and, less common in occupation coding but

common in text mining, reducing words to their grammatical root (stemming).

Preprocessing is an attempt to reduce the noise in the data.

2.3. Rule-Based Occupation Coding

If the text answer meets a prespecified logical condition (e.g., presence of a certain word) a

specific code is assigned. Such “if-then” statements are called rules. Rules are written by

experts or can be based on previous data analysis. Rules can be combined using boolean

logic. Any one rule-based coding scheme consists of hundreds of rules leading to large

dictionaries or look-up tables. Schierholz (2014) reports that this approach rarely codes

more than 50% of records accurately. A variation on rule-based methods is to assign a

score in favor of a category. If a text answer matches a rule, evidence can accumulate for

multiple codes. In the end, the text answer is classified into the occupation code with the

highest score. One of the earliest references to rule-based coding is O’Reagan (1972).

Rule-based systems are implemented in many institutions: the Washington State

Department of Health (Ossiander and Milham 2006), the 1970 U.S. Population and

Housing Census (Knaus 1987), the 1991 census data for Croatia and Bosnia-Herzegovina

(Kalpic 1994), and the AIOCS system at the U.S. Census Bureau (Appel and Hellerman

1983; Chen et al. 1993). Statistics Canada further developed the AIOCS system and

created the G-Code (formerly ACTR) software (Wenzowski 1988; Tourigny and Moloney

1995), which was also used for Italian census data (Ferrillo et al. 2008). The University of

Warwick has a popular tool for automatic categorization called CASCOT (Jones and Elias

2004; see also Elias and Birch 2010 for performance of CASCOT), which has also been

adapted to the Dutch language (Belloni et al. 2014).

2.4. Occupation Coding Based on Statistical Learning

Statistical models learn from already classified training data. Such methods can be used

not only for occupation coding but also for general classification problems. Once the

model has been trained, other observations can be classified automatically.

To build a model, text is first converted to numerical data. The standard text mining

approach is to create a variable for each word that occurs in any of the answer texts. These

unigram variables or one-grams either record the frequency of the word occurring in an

answer text or simply the presence or absence of the word from the given answer text

(Weiss et al. 2010; Joachims 1998). There are many different variations of this text mining

approach, adding variables for the presence or absence of multi-word sequences (ngram

variables), removing highly used words (stopwords) because they are probably not useful,
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and stemming words to their grammatical root. The large number of variables are modeled

with black-box statistical learning algorithms, such as support vector machines (SVM )

(Vapnik 2000). The model may incorporate additional variables if available.

Different learning algorithms have been used for occupation coding. The Australian

Bureau of Statistics (ABS) employed fully automatic categorization using support vector

machines to code data from the 2006 Australian Census (Clarke and Brooker 2011).

The ABS uses the Australian and New Zealand Standard Classification of Occupation

(ANZSCO) scheme. To our knowledge this system is still in use by the ABS.

The American Community Survey (ACS) uses a variation on text mining (Thompson

et al. 2012). Variables created from the text include one-word and two-word sequences

(called “wordbits”) as well as the full text. To limit the number of variables for analysis, a

rareness threshold of 30 is used (i.e., the text has to occur at least 30 times before it is used

as a variable). To further limit the number of variables for analysis, the corresponding text

has to be “associated with a single industry/occupation code at least 50% of the time”. The

remaining variables, as well as variables like age and gender, are fed into a logistic

regression. The code with the highest probability obtained by the logistic regression is

assigned to a new record.

Some authors have investigated a nearest neighbor strategy, which assigns the code of

the answer in the training data most closely resembling the answer in question. Different

similarity metrics have been employed to measure nearness or resemblance between two

answers. The PACE system employed the k nearest neighbor method with weighted feature

metrics and reported accuracy 0.86 at production rate 0.57 for the U.S. Census Bureau data

(Creecy et al. 1992). Jung et al. (2008) used cosine similarity but found this did not work

well, possibly because they were working in Korean, a language quite different from

languages with roots in Latin. Russ et al. (2014) used the nearest neighbor approach with a

Jaccard similarity measure for classifying text answers into the Standard Occupational

Classification (SOC) scheme. Coding by the nearest neighbour approach was considered

correct if it agreed with one or both of the codes provided by the two human coders. The

accuracy, that is, the proportion of correctly classified observations, for fully automated

coding was 0.51 at the six-digit level and 0.64 at the three-digit level.

The ALWA survey at the German Institute for Employment Research (IAB) used the

five-digit German national classification KldB 2010 (Schierholz 2014). The approach

presented in Schierholz (2014) used the full preprocessed verbatim answer text rather than

the text mining approach using ngram variables. Preprocessing included converting

special German characters into regular ones, stripping leading and trailing spaces. Using

verbatim answers (rather than ngrams) drastically reduced the number of variables for

learning. Schierholz (2014) then experimented with various methods including Naive

Bayes and a gradient boosting model (Friedman 2001). The experiment concluded

that boosting and the Bayesian approaches performed similarly when high accuracy was

desired.

3. Three Methods for Automated Occupation Coding

We first explain the duplicate method, a simple automated coding approach based on

duplicate training observations. Next, we propose three new methods for automated
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occupation coding. The first of these methods, combining statistical learning models at

different levels of aggregation, is later also incorporated with the second method, resulting

in two versions of the second method. For statistical learning models, any method that

outputs probabilities can be used. In Section 4, we choose Support Vector Machines

(Vapnik 2000) for our application.

For each method, the predicted occupation code is the code that has the highest score.

3.1. The Duplicate Method With the Ngram-Based Definition of Duplicates

An exact-string duplicate refers to two strings that are identical. Simple string

preprocessing could improve performance and leads to what we call a preprocessed-string

duplicate. Preprocessing the string might consist, for example, of lower-casing allletters

and removing leading and trailing blanks. For example “Apotheker” (pharmacist),

“apotheker” and “ apotheker” would be considered duplicates after preprocessing.

We introduce a different definition of duplicates based on ngram variables: an ngram

duplicate refers to a training observation with a text answer that has the same ngram

representation (i.e., the same values for the variables created from the text). This is slightly

different than an observation with the identical text answer. For example, the answer

“Verwaltungsangestellte im Krankenhaus” (administrator in the hospital) and “Verwal-

tungsangestellte in einem Krankenhaus” (administrator in a hospital) are not identical

texts. However, since “in”, “im” and “einem” are stopwords and stopwords are removed,

these two strings contain the same unigrams (“Verwaltungsangestellte”, “Krankenhaus”).

Suppose that there exist some duplicates of a new input record x. Let mi(x) be the

number of training duplicates having code ci (i ¼ 1,2, : : : ,L). We estimate the probability

pd (cijx) based on the relative frequency of the training duplicates having code ci:

p̂dðcijxÞ ¼

miðxÞ

MðxÞ
if MðxÞ . 0

1

L
otherwise

8
>>><

>>>:

;

where MðxÞ ¼
PL

i¼1miðxÞ is the number of duplicates of x found in the training date. If no

duplicate is found, the method assigns equal probability to each class. The code with the

highest probability is chosen as the predicted code. The duplicate method leads to high

accuracy for duplicates, although not to 100% accuracy, since coders try to resolve

ambiguous situations with additional undocumented information or due to human error.

3.2. Combining Models from Different Levels of Aggregation

As seen in Table 1, occupation codes have a hierarchical structure. The ISCO-88

occupation codes consist of four-digit numbers. For example, the code 7131 (roofers) is

part of the minor group 713 (Building finishers and related trades workers). Three-digit

group codes aggregate related occupations. We propose to apply statistical learning

separately to the four-digit unit occupation codes and to the three-digit group codes, and to

combine probabilities as explained in the next paragraph. The motivation is as follows:

Given the large number of occupation codes, the number of observations at the four-digit
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level can be sparse. The number of observations will be relatively less sparse at the three-

digit level. If classification from a four-digit classifier results in a near tie of occupation

codes with different minor groups (different third digit), the evidence from the three-digit

classifier may sway the classification to the correct four-digit code.

Suppose that code ci (i ¼ 1, : : : ,L) belongs to a three-digit minor group mj

( j ¼ 1, : : : ,l ) where L and l are the numbers of the four-digit and three-digit group codes

respectively. Denote the probabilities from the statistical learning model for three-digits

and four-digits as p̂3digitðmjjxÞ and p̂4digitðcijxÞ for a record x, respectively. We average the

two probabilities:

p̂3=4digitðcijxÞ ¼
p̂3digitðmjjxÞ þ p̂4digitðcijxÞ

2
: ð1Þ

This averaging approach will also break ties at the four-digit level, unless the tied codes

have the same three-digit code. A recent review of hierarchical classification methods in

general (Silla and Freitas 2011), does not contain the proposed method. However, the

proposed method may be viewed as a member of the local-classifier-per-level approaches

as it fits a classifier for each three-digit and four-digit level independently.

3.3. A Hybrid Approach: Combining Duplicate and Statistical Learning Approaches

The proposed hybrid approach combines the approach based on duplicates in the training

data with a statistical learning approach.

Let p̂sðcijxÞ be the estimated probability obtained by a statistical learning approach. For

the hybrid approach we define a combined score u(cijx) as

uðcijxÞ ¼
MðxÞ

MðxÞ þ 1
�p̂dðcijxÞ þ

1

MðxÞ þ 1
�p̂sðcijxÞ ð2Þ

If there are no duplicates, the score equals the probability from the statistical learning

approach p̂sðcijxÞ. When there are duplicates, coding by the duplicate method is desirable,

as it leads to high accuracy. Hence, in the hybrid approach the statistical learning

algorithm only influences the prediction when there is a tie among different duplicate

codes. Equation (2) assigns the statistical learner a weight equivalent to that of a single

duplicate, and the single duplicate is downweighted by the probability p̂sðcijxÞ , 1.

When the production rate is less than 100%, the easier-to-learn new records are

categorized automatically. The statistical learning algorithms also influence this

prioritization of new records. When two new records each have the same number of

duplicates and if p̂dðcijxÞ is the same in each case, the record with the larger p̂sðcijxÞ is

assigned a greater u(cijx) and therefore is prioritized for lower production rates.

We call this approach “hybrid-4digit” when ps(cijx) in Equation (2) is estimated using

the statistical learning model for four-digit occupation codes, p̂4digitðcijxÞ. Subsection 3.2

defined p̂3=4digitðcijxÞ in Equation (1), which combined two statistical learning models from

different levels of aggregation. This idea can also be applied here. We call this approach

“hybrid-3/4digit” when ps(cijx) in Equation (2) is estimated using p̂3=4digitðcijxÞ.
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3.4. A Modified Nearest Neighbor Approach

The nearest neighbour approach (NN) (Fix and Hodges 1951) is another method employed

in the occupation coding. NN classification finds a new record’s nearest neighbor in the

training data and also assigns the occupation code of that nearest neighbor to the new

record. There can be multiple nearest neighbors (Yu 2002). NN can be viewed as a

generalization of the duplicate approach: duplicates are nearest neighbors with a distance of

zero. To define “near”, a measure of distance, or, equivalently, a measure of similarity is

needed. For text classification, cosine similarity is widely used (Knaus 1987; Iezzi et al.

2014; Maitra and Ramler 2010). Cosine similarity between two vectors u and v is defined as

cosineðu; vÞ ¼
u�v

jukvj
¼

X
uivi

ffiffiffiffiffiffiffiffiffiffiffiffiffiX
u2

i

q ffiffiffiffiffiffiffiffiffiffiffiffiX
v2

i

q : ð3Þ

where u and v are vector representations of presence or absence of ngrams in the text.

Similarity ranges from 0 to 1 depending on the degree of the similarity between two

records. Similarity is 0 if two records have no common words and 1 if the two records are

identical (in the sense of having the same ngram representation). When duplicates exist, the

NN method predicts the code of records with similarity 1, which is equivalent to the

duplicate method.

As before, we may want to only code easy-to-code text answers and leave difficult ones

for manual coding. Hence, we propose to use a score that assigns a higher value to NN

predictions that are believed to be more accurate. Given a new text input x, denote K(x) the

number of nearest neighbors in the training data and s(x) the similarity of the nearest

neighbors. (Often K(x) . 1 when multiple observations are the nearest neighbors.)

Suppose that ki(x) out of the K(x) records have the code ci (i ¼ 1, : : : ,L). As in the

duplicate method, we estimate the probability for code ci in the NN approach by

p̂nnðcijxÞ ¼ kiðxÞ=KðxÞ. We define the score for the text answer as

gðcijxÞ ¼ p̂nnðcijxÞsðxÞ
KðxÞ

KðxÞ þ 0:1

� �

: ð4Þ

The predicted code depends only on p̂nnðcijxÞ because K(x) and s(x) are constant for any

given answer text. The role of s(x) and K(x)/(K(x) þ 0.1) is to order observations such that

easier-to-classify-answers have a higher score.

The multiplier s(x) makes sense: greater similarity of a new text and its nearest neighbor

leads to more accurate classifications. The last term in Equation (4) can be motivated as

follows: all else being equal, classification based on a larger number of nearest neighbors

will likely be more accurate than that based on fewer nearest neighbors. The multiplier

K(x)/(K(x) þ 0.1) equals 0.91 when K(x) ¼ 1 and converges to 1 as K(x) increases.

Reflecting lesser importance, this multiplier can, at most, reduce the score by about ten

percent, whereas both p̂nnðcijxÞ and s can drive the score to zero. Below, we will show that

this works empirically. However, we readily admit this is not the only multiplier that

achieves this goal, and that the choice of 0.1 is arbitrary. Using a larger constant extends

the range of the multiplier component and thus makes the score more sensitive to K(x).

(This is not desirable, as the other two multipliers are more important.)
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For example, the text answer of a new record was “Heizungs und Lüftungsbauer,

Drucker”. The text consisted of three (stemmed) unigram variables: “heizung” (heating),

“lüftungsbau” (ventilation construction) and “druck” (printer). No duplicates existed, but

four records in the training data contained one of the three words. Table 2 shows that three

out of the four training records had the answer “Drucker” (“druck” in the stemmed ngram

representation) with code 8251 and the other had “Lüftungsbauer” (“lüftungsbau” in the

stemmed ngram representation) with code 7136. Based on Equation (3), the similarity

between the test answer and any of the training records in Table 2 was 1ffiffi
3
p ffiffi

1
p ¼ 0:5774.

So the multiplier in Equation (4) is K(x)/(K(x) þ 0.1) ¼ 4/4.1 ¼ 0.9756. However,

p̂nnðci ¼ 8251jxÞ ¼ 3=4 and p̂nnðci ¼ 7136jxÞ ¼ 1=4. The difference of the g scores of the

two codes was dueto the different probability estimates. In this example, the test answer

was assigned code 8251 because it had the largest score (g ¼ 0.4225).

4. Occupation Coding for the ALLBUS Survey

We first describe the ALLBUS data (Subsection 4.1) and then show the importance of our

definition of duplicates (Subsection 4.2). Next, we compare the proposed automatic coding

methods using the ALLBUS data (Subsections 4.3 and 4.4). We conclude with a

simulation to explore the influence of duplicates and noise variables in Subsection 4.5.

4.1. Problem and Data

The German General Social Survey (ALLBUS) conducts repeated cross-sectional surveys

of the adult German population living in private households, with an oversampling of the

residents of East Germany. ALLBUS has been conducted every two years since 1980;

initially covering West Germany and expanding to former East Germany after German

reunification in 1990 (ALLBUS 2015; Koch and Wasmer 2004). The main topics concern

attitudes, behavior, and social structure.

The targeted net sample size is usually 3,500. Since 1994, the samples have been drawn

in two stages. In the first stage, about 160 communities (primary sampling units) are

selected. In the second stage, addresses of individuals are randomly selected from thelists

of residents in every community. Every two years, a fresh probability sample is drawn

from the German register. ALLBUS surveys are conducted face-to-face.

ALLBUS interviewers asked about occupation multiple times: current occupation

of respondent, last occupation of respondent (if not employed), occupation of spouse

Table 2. Illustration of calculating g (cijx). The unigram variables contain 1 if the word is present in the record

and 0 otherwise.

(Nonzero) ngram variables

Record heizung lüftungsbauer druck Occ. Code p̂nnðcijxÞ s(x) KðxÞ
KðxÞþ0:1 gðcijxÞ

Training 1 0 0 1
Training 2 0 0 1 8251 0.75 0.5774 0.9756 0.4225
Training 3 0 0 1

Training 4 0 1 0 7136 0.25 0.5774 0.9756 0.1408

Test answer 1 1 1 ĉi ¼ 8251
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(if married), occupation of partner (if not married but with partner), occupation of father,

and occupation of mother. In the ALLBUS survey, the interviewer asks the following

questions which are recommended by official statistics in Germany (Statistisches

Bundesamt 2010): “What work do you do in your main job? Please describe your work

precisely. Does this job, this work have a special name?” (Scholz and Wasmer 2009).

Interviewers were free to combine the answers, and were not asked to write one answer

after another. The occupation questions for partners/spouses/parents are analogous, using

the same format. The answers were pooled to form a single data set. Prior to the open-

ended questions about all occupations, respondents were also asked: “Please classify your

occupational status according to this list.” The list contains 32 occupation statuses in

twelve categories. We refer to this below as (self-recorded) occupation status.

The ISCO-88 coding of the text answers was done by GESIS in a two-step procedure.

First, automatic coding was attempted using the in-house software, textpack (Geis and

Hoffmeyer-Zlotnik 2000; Züll 2014). Then, such automatically coded answers were

verified by a professional coder. All remaining responses were manually coded in a second

step according to an extensive coding manual (Geis 2011). The in-house software used a

dictionary with about 4,500 predefined combinations of ISCO codes. Because the

dictionary mostly contains duplicates from previous surveys, textpack implements the

duplicate approach, with additional hand-crafted rules (however, the coder may also

override some codes in light of occupational status, education, or other information).

For each word or phrase listed in the dictionary, textpack searches for exact matches in

the data and outputs the associated code. Such rules were applied one at a time (and the

rule order may affect the result). If a rule was matched exactly, a response was coded. If

none of the rules applied, it was manually coded by professional coders. Typically,

textpack coded about 50% of the responses. GESIS used self-reported occupation status

only if text was unclear or ambiguous. In the 2006 survey, 9,137 observations were coded

into 399 distinct unit occupation codes and 140 minor group codes (see appendix A).

To apply the proposed methods, we encoded text answers into unigram variables

(Schonlau and Guenther 2016). All such variables were indicator variables specifying the

presence or absence of the corresponding word. We applied stemming, using a German

Porter stemmer (Snowball 2015) and removed German “stopwords” as well as punctuation

marks. The removal of stopwords and the use of stemming reduced the number of ngram

variables. As is standard practice, we also created a variable that counted the number of

words contained in the answer. All in all, 4,232 indicator variables were created in addition

to the number-of-words variable. In addition to the text response, the survey also contains

self-reported occupation status, which was also included among the independent variables.

For a statistical learning approach, we use support vector machines (SVM) (Vapnik 2000)

with a linear kernel, which has been shown to work well in text categorization (Joachims

1998). The linear kernel requires only a single tuning parameter, C, that controls the trade-off

between the training error and model complexity. In this data set, the choice of C had little

influence on prediction accuracy and we used C ¼ 1 throughout the study. As is common,

the SVM scores were converted into probabilities using Platt’s method (Platt 1999), which

performs a regularized logistic regression of class membership on the SVM score.

We evaluate the approaches using ten-fold cross validation (CV). This means we

randomly divide the data into ten equal-sized parts. We use the first nine parts to train the
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model, and the last part to test the model. Accuracy is only evaluated on the test data. In

turn, we use each of the ten parts as test data and average the results. As a consequence, the

size of the training data is therefore 90% of the data, or 8,223 observations. For the purpose

of evaluating prediction accuracy we assume that the original codes assigned by GESIS

and the professional coders are correct.

The analysis was carried out in R (R Core Team 2014), and package e1071 (Meyer et al.

2014) is used for the construction of the SVM models.

Most open-ended answers were short; 66.5% of the answers consisted of a single word.

The median length was one word; the average length was 1.8 words and the maximum

length was 17 words. About 60% of the data consisted of (ngram-based) duplicate

observations. Among duplicate observations, the median number of duplicates was three,

with a higher average (6.8) due to some very frequent duplicates (maximum ¼ 221

duplicates). The text with the most duplicates was “Landwirt” (farmer).

4.2. Ngram Vs. String-Based Definition of Duplicates

The purpose of this section is to demonstrate that the ngram-based method of duplicate is

preferable to the string-based methods. Here we explore how much the definition of

duplicate mattered for the two best performing methods, NN-3 and hybrid-3/4digit, which

are explained later. We compared the ngram-based method with original string (without

any processing) and preprocessed string methods. Preprocessed strings refer to lower

casing and stripping off leading and trailing spaces in the original strings. As described in

Subsection 4.1, ngram variables were obtained after stemming, and removing stopwords

and punctuation marks.

The percentage of duplicates is 52.6% for the identical-string-duplicates, 56.7% for the

preprocessed-string-duplicates, and 60.0% for the ngram-duplicates. However, the quality

of the duplicates did not degrade: identical-string-duplicates (preprocessed-string-

duplicates, ngram-duplicates) had identical occupation codes 91.9% (91.6%, 92.0%) of

the time. The remaining eight percent represent coders’ attempt to recode otherwise

unambiguous text in light of occupational status or education. For example, a pharmacist

with lower occupational status might be reclassified as pharmaceutical assistant. Of

course, misclassification errors are also possible.

Figure 1 shows the trade-off between accuracy and production rate for the three

definitions of duplicates for hybrid-3/4digit (left panel) and NN-3 (right panel). The use of

the ngram definition of duplicates improved accuracy in both methods for moderate and

high production rates. With full automation, accuracy increased from 0.54 (without

preprocessed) to 0.65 for the hybrid-3/4digit method, and from 0.47 (without

preprocessed) to 0.65 for the NN-3 method. Preprocessed-string-duplicates fare somewhat

better than unprocessed strings, but the success of the ngram-based definition clearly goes

far beyond string preprocessing.

4.3. Accuracy of the Nearest Neighbor Method

We first investigated the coding performance of the modified NN method. The score in

Equation (4) has three components. To demonstrate that all three components are helpful,

we evaluate both the proposed overall score (NN-3) as well as a reduced score missing one
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(NN-2) or two components (NN-1) with corresponding scores g1,g2 and g3:

ðNN-1Þ g1 ¼
i

max p̂nnðcijxÞ

ðNN-2Þ g2 ¼
i

max p̂nnðcijxÞ sðxÞ

ðNN-3Þ g3 ¼
i

max p̂nnðcijxÞ sðxÞ
KðxÞ

KðxÞ þ 0:1

� �

Figure 2 shows the accuracies of each approach as a function of the production rate.

(These were average accuracies from the ten-fold cross validation mentioned earlier).

Answer texts with higher scores were coded first; a production rate of, say, ten percent

refers to coding ten percent of the answer texts with the highest scores automatically.

When the production rate equals 100%, the accuracy is the same for all the approaches

because the second and third terms in Equation (4) do not affect which code is assigned,

but rather are used to prioritize more similar observations and observations with multiple

nearest neighbors by assigning them a higher score. Prioritizing affects the accuracy at

production rates of less than 100% (because observations with the highest score are chosen

first). The improvement from NN-1 to NN-2 showed that similarity s was helpful for

finding easier-to-classify-answers. Likewise, the accuracy differences between NN-2 and

NN-3 showed that the term KðxÞ
KðxÞþ0:1 improved the performance at low to medium

production rates.

Having established that NN-3 is preferable to NN-1 and NN-2, we next compare NN-3

with all other approaches.
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Fig. 1. Accuracy for a given production rate for two approaches based on three different definitions of

duplicates “ngram”, “string” and “preprocessed string”. The left panel shows the results of hybrid-3/4digit and

the right panel shows those of NN-3. The “ngram” definition of duplicates is far superior.
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4.4. Comparison of Methods

Here we compare the accuracy as a function of production rate for the proposed methods

(hybrid-4digit, hybrid-3/4digit, and NN-3) as well as some default methods (duplicate

method, svm-4digit, svm-3/4digit). The duplicate method refers to assigning the code of

ngram duplicates (or a random code if no duplicates exist), svm-4digit refers to an SVM

model based on four-digit occupation codes. The svm-3/4 digit refers to an SVM model

based on averaged probability from separate models for three-digit and four-digit

occupation codes as described in Equation (1). For all methods, a production rate of x%

refers to the x% of the data that have the highest score (or probability).

Figure 3 shows the accuracy as a function of the production rate for the different

methods. For all methods, there were trade-offs between the accuracy and the production

rate. The modified nearest neighbor method, NN-3, performs equal to or slightly better

than the next best method, hybrid-3/4digit. NN-3, hybrid-4digit, and hybrid-3/4digit

uniformly beat the duplicate method and both svm methods.

A production rate of 100% corresponds to classifying all answers automatically. At full

automation, NN-3 and hybrid-3/4digit perform equally well. At full automation, svm-

3/4digit has an accuracy of 59%, the duplicate method has an accuracy of 53%, and the

hybrid-3/4digit method increases the accuracy to 65%.

Figure 3 also shows the duplicate accuracy remained at around 95% up to a production

rate of about 0.55. About 55% of the test data in any given cross-validation were duplicates

and thus duplicates were used for coding. However, when no duplicates exist in the training

data, the duplicate approach assigned equal probabilities to all codes, resulting in the

random code assignment and accuracy near zero. The accuracy started decreasing at a

production rate of around 0.55, from which no additional records of some CV test samples
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Fig. 2. Accuracy of three variations on the nearest neighbor approach as a function of production rates. NN-1,

NN-2, and NN-3 refer to scores using g1 ¼ p̂nnðcijxÞ, g2 ¼ p̂nnðcijxÞs and g3 ¼ p̂nnðcijxÞs
KðxÞ

KðxÞþ0:1

� �
, respectively.
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could be classified by the method. From a production rate of 0.60, all of the CV test data sets

had no duplicates and the method performed poorly. NN-3, hybrid-4digit, and hybrid-3/

4digit beat the duplicate method even for production ranges where duplicates are available.

Combining the four-digit unit and three-digit minor code methods (svm-3/4digit) was

uniformly superior to using the unit code method only (svm-4digit). For example, for fully

automated coding, the accuracy for svm-3/4digit was 0.59, as compared with 0.52 for svm-

4digit. The hybrid approaches performed very similarly up to a production rate of about

60%. After that, the hybrid-3/4digit performs a little better than hybrid-4digit. When

duplicates were available for hybrid-3/4digit, the predicted codes mostly agreed (83%)

with those predicted by the duplicate method.

The performances of hybrid-3/4digit and the NN-3 were similar for fully-automated

coding as well as at low-medium production rates. NN-3 appeared to slightly outperform

hybrid-3/4digit at medium-high production rates.

The curves in Figure 3 help us decide which texts should be classified automatically and

which should be classified manually. For example, if the client decides that 80% accuracy

is required, then Figure 3 suggests that 76% of the data can be classified automatically with

the hybrid method and 81% with the NN-3 method. Relative to applying the duplicate-

based approach, this increases production from about 58% to 76% or 81%.

4.5. Simulation

The purpose of this section is to explore to what extent the methods are robust to possible

idiosyncrasies of the data. We considered two possible concerns with our example data:
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Fig. 3. Comparison of different methods for occupation coding. Methods include statistical learning (svm-

4digit), statistical learning from two models at different levels of aggregation (svm-3/4digit), and two hybrid

methods combining duplicate-predictions with svm-4digit and svm-3/4digit, respectively.
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1) The data contain a large percentage (50%) of duplicates. 2) The text answers are

unusually clean and contain fewer superfluous words than usual.

In the first case, in the context of occupation coding a large number of duplicates is very

common. (Duplicates here refers to ngram duplicates). To simulate a data set with fewer

duplicates, a random subset of duplicate records was removed so that in the reduced data

only about ten percent duplicates of the test records had duplicates. The reduced data set

contained 4,722 observations.

As expected, Figure 4 shows that the accuracy (for a given production rate) for all

methods decreased for this much more difficult problem. The relative performance of the

methods is very similar with one notable exception: previously, both NN-3 and hybrid3/4-

digit performed similarly. Now, NN-3 clearly outperforms the hybrid-3/4digit method.

The NN-3 method remains superior to NN-1 and NN-2 analogous to Figure 2 (The

analogous figure is not shown).

In the second case, less clean text answers would have resulted in additional words that are

not related to the occupation code. Such additional words translate into indicator variables

(presence or absence of the word) in the data. There are typically many such variables, each

with a low probability. We added 100 independent “noise” indicator variables to the data.

Each variable followed a Bernoulli distribution with an 0.01 probability of success.

The results are shown in Figure 5. Adding the noise variables decreased the number of

duplicates. Hence the accuracy of the duplicate method started decreasing at a production

rate of around 0.2 instead of around 0.55. The results lead to roughly the same conclusions

as we obtained from Figures 3 and 4. NN-3 and hybrid-3/4digit were comparable, with

NN-3 having a slight edge at lower production rates.
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Fig. 4. Comparison of the same methods as in Figure 3 on a reduced data set containing only ten percent

duplicates.
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5. Discussion

We have investigated several novel approaches for automated occupation coding for any

desired production rate. The two best-performing methods, the modified nearest neighbor

method (NN-3) and a hybrid method (hybrid-3/4digit) substantially improve the accuracy

compared with both statistical learning (SVM in the example) by itself and the duplicate

method at any production rate in the ALLBUS data. As the percentage of duplicates

decreases, a simulation shows that NN-3 gains a relative advantage over the hybrid method.

Either accuracy or production rate can be set at a target rate which determines the

second measure. For example, targeting 80% accuracy for the automated coding, the

hybrid-3/4digit and NN-3 approaches could categorize 76% and 81% of the data

automatically, while the numbers obtained by the SVM and duplicate methods individually

were 60% and 66%, respectively. If production rate is fixed at 80%, the hybrid-3/4digit

and NN-3 could achieve an accuracy of 77% and 81%, while the SVM and duplicate

approaches reported accuracy of 69% and 66%. Note that accuracy for each category may

differ from the overall accuracy. Categories that contain more hard-to-code answers than

others achieve lower accuracies.

In addition, we have learned:

(1) Even at low production rates when duplicates exist, NN-3 and hybrid achieve a higher

accuracy than the duplicate method.

(2) Using the duplicate method where duplicates exist and using statistical learning

otherwise is not the best strategy (Figure 3 shows the proposed methods beat the

duplicate method where duplicates exist.). We instead recommend the hybrid method

that integrates the two approaches.
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Fig. 5. Comparison of the same methods as in Figure 3 with 100 noise variables added to the data.
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(3) Combining aggregate and detailed learners improves accuracy for some learning

algorithms. For example, where svm-4digit and svm-3/4digit disagree in the

ALLBUS data, svm-3/4digit is correct 87% of the time.

Why do the NN-3 and hybrid methods beat SVM and the duplicate approach? Because

a duplicate is also a nearest neighbor, both methods rely on nearest neighbors. Nearest

neighbor algorithms are effective when prediction is highly local and little can be gained

from observations further away. This may explain why NN-3 and hybrid methods beat

SVM, one of best statistical learning algorithms in existence. Both proposed methods beat

the duplicate approach because a) they both can distinguish between easier-to-code and

harder-to-code duplicates leading to higher accuracies at lower production rates, b) the

hybrid- 3/4 method can break ties among duplicates, and c) the duplicate approach

performs poorly when no duplicates exist.

The NN-3 approach can be computationally expensive when the training data set is very

large. The hybrid method requires finding duplicates, but on the other hand, finding

duplicates is much less expensive because it does not require a sorting step.

We have combined the aggregate method with the hybrid method, leading to better

results. The modified nearest neighbor method could also be combined with the idea of

aggregating different level scores. However, the resulting method showed almost the

same performance as NN-3.

We now comment on the importance of some data analysis choices. First, duplicates

were defined as having the same ngram representation rather than being identical strings.

This increased the number of duplicates and substantially improved accuracy at moderate

and high production levels. Second, self-reported occupation status (STIB) was used as a

covariate for statistical learning. We found that including STIB made little difference.

Third, we supported German language stemming, but it turned out this had almost no

effect. Because the text was written by interviewers (rather than respondents) our data

were relatively clean with many one-word answers. Stemming is likely more important

with messier data.

We next comment on possible limitations arising from idiosyncrasies of the ALLBUS

data set. The proposed methods are not limited to the ISCO-88 coding scheme. One of the

methods relies on a hierarchical coding scheme, but all occupation codes are hierarchical.

We have analysed 9,137 observations. While this data set is probably larger than most data

sets analysed in statistical journals, at national statistics agencies far larger data sets arise

sometimes with millions of observations. The proposed methodology is not limited to a

specific data size, but it is unclear whether the performance of the proposed methodology

relative to the alternative algorithms would be equally impressive with millions of

observations. We have pooled self-recorded occupations and occupations from partners,

spouses, and parents. We investigated whether this distorted results somehow.

Specifically, we reduced the data set to one occupation question per respondent. We

found this did not meaningfully affect the results.

For the hybrid method, we used SVM as the statistical learning method of choice. While

SVM is one of best performing methods available, other statistical learning methods could

be chosen, provided that they output a probability (or a score that can be transformed into a

pseudo-probability) rather than just a classification. Naturally, better predictions from the
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statistical learning method will tend to improve the hybrid method also, particularly when

there are no duplicates.

All proposed approaches rely on training data. For statistical learning, the size of the

training data needs to be large relative to the number of occupation codes. In the ALLBUS

data, the size of the training data (implied by cross-validation) was 8,226. Relative to the

399 occupation codes, this is an average of 20.6 observations per code. More training data

will tend to increase the number of duplicates.

Cross-validation deals with unseen data, but does not take into account time trends. To

the extent that language use changes from year to year, any classifier would slowly

degrade over time.

In summary, we proposed new approaches to automated occupation coding that lead to

vastly improved coding accuracy at both high and low production rates in our example

data. While not conclusive, this bodes well for other occupation data sets.

Appendix A

There are more distinct codes in the GESIS data than the 390 ISCO-88 unit codes for

several reasons: 1) When there is sufficient information to identify a minor group, but not

sufficient information to identify a unit code, the minor code is used and a zero is appended

(e.g., minor group 112 would turn into 1120). 2) Sometimes a minor group can be

identified and the text is specific enough to identify the exact occupation, but that

occupation is not listed. In that case a separate code is used ending in a nine (e.g., 1129 in

the previous example) 3) ISCO-88 allows users to define additional codes for occupations

that are not explicitly mentioned. GESIS has defined 10 such codes (e.g., housewife, not

codable, don’t know). The total of possible GESIS codes is 641 (390 unit codes ^ 116

minor groups ^ 28 sub-major groups ^ 10 major groups ^ 10 GESIS specific

codes ^ 87 codes for occupations not elsewhere classified). In the ALLBUS 2006 survey

399 of the 641 distinct codes were observed.
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Survey-Based Cross-Country Comparisons Where
Countries Vary in Sample Design: Issues and Solutions

Olena Kaminska1 and Peter Lynn1

In multi-national surveys, different countries usually implement different sample designs. The
sample designs affect the variance of estimates of differences between countries. When
making such estimates, analysts often fail to take sufficient account of sample design. This
failure occurs sometimes because variables indicating stratification, clustering, or weighting
are unavailable, partially available, or in a form that is unsuitable for cross-national analysis.
In this article, we demonstrate how complex sample design should be taken into account when
estimating differences between countries, and we provide practical guidance to analysts and to
data producers on how to deal with partial or inappropriately-coded sample design indicator
variables. Using EU-SILC as a case study, we evaluate the inverse misspecification effect
(imeff ) that results from ignoring clustering or stratification, or both in a between-country
comparison where countries’ sample designs differ. We present imeff for estimates of
between-country differences in a number of demographic and economic variables for 19
European Union Member States. We assess the magnitude of imeff and the associated impact
on standard error estimates. Our empirical findings illustrate that it is important for data
producers to supply appropriate sample design indicators and for analysts to use them.

Key words: Cross-national studies; imeff; multiple frame design; complex sample estimation.

1. Introduction

There are many examples of multi-country surveys that are designed specifically for the

purpose of cross-national comparisons (Lynn et al. 2006; Smith 2010), though the

challenges that must be met in order to provide useful comparability are considerable

(Kish 1994, 1999). In order to provide a basis for unbiased estimation of between-country

differences, such surveys apply a standard definition of the target population (Heeringa

and O’Muircheartaigh 2010) and select a probability sample from that population (Häder

and Gabler 2003; Lynn et al. 2007). As well as enabling unbiased estimation, cross-

national surveys sometimes also aim to standardize the precision of estimates within each
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country (European Commission 2013). One way to achieve this is to select one specific

important statistic and develop a sample in each country such that it leads to a defined

precision for the estimate of that statistic (European Commission 2013). This defined

precision has to be common across countries. For a multi-purpose survey, a more

appropriate method is to set a common effective sample size (Lynn et al. 2007; Gabler et al.

2006). Effective sample size indicates how many cases a simple random sample would

need in order to have the same precision as a particular (complex) sample design.

These requirements for a standard population definition, a probability sample, and a

required precision leave scope for sample designs to vary across countries. Kish (1989, 41)

mentions “: : : the selection methods and the sample designs of the surveys whose results

are compared need not be at all similar. If they are based on good probability methods, the

sampling method for each can be entirely distinct. Actually, for each sample we should

utilize whatever selection method is most appropriate, feasible, and efficient : : : ”. If

countries implement the most efficient and appropriate sample design, then differences in

geography, population distribution, available sampling frames, and survey systems make

it inevitable that countries will vary in whether and how they use stratified sampling,

clustering, and unequal selection probabilities.

Differences in sample designs need not be a problem for estimation, but appropriate

estimation requires the existence of appropriate indicators of components of the sample

design. Specifically, indicators are needed of the strata used in a stratified sampling design,

of the primary sampling units (PSUs) used in a multi-stage design, and of the design

weights used in a design with variable selection probabilities. Furthermore, these

indicators must be in a form that reflects the sample design when viewed as a single multi-

national sample. If sample design indicators are either not available or not in an

appropriate form, this can cause problems for analysis. Alternatively, the data producer

could supply analysts with replicate weights (Dippo et al. 1984) that have been produced

in a way that appropriately takes into account all features of the sample design. However,

it can be argued that using replicate weights places a slightly higher burden on the analyst.

Cross-national survey data sets often have one or more of the following problematic

features:

. the indicator of sampling stratum is set to ‘missing’ for countries that don’t

implement stratification,

. the PSU indicator is left with missing values for countries where a single-stage design

is implemented,

. the weight variable is set to ‘missing’ in countries where the sample is selected with

equal selection probabilities, and

. for either the stratum or PSU indicator, the same range of values may have been

(partially) used in different countries.

The consequences can be either that the analyst fails to notice the problematic features,

leading to incorrect results, or that the analyst chooses to carry out analysis that ignores

one or more components of the sample design (for example, clustering may be ignored

if the PSU indicator has missing values), leading at least to biased estimates of standard

errors.
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This article has two aims. We first explain how missing information from countries that

omitted a particular sample design feature can be ‘filled’, and how variables can be

recoded if national data sets have been prepared without regard for the requirements for a

cross-national data set. This should be useful for users who encounter these problems, but

more importantly for data release organizations that, by following these steps, can make

it easier for users to account for complex sample design. We then apply the method

developed in the first section to create the best possible information on stratification,

clustering, and weighting for a large cross-national survey data set. Estimates that use our

filled and edited sampling information are compared with those that ignore one or more of

the sample design indicators. Specifically, we study misspecification effects if all or part of

a complex sample design is ignored in the situation where countries have different sample

designs. We examine country comparisons of means and their standard errors for a number

of demographic and economic variables.

While in this article we refer to comparisons between countries, the methodology

presented has broader application. It applies to any situation where sample designs differ

between domains, and these domains are either combined or compared in analysis. Such

domains might include regions of a country or strata in a multi-stratum sample.

2. Preparing Sample Design Indicators for Cross-National Analysis

A cross-national sample can be viewed as a special case of a multiple-frame sample.

Multiple-frame samples use more than one sampling frame to represent a population (Hartley

1962). Most literature on multiple frames discuss cases where one frame covers all units and

another frame is cheap but covers only a subset, or where two frames overlap (Hartley 1962;

Cochran 1965; Lohr, 2007; Lepkowski and Groves 1986). A cross-country survey represents

a different situation, specifically where none of the frames overlap. According to Hartley

(1962), a multiple-frame sample should meet the following requirements:

1) each unit in the population of interest should belong to at least one of the frames, and

2) for each sampled unit, it should be possible to record whether or not it belongs to the

other frame(s).

In the cross-national survey context, these requirements are clearly met if we can assume

the frames to be non-overlapping. Furthermore, cross-national surveys can be viewed

as Hartley’s case number 1, where all domain sizes are known (i.e., country totals).

According to Hartley (Hartley 1962, 204), in this situation the frames (countries) should be

treated as strata. He then notes “In case 1 the estimation problem is reduced to the standard

methodology for stratified sampling.” Thus each frame (country) should be viewed as a

top-level explicit stratum, between which sample designs can vary.

2.1. Cross-National Stratum Indicator

For cross-national analysis, a single stratum indicator is required that reflects the

complete multi-frame design. This indicator should reflect the sampling strata within

each country, and treat countries as the top level strata (as samples were selected

independently in each country). It is important that each stratum from the cross-national

perspective should take a unique value, and therefore if one country supplies a stratum
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indicator taking values of 1 to 5 and another country uses 1–7 to indicate strata, the

values should be recoded (for example the second country’s strata should be coded as

6–12). Any country that does not use stratified sampling should be treated as a single

stratum. Thus, in countries with stratification the cross-national stratum indicator should

take a different value for each national stratum, while for countries with no stratification,

the cross-national stratum indicator should take the same value for each sample element.

This is analogous to the situation in national surveys where some regions are treated as a

single stratum, while others are subdivided into more detailed strata. If none of the

countries has a stratified design, each country should be treated as a separate stratum and

the stratum indicator for cross-national analysis should simply take a different value for

each country.

2.2. Cross-National PSU Indicator

Analogously to the stratum indicator, the cross-national PSU indicator should indicate the

units selected from each frame at the first stage of selection when the survey is viewed as

a single cross-national sample. If none of the countries has a multi-stage sample design,

the PSU indicator can be omitted with caution. Caution is needed in case there are

multiple possible levels of analysis relating to hierarchically-associated units such as

households and individuals. In this case, a single-stage sample of households would

produce a multi-stage sample of individuals, where households are the PSUs within

which individuals are clustered. In this situation, we suggest that the PSU indicator

should be equivalent to a household indicator. Again, a different range of values should

be used in each country so that each household has a unique value in the cross-national

data set. Defined thus, the PSU indicator is important for individual-level analysis, while

for analysis at household level it will, correctly, have no effect, as it will indicate the

absence of clustering.

If all countries have a multi-stage design, then the cross-national PSU indicator should

reflect this with a unique value for each PSU when the sample is viewed from a cross-

national perspective. Attention is again needed to avoid the same value being used in more

than one country.

In a situation where some, but not all countries use a multi-stage design, the indicator

should take a unique value for each PSU in each multi-stage country, while it should take a

unique value for each sample element in countries with a single-stage design. In this way,

using the indicator will provide correct complex sample estimation in an analysis of

multiple countries with and without multi-stage designs.

2.3. Cross-National Weights

For comparison of estimates between countries it is only necessary that the weight variable

reflects the relative inclusion probabilities within each country; between-country

differences in the mean weight will not affect comparisons for any type of ratio estimate

such as means, proportions or model coefficients (Dorofeev and Grant, 2006, 82–84; see

also Brewer 1963). However, we suggest routinely applying what we will call ‘population

scaling’ to the weights. This will render them suitable for any kind of analysis, including

that which combines countries, such as estimation for the total cross-national sample or
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comparison of groups of countries. For unit i in country j the population-scaled weight for

cross-national analysis should take the form:

ws
ij ¼

wu
ijNjXnj

i¼1
wu

ij

ð1Þ

where wu
ij is the national (unscaled) weight for the unit, and

nj is the sample size in country j, and

Nj is the (assumed known) population size of country j.

Using this population-scaled weight, the weighted sample size for each country equals the

population size of the country, that is
Pnj

i¼1ws
ij ¼ Nj. An equivalent approach is used by the

European Social Survey – see the description of “population size weight” in European

Social Survey (2014).

In the special case where a country has a sample design with equal selection

probabilities, the national weight may be missing. In this case, it should first be set to a

constant value such as 1 for all sample elements in the country, that is wu
ij ¼ 1 ; i. Then,

Expression (1) can be applied though for such countries it can be simplified to:

ws
ij ¼

Nj

nj

ð2Þ

2.4. Cross-National Data Set

Once the steps outlined above have been followed, the three sample design indicator

variables (stratum, PSU, and weight) are ready for use in any kind of cross-national

analysis and can be incorporated into standard procedures for complex sample design

estimation. Ideally, these steps should be carried out by the data production organization,

so that data released to analysts is already in a suitable form for analysis. In that way, the

analyst needs only to know how to carry out standard survey analysis, and does not

additionally need to perform the data preparation relating to sample design.

3. Empirical Study of Misspecification Effects: Methods

Next, we study how important it is for an analyst of cross-national survey data to have full

information on the complex sample design, and whether conclusions about differences

between countries can be influenced by ignoring all or part of the sample design

information. We concentrate on studying the effect of ignoring stratified and/or multi-

stage (clustered) sampling where countries differ in their sample design, compared to

estimation using stratum and PSU indicators that have been completed and edited

following the procedures outlined in the previous section.

3.1. Data: EU-SILC

For our study we use data from the European Union Statistics on Income and

Living Conditions (EU-SILC) survey. The EU-SILC has been carried out in all 27

EU Member States since 2007 (some started earlier) plus four non-Member States

(Wolff et al. 2010). Both cross-sectional and longitudinal data are collected on income,
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poverty, social exclusion, and other living conditions. Most items are collected through

individual interviews with each adult in a household though some items are collected

through a household interview. In most countries the data is collected by means of a

survey with a rotating panel design (Iacovou and Lynn 2017). Though the details of the

design vary, a typical design involves a four-wave rotation with annual interviews. Some

countries select a sample of households via addresses, while others first select a sample of

individuals and then identify the household of each selected individual. The latter group

further subdivides into countries where all adult household members are interviewed and

countries where only the selected individual is interviewed, as information on the other

household members can be collected from population registers. Furthermore, some

countries use a multi-stage clustered design, while others use a single-stage design. Key

sample design parameters for each country are summarized in the supplemental data,

Appendix 1 (available online at http://dx.doi.org/ 10.1515/jos-2017-0007).

We use data related to 2007, extracted from the longitudinal EU-SILC data set

(EUSILC LONGITUDINAL UDB 2007 – version-1 of August 2009 [EOM]). The cross-

sectional data set could not be used as it did not include a PSU indicator. We drop a

number of countries from our analysis that either had not yet provided this data at the time

of analysis, or for whom the indicators of sample design parameters – which are crucial to

our analysis – were either missing completely or did not correspond to the description of

the design (and where these discrepancies could not be resolved). This leaves 19 countries

for analysis. The details can be found in the supplemental data, Appendix 1 (available

online at http://dx.doi.org/10.1515/jos-2017-0007).

3.2. Data Editing: Complex Sample Design Variables

We apply the procedures outlined in Section 2 to the EU-SILC data. Although a

majority of countries used stratified sampling, no stratum indicator exists in the data

files, so we treat countries as strata and create a stratum indicator that takes a unique

value for each country. For countries with single-stage sample designs we create a PSU

indicator that is coterminous with household; for countries with multi-stage designs we

use the existent PSU indicator, but recode to avoid between-country overlap in the

ranges of values. We do not utilize weights provided by Eurostat, as these incorporate

nonresponse adjustments for some countries, but not all, and do not always appear to

reflect the described sample design. Instead, we derive our own design weights based on

the documented description of the sample design in each country and, where relevant,

the data item indicating the number of adults in the household. No attempt is made to

develop nonresponse adjustments to these weights, as our focus in this article is on the

effects of sample design on precision of estimates. For some countries, the weight for

individual-level analysis is different from that for household-level analysis. Specifically,

if a country implemented a sample of households, but only one individual was selected,

we corrected for within-household selection for individual-level analysis (no such

correction was needed for household-level analysis). If a country selected a sample of

individuals and then included the household of each individual, we corrected for the fact

that households are sampled with probability proportional to the size of the household

(while no correction is needed for individual-level analysis). For further details please
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see the supplemental data, Appendix 1 (available online at http://dx.doi.org/10.1515/

jos-2017-0007).

3.3. Estimation

We use the svy commands in Stata 11.0 to provide estimates that take into account aspects

of the sample design. Similar approaches can be used in other software packages. Our

Stata syntax for estimating a difference between two countries in mean value of the

variable var1 is as follows, where the variables strata1, psu, and weight1 are the three

sample design indicator variables derived as described in the previous paragraph:

svyset psu [pw¼weight1], strata(strata1)

svy: mean var1 if cntry1¼¼1 j cntry1¼¼2, over(cntry1)

lincom [var1]1 - [var1]2

It can be seen that this form of estimation is very simple to implement once the design

variables have been correctly derived. We estimate differences between pairs of countries

in a number of descriptive parameters (means and proportions, including some subgroup

means). We note in passing that Stata estimation routines will incorrectly estimate the

degrees of freedom used to construct the design-based confidence interval for the

difference between countries whenever the true degrees of freedom differ between

the countries. The effect is likely to be negligible when the degrees of freedom are large,

but may not be negligible if the design in at least one of the countries has a small number of

degrees of freedom. This problem exists independently of whether or not the design is

correctly specified and is therefore not the focus of this article. The interested reader is

referred to Valliant and Rust (2010) for discussion of this issue.

Our objective is to estimate what we call the inverse misspecification effect, imeff, in a

range of scenarios. The misspecification effect, meff (Skinner 1989), is the ratio of the true

variance of a sample statistic under the complex sample design to the estimated variance,

when ignoring all or part of the sample design. The imeff (which equals 1/meff ) is useful

because it indicates the factor by which the variance of the estimate is under- or

overestimated. If imeff is over 1 the variance is overestimated, but usually imeff is under 1,

which means that the variance is underestimated by a factor of imeff.

In all cases, we assume that weights are correctly specified in the analysis. We consider

three likely forms of misspecification when using the EU-SILC data:

. failing to take into account that samples are selected independently in each country

(i.e., failing to treat countries as strata),

. failing to take into account that the sample is clustered (i.e., treating the sample as if it

were a single-stage design), and

. only partially taking into account that the sample is clustered (suboptimal

specification of clusters), specifically, recognizing that individuals are clustered

within households, but not that households may be clustered within larger PSUs.

In combination, this leads to five possible types of misspecification (Table 1). For each

type of misspecification, we estimate imeff for each of 90 pairs of countries, specifically all
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the pairs that consist of one country with a multi-stage (clustered) design and one with a

single-stage design. (Of the 19 countries available for analysis, ten had multi-stage design

and nine had single-stage design.) For household-level analysis, only misspecification

Types 1, 2, and 3 are possible, as clustering of individuals within households is not

relevant to household-level estimation. We estimate differences between countries for five

household-level variables (listed in Table 2) and fifteen individual-level variables (listed

in Tables 3, 4, and 5), leading to 8,100 estimates of imeff.

4. Results

As described above, we carry out analysis for five household-level estimates for each of

three types of misspecification and for fifteen individual-level estimates for each of five

types of misspecification. This is done for all 90 country pairs. Overall, we find that the

imeff is, in general, considerable when the clustering is not specified, whereas the effect of

ignoring the stratification is negligible for most estimates. Thus, results for Type 1 and

Type 3 misspecification (see Table 1) are very similar, as are results for Types 4 and 5,

while all 1,530 estimates of imeff for Type 2 are in the range 0.98–1.00. Therefore, we

present here only the results from misspecification Type 1 and Type 4, as these capture all

of the important findings.

4.1. Household-Level Questions

Starting with Type 1 results for each of the five household variables, in Table 2 we present

the mean imeff (across the 90 country pairs). These are in the range 0.70–0.90. However,

we also present the minimum and maximum estimated imeff for each variable, and this

shows that in specific pairwise comparisons, imeff can be as low as 0.07. This means that the

true variance could be 14 times the size of the estimated one if the design is misspecified in

this way, and standard errors could be nearly four times the size of the estimated ones.

Table 2. Results for five household-level variables: misspecification Type 1 over 90 country-pairs.

y1 2 y2 imeff
s.d.

(imeff)
Min.

(imeff)
Max.

(imeff)

Income 19160.32 0.80 0.25 0.07 1.00
Capacity to afford holidays 0.25 0.71 0.20 0.33 0.96
Capacity to afford meals 0.12 0.81 0.14 0.54 0.99
Ability to make ends meet 0.06 0.83 0.15 0.43 0.99
Number of household members 0.28 0.87 0.11 0.55 1.00

Table 1. Design misspecification scenarios.

Five types of misspecification:

Type 1 Ignore independence of samples and ignore clustering
Type 2 Ignore independence of samples
Type 3 Ignore clustering
Type 4 Ignore independence of samples and only partially consider clustering
Type 5 Only partially consider clustering
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4.2. Individual-Level Questions Available for All Household Members

Table 3 summarizes results for those individual-level estimates that are based on

observations of all individuals in each sample household, either because all individuals were

interviewed or because only one person was interviewed, but information for other

individuals was obtained from a population register. Twelve of the 15 individual-level

estimates are of this type, of which six are whole-sample, three are based on males only and

three on females only. Among these estimates, the largest mean meff (across the 90 country

pairs) is 2.31 for gender which is, unusually, (well) above the value of 1.00. This is a unique

situation, which suggests that failing to take into account clustering results in an overestimate

of the standard error of the difference. This reflects that PSUs (which, for several countries,

consist of households) in the population are more heterogeneous with respect to gender than

random samples of the same size from the whole population would be. As a consequence,

sample-clustering reduces the standard error of the estimated gender distribution.

Apart from gender, the mean imeff (across the 90 country pairs) ranges from 0.38 for

mean equivalized disposable income to 0.99 for the proportion of males who are

economically active. This is a much greater range than observed above for household-level

estimates, reflecting the larger intra-cluster correlation for individual variables due to the

additional level of clustering (individuals within households) and the larger sample size

per PSU. Failing to correctly take clustering into account is therefore particularly

problematic for individual-level estimation. Some values of imeff for differences between

two countries are very low indeed, with the smallest being 0.03 for a difference in mean

equivalized disposable income, implying that standard errors could be underestimated by

a factor of six. As an indicator of the extent to which this underestimation may affect

analytical conclusions, we would note that, excluding gender, 27 of the 990 comparisons

(2.7%) appear significant (P , 0.05) if the design is misspecified in this way, but not

significant if correctly specified.

Unlike Type 1 misspecification (Table 2), which completely ignores clustering, Type 4

misspecification partially accounts for clustering. Specifically, household IDs are treated

as clusters in both countries and this is compared to correctly specifying PSUs in countries

Table 3. Results for twelve individual-level variables: misspecification Type 1 over 90 country-pairs.

y1 2 y2 imeff
s.d.

(imeff)
Min.

(imeff)
Max.

(imeff)

Gender 0.024 2.31 0.34 1.73 3.08
Age 2.06 0.64 0.09 0.39 0.78
Equivalized disposable income 11,737 0.38 0.14 0.03 0.63
Education (ISCED) 0.099 0.55 0.19 0.06 0.81
Economic activity 0.070 0.76 0.16 0.27 0.97
Employment 0.044 0.73 0.15 0.41 1.01
Education (males) 0.097 0.74 0.22 0.09 0.97
Economic activity (males) 0.066 0.99 0.14 0.57 1.22
Employment (males) 0.039 0.81 0.11 0.62 1.00
Education (females) 0.112 0.77 0.23 0.13 1.00
Economic activity (females) 0.075 0.94 0.18 0.37 1.14
Employment (females) 0.052 0.86 0.13 0.51 1.06
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where such are present. The same variables are used and the same comparisons are

implemented as in Table 3.

As expected, the estimate of the difference itself is not influenced (Table 4). Overall, the

mean imeff for Type 4 misspecification is much less pronounced than the mean imeff for

Type 1 misspecification. It comes closer to 1.0 for all estimates except for two (economic

activity for males and females), which were close to 1.0 already in Table 3 (the change for

these two estimates is minor). For example, the mean imeff changes from 0.38 to 0.77 for

equalized disposable income. The minimum and maximum imeff are also much closer to

1.0. Overall, taking into account clustering of individuals within households improves the

estimates considerably, even when ignoring prior stages in a multi-stage sampling design.

4.3. Individual-Level Questions Available for All Household Members in Some

Countries and for One Household Member in Other Countries

Thus far, we have discussed the situation in which information is available for all household

members, obtained either through an interview or from a register. However, in countries where

only one person was interviewed in each household, some variables were not available from a

register, leading to a situation in which some variables (for example health evaluation) are only

available for one household member. When using such variables to construct estimates of

differences between countries, the effect of misspecification can be different from that of

variables available for all household members, even though correct specification takes the

same form. When comparing two countries, one with a multi-stage sample of households and

one with a single-stage sample of households, we distinguish between four situations:

a) both countries may have one individual observed per household,

b) both have all individuals observed per household,

c) only the clustered country has all observed, or

d) only the unclustered country has all observed.

These four scenarios have potentially different implications for misspecification, so in

Table 5 we present results separately for each scenario.

Table 4. Results for twelve individual-level variables: misspecification Type 4 over 90 country-pairs.

y1 2 y2 imeff
s.d.

(imeff)
Min.

(imeff)
Max.

(imeff)

Gender 0.024 0.95 0.06 0.78 1.02
Age 2.06 0.93 0.12 0.59 1.07
Equivalized disposable income 11,737 0.77 0.26 0.07 1.00
Education (ISCED) 0.099 0.72 0.24 0.08 0.97
Economic activity 0.070 0.90 0.19 0.33 1.10
Employment 0.044 0.82 0.16 0.45 1.03
Education (males) 0.097 0.78 0.23 0.10 0.97
Economic activity (males) 0.066 0.94 0.13 0.54 1.13
Employment (males) 0.039 0.86 0.10 0.65 1.00
Education (females) 0.112 0.79 0.23 0.14 1.00
Economic activity (females) 0.075 0.90 0.17 0.35 1.00
Employment (females) 0.052 0.88 0.13 0.53 1.06
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It can be seen that values of imeff are modest when both countries interview only one

person per household, but a little more substantial when one of the countries interviews all

persons. The largest values of imeff arise when both countries interview all persons, as in

this case an entire level of clustering is being ignored in both countries.

5. Conclusions

Our findings show that misspecification effects in cross-national comparisons can be

considerable and can result in serious bias in standard errors of estimates of between-country

differences. This would result in biased hypothesis testing (Type 1 errors). Bias is greatest

when multi-stage sample selection is ignored completely in estimation. Bias is smaller, but

still substantial (for individual-level estimates) when the first stage is ignored and only the

clustering of individuals within households is acknowledged. Furthermore, misspecification

effects have been shown to depend on the nature of the difference in sample design between

the two countries being compared. The corollary of this is that in multi-country comparisons,

if designs are misspecified in estimation, the chances of a country being identified as an

outlier depends on the sample design adopted in that country. This is clearly undesirable.

To avoid misspecification effects in cross-national comparisons, it is necessary not only

for sample design indicators (PSU, stratum, and design weight) to be present on the data

set, but also for these indicators to be in a form that is suitable for cross-national analysis.

Indicators that are suitable for national analysis of each country do not necessarily meet

this requirement, but in Section 2 above we have set out the steps necessary to convert

these indicators into a suitable form. These steps are not particularly demanding and we

propose that they should be carried out by a relevant central agency before data is released

to analysts. This is efficient, as it avoids duplication of effort, and mistakes by analysts

who may not be experts in sample design. Once suitable indicators for cross-national

analysis have been produced, correct specification can easily be achieved with standard

software, leading to unbiased estimation of standard errors.

However, we are aware that the EU-SILC is certainly not the only cross-national survey

data set in which the sample design indicators are not in suitable form. An analyst of any

such data would be well-advised to follow the data preparation steps that we propose here.

Furthermore, there are some cross-national survey data sets that do not release indicators

of sampling strata or primary sampling units to secondary analysts at all. The European

Social Survey is one prominent example (see http://www.europeansocialsurvey.org/data/).

The producers of such data sets should be encouraged to release these indicators so that

analysts can appropriately estimate standard errors and test hypotheses.

While we have focused here on how best to estimate the impact of sampling error on cross-

country comparisons, the impact of other components of statistical error may be equally

important. It is not our intention to imply otherwise. In addition, estimating the magnitude of

error post-hoc is no substitute for controlling the error at the design and data collection

stages. All sources of error (coverage, sampling nonresponse, measurement, editing, and so

forth) should be given due attention within a total survey error framework (Biemer 2010;

Groves and Lyberg 2010) that recognizes interactions and dependencies between the error

sources. Our comments on sampling error should be considered within that context, although

further discussion of the broader context is outside the scope of this article.
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Finally, we should note some limitations of our research. We have not examined all

possible variants of misspecification. In particular, we have not assessed the effects of

ignoring variation in design weights. Nor have we assessed the effects of ignoring

stratified sampling within countries. The first of these is, in general, likely to lead to even

greater underestimation of standard errors. The second is likely to have a rather more

modest effect in the opposite direction. Furthermore, we have examined a limited number

of estimates for one survey, albeit important ones. Effects might be different in magnitude

for estimates of substantially different parameters and for substantially different sample

designs (e.g., those with much larger, or smaller, cluster sample sizes). However, we do

not feel that any of these limitations invalidate our main conclusion, which is that

misspecification can have a serious effect and can (and should) be avoided. Though the

effect may be different in magnitude in other circumstances, the data preparation steps

outlined here guarantee that the effects can be completely avoided. As implementing the

steps has very modest resource implications, we think that this should always be done.
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Häder, S. and S. Gabler. 2003. “Sampling and Estimation.” In Cross-Cultural Survey

Methods, edited by J.A. Harkness, F.J.R. Van de Vijver, and P.Ph. Mohler, 117–134.

Hoboken, New Jersey: Wiley.

Hartley, H.O. 1962. “Multiple Frame Surveys.” In Proceedings of Social Science Section

of American Statistical Association meetings. Minneapolis, Minnesota. Available

Kaminska and Lynn: When Countries Differ in Sample Design 135

Unauthenticated
Download Date | 2/28/17 11:02 AM

http://dx.doi.org/10.1093/poq/nfq065
http://ec.europa.eu/eurostat/documents/3859598/5927001/KS-RA-13-029-EN.PDF
http://www.europeansocialsurvey.org/docs/methodology/ESS_weighting_data_1.pdf
http://dx.doi.org/10.1093/poq/nfq058
http://ec.europa.eu/eurostat/documents/3859598/5927001/KS-RA-13-029-EN.PDF


at: http://ww2.amstat.org/sections/srms/Proceedings/y1962/Multiple Frame Surveys.

pdf (accessed January 2017).

Heeringa, S.G. and C. O’Muircheartaigh. 2010. “Sampling Designs for Cross-Cultural and

Cross-National Survey Programs.” In Survey Methods in Multinational, Multiregional,

and Multicultural Contexts, edited by J.A. Harkness, M. Braun, B. Edwards, T.P. Johnson,

L. Lyberg, P. Ph. Mohler, B.-E. Pennell, and T. Smith, 251–268. New Jersey: Wiley.

Iacovou, M. and P. Lynn. 2017. Design and Implementation Issues to Improve the

Research Value of the Longitudinal Component of EU-SILC. Monitoring Social

Inclusion in Europe, edited by A.B. Atkinson, A.-C. Guio and E. Marlier. Chapter 27.

EU Publications.

Kish, L. 1989. Q/A 21.1 Comparisons of Surveys. Questions/Answers. From the Survey

Statistician, edited by A.M. Vespa-Leyder, 40–41.

Kish, L. 1994. “Multipopulation Survey Designs.” International Statistical Review 62:

167–186.

Kish, L. 1999. “Cumulating/Combining Population Surveys.” Survey Methodology 25:

129–138.

Lepkowski, J. and R.M. Groves. 1986. “A Mean Squared Error Model for Dual Frame,

Mixed Mode Survey Design.” Journal of the American Statistical Association 81:

930–937.

Lohr, S. 2007. Recent Developments in Multiple Frame Surveys. In Proceedings of Survey

Research Methods Section of American Statistical Association meetings, Salt Lake

City, Utah. Available at: http://ww2.amstat.org/sections/srms/Proceedings/y2007/Files/

JSM2007-000580.pdf (accessed January 2017).

Lynn, P., L. Japec, and L. Lyberg. 2006. “What’s So Special about Cross-National

Surveys?” Conducting Cross-National and Cross-Cultural Surveys: Papers from the

2005 Meeting of the International Workshop on Comparative Survey Design and

Implementation (CSDI), edited by J. Harkness. ZUMA, Mannheim.
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Effects of Scale Direction on Response Style of
Ordinal Rating Scales

Mingnan Liu1 and Florian Keusch2

Although ordinal rating scales have received much research attention in survey methodology
literature, the direction of the rating scales has not been as extensively studied as other design
features. Research on scale direction effect has mainly focused on the influence on response
distribution, while largely overlooking its impact on latent constructs. This study examines
the scale direction effect on extreme and acquiescent response style latent class variables
in an experiment embedded in a national probability sample. We found a higher level of
acquiescent response style from scales starting with positive adjective words using a web
survey. No significant effect of scale direction was detected on extreme response style or in a
face-to-face survey (with show cards). This study also demonstrates that scale direction does
not affect the substance latent class variables, once the response style latent class variables are
included in the model. Implications of these findings and future research directions are
discussed.

Key words: Rating scale; scale direction; response style; latent class analysis; data collection
mode.

1. Background and Literature Review

Attitudes, as different from behaviors, are not directly observable. In surveys, attitudes are

typically measured by a series of items with ordinal rating scales. Given the popularity of

attitudinal questions, many research efforts have been devoted to examining measurement

error associated with this type of question, which leads to a very rich body of literature on

this topic (for a review, see Krosnick and Presser 2010). When designing a rating scale,

many decisions have to be made by researchers, one of which is the scale direction. In

rating scales, the two endpoints are usually defined by two adjective words. One way to

design the rating scale is to put the positive/high adjective on the left side/top of the scale

and the negative/low adjective on the right side/bottom of the scale. Another way is to

reverse the order of the response options by putting the negative/low adjective first and the

positive/high adjective last. This seemingly trivial design decision could affect response

behavior and result in a shift in the response distribution – the ‘scale direction effect’

(Belson 1966).

Research on the scale direction effect dates back more than half a century (Belson 1966)

and several studies focused on the impact on the univariate distribution. For example,

q Statistics Sweden

1 SurveyMonkey, 101 Lytton Avenue, Palo Alto, CA 94301, U.S.A. Email: mingnanliu@gmail.com
2 University of Mannheim, 68131 Mannheim, Germany. Email: f.keusch@uni-mannheim.de
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He et al. (2014) report in their summary of empirical studies involving an experiment on

scale direction that twelve out of 27 experiments found a shift in responses based on the

starting point. That is, the high/positive end of the scale was endorsed more often when

the scale started with the high/positive end, and the low/negative end of the scale

attracted more endorsement when the scale began with the low/negative end. Dillman

et al. (1995) examined scale direction effects in 82 experiments in twelve surveys using

ordinal scales over the telephone and in mail questionnaires. Out of 21 experiments

involving mail surveys, only one showed a significant scale direction effect. Three out

of 22 telephone experiments showed a significant effect. Furthermore, of the fifteen

experiments using both mail and telephone, only two showed a significant effect across

both modes. The authors concluded that the scale direction effect “has been

overestimated by past research” (p. 674). Another set of experiments by Christian et al.

(2008) tested presenting the positive option versus the negative option first using five-

point ordinal scales in both telephone and web surveys. None of the comparisons in each

mode yielded significant differences. A recent experiment by Stapleton (2013) on scale

direction effects among respondents who could choose from one of two modes (PC and

mobile device) showed that the univariate distribution shifted by the scale direction in

both modes, although mobile respondents were more prone to the scale direction effect

than PC respondents.

In addition to the distribution of response options, researchers have also examined the

impact of scale direction on the latent structure of estimates. For example, Chan (1991)

administered five items with five response options to a group of high school students and

in a factor analysis, the results showed that the positive-negative scale had a better

model fit than the negative-positive scale. However, item discrimination is higher in the

latter than the former scale. These findings mean that the two forms of scale direction

produce different estimations of the latent trait in the same group of individuals. A study

by Krebs and Hoffmeyer-Zlotnik (2010) showed no substantial difference in terms of the

dimensional structure, factor loadings, and the latent means between the two scale

directions. A recent study adopted two analytical approaches – the Rasch model and

confirmatory factor analysis – to examine the interaction effect between scale direction

and response speed (Salzberger and Koller 2013). The two modeling approaches

revealed different findings, including differential interaction effects with response speed.

Saris and Gallhofer (2007) conducted a meta-analysis of multitrait–multimethod

experiments on question reliability and validity. Scale direction is one of the factors they

examined, and the findings showed that providing the negative option first reduced the

reliability but improved the validity of the responses.

Taken together, empirical studies report mixed findings with regard to the influence

of the direction of rating scales on response. Some studies found no significant

difference in terms of univariate distribution (Dillman et al. 1995; Christian et al.

2008), while others did find a difference (Krebs and Hoffmeyer-Zlotnik 2010; Belson

1966; Stapleton 2013). Also, some studies found no latent structure/underlying structure

difference between the two scale directions (Krebs and Hoffmeyer-Zlotnik 2010), while

others concluded that the latent variables differed by the scale direction (Chan 1991;

Saris and Gallhofer 2007) and different modeling approaches reached different

conclusions (Salzberger and Koller 2013). There was no obvious difference between
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interviewer-administered and self-administered modes (Dillman et al. 1995; Christian

et al. 2008).

Response style is another form of measurement bias that is particularly associated with

ordinal rating scales. Response style refers to the tendency of choosing certain response

options from an ordinal rating scale based on some question content-irrelevant information

rather than the question itself (Paulhus 1991). Two of the most frequently studied response

styles are acquiescent response style (ARS) and extreme response style (ERS). ARS refers

to the tendency to agree with a statement regardless of the question content (Baumgartner

and Steenkamp 2001). ERS refers to the tendency to select the endpoints of a rating scale

more frequently than other response options (Paulhus 1991). Previous research has shown

that several design features of ordinal rating scales (e.g., the presence of a midpoint, scale

length, labeling) can impact response styles (Moors 2008; Moors et al. 2014; Kieruj and

Moors 2010). For example, Moors (2008) found that extreme response style existed

regardless of the presence or absence of a middle response category. Kieruj and Moors

(2013) examined the impact of scale length on both ARS and ERS. Specifically, they

studied Likert scales that ranged from 5–11 points and found that both types of response

styles existed regardless of scale length. More recently, Moors et al. (2014) examined the

labeling of a Likert scale and its impact on response styles. The authors demonstrated that

both ARS and ERS existed, regardless of whether numeric or verbal labels were used, and

whether the scales were fully or endpoint labeled. As will be discussed in detail below,

survey satisficing and anchoring-and-adjustment are potential causes of scale direction

effects. Reinforced by acquiescence, these mechanisms can manifest themselves as

response styles.

2. Conceptual Framework and Expectations

Different theories have been brought forward when trying to explain the influence of scale

direction on response behavior to rating scales. One explanation sees the scale direction

effect as a special case of the primacy effect observed in survey modes where lists of

categorical response options are presented visually. Respondents are more likely to choose

options offered first than later in such lists of unordered response options, due to response

satisficing (Krosnick 1991). This is because, unlike optimizers, satisficers choose a

response option that is good enough without going through the whole response option list

and selecting the best answer. This approach is cognitively less burdensome than

providing an optimized response option. As a result, satisficing has also been used as a

potential explanation for scale direction effects in ordinal rating scales (e.g., Krebs and

Hoffmeyer-Zlotnik 2010).

However, several studies also show that the scale direction effect is not stronger in

situations conducive to satisficing (Carp 1974; Mingay and Greenwell 1989), and scale

direction effects are also observed in surveys employing aural administration (Kalton et al.

1978; Mingay and Greenwell 1989; Yan and Keusch 2015). Yan and Keusch (2015)

propose that the scale direction effect may also be caused by respondents’ use of

anchoring-and-adjustment (Tversky and Kahneman 1974) when constructing and

mapping their answers to one of the scale points. The basic idea is that people make

numerical estimates when under uncertainty, by anchoring on an initial value (e.g., the
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start of a rating scale), and then adjusting to that anchor until a plausible estimate is

reached. Because the adjustments made to the anchor are more often incomplete and

insufficient, the final estimate is usually biased toward the anchor. Although anchoring-

and-adjustment was initially proposed as a heuristic approach for numerical estimates,

Yan and Keusch (2015) showed that it can also be used to explain scale direction effects

in rating scales. Whether anchoring-and-adjustment also applies to Likert-type agree-

disagree questions is yet unknown. Salzberger and Koller (2013) attributed the scale

direction effect in multi-item grid questions to the ‘near means related’ heuristic that

respondents use when answering rating scale questions (Tourangeau et al. 2004;

Tourangeau et al. 2007). That is, the spatial proximity of the survey items and the starting

point of a response scale lead to a higher endorsement of this side of the scale in self-

administered modes.

The direction of a response order is an important design feature of rating scales.

However, the relationship between scale direction and response styles, including ARS and

ERS, is yet unknown. The goal of this study is to evaluate and compare response styles

across scale directions through experimental data. Survey satisficing, anchoring-and-

adjustment, and acquiescence are all potential causes of measurement bias for ordinal

rating scales. Satisficing can lead to a primacy effect, that is, higher endorsement of the

response option that is presented first, whether positive or negative. Similarly, the

anchoring-and-adjustment process used for responding to ordinal rating scales also

predicts a higher level of agreement in the positive-negative scale than the negative-

positive scale, since respondents are more likely to use the first presented option as the

anchoring point, and it is most likely to be selected if the adjustment process is insufficient.

Acquiescence, different from the other two mechanisms, manifests itself in higher

endorsement of the positive option, regardless of the order of presentation. Therefore,

when measuring ARS, we would expect a higher level of ARS when the positive option is

presented first and the negative option is presented last. This is due to the effect being

reinforced by scale direction effect, which is likely to be caused by satisficing and the

anchoring-and-adjustment process.

Given that more national surveys are moving toward web data collection, this study also

compares the impact of scale direction on response styles between web and face-to-face

surveys. Liu et al. (2016) showed that face-to-face survey respondents reveal more ARS

and ERS than web survey respondents. They attributes the mode effect on response styles

to the impression management concerns of respondents in the face-to-face survey. Another

goal of this study is to evaluate and compare the ARS and ERS bias between two scale

directions in the two modes of data collection separately. Since the primacy effect is

typically stronger in a self-administered survey than in an interviewer-administered

survey, it is possible that we will observe a larger scale direction effect on ARS in a web

survey than in a face-to-face survey. Also, web surveys use only visual display, hence

respondents are more likely to use the first visually displayed option as the anchoring point

when making the judgment than face-to-face respondents. Interviewers in a face-to-face

survey utilize both visual (show cards) and aural channels of communication and may

facilitate a more full interpretation of the rating scales. This consideration also leads to the

prediction of a larger scale direction effect on ARS in web surveys than in face-to-face

surveys.
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To sum up, this study utilizes an experiment embedded in a national probability

survey to explore the impact of scale direction on response styles in face-to-face and

web survey data collection. Specifically, this study will answer three research questions.

First, do response styles, including ARS and ERS, differ by scale direction in agree-

disagree Likert scales? Second, does the impact of scale direction on response style, if

any, differ between face-to-face surveys and web surveys? Third, after adjusting for

response style, does the scale direction still have an impact on the substantive content

latent class variables? Given the previous research in this area, we expect to find more

endorsement of positive options when they are presented first than when they are

presented last. Also, we expect to see a larger effect of this in web surveys than in face-

to-face surveys. As for the scale direction effect on ERS, our study is largely

exploratory, and we do not have a clear expectation. However, given that ERS is an

important response style and a previous study shows that the rating scales used in this

analysis suffer from ERS (Liu et al. 2015), we also examine whether or not the scale

direction has any impact on ERS.

3. Data and Measures

The data analyzed in this study come from the 2012 American National Election

Studies (ANES). The ANES is a national time series survey on political candidates,

parties, politics in general, and other related topics conducted in election years in the

United States. In 2012, the ANES, for the first time, conducted surveys using two modes

of data collection, namely face-to-face and web. The survey has two independent

national representative samples: one for each mode, and one identical questionnaire.

The target population for both samples is US citizens aged 18 or older by the 2012

Election Day. The web survey sample came from the GfK KnowledgePanel, a

probability online panel of US adults. The online panel members were recruited using

two sampling methods: address-based sampling and random-digit dialing. After a

household was selected, all members in the household were enumerated, and panel

members were selected. Households without Internet access or necessary equipment for

participating in web surveys were provided with such equipment. The face-to-face

survey involves an address-based, stratified, multi-stage cluster sample. The sample

includes a nationally representative main sample and two oversamples for African

Americans and Hispanic Americans. (For more information about the ANES sampling

design, see http://www.electionstudies.org/studypages/anes_timeseries_2012/anes_

timeseries_2012_userguidecodebook.pdf.)

The ANES contains two stages of data collection, with one wave prior to the

presidential election and one wave after the election. In 2012, 5,914 pre-election

interviews (2,014 of the face-to-face surveys) and 5,510 post-election interviews (1,929

of the face-to-face surveys) were completed. Response rates for the pre-election study

were 38% and two percent for face-to-face and web, respectively (AAPOR RR1). The

re-interview rates (conditional on the pre-election study response rates) in the post-

election stage for the two modes were 94% and 93%, respectively. According to the

survey organization, the response rate for the web survey is a function of the recruitment

of panel members, the retention of panelists from the time of recruitment to the point at
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which they were invited to take the ANES survey, and the response to those survey

invitations.

The 2012 ANES pre- and post-election studies included an experiment that randomly

assigned respondents to one of two scale direction conditions. Of the 190 ordinal items

included in the experiment, three sets of balanced multi-item Likert scales can fully serve

the purpose of examining the effect of scale direction on ARS and ERS. Randomization is

performed at the respondent level, not at the question level. That is, each respondent

received all ordinal rating items labeled in one direction or the other.

For the multi-scale items analyzed in this study, the first scale contains four items about

attitudes toward traditionalism. The second scale contains four items about the position

of Blacks in society. The third scale contains six items about the attitudes toward

egalitarianism (see Appendix for wording of items). All items were measured on the same

five-point rating scale. The scales were labeled ‘disagree strongly,’ ‘disagree somewhat,’

‘neither agree nor disagree,’ ‘agree somewhat’ or ‘agree strongly’ (forward condition) or

in reversed order (reversed condition) without numeric labels. In the face-to-face survey,

show cards were used to visually present the response options to the respondents. (For

show cards in the face-to-face survey, see http://www.electionstudies.org/studypages/

anes_timeseries_2012/anes_timeseries_2012_respbooklet_post.pdf.) The response

options were displayed vertically in both modes. A “don’t know” option was not

explicitly provided in either mode but it was accepted in the face-to-face survey. In the

web survey, respondents could skip the question if they chose not to answer. Both “don’t

knows” and “skips” are coded as missing in the analysis. Overall, the design of the

questionnaire was kept as unified as possible between these two modes. Also, the fully

labeled five-point agree-disagree scale conforms to the best practice in the literature

(Revilla et al. 2013; Krosnick and Presser 2010).

In this study, latent class analysis (LCA) was used to examine the experimental data on

scale direction. Several analytical models exist in the literature on how to measure

response styles. We choose this particular analytical approach because it can

simultaneously estimate ARS, ERS, and the substantive content of the rating scales as

different latent class variables. Moors (2003) was among the first to adopt the LCA model

to examine response styles. Specifically, he treated the rating scales as nominal variables

and the latent class variables as equidistant ordered variables in order to estimate ERS.

The reason for treating the rating scales as nominal rather than as ordinal is because a

U-shape is expected for the ERS. In other words, the coefficients for the two endpoints are

positive, and the coefficients for the middle options are negative, which is an indication of

the endpoint preference. Morren et al. (2011) simplified the model by treating the rating

scales as ordinal variables when measuring the content latent class variables and

maintaining the rating scales as nominal variables when measuring ERS latent class

variables in order to capture the nonmonotonic (U-shape) relationship. This is a more

parsimonious model in that, for each response item, only one coefficient is estimated for

the content latent class variables. This modeling approach was further simplified by

forcing the style latent class variable coefficients to be equal across all items (Kieruj and

Moors 2013; Moors et al. 2014). This model only outputs one set of coefficients for all

items when estimating the response style latent class variables. This constraint is

theoretically meaningful because, by definition, a response style is content-irrelevant, and
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its impact on all items should be equally likely. For the data in this study, the model can be

written as:

log
PðYij ¼ cþ 1jF1i;F2i;F3i;Ei;AiÞ

PðYij ¼ cjF1i;F2i;F3i;Ei;AiÞ

¼ b0jcþ1 2 b0jc

� �
þ b1j1 F1i þ b2j2 F2i þ b3j3 F3i þ b4jcþ1 2 b4jc

� �
Ei þ b5jAi

Where Yij denotes the response of respondent i to Likert-type item j, i ¼ 1, : : : ,I,

j ¼ 1, : : : ,14;

F1i denotes the “moral traditionalism” latent class variable;

F2i denotes the “position of Blacks in society” latent class variable;

F3i denotes the “egalitarianism” latent class variable;

Ei denotes the ERS latent class variable;

Ai denotes the ARS latent class variable;

b1j1 denotes the effects on the adjacent category logit for the “moral traditionalism”

latent class variable, j1 ¼ 1, 2, 3, or 4;

b2j2 denotes the effects on the adjacent category logit for the “position of Blacks in

society” latent class variable, j2 ¼ 5, 6, 7, or 8;

b3j3 denotes the effects on the adjacent category logit for the “egalitarianism” latent

class variable, j3 ¼ 9, 10, 11, 12, 13, or 14;

b4jcþ1 2 b4jc denotes the nonmonotonic (U-shape) relationship between the ERS latent

class variable and the Likert-type items;

b5j denotes the effects on the adjacent category logit for the ARS latent class variable;

and

c denotes the response options, c ¼ 1, 2, 3 or 4.

This model is illustrated in Figure 1, showing that the individual items only load on their

corresponding content latent class variables (F1, F2, F3) with no cross-loadings specified.

The three content latent class variables are allowed to be correlated with each other. For

ARS and ERS latent class variables, all items are loaded on these two style latent class

variables. This is because response styles should affect all items regardless of the specific

question content. The two style latent class variables are not correlated with each other,

nor do they correlate with the content latent class variables. The rating items are estimated

as nominal variables for measuring ERS. Effect coding is used and, thus, the model

outputs five coefficients – one for each response option. For the other four latent class

variables, the rating items are estimated as ordinal variables and, thus, one coefficient is

estimated for each item. The scale direction is introduced into the model as a covariate.

This is the key variable of interest in this model. Previous research has shown that, given

the data structure, this model should fit the data well (Liu et al. 2015). However, we also

test a few other alternative models in order to find the best fitting empirical model. We use

the Bayesian information criterion (BIC) to guide our choice of models. A smaller BIC

indicates a better model fit. However, although a more complex model tends to have

a better model fit based on BIC, we try to present a conceptually meaningful and

parsimonious model rather than a purely data-driven model. The model is applied to

face-to-face and web survey data separately because a previous study has shown that

Liu and Keusch: Scale Direction Effect on Response Styles 143

Unauthenticated
Download Date | 2/28/17 11:03 AM



response styles differ in these two modes of data collection (Liu et al. 2015). All analysis is

weighted using the weight variable provided by the survey organization, which adjusts for

the probability of household selection, the probability of respondent selection within the

household, nonresponse, and random sampling error. Based on the survey documentation,

the weights are poststratified to produce estimates that match known population

proportions for selected characteristics. The weights were created separately for face-to-

face and web survey so that the weighted analysis of each survey should, in theory,

produce unbiased estimates of the same target population. Missing values are deleted

listwise. All analyses are performed in Latent Gold 5.0 (Vermunt and Magidson 2013).

4. Results

Before fitting the LCA models, we first estimated the demographic distributions between

the two experimental conditions (forward vs. reversed) in the two modes separately. As

Appendix B shows, none of the weighted demographic variables, including gender, age,

race/ethnicity, education, marital status, or household income, differed in the two

conditions in the two response order conditions and the two modes of data collection.

Therefore, it is not likely that the weighted differences observed between the two

conditions and two modes are due to the demographic composition differences.

Although the LCA model introduced above is theoretically meaningful, we fit several

alternative models, and compare them using BIC in order to find the best fitting empirical

model. The first step was to determine whether the data actually reflected response styles.

That is, whether adding latent class variables for ARS, ERS, or both to the model in
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Fig. 1. Latent class analysis model of acquiescent response style (ARS), extreme response style (ERS), and

content latent class variables (F1, F2, F3), with covariates (scale direction).
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addition to the content latent class variables could improve the model’s fit. According to

Table 1, this was the case for both the face-to-face and the web survey. In comparison with

the content-only model (Model 1), when ARS (Model 2), ERS (Model 3), or both ARS and

ERS (Model 4) were included in the model, the BIC dropped; Model 4 has the smallest

BIC among the four models. This indicated that both ARS and ERS were critical latent

class variables to be added to the model. In other words, respondents’ answers to the rating

scales not only reflected their opinions toward the substantive content of the questions, but

also their response styles.

The next step was to determine the number of levels for all five latent class variables.

As we mentioned above, the latent class variables are equidistant ordered latent class

variables with at least two levels. Each of the latent class variables in the aforementioned

four models contains two levels. Next, we increased the number of levels to three

(Model 5) and four (Model 6). However, the four-level latent class model has small

and not meaningful class sizes for several latent class variables for both fact-to-face and

web surveys. (For the face-to-face surveys, the class sizes for ARS are 0.19, 0.50, 0.24,

and 0.07, and for ERS they are 0.11, 0.63, 0.20, and 0.06. For the web surveys, the class

sizes for ARS are 0.20, 0.66, 0.09, and 0.05, and for ERS they are 0.28, 0.56, 0.10,

and 0.06.) Furthermore, the model becomes more difficult to interpret and replicate. We

hope to identify a simple, easy-to-interpret, and theoretically meaningful model.

Considering this, we choose to proceed with the three-level model with ordinal latent

classes (Model 5).

The last step in model-building is to examine whether or not adding equality constraints

can improve the model fit. In Model 5a, for each latent class variable, the coefficients are

set to be equal. The BIC of Model 5a is substantially larger than in Model 5 for data from

both the face-to-face and the web survey, indicating such constraints deteriorate the model

fit. In Model 5b, the coefficients are set to be equal for ARS and ERS, but the coefficients

for the three content latent class variables are free to vary. The BIC increases slightly

compared with Model 5, but the model has 65 (158-93) more free parameters, which

makes it a much more parsimonious model. In addition, this model is conceptually more

meaningful, since response styles are content-free, and they should equally influence

responses to items. As a result, we conclude that Model 5b is the best-fit model.

Given this information, we deduced that two response style latent class variables exist.

An important subsequent step is to determine whether these two style latent class variables

Table 1. Model Fit Statistics, 2012 American National Election Studies.

BIC

Face-to-face Web Npar

Model 1: Content only (two-level) 72909 137782 79
Model 2: Content þ ARS (two-level) 70639 131711 137
Model 3: Content þ ERS (two-level) 71610 133396 95
Model 4: Content þ ARS þ ERS (two-level) 69581 128620 153
Model 5: Content þ ARS þ ERS (three-level) 68907 126078 158

Model 5a: Equality on all latent class variables 73643 141588 82
Model 5b: Equality on style latent class variables 68928 126467 93

Model 6: Content þ ARS þ ERS (four-level) 68791 125355 163
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actually represent ARS and ERS. Table 2 shows the estimated regression coefficients for

these two latent class variables in the face-to-face and web survey separately. As described

above, there are five coefficients for ERS: one for each response option. For ERS, the

coefficients for the two endpoints need to be in the opposite direction from the three

middle options. This is what we find from both modes. The coefficients for the two

endpoints are positive, and the coefficients for the middle three options are negative. This

confirms that this latent class variable is indeed ERS. Recall that ERS is a three-level latent

class variable. The coefficients in Table 2 suggest that respondents at the higher level of

the latent class variable tend to select the endpoint of the scales more frequently than

respondents at the lower level of the latent class variable. That is, a lower level of the latent

class variable indicates “avoid-ERS” and a higher level of the latent class variable

indicates “pro-ERS”. For ARS, because the rating items are treated as ordinal variables,

there is only one coefficient output from the model. In the analysis, the negatively worded

items are recoded so that they go from negative (disagree strongly ¼ 1) to positive (agree

strongly ¼ 5), the positive coefficients in both modes mean that a higher level of the ARS

variable indicates pro-ARS and a lower level of the ARS variable indicates avoid-ARS.

The scale direction effect on response styles is presented in Table 3. In this case,

the latent class variables are dependent variables and scale direction is the predictor.

Table 2. Estimated Regression Coefficients (Log Odds) and Standard Errors of ERS and ARS on the Likert Scale

Items by Mode of Data Collection, 2012 American National Election Studies.

Face-to-face Web

Response style Response option b̂ S.E. b̂ S.E.

ERS Disagree strongly 2.45 0.16*** 1.70 0.16***

Disagree somewhat 20.72 0.13*** 21.11 0.15***

Neither agree nor disagree 23.96 0.30*** 21.88 0.25***

Agree somewhat 20.63 0.12*** 20.92 0.10***

Agree strongly 2.86 0.14*** 2.20 0.16***

ARS 1.11 0.07*** 0.98 0.05***

***p , .0001.

Table 3. Estimated Scale Direction Effect (Log Odds) on Response Style Latent Class Variables by Mode of

Data Collection, 2012 American National Election Studies.

Face-to-face

ERS ARS

b̂ S.E. p-value b̂ S.E. p-value

Scale directiona 20.17 0.23 0.44 20.28 0.27 0.31

Web

ERS ARS

b̂ S.E. p-value b̂ S.E. p-value

Scale direction 20.10 0.18 0.60 1.73 0.35 , .0001
aScale direction (dependent variable): strongly agree first vs. strongly disagree first (reference group).
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The coefficients for both ERS (b̂ ¼ 20.17, p ¼ 0.44) and ARS (b̂ ¼ 20.28, p ¼ 0.31)

are not significant in the face-to-face survey. This means that, although both types of

response styles exist in the face-to-face survey, they do not differ by the direction of the

scale. This is possibly due to the presentation channels (both visual and aural) in the face-

to-face survey reduced the impact of design features such as scale direction. Also, the

presence of interviewers might have also increased the respondents’ motivation so that

they were more likely to provide a careful answer and less likely to be influenced by the

presentation of the scales. In the web survey, ERS also does not show a significant scale

direction effect (b̂ ¼ 2 .1, p ¼ .6), while ARS does show a significant scale direction

effect (b̂ ¼ 1.73, p , .0001). Morren et al. (2011) found in their study that the three levels

of ERS variable were not ordinally related to covariate variables. Therefore, we also

analyzed the data by treating the ERS latent variable as a nominal variable. The result

showed that scale direction was not significantly related to ERS.

When the positive option is presented first on the scale (i.e., agree-disagree scale), the

odds of having ARS change are by a factor of 5.6 (¼exp (1.73)) compared to the scale where

the negative option is presented first (i.e., disagree-agree scale). As was described in the

introduction, the examination of the ERS is exploratory and we did not have any expectation

on how the scale direction could influence ERS. The significant scale direction effect reflect

on ARS is possibly due to a combination of satisficing and anchoring-and-adjustment.

The literature shows that scale direction can affect content latent variables. However,

previous studies do not control for response styles when testing scale direction effects on

the substantive content latent class variables. Table 4 shows scale direction effects on

the three content latent class variables after explicitly controlling for ARS and ERS in the

LCA model. The effects on all three variables and in both models are small, and none are

significant. Since earlier literature that examined the relationship between scale direction

and substantive content variables did not control for response style, we also analyzed the

data without adjustment for response styles. We reached the same conclusion: that scale

direction was not significantly related to the content variables, without adjusting response

styles (results not shown).

5. Discussion and Conclusion

The direction of rating scales and their influence on responses to attitudinal questions has

attracted researchers’ attention for more than half a century (Belson 1966). Previous

research has primarily focused on the effect of scale direction on the response distribution

of individual items, with occasional focus on latent variables. Response styles are one

Table 4. Estimated Scale Direction Effect (Log Odds) on Content Latent Class Variables by Mode of Data

Collection, 2012 American National Election Studies.

Face-to-face Web

b̂ S.E. p-value b̂ S.E. p-value

F1 20.07 0.33 0.83 0.04 0.19 0.81
F2 20.2 0.33 0.53 20.01 0.22 0.96
F3 20.06 0.4 0.87 20.06 0.24 0.81
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form of measurement bias that is frequently examined for multi-item rating scales. Some

recent studies have examined the different scale design formats and their impacts on

response styles (Kieruj and Moors 2013; Moors et al. 2014). However, no such effort has

been devoted to testing the relationship between scale direction and response styles.

This study set out to test whether response styles, including ARS and ERS, differ by the

direction of scales using an experiment embedded in a national probability survey

conducted both face-to-face and on the web. Using latent class analysis, we reached the

following conclusions:

1) ARS and ERS exist in both scale directions in both survey modes;

2) ERS is similar for scales presented in both directions in both face-to-face and web

surveys;

3) ARS is significantly different between the two scale directions in the web surveys but

not in the face-to-face surveys;

4) the scale direction does not impose a significant influence on the substantive content

latent class variables, with or without controlling for response styles.

Several factors can explain the higher endorsement of the positive options in the agree-

disagree scale than the disagree-agree scale in the web surveys. First, this could be

interpreted as the result of respondents satisficing (Krosnick 1991) that leads to a primacy

effect due to the more frequent selection of the option presented first, regardless of whether

the option is positive or negative. Respondents might not read and process all scale points

once they find a good enough response option. Assuming that satisficing might play a

bigger role in self-administered survey modes than interviewer administration, this would

also explain the nonfindings for the face-to-face survey.

Second, it is possible that respondents use the top-most response option as the anchoring

point and then adjust their responses. Since the adjustment process is often insufficient, the

anchoring point and the adjacent options are most likely to be endorsed. Both satisficing

and anchoring-and-adjustment predict more selection of the position option when it is

presented first than when it is presented last. Third, acquiescence predicts more selection

of the positive option regardless of the scale direction. As a result, the overall shift of the

distribution toward the positive end of the scale is most likely to be the consequences of a

combination of the three mechanisms. Future research needs to be done to determine

which of these explanations reflects the true cause of the scale direction effect.

The lack of scale direction effect in the face-to-face survey may be attributable to the

channel of communication. In the face-to-face survey, as opposed to the web survey, both

visual and aural communication is adopted during the interview. Such a design feature can

alleviate the impact of scale direction and, hence, no such effect on response style latent

class variables is detected from face-to-face surveys. In the web survey, questions and

response options are only present visually. Thus, there is a higher likelihood that the

respondent’s anchoring point changes from one scale direction to another. Consequently,

we observe a significant effect on ARS in the web survey. Note that this finding is the

opposite of recency effects found in telephone interviews (Krosnick 1991). Furthermore,

interviewers in face-to-face surveys can explain the purpose of the survey, answer

questions, address concerns, and motivate respondents. Hence, respondent commitment is

likely to be higher among face-to-face respondents than among web respondents. This can
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also be a reason for the lack of response style difference between the two scale directions,

as respondents might just have been more committed to the task and less likely to be

impacted by the design difference.

This study also finds that substantive latent class variables do not show a reliable scale

direction effect, whether the response style latent class variables were controlled for or not.

Previous research reported mixed results on the impact of scale direction on latent traits

(Krebs and Hoffmeyer-Zlotnik 2010; Saris and Gallhofer 2007; Chan 1991), and this study

provides one more piece of evidence that supports the lack of impact of the scale direction.

Although the univariate response distribution shifted by the change of scale direction, it

does not necessarily reflect a change in the substantial latent construct. Rather, it is likely

to be a reflection of the change of response style latent variables.

This study probably raises more questions than it can answer. First, is it possible to

generalize the findings in this study to other scale types? In this study, we only examine the

scale direction effect using five-point agree-disagree Likert scales. A previous study has

shown that other question types, such as item-specific scales, produce different response

style patterns (Liu et al. 2015). Whether the scale direction influences other rating scales

similarly should be examined in the future. Second, do other data collection modes exhibit

a different scale direction effect? This study demonstrates that the scale direction effects

are not identical between face-to-face and web surveys. Future studies should also explore

and compare the scale direction effect on response styles among other survey modes (e.g.,

telephone, mobile web). Third, are the results replicable for other survey questions?

Although response style is content-irrelevant, the scale direction effect on response style

may differ regarding the question topic (e.g., sensitive vs. nonsensitive topics) or type

(e.g., attitudinal vs. behavioral questions). We also find no scale direction effect on content

latent class variables after controlling for the response styles. Future studies should

attempt to replicate this finding and test whether it is possible to generalize. Last but not

least, the scale direction may interact with the wording of the item. A positively worded

item may show a different effect from a negatively worded item. We encourage future

research to explore this possibility.

Regardless of the unsolved questions, this study demonstrates that the scale direction,

a seemingly trivial survey design feature, can influence response style in web surveys.

Researchers need to take the scale direction into serious consideration when designing

rating scales. As many flagship national and international surveys move toward using the

web, this is becoming a particularly relevant issue. The good news is that after controlling

for response styles in the analysis model, the scale direction does not exert significant

impact on the substantial latent class variables. Since in most cases the substantial, rather

than the response style latent variables, are of interest, it is important to control for the

response styles in the analysis model.
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Appendix A

Question Wordings

The world is always changing and we should adjust our view of moral behavior to those

changes. (TRAD1)

The newer lifestyles are contributing to the breakdown of our society. (TRAD2)

We should be more tolerant of people who choose to live according to their own moral

standards, even if they are very different from our own. (TRAD3)

This country would have many fewer problems if there were more emphasis on traditional

family ties. (TRAD4)

Irish, Italians, Jewish and many other minorities overcame prejudice and worked their

way up. Blacks should do the same without any special favors. (BLAC1)

Generations of slavery and discrimination have created conditions that make it difficult

for Blacks to work their way out of the lower class. (BLAC2)

Over the past few years, Blacks have gotten less than they deserve. (BLAC3)

It’s really a matter of some people not trying hard enough; if Blacks would only try harder

they could be just as well off as whites. (BLAC4)

Our society should do whatever is necessary to make sure that everyone has an equal

opportunity to succeed. (EQUA1)

We have gone too far in pushing equal rights in this country. (EQUA2)

One of the big problems in this country is that we don’t give everyone an equal chance.

(EQUA3)

This country would be better off if we worried less about how equal people are. (EQUA4)

It is not really that big a problem if some people have more of a chance in life than others.

(EQUA5)

If people were treated more equally in this country we would have many fewer problems.

(EQUA6)
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Design of Seasonal Adjustment Filter Robust to Variations
in the Seasonal Behaviour of Time Series

Marcela Cohen Martelotte1, Reinaldo Castro Souza2, and

Eduardo Antônio Barros da Silva3

Considering that many macroeconomic time series present changing seasonal behaviour,
there is a need for filters that are robust to such changes. This article proposes a method to
design seasonal filters that address this problem. The design was made in the frequency
domain to estimate seasonal fluctuations that are spread around specific bands of frequencies.
We assessed the generated filters by applying them to artificial data with known seasonal
behaviour based on the ones of the real macroeconomic series, and we compared their
performance with the one of X-13A-S. The results have shown that the designed filters have
superior performance for series with pronounced moving seasonality, being a good alternative
in these cases.

Key words: Moving seasonality; Filter design; Frequency domain; Time series decompo-
sition; X-13A-S.

1. Introduction

Changing seasonality of time series was first noted in the nineteenth century (Gilbart 1852,

quoted in Bell and Hillmer 1984), and is common in macroeconomic data (Canova and

Ghysels 1994; Wells 1997; Franses and Koehler 1998; Van Dijk et al. 2003). Such changes

can be due to variations in seasonal amplitude from year to year or in the proportionality

relationship between the seasonal at each month and the seasonal at each other month (i.e., the

seasonal pattern) (Godfrey and Karreman 1964). We refer to them as ‘moving seasonality’.

Kuznets (1932) was among the first authors to highlight the importance of moving

seasonality. Since then, statistical tests have been created to evaluate the presence of

changing seasonal behaviour (Higginson 1975; Canova and Hansen 1995; Sutradhar and

Dagum 1998) and several seasonal adjustment methods have been suggested to tackle it,

many of them developed in the frequency domain. Among the frequency domain approaches,

we highlight the pioneering work of Hannan (1964), Nerlove (1964), and Nettheim (1964).

X-13ARIMA-SEATS (X-13A-S) is the most recent enhanced version of the ‘X-11

family’ (U.S. Census Bureau 2013). This program contains two seasonal adjustment
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modules: the X-11 method and the SEATS. The latter is a seasonal adjustment procedure

that follows the ARIMA model-based signal extraction technique (Gómez and Maravall

1996). The former module is the X-11, or Census X-11, one of the most commonly used

methods for seasonal adjustment of economic time series used by government agencies

and statistical bureaus. This method, based on moving averages, was introduced in 1965

by the U.S. Census Bureau (Shiskin et al. 1967) and further contributions have been added

to the basic version (Dagum 1980; Dagum 1988; Findley et al. 1998). It is important to

mention that these methods are also implemented in JDEMETRAþ , which is the software

officially recommended by Eurostat and the European Central Bank for the seasonal and

calendar adjustment of official statistics in the European Union. The ESS guidelines on

seasonal adjustment (Eurostat 2015) highlight the unstable seasonality problem, warning

that the standard seasonal adjustment cannot be used in this case.

In the literature, there are several works comparing X-11 with other methods of seasonal

adjustment, especially with SEATS (Hood et al. 2000; Findley 2005; Tiller et al. 2007).

The results point to similar performance when the time series presents common seasonal

behaviour. However, in cases of data with moving seasonality, the X-11 method has some

drawbacks (Planas 1998; Kaiser and Maravall 2000; Maravall and Pérez 2011).

Nettheim (1965) listed strategies for dealing with moving seasonality. One of them is

a filter designed to have unit gain around each seasonal frequency and very small gain

elsewhere. As pointed out by the author, a drawback of such a method is that one should

determine in advance how wide the unit gain region should be. A way of circumventing this

problem is to use spectral estimation methods. Examples are the non-ad-hoc methods in

Melnick and Moussourakis (1974) and Geweke (1978). The ARIMA model-based

approach of SEATS (Gómez and Maravall 1996) is another attempt to treat moving

seasonality, but in some cases it is not trivial to find a good-fitting model with a valid

decomposition into components (Tiller et al. 2007). The Structural Models (STM)

(Koopman et al. 2000) can deal with moving seasonality via a sophisticated model-based

approach that requires expert operators. However, the simplicity of the seasonal adjustment

programs is sometimes preferred to seasonally adjusting a large number of series.

In this context, considering that the seasonal adjustment is largely used in the

production of official statistics, we propose a methodology to design seasonal filters to deal

with moving seasonality. The design of such filters, which we refer to as Seasonal-WLS

(S-WLS), is based on least squares criteria in the frequency domain. The design is inspired

by the requirements set forth in Nettheim (1965). We assess the performance of the

proposed S-WLS filters by running them on artificial data derived from the behaviour of

the real macroeconomic time series. Then, we compared its adjustment with the

adjustment of the X-11 method. We make this comparison because, besides the fact that

X-11 tends to misadjust series with highly moving seasonality, it is ad-hoc and has been

one of the most widely used seasonal adjustment methods.

This article is organised as follows. Section 2 briefly describes the theoretical

framework of the X-11 method, as well as the frequency domain representation of its

filters. Section 3 presents the proposed method to design the S-WLS filters for seasonal

adjustment, describing its structure and the parameters’ choice. Section 4 shows the results

of the application of the proposed S-WLS filters, comparing their performance with that of

X-11. Finally, Section 5 summarises and discusses the main findings. Appendix A presents
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the X-11 algorithm in the frequency domain, and Appendix B and C present, respectively,

the details about the selection of the filter parameters and about the signal-to-noise ratio

(SNR) computation.

2. The X-11 Method in the Frequency Domain

The X-13ARIMA-SEATS (X-13A-S) program contains the implemented X-11 seasonal

adjustment method. This method, as well as other programs of the ‘X-11 family’, consists

of a moving average procedure for seasonally adjusting series (it is fully explained in

Findley et al. 1998). The frequency domain properties of the X-11 method have been

discussed in the works of Wallis (1982), Bell and Monsell (1992), Dagum et al. (1996),

Gómez and Maravall (2001), Findley and Martin (2006) and others. Here, the X-11

procedure will be briefly discussed for the purpose of introducing its transfer function,

which will be instrumental in analysing the X-11 behaviour in the presence of moving

seasonality.

The seasonal adjustment filters of X-11 are available in X-13A-S (U.S. Census Bureau

2013), X-12-ARIMA (Findley et al. 1998) and X-11-ARIMA (Dagum 1980). In the

literature, the hybrid name ‘X-11/12-ARIMA filters’ was adopted to designate these filters

(Findley and Martin 2006). In this work, they will be referred to just as ‘X-11 filters’.

The step-by-step application of the X-11 method (default setting) can be summarised in

two stages, for seasonal factor and seasonal adjustment (Findley et al. 1998). In the default

procedure, it specifies a 3 £ 3 seasonal moving average (usually called ‘seasonal filter’),

M3 £ 3, for the initial seasonal factor estimates, and the 3 £ 5 seasonal filter (M3£5)

thereafter. It also prefilters the input series with a 2 £ 12 moving average, (M2£12). The

whole procedure is depicted in Figure 1, considering the additive decomposition of

monthly series, where: Y is the original time series; T is the trend estimate; SI is the

estimate of the seasonal-irregular; Ŝ is the preliminary seasonal factor; S is the seasonal

factor; A is the seasonally adjusted time series. The superscript(1) means the initial estimate

and the superscript(2) refers to the final one. H13 is the 13-term Henderson trend filter.

The coefficients of the seasonal filters present in X-11, as well as the 2 £ 12 moving

average, are listed in Tables 1 and 2.

i. T(1) = M2×12 (Y)
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ii. SI(1) = Y - T(1)

v. A(1) = Y - S(1)

iii. Ŝ(1) = M3×3 (SI
(1))

iv. S(1)=Ŝ(1) - M2×12 (Ŝ(1))

i. T = H13 (A
(1))

ii. SI(2) = Y - T

v. A(2) = Y - S(2)

iii. Ŝ(2) = M3×5 (SI
(2))

iv. S(2)=Ŝ(2) - M2×12 (Ŝ(2))

Fig. 1. X-11 default procedure for seasonal adjustment considering the additive decomposition of monthly

series.
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In the automatic selection procedure, the program may replace the 3 £ 5 seasonal

moving average filter in step (iii) of the ‘final estimates of seasonal factor’ in Figure 1,

by either a 3 £ 3 or a 3 £ 9 seasonal filter (Findley et al. 1998; U.S. Census Bureau

2013). Regarding the Henderson trend filter, the program selects a trend moving average

based on statistical characteristics of the data. For monthly data, either a 9-, 13-, or 23-term

Henderson trend filter can be selected by the automatic procedure.

The procedure used to compute the seasonally adjusted series (A(2)) described in Figure 1

can be expressed in the frequency domain by the following expression:

Að2Þ ¼ YðzÞ{1 2 M3£5ðz
12Þ½1 2 M2£12ðzÞ�½1 2 H13ðzÞ

£ {1 2 ½1 2 M2£12ðzÞ�
2M3£3ðz

12Þ}�}

ð1Þ

where the functions of z are the z-transforms of the corresponding filters. The coefficients

m(n) for each filter are listed in Tables 1 and 2. Detailed explanation about this expression

is given in Appendix A.

The expression in Equation (A.12) provides a useful way to evaluate the transfer

function of the various X-11 filters, both for the default and the optional choices in the

automatic procedure. Figure 2 shows the magnitude of the transfer functions of the X-11

for the three types of seasonal moving average, considering a 13-term Henderson filter and

monthly data.

Figure 2 illustrates the fact that the smaller the size of the seasonal filter, the wider its

passband width is, and the more suitable it is for treating moving seasonality data

(for more details, see Subsection 3.2). However, even the smallest seasonal filter in the

automatic option of the seasonal adjustment (3 £ 3) does not have a large enough

passband in order to deal with moving seasonality. The X-11 method also provides the

possibility of using a three-term moving average filter, although it is not available in the

automatic procedure; in addition, it produces a transfer function with a poor attenuation in

the stopband.

Table 1. Coefficients of the X-11 Seasonal Filters (m(n) ¼ m(2n)): m(n) are the coefficients of filter MPXQ(z)

(see Equation (A.1) in Appendix A).

Seasonal filters m(5) m(4) m(3) m(2) m(1) m(0)

3 £ 9 1/27 2/27 3/27 3/27 3/27 3/27
3 £ 5 1/15 2/15 3/15 3/15
3 £ 3 1/9 2/9 3/9

Table 2. Coefficients of the X-11 Moving Average Filter (m(n) ¼ m(2n)): m(n) are the coefficients of filter

MPXQ(z) (see Equation (A.1) in Appendix A).

Moving average m(6) m(5) m(4) m(3) m(2) m(1) m(0)

2 £ 12 1/24 1/12 1/12 1/12 1/12 1/12 1/12
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In this article we propose a design method that generate filters with bandwidths that are

large enough so that they can deal with the most common seasonality variations, without

compromising the filter attenuation outside the seasonal frequencies. The construction of

this filter will be presented in the next section.

3. The Proposed Seasonal Filter: a Frequency Domain Moving Seasonal

Filter to Deal With Moving Seasonality

To introduce the proposed seasonal filters, we assume that a monthly observable time

series at time t, Y(t), can be represented as follows:

YðtÞ ¼ TðtÞ þ SðtÞ þ IðtÞ; ðt ¼ 1; 2; : : :Þ ð2Þ

where Y(t) is the original time series, T(t), S(t), and I(t) are unobservable trend-cycle

(treated here as ‘trend’), seasonal and irregular components.

From a frequency domain point of view, a filter designed to extract the seasonality

should be able to isolate the movements in the series which occur in the seasonal

frequency and in its harmonics, usually called ‘seasonal frequencies’: (2p/12,

4p/12, : : : ,12p/12). However, when the series has moving seasonality, its spectral

mass is not restricted to the seasonal frequencies, but is spread around their

neighborhoods. Considering this, we want a filter with frequency response equal to one

in the bands around the seasonal frequencies (passbands) and zero in the remaining

frequencies (stopbands). This is one of the filters mentioned by (Nettheim 1965),

illustrated in Figure 3.

This filter has the objective of not disturbing the frequency components around the

harmonics of the seasonal frequency, and to this end its transfer function has a flat shape in

a neighbourhood of width D around these frequencies, as shown in Figure 3. This is

important in the case of moving seasonality. An example that illustrates this situation is

given by the following time series, composed by an irregular component and a seasonal
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Fig. 2. Magnitude of the transfer function of the X-11 for different seasonal filters: monthly series.
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component with nonstationary changes:

YðtÞ ¼
XP

i¼1

1þ b sin 2p
ðt 2 iQÞ

ki

� �� �
sin 2p

t

2

h i
þ IðtÞ ð3Þ

where b ¼ 0.9, Q ¼ 120, ki are samples from a random variable uniformly distributed in

the interval [70, 240] and I(t) is the irregular component, an independent zero-mean

Gaussian process.

The spectrum of this time series is shown in Figure 4. It is possible to note that the

seasonal component has significant energy over a bandwidth of approximately 0.03 around

the frequency 1/12 cycles/month. In order not to attenuate the frequency components that

deviate from the harmonic of the seasonal frequencies, the gain of the filter should be

constant for all the frequencies in the neighbourhood of the seasonal frequencies. This

block shape has been suggested by Nettheim (1965).
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Fig. 4. Spectral density of Y(t) by frequency.
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Fig. 3. Magnitude of the transfer function of the ideal filter.
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Such a filter can be designed to accommodate the different kinds of seasonality

variations. These can be seen as combinations of variations in the seasonal periods as well

as variations in the seasonal amplitude. We should take these into account when

computing the filter parameters. To this end, one can express a seasonal component with

frequency vs and moving seasonality as

sðtÞ ¼ ½1þ aðtÞ�hðtÞ; ð4Þ

where h is a periodic function with period (vs þ Dv) and Dv may vary with time t; a(t)

represents the seasonal amplitude variation.

Considering that the rate of variation of Dv is much smaller than the seasonal period,

h(t) can be expressed by a Fourier series as:

hðtÞ ¼
n

X
cne jn½vsþDvðtÞ�t ð5Þ

From Equation (4), the seasonal signal in the frequency domain can be written as:

SðvÞ ¼
n

X
2pcndðv 2 nvs 2 nDvÞ þ

n

X
2pcnAðv 2 nvs þ nDvÞ ð6Þ

where A(v) is the Fourier transform of a(t) and d(v) is the Dirac delta function.

Equation (6) is depicted in Figure 5, where the arrows indicate the Dirac delta functions

and the bell-shaped functions are repetitions of A(v) centred at the frequencies nvs þ

nDv. From this, since the bandwidth of a(t) is given by B, and considering that one has to

account for up to the nth harmonic component, the width D from each of the filter’s

passbands has to be larger than:

D ¼ 2max{nDvþ B;2nDvþ B} ¼ 2ðnjDvj þ BÞ ð7Þ

Therefore, to perform the seasonal adjustment it is necessary to determine the filter design

parameterD, that is, a function of the seasonal behaviour of the series. In practice, this can be

done, for example, by computing the series spectrogram in order to determinevs,Dv, and B.

Regarding what was discussed in this subsection, we propose a methodology to design

seasonal filters that are able to deal with moving seasonality, that is, with transfer functions

1

S(ω)

ωωs
ωs + Δω nωs + nΔω – B nωs + nΔω

nωs + nΔω + Bnωs

Δ/2 Δ/2 Δ/2 Δ/2

0
B B B B

Fig. 5. Magnitude of the ideal filter transfer function and spectrum of the seasonal signal from Equation (6).
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that approximates the one in Figure 3. We refer to them as S-WLS (Seasonal Weighted

Least Squares) filters. These filters are finite and symmetric, designed in the frequency

domain, and can be applied to a monthly seasonal time series, independent of its

distribution.

Applying the proposed S-WLS filters, the data will be seasonally adjusted by

eliminating the trend component and performing the seasonal extraction using a single

filtering operation. The following subsection presents the design of the S-WLS filters. The

theory used in this section is based on Diniz et al. (2010).

3.1. The Structure of the S-WLS Filters

First of all, to extract the seasonality, it is necessary to also eliminate the trend component

(Hassani 2007; Cleveland et al. 1990; Burman 1980).

With this purpose in mind, the z-transform of the filter frequency response should have

a term of the form (1 2 z21) jþ1, that accounts for eliminating a trend polynomial up to

order j.

Therefore, we can represent the S-WLS filters, to extract the seasonal component, by the

following z-transform:
PðzÞ ¼ ð1 2 z21Þ jþ1GðzÞ ð8Þ

where G(z) is defined as

GðzÞ ¼
XL2p21

t¼2p

gðtÞz2t: ð9Þ

In Equation (9), L is the number of degrees of freedom of the filter, given by the

coefficients g(t) [ R; the filter length is (L þ j þ 1); p gives a shift in the filter output, and

for a filter with zero delay, it should be equal to (L þ j þ 1)/2. The index t represents the

time period (t ¼ 1, 2, : : :).

The coefficients g(t) of G(z) must be optimised so that the frequency response of the

filter can approximate the desired frequency response D(v). In other words, G(z) is

adjusted so that the resulting filter can approximate the one from Nettheim (1965)

(illustrated in Figure 3) with bandwidths around the harmonics of the seasonal frequency

as flat as possible. Besides, to make the filter robust to variations in seasonality, these

coefficients must be optimised to consider the seasonal variation around the harmonics in a

frequency range corresponding to a percentage of the seasonal frequency. Moreover, it

must suppress as much of the irregular component as possible. Thus, in the S-WLS design,

the passbands have a desired frequency response (D(v)) equal to one and the stopbands

have a desired frequency response equal to zero.

In addition, in order to help in the optimisation process, we introduce ‘don’t care’ bands,

where the desired response is not specified, between each adjacent passband and stopband.

Their width is adjusted experimentally so that the obtained frequency response is as close

as possible to the desired one. These design parameters are illustrated in Figure 6, where Ns

indicates the assumed seasonal period, which is twelve for monthly data.

As can be observed in Figure 4, the filter is robust to seasonality variations up to a

fraction (a/2) of the assumed seasonal frequency.

Journal of Official Statistics162

Unauthenticated
Download Date | 2/28/17 11:04 AM



The filter coefficients are obtained by an optimisation process, which minimises the

Euclidean distance between the desired frequency response D(v) and the filter frequency

response P(eiv ).

Since the frequency response of the filter can be computed from its z-transform by

making z ¼ eiv (Diniz et al. 2010), we have that, from Equation (8), it becomes

Pðe ivÞ ¼ ð1 2 e2ivÞ jþ1Gðe ivÞ ð10Þ

¼ e
2i
�
v

2

�
ð jþ1Þ

2i sin
v

2

� 	jþ1

Gðe ivÞ : ð11Þ

Since G(z) can be written as

GðeivÞ ¼ e2ivð pÞETðvÞg ð12Þ

where EðvÞ¼ 1 e2iv : : : e2ivðL21Þ
h iT

and g¼ gð2pÞ gð2pþ1Þ : : : gðL2p21Þ
h iT

,

the filter frequency response becomes

Pðe ivÞ¼ e
2i
�
v

2

�
ð jþ1Þ2iv ð pÞ

2isin
v

2

� 	jþ1

ETðvÞg
ð13Þ

¼ sðv; j; pÞETðvÞg: ð14Þ

where sðv; j; pÞ¼ e2iv
jþ1

2

� �
þp


 �
2isinv

2

� � jþ1
.

In the optimisation process, we will discretise the frequency variable v in the

passband and in the stopband. Thus, it is relevant to consider the possibility that the errors

in the passbands and in the stopbands have different importance. To allow this in the

optimisation process, we assign a weight W(v) to each frequency. It establishes the

relative importance of the frequency response at each frequency v during the optimisation.

For example, if we assign a higher importance to the error in the passband, the transfer

function would tend to be like the one in Figure 7a. In contrast, if the importance of

attenuation in the stopband is much higher than the one in the passband, we would tend to

have the transfer function like the one in Figure 7b. As can be observed, the transfer

function may change considerably.
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Fig. 6. Magnitude of the transfer function of the proposed S-WLS filter.
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Formally, such frequency response weighting is equivalent to minimising the average of

the weighted squared error below:

jerðvÞj
2
¼ j½PðvÞ2 DðvÞ�WðvÞj

2
ð15Þ

where D(v) is the desired frequency response (see Figure 6).

In order to perform this minimisation we discretise v at the set of frequencies

(v1,v2, : : : ,vn). The number n of frequency samples is equal to 401N, where N is the filter

order. Therefore, each of the functions of v can be represented as a column vector

consisting of the samples of the function at the discrete set of frequencies. For example, we

represent P(v) as

P ¼ Pðv1Þ Pðv2Þ: : : PðvnÞ
h iT

: ð16Þ

Using this notation, Equation (14) is equivalent to:

P ¼ Ug ð17Þ

where P is defined in Equation (16) and the matrix U of dimensions n £ L is defined as

U ¼

ETðv1Þsðv1; j; pÞ

ETðv2Þsðv2; j; pÞ

: : :

ETðvnÞsðvn; j; pÞ

2

666664

3

777775
: ð18Þ

If the samples of error (v) and the desired frequency response D(v) are represented

analogously as column vectors, and we define

W ¼

w1ðv1Þ 0 0 0

0 w2ðv2Þ 0 0

..

. ..
. . .

. ..
.

0 0 : : : wnðvnÞ

2

6666664

3

7777775
; ð19Þ

1 2 3 4 5 6
0

0.5

1

1.5

Frequency (cycles per year)

G
ai
n 
m
ag
ni
tu
de

0 1 2 3 4 5 6
0

0.5

1

1.5

Frequency (cycles per year)

G
ai
n 
m
ag
ni
tu
de

(b)(a)

Fig. 7. Magnitude of the transfer function of the S-WLS filter when N ¼ 145, a ¼ 1/3, d ¼ 1/30 and (a) w0 ¼ 30.

(b) w0 ¼ 0.05.
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then, from Equation (17) to (19), Equation (15) can be expressed in matrix form as

er ¼W½P 2 D� ¼W½Ug 2 D�: ð20Þ

The sum of squared errors can be written as

kerk
2
2 ¼ ke

T
r erk ¼ ðUg 2 DÞ*TW*TWðUg 2 DÞ ð21Þ

which is minimized by the vector

g ¼ U*TW2
s Uþ UTW2

s U*
� �

21ðUT þ U*TÞW2
s D: ð22Þ

Convolving the vector g with the coefficients of the polynomial (1 2 z21) jþ1 (Equation

(8)), we obtain the vector with the S-WLS filter coefficients. The filtering operation is

accomplished by convolving the vector of the S-WLS coefficients with the time series.

The output of this operation is the extracted seasonal component. The adjusted series is

obtained by subtracting this result from the original series.

The S-WLS filters have five design parameters (see Figure 6):

(i) the parameter a is equivalent to the bandwidth around the seasonal frequencies,

being related to the seasonal stability (it depends on the data characteristics);

(ii) the parameter d is related to the width of the ‘don’t care’ band, helping in the

optimisation process;

(iii) the weight (w0) indicates the importance given to the error minimisation in the

passbands compared with the one in the stopbands – large values of weight (w0)

result in gain close to 1 around the seasonal frequencies, but the attenuation outside

the seasonal frequencies decreases;

(iv) the filter size N, representing the number of coefficients of the filter;

(v) the number of frequency samples used during the optimisation. In the filter

experiments we used 401N because it was shown to be enough to provide a good

approximation.

Considering a fixed value for the parameter N, and to a given a, different d and w0 lead

to considerable changes in the filter transfer function. Figures 8a to 8d show the transfer

function for some values of the parameters d and w0 for a ¼ 1/3 and N ¼ 169.

The designed filters should have as much attenuation as possible in the stopband and as

little ripple as possible in the passband. Analysing the transfer functions in Figures 8a and

8b, we can see that, for a given w0, a larger d (that is, a larger transition, or ‘don’t care’,

band), allows a smaller ripple in the passband, as well as a larger attenuation in the

stopband. On the other hand, more of the irregular component can leak through a larger

transition band, yielding a filter that tends to overadjust the seasonality. Consider now a

given d, the bigger the w0, the smaller the ripple in the passband (see Figures 8a, 8c,

Figure 8b and 8d), but the attenuation in the stopband gets worse.

Being aware that different values of the filter parameters result in distinct transfer

functions, it is important to have a methodology for choosing their values. In this work, we

adopted the strategy of analysing the performance of the filter when applied to artificial

series with behaviour similar to the one of real macroeconomic series. This issue will be

dealt with in the following subsection.
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3.2. The Choice of the S-WLS Filter Parameters

As mentioned at the end of last subsection, we choose the filter parameters by analysing

their performance when filtering simulated series. These artificial series should have

features similar to the ones of real macroeconomic series. Therefore, our first step was to

analyse real macroeconomic data, for the purpose of identifying the behaviour of their

moving seasonality. From 144 monthly macroeconomic time series analysed, 53% showed

changing seasonal behaviour, according to the F-test for moving seasonality implemented

in X-13A-S program, considering a p-value ,5%. Those series are listed in SMT-UFRJ

(2014), and were obtained from the OECD (2014), the U.S. Census Bureau (2014), the U.S.

Bureau of Labour Statistics (2014), the IPEA (2014), and the IBGE (2014).

An example of a time series with moving seasonality is the ‘USA Employment Level’

( p-value ,0.1%), from the U.S. Bureau of Labour Statistics (jan/93 to sep/2013). Its

seasonal component, adjusted using X-13A-S program, is shown in the plot in Figure 9.

As can be observed from Figure 9, this seasonal component changes its amplitude and

shape over the months, confirming the changing seasonality. In order to generate monthly

artificial seasonal components with similar behaviour, we used a sinusoidal series whose

amplitude is modulated by another sine wave, as follows:

SðtÞ ¼ A 1þ b sin 2p
t

k

� 	h i
cos 2p

t

12

� 	h i
ð23Þ

where: A is the seasonal amplitude (A [ R); b is related to the rate of change in the signal

amplitude (b [ (0,1)), k is related to the change in the seasonal pattern, and t is the time

index (t ¼ 1, 2, : : :).
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Fig. 8. Magnitude of the transfer function of the S-WLS filter when N ¼ 169, a ¼ 1/3 and (a) d ¼ 1/10 and

w0 ¼ 1. (b) d ¼ 1/100 and w0 ¼ 1. (c) d ¼ 1/10 and w0 ¼ 0.3. (d) d ¼ 1/100 and w0 ¼ 10.
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A seasonal component represented by Equation (23) is illustrated in the time and

frequency domains in Figures 10a and 10b. Its parameters are: A ¼ 1350, b ¼ 20% and

k ¼ 144. In Figure 10a it is possible to identify the amplitude change of the seasonal

component, and in Figure 10b we notice that the variations in seasonality appear as two

sinusoidal components distant ^2p/k rad/month from the seasonal frequency, that is

2p/12 rad/month. Note that the a parameter of the filter (see Figure 6) must be such that

it can properly deal with seasonal frequency variations, that is

a
2p

Ns

$
4p

k
ð24Þ

where Ns is the the seasonal period, that is twelve for monthly data and four for quarterly

data.

It is important to note that the parameter a of the filter gives an upper bound to the

maximum variation of the seasonal frequency that the filter is able to handle. However,

since the filter design method is deterministic, in a practical application one could perform

a spectral analysis of the time series prior to the seasonal adjustment in order to estimate
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the bandwidth of the seasonal variation. With this estimate, one could design a filter that

would have the a parameter large enough to handle the amount of seasonal variation

present in the time series.

An artificial seasonal signal such as the one in Equation (23) can be used to evaluate the

response of the filter for different levels of variation in seasonality, either in amplitude or

frequency.

To determine the appropriate a for the filter, we analysed the seasonal component of a

wide range of macroeconomic time series with moving seasonality. This analysis led us to

a ¼ 1/3 as a good compromise, that is appropriate for most of the analysed series (in time

domain, a ¼ 1/3 corresponds approximately to a range between ten and 14 months). Note

that, in order to accommodate as much variation on the seasonal component as possible, a

should be as large as possible. However, we cannot increase a too much, because the

larger the a, the larger the leak of the irregular component through the passbands around

the seasonal components, which increases the error in seasonality estimation.

After this, we found a good combination of the parameters d and w0, based on the

seasonal adjustment of artificial data containing moving seasonal behaviour (Equation

(23)), trend and irregular components with the same features of the real time series listed in

the webpage in SMT-UFRJ (2014). As observed in Figure 8, for a given a, we have to vary

d and w0 to find a good compromise between the attenuation in the stopband and the ripple

in the passband. In other words, these parameters are responsible, respectively, for the

error in the seasonality estimation for the noiseless case (no irregular component) and for

the error due to the irregular component, as discussed in Subsection 3.1.

The results showed that a good compromise for the parameters a, d and w0 is given by

a ¼ 1/3, d ¼ 1/30 and w0 ¼ 1. The complete methodology used to find the combination

of the filter parameters is exposed in Appendix B.

Regarding the choice of filter length, it is important to note that one of the aims of this

article is to compare the S-WLS filter performance with the one of X-11, considering the

filters in the automatic option. Therefore, we only compared the performances of S-WLS

and X-11 for the same filter lengths.

Figure 11 shows the transfer function of the S-WLS filter together with the one of the

X-11 filter of the same length (N ¼ 145). The dashed line represents the transfer function
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Fig. 11. Magnitude of the transfer function of the S-WLS filter and X-11 filter.
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of the X-11 filter, and the continuous line represents the transfer function of the proposed

S-WLS filter. As can be seen, the bandwidth of the proposed filter around the seasonal

frequencies is larger than the one of X-11, with just a moderate amount of ripple. This

allows estimating the seasonal component more accurately in the presence of instability

in the seasonal frequency. Yet, the attenuation at the stopband is equivalent to the one of

X-11, thus keeping the leaks of the irregular component at a level similar to the one of X-11.

It is important to highlight that, although in this article we determined the design

parameters based on the behaviour of a large amount of time series, this filter can be

designed according to the characteristics of a specific time series.

The MATLAB program used to implement the S-WLS filter is provided in SMT-UFRJ

(2014). In the next section we will present a summary of the experimental results obtained

with the S-WLS filter.

4. Results: the S-WLS Filter Performance

Since real time series have unobserved components, we decided to use artificial ones in

order to better assess the filter performance. This is so because all the parameters of an

artificial series are known and the estimation errors of the seasonal adjustment method

can be precisely computed.

The artificial time series used were generated with several degrees of moving

seasonality, considering some seasonal behaviours that, in aggregate, characterise the

variety of monthly macroeconomic series (see the data in SMT-UFRJ (2014)). Their

generation procedure is fully described in the next subsection.

To identify in which conditions of moving seasonality the proposed S-WLS filter

performs better than the X-11 method, we applied both S-WLS and X-11 filters to

seasonally adjust the mentioned series.

4.1. Data: Application on Artificial Time Series

To assess the ability of S-WLS filter to provide a satisfactory seasonal adjustment for

series with moving seasonality, as well as to determine the conditions in which this filter

performs better that X-11, we used monthly artificial time series with additive

decomposition. These series were divided into two sets: in the first set the series were

composed of a seasonal component with moving seasonality added to an irregular

component; in the second set of data, a trend component following a cubic polynomial

was added to these series, so that the performance of the proposed filters in the presence of

a trend component could be assessed. We have chosen an order three polynomial to allow

a fair comparison with the X-11 method. This is so because X-11 uses the Henderson

filters, which can handle polynomial trend up to order three.

The seasonal component was generated with three parameters (A, b, k) defined in

Equation (23). The choice of the parameters A, b, k, as well as the standard deviation of the

irregular (s), was based on the characteristics of real monthly series, as mentioned before.

As an example, in Figure 12a we show an artificial series with moving seasonality, where

we have a cubic polynomial trend component added to an irregular component with

parameters b ¼ 40%, k ¼ 120, and A/s ¼ 6 (Equation (23)). In Figure 12b we show this

series without the trend component, and Figure 12c shows just the seasonal component.

Martelotte et al.: Design of Seasonal Adjustment Filter 169

Unauthenticated
Download Date | 2/28/17 11:04 AM



In this analysis we used time series of size 400. It is important to note that it lies outside

the scope of this work to extend the series using forecast and backcast. We have done so to

avoid masking the differences among the analysed filters. Therefore, since the considered

filters (S-WLS and X-11) are symmetric, observations at both ends of the series had to be

discarded. It is also important to note that these series were generated without outliers or

missing values, so we could focus just on the filters, suitability to extract seasonality.

We generated 1,200 time series. Each simulation was replicated 100 times, randomising

the irregular component.

4.2. Criteria for Comparison

To assess the ability of S-WLS filter to provide a satisfactory seasonal adjustment for

series with moving seasonality, as well as to determine the conditions in which this filter

performs better that X-11, we compared the accuracy in seasonality estimation of both

filters when applied to the artificial time series. The procedure used in this performance

comparison is described by the following steps:

(1) initially, the artificial series were seasonally adjusted by X-11 method considering the

seasonal moving averages and Henderson trend filters in the automatic procedure of

X-13A-S program;

(2) the X-11 filter that showed the best SNR for the analysed series was chosen and the

filter length was determined;

(3) after determining the filter length, the proposed S-WLS filter with the same length

was applied to the data.
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The accuracy of each set of estimates (S-WLS and X-11) was measured by comparing

them to the known seasonal component underlying that series. For this we used the signal-

to-noise ratio (SNR – see details in Appendix C), the Mean Squared Error (MSE) and the

Mean Absolute Deviation (MAD). We define the mean of the MSE and the mean of the

MAD as the average of these statistics over 100 replications of the irregular. A one-sided

t-test was applied to the pairs of means of the MSE statistics obtained for S-WLS and X-11

filters, with the alternative hypothesis mS2WLS , mX211 (negative difference). The same

was done considering the MAD statistic.

4.3. Simulation Results

In order to evaluate the conditions under which the S-WLS filters have a better

performance than X-11, we considered different possibilities for the seasonal component.

These characteristics refer to the parameters b, k, and A (Equation (23)), which were taken

from macroeconomic series.

The parameter b is related to the rate of change in the seasonal amplitude, taking values

in the interval (0,1). In real data the maximum value found for b was 52%.

Table 3 shows a performance comparison for values of b from 10% to 80% considering

A/s ¼ 6 and k ¼ 120. Figure 13a illustrates the relation between the MSE of X-11 and of

the S-WLS filter.

As can be seen, the higher the b value, the better the MSE of the S-WLS filter is

compared to the one of X-11. Note that the MSE of the S-WLS filter does not change

substantially with the variation of b, while the MSE of X-11 significantly changes with b.

The same occurs with the MAD and SNR statistics. Table 3 shows that for smaller values

of b, the performance of X-11 tends to improve relative to the one of S-WLS. It is

important to note that the value of b from which S-WLS starts to perform better than X-11

depends on the values of k and A/s.

In order to evaluate the performance of the filters S-WLS and X-11 based on the

variation of k, we set b ¼ 40% and A/s ¼ 6. As the parameter k is related to the change in

the seasonal pattern, the smaller the k, the more unstable the seasonality. In these cases,

S-WLS tends to perform better than X-11. Table 4 shows numerical figures illustrating

this behaviour.

Figure 13b shows that when k decreases, the MSE of the S-WLS filter remains at the

same level, indicating robustness of this filter, while the MSE of X-11 increases.

Considering that the S-WLS filter uses the parameter a ¼ 1/3 (Subsection 3.2), the

minimum value for k that it is able to deal with is 72.

The ratio between the amplitude of the signal (A) and the standard deviation of the

irregular component (s) has a substantial influence on the MSE of the filters, as can be seen

in Figure 13c. In both filters (X-11 and S-WLS), the MSE drops as the ratio A/s increases,

but in the S-WLS this drop is more pronounced. Figure 13c and Table 5 also show that for

large values of A/s, the S-WLS outperforms the X-11 filter. In typical series, the minimum

value observed of A/s was 2.2 and the maximum was 11.7, and 50% of the monthly series

with additive decomposition showed A/s $ 6.

It is important to mention that for different values of k and b, the ratio A/s in which

the proposed filter outperforms X-11 changes. For k ¼ 120, the minimum A/s for which
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S-WLS overperforms X-11 is five; however, if b ¼ 40% and k ¼ 72, then A/s $ 3 is

enough for the S-WLS filter to perform better that X-11. The complete table with all the

possibilities is available in SMT-UFRJ (2014).

Another way to verify the adequacy of the seasonal adjustment filter is to analyse the

spectrum of the deseasonalised series. In Figures 14a and 14b we show the spectrum of

the series deseasonalised by S-WLS filter and by X-11, respectively. The parameters of the

series were the same as those used in the examples above: b ¼ 40%, k ¼ 120 and A/s ¼ 6.

In Figure 14a it is possible to note that there is a peak in the frequency 1/12 cycles/month,

indicating that some seasonality remains in the series after being deseasonalised by X-11,

while in Figure 14b there is no peak, meaning that the seasonality was removed after

applying the S-WLS filter to the data.

The performances of the S-WLS filter and the X-11 are analysed and compared for

artificial time series based on Equation (3), that simulates a seasonal component with

nonstationary changes. The results are presented in Table 6, showing the MSE and MAD

for all combinations of Henderson filter and seasonal moving average filters.

Analysing the results we note that the proposed method (S-WLS) is able to estimate this

kind of non-stationary seasonality better than X-11.

4.4. Data: Application on Real Time Series

In order to illustrate the S-WLS filter on a real-life time series, we applied it to the Austrian

Consumer Price Index (all items non-food non-energy). This monthly time series was

obtained from the OECD (http://stats.oecd.org/index.aspx?DatasetCode¼MEI, extracted

on April 2016), with a time span of 41 years (from jan/1975 to jan/2016). Besides this,
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we used X-11 (X-13A-S program) to seasonally adjust this time series. Then, we compared

the results.

Note that we do not perform series extrapolation at its extremes because the effects of

the asymmetrical weights could mask the differences that we want to analyse.

The seasonal component extracted by X-11 and S-WLS filters is shown in Figures 15a

and 15b, respectively.

We can see that by 1994 the seasonal component of S-WLS is higher than the one of

X-11, showing that it can capture more seasonality than X-11.

5. Concluding Remarks

In this article we have proposed a seasonal adjustment filter design methodology, in which

the main feature is to be robust to changes in the seasonal behaviour. This filter, named

S-WLS, was designed in the frequency domain, based on least squares criteria, allowing the

specification of an adequate passband width for filtering series with moving seasonality.

Several seasonal adjustment filters have been proposed in the literature. Our con-

tribution is in the fact that this robustness is achieved while preserving its automatic

character (so, it can be used to adjust a large amount of series). In addition, its parameters

were determined based on the seasonal behaviour of typical macroeconomic series.

Table 6. Comparison results of S-WLS and X-11 for different Henderson filters and seasonal moving average

filters.

MSE MAD

Henderson filter Seasonal MA S-WLS X-11 S-WLS X-11

9 3 £ 3 0.021 0.066 0.097 0.198
9 3 £ 5 0.019 0.090 0.091 0.230
9 3 £ 9 0.021 0.148 0.097 0.298
13 3 £ 3 0.019 0.063 0.092 0.193
13 3 £ 5 0.020 0.088 0.094 0.228
13 3 £ 9 0.020 0.149 0.096 0.299
23 3 £ 3 0.019 0.049 0.092 0.167
23 3 £ 5 0.020 0.080 0.094 0.213
23 3 £ 9 0.020 0.151 0.096 0.299
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Fig. 14. Spectrum of the deseasonalised series (a) by X-11. (b) by S-WLS.
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With the aim of assessing the performance of our filter, we compared it to the X-11

method, since this is an ad-hoc filter and has been widely used. In the comparisons we took

care to use the S-WLS filters with the same lengths of X-11 (considering the automatic

procedure in X-13A-S). These comparisons were performed both using time domain

characteristics, based on the statistics MSE and MAD, and frequency domain

characteristics, using the SNR and the inspection of the spectrum of the seasonally

adjusted series. In these comparisons, we used simulated monthly data with changing

seasonal patterns based on the ones of the typical macroeconomic series.

Due to space constraints, this study was limited to monthly additive series. Yet, we have

verified that our filter can be easily extended to quarterly data and other periodicities, and

it also performs well in multiplicative series.

The simulation results show that for series with a very slowly changing seasonal pattern,

our filter tends to overadjust the data in comparison to X-11. On the other hand, as the

degree of moving seasonality increases, X-11 tends to underadjust the series (i.e., not to

remove all the seasonality), while our filter shows a good performance. This occurs thanks

to the larger passband width of the S-WLS filter that allows robustness in cases of moving

seasonality, providing a better quality of adjustment than X-11.

Detailing these findings regarding the characteristics of the seasonal component, we

have that:

(i) if the amplitude of the seasonal component is large when compared to the standard

deviation of the irregular component, the proposed S-WLS filter performs better than

X-11;

(ii) the same occurs when the rate of change in the seasonality amplitude is large enough;

(iii) regarding the period of change in the seasonal pattern, the faster the changes in

seasonal pattern, the better is the performance of S-WLS.

In brief, we recommend the X-11 method – in X-13A-S – if the variations in

seasonality are sufficiently small. In cases of stronger variations, the proposed S-WLS

filter performs better. Interesting further investigation would be to extend the current work

for the case of multivariate series, such as is done in Infante et al. (2015) in the context of

testing common seasonal patterns.
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Fig. 15. Seasonal component of Austrian Consumer Price Index (all items non-food non-energy) (a) extracted

with X-11. (b) extracted with S-WLS.
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Appendix A. The X-11 Algorithm in the Frequency Domain

First of all, we define the P £ Q moving average in the frequency domain, using the

Z-transform, as follows:

MPXQðzÞ¼
z

�pþQ22

2

	

PQ

XP21

n¼0

ðnþ1Þz2nþ
XQ22

n¼P

Pz2nþ
XPþQ21

n¼Q21

ðPþQ212nÞz2n

" #
ðA:1Þ

The standard X-11 algorithm as shown in (Dagum 1988) and in (Findley et al. 1998) is

presented below. For this, we consider a monthly time series and additive decomposition:

yt ¼ tt þ st þ it, where yt is the original series, and tt, st, it are the non-observable

components of trend, seasonality and irregular, respectively. The filtering operations are

presented in the frequency domain, using the Z-transform.

Stage 1 Preliminary Estimates

The first estimate of the trend component is obtained by applying a ‘centered 12-term’

moving average M2X12(z), that is

T ð1ÞðzÞ ¼ YðzÞM2X12ðzÞ: ðA:2Þ

The first estimate of Seasonal and Irregular components (SI) is given by

SI ð1ÞðzÞ ¼ YðzÞ2 T ð1ÞðzÞ: ðA:3Þ

One obtains the preliminary estimate of the Seasonal Factor Ŝ (1)(z) by applying a

weighted five-term moving average (M3X3(z12)) to the SI component,

^
S
ð1Þ
ðzÞ ¼ SI ð1ÞðzÞM3X3ðz

12Þ: ðA:4Þ

Then, the initial Seasonal Factor (S (1)(z)) and the preliminary Seasonal Adjustment

(A(1)(z)) are obtained as

S ð1ÞðzÞ ¼
^
S
ð1Þ
ðzÞ2

^
S
ð1Þ
ðzÞM2X12ðzÞ ðA:5Þ

A ð1ÞðzÞ ¼ YðzÞ2 S ð1ÞðzÞ: ðA:6Þ

Stage 2 Seasonal Factors and Seasonal Adjustment

We then perform the intermediate trend estimate by applying the ‘13’-term Henderson

filter (H13(z)) to the seasonally adjusted series, from Equation (A.6),

T ð2ÞðzÞ ¼ A ð1ÞðzÞH13ðzÞ: ðA:7Þ
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The second estimate of the SI component is then given by

SI ð2ÞðzÞ ¼ YðzÞ2 T ð2ÞðzÞ: ðA:8Þ

We then obtain the second estimate of the Seasonal Factor via a seven-term moving

average (‘3 £ 5’ seasonal moving average):

^
Sð2ÞðzÞ ¼ SI ð2ÞðzÞM3X5ðz

12Þ ðA:9Þ

from which the Seasonal Factor (S (2)(z)) and the Seasonally Adjusted series (A(2)(z)) are

obtained as

S ð2ÞðzÞ ¼
^
S ð2ÞðzÞ2

^
S ð2ÞðzÞM2X12ðzÞ ðA:10Þ

A ð2ÞðzÞ ¼ YðzÞ2 S ð2ÞðzÞ: ðA:11Þ

As the operations presented in Stages 1 and 2 are linear, it is possible to represent them

as an equivalent filter of X-11 method for the seasonal adjustment. This filter, from

Equations (A.2) to (A.11), is

A ð2Þ ¼ YðzÞ{1 2 M3£5ðz
12Þ½1 2 M2£12ðzÞ�½1 2 H13ðzÞ

£ {1 2 ½1 2 M2£12ðzÞ�
2M3£3ðz

12Þ}�}:
ðA:12Þ

Appendix B. The Procedure for Selecting the Values of the S-WLS Filter

Parameters

The procedure for selecting the values of the S-WLS filter parameters is summarised in the

following steps below. For further details, the reader is referred to SMT-UFRJ (2014):

B.1. Experimental Determination of the Values For A, b, k (see Equation (23)), and the

Standard Deviation (s) of the Irregular Component

For each real time series, we used the X-13A-S program (considering the X-11 adjustment

mode) to estimate the seasonal component. The behaviour of the seasonal components

of these real time series with moving seasonality was individually analysed. The

specification of the value of a was based on the values of k, using the relation in Equation

(24) exemplified by Figure (10).

B.2. Choosing the Filter Length

The X-11 filter that best fitted the data was chosen based on the theoretical evaluation

of the SNR, for all the combinations of seasonal moving average filters and Henderson

filters in the automatic mode of X-11. For this we used the values of A, b, k and s from step

A.1 to build artificial seasonal signals and irregular components. Then we searched for the

best X-11 filter for a given combination of these parameters, based on the X-11 SNR

(Equation (C.9)).
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B.3. Searching for the S-WLS Parameters

Based on the filter length defined in Subsection 2, we searched for the combination of d

and w0 with largest ratio between the SNRs of S-WLS and X-11 (see Equations (C.8) and

(C.9)). At this stage, we restricted the choice of the lengths of the S-WLS filter to the

possible lengths of the X-11 filter. The parameter a was fixed at 1/3, while d and w0 values

were varied over a wide range. Then, for several combinations of A, k, b (Equation (23))

and s, we chose the S-WLS filters that were, in general, based on SNR better than X-11.

Since there is no single set of parameters that best fits the data, we worked with the top

eight combinations.

B.4. Determination of the Best Parameters for a Wide Range of the Parameter k

At this stage we performed a simulation by filtering time series with moving seasonality,

cubic trend component, and irregular component following a N(0,s 2). In it, 100 replications

of the irregular component were generated for each series. The artificial seasonal

components were created considering 100 values of k (Equation (23)), drawn randomly

from a set of possible values based on the seasonal behaviour of macroeconomic data.

To search for the S-WLS parameters, we first chose the X-11 filter that had the lowest

MSE for the estimation of the seasonal component of each replication of the series. Setting

the same length of the S-WLS filter as the one of X-11, we searched for the parameters d

and w0 that provided good MSE figures.

The S-WLS parameter combination that obtained, in general, the lowest MSE compared

to the MSE of the X-11, was identified as a ¼ 1/3, d ¼ 1/30 and w0 ¼ 1.

Appendix C. X-11 and S-WLS SNRs

When we filter a time series to extract its irregular component, according to the model in

Equation (2), the errors at its output may have three main causes:

(i) residuals of the trend component;

(ii) irregular component at the output of the filter;

(iii) errors caused by the seasonal component.

In our case, the errors in (i) are automatically eliminated by the filter’s structure

(Equation (8)). In Sections B.1 and B.2, we deal with the errors in (ii) and (iii),

respectively.

C.1. Variance of the Irregular at the Output of the Filter (Noise Power)

When a stochastic process x(t) with power spectral density SX(eiv) is input to a filter with

transfer function H (eiv), the power spectral density of its output y(t) is SX(v)jH (eiv)j2

(Diniz et al. 2010). Since an uncorrelated irregular component with variance, or noise

power, s 2
X has a power spectral density equal to s2

X , then the power spectral density of its

output y(t) is

SY ðe
ivÞ ¼ s2

XjH ðe
ivÞj

2
: ðC:1Þ
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Therefore, the variance of the irregular component, or noise power, of the output of the

filter is

s 2
Y ¼

ðp

2p

SY ðe
ivÞdv ¼

ðp

2p

s2
XjH ðe

ivÞj
2
dv ¼ s2

X

X1

t¼21

jhðtÞj
2
: ðC:2Þ

where the rightmost equality comes from Parseval’s theorem (Diniz et al. 2010), with h(t)

being the filter coefficients. In other words, in the case of an uncorrelated irregular

component, the noise power of the irregular at the output of a filter is proportional to the

sum of the squares of its coefficients.

C.2. Errors Caused by the Seasonal Component

(a) The case of the S-WLS filter

Consider Figure C.16, which illustrates a typical frequency response of the S-WLS

filter at the passband (see also Figures 8a to 8d in Subsection 3.1). There, we highlight

two important deviations from the desired unit gain in the passband. The first one is

given by g0, which is the gain at the fundamental frequency. The second one gives the

maximum deviation from the desired response at the passband. Since the desired

response is 1, and the corresponding gain is g1, the maximum deviation is given by

j1 2 g1j.

For an input time series according to Equation (23), since it is composed of

sinusoidal components, the contribution of the above deviations to the noise power is,

1
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2π
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α

(γ0)0.8
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Fig. C.16. Deviations from the desired passband gain for the S-WLS filter.
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in the worst case,

e1 ¼ ð1 2 g0Þ
2 A2

2
þ ð1 2 g1Þ

2 A2b2

4
: ðC:3Þ

where A is the seasonal amplitude (A [ R), b is related to the rate of change in the

seasonal amplitude (b [ (0,1)), k is related to the change in the seasonal pattern, and

t is the time index (t ¼ 1, 2, : : :).

(b) The case of the X-11 filter

As can be seen from the frequency responses of the X-11 filter in Figure 11,

Subsection 3.2, the typical frequency response of the X-11 filter always has a peak at

the seasonal frequency (1/12 cycles per month, for monthly series, and 1/4 cycles per

quarter, for quarterly series). As you move away from the peak, the response

decreases monotonically. Therefore, the two largest deviations from the ideal unit

gain in the passband are given by the two frequencies at the edges of the passband, as

illustrated in Figure C.17, in which the response function differs from the ‘ideal’ by

(1 2 b1) and (1 2 b2). There, the dashed line represents the spectrum of the X-11

equivalent filter, and the continuous line represents the magnitude of the ideal

frequency response for an allowed seasonal frequency variation of a(2p/Ns) around

the nominal frequency (in this case, 2p/Ns or its harmonics).

Using an argument equivalent to the one that led to Equation (C.3), the

contribution of the above deviations to the noise power is, for the X-11 filter,

e2 ¼
A2b2

4

½ð1 2 b1Þ
2 þ ð1 2 b2Þ

2�

2
ðC:4Þ

(c) Computation of the SNR of the S-WLS and X-11 filters

Therefore, if we refer to the sum of the squares of the coefficients of the S-WLS filter

as SQ and to the one of the X-11 as S, then we have, from Equations (C.3) and (C.4),
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Fig. C.17. Deviations from the desired passband gain for the X-11 filter.
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that the total noise power at the output of S-WLS and X-11 filters is given by:

eS2WLS ¼ ð1 2 g0Þ
2 A2

2
þ ð1 2 g1Þ

2 A2b2

4
þ SQs2 ðC:5Þ

eX211 ¼
A2b2

8
½ð1 2 b1Þ

2 þ ð1 2 b2Þ
2� þ Ss2: ðC:6Þ

Since the seasonal signal in Equation (23) is composed of three sinusoids, its average

squared value is given by

Es ¼ A2 1

2
þ

A2b2

4

1

2
þ

A2b2

4

1

2
¼

A2

2
1þ

b2

2

� �
: ðC:7Þ

Therefore, from Equation (C.5) to (C.7), we have that the SNRs of the S-WLS and X-11

filters are:

SNRS2WLS ¼

A2

2
1þ

b2

2

� �

ð1 2 g0Þ
2 A2

2
þ ð1 2 g1Þ

2 A2b2

4
þ SQs2

ðC:8Þ

SNRX211 ¼

A2

2
1þ

b2

2

� �

A2b2

8
½ð1 2 b1Þ

2 þ ð1 2 b2Þ
2� þ Ss2

: ðC:9Þ
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IPEA - Instituto de Pesquisa Econômica Aplicada. 2014. Available at: http://www.

ipeadata.gov.br (accessed June 2014).

Kaiser, R. and A. Maravall. 2000. An Application of Tramo-Seats: Changes in Seasonality

and Current Trend-Cycle Assessment: the German Retail Trade Turnover Series.

UC3M Working papers. Statistics and Econometrics 00-63, no. 29. Available at: https://

core.ac.uk/download/pdf/30043292.pdf (accessed September 2015).

Koopman, S.J., A.C. Harvey, J.A. Doornik, and N. Shephard. 2000. STAMP 6.0: Structural

Time Series Analyser, Modeller and Predictor. London: Timberlake Consultants.

Kuznets, S. 1932. “Seasonal Pattern and Seasonal Amplitude: Measurement of Their

Short-Time Variations.” Journal of the American Statistical Association 27: 9–20.

Doi: http://dx.doi.org/10.2307/2277876.
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Bridging a Survey Redesign Using Multiple Imputation:
An Application to the 2014 CPS ASEC

Jonathan Rothbaum1

The Current Population Survey Annual Social and Economic Supplement (CPS ASEC) serves
as the data source for official income, poverty, and inequality statistics in the United States. In
2014, the CPS ASEC questionnaire was redesigned to improve data quality and to reduce
misreporting, item nonresponse, and errors resulting from respondent fatigue. The sample was
split into two groups, with nearly 70% receiving the traditional instrument and 30% receiving
the redesigned instrument. Due to the relatively small redesign sample, analyses of changes in
income and poverty between this and future years may lack sufficient power, especially for
subgroups. The traditional sample is treated as if the responses were missing for income
sources targeted by the redesign, and multiple imputation is used to generate plausible
responses. A flexible imputation technique is used to place individuals into strata along two
dimensions: 1) their probability of income recipiency and 2) their expected income
conditional on recipiency for each income source. By matching on these two dimensions, this
approach combines the ideas of propensity score matching and predictive means matching. In
this article, this approach is implemented, the matching models are evaluated using
diagnostics, and the results are analyzed.

Key words: Multiple imputation; survey redesign; bridge; CPS ASEC.

1. Introduction

The Current Population Survey Annual Social and Economic Supplement (CPS ASEC) is

among the most widely used surveys conducted by the U.S. Census Bureau. CPS ASEC

data are used to calculate measurements of national income and the official poverty rate.

Rothbaum (2015) shows that the CPS ASEC suffers from underreporting of certain

income types, including property income (especially interest and dividends), retirement

income, and income from means-tested government transfer programs. Meyer et al. (2009)

also show underreporting of participation in means-tested government programs.

To address this underreporting, the U.S. Census Bureau, in consultation with the private

sector, implemented a redesign of the survey (see Czajka and Denmead (2008) and Hicks

and Kerwin (2011) for results of that consultation). In 2014, approximately 30% of the

CPS ASEC sample received the redesigned survey instrument, and approximately 70%
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received the unchanged traditional instrument (in use since 1994). Assignment into the

two groups was random at the household level. For more details about the redesign and the

content tests, see Semega and Welniak (2013, 2015).

A major focus of the redesign was to improve reporting of property income, especially

income earned from assets in the form of interest or dividends. In addition, since 1980, the

nature of retirement savings has shifted from defined benefit to defined contribution plans.

From 1980 to 2008, the share of private wage and salary workers with defined benefit plans

fell from 38% to 20%. The share of private workers with defined contribution plans grew

from eight percent to 31% over the same period (Butrica et al. 2009). Therefore, the survey

was redesigned to improve reporting of retirement income, which has also historically

been underreported (Czajka and Denmead 2008).

The redesigned instrument is being used for the full sample, starting with the 2015 CPS

ASEC. However, in order to make apples-to-apples comparisons between the results in

2014 and 2015 and beyond, only 30% of the 2014 sample can be used. This significantly

reduces the power of the comparisons that can be made, for example of median income or

poverty rates, and is especially relevant for subgroups.

While the survey redesign significantly increased recipiency and aggregates for many

income types, the majority of income (by US dollars) was not affected. For example,

earnings comprised 75.9% of all income in the redesign sample, and there were no

statistically significant differences in the number of earners or mean earnings across

the two instruments. Although we do not observe what respondents to the traditional

instrument would have said to the redesigned questions, we do have a considerable amount

of information about them that is unaffected by the redesign.

This suggests treating the problem as one of missing data – as if the recipients of the

traditional instrument did not respond to the redesigned income questions. The “missing”

responses to the redesigned questions are multiply imputed for individuals in the traditional

sample. This article adds to the literature using multiple imputation to bridge a survey or

data classification change. Clogg et al. (1991) used multiple imputation to impute industry

and occupation codes across a change in the coding scheme between 1970 and 1980 census

data. Schenker and Parker (2003) imputed single-race reporting for multiple-race

respondents after a change from single- to multi-race reporting in government survey data.

An approach developed by Bondarenko and Raghunathan (2007) is applied to impute

these missing responses in the traditional sample. This approach combines the ideas

of propensity score matching and predictive means matching. By matching donors to

recipients within propensity score/predictive mean cells, this approach is similar to the hot

deck procedure used in normal CPS ASEC processing. That makes it appealing for use

in this case, as the completed data from the 2014 CPS ASEC can be used to make

comparisons with data in subsequent years where all imputation of missing values is done

using the hot deck.

The Bondarenko and Raghunathan technique is used to create an “Income-Consistent” full

file that uses all of the CPS ASEC sample with imputed income in the affected categories for

respondents to the traditional instrument. It is called the Income-Consistent file, as the res-

ponses for all individuals are consistent with the questions in the redesign survey instrument.

The article is organized as follows. In Section 2, the CPS ASEC and the survey redesign

are described. Section 3 discusses the imputation methodology. Section 4 discusses
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diagnostic results to evaluate the models used. Section 5 contains results relating to

income and poverty, measurement using the imputed data. Section 6 contains a

conclusion.

2. Data and Survey Redesign

The CPS ASEC is among the most widely used surveys conducted by the U.S. Census

Bureau. The CPS ASEC uses a stratified random sample to survey about 100,000

households each year and includes questions on income and health insurance coverage.

The 2014 survey redesign included a number of changes. First, the survey was

redesigned to specifically ask if anyone in the household has a pension, and separately

if anyone has a retirement account (401(k), 403(b), IRA, or other account designed

specifically for retirement savings). The traditional instrument includes one broad question

on the receipt of pension and retirement income. The redesigned instrument also asks

individuals over 70 years old about required distributions from retirement accounts. To

ensure that the distribution is correctly identified as income, a follow-up question asks

if the required distribution was “rolled over” or reinvested in another account. The

traditional ASEC instrument makes no distinction between investment income received

in retirement accounts or separately from them. This more detailed set of questions can

improve misreporting of income and cue respondents to decrease underreporting.

Several additional changes were also made to the survey. Prior to the redesign, only

households that reported less than USD 75,000 in combined family income were asked

questions about means-tested transfer programs such as Temporary Assistance to Needy

Families (TANF). Semega and Welniak (2015) cite evidence from the American

Community Survey (ACS) that some screened households were likely to be recipients of

these transfers making it inappropriate to remove them using the income screener. To

prevent respondent fatigue from affecting answers to the income recipiency questions, the

recipiency questions were separated from the amount questions as part of a “dual-pass”

approach. Respondents were asked first about all sources of income received and then later

were asked about amounts for only the received sources. In addition, the order of the

income questions was changed based on respondent characteristics to match those

sources most likely to be received. If a respondent was unsure of the income generated

from assets, the value of the assets was collected. The questions on disability were clarified

to eliminate confusion between disability income from Social Security and Supplemental

Security Income (SSI).

2.1. Results of the Redesign

In 2014, the CPS ASEC sample was randomly divided into two groups at the household

level, with 31% (30,000 housing units) receiving the redesigned instrument and about 69%

(68,000 housing units) receiving the traditional instrument. Within each sample,

individual observations were weighted to national population controls, as is standard with

the CPS ASEC. Both surveys were conducted primarily by home visit (with some by

phone) by trained field representatives. Even the interviewer was not aware of the

selection of a given household into the traditional or redesign sample until they began

the survey.
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Semega and Welniak (2015) compared income aggregates between the two samples.

Table 1 shows a subset of their results for median income, updated to reflect recent edits of

the redesign sample file. Household median income was USD 51,939 in the traditional

sample and USD 53,585 in the redesign, a difference of 3.2%. When decomposed by race,

the only statistically significant differences are for whites (and non-Hispanic whites).

Table 2 shows income statistics for total income and various income sources collected

in the CPS ASEC. For each source, Semega and Welniak report the number of recipients in

the population, the mean income earned by those recipients, and the aggregate value of

that income estimated, using the traditional and redesign samples separately. For example,

for total income, the number of income recipients estimated using the traditional sample is

218.7 million compared with 222.0 from the redesigned sample, a statistically significant

difference of 1.5%. The estimated difference in mean total income is 2.6% (USD 41,319 in

the traditional vs. USD 42,394 in the redesign), and the estimated difference in aggregate

total income is 4.2% (USD 9.04 trillion in the traditional compared with USD 9.41 trillion

in the redesign), both statistically significant. At the 90% confidence level, there are a

number of income sources that have statistically significant differences in the number of

recipients, mean income, or aggregate income. The sources with statistically significant

differences in aggregate income include farm self-employment income (242.1%), public

assistance (28.8%), veterans’ benefits (223.1%), disability benefits (36.4%), retirement

income (21.9%), interest (113.0%), and dividends (220.1%).

Mitchell and Renwick (2015) study the effects of the redesign on poverty rates. While they

find no statistically significant difference in the overall poverty rate, they do find differences

for child and elderly poverty in the redesigned sample. In both cases, they suggest that

differences in the sample populations may explain the increase in poverty in the redesigned

sample. For child poverty, they show that the redesigned sample has a higher share of children

living with female householders than the traditional sample (single-mother families). They

also find that means-tested program recipiency was higher in the redesigned sample.

These potential differences in sample characteristics support the approach taken in this

article. Because the changes in the questionnaire are treated as a problem of missing

information, any differences in the samples can be controlled for as a part of the imputation

modeling, and the combined sample should better reflect the intended full CPS ASEC

sample.

2.2. Selection of Income Sources to be Imputed

Taking these analyses together, the redesign increased aggregate income, increased

income recipiency and reporting in a number of income categories. However, some of the

differences, especially in income types with no or little change in the questionnaire, may

be due to random variation or differences in the samples. This is supported by differences

in poverty that Mitchell and Renwick attribute to sample differences.

Because of this evidence of sample differences, the analysis focuses on those income

types which were targeted by the questionnaire redesign. This eliminates farm self-

employment, and veterans’ benefits.

The income types that are sufficiently different between the two surveys and were

specifically targeted by the questionnaire redesign include: 1) retirement income,
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2) interest, and 3) dividends. These three sources had the largest difference in estimated

aggregate income of the types affected by the redesign. Fig. 1 shows changes in aggregate

income for all income sources with a statistically significant difference in aggregate

income between the traditional and redesign samples. For interest income, the number of

recipients increased by 37.6 million and aggregate income increased by USD 206.3

billion. For retirement income, the number of recipients increased by 1.8 million and

aggregate income increased by USD 82.7 billion. For dividend income, the number of

recipients decreased by 1.4 million and aggregate income decreased by USD 29.6 billion.

3. Imputation Methodology

3.1. Hot Deck Imputation

As a part of the standard processing of the CPS ASEC, when an individual does not

respond to a particular question, missing values are imputed using a hot deck procedure.

In the hot deck, individuals are divided into cells based on the characteristics specified

in the hot deck model. Within each cell, individuals without missing information (donors)

are randomly selected and their income is assigned to the individuals with missing

information (recipients). Donors and recipients in each cell must match on every variable

in the hot deck model. If there are no donors in a given recipient’s cell, the hot deck model

is amended to reduce the number of categories for some variables (for example from nine

age groupings to six) and to reduce the number of variables in the model.

The different hot deck models used in the CPS ASEC are called match levels. The first

match level includes the largest number of variables and categories within each variable. If

no matches are found at the first level, an attempt to match recipients and donors is made

using the model at the second match level. This continues until a match level is reached for

a given recipient in which at least one donor is present in the same cell. For missing

earnings in the longest job, at the first match level there are 16 variables in the model and

621 billion possible cells; at the second match level there are 14 variables and 17 billion

29%
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Fig. 1. Aggregate income differences between the traditional and redesign samples. Source: U.S. Census

Bureau, Current Population Survey, 2014 Annual Social and Economic Supplement.
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possible cells; at the third match level there are eleven variables and 3.8 million possible

cells, and by the sixth match level there are four variables and 96 possible cells. In the

traditional sample for those observations missing earnings from the longest job only, 4.4%

matched at the first level, 13.0% matched at the second level, 51.5% matched at the third

level, and 6.4% matched at the sixth level. The variables and number of categories at each

match level are available in Supplemental data online (URL: http://dx.doi.org/10.1515/

JOS-2017-0010), Table 1.

As these numbers make clear, the number of variables that can be included in a hot deck

model is limited by the size of the sample. While this is clearly a constraint even in the full

CPS ASEC sample of about 200,000 individuals, the constraint is even more binding when

imputing income from the redesign sample of about 60,000 individuals. If retirement, interest,

and dividend income in the traditional sample were imputed using the hot deck model, it

would not be possible to incorporate many variables in the model that are potentially

correlated with each income type. This would limit the ability of the imputation to accurately

match similar individuals as donors and recipients and reduce the quality of the matches.

3.2. Model-Based Matching Imputation

Instead, a more flexible technique is implemented to impute the missing responses to the

redesigned questions in the traditional sample for the research file. The approach,

developed by Bondarenko and Raghunathan (2007), hereafter BR, matches donors and

recipients using summaries of covariates estimated by logistic and ordinary least squares

regression modelling.

The primary reason the BR approach was chosen in this research is its similarity to the

hot deck model. As in the hot deck model, individuals are matched based on similarities

in observable characteristics. In the hot deck model, matching is directly based on the

characteristics. In the BR approach, the matching is based on the predicted probability of

recipiency and expected income conditional on recipiency, both of which can be estimated

from observable characteristics. This is advantageous, as the imputed data must be

comparable to data from subsequent years where all missing data are imputed using the hot

deck model. However, by efficiently summarizing the model covariates in two statistics,

recipiency and expected income, the BR approach allows for the inclusion of many more

variables in the imputation model.

Next, the BR method is described, with slight modification for this application. Suppose

that the dataset has P variables of observable characteristics, Xp, p ¼ 1, 2, : : : , P and

X ¼ (X1, : : : , XP) and Q income types where Yq, q ¼ 1, 2, : : : ,Q, represents the income

value and Rq represents recipiency status (Rq [ {0; 1}). There are two groups in the

sample, one for which the income types q are observed (group O) and one for which

income types q are unobserved (group M) so that each vector can be partitioned among O

and M as Xp ¼ XO
p ;X

M
p

� �
, Yq ¼ YO

q ; Y
M
q

� �
, and Rq ¼ RO

q ;R
M
q

� �
. Because missingness is

complete for all YM
q , income can be imputed sequentially without iteration. Therefore, ,q

is defined as the set of incomes with indices less than q so that Y,q ¼ Y1; : : : ; Yq21

� �
and

R,q ¼ R1; : : : ;Rq21

� �
and Y,1 and R,1 are empty sets. Two efficient summaries are

constructed of the income variables through two regression predictions:
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1. Probability of recipiency: R̂q ¼ Pr Rq ¼ 1jY,q;R,q;X
� �

estimated using a logistic

regression model. This is an efficient summary of Rq that can be used to balance

income recipients and nonrecipients.

2. R̂q is stratified into K equal size strata, where k ¼ 1, : : : , K.

3. Predicted value of income conditional on recipiency within each stratum k: Ŷq ¼

E YqjRq ¼ 1; Y,q;R,q;X
� �

is estimated using an OLS regression model on all

individuals in stratum k. Then, individuals are subdivided in stratum k into J equal

sized substrata, where j ¼ 1; : : : ; J. This creates K £ J equal size strata.

Within each stratum k, j there are n individuals with observed income and recipiency, and

m individuals with missing income and recipiency for income type q. A sample size m is

drawn from the observed set of n individuals as the imputed values by Approximate

Bayesian Bootstrap (ABB). This step is repeated for each stratum k, j and income type q

and then sequentially for all q ¼ 1, : : : , Q. This entire process is repeated independently

to obtain multiple imputations.

This approach relies on the same assumption that underlies matching models (see, for

example, Rosenbaum and Rubin 1983). The traditional sample is M in this exercise, as the

responses to the redesigned questions are missing for all individuals in the traditional

sample. The redesign sample is O as the responses are observed. For this approach to be

valid, it must be assumed that inclusion in the traditional sample can be controlled for by

the variables in the imputation model (unconfoundedness). Specifically, given the

probability of missingness P(M), it is assumed that P MjX; YM
q ; Y

O
q

� �
¼ PðMjXÞ where X

can be summarized by R̂q and Ŷq. Although the random selection into the redesign sample

implies missingness should be completely at random (MCAR), Mitchell and Renwick

(2015) suggest that sample differences do exist on observable characteristics. Therefore,

it is conservatively only assumed that the responses are missing at random (MAR).

There are a number of challenges to implementing BR method in the CPS ASEC. First,

many income types do not follow a normal distribution or any simple transformation of a

normal distribution. Because the missing income sources are modeled with continuous

covariates, some distributional assumptions must be made about the relationships between

them. Second, predictors (X) must be selected for the modelling of each income variable

from a very large set of possible covariates (.1,200) in the CPS ASEC.

As shown in Hokayem et al. (2015), the distribution of income is rarely normally

distributed. Simple transformation (such as log) and more flexible ones such as Tukey’s gh

distribution (He and Raghunathan 2006) also can fail to convert the distribution to normal.

Therefore, an empirical normal transformation proposed by Woodcock and Benedetto

(2009) is used to convert all income values to normal distributions (this includes income

and other continuous variables in X as well) prior to imputation.

The most significant challenge to applying the BR method to the CPS ASEC was to

select the models for each imputed variable. In order to avoid omitted variable bias in the

imputation model, as many potential predictors as possible should be included. However,

if too many variables are included, overfitting the model is a risk. The list of potential

predictors used includes all unchanged income information (imputation flag, recipiency,

value), spouse/partner earnings, race (separate dummy for each), gender, age (including

dummies for each age between 62 and 70), weeks worked last year, hours worked per
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week, as well as the hot deck categories for relationship to householder, education level,

marital status, presence of children, occupation (22 categories), type of residence, Census

region, recipiency of means-tested government transfers. A large set of interaction terms

are included in the list of predictors, including for major income types (earnings, spouse

earnings, etc.), education, weeks and hours worked, race and age, and means-tested

transfers. In all, over 1,200 potential predictors and interaction terms can be included in

the BR models. A list of the modelling variables is available in Supplemental data, Table 2

(URL: http://dx.doi.org/10.1515/JOS-2017-0010).

The parameters of two models are estimated: (1) Rq ¼ FðXqbR þ vqÞ using logistic

regression and (2) Yq ¼ XqbY þ eq by OLS. However, with more than 1,000 possible

covariates, all possible covariates cannot be included in X and some values in b must be set

to 0 in each regression.

Stepwise model selection is used to determine which values in b in each regression to

set to 0. It was chosen as a pragmatic tool to efficiently capture the correlations between

covariates Xq and dependent variables Rq and Yq. However, there is uncertainty about

which are the correct items in each b that should be set to zero which must be accounted

for in order for the imputation to be proper. If the model variables were known with

certainty (known nonzero items in b), after regressing Y on Xb parameter uncertainty

could be accounted for using the variance-covariance matrix of b. However, in this case,

both parameter and model uncertainty are present. In order to approximate both sources of

uncertainty and have proper imputation variance estimates, for each income type, all

regressions for each income type q are run on an approximate Bayes Bootstrap (ABB)

sample.

In summary, the imputation steps to create the Income-Consistent file are:

1. Normal transformation – transform all income value variables to normal distribution

with empirical normal transformation.

2. BR Imputation – sequentially impute interest, dividends, and retirement income

from the redesign (donors/observed) to the traditional sample (recipients/missing).

For each income type:

a. Select a random sample by ABB.

b. Predict probability of income recipiency using logistic regression on the redesign

ABB sample with stepwise model selection to choose list of predictors. Only those

individuals with non-imputed values of recipiency are included in the regression.

c. Stratify the sample into K equal-sized groups based on probability of income

recipiency in the original sample.

d. Within each stratum k, predict expected income conditional on recipiency using

OLS regression on the redesign ABB sample that is within the probability of

recipiency bounds of that stratum.

e. Stratify subsample k into J equal sized substrata based on the expected income of

the original sample.

f. Within each substratum j, select a random sample of m donors from the redesign

sample (where m is the number of recipients with missing responses in stratum k, j )

using ABB. Each donor receives all income, source, and value variables from the

recipient. By donating source information (i.e., whether the retirement income is
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from a 401k, IRA, or others), this implies the additional assumption that for each

income type q and source Sq, P MjX; YM
q ; Y

O
q ; S

M
q ; S

O
q

� �
¼ PðMjXÞ, where X can be

summarized by R̂q and Ŷq.

g. Repeat for each stratum k, j until all missing observations for income type q have

been imputed.

3. Transform to original scale – return all variables to their original scales.

4. Repeat the entire process to create ten implicates.

These steps are done after processing and allocation of the survey data. This means that

hot deck imputed values in the redesign file can be used as part of the imputation process.

However, all modelling and prediction is done only on actual responses with allocated

values excluded from the modelling step.

Since all of the interest, dividends, and retirement income are missing for all

observations in the traditional sample, the order of imputation should not matter. Consider,

for example, the case where interest is imputed first and dividends second. In that case, the

imputation for interest should capture the relationship between interest and all other

variables in X,q. In the imputation for dividends, information on interest is included in

X,q, which should capture the relationship between dividends and interest as well as

dividends and all other variables in X. For both missing income types, the imputation

captures the conditional relationship between the other type and the variables in X. The

same is true if dividends are imputed first and interest second. As a result, the variables are

imputed by frequency of recipiency, from most common to least common: 1) interest,

2) dividends, and 3) retirement income. Note that this invariance to imputation order is

only true if missingness for each imputed variable implies missingness for all others.

4. Diagnostic Results

One way of evaluating the imputation model is to construct an R2 from the set of

regressions on the ABB sample. For the logistic regressions, the Tjur-R2 (Tjur 2009) is

used, which is calculated by comparing the average predicted probability of recipiency for

those who did and did not receive income of that type, or

R2
Tjur ¼ E R̂qjR ¼ 1; Y,q;R,q;X

� �
2 E R̂qjR ¼ 0; Y,q;R,q;X

� �
:

The Tjur-R2 is bounded between 0 and 1.

For the OLS regressions, the R2 used is the squared correlation between the transformed

income and the predicted income from the strata regressions, shown in Table 3. The

average Tjur-R2 for interest, dividends, and retirement are 0.35, 0.30, and 0.39

respectively. The OLS R2 values for interest, dividends, and retirement income are 0.12,

0.10, and 0.15 respectively.

The relatively low R2 are in part due to the fact that predictions are made on ABB

samples, not the original one. The regression R2 are much higher, but they reflect the

match between the predictions and the bootstrapped sample, which will by definition be

higher than for the original sample, which was not used for the prediction.

After imputing interest, dividend, and retirement income responses for the traditional

sample, the two samples are combined to create the Income-Consistent file, as all responses
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are now consistent with the redesigned income questionnaire. Estimates are calculated for

the number of recipients and mean income in the traditional, redesign, each of the Income-

Consistent implicates as well as the multiple imputation estimates, shown in Table 4.

Standard errors in each file or implicate are calculated using replicate weights. Throughout

the article, multiple imputation standard errors for the Income-Consistent file are calculated

using the multiple imputation variance formula in Rubin and Schenker (1986). There are no

statistically significant differences when comparing recipiency or mean income between

the redesign and Income-Consistent files for any of the three income sources.

Another statistic that can be used to evaluate the value of applying the imputation to

create the Income-Consistent file is the estimated rate of missing information, denoted by

g (Rubin 1987). Very high values of g (for example, 0.7) would imply that there is little

additional benefit to using the traditional sample with imputed interest, dividend, and

retirement income. As the relevance of the missing interest, dividend, and retirement

income may differ for different statistics, for each parameter of interest, a separate g can

be computed.

I estimated g for the recipiency and mean income statistics in Table 4. Recall that

approximately 30% of the Income-Consistent sample comes from the redesign sample and

is the same across all ten implicates. The rate of missing information varies across the

income types from 0.09 (interest recipiency) to 0.53 (mean retirement income).

I also calculated g for household median income and poverty of 0.15 and 0.08

respectively. Both of these are low values, which indicates that a considerable amount of

information in estimating median income and poverty is contributed by the other variables

in the traditional sample that were not imputed, as they were not affected by the redesign.

For family and household income statistics, these low g values also validate the general

approach of combining the samples to take full advantage of the information available in

the questions unaffected by the redesign.

5. Income and Poverty Statistics

To further assess the Income-Consistent file, median income and poverty statistics are

calculated. These statistics are in the annual Income and Poverty reports published by the

Table 3. Model diagnostics – effective R2 of recipiency and value regressions.

Recipiency Value

Variable Average Min Max Average Min Max

Interest 0.35 0.33 0.36 0.12 0.05 0.15
(0.01) (0.03)

Dividends 0.30 0.28 0.32 0.10 0.03 0.13
(0.01) (0.03)

Retirement 0.39 0.36 0.43 0.15 0.03 0.19
(0.02) (0.05)

The R2 are calculated by taking the predicted recipiency and values conditional on recipiency from the prediction

models used to define the donor/recipient cells and calculating the Tjur R2 for recipiency and squared correlation

for the value. The average, minimum, and maximum effective R2 across the 10 implicates are reported with

standard deviations in parentheses.
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Census Bureau from the CPS ASEC (available at http://www.census.gov/topics/

income-poverty/income.html). Table 5 shows the median income statistics (Table 1

from the annual report) comparison between the Income-Consistent full sample and the

traditional and redesign sample. Compared with the redesign sample, the only statistically

significant differences are for median income of nonfamily households with a female

householder (3.6% greater) and households headed by individuals without a disability

(2.3% greater). At the 90% confidence interval, fewer than ten percent of the tested

statistics are significantly different. For the comparison with the traditional sample, nearly

all of the median income comparisons are statistically significant.

Table 6 compares poverty estimates in each of the traditional and redesign sample to the

Income-Consistent file. The headline poverty number for all individuals is not statistically

significantly different between the Income-Consistent file and either sample. However, for

the traditional sample, poverty is lower in the Income-Consistent file for blacks (1.0%),

Table 4. Recipiency and mean Income in traditional, redesign, and income-consistent files.

Retirement Interest Dividends

Recipiency
(Thousands)

Mean
(USD)

Recipiency
(Thousands)

Mean
(USD)

Recipiency
(Thousands)

Mean
(USD)

Traditional 18,871 20,034 86,142 2,120 33,243 4,424
(251) (307) (588) (68) (432) (170)

Redesign 20,698 22,262 1,23,772 3,142 31,804 3,693
(372) (449) (887) (107) (568) (211)

Income-Consistent
Implicate #
1 20,709 22,406 1,25,594 3,033 32,095 3,584

(265) (271) (1,866) (75) (587) (172)
2 20,777 22,195 1,24,925 3,160 32,045 3,669

(292) (377) (1,404) (75) (411) (141)
3 20,511 22,054 1,25,339 3,168 31,236 3,706

(241) (251) (1,834) (87) (386) (109)
4 20,395 22,383 1,25,813 3,083 31,657 3,734

(225) (257) (2,152) (54) (368) (96)
5 20,826 22,667 1,24,748 3,115 32,167 3,633

(455) (291) (1,228) (55) (616) (122)
6 20,945 22,371 1,24,858 3,087 31,357 3,923

(428) (287) (1,282) (49) (366) (133)
7 20,891 22,826 1,24,804 3,082 31,660 3,706

(520) (377) (1,191) (51) (295) (135)
8 20,659 22,252 1,25,513 3,195 31,827 3,629

(248) (267) (2,129) (75) (404) (129)
9 20,788 22,019 1,25,805 3,037 31,741 3,597

(327) (353) (2,026) (74) (302) (165)
10 20,793 21,867 1,25,996 3,134 31,733 3,711

(418) (393) (2,189) (58) (312) (116)

Income-Consistent 20,729 22,304 1,25,340 3,109 31,752 3,689
Multiple Imputation (398) (442) (1,841) (88) (525) (168)

Rate of Missing
Information (g)

0.23 0.53 0.09 0.47 0.41 0.41

Source: U.S. Census Bureau, Current Population Survey, 2014 Annual Social and Economic Supplement.

Standard errors (in parenthesis) are calculated using replicate weights. For more information, see “Standard

Errors and Their Use” at ,www.census.gov/hhes/www/p60_245sa.pdf.. Standard errors for the Income-

Consistent file are calculated using the multiple imputation formula in Rubin and Schenker (1986).
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naturalized citizens (20.9%), residents of principal cities (0.5%), and workers (0.2%), and

is higher for children (0.6%). For the redesign sample, unlike median income, there are

significant differences: lower in poverty in the Income-Consistent file for children (1.1%)

and those aged 65 and older (0.7%).

To summarize the results, the Income-Consistent file household median income

estimates are more like the redesign file, but the poverty estimates lie between the two

files. While the point estimate for poverty of 14.5% is not statistically significantly

different from the point estimate for either file, it is much closer to the 14.5% estimate

from the traditional file than the 14.8% estimate of the redesign file.

6. Conclusion

In this article, multiple imputation is applied to the problem of a split sample receiving

different survey instruments in a bridge year. One possible way to use data from all survey

respondents is shown, even though distinct sets of respondents answered different

questions. This idea has an important potential benefit – by making use of all of the data

during a bridge year, it potentially lowers the cost in terms of decreased statistical power of

survey redesigns and bridges.

To address this problem of missing information during a survey bridge year, a

semiparametric multiple imputation technique proposed by Bondarenko and Raghunathan

is applied to the CPS ASEC 2014 redesign. The technique performs reasonably well and

analysis of basic summary statistics shows how this technique affects important economic

statistics that are widely reported on from the CPS ASEC.

For the 2014 CPS ASEC, this technique increases the potential sample that can be used

to make comparisons to data from subsequent years, which uses the redesigned

questionnaire for the entire sample. The larger sample facilitates analyses on subgroups,

such as by state, where the redesign sample may lack the statistical power needed for

comparisons. By combining the two samples, this technique may also address concerns

about differences in sample composition raised in previous research by Mitchell and

Renwick (2015).
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Supplemental data, Table 1. CPS hot deck imputation for missing earnings from longest job. 
 Match level 
Match variable 1 2 3 4 5 6 
Sex 2 2 2 2 2 2 
Race 3 2 2    
Age 9 6 3 3   
Relationship 7 7 4 4 4  
Years of school completed 6 5 5 4 4 4 
Marital status 4 4     
Presence of children 3      
Labor force status of spouse 3      
Weeks worked 5 5 4 4 4 4 
Hours worked 3 3 3 3 2  
Occupation 528 528 66 66 66  
Class of worker 5 5 5 3 3 3 
Other earnings 8 8     
Type of residence 3 2 2    
Region 4 4     
Transfers payments receipt 2 2 2 2   
Number of cells 620,786,073,600 17,031,168,000 3,801,600 456,192 50,688 96 
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Supplemental data, Table 2. Potential predictor variables in imputation model. 
Recipiency/binary variables Values Other variables 
Earnings 
Other Job Wage 
Other Job Self-Employment  
Other Job Farm Self-Employment 
Unemployment Compensation  
Veterans' Benefits  
Survivors' Benefits 
Rental Income  
Educational Assistance  
Child Support Payment  
Financial Assistance 
Spouse/Partner Present 
Spouse/Partner Earnings  
Interest Income  
Dividend Income 

Earnings 
Other Job Wage 
Other Job Self-Employment 
Other Job Farm Self-Employment 
Unemployment Compensation 
Veterans' Benefits  
Survivors' Benefits (Source 1) 
Survivors' Benefits (Source 2) 
Rental Income 
Educational Assistance  
Child Support Payment 
Financial Assistance  
Spouse/Partner Earnings 
Interest Income 
Dividend Income 

Race/Ethnicity - White 
Race/Ethnicity - Black 
Race/Ethnicity - Native American 
Race/Ethnicity - Asian 
Race/Ethnicity - Pacific Islander 
Race/Ethnicity - Hispanic 
Age  
Weeks Worked in Last Year 
Usual Hours Worked 
Property Value (Non-imputed) 
Gender 
Supplement Weight (Full Sample) 
Relationship to Household Head 
Education 
Marital Status 
Children in Family 
Occupation 
City Type of Residence (Urban/CBSA) 
Census Region 
Transfer Payments/ 
Program Participation 

 
This table lists the potential predictor variables in the imputation model.  The more detailed list, with interaction terms and CPS ASEC variable codes, is available from the author 
upon request.  The large number of variables in the model come from the conversion of categorical variables to sets of dummy variables, the inclusion of multiple recodes of 
particular (for example age, age squared, dummies for ages relevant to retirement such as 62, 65, and 70), and the inclusion of a large number of possible interactions. 
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Adjusting for Misclassification: A Three-Phase
Sampling Approach

Hailin Sang1, Kenneth K. Lopiano2, Denise A. Abreu3, Andrea C. Lamas3,

Pam Arroway4, and Linda J. Young3

The United States Department of Agriculture’s National Agricultural Statistics Service
(NASS) conducts the June Agricultural Survey (JAS) annually. Substantial misclassification
occurs during the prescreening process and from field-estimating farm status for nonresponse
and inaccessible records, resulting in a biased estimate of the number of US farms from the
JAS. Here, the Annual Land Utilization Survey (ALUS) is proposed as a follow-on survey to
the JAS to adjust the estimates of the number of US farms and other important variables. A
three-phase survey design-based estimator is developed for the JAS-ALUS with nonresponse
adjustment for the second phase (ALUS). A design-unbiased estimator of the variance is
provided in explicit form.

Key words: Estimation under the three-phase sampling design; nonresponse; unbiased
estimator; variance estimation.

1. Introduction

The United States Department of Agriculture’s National Agricultural Statistics Service

(NASS) conducts numerous statistical surveys to provide information about current and

future supplies of agricultural commodities. See Fecso et al. (1986), Vogel (1995), and

Nusser and House (2009) for the evolution and development of agricultural statistics

and the surveys conducted at the United States Department of Agriculture. The June

Agricultural Survey (JAS) is conducted annually. For the JAS, a stratified random sample

is drawn using an area frame, which ensures complete coverage. Information about US

crops, livestock, grain storage capacity, type and size of farms are collected from

agricultural operations in the sample. NASS uses the JAS to estimate numerous items

relating to US agriculture, including the number of farms.
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Every five years, the annual number of farms estimate is compared to the one obtained

from the quinquennial Census of Agriculture, which is a dual-frame survey conducted

during years ending in 2 and 7. See Kott and Vogel (1995) for details on the dual-frame

survey. In 2007, the difference between the estimated number of farms from the JAS

and the 2007 Census of Agriculture could not be attributed to sampling error alone.

A preliminary study showed that the JAS estimate was biased because some farms were

incorrectly classified as non-farms. In addition, some non-farms were misclassified as

farms, but at a lower rate. Prior to this study, NASS had assumed that no misclassification

was present in the JAS or any other survey that it conducted.

Bross (1954) first showed that, when misclassification is present, conventional methods

can be seriously biased. Tenenbein (1970, 1972) proposed a double-sampling scheme for

inference from categorical data subject to misclassification. The double-sampling schemes

utilize a sample of n1 units classified by both a fallible and true device, and another sample

of n2 units classified only by a fallible device. The double-sampling scheme and its

variants are popular approaches to estimation when misclassification is present (see Thall

et al. 1996, Stewart et al. 1998, and the references therein). Bayesian methods are also

popular for inference from categorical data subject to misclassification (see Swartz et al.

2004, the book by Gustafson 2003, and the references therein).

In this article, a design-based approach that addresses misclassification and leads to

improved estimates of the number of farms is suggested. First, the JAS sampling design is

discussed, with an emphasis on the factors leading to the misclassification of farms and

non-farms. Then, a proposed revision to the JAS sampling design is presented, and the

properties of the resulting farm number estimates from this revised design are explored.

Finally, the implications of the work on the JAS are considered.

2. The June Agricultural Survey (JAS)

The JAS is conducted annually utilizing an area frame, ensuring complete coverage of the

population. Land within the JAS area frame is divided into homogeneous land-use strata.

Although minor definitional adjustments may be made depending on the specific needs of

the state, land-use strata with more than 50% cultivated land are generally labeled with a

value in the 10s, agri-urban and commercial land-use strata are typically given a label in

the 30s, and so on (see Table 1). The general land-use strata definitions are similar from

state to state; however, minor definitional adjustments may be made depending on the

specific needs of a state. Each land-use stratum is further divided into substrata (called

“design strata”) by grouping areas that are agriculturally similar, providing greater

Table 1. Land-use strata.

Land-use strata

$50% cultivated land 10s
15–49% cultivated land 20s
,15% cultivated land 40s
Agri-urban/Commercial areas 30s
Non-agricultural land 50s
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precision for state-level estimates of individual commodities. Within each design stratum,

the land is divided into primary sampling units (PSUs). A sample of PSUs is selected and

smaller, similar-sized segments (each of about a square mile (640 acres)) of land are

delineated within these selected PSUs. Finally, one segmentis randomly selected from

each selected PSU to be fully enumerated.

Once selected for inclusion in the JAS, a segment stays in the sample for five years.

Thus, each year the sample has about 20% new segments, and the 20% of the segments

that have been in the sample for five years rotate out. Segments rotating in during the same

year are called replicates; thus, each JAS sample consists of five replicates (see Cotter et al.

2010, Benedetti et al. 2015, for further details on JAS).

Through 2010, the JAS prescreening was conducted in the two weeks prior to data

collection. During prescreening, field enumerators (data collectors) divide each segment

into tracts of land. Each tract represents a unique land operating arrangement. Field

enumerators do not interview tract operators during prescreening. Instead, they complete

an area screening form which provides an inventory of all tracts within a sampled segment,

and contains screening questions that determine whether or not each tract has agricultural

activity. Using this form, each tract within the segment is screened for agricultural activity,

and the screening applies to all land in the identified operating arrangement. Each screened

tract is classified as agricultural or non-agricultural. Non-agricultural tracts are assigned

to one of three categories: (1) non-agricultural with potential, (2) non-agricultural with

unknown potential, or (3) non-agricultural with no potential.

The JAS is conducted during the first two weeks of June. During the sampling

period, field enumerators return to only those tracts classified as agricultural during the

earlier screening period. Data collection continues until some type of response is

obtained for every sampled tract. If a respondent cannot be reached, the information

may be obtained from administrative data, data collected for other surveys, or estimates

made by field enumerators. Regardless of the information source, these tracts are

identified as being field estimated. Based on the JAS, an agricultural tract is classified

as a farm if its entire operation, which could include land outside the sampled tract,

qualifies with at least USD 1,000 in agricultural sales or potential sales. All non-

agricultural tracts and agricultural tracts with less than USD 1,000 in sales are classified

as non-farms.

In 2009, NASS conducted a one-time follow-on survey to the JAS segments, the Farm

Numbers Research Project (FNRP) (Abreu et al. 2010). The sampling design of the FNRP

targeted the 20% of JAS segments that were newly rotated in for 2009 (2009 segments).

All tracts in the 2009 segments that were non-agricultural or field estimated in JAS were

selected for FNRP. During the FNRP, all places of interest within a selected tract were

considered subtracts.

A shortened form based on the JAS questionnaire was used to classify each subtract as a

farm or as a non-farm.

A major finding in FNRP was that, assuming misclassification rates are the same for all

rotations (did not differ from that observed for the 2009 segments), the JAS estimate of the

number of farms would increase by approximately 580,000 (see Table 2). The bulk of

these farms were found in tracts that had been identified as non-agricultural with no

potential in the JAS.
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Several factors could lead to the misclassification of farms as non-farms and of non-

farms as farms. During prescreening, the agricultural activity may not have been evident

when the field enumerator observed the tract from a distance (tract operators are not

interviewed during this process), or the primary agricultural activity could have been

outside the sampled tract (the response for a tract includes agriculture associated with all

of the operation, not just that within the tract). In FNRP, 86.1% (500,338) of the field-

estimated number of farms misclassified as non-farms were found in tracts prescreened to

be non-agricultural with no potential. Small farms are more likely to be misclassified. In

FNRP, 58.3% (335,902) of the field-estimated number of farms misclassified as non-farms

had less than 25 acres. Operations that recently went out of business or small farms whose

production fell below the USD 1000 threshold in sales could be misclassified as farms

when field estimated.

To obtain a more accurate estimate of the number of US farms from the JAS, the current

estimation approach must be revised to account for misclassification. The Annual Land

Utilization Survey (ALUS), a follow-on survey to the JAS, has been proposed for this

purpose. FNRP results are used as guidelines for the ALUS design, but ALUS will be able

to detect different types of trends as well.

3. The Annual Land Utilization Survey (ALUS): Design

The ALUS focuses on those JAS tracts that were potentially misclassified as farm or non-

farms either during the prescreening process or during field estimation of farm status for

nonresponding or inaccessible operations. These tracts are treated as nonresponders, and

data collection is focused on obtaining accurate information on them. ALUS represents the

second phase of a two-phase sample, with the first phase being the traditional JAS. As in

the JAS, the proposed ALUS is a stratified sample of segments, using JAS land-use strata

and sampling across rotations. Segments that are eligible for inclusion in ALUS must have

at least one tract that was prescreened as non-agricultural (regardless of potential) or that

was field estimated in JAS (as either a farm or non-farm); that is, only JAS segments that

had completed interviews for all tracts are not eligible for possible inclusion in the ALUS

sample. For a selected segment, all tracts are to be reevaluated using a modified combined

JAS-ALUS questionnaire. The collection of eligible segments in a particular year will be

called the ALUS population.

Table 2. FNRP results by type of tract.

Type of tract
FNRP sample
size (subtracts)

Number of
FNRP farms

Net expanded
number of farms

Field estimated as farm 1,591 1,466 (7,822)
Field estimated as non-farm 121 37 13,032
Non-agricultural with potential 487 95 38,346
Non-agricultural with

unknown potential
364 56 37,479

Non-agricultural with no potential 14,628 905 500,338
FNRP total 17,191 2,559 581,373
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For ALUS, the sample allocation of segments to each state-stratum combination considers

two factors: the proportion of the ALUS population in the land-use stratum and the proportion

of the FNRP adjustment from non-agricultural tracts in the land-use stratum (see Table 3).

The latter simultaneously accounts for the number of converted non-agricultural tracts and the

expansion factors associated with them, allowing states and land-use strata that contributed

most to the FNRP adjustment to be targeted. In the JAS, the sampling scheme favors

cultivated areas. For ALUS, the sampling will lean more heavily on moderately and less

cultivated land-use strata where the largest portion of the FNRP adjustment originates. For

example, although the exact land-use stratum definition varies from state to state, land-use

strata 10s ð10; 11; · · ·Þ are highly cultivated areas, with generally at least 50% cultivated land.

In the JAS, over half of the selected segments are from these land-use strata. However, 10s

made uponly 16% of the FNRP adjustment arising from non-agricultural tracts, so only about

27% of the ALUS sample will come from these strata. The sample will be evenly distributed

over the five rotations, with approximately 20% of the ALUS sample selected from each.

Within each land-use stratum of the ALUS population, segments will be selected with

probability proportional to size (pps) sampling where the size measure of a segment is

defined as the sum of the number of tracts either prescreened as non-agricultural or field

estimated to be non-farms, and one-tenth of the number of tracts field estimated to be a

farm. Because most tracts (92%) field estimated as farms in the JAS were confirmed as

farms in FNRP, ALUS only takes a tenth of the number of these tracts within a segment

when determining size. If a segment is selected, all ALUS-eligible tracts withinthat

segment will be in the sample, including those field estimated as farms.

Precise estimates of uncertainty can be obtained by viewing the combination of JAS and

ALUS as a two-phase sample, with JAS being the first phase and ALUS being the second.

Given that each phase makes use of a probability sampling design with known inclusion

probabilities, standard results can be used to construct a design-based estimator (Särndal

and Swensson 1987). However, nonresponse is also expected to occur in ALUS.

Instead of using the estimated tract values to account for this nonresponse, the two-

phase design estimator of Särndal and Swensson (1987) has been extended to a third phase

(see Section 4). The resulting estimator is used for the two-phase JAS-ALUS, with the

self-selection of response treated as a third phase of random sampling. This methodology

can be applied not only to estimates of the number of farms but to all variables collected

in the ALUS.

Table 3. Guidelines for ALUS allocation scheme.

Land-use
strata

Proportion of FNRP
adjustment from
non-agricultural
tracts (%)

Proportion of
ALUS-eligible
segments in
2009 JAS (%)

Proportion of
ALUS-eligible
segments in 2010
JAS (%)

Suggested
Proportion
of ALUS

sample (%)

10s 16 53 52 27
20s 34 26 27 30
30s ,1 3 3 3
40s 50 17 17 39
50s ,1 ,1 ,1 1
Total 576,000 farms 10,168 segments 10,121 segments
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4. Estimation

In this section we first extend the two-phase p* estimator (Särndal and Swensson 1987) to

a three-phase survey sampling estimator. Legg and Fuller (2009), Särndal et al. (1992) and

Singh (2003) provide a review of the two-phase sampling estimator. Jeyaratnam et al.

(1984) studied a multiphase design in a forest study. Fuller (2003) studied a three-phase

regression estimator for the mean of a vector population. Magnussen (2003) studied

estimators for three-phase sampling of categorical variables. Then in the second

subsection, we study the application to the ALUS estimator with nonresponse adjustment.

4.1. Estimation Under a Three-Phase Sampling Design

To be consistent and complete, the notation used by Särndal and Swensson (1987) for the

two-phase design is extended for the third phase.

Let yk be the response of interest for the kth unit in a finite population U. The population

total is T ¼
P

U yk. A general sampling design is allowed in each phase.

(a) The first-phase sample SðS , UÞ is drawn according to a sampling design Pað�Þ, such

that Pa(S) is the probability of choosing S. The inclusion probabilities are defined by

pak ¼
k[S

X
PaðSÞ;pakp ¼

k;p[S

X
PaðSÞ

with pakk ¼ pak. Set Dakp ¼ pakp 2 pakpap. It is assumed that pak . 0 for all k, and

pakp . 0 for all k – p in variance estimation. pak is the probability of selection of the

kth unit in the first-phase sampling. pakp is the probability of selection both the kth

unit and the pth unit in the first-phase sampling.

(b) Given S, the second-phase sample RðR , SÞ is drawn according to a sampling design

Pð�jSÞ, such that PðRjSÞ, is the conditional probability of choosing R. The inclusion

probabilities given S are defined by

pkjS ¼
k[R

X
PðRjSÞ;pkpjS ¼

k;p[R

X
PðRjSÞ:

pkkjS ¼ pkjS. Set DkpjS ¼ pkpjS 2 pkjSppjS. It is assumed that for any S, pkjS . 0 for all

k [ S, and pkpjS . 0 for all k – p [ S in variance estimation. pkjS is the probability

of selection of the kth unit in the second-phase sampling given the result of the first-

phase sampling. pkpjS is the probability of selecting both the kth unit and the pth unit

in the second-phase sampling given the result of the first-phase sampling.

(c) Given R, the third-phase sample FðF , RÞ is drawn according to a sampling design

Pð�jRÞ, such that PðFjRÞ is the conditional probability of choosing F. F is the set of

selected units in a three-phase sampling design or the set of responses for the second

phase in a two-phase sampling design. The inclusion probabilities given R are defined by

pkjR ¼
k[F

X
PðFjRÞ;pkpjR ¼

k;p[F

X
PðFjRÞ:

pkkjR ¼ pkjR. SetDkpjR ¼ pkpjR 2 pkjRppjR. In a three-phase sampling design,pkjR is the

probability of selection of the kth unit in the third phase of sampling given the result of
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the first two phases of sampling. pkpjR is the probability of selecting both the kth unit

and the pth unit in the third phase of sampling given the result of the first two phases

of sampling. In a two-phase sampling design, pkjR is the probability when the kth unit

has response for the second phase. pkpjR is the probability that both the kth unit and

the pth unit have a response for the second phase.

Now, for any S and for all k; p [ S, define p*
k ¼ pakpkjS, p*

kp ¼ pakppkpjS. p*
kk ¼ p*

k .

Next, define p#
k ¼ p*

kpkjR ¼ pakpkjSpkjR for all k [ R and any R. Then the first-phase

expanded y-value is �yk ¼ yk=pak. The second-phase expanded y-value is �y*
k ¼ �yk=

pkjS ¼ yk=p
*
k . The third-phase expanded y-value is �y#

k ¼ �y
*

k=pkjR ¼ �yk=ðpkjSpkjRÞ

¼ yk=ðpakpkjSpkjRÞ ¼ yk=p
#
k . The expanded D values are �Dakp ¼ Dakp=pakp, �D

*

kpjS ¼

Dakp= p*
kp

� �
¼ Dakp= ðpakppkpjSÞ.

�DkpjS ¼ DkpjS=pkpjS. Now, the expansion estimator in

three-phase sampling is defined as

t̂# ¼
k[F

X
�y#

k ¼
k[F

X
yk=p

#
k : ð1Þ

The following theorem gives an unbiased estimator of the variance of the triple expansion

estimator t̂#.

Theorem 1. The estimator in (1) is design unbiased, and a design-unbiased estimator of

Varðt̂#Þ is given by

Var̂ ðt̂#Þ ¼
X

F

X
�D

*

kpjS �yk �yp=pkpjR þ
X

F

X
�DkpjS �y

*
k �y

*
p=pkpjR

þ
X

F

X
DkpjR �y

#
k �y

#
p=pkpjR:

ð2Þ

The proof of Theorem 1 is deferred to the Appendix.

4.2. The ALUS Estimator

Let T be the number of US farms in a specific year. First, consider the JAS estimate of the

number of farms. Then the estimator incorporating the information obtained during the

ALUS (second-phase sample) and the nonresponse adjustment in ALUS will be

developed.

Under stratified simple random sampling, the JAS estimator of T is

T̂ ¼
Xl

i¼1

Xsi

j¼1

dij

Xnij

k¼1

Xxijk

m¼1

tijkm ð3Þ

where

. i is the index of land-use stratum, l is the number of land-use strata;

. j is the index of design stratum, si is the number of design strata in land-use stratum i;

. k is the index of segment, nij is the number of segments in design stratum j within

land-use stratum i;

. dij is the expansion factor or the inverse of the probability of selection for each

segment in design stratum j in land-use stratum i;
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. m is the index of tract, xijk is the number of farm tracts in the segment; and

. tijkm is the tract-to-farm ratio, which is tract acres for the m th tract
farm acres for the m th tract

.

Under the assumption that the JAS provides accurate information for all tracts, T̂ is

unbiased. The variance is

VarðT̂ Þ ¼
Xl

i¼1

Xsi

j¼1

1 2 1=dij

1 2 1=nij

Xnij

k¼1

ðcijk 2 cij:Þ
2 ð4Þ

where cijk ¼ dij

Pxijk

m¼1tijkm, cij: ¼
1
nij

Pnij

k¼1cijk. This formula is given by Kott (1990).

However, the JAS estimate is biased because some tracts are misclassified either during

prescreening when agricultural tracts may be identified as non-agricultural, or during the

JAS when tracts are incorrectly field estimated to be farms or non-farms.

Now consider the JAS-ALUS two-phase estimator with nonresponse adjustment for the

second phase. The estimator is

T̂
^
¼ T̂1 þ

Xl

i¼1

Xsi

j¼1

dijaij

Xn
0
ij

k¼1

rijk

Xzijk

m¼1

tijkm :¼ T̂1 þ T̂2: ð5Þ

Here, the first term T̂1 has the same form as T̂ in (3). However, it only includes the JAS

segments comprised of all farm tracts confirmed through an interview with the operator

(not estimated) in the first phase. In the second phase, the ALUS sample only includes the

JAS tracts that were either prescreened as non-agricultural or field estimated as either a

farm or a non-farm. Thus each tract in the ALUS sample has been potentially misclassified

and is treated as a nonrespondent from the first phase. n 0ij is the number of ALUS segments

in design stratum j within land-use stratum i. aij is the expansion factor or the inverse of the

probability of selection in the second phase for each segment in design stratum j in land-

use stratum i. zijk is the number of farm tracts in the given ALUS-selected segment. rijk is

the expansion factor or the inverse of the response probability of each tract in segment k,

design stratum j, land-use stratum i.

Here we assume that all tracts in the same segment have the same response probability

and this probability rijk is known. If rijk is unknown, it can be estimated by modeling under

the assumption of stratified Bernoulli subsampling for nonresponse, that is, a response is

assumed to have the Bernoulli distribution. In this case, we would have another variance

component. This is a complex case and is not considered here. A referee suggested that,

instead of assuming rijk known, the last phase could be treated conditionally (on the

number of good responses) as a simple random sample within each segment. The

assumption needed for this approach is for at least two responses to be obtained within

each segment. Readers are referred to Särndal et al. (1992) for the modeling on

nonresponse in a quasi-design-based framework (“quasi” because response if modeled).

Hidiroglou and Estevao (2013) used a follow-up sample of the nonrespondents to deal

with nonresponse.

Now we apply (2) in Theorem 1 to obtain a design-unbiased estimator of VarðT̂2Þ. For

convenience, we use (i, j ) to denote design stratum j within land-use stratum i. We also use

k or p to be the index of segment. In the JAS-ALUS sampling design, the unit is a segment.

One unit is one segment in (i, j ). It includes all tracts in that segment. Recall that all
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segments within the same design stratum have the same expansion factor. The first phase

expansion factor is dijk ¼ dij and the second phase expansion factor is aijk ¼ aij for all

segments k in (i,j ). Therefore, pak ¼ d21
ijk ¼ d21

ij , and

�yk ¼ yk=pak ¼ dij

Xzijk

m¼1

tijkm: ð6Þ

pkjS ¼ a21
ij . There are n 0ijaijdij segments in (i, j ). If k – p and these segments are in a same

design stratum (i, j ),

pakp ¼ ðn
0
ijaij 2 1Þ=½dijðn

0
ijaijdij 2 1Þ�;

Dakp ¼ pakp 2 pakpap ¼ ð1 2 dijÞ= d2
ijðn

0
ijaijdij 2 1Þ

h i
;

�Dakp ¼ Dakp=pakp ¼ ð1 2 dijÞ=½dijðn
0
ijaij 2 1Þ�;

pkpjS ¼ ðn
0
ij 2 1Þ=½aijðn

0
ijaij 2 1Þ�:

If k, p are from different design strata ði; jÞ; ði 0; j0Þ, Dakp ¼ 0: �Dakp ¼ 0. pkpjS ¼ 1=ðaijai 0j 0 Þ.

If k ¼ p,

pakk ¼ pak ¼ d21
ij ;

Dakk ¼ d21
ij 2 d22

ij ;

�Dakk ¼ Dakk=pakk ¼ 1 2 d21
ij ;

pkkjS ¼ pkjS ¼ a21
ij :

Therefore,
�D

*

kpjS ¼
�Dakp=pkpjS ¼ aijð1 2 dijÞ=½dijðn

0
ij 2 1Þ�

if k – p are in the same design stratum. �D
*

kpjS ¼ 0 if k, p are from different design strata.

�D
*

kpjS ¼
�Dakp=pkpjS ¼ ½aijðdij 2 1Þ�=dij ð7Þ

if k ¼ p. In the second phase of ALUS, recall that pkjS ¼ pkkjS ¼ 1=aij, pkpjS ¼

ðn 0ij 2 1Þ=½aijðn
0
ijaij 2 1Þ� if the two different segments are in the same design stratum.

Otherwise, pkpjS ¼ 1=ðaijai 0j 0 Þ. Therefore,

�y*
k ¼ �yk=pkjS ¼ dijaij

Xzijk

m¼1

tijkm: ð8Þ

DkpjS ¼ pkpjS 2 pkjSppjS ¼ ð1 2 aijÞ= a2
ijðn
0
ijaij 2 1Þ

h i

and

�DkpjS ¼ DkpjS=pkpjS ¼ ð1 2 aijÞ=½aijðn
0
ij 2 1Þ�
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if the two different segments are in the same design stratum. DkpjS ¼ 0 ¼ �DkpjS if the

two segments are in different design strata. DkpjS ¼ pkpjS 2 pkjSppjS ¼ ðaij 2 1Þ= a2
ij

� �

and �DkpjS ¼ DkpjS=pkpjS ¼ ðaij 2 1Þ=aij if k ¼ p. pkjR is the probability of response of the

tracts in segment k. pkpjR is the probability that two tracts have response in segments k, p.

pkjR ¼ pkkjR ¼ 1=rijk and pkpjR ¼ 1=ðrijkrijpÞ if k – p. Then DkpjR ¼ pkpjR 2 pkjRppjR ¼ 0

if k – p and DkkjR ¼ pkjR 2 p2
kjR
¼ ðrijk 2 1Þ=r2

ijk. By (8), the third-phase expanded

y-value

�y#
k ¼ �y*

k=pkjR ¼ dijaijrijk

Xzijk

m¼1

tijkm:

Together with all the analysis, the design-unbiased estimator (2) of VarðT̂2Þ is

Var̂ ðT̂2Þ ¼
Xl

i¼1

Xsi

j¼1

aijdijðdij 2 1Þ
Xn
0
ij

k¼1

rijk

Xzijk

m¼1

tijkm

 !2

þ
Xl

i¼1

Xsi

j¼1

dijaijð1 2 dijÞðn
0
ij 2 1Þ21

1#k,p#n 0ij

X Xzijk

m¼1

rijktijkm

Xzijp

m¼1

rijptijpm

 !

þ
Xl

i¼1

Xsi

j¼1

d2
ijaijðaij 2 1Þ

Xn
0
ij

k¼1

rijk

Xzijk

m¼1

tijkm

 !2

þ
Xl

i¼1

Xsi

j¼1

d2
ijaijð1 2 aijÞðn

0
ij 2 1Þ21

1#k,p#n 0ij

X Xzijk

m¼1

rijktijkm

Xzijp

m¼1

rijptijpm

 !

þ
Xl

i¼1

Xsi

j¼1

d2
ija

2
ij

Xn
0
ij

k¼1

rijkðrijk 2 1Þ
Xzijk

m¼1

tijkm

 !2

:

ð9Þ

In (9), the first two summands give the first quantity in (2); summand 3 and 4 give the

second quantity in (2); and the last summand gives the third quantity in (2). Var̂ ðT̂2Þ can be

further simplified to

Var̂ ðT̂2Þ ¼
Xl

i¼1

Xsi

j¼1

Xn
0
ij

k¼1

aijdijrijkðaijdijrijk 2 1Þ
Xzijk

m¼1

tijkm

 !2

þ
Xl

i¼1

Xsi

j¼1

dijaijð1 2 dijaijÞðn
0
ij 2 1Þ21

1#k,p#n 0ij

X Xzijk

m¼1

rijktijkm

Xzijp

m¼1

rijptijpm

 !

:

ð10Þ

We denote Var̂ ðT̂2Þ ¼
Pl

i¼1

Psi

j¼1Vij where Vij is the contribution to the variance from the

segments in design stratum j in land-use stratum i. In the special case that rijk ¼ rijp ¼ rij
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and
Pzijk

m¼1tijkm ¼
Pzijp

m¼1tijpm ¼ cij, 1 # k , p # n 0ij, for some i, j, the Vij is

Vij ¼ n 0ijaijdijrijðaijdijrij 2 1Þc2
ij

þ dijaijð1 2 dijaijÞðn
0
ij 2 1Þ21r2

ij

n 0ijðn
0
ij 2 1Þ

2
c2

ij

¼
1

2
dijaijrijn

0
ij½rijðdijaij þ 1Þ2 2�c2

ij:

ð11Þ

Vij $ 0 as expected since the expansion factors dij; aij; rij $ 1. The contribution Vij ¼ 0 if

dij ¼ aij ¼ rij ¼ 1. Var̂ ðT̂2Þ ¼ 0 if dij ¼ aij ¼ rij ¼ 1 for all i, j. This is the case of

complete census without nonresponse.

To derive the variance of T̂
^
, let Eð�jJASÞ and Varð�jJASÞ refer, respectively, to the

conditional expectation and conditional variance given the outcome of the JAS. We use

the formula

VarðT̂
^
Þ ¼ VarðT̂1 þ T̂2Þ

¼ E½VarðT̂1 þ T̂2jJASÞ� þ Var½EðT̂1 þ T̂2jJASÞ�

¼ E½VarðT̂2jJASÞ� þ Var½T̂1 þ EðT̂2jJASÞ�:

ð12Þ

By the proof of Theorem 1, the first term of (12) is estimated by the second and third

quantities in Theorem 1, which are the summands 3, 4, and 5 in (9). By (16) in the

Appendix and (6),

EðT̂2jJASÞ ¼
Xl

i¼1

Xsi

j¼1

dij

Xaijn
0
ij

k¼1

Xzijk

m¼1

tijkm:

Here aijn
0
ij is the number of segments in the ALUS population in design stratum j within

land-use stratum i, since aij is the expansion factor and n0ij is the number of ALUS segments

in (i, j ). Together with (3), we have

T̂1 þ EðT̂2jJASÞ ¼
Xl

i¼1

Xsi

j¼1

dij

Xnij

k¼1

Xxijk

m¼1

tijkm þ
Xaijn

0
ij

k¼1

Xzijk

m¼1

tijkm

0

@

1

A:

By (4),

Var½T̂1 þ EðT̂2jJASÞ� ¼
Xl

i¼1

Xsi

j¼1

1 2 1=dij

1 2 1=ðnij þ aijn
0
ijÞ

Xnijþaijn
0
ij

k¼1

ðcijk 2 cij:Þ
2 ð13Þ

where

cijk ¼ dij

Xxijk

m¼1

tijkm;
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if

1 # k # nij;

cijk ¼ dij

Xzijk

m¼1

tijkm;
if

nij þ 1 # k # nij þ aijn
0
ij;

cij ¼
1

nij þ aijn
0
ij

Xnijþaijn
0
ij

k¼1

cijk:

Nevertheless, we cannot calculate (13), since only the ALUS sample information, which

includes n 0ij segments in (i, j ), is known. A design-unbiased estimator of (13) is given by

Var̂ ½T̂1 þ EðT̂2jJASÞ�

¼
Xl

i¼1

Xsi

j¼1

1 2 1=dij

1 2 1=ðnij þ aijn
0
ijÞ

Xnij

k¼1

cijk 2 ĉij:
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Hence, we have the design-unbiased estimator of VarðT̂
^
Þ,
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5. Conclusions

The JAS is the largest annual survey conducted by NASS. Its results are used to develop a

number of official estimates. Here, the focus has been on estimating the total number of
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US farms. The substantial misclassification of farms and non-farms has led to a biased

estimate of the number of farms. The two-phase JAS-ALUS has been suggested as an

improvement that would produce a (quasi-)unbiased estimation of farm numbers. The

proposed three-phase survey design-based estimator (1) is an extension of the two-phase

sampling estimator in Särndal and Swensson (1987), which allows for a general sampling

design in each phase. For the JAS-ALUS application considered here, the JAS is the first

phase; ALUS is the second phase; and modeling response/nonresponse in the second phase

is the final phase. More importantly, a design-unbiased variance estimator for estimator (1)

is given in Theorem 1. The estimator (10) of VarðT̂2Þwas developed by applying our three-

phase variance estimator (2).

Although the focus here has been on estimating the number of US farms, the same

ALUS follow-on and adjustment for nonresponse in the second phase allow unbiased

estimates of other variables to also be obtained. The experience gained from the FNRP

described in Section 2, the change in JAS protocols following the FNRP, and the fact that

the FNRP included only 2009 segments could lead to the ALUS results being different

from those anticipated here. ALUS has been proposed during a time of declining budgets,

and its additional expense is the primary reason NASS has yet to implement ALUS.

Following the FNRP, additional training on JAS prescreening was conducted, and the

time that field enumerators were given to complete prescreening was extended from two to

four weeks. This resulted in an initial increase in the estimated number of farms, using

Equation 1, and then the estimates began to decrease. Some of the decrease may be due to

a decline in the number of farms; however, misclassification may again be increasing.

Currently, NASS is using modeling approaches to adjust for this misclassification in JAS.

It is hoped that ALUS can be conducted at least once, allowing the estimates based on the

methods presented here to be compared to the modeled results.

Appendix

Proof of Theorem 1

The proof is an application of the variance formula VarðXÞ ¼ Var½EðXjYÞ� þE½VarðXjYÞ�.

We sketch the necessary steps for readers’ convenience.

Recall that T ¼
P

U yk is the population total. From the design, it is easy to see that t̂#

is unbiased for T. To provide the variance formula for this estimator, first decompose

t̂# 2 T as

t̂# 2 T ¼
S

X
�yk 2

U

X
yk

0

@

1

Aþ
R

X
�y*

k 2
S

X
�yk

0

@

1

Aþ
F

X
�y#

k 2
R

X
�y*

k

0

@

1

A

¼ AS þ BR þ CF :

Now let ESð�Þ ¼ Eð�jSÞ and VarSð�Þ ¼ Var ð�jSÞ refer, respectively, to the conditional

expectation and variance in phase two, given the outcome S of phase one. We also

define ERð�Þ ¼ Eð�jRÞ and VarRð�Þ ¼ Varð�jRÞ similarly. Then, the variance of the

three-phase estimator is

Varð t̂#Þ ¼ Varð t̂# 2 TÞ ¼ Var½Eð t̂# 2 TjSÞ� þ E½Varð t̂# 2 TjSÞ�: ð15Þ

Sang et al.: Adjusting for Misclassification 219

Unauthenticated
Download Date | 2/28/17 11:07 AM



Given the first phase sample, AS is constant, and the second and third phase estimators

are unbiased. Therefore,

Eð t̂# 2 TjSÞ ¼ EðAS þ BR þ CFjSÞ ¼ AS þ 0þ 0 ¼ AS: ð16Þ

Since

Varð t̂# 2 TjSÞ ¼ VarS½Eð t̂# 2 TjRÞ� þ ES½Varð t̂# 2 TjRÞ�; ð17Þ

by a similar argument as in (16), one can easily have

Varð t̂# 2 TjSÞ ¼ VarSðBRÞ þ ES½VarðCFjRÞ�: ð18Þ

From (15), (16), and (18),

Varð t̂#Þ ¼ VarðASÞ þ E{VarSðBRÞ þ ES½VarðCFjRÞ�}

¼ VarðASÞ þ E½VarSðBRÞ� þ E{ES½VarRðCFÞ�}: ð19Þ

Here,

VarðASÞ ¼
X

U

X
Dakp �yk �yp; ð20Þ

VarSðBRÞ ¼
X

S

X
DkpjS �y

*
k �y

*
p; ð21Þ

VarðCFjRÞ ¼ VarRðCFÞ ¼
X

R

X
DkpjR �y

#
k �y

#
p: ð22Þ

However, this variance formula (19) cannot be applied directly. Therefore, a design-

unbiased estimator of the variance is needed. For arbitrary constant ckp,

E ES E
X
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X
ckp=pkpjRjR

0

@

1
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=
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A ¼
X
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pakppkpjSckp ¼

X

U

X
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kpckp:

ð23Þ

Let ckp ¼ �D
*

kpjS �yk �yp in the above argument (23). A design-unbiased estimator of the first

term of (19) is

X

F

X
�D

*

kpjS �yk �yp=pkpjR: ð24Þ
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Let ckp ¼ �DkpjS �y
*
k �y

*
p. By using the first two equalities of (23), a design-unbiased estimator

of E½VarSðBRÞ� (the second term of (19)) is

X

F

X
�DkpjS �y

*
k �y

*
p=pkpjR: ð25Þ

Let ckp ¼ DkpjR �y
#
k �y

#
p. By using the first equality of (23), a design-unbiased estimator of

the first term of E{ES½VarRðCFÞ�} (the third term of (19)) is

X

F

X
DkpjR �y

#
k �y

#
p=pkpjR: ð26Þ

Putting (24), (25), and (26) together, we have (2), a design-unbiased estimator of (19).
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Changing Industrial Classification to SIC (2007) at the
UK Office for National Statistics

Paul A. Smith1 and Gareth G. James2

As part of the changes to industrial classifications following the United Nations’ revision to
the International Standard Industrial Classification, ISIC Rev. 4, the UK moved to its version
of a new classification between 2007 and 2011. We describe the processes involved in
changing an industrial classification, including model-based adjustment methods and changes
to survey designs and operations. We discuss the quality of the approaches used for different
time periods in the same series, and the ways in which consistent time series are produced for
users of economic statistics. We provide some general evaluation of the changeover, and
guidance on the best approaches to follow when updating classifications.

Key words: Conversion matrix; overlap control; quality assessment; classification change.

1. Introduction

Changes in standard classifications, such as that used for economic activity, usually occur

at reasonably regular, though infrequent intervals. They are required to ensure

classifications remain up-to-date and relevant, but when they occur, they consume large

amounts of resources and can create discontinuities in time series. Therefore, they need to

be carefully managed (MacDonald 1995). A change in the classification system has effects

in many of the stages of the statistical production process (as codified by, for example, the

Generic Statistical Business Process Model, UNECE 2013). In this article, we consider the

most recent classification change implemented by the UK Office for National Statistics

(ONS) as a model to demonstrate some techniques and derive some general guidance.

Industrial classifications are hierarchical. They are harmonised internationally down to

a particular level of detail, including:

. an international framework: the International Standard Industrial Classification

(ISIC, the current version is Rev. 4), produced by the United Nations,

. a regional implementation: in the European Union (EU), Eurostat (the statistical

office of the EU) currently uses NACE (Nomenclature statistique des Activités

q Statistics Sweden

1 Statistical Sciences Research Institute, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
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économiques dans la Communauté Européenne) Rev. 2 (a four-digit hierarchical

classification), which is consistent with ISIC Rev. 4 at the two-digit level, and

. national implementations, such as the UK’s Standard Industrial Classification (SIC).

Within the EU, Member States have the option to enhance NACE for their own

purposes, as long as the national classification corresponds with the harmonised

classification to at least a given level of detail (usually four-digit industry for NACE).

National implementations are also available in an appropriate native language with

support for dictionaries and look-ups to make the classification usable (see, for

example Beekman 1992).

Harmonised classifications within the UK have been an important way to make

statistics from different government departments comparable since the first UK SIC in

1947, and (with a few exceptions) have been used consistently throughout the UK’s

statistical system. The UK’s current classification is known as SIC (2007) (the ‘2007’

denoting the year of publication). The classification forms the basis of statistical outputs,

and provides a framework for combining estimates from different surveys in derived

statistics such as the National Accounts. The classification codes also provide one

dimension for stratification in business survey designs.

Changes in the classification in the UK have occurred about every 10–15 years (see

Smith and Penneck 2009 for an overview of industrial classifications used in UK statistics

since 1907). The most recent large changes in the UK’s classification were from SIC (80)

to SIC (92) – the implementation occurring in the mid-1990s – and from SIC (2003) to

SIC (2007). (The change from SIC (92) to SIC (2003) was not large, and involved only

minor changes at the most detailed level.)

The most recent change proved particularly challenging, as the new classification

(SIC (2007)) contained more detail than its predecessors, and included a number of

industry restructures. Examples include the separate identification of Repair and

Maintenance, a new section on Water Supply and related activities, a new section on

Information and Communication, the move of Retail Sale of Automotive Fuel from Motor

Trades to Retail, and the move of some publishing and printing activities from

Manufacturing to Services. Table 1 shows the changing numbers of categories at different

levels of the classification. The detail of the five-digit level was agreed in the UK

following a series of user consultations called ‘Operation 2007’ (Hughes 2008) run by a

cross-government group (including the ONS). Subdivisions of the four-digit codes were

agreed only where there was user demand, and where it would be practical and meaningful

to distinguish between the proposed subcategories. It can be seen that fewer

Table 1. Comparison of detail (number of categories) between SIC (2003)

and SIC (2007).

SIC (2003) SIC (2007)

Section (letter) 17 21
Division (two-digit) 62 88
Group (three-digit) 225 272
Class (four-digit) 514 615
Subclass (five-digit) 699 728
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disaggregations of four-digit codes to five-digit codes were accepted under SIC (2007)

than under SIC (2003), probably reflecting the greater detail already present in the new

four-digit codes, but also reflecting a reluctance to create five-digit codes unless there was

a strong case that they were both necessary and practicable. That cross-government group

also coordinated the implementation of SIC (2007) across the Government Statistical

Service in the UK, following the timetable set by Eurostat for all EU Member States.

The change in industrial classification was also aligned with a change to the European

product classification to CPA 2008 (Classification of Products by Activity), and this

particularly affected the National Accounts, which use both product and industry estimates

in producing balanced measures of the national economy. The scale of these changes

called for review of most aspects of the methodology used in business surveys in the ONS

to allow the production of estimates on the new classification.

Planning for the project and work to get agreement on the classification breakdowns

using the fifth digits started in the early 2000s, so that the new classification, with its index

and accompanying notes for coding could be published in January 2007. Thereafter, the

work to implement the new classification in surveys and outputs really began; the timing

of changes is outlined in Figure 1. All organisations on the Inter-Departmental Business

Register (IDBR) – the ONS’s sampling frame for most business surveys – were dual-

coded during 2007, so that by January 2008 all had a SIC (2003) and a SIC (2007) code.

The annual, structural surveys collecting information about activity in 2008 were the first

to be sampled on the new classification, with selections taking place from the IDBR

towards the end of 2008. The first outputs on the new classification, from short-period

(monthly and quarterly) surveys, were reported to Eurostat from the start of 2009. The old

classification was still used for sample selection in monthly and quarterly surveys until the

start of 2010, however, and inputs to National Accounts were retained on the SIC (2003)

basis until the publication of the Blue Book (the UK’s main National Accounts

publication) in September 2011, after which time all reporting of economic output from

the ONS has used the new classification.

Timetable of implementation of SIC (2007) at ONS:

The prolonged timetable has created some interesting challenges, particularly around

the publication of two simultaneous sets of outputs. In some cases, publication was

retrospective, with backcasting (see Subsection 4.1) used to estimate how historical

outputs would have looked on the new classification. In other cases, publication was

(almost) concurrent, with more recent periods being reported on both classifications.

Pre-2007 Agreement of fifth digits in SIC codes
2007 Addition of SIC (2007) codes to the IDBR, available from

January 2008
Late 2008 Selection of first annual survey samples using SIC (2007)

stratification
Jan/Q1 2009 Delivery of short-period statistics to Eurostat using SIC (2007)
Jan/Q1 2010 Short-period surveys stratified by SIC (2007); outputs still required

in National Accounts on SIC (2003)
Sep 2011 National Accounts move to SIC (2007) with publication of the

Blue Book
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In this article we review the implementation of SIC (2007), and the developments and

changes required in the methodology of surveys, particularly with respect to consistency

of estimates across time. Section 2 covers the changes to the IDBR, and Section 3

describes changes to the sample designs of business surveys largely (but not wholly) to

accommodate the new classification. Section 4 covers different methods of estimating

using the new classification and includes comments on some of the effects on the National

Accounts. Section 5 discusses the impacts on quality of estimates using the standard

European dimensions of output quality (Eurostat 2015a), and the article concludes with

some general comments about the implementation, and includes some lessons learned and

suggestions for future implementations.

2. The Business Register

The IDBR is maintained by the ONS, and is the main sampling frame used for official

business surveys in the UK. It contains information on about 2.7 million sites (known as

local units (LUs) – shops, factories, offices, and so on), which are grouped into about 2.1

million reporting units (RUs), which are the sampling units used in most ONS business

surveys (in this article we will use ‘business’ synonymously with RU for this reason). One

or more RUs form an enterprise, which is the smallest autonomous business structure in

the IDBR. In the majority of cases, an enterprise has one RU and one LU, and the three

units are indistinguishable; even large enterprises normally consist of one RU, although a

relatively small number are split into multiple RUs to facilitate data collection (for more

information see Smith et al. 2003). The distribution of enterprise sizes is very skewed, and

large proportions of activity and employment take place in enterprises composed of

multiple LUs.

The IDBR contains a range of variables for each type of unit, the values of which are

obtained from various data sources, with a hierarchy specifying which sources are

preferred. One of the most important variables ascribed to the unit is the SIC code,

which represents its principal economic activity, and rules exist to determine the SIC

code for enterprises and RUs based on the codes of the LUs (for a simple summary see

Smith 2013, Subsection 5.2.1.2 and Box 5.1). A stable SIC code is stored for sampling

purposes, and this code is used throughout a calendar year for monthly surveys, for

example. Then, reclassification effects can be saved up and handled together at a fixed

point, usually the year-end. A ‘live’ classification variable stores the most up-to-date SIC

code. Updating the IDBR includes copying the current live codes to the stable codes

Agree classification
Add new classification to IDBR
BRES, ABS and PRODCOM based on SIC (2007) ↑selection publication↑

Other annual surveys based on SIC (2007) ↑selection publication↑

Monthly surveys based on SIC (2007) selection→ ←publication

National Accounts on SIC (2007)

2011

publication↑

2006 2007 2008 2009 2010

Fig. 1. Diagrammatic representation of transition to SIC (2007) in ONS. Only the first instance of each survey

with design and sample selection updated to the new classification is represented. Fading shows continuing work

leading up to or following an implementation. IDBR ¼ Inter-Departmental Business Register, BRES ¼ Business

Register and Employment Survey, ABS ¼ Annual Business Survey and PRODCOM ¼ Products of the European

Community survey.
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once a year. Additional variables were added to the IDBR in preparation for the change

to SIC (2007), so that (stable and live) codes for both SIC (2003) and SIC (2007) could

be stored for each unit.

One source of information about new businesses in the IDBR is Value Added Tax (VAT)

records from HM Revenue and Customs (HMRC). When a business is formed, it must

describe its activity when it registers for VAT, and these descriptions are coded by

HMRC using automated coding software (called ACTR – Automatic Coding by Text

Recognition). The software and coding dictionary are harmonised across government

departments, so that there is consistency in the way in which classification codes are

assigned. Both the original descriptions and the assigned codes are passed to the IDBR and

stored, so the descriptions are available for recoding to deal with future classification

updates. For businesses already in the IDBR, another source of information is the ONS’s

annual Business Register and Employment Survey (BRES), which updates register

information and collects employment variables; the register-updating part has previously

been administered separately. Not all businesses are surveyed in BRES, but all large

businesses are included every year, and medium-sized ones once every third or fourth year.

The smallest businesses are included in BRES only with small sampling fractions, and

primarily for estimation of employment, so classification information for such businesses in

the IDBR is derived mainly from the administrative data sources. Businesses selected for

BRES are asked to supply a written description of the principal economic activity at each

site (LU), and these are then coded to the SIC using the ACTR automated coder (Williams

2006). (Previous descriptions of economic activity are prefilled on the questionnaire for

existing sites to make the respondents’ task less onerous – only changes need be notified.)

To facilitate coding to the new classification, a knowledge base for the new

classification was developed by constructing a list of full descriptions of economic

activity. These full descriptions were edited by a classification specialist for consistency,

and used as the basis for the automated coder to code business descriptions to SIC (2007).

This enabled dual coding of most businesses in the IDBR (1.7 million of the 2.7 million

local units, for which original business descriptions were available and usable). For the

remaining units – those without a description, or where the description was insufficient –

SIC (2007) codes were assigned probabilistically, based on the distributions observed in

those units that had been dual-coded. Of course, any SIC (2003) codes that mapped

entirely to just one SIC (2007) did not need to go through this process. Based on

reclassifications of businesses, 462 of the five-digit SIC (2003) codes matched exactly to a

five-digit SIC (2007) code; 229 matched to multiple codes, and the eight remaining codes

did not have any businesses classified to them. Of SIC (2007) five-digit codes, 503

matched one code, 205 matched multiple codes, and 20 had no businesses. Some checking

and manual intervention was necessary to avoid problems arising from the descriptions

(and to feed these back as improvements to the automated coder), but the IDBR was fully

dual-coded before January 2008. However, feedback on codes from businesses meant that

further cleaning continued, and some further changes in the register were quite evident,

particularly in the early months of 2008. There were some noticeable changes in the

proportion of SIC (2003) industries contributing to SIC (2007) industries early in the year

(Figure 2), but by mid-2008 these proportions had largely stabilised. The same sort of

pattern is shown for local units in aggregate in Scottish Government (2012).
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The new SIC (2007) codes were used for sample selection purposes (as stratification

variables) for the first time in the autumn of 2008, when samples for three annual surveys

were selected: BRES, the Annual Business Survey (ABS) and PRODCOM (PRODucts

of the European COMmunity; the UK implementation is headed ‘UK manufacturers sales

by product’).

3. Survey Redesign

The changes in the SIC meant that the business surveys needed to be redesigned. Almost

all of the ONS’s business surveys are stratified by a cross-classification of industry (SIC)

and size, with size usually defined as employment-based sizebands. Therefore changing

the surveys’ sample designs to the new codes, together with reallocating the (fixed) sample

size was the minimum requirement, but in many cases the opportunity was taken to

introduce other improvements at the same time.

An example of wider survey redesign was the introduction of the Monthly Business

Survey (MBS) at the ONS, of which an overview is given here, and a more detailed

account can be found in Taylor et al. (2011). The MBS was introduced as a replacement

for a number of short-period surveys, each covering different parts of the economy

(namely production, and parts of the services sector). Improvements to the surveys had

been planned for some time, but the need to introduce the new classification made this

work a higher priority. (Here, we see one of the incidental effects of changing a

classification, that it often prompts implementation of further changes.) The new design

covered much more of the economy as a single survey (construction and agriculture were

not included initially, although construction surveys have since been added to the MBS

family). A combined survey has advantages when businesses change classification,

particularly for moves between the production and services sectors. Such a difference does

not now result in a change to the title of the questionnaires, which previously might

have seen the same business receive a ‘Manufacturing’ questionnaire on one survey and a

‘Services’ questionnaire on another. Thus, a combined approach removes the source of
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Fig. 2. Proportions of undeflated turnover from an original SIC (2003)-based classification code contributing to

a new SIC (2007) code in the early months of 2008, based on dual-coded microdata from the IDBR. Here, the

classifications are aggregates of industries used for UK Supply and Use Tables (SUT); the identities of

the classifications are withheld for disclosure control reasons. Note that there is no data point for July 2008.

(a) A typical example with little variation; (b) some industries had noticeable changes in early 2008 before

stabilising.
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some queries from businesses, and it also facilitates easier transfer of data between

processing systems. In addition to changes in stratification and sample allocation (detailed

further, below), improvements were made to the coverage, questionnaire design, and

editing and imputation methodology, with the aim of introducing greater standardisation

and therefore more coherence. This approach followed general practice, which often sees

several updates to a survey implemented simultaneously. This approach can be convenient

for users, as they need to deal with only one discontinuity. On the other hand, some users

want to know how much of any discontinuity is attributable to each development, and

these may not be separately estimable when changes are introduced together.

The first task in designing the new MBS was to decide on appropriate SIC (2007) codes

to define the industry strata. This was not a straightforward task, as different levels of

the hierarchy and different groupings of codes can be used, as was the case across its

predecessor surveys. Consultations were carried out with the main customer of the

surveys, National Accounts, so that the strata would be consistent with their requirements,

and based around the industrial groupings used in the supply and use tables (SUTs). In

2009, those were as yet undefined under SIC (2007), which required some work to be

conducted quickly to establish the likely groupings to be used in National Accounts from

2011 onwards when SIC (2007) would be introduced. The results of this exercise were

used as the basis for the MBS stratification. (Further details of the 114 input-output

industry groups, which would be defined for use in the SUTs under the new classification

can be found in Drew and Dunn 2011.) Many of the SIC (2007) SUT industry groups were

formed at the two- or three-digit SIC code level, and meant that SIC (2007) stratification of

the MBS could be carried out at a more aggregated level than in the previous designs based

on SIC (2003) – only around 150 industries instead of 300 (Taylor et al. 2011). A similar

approach, with the stratification detail being driven by the principal output requirements,

was taken when redesigning other surveys. Use of a broader stratification gave more

flexibility to produce an efficient sample allocation without increasing the fixed sample

size. However, it should be noted that this also increased some estimator variances

(particularly for detailed industry classifications that no longer formed strata), as domain

estimation was needed to get the full SIC (2007) industry detail, and also for the SIC

(2003)-based estimates that were still required by National Accounts until their move to

SIC (2007).

With industry stratum boundaries defined, a review was conducted as to whether the

sizebands, which separate the industry strata into sampling strata, should be retained or

updated. Some of this work was necessary, as various combinations of sizebands were

used across the predecessor surveys, but the opportunity was taken to conduct a wider

review. In many cases, updated sizeband boundaries were introduced to improve the

design, even in industries which mapped one-to-one from SIC (2003) to SIC (2007).

However, the number of sizebands was kept the same as changing this would have

necessitated changes to the processing systems that could not have been easily

accommodated at the same time.

Samples for business surveys at the ONS are usually allocated using principles of

Neyman allocation (Cochran 1977, 98-99), although adapted to account for various

practical considerations and precision requirements on some lower-level outputs. The

process requires information on the number of businesses in each sampling stratum
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(obtained from the IDBR) and a measure of the variability in the responses, given the

estimator used within each sampling stratum. The standard approach for estimating the

population variance is to use information from survey responses in a particular stratum in a

previous period:

v̂h ¼
1

nh 2 1 i[h

X
ð yi 2 ŷiÞ

2 ð1Þ

where yi is the previous period response for business i, nh is the number of responses in

stratum h in that period, and ŷi is an estimate of the mean for unit i appropriate for the

estimation model in use in the survey (e.g., the overall mean �y for expansion estimation, or

b xi for ratio estimation with auxiliary variable x). The same basic approach applies when

h represents old strata or when it represents the new strata, though with the change in

classifications, past responses for use in the new SIC (2007) strata sometimes come from

businesses in several different SIC (2003)-based strata, and these needed to be weighted

appropriately. Standard options for a weighted variance include:

v̂g ¼
1

i[g

X
di

" #
2 1

i[g

X
dið yi 2 ~yÞ2 ð2Þ

and

v̂g ¼
1

ðng 2 1Þ�d i[g

X
dið yi 2 ~yÞ2 ð3Þ

where di is the inverse of the sampling probability for unit i, �d ¼ 1
ng

i[g

P
di, g indexes the new

(SIC (2007) £ sizeband) strata, and ~y ¼
i[g

P
diŷi=

i[g

P
di is a weighted estimate of the mean

of the y appropriate for the estimation model used in the survey. Only (3) collapses to (1)

when di ¼ k ; i. Even what may appear to be a relatively simple case, for example of two

old (SIC (2003)) industry strata being mapped entirely into one new (SIC (2007)) industry

stratum may require this treatment if different employment sizebands or sampling

fractions were used in the old industries or between the old and new industries.

A similar pooling, but based on an assumption that variances within a group of strata are

equal, is presented in Van den Brakel (2010, Equation (30)); this might be a better

approach where sample sizes in group g are small, which may make variance estimates

unstable. In ONS business surveys, groups g based on SIC (2007) were of sufficient size to

use the approach in (2). For monthly surveys, variances were calculated separately for

each month over a year, and the average was used in allocation (Taylor et al. 2011). In

some cases, a new SIC (2007) sampling stratum had no previous information to use, since

the SIC (2003) equivalent industry was out of scope. In these cases, an allocation was

made based on variances derived from IDBR turnover data; the resulting allocation was

checked and adjusted in cases where it looked implausible. Thus, the final allocations were

based on a number of procedures and assumptions, and were reviewed when real data had

been collected, resulting in some minor adjustments.

The ONS uses a Permanent Random Number (PRN) system to coordinate its sampling

from the IDBR (Ohlsson 1995, Smith et al. 2003). Each business in the IDBR is allocated a
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random number in the range (0,1] which it retains thereafter. When a sample is drawn, the

businesses within a stratum are ordered by PRN (along the ‘PRN line’) and the sample

consists of a consecutive group of businesses in this ordering, with rotation achieved by

adding businesses with the next largest PRNs and dropping businesses with the smallest

PRNs. The PRN line is considered to ‘wrap around’ from 1 back to 0.

The sample selection procedures employed specify how long a business should expect

to be retained in a survey, how many periods should elapse before it is selected in the

same survey again, and for the smallest businesses, a maximum of one survey at any

given time. The change in industry stratification using the new classifications meant that

currently sampled businesses from several different strata in the old design formed the

initial sample in a new stratum. If there was complete freedom to choose which

businesses to include in the sample, then it would be possible to maximise the overlap

appropriately using optimisation methods (see Mach et al. 2006, Johnson et al. 2012 and

Schiopu-Kratina et al. 2014 for some examples of suitable methods); similarly, if

particular surveys were restricted to parts of the PRN line (as in the Swedish system

SAMU, see Lindblom 2003), the problem would be simplified. But in the ONS there are

no restrictions to parts of the line for particular surveys, and the sample selection is

managed by the PRN rotation system in the IDBR, so it was important to retain the

existing system.

By using the PRNs for businesses in each stratum in the design using the new

classification, we automatically achieve the required selection probabilities (each PRN

sample is a simple random sample of the stratum population, using the properties in

Ohlsson 1995). We have a choice of which PRN to use as the starting value for the new

rotation, and the best start is the one which maximises the overlap, but also obeys rules on

time in survey and survey holidays. The best starting PRN was found by evaluating a

penalty function for each possible PRN start (because the PRNs in any particular register

are fixed, there are Nh possible starts in stratum h). The PRN start corresponding with the

minimum value of this penalty was chosen as the start for the sample on the new

classification. The penalty is

Xr

t¼1 i[h

X
ðLit þ Bit þ DitÞ

where r is the rotation period for the survey, t sums over a full rotation of the survey, the

three components of the penalty function were defined as:

Lit ¼
r 2 uit if i [ Sht and 0 , uit , r

0 otherwise

(

Bit ¼
r if i [ Sht and sit . r

0 otherwise

(
;

Dit ¼
r 2 sit if i � Sht and 0 , sit , r

0 otherwise

(
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Sht is the set of sample units defined by the PRNs at period t, sit is the number of

consecutive periods before period t for which unit i was selected in this survey (¼ 0 if it

was not selected in period t–1), and uit is the number of consecutive periods before period

t for which unit i was not selected in this survey (¼ 0 if it was selected in period t–1).

L penalises units which have an insufficient holiday between periods in the survey (taking

a holiday of length at least r as the target), B penalises units which spend more than r

consecutive periods in the sample (and more heavily than the expected sit 2 r in order to

penalise breaches to published expectations for the length of time in particular surveys),

and D penalises units which are dropped from the survey early, that is, before they have

spent r periods in the sample. In practice, D tends to dominate the penalty function, but this

is acceptable because the minimum of
PP

Dit occurs where most previously sampled

units (which have not reached r periods in sample) are being reincluded in the sample.

This algorithm was applied stratum-by-stratum and survey-by-survey, so it did not

coordinate samples across surveys. Nevertheless, it provided a way to maintain a large

overlap within the existing system, although the resulting overlap was often smaller than

would have been achieved had the design remained unchanged. This resulted in larger

variances in estimates of period to period change across the transition. A number of further

initiatives were introduced to try to maximise response and realise the largest possible

overlap, including giving advance notice to businesses of any changes in the

questionnaire, and increasing resources for response-chasing in these periods.

4. Creation of New Outputs

For the most part, survey outputs at ONS have been produced on the same classification

as the stratification. However, with a change in classification, outputs have been required

on both classifications. Careful consideration has been needed to ensure that this is

achieved sensibly.

Two broad approaches have been used: backcasting and dual-running. Backcasting is a

macro-method, because it uses only aggregate statistics as the basis for a model, which is

used to produce estimates on a different classification. Dual-running is a micro-method,

because it uses the microdata, usually dual-coded, as the basis for estimation on both

classifications.

The principal use of backcasting has been in the production of historical time series on

SIC (2007), formerly available only under SIC (2003). For many series, backcasting has

been used to present a reclassified series starting in the 1990s. This corresponds with

survey redesigns in the UK (for example, the Annual Business Inquiry, now the Annual

Business Survey), which was introduced in 1997 (Smith et al. 2003), so many annual series

start from this date. This provides a sufficiently long run of reclassified estimates for many

uses. Econometric models, however, may require very long spans of data, so in some cases

longer series have been developed, though the method of backcasting should be taken into

account when developing and using such models.

Dual-running, the micro-method, may be thought of as the production of two sets of

estimates (on SIC (2003) and SIC (2007)) with respect to the same reference period, at

approximately the same time. It has been used for current or recent periods where dual-

coded register data are available. This method was used both to produce reclassified
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estimates for SIC (2003)-stratified surveys (for example, the short-period surveys in 2009

were sampled using SIC (2003), but SIC (2007) outputs were required by Eurostat), and

for SIC (2007)-stratified surveys (for example the short-period surveys in 2010, which

were stratified and processed under SIC (2007), but where SIC (2003) outputs were also

required for National Accounts until the publication of the 2011 Blue Book). See Van den

Brakel (2010) for a discussion of stratification and estimation methods for these two

micro-method scenarios, and Subsection 4.2 below.

The two methods (the macro-method of backcasting, and the micro-method of dual-

running) were used at the ONS to produce different parts of the same time series.

Backcasting is used for estimates and outputs referring to periods further in the past, and

dual-running is used for more recent or current periods. Therefore, the time series

produced with SIC (2007) have distinct sections to them:

. the oldest periods estimated directly using the old classification and adjusted by

backcasting,

. more recent periods with data produced by dual-running from surveys designed on

SIC (2003), and

. the most recent periods, based on surveys redesigned on SIC (2007).

These sections are linked together where appropriate to avoid discontinuities (see De la

Fuente Moreno 2014 for information on linking and splicing methods). Part of such a

series for the Retail Sales Index is shown in Figure 3. We now examine more closely the

macro- and micro-methods used.
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Fig. 3. An example reclassified series composed of linked parts – yearly movements in Retail Sales value (i.e.,

not deflated), seasonally adjusted, December 2006-December 2009 (redrawn from McLaren 2010, Figure 5). The

definition of retailing is expanded in SIC (2007) to include automotive fuels (previously collected in another

survey, as it was part of Motor Trades), and the pattern in the fuel series accounts for the very different patterns of

movement in the last six months of 2008. The backcast portion of the SIC (2007) series contains an estimate for

automotive fuels, derived from the survey which previously included it, converted to the new classification. The

whole period shown is based on a stratification using SIC (2003) – the change to SIC (2007) stratification came in

January 2010.
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4.1. Backcasting

Backcasting, the process used to derive most historical estimates using SIC (2007) is a

macro-method, which is basically dependent on fitting a suitable model to the available

aggregate data. The model is assumed to hold over a long time period. Such methods are

applied only to the industry-level (that is, aggregate) estimates, and do not involve the

microdata in any direct way other than (sometimes) to fit the model. Conversion matrices

(or concordances) are the most frequently used method for codifying these models for

reclassifications; such methods are commonly used by national statistical institutes (e.g.,

Bayard and Klimek 2004, Russell et al. 2004, Yuskavage 2007) when handling a change

in classifications. Indeed, this approach was used by the ONS at the last major

classification change, to SIC (92) in the mid-1990s. The major advantage of such

methods lies in their efficiency: there is no need to retrieve and recode historical

microdata (which may no longer exist, or may be impossible to recode), and the quality

of the resulting estimates is usually acceptable. However, they do rely on assumptions

about the stability and appropriateness of the model, particularly where they are used for

conversion over a long period. Where stability cannot be assumed, it may be possible to

use historical data to develop a sequence of time-varying conversion matrices

(Yuskavage 2007). In the change in the ONS, conversion matrices from 2008 were used

consistently for years before 2008, using the assumption of stability. This was largely

because of a lack of resources for recoding earlier versions of the IDBR.

Conversion matrices do not deal with classification changes which incorporate or

remove whole areas of activity (structural zeroes), as there is then no information to which

to apply conversion factors to obtain an estimate. A further disadvantage of the application

of fixed conversion matrices is that historical reclassifications of individual large

businesses will be missed (since the same, recent proportions are used to split and

reaggregate estimates for all historical periods), which may lead to unrealistic results. This

emphasises the need for manual examination of individual cases and converted series to

identify when the assumptions about model stability have broken down. In these cases, a

suitable adjustment can be made to the converted series.

The foundation of conversion matrices is a dual-coded business register or census, from

which cross-tabulations show the proportions of businesses that map from a SIC (2003)

code (or group of codes) to a SIC (2007) code (or group of codes), and vice versa. In the

ONS, such matrices were produced from extracts of the IDBR, based on the most detailed

(five-digit) level of classification, with proportions reflecting business sizes (in terms of

turnover and employment). These matrices were then used to apportion SIC (2003)

aggregate estimates to SIC (2007) codes, which were then resummed to derive SIC (2007)

aggregate estimates for historical periods.

Conversion matrix options: The choice of which conversion matrices to use was

decided on a case-by-case basis for the various ONS outputs, with compromises being

inevitable; consistency was kept wherever possible:

. Timing: For most of the short-period surveys, conversion matrices were used to

create SIC (2007)-based estimates for reference periods up to the end of 2008, with

micro-methods (see below) being used from the start of 2009. In order to estimate and
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link out any discontinuities, conversion matrix-based estimates were also produced

for 2009, and the matrices themselves were produced with IDBR extracts taken at

that time. Matrices were somewhat volatile through early-2008, caused by the new

SIC (2007) codes settling (Figure 2), but became much more stable later in the year.

Early conversions were therefore of lower quality, but were redone when the

stabilised matrices were available. Further register updates were applied from the

2008 structural surveys, further increasing quality and stability.

. Base variable: Most ONS business survey estimates are based on ratio estimation

(Smith et al. 2003), and outputs that use register employment as an auxiliary variable

in estimation (generally those with labour-market related outputs) used conversion

matrices based on employment size, whereas those that use turnover as an auxiliary

variable (generally related to business output) used conversion matrices based on

turnover size. Note that this approach can reduce the consistency in estimates of

variables derived from both types of data, such as productivity. The inconsistency

was accepted in ONS because of the benefits of using conversion matrices

appropriate to the variables, but other decisions would be possible. Matrices based on

counts of businesses were generally not used, but would be appropriate if trying to

backcast series of estimates of numbers of businesses.

. Statistical units: The matrices could be calculated separately using different types

of units as their basis; the usual survey practice guided which one to use. Most ONS

business surveys are based on responses from RUs (see Section 2), and these used

conversion matrices calculated from RU information. Labour market estimates are

based on additional information from LUs, and these series used conversion matrices

calculated from LU information.

. Level of conversion: Although the matrices are usually calculated at the five-digit

classification level, alternative levels of aggregation can be used. Naturally, the level

of the series (estimates) to be converted will largely inform the decision, but coding

error would be more likely at lower levels (the detail may be incorrect within the

appropriate broad industry group). Examination of the conversions at detailed level in

the ONS suggested that the timing of extracts (Figure 2) from the IDBR had a larger

effect on coding error than the choice of the level at which the conversion matrix was

applied.

. In all cases, each derived series was carefully checked, and this allowed manual

interventions to be made where appropriate.

The settling of the SIC (2007) codes on the IDBR also had some notable effects on the

conversion matrices. Many of the initial codes were imputed from old SIC (2003) codes, as

there was no business description available, and these cases could only follow the table of

‘official’ correspondences. Since then, many of the imputed codes have been replaced with

directly-coded SIC (2007) codes, which has seen the number of nonzero correspondences

in the cross-classified tables increase (sometimes codes derived from business descriptions

fall outside the ‘official’ correspondences). As an example, in the matrices for conversion

from four-digit to three-digit codes (with a few exceptions), the number of nonempty cells

approximately doubled from January to May 2008. (Of course, some of the changes in SIC

(2007) codes may reflect actual changes in activity after the SIC (2003) code was assigned,
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or errors in the original assignment of SIC (2003) codes, as well as errors in the SIC

(2007) code.)

There are also choices to be made regarding the stage of processing at which conversion

should occur. ONS’s Index of Production (IoP), for example, is largely based around

estimates of turnover, which are then deflated using price indices before being seasonally

adjusted. Thus, for the IoP, there were three reasonable choices regarding conversion:

(1) conversion of all inputs (turnover estimates and price indices); (2) conversion after

deflation; or (3) conversion after seasonal adjustment. Investigations revealed that the

differences between deflating before conversion and conversion followed by deflation

seem to be generally small. The largest effects were present where there were changes over

time in the weights of components with different deflators. Consultation with experts

suggests that converting after deflation might make more sense economically. However,

there are practical considerations, such as coordination of the timing of the reclassification

of the deflator (a price index) and the data to which it is applied, which may be more

important than the choice of stage to convert. One reviewer suggested that another reason

for converting the values before deflation is that the conversion matrix was developed

using these values. Relationships among the variables in these matrices are more likely to

remain stable than the relationships between variables before and after deflation. The need

for a history for deflators on the new classification, too, suggested that conversion of

deflators first would give the best coherence between the various outputs of the

reclassification. A considerable amount of checking was required to ensure that the

historical price indices were coherent and credible.

Applying the conversion matrix to seasonally adjusted series would give linear

combinations of the seasonally adjusted input series, and these outputs should, in general,

appear seasonally adjusted. This seems to work in practice, although there remains a

concern that a linear combination of the errors in the seasonal adjustment decomposition

may show some residual seasonality. In line with the principles in the European Statistical

System Guidelines on Seasonal Adjustment (Eurostat 2015b Sec. 3.4) we therefore prefer

direct seasonal adjustment of the new series. This allows for different seasonal patterns in

the new component series. Therefore we prefer conversion of all inputs (including the

deflators) to the new classification, and for seasonal adjustment to take place after deflation.

Conversion matrices were made available for users to do their own conversions. As well

as the turnover- and employment-based versions, a conversion matrix using the number of

units was produced and published (ONS 2010); each published matrix had entries rounded,

where appropriate, to reduce the risk of disclosure.

A further use of conversion matrices, noted here for completeness, can lie in the dual-

coding of microdata. The ONS found a demand for this on historical social survey datasets,

which are made available for use by approved researchers. The actual application was on

Occupational Classification codes, but the principle for Industrial Classification codes

would be the same. The datasets contained an old classification code for each case (row),

for which users wanted to assign a new code. Naturally, without a frame (or the ability to

link to one) and no means to recontact the respondent, there is no way of gathering the

required information precisely.

However, a new classification code can be assigned probabilistically using proportions

from a conversion matrix. As an example, if an old code maps to three new codes in the
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ratio 60%: 30%: 10%, then a Uniform (0,1) random number can be generated for the case,

and a new code generated according to which of the intervals (0.0,0.6], (0.6, 0.9] or (0.9,

1.0] the random number lies in. Although this does not guarantee that the code for any

particular case is correct, at an aggregate level distributions should be reasonable. The

method can be refined further, as required, for example for longitudinal or panel data, and

judicious use of case IDs as random number generator seeds can be used to ensure

consistency of coding over time.

To this end, the ONS made conversion matrices and program code in the more popular

statistical programming languages available to researchers to dual-code their own datasets

in a controlled way.

4.2. Microdata Methods

The foundation of micro-methods lies in the survey responses themselves. Each sampled

unit has two codes, SIC (2003) and SIC (2007), one of which will have been used for

stratification, and the returns are reaggregated to form estimates on the other classification.

There are different methods that may be used for this (domain estimation, poststratification,

and others), each with its own advantages and disadvantages. Four alternative approaches

are considered by Van den Brakel (2010). The method most commonly used for ONS

outputs, a domain estimation approach, is described here.

We first note that estimates for most ONS business surveys are derived using the ratio

estimator. For an estimated total of a variable y, t̂y, this may be written as follows (Särndal

et al. 1992, Eq. 6.5.9):

t̂y ¼
i[s

X
digiyi

where:

di is the design weight (the inverse of the selection probability), and reflects the

stratification of the survey.

gi is a calibration factor, in general determined by defining calibration groups and an

appropriate estimator (from a very wide class). The specific case of the (within-stratum)

ratio estimator gives gi ¼ Xh=
i[sh

P
dixi for i in stratum h where Xh is the known total of x.

yi is the (sometimes Winsorised) survey response, or imputed value in the case of

nonresponse, for the variable y. i indexes the businesses, and s is the selected sample. It

was decided to maintain the Winsorisation from the original classification for resource

and consistency reasons. However, another option would be to reassess outliers on the

poststratification on the new classification.

The choice of the most appropriate calibration groups for outputs was discussed at

length, and the Government Statistical Service Methodology Advisory Committee was

consulted (GSS MAC 2008). Under stratification by only one SIC, the calibration groups

are usually just the sampling strata, or groups of sampling strata. However, with two

classifications being used for simultaneous outputs, the choice is not clear. Any change in

the groups (for example, to cross-classification of the SICs) would lead to a break in the

time series, and would also present a risk of small sample sizes in each group. Therefore, the
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decision was made to calibrate the SIC (2003) estimates within SIC (2003)-defined groups,

and SIC (2007) estimates within SIC (2007)-defined groups, with the compromise of the

two sets of outputs being calibrated differently. Thus, for example, during periods in which

the surveys were stratified by SIC (2003), the two sets of estimates would be compiled as

follows:

t̂
03
y ¼

i[s

X
d03

i g03
i yi

t̂
07
y ¼

i[s

X
d03

i g07
i yi

(with natural notation) and when stratified by SIC (2007), the estimates would be given by

t̂
03
y ¼

i[s

X
d07

i g03
i yi

t̂
07
y ¼

i[s

X
d07

i g07
i yi

It was felt that having consistency within time periods was better than having consistency

between the SIC (2003) and SIC (2007) outputs. This is a composition of the methods in

Sections 3 and 5 of Van den Brakel (2010), with a need for a way to link the estimates from

the two approaches at the transition point.

4.3. National Accounts

The main conversions for National Accounts purposes were based on SUTs. These provide

the basis for calculation of Gross Value Added (GVA) weights to allow other elements of

the National Accounts to be weighted together appropriately for the new classification.

The industrial groupings to be used for SUTs based on the new classification were agreed

quite early, so that they could be used as a basis for the revised stratifications in surveys

(see Section 3). The change to a new product classification, CPA 2008, occurred at the

same time, which had an effect on the way groups were put together. A consultation

provided evidence which was used to form a 114-group classification consistent with SIC

(2007) and CPA 2008, which encompassed international reporting requirements and

provided some additional detail for users within the UK. These groups form the main

processing level in the construction of the National Accounts, and component processes

have also moved to this structure, introducing greater harmonisation into National

Accounts compilation. We focus on the industrial classification changes rather than the

product classification ones in this section.

Supply-side estimates in the SUTs up to 2006 were converted by the application of the

conversion matrices used for the surveys. The later conversion of National Accounts

allowed a stable set of matrices to be used throughout the accounts, mostly derived from

the final IDBR reclassification, but with specific information for industries not covered by

the IDBR derived from a range of different sources and used to complete the conversion.

Since the basis of National Accounts is monetary, the turnover-based versions of the

conversion matrices were used. Such a conversion is closest to the concepts used in

measuring output and intermediate consumption. The IDBR does not adequately cover

financial industries and nonmarket producers, and in these cases turnover is often not a
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suitable target for measuring output. Thus, other sources were used to derive conversion

factors here (many of which were largely unaffected by the change in classification, and so

could be dealt with by one-to-one conversions), so that all the elements of the economy

were covered. Once the full matrix was available, it was used to convert the industry totals

(on one margin of the SUTs) to give totals on the SIC (2007) classification.

SUTs contain considerable detail on products, some of which is derived from the EU’s

harmonised product survey, PRODCOM. The parallel update to the EU’s product

classification system (to CPA 2008) allowed product patterns in SIC (2003) industries to be

converted to CPA 2008. Then, the product distributions were applied to the converted

industry totals by associating SIC (2007) industries with one or more SIC (2003) industries

(Drew and Dunn 2011). This led to some inconsistencies between the industry totals and the

product totals, which required some further balancing interventions. The SUT is a matrix,

and its major entries are generally on the diagonal (showing the principal products of the

various industries). In cases where manual interventions were required, there was therefore

a working assumption that the diagonal entries should be maintained as far as possible.

While aggregate values should conceptually remain unchanged through such a conversion

process, there were some minor revisions to totals in the SUTs up to 2006 in moving to the

SIC (2007) classification. The largest of these was 0.05% of the total, so the old and new

series are indistinguishable graphically. The overall effect of the classification change on

GDP is included in the differences shown in Figure 4; it is confounded with some other

changes introduced at the same time, so it is not as clear as having the classification change

separately identified, but it gives an impression of the reclassification effect.

The SUTs for 2007 to 2009 could be based on data classified according to SIC (2007).

The 2007 estimates from the ABS, the main survey source for SUTs, were reworked using

the SIC (2007) classification, and from 2008 onwards the ABS was designed on SIC
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Fig. 4. Time series of quarterly changes (%) in UK GDP before and after the implementation of the

reclassification to SIC (2007). The differences are due to reclassification and some additional changes made at

the same time, so only part of the difference is the reclassification effect.

Smith and James: Changing Industrial Classifications 239

Unauthenticated
Download Date | 2/28/17 11:08 AM



(2007) and could be used directly. The 2008 and 2009 ABS estimates were initially

converted, and used with existing monthly movements to provide an interpolated series of

within-year changes. Such changes are important and for interpretation they need to be

seasonally adjusted. In order for seasonal adjustment of this derived monthly series on the

new classification to be sufficiently stable, there was a need for a longer time series, so

additional years of ABS data were also converted and monthly paths interpolated.

To ensure that estimates were consistent over time, any statistically important differences

between the three parts of the series – estimates processed by conversion matrices, the

reworked data in 2007 and the newly reclassified data for 2008 – were taken into account.

For the ABS estimates, this was “done through a linking process where statistically

[important] differences are blended into the historical estimates over time. This ensures that

revisions to the levels of historical published data are minimised and the economic context

of historical data is preserved as closely as possible” (Drew and Dunn 2011, 3). Yuskavage

(2007) describes in detail a similar approach with series composed of three parts when the

US Bureau of Economic Analysis introduced the North American Industry Classification

System (NAICS); in their case the middle period was based on a succession of conversion

matrices calculated over ten years by recoding the underlying industry data.

Seasonal adjustment of all time series forming the SUTs was also needed, and following

the same principles as discussed above (Subsection 4.1), was undertaken after the

conversions and any adjustments had been made.

5. Considerations in Choosing a Conversion Method

5.1. Disclosure Issues Associated with Changing Classifications

Reclassification potentially causes difficulties for statistical disclosure control, because

small differences in classifications can result in ‘slivers’, domains which contain very few

observations but which can be estimated quite accurately by differencing estimates on the

two classifications (Hundepool et al. 2012, sec. 5.2.3). This can apply to the results of the

reclassification, or to the conversion matrix itself. For example, ONS (no date) were able

to calculate only a restricted range of ABS estimates for 2008 on the old SIC (2003)

classification because of disclosure issues, which are described as ‘especially complex’ and

not detailed (a common practice to increase disclosure protection). Similarly, Bayard and

Klimek (2004) could not use some cells of the conversion matrix from the US Census

Bureau because they failed disclosure tests. In many cases, the effect of converting value

series and deflators separately will result in added protection from disclosure for the final

outputs, as long as care is taken with any release of the conversion matrix itself.

5.2. Quality of Conversions

5.2.1. Consistency

The application of the model-based conversion matrices to part of a time series, with other

parts of the time series covered by direct estimation from surveys designed on different

classification systems generates some fairly standard problems in consistency of surveys,

and general guidance on producing consistent time series of estimates in this case is given
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by Van den Brakel et al. (2008). A model-based approach to this involves the Kalman

filter, and Bollineni-Balabay et al. (2016) give a complex example covering multiple

changes, which demonstrates the efficacy of the procedure in more complex cases than

reclassification.

The use of conversion matrices generally builds in some consistency of estimates. As

long as the matrix covers all of the measured activity, and the new classification does not

measure any activity not previously covered, the conversion approach guarantees that the

total in the economy is unaltered. Reprocessing the microdata does not have the same

property, and this results in changes to estimated totals.

In the UK, almost all of the National Accounts were converted by application of the

conversion matrices based on turnover, which were derived from the business register.

Conversion of other variables (such as fixed capital formation, FCF) using this matrix

gives consistency, but is not necessarily the best for FCF. A conversion matrix could be

constructed for FCF, but since this is not a variable in the IDBR, it would need to be

constructed from a dual-classified survey source, and would therefore be subject to

sampling error. It is an interesting question whether a matrix tailored for a specific variable

but with sampling error is better than a nontailored matrix (which relies on the relationship

between the target variable and the variable in the conversion matrix) based on the whole

population.

5.2.2. Historical Consistency

It is interesting to consider what the effect of successive reclassifications is on historical

data. The UK has had six national classifications since the first harmonised classification

was introduced in 1948. It is not known for certain whether adjustments were made in the

early transitions to new classifications, but certainly the updates to SIC (80), SIC (92) and

SIC (2007) have involved the application of conversion matrices, and the SIC (92) and SIC

(2007) conversions required adjustments to the National Accounts. This means that the

oldest information has had a series of model-based adjustments applied to keep it

consistent with modern classifications, so that users can use long time series in their

economic models. Soroka et al. (2006) consider the effects of such changes, and conclude

that the final adjusted data no longer bears a close resemblance to the original estimates

(both in the level and in some cases the pattern) – historical accuracy is downplayed in

favour of long-term historical consistency.

5.2.3. Timing Consistency

Because of the different periodicities of structural and short period surveys, samples are

often selected for different periods at approximately the same time. When classifications

change, this can mean that the timing of the change in classification is different for

different types of surveys (see, for example Walker 1993). The same effect was felt for the

change to SIC (2007), when the annual surveys changed to sampling on the new

classification in 2008, for which samples were selected at the end of 2008, and the monthly

and quarterly surveys changed from January/Q1 2010. This leads to consistency issues

between annual and short period surveys for estimates for 2008 and 2009. These are

ameliorated through conversions to and from the new classification.
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5.2.4. Accuracy

Ultimately the decision to change classifications is taken to improve the accuracy of the

outputs based on the classification – making it relevant to current industrial organisation and

emerging activities. Making classifications current necessarily makes them less relevant for

historical statistics, and care must be taken in long-term backcasting not to introduce clearly

nonsensical patterns (such as production of high-definition televisions in the 1980s).

At the time a classification is introduced, there are some more-or-less short-term effects

on the accuracy of the resulting series, which are a consequence of the process of

changing. There is the time taken for the new classification to stabilise (as businesses are

progressively contacted through surveys and administrative processes and errors in

assigning them to new classification codes are gradually corrected); the effect of the errors

in the classification codes is generally to increase the variance and not to institute a bias

(imputed classifications must be done in a stochastic manner where there is no other

information in order to ensure this property).

The sample design also undergoes a transition, and has several possible effects.

Variability in new classifications will introduce lack of homogeneity into new strati-

fications until the classification matures, which will increase the variance of estimates. The

effect of changing to rotational sampling in new strata with a maximised, but smaller than

steady state, overlap is used to reduce the beneficial effect from covariances between

periods, and therefore to increase the variance of estimates of change.

Thus, during the transition period there are several effects that all act to increase the

variability of survey estimates. Therefore, one strategy for maintaining quality during

reclassification might be to temporarily increase sample sizes to compensate for the

increase in variability; this approach was taken in a limited number of surveys in the

Netherlands in 1993 (Beekman 1992). In the medium term, the move to a more relevant

classification should marginally increase homogeneity in strata and therefore reduce

variability.

5.2.5. Coherence and Comparability

The debate over the use of single, harmonised classification systems in official statistics

has long been won, but there are still issues of historical coherence, particularly when

different parts of series are converted by different methods. This requires attention to the

joins between methods, which need to be adjusted so as to give a coherent time series with

the best estimates on the new classification.

5.3. Communication

The implementation of a new classification system is an important event for users of

statistics because of the impacts on their own inferences, and it is therefore important that

the plans and procedures being used to update the classifications are communicated to

them. There is a case for providing some preliminary information on the effects of

reclassification (as was done for the Retail Sales Index in the UK (McLaren 2010), as a way

of helping users by giving them early warning of the impacts of the change in classification.

Once the material changes have been made, it is important for the metadata which

describes these changes to be recorded and readily available to users to enable them to use
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this information to support their own analysis. Some of the metadata is directly published,

such as the description of the new classification, its codebook and any indices. However,

other information, such as how particular portions of a time series have been converted and

the methods by which these pieces have been spliced together coherently, can be less

easily discovered, and should also be made explicitly available.

The effect of classification changes is not generally well presented in graphical

presentations. It has become more commonplace (at least in the UK) to label graphs with

significant events that help users to understand the evolution of time series. At least at the

time of issuing reclassified estimates, it would be beneficial to have visualisations which

highlight where the changes in methods have taken place within a time series, in a similar

way to Figure 3.

6. Conclusions

It is necessary to update classification systems occasionally so that they remain relevant,

by accounting for changes and developments in the goods and services which form the

economy. This is probably even more important now, as innovative products are

frequently introduced to the market, and as the modern economy starts to take on new

forms. As a consequence, there will be changes to statistical series, and these will reduce

the quality of estimates for a period, while the new classification is introduced and settles

down, in the sense that statistical units move from temporary codes at the instant of

transition to ‘correct’ codes with time.

This process affects many stages of the statistical production process (Generic

Statistical Business Process Model, UNECE 2013), but will most usually be felt as a

period where the variability of estimates is increased somewhat. It is necessary to work

through the detail of a reclassification procedure – there are many steps in processing, and

all of them need to be consistent with the new classification, otherwise there is a large risk

of having estimates that are not coherent. Similarly, there is a large job of quality

assurance of the outputs from the various methods for converting series onto a new

classification – a need to check the credibility of, for example, macro-methods applied

across historical classifications, when the model assumption of consistency over time

breaks down. In general, conversions should be checked to identify anomalies such as

missing series, sizeable changes in turnover ratios, spikes that are attributable to a single

business rather than an industry class as a whole and others. Time series consistency is

usually a strong requirement from users, though it can have the effect of making estimates

very different (in level and sometimes in evolution) on new classifications from their

original estimates on the original classification (Soroka et al. 2006).

The temporary effects on the quality of statistical outputs at the time of the classification

update are necessary in order to avoid more widespread effects on quality as a result of the

classification itself becoming out of date. In the medium term, there are benefits. The new

industrial structure should better measure new industries, and enable rapidly growing

sectors to be separately identified so that they can be monitored.

We conclude by offering some considerations on the process of implementing a new

industrial classification in a national statistical institute, which may be of use to other

organisations undertaking such a change:
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. With limited resources, it will be impossible to do everything. A better approach is to

decide on areas which are most important, and to focus on these, spending most

time ensuring the quality of backcasts of these estimates. Even so, it will be unlikely

that all user requirements can be met, and it must be accepted that the quality of some

converted series will be lower than that of the original estimates, possibly

substantially so.

. The various options available in conversion, with no unique, obviously ‘right’

approach, can lead to difficult decisions. Where the quality resulting from any one

approach cannot be demonstrated as being appreciably better than others, it may be

prudent to choose approaches that can be easily explained and justified.

. Discontinuities will be introduced in some time series. These, and differences in

treatment of different periods in series should be clearly identified for users (for

example Figure 3). Explanations of these differences should be presented to users.

(Obviously when fitting seasonal models, discontinuities should be estimated from

the evolution of the series, and then removed.)

. Good and clear communication is essential. Document the decisions made and the

methods employed; these will be invaluable next time.

. Retain information on the effects of changes in classifications (separately from other

changes, if possible), and on experimental work to investigate alternative approaches

and their effect on outputs. We had hoped to include more examples in this article to

illustrate different effects, but the detailed comparisons were not available. Gathering

these details will provide extra evidence with which to evaluate approaches and

confirm (or otherwise) the validity of our recommendations.

. The period of implementation is likely to be long. Plan ahead, and get input from

those areas moving last (for example, National Accounts) at the start, to inform

redesign work at the beginning.

. Take the opportunity to review and improve other aspects of data collection and the

production of statistics when implementing a change in classification; the additional

cost of doing this at the same time may be quite low.
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Cost-Benefit Analysis for a Quinquennial Census:
The 2016 Population Census of South Africa

Bruce D. Spencer1, Julian May2, Steven Kenyon3, and Zachary Seeskin4

The question of whether to carry out a quinquennial Census is faced by national statistical
offices in increasingly many countries, including Canada, Nigeria, Ireland, Australia, and
South Africa. We describe uses and limitations of cost-benefit analysis in this decision
problem in the case of the 2016 Census of South Africa. The government of South Africa
needed to decide whether to conduct a 2016 Census or to rely on increasingly inaccurate post-
censal estimates accounting for births, deaths, and migration since the previous (2011)
Census. The cost-benefit analysis compared predicted costs of the 2016 Census to the benefits
of improved allocation of intergovernmental revenue, which was considered by the
government to be a critical use of the 2016 Census, although not the only important benefit.
Without the 2016 Census, allocations would be based on population estimates. Accuracy of
the postcensal estimates was estimated from the performance of past estimates, and the
hypothetical expected reduction in errors in allocation due to the 2016 Census was estimated.
A loss function was introduced to quantify the improvement in allocation. With this evidence,
the government was able to decide not to conduct the 2016 Census, but instead to improve
data and capacity for producing post-censal estimates.

Key words: Demographic statistics; fiscal allocations; loss function; population estimates;
post-censal estimates.

1. Introduction

1.1. Background on Costs and Benefits of Mid-Decade Censuses

At all times, but especially in challenging economic times, governments considering

investment in an accurate census or other social information face simultaneous decision

problems of how much to invest and how much accuracy to seek. In the United States, the

constitutional requirement of a census every ten years has been met, at increasing cost, and

with varying degrees of accuracy. On the other hand, the US Congress has never provided
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funds for a mid-decade census, despite the legal requirement that a mid-decade census be

carried out “in the year 1985 and every ten years thereafter” (Census Act of 1976, PL 94-

521; 13 USC §141(d)). Since the 2010/2011 round of census-taking, media reports suggest

that the timing and format of national censuses is being debated in several countries

including Australia (The Guardian 2015), Canada (The Globe and Mail 2011), Ireland

(The Journal 2012), and Nigeria (Nigerian Tribune 2016).

In South Africa, the Statistics Act of 1999 requires “a population census to be taken

in the year 2001 and every five years thereafter : : : unless the Minister, on the advice of

the Statistician-General : : : determines otherwise.” The Act further provides for an

independent Statistics Council to advise both the Minister and the Statistician-General on

a wide range of matters pertaining to official statistics, with the taking of a population

census specifically identified. In accordance with the law, censuses were taken in 2001 and

2011, but not in 2006, under the advice of the Statistics Council. The analysis described in

this article was prepared as part of the evaluation of the 2011 Census to help the Statistics

Council advise the Statistician-General and the Minister responsible for official statistics

on whether a 2016 Census should be carried out by the government statistical agency,

Statistics South Africa (Stats SA).

Considering the costs and benefits of government data programs, such as the 2016

Census, is essential for making informed decisions on how much to invest in such data

programs. In November 2009, representatives of national statistical agencies and UN

agencies met in Dakar to discuss improving the provision of statistics in the context of

the United Nations Millennium Development Goals. The Dakar Declaration on the

Development of Statistics that followed from this meeting proposed that official statistics

are a public good, and that their production and dissemination is a core responsibility of all

governments. Considering the costs and benefits of data programs is necessary because the

market does not lead to socially optimal investment in public goods (Sims 1984). The cost

of a 2016 Census is estimated to be at least ZAR 3 billion, which was the cost of the 2011

Census. (All amounts are in 2011 prices and at the time of the census, the South African

Rand was equivalent to USD 0.14.) Note that the value of the census really refers to the

added value of the census, compared with the value of alternatives, in particular a large

sample survey to provide data on inter-provincial migration since the 2011 Census. The

more accurately population change can be measured without a census, the less is the 2016

Census’s value, ceteris paribus.

Benefits of data programs arise largely from their use, and understanding the causal

pathways by which outputs from the data program affect outcomes is enormously

complex. In particular, we would want to predict the outcomes if the 2016 Census were

to be conducted and the outcomes if it were not conducted. The benefit of the 2016

Census reflects the difference in the value of the outcomes in the two scenarios, and

therefore outcomes that would be the same in both scenarios can be ignored in the

analysis. Even so, to consider all actions or outcomes by carrying out or not carrying

out the 2016 Census is not feasible. Furthermore, assigning values (e.g., monetary

values) to outcomes is challenging with regard to many uses of statistics (Spencer

1982a).

The impossibility of studying all the benefits of a major data program, such as a census,

implies that cost-benefit analysis of the program must, necessarily, be incomplete in that
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some benefits – perhaps even the majority of the benefits – will be unmeasured. Our

analysis is a partial cost-benefit analysis, in that not all benefits are considered. As

discussed below, we focus on just a single use of the census data: allocation of national

funds to subnational jurisdictions by formulas. There are many other uses of census

statistics which may be important. For consideration of other benefits from the South

African Census, see May et al. (2013). The Office for National Statistics in the United

Kingdom explicitly considered costs and benefits of the 2011 Census after receiving the

recommendation of the “House of Commons Treasury Select Committee : : : that: “any

future Census should also be justified in cost-benefit terms” (Cope 2015, 2). However, the

detailed “business case” that was developed to “make the case” for the 2011 Census is not

publicly available, only a high-level summary (Parliament of the United Kingdom 2009)

and links thereto discussing some identified uses. The business case analysis for the 2011

Scotland Census is available, and it contains an analysis of shifts in fund allocations to

Health Board Areas that would have occurred with a 2001 Census and without a 2001

Census (in which case post-censal estimates would have been used). (General Register

Office for Scotland 2006, 27–34). Bakker (2014) analyzes costs and benefits of the

New Zealand census. However, in all of these studies, the quantification of benefit of

nonallocative uses of census statistics typically is highly uncertain.

The earliest identified cost-benefit analysis of a quinquennial census is that of Redfern

(1974), who focused on benefits of more accurate fund allocations arising from a mid-

decade census in England and Wales; the analysis did not appear to support carrying out a

mid-decade census there (Spencer 1980a, 13–17; Alho and Spencer 2005, 368). Spencer

(1980a) conducted a cost-benefit analysis comparing two alternative versions of the 1970

US Census. Seeskin and Spencer (2015) analyze benefits of improved allocations of funds

and political representation under alternative accuracy profiles of the 2020 US Census.

May and Lehohla (2005) discuss reasons for cost increases in South Africa’s 2001 Census,

but only describe some of the benefits.

Assigning values to alternative outcomes is a challenge for cost-benefit analysis of data

programs. To compare costs and benefits most directly, it is convenient for benefits to be

quantified in the same units as costs. However, when such a comparison is not feasible, the

issue should not be forced. Instead, summaries can be prepared showing what benefits are

attainable at what costs. Savage (1985) and Sims (1984) offer cautionary critiques of

misguided attempts to force benefits of data programs to be measured in units comparable

to those used by costs.

A partial cost-benefit analysis of a data program should not be narrowly interpreted as a

formal set of calculations that will point to the “correct” or “optimal” decision (Savage

1985, 4). Cost-benefit analysis in the narrow sense can be misleading when applied to data

programs, as pointed out by the National Research Council (1985).

Cost-benefit analysis, as we understand and use the term, means describing a program as

a set of commodities produced (benefits) and a set of commodities consumed (costs) and

aggregating those using prices, market prices when possible, otherwise “shadow prices”

that emerge from calculations based on assumptions of optimization, either by

individuals or by components of a market economy.
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With information dissemination programs, this analytical framework is not helpful.

Technical analysts can determine some of the political and economic decisions to which

the information is relevant, and they can look for alternative pathways through which

the information might flow, if the program were reduced or eliminated. But these efforts

will involve tracing out the operation of incomplete and imperfect markets and of

nonmarket information transfer mechanisms; the usual practices of relying on market

prices and on the uniqueness of the values of traded goods will not be available. Trying

to proceed nonetheless to attach dollar values to the effects of the information will

nearly always lead to guesswork and arbitrary assumptions that obscure, rather than

clarify, the analysis. (54–55)

We use the term cost-benefit analysis in the broad sense of providing a way of thinking

about, and a way of organizing information on, some of the benefits and costs of a data

program. There should be no automatic presumption that the measured benefits will

outweigh the measured costs, even in a data program that is implemented in full, in the

sense that the difference between its actual benefits and its actual costs is greater than for

other programs. Failure to demonstrate that measured benefits exceed costs does not mean

that the data program is unjustified or should not be carried out. The value of a cost-benefit

analysis is a reduction in the uncertainty concerning the benefits and costs, and in an ideal

world this would improve decisions concerning statistical programs. However, there is a

risk in this approach that decision-makers may conclude that a data program is not worth

funding if the partial cost-benefit analysis does not show benefits exceeding costs.

Although additional practical constraints on statistical agencies could, in principle, be

incorporated into the cost function, factors other than cost may influence whether a data

program is carried out. These potential factors include the capacity of the responsible

institution to undertake data collection, competing demands by other data collection

programs, and anticipated technology or methodology changes that improve the accuracy

of estimating the population. In the case of capacity constraints, the institution may opt to

reprioritize its work program, delaying or suspending other data collection activities in

order to undertake the activity which it deems a priority. In the case of technology or

methodology changes, improvements in the capacity to sample, such as satellite imagery,

may permit the institution to opt for a large survey rather than a full census, thereby

affecting the cost function of an alternative to a census.

There are major limitations in scope to partial cost-benefit analyses that must be

communicated by researchers. If incorrectly interpreted, a partial cost-benefit analysis

could do more harm than good. Key assumptions must be presented in a transparent way.

Decision-makers within the statistical agency should be aware of all the limitations. In

their communication with decision-makers and the general public, the researchers should

explain the limitations in an understandable, albeit abbreviated form.

1.2. Legal Context for the Census in South Africa

In South Africa, census-taking has a longstanding and sometimes controversial history

dating back to the 18th century. However, most Statistics Acts (1976, 1978, and 1980) and

censuses were designed during the apartheid regime, and therefore considered to be too

narrow and insufficient to protect and promote the rights of all citizens of South Africa. To

Journal of Official Statistics252

Unauthenticated
Download Date | 2/28/17 11:09 AM



address the limitations of the previous Acts, the current democratic South African

Government designed the 1999 Statistics Act (Act No. 6 of 1999). The Act provides for

“a Statistician-General as head of Statistics South Africa, who is responsible for the

collection, production and dissemination of official and other statistics, including the

conducting of a census of the population, and for coordination among producers of

statistics; to establish a Statistics Council and provide for its functions; to repeal certain

legislation; and to provide for connected matters.” The first responsibility of the

Statistician-General specified in the Act is to “cause a population census to be taken in the

year 2001 and every five years thereafter : : : unless the Minister [of Finance, or other

Minister as chosen by the President], on the advice of the Statistician-General : : :

determines otherwise.”

1.3. Uses of Census Data

The additional information that a 2016 Census would provide about the population would

lead to changes of various kinds, including, but not limited to the following.

1. Under South Africa’s system of multi-tier government, funds are allocated by the

national government to provinces and municipalities on the basis of population and

other data. Fund allocations will differ depending on whether a 2016 Census is

carried out or not.

2. Additional social information about population sizes (for groups classified by

geography, ethnicity, and other criteria) would be provided, along with information

about internal migration and migration between South Africa and other countries.

Such information is important for understanding, and may or may not lead to

identifiable changes in actions or outcomes. May et al. (2013) discuss a survey

conducted to yield some limited insight into this.

3. Surveys carried out by Stats SA and by other survey organizations can be designed

more efficiently (using updated sampling frames) based on information that the 2016

Census will provide. The survey analysis is also improved by the availability of more

accurate population totals for various and diverse subgroups, which can be used to

calibrate the survey data.

4. Policy analyses in all spheres of government will change to some degree as a result of

having the 2016 Census data available.

5. Social planning and allocation of funding for electricity, water, sanitation, education

facilities, and telecommunications can be based on more accurate data about

population distribution.

6. Businesses may make different decisions about where to locate, about product

design, or about risk assessment.

In addition, a census can have an important ceremonial aspect and be taken as a symbol

of government efficiency (or inefficiency, depending on point of view), as observed

by Kruskal (1984) and confirmed in the survey of data users as discussed by May et al.

(2013, viii).

Uses of census data for formula-based allocation of funds are perceived as important in

the context of a multi-tier government system such as the one adopted by South Africa,
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and are the focus of the benefit analysis in this article. Subsection 1.4 provides further

context.

Uses of census data for policy analysis (item 4 in the list) appear to be important as well.

McCaa et al. (2006) discuss the strategic importance of the census in providing

demographic, economic, and social data pertaining, at a specified time, to all persons in a

country or a well-defined part of the country. They further note that a census helps in

undertaking efficient management of economic and social policies or programmes, and

one infers that census information is a key element in evidence-based policymaking.

Indeed, concern for effects of population change and numbers is reflected by the South

African Government’s White Paper on Population Policy, which emphasizes “the need for

reliable and up-to-date information on the population and human development situation in

the country to inform policy making and programme design, implementation, monitoring

and evaluation” (Ministry for Welfare and Population Development 1998, 16).

Understanding how data affect policy development and analysis is a challenge, and

may require careful case studies of policy processes. Although we did not attempt this in

full, we considered how changes in population numbers would affect outputs from the kind

of microsimulation analyses that would be produced in the policy context, and found

moderate impact (May et al. 2013, 32–35). The findings were communicated to the

Statistics Council, the Statistician-General and the Minister responsible for Stats SA, but

will not be further discussed in this article.

1.4. Formula-Based Allocations of Funds

The South African Constitution considers various aspects of intergovernmental fiscal

relations, including the devolution of certain revenue and expenditure assignments to

subnational governments. Responsibility for revenue generation is unequally distributed

between the national, provincial and local spheres of government. The national

government has a wide variety of tax instruments available for raising revenue. In contrast,

the provinces have limited options for taxation, and the municipalities largely rely on

property taxes and service charges. Although the revenue-generating power of municipal

governments was strengthened following the Municipal Property Rates Act (2004), the

bulk of national revenue accrues to national government (Yemek 2005, 9). To address this,

the Constitution also provides for a nonpartisan Financial and Fiscal Commission (FFC)

that advises parliament and subnational governments on a variety of issues concerning

intergovernmental fiscal relations, including the allocation of revenue among the three

spheres of government, that is, national, provinces, and municipalities. According to

Section 214 of the Constitution, one of the two main instruments for transferring revenue

from the national sphere to the other two spheres is the “equitable shares” program. The

provincial equitable share accounts for around 80% of transfers to provinces and the local

government equitable share accounts for over half of the transfers to municipalities

(National Treasury 2015).

The provincial shares and local government shares are divided between the provinces and

the municipalities according to revenue-sharing formulae that are revised periodically. The

Provincial Equitable Share (PES) and Local Government Equitable Share (LGES) formulas

are based on the demographic and economic profiles of the subnational jurisdictions, as
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revealed by population sizes and other statistics. To align with the mandated responsibilities

of these jurisdictions, the PES has included the following components: an education share

based on the average size of the school-age population (ages 5 to 17) and the number of

learners enrolled in public ordinary schools; a health share based on the use of the public

health system and the number of people without medical aid or health insurance; a general

component based on population size. The LGES formula depends mainly on population

numbers from the latest census, since updated population statistics are not available at

municipal level in non-census years. This article is based on the LGES formula that was used

prior to 2013, as this was the formula in use at the time the research was conducted. The new

formula, introduced in 2013, is still driven mainly by the number of poor households in each

municipality (National Treasury 2013, 34–43).

1.5. Refining the Set of Choices

In a cost-benefit or other decision analysis, it is important to specify the alternative choices

and underlying assumptions. We assume that a census will be taken in 2021 irrespective of

whether or not a census is taken in 2016. Further, we assume that if the 2016 Census is not

taken, Stats SA will conduct a large sample survey in 2016 similar to the Community Survey

undertaken in 2007, which sampled 300,000 households. This will provide data on inter-

provincial migration since the 2011 Census. Uses of population numbers in 2016 will be

unaffected by the 2016 Census, since the census results would not yet be available. Users of

population numbers for 2022 and beyond will rely on the 2021 Census numbers. Although

post-2021 analysis of population dynamics would still be improved by the availability of

2016 Census data, we assess the benefits of the improvement to be relatively small in

comparison to other benefits of the 2016 Census. These considerations lead us to focus on

benefits arising from uses of population numbers for the five-year period, 2017–2021.

If a 2016 population census is not carried out, province-level population numbers for

2017–2021 will be available from the mid-year population estimates, which are derived

by allowing for births, deaths, and net movements into and out of each province since the

time of the 2011 Census (Stats SA 2011). The first two are derived from civil registration

of vital statistics, but the last item can only be estimated, as internal migration is not

recorded and there is a potentially substantial unrecorded international immigration. Thus,

in the absence of a 2016 Census, the mid-year estimates for provinces will need to account

for 6–10 years of population change since the 2011 Census; the Community Survey will

be useful for this. If the 2016 Census is conducted, the population numbers for provinces in

2017–2021 will again be provided by the mid-year population estimates. However, these

need only account for 1–5 years of population change since the 2016 Census, and official

population numbers below the province level will be 1–5 years out of date instead of 6–10

years. Mid-year estimates are not available below the province level. Thus, municipal

population numbers for 2017–2021 will be based either on the 2016 census, if it is

conducted, or on the 2011 Census, if no 2016 Census is carried out.

1.6. Organization of Article

As noted, we focus on the benefits of the 2016 Census that arise from improved allocations

from the LGES and PES over the period 2017–2021. For this analysis, we treat the PES
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allocations as correct if the input data for the allocation calculations were entirely correct.

A loss function for measuring the aggregate discrepancy between the calculated

allocations, û, and the correct (or “true”) allocations, u, is developed (Section 2). We

consider two alternative ways in which û can be developed, according to the construction

of mid-year population estimates for 2017–2021: the “cen16” alternative uses the 2016

Census results either as the estimates (LGES) or as the base for mid-year estimates (PES),

whereas the “nocen16” alternative relies on the 2011 Census for municipal estimates

(LGES) and as the base for the mid-year estimates for provinces (PES), supplemented by a

2016 Community Survey. To model the accuracy of the two alternative sets of mid-year

population estimates, we assess the past performance of mid-year population estimates by

comparing them to the 2011 Census results (Section 3), then we model their accuracy for

2017–2021 (Section 4). The distributions of PES and LGES allocations are then derived

under the “cen16” and “nocen16” alternatives (Section 5), leading to estimates of

improvement in allocation as a result of the 2016 Census. Limitations of the analysis are

described (Section 7). After discussing census cost (Section 8), we discuss the benefits in

light of the costs (Section 9). The article concludes with a brief discussion of the decisions

made concerning the 2016 Census and alternatives (Section 10).

2. Use of Loss Functions to Measure Improvement in the Allocations of Funds

2.1. Loss Functions for Errors in Allocations

An important identified use of population census data in South Africa is the allocation of

funds using a formula with inputs from statistics of various kinds and with an output that

specifies the share that each province should receive. As already noted, the formula is

called the Provincial Equitable Share (PES). A similar important use is the allocation of

funds to municipalities using the Local Government Equitable Share (LGES) formula. The

design and weighting of the formulas are agreed by intergovernmental forums that include

provincial and municipal representatives. The formulas are also reviewed by an

independent constitutional advisory institution, the Fiscal and Financial Commission

(FFC). These formulas are used annually by the National Treasury to allocate shares of a

total that is not affected by population statistics.

Distortions in the allocations arise from error in the data used to compute the allocations.

We will use a loss function, as applied in statistical decision theory, to accomplish two

purposes. First, the loss function will reflect rankings over alternative patterns of errors in

allocation, with smaller loss corresponding to higher ranking and greater preference

(National Research Council 1980, 84ff; Spencer 1980c). The loss functions considered

here all take the value zero when there is no error in allocations arising from statistical

error. The loss function is thus the negative of a utility function and satisfies the properties

of a regret function (Berger 1985, 46ff, 376ff). The scale of the utility function is chosen

(at least in theory), so that preferences under uncertainty, including risk aversion, are

automatically taken into account when expected utility (or expected loss) is considered.

Alternative axioms for preferences under uncertainty lead to focus on minimizing the

maximum regret rather than expected regret or loss (Manski 2011). More generally,

providing the probability distribution of loss – either the full multivariate distribution or
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the marginal distributions for each of the recipients (e.g., local governments) can be

informative. Second, we will use the loss function to compare costs of improving data to

the benefits in terms of improved allocations (Spencer 1980a, 31–33).

Different perspectives have been taken in the literature on the effects of the distortions in

allocations. One perspective addresses inequities that arise because the allocations differ

from those that would arise if the legislated formulas were applied to error-free data.

A second perspective looks at inefficiencies and reductions in social welfare that are

believed to arise when the allocations are based on data with error instead of error-free data.

Our analysis will focus on inequities because we believe that measuring changes in social

welfare caused by distortions in allocations arising from data error is simply too difficult.

2.2. Loss in Social Welfare from Errors in Allocations

Analyses of benefits of censuses arising from increased “utility” or social welfare have

been conducted recently for England and Wales (Cope 2015) and New Zealand (Bakker

2014). Although the details of the analysis for England and Wales could not be discovered

by the authors, Cope mentions differences in utility from overallocations and

underallocations and refers to the sum of net differences as “efficiency loss.” More

details are available for the analysis of the value of the New Zealand (NZ) census and

associated population statistics. Bakker (2014, 50–53) considered distortions in

allocations with the NZ health funding formula. The analysis assumed that the allocations

based on error-free population data maximized the welfare of NZ residents. In particular,

let Ha and Ĥa denote the health expenditure allocations to area a with error-free data and

actual data, respectively, and let Xa denote other final consumption expenditure to area a,

with a ¼ 1; : : : ;A: The analysis specified that the social welfare W from health formula

allocations Ĥa and other final consumption expenditures Xa has the form WðĤ;XÞ ¼
P

a Xa þ uaðĤaÞ with Ĥ ¼ ðĤ1; : : : ; ĤAÞ; X ¼ ðX1; : : : ;XAÞ; and uaðĤaÞ ¼ Ha log ðĤaÞ:

This social welfare specification implies that the optimal distribution of a fixed sum equal

to
P

a Ha occurs when the allocation to area a is indeed equal to Ha. The total loss from

distortions in health expenditure allocations was taken to be WðH;XÞ2 WðĤ;XÞ: This is

non-negative and is equal to
P

a uaðHaÞ2 uaðĤaÞ or ¼
P

a Ha½ log ðHaÞ2 log ðĤaÞ�: It is

important to note that, other than the assumptions of optimality and decreasing marginal

utility from health-funding allocations as reflected by uað�Þ; the analysis made no attempt

to justify the specifications involving W and uað�Þ: Different specifications would lead to

different assessments of loss from distortions in allocations due to data error.

The assumption that an allocation formula is optimal should not be made casually. The

United States’ experience indicates diverse ways that formulas fail to be optimal (Buehler

and Holtgrave 2007). The National Research Council (2003) report, Statistical Issues in

Allocating Funds by Formula, commissioned several papers examining the design,

development, structure, and inherent compromises in intergovernmental aid formulas.

Downes and Pogue (2002) discuss the “often contradictory aid objectives : : : [and] assess

the extent to which, in practice, formulas deviate from the ideal” (National Research

Council 2003, 97). Zaslavsky and Schirm (2002) describe formula complexities such as

hold-harmless provisions, floors, ceilings, and inconsistent data sources; they describe

how their effects can be difficult to predict and can “produce allocations that don’t line up
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with original intentions” (National Research Council 2003, 97). Similar critiques appear in

Spencer (1982b). Melnick (2002) describes the legislative process by which allocation

formulas “pass the test for face validity while generating the necessary political support”

(National Research Council 2003, 97). Possibly, legislators are motivated to secure the

most funding for their constituents, but by including factors representing need, capability,

and effort, the formulas appear as if they are addressing program goals. A legislator who

participated in the development of a complex formula for General Revenue Sharing, a

program that would distribute more than USD 55 billion in the United States between 1972

and 1980, described the process this way: “We finally quit, not because we hit on a rational

formula, but because we were exhausted. And finally we got one that almost none of us

could understand at the moment. We were told that the statistics were not available to run

the [computer] print on it. So we adopted it, and it is here for you today” (quoted in

Spencer 1980a, 152). Furthermore, even if the formula could be regarded as optimal when

the input data were error-free, the formula allocations may not be optimal, for example, if

the allocations also depended on other data series that contained error. For example,

Schirm et al. (1999) discuss estimation error for local governments.

In conclusion, analysis of benefits of improved data in terms of increased social welfare

arising from more accurate formula-based allocation of funds should be used with caution,

unless the formula can be demonstrated to be optimal and the form of the social welfare

function can be justified.

2.3. Loss from Inequity in Allocations Due to Data Error

The very names of the PES and LGES, Provincial Equitable Share and Local Government

Equitable Share, indicate the importance of equitable allocations in South Africa.

Therefore, we did not attempt a social welfare analysis based on assumptions of formula

optimality. Instead, we considered which patterns of distortions of allocations would lead

to larger increases in inequity for the local governments and their people.

For the purposes of the analysis, the allocations will be considered to be correct if there

is no error in the statistics used as inputs to the allocation formulas. We will index the

n units (provinces or municipalities) receiving allocations by i ¼ 1, : : : , n. The correct

allocation to recipient unit i will be denoted by ui and the allocation based on statistics will

be denoted by ûi: The arrays of allocations are respectively denoted by u ¼ ðu1; : : : ; unÞ

and û ¼ ðû1; : : : ; ûnÞ: The component loss function for misallocation to unit i is denoted

by liðu; ûÞ and the aggregate loss equals the sum of the component losses,
Xn

i¼1

liðu; ûÞ: ð1Þ

Summing the component losses to the recipients, as in (1), is consistent with a utilitarian

view of social welfare measurement (Spencer 1985, 816–817). In addition to considering

aggregate loss, it is important to also ensure that the expected component loss Eliðu; ûÞ is

not excessive for any recipient i. This principle could be extended to see that the upper

quantiles of the component loss functions are not excessive for any recipient.

To motivate the form of the component loss functions liðu; ûÞ consider the asymmetry

of the recipients’ views regarding positive and negative errors in allocation. If the error in

the allocation, ûi 2 ui; is negative (an underpayment), the recipient unit suffers a shortfall
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equal to that amount. A simple measure of loss in this case is aðui 2 ûiÞ with a . 0. If the

error in the allocation, ûi 2 ui; is positive (an overpayment), the recipient is receiving a

positive benefit. In this case, a simple measure of loss is 2bðûi 2 uiÞ with b . 0. A simple

component loss function for recipient unit i that takes this perspective into account is

liðu; ûÞ ¼ aðui 2 ûiÞ
þ 2 bðûi 2 uiÞ

þ; ð2Þ

where ðxÞþ ¼ max{x; 0}: Perceiving an underpayment to be somewhat more

consequential than an overpayment of the same magnitude, we have a . b $ 0; but the

ratio b/a will not be too small. For the PES and LGES, the fact that the total amount

allocated is fixed implies that the sum of the overallocations must equal the sum of the

underallocations, and hence

Xn

i¼1

aðui 2 ûiÞ
þ 2 bðûi 2 uiÞ

þ ¼ c
Xn

i¼1

jûi 2 uij; ð3Þ

with c ¼ ða 2 bÞ=2: The non-negativity of b implies c # a=2: The value of c is considered

further in Section 9.

The loss function (3) refers to one year’s allocation at a time. To account for multiple

years of allocation, we sum the loss functions for the individual years from 2017 through

2021 to obtain the aggregate loss function

lðu; ûÞ ¼ c
X2021

y¼2017

Xn

i¼1

jûiy 2 uiyj: ð4Þ

In effect, this treats the years independently and does not allow for cancellation of a

recipient unit’s underpayment one year by equivalent overpayment the following year.

However, the factor c does account for offsetting of underpayments and overpayments to

different units in the same year. The benefit of reducing errors in allocations is measured

by the reduction in the expected value of the aggregate loss when û is developed with the

availability of the 2016 Census data, versus when 2016 Census data are not available.

2.4. Additional Rationale for the Loss Function

In applying statistical decision theory, the optimality criterion should lead to the desired

choices. The loss function (3) satisfies the criterion of Fisher-consistency, in that

minimization of loss occurs precisely when the allocations are correct, that is, when û ¼ u

(Spencer 1980a, 36). If Fisher-consistency is violated, then minimization of expected loss

would lead to statistical inaccuracy being optimal, which is contrary to the principles of

statistical agencies. A generalization of (2) is given by

liðu; ûÞ ¼ wi aH ðui 2 ûiÞ
þ

� �
2 bH ðûi 2 uiÞ

þ
� �� �

; ð5Þ

with wi . 0; Hð0Þ ¼ 0; and H strictly increasing on ½0;1Þ: The criterion of Fisher-

consistency imposes strong restrictions on the weights wi and the shape of H in (5).

Requiring that (1) remain Fisher-consistent for an arbitrary number n of recipients and any
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size errors in allocation leads to the conditions that

max wi

min wi

,
a

b
ð6Þ

and

A #
HðxÞ

x
# B ð7Þ

for x $ 1 and for positive constants A, B not depending on n (Spencer 1980a, 41–46).

Condition (6) implies that the weights cannot be inversely proportional to ui, for example,

because the values of ui vary widely. Provided that condition (6) holds, it is possible that

the weights might be inversely proportional to per capita income in the areas. On the other

hand, distribution of income (or wealth) within the recipient units (provinces or

municipalities) could also be important, motivating alternative weights. Condition (7)

rules out choice of a nonlinear power function for H. Thus, choosing more complicated

component loss functions either leads to violation of Fisher-consistency or to component

loss functions similar to (2).

3. Accuracy of Mid-Year Population Estimates for Provinces, 2002–2011

3.1. Overview and Motivation

The performance of mid-year estimates based on the 2001 Census and accounting for ten

years of change can be assessed by comparing with the 2011 Census results. The error

structure observed for the 2001–2011 period will be extrapolated to the 2011–2021

period (Section 4). As in other evaluations of population estimates to account for post-

censal change, we find that the estimates under-predict growth or decline in shares of the

population (Subsection 3.2). To estimate the variances of mid-year estimates that account

for ten years of change, we analyze deviations in the average errors for provinces in

which the relative share of the population was growing or shrinking. To model the

variances for time spans less than ten years, we consider two models of year-to-year

correlation between estimates of yearly population change, independence or correlation

equal to 1.

Thus, in the absence of a 2016 Census, mid-year estimates will need to account for

6–10 years of population change since the 2011 Census. Evidence of their accuracy is

derived from the analysis of accuracy of the mid-year population estimates produced using

the 2001 Census as a base, as discussed in Subsection 3.2.

3.2. Biases of Estimates of Population

Denote the (mid-year) estimate of a province’s population size t years after the census by

P̂t; and denote the actual population size by Pt. Thus, P0 denotes the population size at the

time of the last census. Numerical values for P0 and P10 are taken from prior census results

(Stats SA 2012a, Table 2.1 for 2001 population and Table 2.9 for 2011 population), with

undercount adjustments for both censuses (Stats SA 2012b, section 5). All censuses in

South Africa (at least since the 1996) have had undercount adjustments based on data from
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a post-enumeration survey. Following a matching procedure to identify persons who

should have been enumerated (and those that should not have been), the adjustments are

predicted using Chi-square Automatic Interaction Detection, CHAID, technique using

race, geographic category, sex, and age. These are applied to produce adjustment classes.

Summing up the adjusted population across adjustment classes produces a separate ratio

estimate of a total, from which the national adjusted population could be calculated. At the

municipal level, the effect of adjustment will vary according to the share of different

adjustment classes present in that municipality; see Stats SA (2012b, Section 5).

Figure 1 plots estimated percent change based on the mid-year population estimates for

2011, ðP̂t 2 P0Þ=P0; against the observed percent change based on the 2011 Census

adjusted for undercount, ðPt 2 P0Þ=P0. Note that small changes are overestimated and

larger changes are underestimated.

Let 1t denote the relative error in the estimate of population change t years since the last

census,

1t ¼
ðP̂t 2 P0Þ2 ðPt 2 P0Þ

Pt 2 P0

¼
P̂t 2 Pt

Pt 2 P0

:

Figure 2 plots 1t versus the observed relative change in population. The relative errors

are positive for relative changes below 15% and are negative for changes above 15%.

Calculations based on the 2011 mid-year population estimates (P̂t), adjusted census counts
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Fig. 1. Estimated versus observed change in province population size ten years after 2001 Census. Area of

circle is proportional to average of 2001 and 2011 population sizes.
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for 2011 (Pt), and the 2001 Census counts (P0) for provinces show that the average value

of 110 is þ0.42 for the five provinces that grew by more than 12% in size between 2001

and 2011 and is 20.62 for the four provinces that grew by less than 12% over that period.

Given the small number of observations and the similarity in magnitudes, we decided to

specify the same magnitude for provinces growing faster and slower than average, leading

to the model that the expected value of 110 is

Eð110Þ < 0:52 £ sgn ðdP0 2 P10Þ; ð8Þ

with d ¼ 1.12 and sgn (x) ¼ 1 if x . 0, sgn (x) ¼ 21 if x , 0, and sgn (x) ¼ 0 if x ¼ 0.

Specifying the mean of 1t for intermediate times 1 # t , 10 requires some assumptions,

since we have direct information only about 110. Denote the incremental error in the

estimate of annual change by dt ¼ ðP̂t 2 P̂t21Þ2 ðPt 2 Pt21Þ; with P̂0 ¼ P0 by

assumption. It follows that

P̂t 2 Pt ¼ ðPt 2 P0Þ1t ¼
Xt

s¼1

ds:

Given the short time span, it is reasonable to use the simple approximation that the

expected incremental error for a province is the same for each of the ten years, that is,

EðdtÞ ¼ ðP10 2 P0ÞEð110Þ=10; 1 # t # 10: ð9Þ
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Fig. 2. Relative error of estimate of change versus observed percent change in province population size ten

years after 2001 Census.
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3.3. Variances of Estimates of Population

The average squared deviation regarding the mean for the relative errors observed for 2011

was 0.01067, leading to the model that the variance of 110 is

Vð110Þ ¼ 0:01067:

As in the case of the mean, specifying the variance of 1t for 1 # t , 10 requires

assumptions, since we have direct information only about 110. A simple model for the

variances of the incremental errors is that VðdsÞ does not change with s. If the incremental

errors in a province are independent over time, then V
Pt

s¼1ds

� �
grows linearly with t, and

hence VðdsÞ ¼ 0:001067ðP10 2 P0Þ
2: On the other hand, if the incremental errors in a

province are perfectly correlated over time, then V
Pt

s¼1ds

� �
is quadratic in t, and VðdsÞ ¼

0:0001067ðP10 2 P0Þ
2: We are assuming that the incremental errors in different provinces

are mutually independent. To summarize, we have two alternative models for the

variances of sums of incremental errors within provinces, the independent increments

model

V
Xt

s¼1

ds

 !

¼ 0:001067t ðP10 2 P0Þ
2; ð10Þ

and the dependent increments model,

V
Xt

s¼1

ds

 !

¼ 0:0001067t 2 ðP10 2 P0Þ
2: ð11Þ

3.4. Accuracy of Estimates of School-age Population of Provinces

The observed errors in mid-year estimates of ten-year change in the school-age population

(i.e., persons aged 5–17) from 2001 to 2011 were all positive. The magnitudes were

proportional to the error in the estimated ten-year change in the total province population,

with different constants of proportionality for overestimates and underestimates of total

population change. Estimates of those proportionality constants are 0.80 and 20.26,

respectively. This means that the prediction of error in the school-age population estimate

is 0.80 times the predicted error in the estimate of the total province population if the

predicted error is positive. The prediction of error in the school-age population estimate is

20.26 times the predicted error in the estimate of total province population if the

predicted error is negative. In both cases, the predicted error in the estimate of school-age

population is positive.

4. Distributions of Mid-Year Population Estimates, 2017–2021

4.1. Overview

If no 2016 Census is carried out, population estimates for 2017–2021 must account for

6–10 years of change since the 2011 Census. If the 2016 Census is carried out, mid-

year estimates for 2017–2021 will need to account for only 1–5 years of population
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change since the 2016 Census. Error distributions for the two sets of estimates are based

on the analysis of Section 3. To specify the distributions of the estimates for

2017–2021, we add the errors to the specified true values of the population. The true

values of the future population are developed in Subsection 4.2. Then, the distributions

of estimates without a 2016 Census (Subsection 4.3) and with a 2016 Census

(Subsection 4.4) are developed.

4.2. Specifications of True Population of Provinces, 2017––2021

To specify true values of total population and school-age population (ages 5–17) in

provinces, we utilized projections of future population prepared in 2003 by the Actuarial

Society of South Africa (ASSA). These projections are referred to as the ASSA2003

population projections, and they are prepared using the 2001 Census as a base (after

adjustment for undercount). We assume that the true population sizes are unaffected by

whether or not a 2016 Census is carried out. This is a nontrivial assumption since more

accurate population data may lead to better provision of services, which can in turn

influence fertility and mortality rates, as well as migration flows, as migrants seek access

to better resourced areas that can provide better services. For example, in the case of the

former, HIV/AIDS, low birth weight, and diarrheal diseases accounted for more than 60%

of under age five deaths in South Africa at the time of the 2001 Census (Bradshaw et al.

2003). A range of primary health and basic service interventions has been found to have

a direct impact on these causes (Bhutta et al. 2013). Many of these would be affected

by inequalities arising from inaccurate population data and inadequate resource allocation

to the authority responsible for their implementation (Say and Raine 2007). This includes

vitamin A supplementation, the provision of Antiretroviral Therapy, the availability of

healthcare workers, and the provision of adequate sanitation and protected water.

We use the ASSA projections in two alternative ways to specify true future population

values. One specification is simply the total population as projected by the ASSA, and the

other specification multiplies ASSA forecasts by the ratio of the undercount-adjusted 2011

Census figure for the province to the ASSA forecast for the 2011 population of the

province. The latter “calibrated” population thus coincides with the undercount-adjusted

census number for 2011. For school-age population (ages 5–17), one specification was

derived from the ASSA2003 projections for five-year age groups, with population

numbers disaggregated by single age based on the Sprague multiplier software on the Stats

SA website. As with total population, a second specification was developed by ratio-

adjusting (calibrating) the school-age population forecasts to agree with undercount-

adjusted 2011 Census school-age population numbers. The two alternative sets of true

values are denoted by the indicator k taking values 1 (uncalibrated) and 2 (calibrated).

4.3. Specifications of True Population of Municipalities, 2017–2021

The true values of total population for municipalities as used in the LGES can be taken to

be the values for 2016, because no updating for post-censal population change is used in

the LGES. Lacking ASSA projections of 2016 values for municipalities, we carried out a

simple modeling of future values by extrapolating the 2001–2011 trends in the statistical

Journal of Official Statistics264

Unauthenticated
Download Date | 2/28/17 11:09 AM



inputs to the formula to 2016. This was subject to the constraint that the change from 2011

to 2016 could not exceed 50% of the 2011 total population size of the municipality.

4.4. Distribution in the Absence of a 2016 Census

For province estimates in the no-2016-census scenario, the variances of sums of

incremental errors in mid-year population estimates are given by (10) or alternatively by

(11). Using the independent increments assumption, we model the ten values d1; : : : ; d10

as independently normally distributed with means given by (8) and (9) with d ¼ 1 and

variances given by (10). Expression (10) can be evaluated because the modeling described

in Subsection 4.2 specifies P0 and P10. Alternatively, using the dependent increments

assumption, we model d1 as normally distributed, with means given by (8) and (9) and

variance given by (11), and d10 ¼ · · · ¼ d1: The two alternative independence assumptions

are denoted by the indicator l taking values 1 (independence) and 2 (perfect dependence).

The population estimate for province i, in year y, for dependence model l, corresponding

to true value specification k (indicating uncalibrated or calibrated forecast), is denoted by

P̂
nocen16

iykl when no 2016 Census is conducted and by P̂
cen16

iykl when a 2016 Census is conducted.

For municipalities, the error in the population estimate for municipality m in year

y; 2017 # y # 2021; is equal to Pm2011 2 Pm2016 in the no-census scenario, since errors in

census numbers are ignored.

4.5. Accuracy in the Presence of a 2016 Census

In a scenario with a 2016 Census, mid-year estimates for provinces for 2011 þ t,

6 # t # 10 are based on the 2016 Census, and therefore account for only t 2 5 years of

population change. This is in contrast to the estimates in the no-2016-census scenario,

which must account for the full t years of population change. Therefore, in a 2016 Census

scenario, for each province the joint distribution of dt; 6 # t # 10 is equal to the joint

distribution of the corresponding values of dt25 in the no-2016 census scenario.

For municipalities, the error in the population estimate for municipality m in year y,

2017 # y # 2021; is identically zero under the 2016 Census scenario, since errors in

census numbers are ignored.

5. Distributions of PES and LGES Allocations

5.1. Hypothetical True Values

In the analysis, the true values of the allocations are allowed to change over time as the

true population changes (Subsection 4.2). LGES allocations depend only on the population

numbers for municipalities according to the latest census. PES allocations depend not only

on population statistics, but on other statistics as well. To fully model the joint distribution

of the various statistics and their underlying true values would have involved substantial

additional work and would have added to the complexity of the analysis. Instead, our

analysis conditions on (i.e., takes as fixed) the values of the nonpopulation statistics which

served as inputs to the 2011 PES allocations.
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The true allocation for province i, in year y, for true value specification k (indicating

uncalibrated or calibrated forecast) is denoted by uiyk:

5.2. Specifying and Simulating Errors in PES Allocations

The errors in PES allocations are functions of population numbers only, because any

nonpopulation statistics are held fixed. The joint distributions of the true and estimated

allocations are determined by the joint distributions of the true and estimated populations.

Recall that for the population of a province in a given year, in both the 2016 Census and

no-census scenario, there are four alternative specifications, depending on whether or not

the forecasts specifying the true values were calibrated and whether the estimates of year-

to-year change are independent or perfectly dependent over time. For each of the eight

specifications, we randomly generated four independent replications, which we denote by

r ¼ 1, : : : , 4. These yielded four replications of population estimates P̂
cen16

iyklr and P̂
nocen16

iyklr ;

respectively, in the case when a 2016 Census is and is not taken. (To increase the precision

of estimated reduction in expected loss due to the 2016 Census, we set not only the

distributions, but the realizations of dt; 6 # t # 10; equal to realizations of dt25 in the no-

2016 census scenario.) Each replication of population estimates leads to a replication of

the allocation, û
cen16

iyklr and û
nocen16

iyklr ; respectively. The corresponding errors in allocation are

û
cen16

iyklr 2 uiyk and û
nocen16

iyklr 2 uiyk:

5.3. Specifying and Simulating Errors in LGES Allocations

As with the PES, the errors in LGES allocations are functions of population numbers only,

because any nonpopulation statistics are held fixed. The joint distributions of the true and

estimated allocations are determined by the joint distributions of the true and estimated

populations. Recall that there are only two possible alternative estimates for the population

of a municipality m in year y;Pm2016 and Pm2011; corresponding to the 2016 Census

scenario and the no-census scenario. The corresponding allocations to municipality m in

year y are denoted by û
cen16

my and û
nocen16

my :

6. Estimating Improvement in the Allocations As a Result of the 2016 Census

6.1. Estimating Reduction in Expected Loss from Errors in PES Allocations

The reduction in expected loss from errors in PES allocations when the 2016 Census is

conducted is E½lðu; ûnocen16Þ2 lðu; ûcen16Þ�;where the loss function is specified by (4). To

estimate this reduction in expected loss, we use the scaling constant c times

1

16

X2021

y¼2017

X9

i¼1

X2

k¼1

X2

l¼1

X4

r¼1

û
nocen16

pyklr 2upykl

�
�
�

�
�
�2

1

16

X2021

y¼2017

X9

i¼1

X2

k¼1

X2

l¼1

X4

r¼1

û
cen16

pyklr 2upykl

�
�
�

�
�
�: ð12Þ

Expression (12) shows the model averaging approach used to manage the different options

for calculating the true population (calibrated or not) and the two variance options.

For practical considerations arising from tight decision deadlines, instead of computing

the allocations for each year from 2017 to 2021, we computed the allocations just for 2021
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for both û and u, and we used those values for each year. This likely led to a modest

overstatement of the reduction in expected loss due to the 2016 Census, since the accuracy

of the mid-year population estimates is at its lowest in 2021. The calculated value of (12) is

ZAR 4.8 billion.

One technical point is worth noting. By ignoring error in any nonpopulation statistics in

the allocation formulas, we are, in effect, approximating E½lðu; û nocen16Þ2 lðu; û cen16Þ�

by E½lðu 0; û nocen16Þ2 lðu 0; û cen16Þ�; where E½�� denotes expectation and u 0 denotes the

array of allocations when the population statistics have no error, but the other statistics are

observed with possible error. Research in progress suggests that the approximation either

overstates or only modestly understates the reduction in expected loss.

6.2. Estimating Reduction in Expected Loss from Errors in LGES Allocations

Recall that the LGES allocations for 2017–2021 will be based on the 2011 Census, if the

2016 Census is not conducted, and on the 2016 Census if it is conducted. As was the case

for the PES, we approximate E½lðu; û nocen16Þ2 lðu; û cen16Þ� by E½lðu 0; û nocen16Þ2

lðu 0; û cen16Þ�; where E½�� denotes expectation and u 0 denotes the array of allocations to

municipalities when the population statistics have no error, but the other statistics are

observed with possible error. By construction, u 0 ¼ û cen16 and so we estimate the

reduction in expected loss by scaling constant c times

5
X278

m¼1

û
nocen

m2016 2 û
cen

m2016

�
�
�

�
�
�; ð13Þ

where m indexes the 278 municipalities and the allocations are calculated for 2016. The

calculated value of (13) is ZAR 32.1 billion. As the LGES is assumed to allocate only 1/15

as much money as the PES program over the five-year period, ZAR 38.9 billion for the

LGES versus ZAR 600 billion for the PES, it is surprising that (13) is more than six times

as large as (12). The explanation is much larger differences in LGES allocations in the

presence or absence of the 2016 Census. Even though mid-year estimates do not estimate

population change accurately, PES allocations are based on the total population level.

Mid-year estimates predict population levels much more accurately than population

change, whereas in the LGES, the municipal estimates of population levels are not updated

at all in the absence of a 2016 Census.

7. Limitations

Several limitations to the analysis of reduction in PES and LGES misallocations arising

from the 2016 Census may be noted.

1. The specifications for true values for province populations, which depend on the

ASSA projections, are inaccurate to an unknown degree.

2. The true values of population for the LGES allocation are taken to be for 2016 rather

than the true population sizes for 2017–2021.

3. We are ignoring the effects of errors in nonpopulation statistics that are used to

calculate PES and LGES allocations. This may well increase the estimated

magnitude of improvement in allocations in conducting the 2016 Census.
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4. Distribution of error in mid-year population estimates 2017–2021 could be different

than in last decade, due either to changes in patterns of population growth or decline

or to differences in quality of data used to estimate births, deaths, and net migration

among provinces.

5. Errors in 2011 Census numbers used in the analysis can cause errors in estimates of

error in mid-year population estimates for 2011 (Spencer 1980b). Our analysis

ignores possible error in the 2011 Census numbers.

6. Hold-harmless provisions in the allocation formulas were not taken into account.

The effects of the limitations noted in points 1, 2, and 5 might be slightly reduced by use of

a prior distribution to specify uncertainty about true values, as part of a full Bayesian

decision theoretic analysis. However, it is unlikely that this will greatly change the

estimates of expected loss.

8. 2016 Census Cost

The costs of census-taking include the investment cost, the amount spent on the collection,

capture, cleaning, and data assurance (quality control). Other costs that are often forgotten

include data curatorship, which refers to looking after, updating and maintaining the data

and the ongoing assistance provided to the users of this data. Finally, dissemination and

publicity also carry costs. Nonetheless, for a standard cost-benefit analysis, estimating the

direct costs of a Census is relatively straight-forward, to the extent that reliable and up-to-

date expenditure data are available from the appropriate government departments. Some

indirect costs, such as calculating cost of the time taken by respondents to complete a

census questionnaire, may be more complex, but can be estimated using an appropriate

shadow wage rate. This has not been undertaken for this study.

In the absence of a 2016 Census, it is assumed that some variation of the 2007

Community Survey would be conducted, and it is assumed that the cost of the mid-year

estimates program is essentially unchanged regardless of whether the census or the

Community Survey is taken in 2016. The net additional cost of the 2016 Census (over and

above the 2016 Community Survey) was predicted to be on the order of ZAR 3 billion.

9. Measuring Benefit from Improvement in Allocations

The measures of reduction in absolute values of misallocations, such as (12) and (13)

should not be interpreted directly as measures of benefit. In monetary terms, the sum of the

overallocations equals the sum of the underallocations, or equivalently, one area’s loss is

another area’s gain. As discussed in Subsection 2.3, the benefit arises from reduction of

inequity of the allocations. The translation from (12) and (13) to benefit, or reduction of

expected loss, is achieved through the scaling constant c in the loss function (4). The

scaling constant c should reflect the sensitivity of society or the decision-makers to

misallocations. Logically, the value of c should not be as large as 1, as in the cautionary

example of Jarndyce v. Jarndyce (Dickens 1985). If overallocations are viewed as

beneficial or benign for the local governments that receive them, then c # 0.5, as noted in

Subsection 2.1. Ultimately, however, the magnitude of c depends on the decision-maker’s

preferences regarding tradeoffs for equitable allocations versus spending money to
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achieve the equitable allocations. If it is just worth spending ZAR ten million to reduce the

sum of absolute misallocations by ZAR one billion, then c ¼ 0.01. If it is just worth

spending ZAR 100 million to reduce the sum of absolute misallocations by ZAR one

billion, then c ¼ 0.10, and if it is just worth spending ZAR 500 million to reduce the sum

of absolute misallocations by ZAR one billion, then c ¼ 0.50.

We believe that the specification of c is inherently subjective and should be openly

addressed. People’s values are not objectively determined, and the choice of the scaling

constant c involves a question of values – how much is it worth spending to achieve more

equitable allocations. Our analysis has drawn on technical analyses to compute the

expected loss as parameterized by the scaling constant c. However, the specific choice for

c reflects the willingness of the decision-makers to use tax dollars to reduce inequity in

fund allocations. Having a single, easily interpretable parameter for social values conveys

the additional advantage of providing transparency to the analysis.

Spencer (1980a) suggested that, c ¼ 0.01 in the 1970s context of General Revenue

Sharing in the United States The rationale, as discussed in Subsection 2.3 above, was that

if x ¼ ûi 2 ui and x , 0, then local government i incurs a deficit of jxj, and if x . 0 then it

incurs a surplus of jxj. If a deficit of jxj is incurred, local government is assumed to borrow

an amount equal to the shortfall, to be repaid in the next fiscal period. If the interest rate for

the period was a 2 1, the monetary loss to the local government would be ajxj. We

neglected long-term effects because they are hard to trace and because the local

government cannot make adjustments for the deficit before the end of the current period,

but it can make adjustments after the period. Conversely, if x . 0, so that a surplus is

produced, the local government invests jxj for the period at interest rate b 2 1. The local

government’s monetary loss incurred is 2bjxj, a negative loss (i.e., a gain). From (3),

c ¼ ða 2 bÞ=2; and so we may interpret c as half of the difference between the local

governments’ interest rates for investing versus borrowing for the period. Spencer (1980a)

took the period to be one year and the difference between interest rates to be 0.02, leading

to a specification that c ¼ 0.01. In this scenario, the choice of c would reflect economic

conditions and the length of the period that the local government would need to adjust for

the shortfall.

Table 1 shows the expected improvement in allocation when a 2016 Census is

conducted, for various values of c.

To illustrate, if c ¼ 0.06 is a reflection of the preference tradeoff between PES and

LGES equity on the one hand and expenditure on the other, the benefit, in terms or more

equitable allocation of funds, is ZAR 2.2 billion. If a 2016 Census will cost an additional

ZAR three billion (beyond the cost of a 2016 Community Survey), then the improvement

in allocation of funds justifies about three quarters of the census cost. Other uses of the data

would need to justify the remaining ZAR 800 million of the census cost. If c . 0.08, then

the benefit of improvement in allocation of funds equals or exceeds the census cost, in

which case the analysis would provide strong support for a 2016 Census.

10. Discussion

As mentioned at the outset, the decision to fund a Census in 2016 is not only dependent

upon the costs and anticipated financial benefits involved, and the South African
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Government made the decision not to undertake a census in 2016 (Stats SA 2014a, 21).

Instead, the Government decided to improve its data collection program. An enlarged

Community Survey, with a sample size increased from 300,000 households to one million

households, is being undertaken in 2016 and is projected to cover all enumerator areas in

the country (Parliament of the Republic of South Africa 2014, 3424). Furthermore, the

agency has focused on improving civil registration of vital statistics to be able to better

estimate the mid-year population (Stats SA 2014a, 59). Further considerations include a

long-term strategy to introduce a continuous population survey that will collect population

and other social statistics on an ongoing basis. The methodology described above

permitted this decision to be evidence-based, up to the subjective specification of the

parameter c, and to confront the possible effects of error (Stats SA, 2014b). Indeed, the

impact of prior error resulting from the ten-year gap between 2001 and 2011 has been

taken into account in South Africa’s most recent government budget. The Annex to the

Budget notes that by not properly accounting for migration, the division of revenue

between provinces has become inequitable, with receiving provinces such as Gauteng and

the Western Cape being allocated less resources than would have been provided with

accurate data. However, as the National Treasury (2015:17–18) acknowledges, provinces

which have been receiving more resources need time to adjust to revised allocations, and a

total ZAR 4.2 billion has had to be added to the PES over the three years from 2013 to

2015 to cushion the impact of the census data. The results of this partial cost-benefit

analysis of South African census-taking contributed to greater awareness of the role played

by official statistics in the allocation of resources, greater awareness of the wider costs of

error, and of assessing the ‘value for money’ of official statistics. The decision to triple the

size of the Community Survey in 2016 and the introduction of methodological

improvements by Stats SA to improve cost effectiveness are examples of ongoing

reflection concerning official statistics in South Africa and elsewhere (Stats SA 2016). The

cost-benefit approach used in this article is applicable to other data programs as well, such

as improvements in sample surveys and vital registration statistics, provided uses of the

statistics are sufficiently understood.
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Estimation when the Covariance Structure of the
Variable of Interest is Positive Definite

Alain Théberge1

Generalized regression (GREG) estimation uses a model that assumes that the values of the
variable of interest are not correlated. An extension of the GREG estimator to the case where
the vector of interest has a positive definite covariance structure is presented in this article.
This extension can be translated to the calibration estimators. The key to this extension lies in
a generalization of the Horvitz-Thompson estimator which, in some sense, also assumes that
the values of the variable of interest are not correlated. The Godambe-Joshi lower bound is
another result which assumes a model with no correlation. This is also generalized to a vector
of interest with a positive definite covariance structure, and it is shown that the generalized
calibration estimator asymptotically attains this generalized lower bound. Properties of the
new estimators are given, and they are compared with the Horvitz-Thompson estimator and
the usual calibration estimator. The new estimators are applied to the Canadian Reverse
Record Check survey and to the problem of variance estimation.

Key words: Asymptotic setup; calibration estimators; Godambe-Joshi lower bound; Horvitz-
Thompson estimator; Moore-Penrose inverse.

1. Introduction

Let s be a sample drawn from a population of size N according to a sampling plan p, let

y ¼ ( y1, y2, : : : , yN)0 be a vector of interest, and let c ¼ (c1, c2, : : : , cN)0 be a vector of

known constants. The parameter to estimate is u ¼ y0c. A commonly used estimator is that

of Horvitz and Thompson (1952). This estimator can be written ûHT ¼ y 0Ws HT c, where

Ws HT ¼ DsðEðDsÞÞ
21 with Ds [ RN£N the diagonal matrix of the dk, k ¼ 1, 2, : : : , N,

with dk equal to 1 if unit k [ s and 0 otherwise (it is assumed that

EðdkÞ ¼ pk . 0; k ¼ 1; 2; : : : ;N). The weight matrix Ws HT is diagonal. Even in the

absence of auxiliary data, other useful estimators exist. An estimator of the form y0Wsc,

where Ws is not necessarily diagonal, will be proposed. An unbiased estimator is wanted,

thus E(Ws) ¼ IN will be required, where IN is the identity matrix of order N. Not requiring

the weight matrix Ws to be diagonal could prove useful if the variance matrix of y is not

diagonal. For example, from the frame, it could be known that units 1 and 2 are twins, that

y1 ¼ y2 ¼ ytwin, without knowing the value ytwin. Noting pkl ¼ E(dkdl), an alternative to

the Horvitz-Thompson estimator
PN

k¼1
dkyk

pk
for the population total, is the unbiased

estimator 2ytwinðd1þd22d1d2Þ
p1þp22p12

þ
PN

k¼3
dkyk

pk
. That is, if either unit 1 or unit 2 are sampled, the
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value 2ytwin is given a weight equal to the inverse of the probability of selecting either of

the two units. The number of twins in the sample being random, this will add to the

variance of this estimator. However, if both this new estimator and the Horvitz-Thompson

estimator are calibrated so that the sum of their weights equals the population size, then the

calibrated new estimator is superior to the similarly calibrated Horvitz-Thompson

estimator, because it makes use of the information that units 1 and 2 are twins by

acknowledging that observing one of the two units is equivalent to observing both. This

article will suggest estimators that can improve on the Horvitz-Thompson estimator if

some of the ys are simply correlated, without necessarily being equal. For example,

because of the increased risk of transmission, the incidence of the flu in two individuals

from the same household are two correlated events. Depending on the variable of interest,

other examples may occur for workers clustered by establishment.

In the next section, what is meant by “the variance matrix of y” is made more precise

through the asymptotic setup. With the help of the Moore-Penrose inverse, a

generalization of the Horvitz-Thompson estimator, ûGHT , is presented in Section 3. The

generalized Horvitz-Thompson estimator will depend on an estimate of the variance

matrix of y and will reduce to the usual Horvitz-Thompson estimator when that variance

matrix estimate is diagonal. Godambe and Joshi (1965) gave a lower bound applicable to

unbiased estimators under the assumption that the variance matrix of y is diagonal. In

Section 4, their result is also generalized to a positive definite variance matrix. In Section 5,

the calibration problem, as stated in Deville and Särndal (1992) and in Théberge (1999), is

generalized; the desired weights should be close to those of ûGHT rather than those of ûHT .

The solution to that problem will lead to generalized calibration estimators. Generalized

calibration estimators are shown to be optimal in the sense that they asymptotically attain

the generalized Godambe-Joshi lower bound. In Section 6, the problem of computing the

weights of the generalized estimators is examined with an example where the variance

matrix of y is block diagonal. Modified versions of the generalized estimators are

described in Section 7. The new estimators are compared to that of Horvitz-Thompson and

to the calibration estimator in Section 8. Applications to the Canadian Reverse Record

Check Survey and to the problem of variance estimation are given in Sections 9 and 10

respectively. Finally, concluding remarks are found in Section 11.

2. Asymptotic Setup

In order to discuss the large sample properties of an estimator û, an asymptotic setup will

be needed. Such setups have been described by Brewer (1979) and by Isaki and Fuller

(1982). The setup shall serve two main purposes: (1) to establish a link between the setup

and the variance matrix of the variable of interest, (2) to establish three results that will be

useful for deriving the asymptotic properties of ûGHT and calibrated estimators. The setup

described here is one that serves those purposes.

Given an auxiliary information matrix X [ RN£q assumed to be of full rank, a sequence

of increasingly large populations and samples is generated with the help of an N-

dimensional distribution j of mean Xb, b [ Rq, and variance S, with S positive definite,

and the sampling plan p. The sequence starts with the original population and the original

sample. The tth population, of size tN, is obtained by adding N units to the (t 2 1)th
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population. With respect to the auxiliary information, those added units are identical to

the original population. The vector of interest of the added units is generated with the

distribution j. From the added units, a sample of units is selected using the plan p, and

together with the units of the (t 2 1)th sample, they will form the tth sample of expected

size nt ¼ tn, where n is the expected size of the original sample.

More precisely, if 1a£b [ Ra£b is a matrix of ones and Ia [ Ra£a is the identity matrix

of dimension a, then define Xt [ RtN£q equal to 1t£1 ^ X, the auxiliary information matrix

of the tth population. Set ct ¼ t 21ð1t£1 ^ cÞ for estimating a mean, that is, if c ¼ N 211N£1,

but set ct ¼ ð1t£1 ^ cÞ for estimating a total, that is, if c ¼ 1N£1. More generally, set

ct ¼ t g21ð1t£1 ^ cÞ if u ¼ y 0c ¼ OpðN
gÞ. Define yt ¼ y

0

½1� y
0

½2�: : :y
0

½t�

� � 0
and ut ¼ y 0 tct,

where the subscript [i ] is used to denote the N units that belong to population i, but not to

population (i 2 1), Dt ¼

D½1� 0

. .
.

0 D½t�

0

B
B
B
@

1

C
C
C
A

is the diagonal matrix of the dk, where dk is

equal to 1 if unit k is sampled and 0 if not (to ease the notation, in this section, the subscript

s denoting the sample will be omitted from D). With this setup, EjðytÞ ¼ Xtb and

VjðytÞ ¼ It ^S.

Before presenting the asymptotic results of this section, for any matrix F, let F† denote

the Moore-Penrose inverse, and if F is positive definite, then define

QF ¼ ðEpððDFDÞ†ÞÞ21, where D ¼ D½1�. It will be shown in the following section that

QF is well defined if and only if pk . 0; k ¼ 1; 2; : : : ;N.

Let T [ Rq£q and U [ RN£N be symmetric positive definite matrices, Ut ¼ It ^ U and

b̂t 5 T1=2 T1=2X 0 tðDtUtDtÞ
†XtT

1=2
� �†

T1=2X 0 tðDtUtDtÞ
†yt: ð1Þ

With this asymptotic setup, the following three results hold.

RESULT 1. If the sampling plan is noninformative (see, for example Cassel et al. 1977),

then b̂t ! b in probability.

The next two results apply to a positive definite estimator, Ŝ, of VjðyÞ ¼ S. One must first

define a block diagonal matrix Ŝt ¼

Ŝ½1� 0

. .
.

0 Ŝ½t�

0

B
B
B
B
@

1

C
C
C
C
A

where Ŝ½i� is the estimator of S

based on the sample represented by D[i ] and then define Q
Ŝ t
¼ Ep DtŜtDt

� �†
� �� �21

.

RESULT 2. For a positive definite estimator Ŝ, the difference X 0 t DtŜtDt

� �†

Q
Ŝ t

ct 2

X0 tct is Opðt
g21=2Þ.

RESULT 3. For a positive definite estimator Ŝ such that Ŝ ! S in probability, the

difference X 0 t
�
DtŜtDt

�†
Q

Ŝ t
ct 2 X 0 tðDtStDtÞ

†QS t
ct is opðt

g21=2Þ.
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Since nt ¼ tn and Nt ¼ tN, what, for example, is Opðt
g21=2Þ, is also Op n

g21=2
t

� �
and

Op N
g21=2
t

� �
. The proofs of these three results can be found in Appendix A. This

asymptotic setup incorporates the superpopulation model j; a separate superpopulation

model is not needed. This avoids possible inconsistencies between the asymptotic setup’s

model and that of a superpopulation.

3. A Generalization of the Horvitz-Thompson Estimator

In this section and the next section, an auxiliary data matrix is not needed, or at least, it

need not be known. Only a positive definite estimate, Ŝ, of the variance matrix implied by

the setup, VjðyÞ ¼ S, will be needed. In the absence of auxiliary data, the Horvitz-

Thompson estimator, ûHT ¼ y 0DsðEpðDsÞÞ
21c, is an estimator that is often used. In order to

generalize the Horvitz-Thompson estimator, it will first be proven that Ep DsŜDs

� �†
� �

is

nonsingular if and only if pk . 0; k ¼ 1; 2; : : : ;N, where F† denotes the Moore-Penrose

inverse of the matrix F.

LEMMA 1. If Fi [ RN£N i ¼ 1; 2; : : : ; K are symmetric positive semi-definite

matrices, then the null space of F ¼
PK

i¼1 Fi, noted NðFÞ, equals >K
i¼1 NðFiÞ.

The proof of Lemma 1 is given in Appendix A. From Ben-Israel and Greville (2002,

Exercise 2.38), N DsŜDs

� �†
� �

¼N DsŜDs

� �
¼NðDsÞ. Applying Lemma 1, the

matrix sum Ep DsŜDs

� �†
� �

is invertible if and only if
all samples s

> NðDsÞ ¼ 0, that is,

pk . 0; k ¼ 1; 2; : : : ;N.

Note Q
Ŝ
¼ Ep DsŜDs

� �†
� �� �21

and define

ûGHT ¼ y0 DsŜDs

� �†

Q
Ŝ

c

¼ y0Ws GHT c:

ð2Þ

It is readily seen that regardless of the choice of Ŝ, ûGHT is unbiased for estimating

u ¼ y 0c. Also, although ûGHT depends on Ŝ, it does not depend on auxiliary data. As

required of an estimator, the rows of Ws GHT corresponding to nonsampled units are all 0,

that is, Ws GHT ¼ DsWs GHT . This follows from the following lemma, also proven in

Appendix A, and the fact that D s is an orthogonal projection, that is, D s is symmetric and

D2
s ¼ Ds.

LEMMA 2. Let P [ RN£N be an orthogonal projection;

(a) If F [ Rq£N , then ðFPÞ† ¼ PðFPÞ†.

(b) If F [ RN£q, then ðPFÞ† ¼ ðPFÞ†P.

(c) If F [ RN£N , then ðPFPÞ† ¼ PðPFPÞ†P.
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Thus, if W½s�GHT [ Rn£N and y½s� [ Rn are the submatrices of Ws GHT and y

respectively, with rows corresponding to the sampled units, then

ûGHT ¼ y 0 ½s�W½s�GHT c: ð3Þ

It will be shown in Section 4 that among linear unbiased estimators û, ûGHT minimizes

EpVj û
� �

.

If Ŝ is a diagonal matrix, then ûGHT reduces to the Horvitz-Thompson estimator.

Because, for diagonal matrices F1; F2 [ RN£N , ðF1F2Þ
† ¼ F†

1F†
2, diagonal matrices

permute, D†
s ¼ Ds, D

2
s ¼ Ds, and because Ŝ† ¼ Ŝ21, it follows that

ûGHT ¼ y 0 DsŜDs

� �†

Ep DsŜDs

� �†
� �21

c

¼ y 0DsŜ
21ŜðEpðDsÞÞ

21c

¼ y 0DsðEpðDsÞÞ
21c

¼ ûHT :

ð4Þ

Somewhat more generally, if for every possible sample s, DsŜDs is diagonal, then ûGHT

will also reduce to the Horvitz-Thompson estimator.

Note that the Horvitz-Thompson estimator, which uses a diagonal Ŝ, is unbiased, even

if a more appropriate estimate of S would have a more complex structure; ûGHT is just as

forgiving.

When Ŝ is diagonal, so is Ws GHT . The weights on the diagonal, the Horvitz-Thompson

weights, are often referred to as the design weights. If Ŝ is not diagonal, then the weight

matrix Ws GHT and the vector Ws GHT c depend on both the sampling design and on Ŝ.

It may not be appropriate to refer to Ws GHT or Ws GHT c as design weights.

The following is a simple consequence of Result 3 and will be needed before discussing

the variance of ûGHT .

RESULT 4. If Ŝ is a positive definite estimator and Ŝ ! S in probability, then ûGHT ¼

y 0
�
DsŜDs

�†
Q

Ŝ
c and u

*

GHT ¼ y 0 DsSDs

� �†
QSc are asymptotically equivalent.

Under the conditions of the preceding result, one has

Vp ûGHT

� �
8 Vpðy

0

ðDsSDsÞ
†QScÞ

¼ Vpðvecðy
0

ðDsSDsÞ
†QScÞÞ

¼ ðQSc ^ yÞ
0

VpðvecððDsSDsÞ
†ÞÞðQSc ^ yÞ

¼ kQSc ^ yjj
2
VpðvecððDsSDsÞ

†ÞÞ;

ð5Þ

where vec(F) denotes the vector obtained by stacking the successive columns of the

matrix F.

In practice, S is unknown. The statistician will simply assume that a matrix S of a

certain structure reflects the correlations among the population units. The matrix may, or
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may not, depend on certain parameters that need to be estimated. For example, in the

concluding section, S is a block diagonal matrix where each block equals 12 £ 2; there are

no parameters to estimate. In Section 9, the correlation between persons of a same

household is estimated; however, in that particular example, the estimated correlation is

not used directly; a compromise that works for two important variables of interest is

chosen. The computation of ûGHT also requires the computation of Q
Ŝ

. Although it can be

difficult to find a closed form expression for Q
Ŝ
¼ Ep DsŜDs

� �†
� �� �21

, its value can

be approximated by repeatedly sampling the population using the sampling plan p,

computing the average over the samples of
�
DsŜDs

�†
, and inverting that average. If Ŝ

varies with the sample s, then it would not be possible to compute
�
DsŜDs

�†
for all the

samples. The alternative is to fix Ŝ to the estimate obtained for the sample effectively

drawn, then ûGHT will be biased, but still asymptotically unbiased. In the case of a two-

stage sampling plan, the Horvitz-Thompson weights would likely be applied to the

primary sampling units and the methods of this article, including the method just described

to compute Q
Ŝ

, would apply to the secondary sampling units. For that purpose, the

population consists of the secondary sampling units that belong to the primary sampling

units selected in the first stage. For that “population”, S would typically be block diagonal

with each block corresponding to a selected primary sampling unit.

4. A Generalization of the Godambe and Joshi Lower Bound

Although it wasn’t in the context of an asymptotic setup and although it was assumed that

Vj ðyÞ ¼ S was diagonal, for any unbiased estimator û of u, Godambe and Joshi (1965)

have given a lower bound for the value of EjVp û
� �

. The derivation of that lower bound

used the following identity:

EjVp û
� �
¼ EpVj û

� �
þ Ep Ej û 2 u

� �� 	2
2VjðuÞ: ð6Þ

Also, for any linear unbiased estimator û of u

EpVj û
� �
¼ EpVj u*

GHT þ û 2 u*
GHT

� �� �

¼ EpVj u*
GHT

� �
þ EpVj û 2 u*

GHT

� �
þ 2 EpCovj u*

GHT ; û 2 u*
GHT

� �� �

$ EpVj u*
GHT

� �
þ 2 EpCovj u*

GHT ; û 2 u*
GHT

� �� �

¼ EpVj u*
GHT

� �
;

ð7Þ

because for any linear unbiased estimator 0̂ of 0, EpCovj u
*

GHT ; 0̂
� �

¼ 0. To show this, let 0̂

be written y 0Dsl0s þ ks, with l0s [ RN and ks independent of y, may depend on the

sample s. Setting y ¼ 0 yields EpðksÞ ¼ 0. The following derivation uses Lemma 2
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as well as Ben-Israel and Greville (2002, Exercise 2.21):

EpCovj u
*

GHT ; 0̂
� �

¼ EpCovj ðy
0ðDsSDsÞ

†QSc; y 0Dsl0sÞ

¼ Epðc
0QSðDsSDsÞ

†Covj ðy; yÞDsl0sÞ

¼ Epðc
0QSDsðDsSDsÞ

†DsSDsl0sÞ

¼ Epðc
0QSDsl0s þ ksÞ

¼ 0;

ð8Þ

because c 0QSDsl0s þ ks is the unbiased estimator 0̂ with y ¼ QSc as the vector of

interest.

The inequality (7) is what makes u
*

GHT , and ûGHT , special. Taken together with (6) it

shows that for any linear unbiased estimator, û,

EjVp û
� �

$ EpVj u
*

GHT

� �
2 VjðuÞ: ð9Þ

Knowing that VjðuÞ ¼ c 0Sc ¼ kck
2
S and that

EpVj u
*

GHT

� �
¼ Ep c 0QSðDsSDsÞ

†SðDsSDsÞ
†QSc

� �

¼ c0QSEpððDsSDsÞ
†DsSDsðDsSDsÞ

†ÞQSc

¼ c0QSEpðDsSDsÞ
†QSc

¼ c0QSc

¼ kck
2
QS
;

ð10Þ

allows the following generalization to a positive definite matrix, S, of a lower bound given

in Godambe and Joshi (1965).

RESULT 5. For any linear unbiased estimator, û of u ¼ y0c, if Vj ðyÞ ¼ S is positive

definite, then

EjVp û
� �

$ kcjj
2
QS2S: ð11Þ

If S is a diagonal matrix equal to diag s2
k

� �
k¼1;2; : : : ;N

, then (11) reduces to

EjVpðûÞ $ kck
2
ðEpðDsÞ

212IN ÞS
¼

k

P
1
pk

2 1
� �

s2
kc2

k , which is the Godambe and Joshi lower

bound, usually given for a total, that is, for c ¼ 1N£1. If c ¼ 1N£1, then the generalized

lower bound equals the sum of all entries in the matrix QS 2 S. It should be noted that

Godambe and Joshi (1965) had proven that, if S is diagonal, the lower bound holds for the

class of all unbiased estimators, not only for the class of linear unbiased estimators. What

if S is allowed not to be diagonal? Does the generalized Godambe-Joshi lower bound

apply to all unbiased estimators? The answer is no, and a nonlinear counter-example is

given in Appendix B.
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When the variance matrix S is diagonal, it is known that the calibration estimator

introduced by Deville and Särndal (1992), or the equivalent generalized regression

estimator, asymptotically attains the Godambe and Joshi lower bound (see, for example

Särndal et al. 1992). In the next section, the calibration estimator will be generalized to the

case of a positive definite variance matrix S. It will then be shown that this generalized

calibration estimator asymptotically attains the lower bound given in (11).

5. A Generalization of the Calibration Estimator

Define 1 0N£1Ws GHT c to be the effective sample weight for estimating u ¼ y 0c. The

variance of the effective sample weight will often be larger if Ŝ is nondiagonal, and this

variance will negatively affect the estimator ûGHT . This source of variance can be

eliminated with the use of a weight vector ws that satisfies the calibration equation

1 0N£1ws ¼ 1 0N£1c. In this section, to estimate u ¼ y 0c, an estimator ûGCAL ¼ y0ws GCAL

will be derived through calibration using an auxiliary variable matrix X assumed to be of

full rank. More precisely, noting ws GHT ¼Ws GHTc, the following problem is addressed:

Calibration Problem: Among the weight vectors ws in the range of Ds, RðDs),

(nonsampled units should have a weight of 0) which minimize kX0ws 2 X 0ckT, that is,

which best satisfy the calibration equations, seek one that minimizes kws 2 ws GHTkU,

that is, a weight vector as close as possible to the generalized Horvitz-Thompson weights,

where T [ Rq£q and U [ RN£N are positive semi-definite matrices.

Weights, ws, that satisfy the calibration equations, X 0ws ¼ X 0c, do not always exist,

especially if the number of equations, q, is high relative to the sample size. To prepare for

this eventuality, the matrix T is at the statistician’s disposal for specifying the relative

importance of the q calibration equations.

This formulation of the calibration problem generalizes that of Théberge (1999), where

T and U were diagonal matrices and the Horvitz-Thompson weights were used instead of

the generalized Horvitz-Thompson weights.

Setting v ¼ ws 2 ws GHT , a minimum-norm least-squares solution is sought. A helpful

theorem is given in Rao and Mitra (1971).

THEOREM 1. Let T [ Rq£q and U [ RN£N be symmetric positive semi-definite

matrices, also let A [ Rq£N and b [ Rq. There is a matrix G [ RN£q such that Gb

minimizes kvkU among the vectors v [ RN which minimize kAv 2 bkT, if and only if

TAGA ¼ TA UGAG ¼ UG TAG ¼ ðTAGÞ0 UGA ¼ ðUGAÞ0: ð12Þ

Choices for G are

G ¼ ðIN 2 ðPNðA 0TAÞUPNðA 0TAÞÞ
†UÞðA 0TAÞ†A 0T;

¼ U21A 0T1=2ðT1=2AU21A 0T1=2Þ†T1=2 if U is positive definite;
ð13Þ

where T1=2 is the symmetric positive semi-definite square root of T and PS is the

orthogonal projection on S, a subspace of RN .

The first part of the theorem is proven in Rao and Mitra (1971), where other choices for

G are given. It is shown in Appendix C that (13) does satisfy (12). To compute PNðA 0TAÞ,

the identity PNðFÞ ¼ I 2 F†F can be used.
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The first choice of G given in (13) is derived from Ben-Israel and Greville (2002,

Corollary 8.2) which is itself a consequence of the generalized Gauss-Markov theorem,

see Zyskind and Martin (1969) and Albert (1973). The second choice of G given in (13) is

derived from Théberge (1999).

If U is positive definite, there are two other possible forms for G, namely

G ¼ U21=2ðT1=2AU21=2Þ†T1=2 ð14Þ

and

G ¼ U21=2ðU21=2A 0TAU21=2Þ†U21=2A 0T; ð15Þ

where U1/2 is the symmetric positive semi-definite square root of U. Applying the identity

F† ¼ F 0ðFF 0Þ† to the Moore-Penrose inverse on the right-hand side of (14) yields the

second part of (13); applying the identity F† ¼ ðF 0FÞ†F 0 to the Moore-Penrose inverse on

the right-hand side of (14) yields (15). Both of those identities are found in Ben-Israel and

Greville (2002, Exercise 1.18).

The theorem must be modified to take into account that v is constrained to RðD s), a

subspace S of RN . This is done by applying the method of Ben-Israel and Greville (2002,

sec. 2.9) and minimizing kvkU ¼ kPSzkU ¼ kzkPSUPS
among the vectors which minimize

kAPSz 2 bkT. Using the preceding theorem to find the optimal z, gives the constrained

analog:

THEOREM 2. Let T [ Rq£q and U [ RN£N be symmetric positive semi-definite

matrices, A [ Rq£N , b [ Rq and PS be the orthogonal projection on S a subspace of RN.

There is a matrix G [ RN£q such that Gb minimizes kvkU among the vectors v [ S which

minimize kAv 2 bkT, if and only if

TAPSGAPS ¼ TAPS PSUPSGAPSG ¼ PSUPSG

TAPSG ¼ ðTAPSGÞ0 PSUPSGAPS ¼ ðPSUPSGAPSÞ
0

:

ð16Þ

Choices for G are

G¼ ðIN 2 ðPNðPSA 0TAPSÞPSUPSPNðPSA 0TAPSÞÞ
†PSUPSÞðPSA 0TAPSÞ

†A 0T;

¼ ðPSUPSÞ
†A 0T1=2ðT1=2AðPSUPSÞ

†A 0T1=2Þ†T1=2 if U is positive definite:

ð17Þ

Applying this to our calibration problem stated at the beginning of this section means

setting PS ¼ D s, b ¼ X 0c 2 X 0ws GHT and A ¼ X 0. This gives the generalized calibration

weight vector

ws GCAL ¼ ws GHT þGðX 0c 2 X 0ws GHT Þ; ð18Þ

and the calibration estimator becomes

ûGCAL ¼ y 0ws GCAL

¼ ŷ 0cþ ðy 2 ŷÞ0 ws GHT ;
ð19Þ

where ŷ ¼ Xb̂, b̂ ¼ G0y and G is given by (17) with PS ¼ Ds and A ¼ X 0.
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It should be noted that the weight vector wsGCAL can be written in the form Ws GCALc

with Ws GCAL [ RN£N . For (18) to hold true for any vector c, one must have

WsGCAL ¼WsGHT þGðX 0 2 X 0WsGHT Þ.

In the remainder of this section, it will be assumed that U is positive definite and the

second choice for G given in (17) will be used. Then, one can write

ŷ ¼ Xb̂

¼ XT1=2ðT1=2X 0ðDsUDsÞ
†XT1=2Þ†T1=2X 0ðDsUDsÞ

†y

ð20Þ

and

ws GCAL ¼ ws GHT þ ðDsUDsÞ
†XT1=2ðT1=2X 0ðDsUDsÞ

†XT1=2Þ†T1=2

£ ðX 0c 2 X 0ws GHT Þ:
ð21Þ

If one notes w½s�GCAL [ Rn, w½s�GHT [ Rn, U½ss� [ Rn£n and X½s� [ Rn£q, the

subvectors and submatrices with lines corresponding to the sampled units, then using

Lemma 2,

w½s� GCAL ¼ w½s� GHT þ U21
½ss�X½s�T

1=2
�
T1=2X 0 ½s�U

21
½ss�X½s�T

1=2
�†

T1=2

£ ðX 0c 2 X 0 ½s�w½s� GHT Þ;

ð22Þ

because the weights of nonsampled units are zero. Thus, ûGCAL ¼ y 0 ½s�w½s� GCAL. This

shows that for computing ûGCAL the population parameter X 0c must be known, but the

individual rows of X need only be known for those corresponding to sampled units. It is

seen that the weights given by (22) could be interpreted as those from a GREG estimator,

see Cassel et al. (1977), except that the Horvitz-Thompson weights are replaced with those

of the generalized Horvitz-Thompson estimator, a matrix T has been introduced in case

X½s� is not of full rank and the matrix U would be set equal to Q
Ŝ

in a GREG estimator.

For Ŝ diagonal, Q
Ŝ

reduces to ŜðEpðDsÞÞ
21. Equation (20) with U ¼ Q

Ŝ
is thus a

generalization of the value of ŷ for a GREG estimator when Ŝ, the estimated variance

matrix of y under the model, is not necessarily diagonal.

If U1=2 is the unique positive definite square root of U, then defining Z½s� ¼ U
21=2
½ss� X½s�

yields

ûGCAL ¼ y0 ½s�w½s�GCAL

¼ y0 ½s�w½s�GHT þ U
21=2
½ss� y½s�

� � 0
Z½s�T

1=2 T1=2Z 0 ½s�Z½s�T
1=2

� �†

£ T1=2 X 0c 2 X 0 ½s�w½s� GHT

� �
:

ð23Þ

If T is also positive definite and if X½s� is of full rank, then (23) simplifies to

ûGCAL ¼ y 0 ½s�w½s�GHT þ U
21=2
½ss� y½s�

� � 0
Z½s� Z 0 ½s�Z½s�
� �21

X 0c 2 X 0 ½s�w½s�GHT

� �
: ð24Þ
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In this form, a parallel can be drawn with the use of “instrumental variables”, as for

example, in Estevao and Särndal (2003).

Replacing b̂ by b in ûGCAL and noting y* ¼ Xb gives the random variable

u
*

GCAL ¼ ðy
*Þ
0

cþ ðy 2 y*Þ
0

ws GHT . The bias of u
*

GCAL is zero. Also, ûGCAL and u
*

GCAL are

asymptotically equivalent. Indeed,

t 1=22g ûGCAL t 2 u
*

GCAL t

� �
¼ t 1=22g y

*

t 2 ŷt

� � 0
DtŜtDt

� �†

Q
Ŝ t

ct 2 ct

� �

¼ t 1=22g b 2 b̂t

� � 0
X 0 t DtŜtDt

� �†

Q
Ŝ t

ct 2 X 0 tct


 � ð25Þ

tends to 0 in probability since, from the results of Section 2, X 0 t DtŜtDt

� �†

Q
Ŝ t

ct 2 X 0 tct

is Opðt
g21=2Þ and b̂t ! b in probability. This leads to the following result.

RESULT 6. For any positive definite matrix U, if the calibration equations can be

satisfied, EjVp u
*

GCAL

� �
attains the lower bound given in (11).

To prove this, use (6) with û ¼ u
*

GCAL while noting that Ej u
*

GCAL 2 u
� �

¼ 0, that

VjðuÞ ¼ kck
2
S, and that EpVj u

*

GCAL

� �
¼ EpVj ûGHT

� �
8 EpVj u

*

GHT

� �
¼ kck

2
QS

. It should

be noted that generally, ûGHT does not attain the lower bound; calibration is required.

For the generalized calibration estimator to asymptotically attain the lower bound, it is

important for the generalized Horvitz-Thompson weights, ws GHT , to be calculated with a

matrix Ŝ that satisfies the conditions of Result 3. Also, the same auxiliary variables as

appear in the model are to be used for the calibration, so that b̂ ! b. Note that b̂ ! b

whatever the choice of the positive definite matrix U, and the choice has no impact on

whether or not the generalized calibration estimator asymptotically attains the lower

bound. The case of a variance matrix S which is not diagonal has been examined before,

see, for example, Montanari and Ranalli (2002). The focus is usually on the choice of the

estimator b̂, or more precisely on the choice of the matrix U. Result 6 puts the importance

of U in perspective.

It was seen in Section 3 that if Ŝ is diagonal, then ws GHT reduces to the usual Horvitz-

Thompson weights. If the matrices U and T are also chosen to be diagonal, then the

generalized calibration estimator reduces to the usual calibration estimator as given in

Théberge (1999).

Assuming that Ŝ satisfies the conditions of Result 3, the variance of the generalized

calibration estimator is

Vp ûGCAL

� �
8 Vp u

*

GCAL

� �

¼ Vpððy 2 y*Þ0ws GHT Þ

8 kQSc ^ ðy 2 y*Þk
2
VpðvecððDsSDsÞ

†ÞÞ:

ð26Þ
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Theorem 1 may also be used to find an optimal vector b; one which minimizes the

variance. Among the vectors b which minimize

Vp ûGCAL

� �
8 kQSc ^ ðy 2 y*Þk

2
VpðvecððDsSDsÞ

†ÞÞ

¼ kðQSc ^ XÞb 2 QSc ^ yk
2
VpðvecððDsSDsÞ

†ÞÞ;

ð27Þ

the one that minimizes kbk
2
U can be found by applying Theorem 1 with A ¼ QSc ^ X,

b ¼ QSc ^ y, T ¼ VpðvecððDsSDsÞ
†ÞÞ and by using G given by (15). This gives

bopt ¼ U21=2½U21=2ðQSc ^ XÞ
0

VpðvecððDsSDsÞ
†ÞÞðQSc ^ XÞU21=2�†U21=2

£ ðQSc ^ XÞ
0

VpðvecððDsSDsÞ
†ÞÞðQSc ^ yÞ:

ð28Þ

If S is diagonal, then Vp ûGCAL

� �
8 kdiagðcÞðy 2 y*Þk

2
APA21N£N

¼ kdiagðcÞXb2

diagðcÞyk
2
APA21N£N

, where diag (v) denotes the diagonal matrix formed from the vector

v, P is the matrix of the second-order inclusion probabilities and A ¼ ðEðDsÞÞ
21.

Applying Theorem 1, again with G given by (15), to find the optimal b will give

bopt ¼ U21=2½U21=2X
0

diagðcÞðAPA 2 1N£NÞdiagðcÞXU21=2�†U21=2

£ X
0

diagðcÞðAPA 2 1N£NÞdiagðcÞy;

ð29Þ

a result similar to that found in Montanari (1998), if one sets U ¼ I and c ¼ 1N£1.

The variance Vp ûGCAL

� �
is an unbiased estimator, under j, of EjVp ûGCAL

� �
8 kck

2
QS2S.

It is then possible for Vp ûGCAL

� �
to be smaller than the lower bound

EjVp ûGCAL

� �
8 kck

2
QS2S. Also, for any other linear unbiased estimator, û, the variance

Vp û
� �

is an unbiased estimator, under j, of EjVp û
� �

$ kck
2
QS2S. The fact that Vp ûGCAL

� �

is an unbiased estimator of a parameter not greater than the parameter estimated by Vp û
� �

is not a guarantee that Vp ûGCAL

� �
is not greater than Vp û

� �
, but it is a point in favor

of ûGCAL.

For a population parameter, V, one could use the asymptotic setup to define
U!U1

limV ¼

EjðVÞ: For example, with U [ RN£N a symmetric positive definite matrix, a population

regression parameter B ¼ X0Q21
U X

� �21
X 0Q21

U y can be defined; by definition, one

has
U!U1

lim B ¼ EjðBÞ, which in this case is b. In that sense,
U!U1

lim Vp ûGCAL

� �� �
#

U!U1

lim Vp û
� �� �

for any linear unbiased estimator û.

6. Example

The computation of ûGHT and of ûGCAL requires the computation of Q
Ŝ

. An iterative

method of computation was described at the end of Section 3. In this section, an example is

examined where it is possible to obtain a closed form expression for Q
Ŝ

. It will be

assumed that Ŝ is a block diagonal matrix. Units of a same block could be persons of a

same household, workers of a same establishment, children of a same school, or similar
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groupings. Let us say that there are F blocks, then

Ŝ ¼

Ŝ1 0 0

0 . .
.

0

0 0 ŜF

0

B
B
B
@

1

C
C
C
A
: ð30Þ

In this example, it will be assumed that units belonging to the same block have the same

variance and the same covariance. Note that multiplying Ŝf f ¼ 1; : : : ;F by a scalar

leaves Ws GHT unchanged, even if the scalar varies with f. More precisely, if Nf is the

size of block f, it will be assumed that Ŝf ¼ INf
þ rf ð1Nf £Nf

2 INf
Þ f ¼ 1; : : : ;F with

21
Nf 21

, rf , 1.

With Ŝ of this form, it is possible to find a closed form expression for the block diagonal

matrix

Q
Ŝ
¼

Q
Ŝ1

0 0

0 . .
.

0

0 0 Q
ŜF

0

B
B
B
B
@

1

C
C
C
C
A
: ð31Þ

For block f, Q21

Ŝ f
¼ Ep

��
Dsf

ŜfDsf

�†�
, where Dsf

is the Nf £ Nf submatrix of Ds that

corresponds to block f. Conditioning on the number of units of the block that are sampled,

Sf, one obtains

Q21

Ŝ f
¼
XNf

nf¼1

PðSf ¼ nf ÞEp Dsf
ŜfDsf

� �†

jSf ¼ nf

� �

: ð32Þ

The probabilities, PðSf ¼ nf Þ, can be expressed as a function of the inclusion

probabilities. If one writes

PðSf ¼ nf Þ ¼
XNf

i¼nf

kði Þ
block f

X
p ½i�

0

@

1

A 1 # nf # Nf ð33Þ

with
block f

P
p ½i� being the sum of all probabilities of inclusion of order i, where all i units are

in block f, then the application of the inclusion-exclusion principle will yield the

recurrence relation

kði Þ ¼ 2
Xi2nf

j¼1

i

j

 !

kði 2 jÞ nf þ 1 # i # Nf ð34Þ

with k(nf) ¼ 1. An example with Nf ¼ 5 is given in Appendix D.

Note that Ep

��
Dsf

ŜfDsf

�†

jSf ¼ 1
�
¼ EpðDsf

jSf ¼ 1Þ, which is the diagonal matrix of

the first order conditional (on Sf ¼ 1) inclusion probabilities. Finally, for nf $ 2,
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Ep

��
Dsf

ŜfDsf

�†

jSf ¼ nf

�
¼ EpðDsf

MfDsf
jSf ¼ nf Þ ¼ Pnf

+ Mf , where the diagonal

elements of Mf [ RNf £Nf are equal to
2ðnf 22Þrf 21

ðnf 21Þr2
f
2ðnf 22Þrf 21

, whereas the offdiagonal

elements are equal to
rf

ðnf 21Þr2
f
2ðnf 22Þrf 21

, Pnf
is the matrix of second order conditional

(on Sf ¼ nf) probabilities of inclusion, and + denotes the Hadamard product, that is,

element-wise multiplication. The value of the elements of M f come from inverting an

nf £ nf submatrix of Ŝf .

7. A Modification to the Generalized Estimators

Note that ðS21 +PÞ is positive definite. Indeed, for any non-zero vector z [ RN ,

EpðVjðz
0DsS

21yÞÞ ¼ z 0ðS21 +PÞz . 0. If S is known, instead of ûGHT ¼ u
*

GHT ¼

y
0

ðDsSDsÞ
†ðEpððDsSDsÞ

†ÞÞ21c, one could use

ûMGHT ¼ y
0

DsS
21DsðEpðDsS

21DsÞÞ
21c

¼ y
0

DsS
21DsðS

21 +PÞ21c:

ð35Þ

If S must be estimated, it can be shown that an asymptotically equivalent estimator

could be obtained by replacing S with Ŝ in (35), if Ŝ satisfies the conditions of Result 3.

Contrary to ûGHT , which relies on the computation of QS, ûMGHT is readily given by a

closed-form formula. It is seen that ûMGHT is an estimator; it does not depend on

unobserved values of y. Knowledge of P is required, thus two-phase sampling for

example, may be problematic. If S is diagonal, then ûMGHT ¼ ûGHT ¼ ûHT . Like ûGHT ,

ûMGHT is unbiased. Also, a closed-form formula can be given for its variance:

Vp ûMGHT

� �
¼ kðS21 +PÞ21c ^ yjj

2
VpðvecðDsS21DsÞÞ

¼ kðS21 +PÞ21c ^ yjj
2
Vp diagðvecðS21ÞÞDð2Þs 1

N 2£1ð Þ

¼ kdiagðvecðS21ÞÞððS21 +PÞ21c ^ yÞjj
2

P ð4Þ2vecðPÞðvecðPÞÞ
0 ;

ð36Þ

where Dð2Þs ¼ diagðvecðDs1N£NDsÞÞ, and P (4) ¼ E Dð2Þs 1N 2£N 2Dð2Þs

� �
is a matrix of fourth-

order inclusion probabilities.

Noting ûMGHT ¼ y
0

ws MGHT , the calibration problem could now be changed in order to

find weights as close as possible to ws MGHT , instead of ws GHT . The resulting estimator

would be

ûMGCAL ¼ y 0ws MGCAL

¼ ŷ 0cþ ðy 2 ŷÞ
0

ws MGHT :

ð37Þ

The estimator ûMGCAL is asymptotically unbiased and

Vp ûMGCAL

� �
8 kdiagðvecðS21ÞÞððS21 + PÞ21c ^ ðy 2 y*ÞÞjj

2
Pð4Þ2vecðPÞðvecðPÞÞ0 : ð38Þ
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Of course, it is not expected that ûMGCAL will attain the lower bound given in (11).

However, it does not rely on generalized inverses, and does not require the computation

of QS.

8. Estimator Comparison

In this section, six estimators are compared: the Horvitz-Thompson estimator, the

calibration estimator, the generalized Horvitz-Thompson estimator, the generalized

calibration estimator, and the modified versions of the latter two as described in Section 7.

All estimators are, at least asymptotically, unbiased. For comparing their variance, a

population of 1,000 units, 200 clusters of five units each, was used. The variable of interest

was generated from a normal distribution with mean 10 and variance 2. This was done in

such a way that units from the same cluster have a covariance of one, whereas units from

different clusters are independent. The parameter to be estimated is the population mean.

The variance, or asymptotic variance, of the generalized estimators and of the modified

generalized estimators was computed with a block diagonal matrix S, with each 5 £ 5

block having the value 2 on the diagonal and 1 offdiagonal, thus reflecting the distribution

used to generate the population. The variances were computed under two sampling plans:

simple random sampling, and Poisson sampling with the five units from a block being

selected with probability (0.15, 0.15, 0.2, 0.2, 0.3). It was assumed that X ¼ 1N£1 for

computing the asymptotic variances of the calibration estimator, the generalized

calibration estimator, and the modified generalized calibration estimator. That is, the only

calibration equation is the one specifying that the sum of the weights should equal the

population size – the trivial calibration equation. The value of VpðvecððDsSDsÞ
†ÞÞ, needed

to compute (5) and (26), was approximated by computing ðDsSDsÞ
† for 10,000 different

samples, all drawn according to the appropriate sampling plan: simple random sampling or

Poisson sampling. With the covariance matrix used for generating the population, the

lower bound given in (11) equals 0.0070 under simple random sampling, and 0.0075 under

Poisson sampling.

Table 1 gives the variances of the estimators, or their asymptotic variances in the case of

calibrated estimators, under the sampling plan. The table shows that, for simple random

sampling, the generalized Horvitz-Thompson estimator is much less precise than the

regular Horvitz-Thompson estimator. The explanation for this was given at the beginning

of Section 5. The generalized Horvitz-Thompson estimator was not meant to be optimal;

its interest lies in relation (7). In contrast, the generalized calibration estimator

outperforms the Horvitz-Thompson estimator. Note that under simple random sampling

with X ¼ 1N£1, the calibration estimator is equal to the Horvitz-Thompson estimator. The

asymptotic variance under the sampling plan, Vp ûGCAL

� �
, is very close to the generalized

Godambe-Joshi lower bound for EjVp û
� �

, which for this S and sampling plan is equal to

0.0070. The performance of the modified generalized Horvitz-Thompson estimator can be

significantly different from that of the generalized Horvitz-Thompson estimator. It cannot

be seen as a good approximation of the generalized Horvitz-Thompson estimator.

Nevertheless, the modified generalized calibration estimator performs better than the

Horvitz-Thompson estimator and practically as well as the generalized calibration

estimator for both simple random sampling and the Poisson sampling plan.
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With the Poisson sample being of random size, it is not surprising that the noncalibrated

estimators (Horvitz-Thompson, generalized Horvitz-Thompson, and modified generalized

Horvitz-Thompson) are performing poorly with this sampling plan. The generalized

calibration estimator outperforms the calibration estimator. Its asymptotic variance is

comparable to the generalized Godambe-Joshi lower bound for EjVp û
� �

, which for this S

and sampling plan is equal to 0.0075.

Since the calibration estimator is the generalized calibration estimator computed with a

diagonal matrix S, the asymptotic variance for the calibration estimator in Table 1 shows

what can happen if the generalized version is used with a matrix S different from the true

variance matrix, VjðyÞ, : : : the generalized calibration estimator could become the

ordinary calibration estimator.

9. Application to the Canadian Reverse Record Check Survey

The Reverse Record Check (RRC) is a Canadian postcensal undercoverage survey used in

conjunction with the Census of Population and a postcensal overcoverage study to arrive at

population estimates; see Statistics Canada (2015). In this section, the estimates and the

methodology used for the Canadian Territory of Yukon for the 2011 RRC are examined,

and the generalized estimates are compared to the current one. A list frame of persons is

sampled with stratified random sampling. There is one large take-all stratum, where all

units are enumerated by the Census, and take-some strata comprising units that are either

enumerated by the Census, missed by the Census, or out of scope for the Census. The main

objective of the RRC is to estimate the number of missed persons. Information on the

frame is available to group persons by household. Because of the Census methodology, the

variable “missed”, which takes the value 1 if the person is missed and 0 if not, is highly

correlated for persons belonging to the same household. If the Census enumerated (or

missed) someone, it likely enumerated (or missed) the other members of that household.

With the current RRC methodology, the Horvitz-Thompson weight of responding units is

multiplied by a factor to account for nonresponse and a factor to account for frame

undercoverage. The latter factor is such that the estimate of persons enumerated coincides

with the equivalent Census number. In this application, the Horvitz-Thompson weights are

replaced with the generalized weights. For the generalized calibrated weights, the

calibration equation simply ensured that the sum of the calibrated weights equalled the

Table 1. Variances of six estimators of the mean.

Estimator
Simple random

sampling
Poisson

sampling

Horvitz-Thompson 0.0077 0.4458
Calibration – 0.0084
Generalized Horvitz-Thompson 0.0477 0.2848
Generalized calibration 0.0069 0.0073
Modified generalized Horvitz-Thompson 0.0361 0.3237
Modified generalized calibration 0.0070 0.0076

Generalized Godambe-Joshi lower bound 0.0070 0.0075
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number of units in the stratum. The same nonresponse adjustment factors were used, and

the frame undercoverage adjustment factors were all computed so that the estimates of

persons enumerated coincides with the equivalent Census number: 29,982. The

generalized weights were computed assuming that the correlation structure is block

diagonal, each block representing the persons of a same household, according to the frame

information. All offdiagonal elements of each block are set to 0.95. This is because the

estimates of the correlations within households are 0.956 for the variable “missed” and

0.947 for the variable “enumerated”. The correlations are less than one because the Census

sometimes partly enumerates or partly misses a household, and because the frame

household may differ from the census household.

The estimates obtained along with the corresponding variance estimates are given in

Table 2. The Horvitz-Thompson estimates are those currently used by the survey. The

variance estimate of the generalized Horvitz-Thompson estimator is lower than that of the

Horvitz-Thompson estimator, in spite of having an additional source of variance, as

discussed at the beginning of Section 5. This is because, for all estimators, the last step in

computing the estimates is a calibration on the number of persons enumerated. The

variance estimates of the generalized calibration estimator and the modified generalized

calibration estimator, those that would be used in practice, are lower than that of the

Horvitz-Thompson estimator. The advantage of the modified generalized estimator is that

its computation did not require calculating the matrix QS, although it was easy to

approximate this matrix by repeatedly sampling the frame one million times, and using the

method described at the beginning of Section 6. The estimates of missed persons are not

significantly different from one another.

10. Variance Estimation

Statisticians are better at estimating totals or weighted totals than they are at estimating

variances. Why not write variances in the form of weighted totals? A variance can be written

in the form u var ¼ y0Vy ¼ ðy ^ yÞ0vecðVÞ, with V [ RN£N . Such parameters have been

estimated in Sections 3, 5, and 7. There are N 2 units, each corresponding to a pair of units

of the original population, with a vector of interest equal to y ^ y and c ¼ vec(V).

The methods of this article apply here, because in general, Covð yiyj; ykylÞ – 0 for

(i, j ) – (k, l ). Whatever the asymptotic setup, Vjðy ^ yÞ ¼ S2 will not be a positive

definite matrix. For example, the row of S2 which corresponds to unit (i, j ) i – j is equal to

the row which corresponds to unit ( j, i ). In fact, the event (i, j ) [ s is identical to the event

( j, i ) [ s. Thus, from the N 2 units, only the N(N þ 1)/2 with j $ i need to be kept. The

Table 2. RRC estimates of missed persons.

Estimator Estimate Variance estimate

Horvitz-Thompson 5,272 91,727
Generalized Horvitz-Thompson 5,150 82,920
Generalized calibration 5,137 82,505
Modified generalized Horvitz-Thompson 5,194 86,945
Modified generalized calibration 5,173 85,999
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estimators suggested in this article would require the inversion of a matrix of order

N(N þ 1)/2.

The variance matrix will be diagonal, Covð yiyj; ykylÞ ¼ 0 for (i, j ) – (k, l ), if Vj (y) is

diagonal and if Ej ðyÞ ¼ 0. The last assumption is reasonable if y is a vector of residues, as

would be the case if one is estimating the variance of a calibration estimator (regular,

generalized, or modified). With Covð yiyj; ykylÞ ¼ 0 for (i, j ) – (k, l ), the regular

calibration estimator will suffice to estimate the variance of a calibrated estimator. A

choice of calibration equations must still be made. The findings made in Théberge (1999)

remain valid; namely, to use an auxiliary variables matrix in a block diagonal form with

two blocks: a trivial model for the cross products terms of u var ¼ y 0Vy, that is, y 0ðV 2

ðV + IÞÞy (this will yield a Horvitz-Thompson estimator in the case of fixed-size sampling

plans) and a nontrivial model to estimate the squared terms of u var ¼ y 0Vy, that is,

y 0ðV + IÞy. In the examples examined in Théberge (1999), the nontrivial model used for

estimating the squared terms of the variance was the one corresponding to a ratio estimator.

Whatever the models are, it is important to use an auxiliary variables matrix in a block

diagonal form with two blocks. For example, the intercept used to estimate the cross-

product terms has nothing to do with a possible intercept to estimate the squared terms.

Therefore there should not be an auxiliary variable taking the value one for all ði; jÞ j $ i. It

is preferable to have an auxiliary variable taking the value one for all ði; jÞ j . i and zero

otherwise, and another auxiliary variable taking the value one for (i, i ) i ¼ 1, 2, : : : , N and

zero otherwise.

11. Conclusion

An asymptotic setup is necessary to discuss the asymptotic properties of the estimators.

The setup used here integrates a superpopulation model. There is no need for a

superpopulation model separate from the asymptotic setup. The setup’s model does not

assume that the units are uncorrelated.

Even the Horvitz-Thompson estimator can be viewed as relying on a model. The

generalized Horvitz-Thompson estimator, like the Horvitz-Thompson estimator, is

unbiased. Both estimators, but especially the former, can be affected by the variance in the

effective sample weight. Even without auxiliary data, it is possible to calibrate the weights

so their total equals the population size. If this is done, then the generalized estimator will

have a lower asymptotic variance than the ordinary estimator.

The calibration estimator was generalized in two ways: firstly, one is seeking weights

close to the generalized Horvitz-Thompson weights; secondly, the matrices T and U, used

in measuring distances, need no longer be diagonal.

A somewhat easier way to compute the modified generalized calibration estimator was

shown to perform practically as well as the generalized calibration estimator in the

examples given in this article.

The Godambe-Joshi lower bound can be generalized to the case where the units are

correlated. The asymptotic variance of the generalized calibration estimators attains the

generalized Godambe-Joshi lower bound, if the model is correct, that is, if Ŝ ! S in

probability and the matrix X used by the generalized calibration estimator agrees with that

of the asymptotic setup. This is regardless of the choice for the matrix U, used in
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measuring the distance between the calibrated weights and the generalized Horvitz-

Thompson weights.

By viewing variances as weighted totals, the theory developed here provides a

framework for variance estimation. The general case would require the inversion of very

large matrices, but there are simplifications to be made if one is estimating the variance of

a calibration estimator. Those simplifications will often result in what was called the

“hybrid estimator” in Théberge (1999).

Even though there are workarounds, such as dropping variables or using the limit of a

positive definite matrix, it would be interesting to generalize the results of this article to the

case of S positive semi-definite. This strategy of using the methods of this article with a

positive definite covariance matrix that differs only infinitesimally from a block diagonal

matrix where each block equals 12£2 will allow concluding by revisiting the example

in the introduction. The assumption that the correlation between y2i21 and y2i i ¼

1; 2; : : : ;N=2 is 1, is weaker than the assumption that the two units are equal, as was done

in the introduction. The resulting generalized Horvitz-Thompson estimator of the total is
PN=2

i¼1 2y2i21d2i21 þ 2y2id2i 2 ð y2i21 þ y2iÞ d2i21d2i þ ð y2i21 2 y2iÞ d2i21d2iðp2i 2 p2i21Þ/

p2i21 þ p2i 2 p2i21 2i. Setting y1 ¼ y2 will yield the term given in the introduction.

For example, for N spouses grouped into N/2 couples, the variable of interest may be the

place of residence (very high correlation), or education level (significant correlation).

Using a calibrated version of this estimator to ensure that the sum of the weights equals

the population size, will be preferable to using a similarly calibrated version of the

Horvitz-Thompson estimator, if the correlation is somewhat close to 1. Using an estimator

optimized for a correlation of 1 will often be preferable to using an estimator optimized for

a correlation of 0. Note that two samples drawn with the same sampling plan made up of

individuals from the same couples will have the same effective sample weight, regardless

of how many of the spouses, one or two, are sampled from each observed couple.

Appendix A: Proofs of Results of Section 2 and Lemmas of Section 3

Proof of Result 1:

Note that

b̂t ¼ T1=2 T1=2X 0 tðDtUtDtÞ
†XtT

1=2
� �†

T1=2X 0 tðDtUtDtÞ
†yt

¼ T1=2 T1=2
Xt

i¼1

X 0 D½i�UD½i�
� �†

XT1=2

 !†

T1=2
Xt

i¼1

X 0 D½i�UD½i�
� �†

y½i�

¼ T1=2 T1=2X 0t 21
Xt

i¼1

ðD½i�UD½i�Þ
†XT1=2

 !†

T1=2X 0t 21
Xt

i¼1

ðD½i�UD½i�Þ
†y½i�:

The D [i ] being independent and identically distributed, from the weak law of large

numbers, t 21
Pt

i¼1 ðD½i�UD½i�Þ
† tends in probability to Q21

U ¼ EpððD½i�UD½i�Þ
†Þ. Since the

sampling plan is noninformative, t 21
Pt

i¼1 ðD½i�UD½i�Þ
†y½i� tends in probability to Q21

U Xb.
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Thus,

b̂t ! T1=2 T1=2X 0Q21
U XT1=2

� �†

T1=2X 0Q21
U Xb

¼ T1=2 T1=2X 0Q21
U XT1=2

� �21

T1=2X 0Q21
U XT1=2T21=2b

¼ b

in probability.

Proof of Result 2:

Note that

X0t DtŜtDt

� �†

Q
Ŝ t

ct 2 X 0tct¼ t gX 0 t 21
Xt

i¼1

D½i�Ŝ½i�D½i�

� �†

 !

Q
Ŝ

2 IN

 !

c: ðA:39Þ

The expectation, under the plan p, of
�
D½i�Ŝ½i�D½i�

�†
is equal to Q21

Ŝ
. Also, the variance

of the vector X0
�
D½i�Ŝ½i�D½i�

�†
Q

Ŝ
c is finite. Indeed, there is a finite number of possible

values for D [i ], and for any D [i ],
�
D½i�Ŝ½i�D½i�

�†
exists. According to the central limit

theorem, X 0 t 21
Pt

i¼1 D½i�Ŝ½i�D½i�

� �†
� �

Q
Ŝ

c 2 X 0c

� �

t 1=2 converges to a normal

distribution with mean 0q£1 and finite variance. Since

X0 t 21
Pt

i¼1 D½i�Ŝ½i�D½i�

� �†
� �

Q
Ŝ

c 2 X 0c

� �

t 1=2 is Op(1), from (A.39) it follows that

X0t
�
DtŜtDt

�†
Q

Ŝ t
ct 2 X 0 tct is Opðt

g21=2Þ.

Proof of Result 3:

The difference can be written as a sum of differences

t gX 0 t 21
Pt

i¼1 D½i�Ŝ½i�D½i�

� �†

Q
Ŝ

2 ðD½i�S½i�D½i�Þ
†QS

� �� �

c: The differences under the

summation sign tend to 0 in probability and the central limit theorem yields the result.

Note that the condition of Ŝt being positive definite is needed to ensure the Moore-Penrose

inverse is continuous at St (see Ben-Israel and Greville 2002, 212).

Proof of Lemma 1:

It is obvious that NðFÞ $ >K
i¼1 NðFiÞ. To show that NðFÞ # >K

i¼1 NðFiÞ, let

v [ NðFÞ, then v 0Fv ¼
PK

i¼1 v 0Fiv ¼ 0. The matrices Fi being positive semi-definite, one

must have v 0Fiv ¼ 0 i ¼ 1; 2; : : : ;K. With Fi also being symmetric, there exists a

symmetric positive semi-definite matrix Ki such that Fi ¼ K2
i . Therefore v 0Fiv ¼ 0

implies v 0K 0 iKiv ¼ 0 and one must have v [ NðFiÞ.
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Proof of Lemma 2:

WritingRðFÞ for the range of a matrix F, from Ben-Israel and Greville (2002, Exercise

2.38) it is known that RððFPÞ†Þ ¼ RðPF 0Þ # RðPÞ, which proves a). The proof of b) is

obtained by taking the transpose of each side of the identity in a). Finally, from using a) and

b) in succession it follows that ðPFPÞ† ¼ PðPFPÞ† ¼ PðPFPÞ†P.

Appendix B: Counter-example

To estimate a population total (c ¼ 1), an estimator û ¼ ûGCAL þ 0̂, where 0̂ is a nonlinear

unbiased estimator of 0, will be used. The computation of ûGCAL will use Ŝ ¼ S. It will be

shown that for the asymptotically equivalent random variable u* ¼ u
*

GCAL þ 0̂, one has

EjVp u*
� �

, EjVp u
*

GCAL

� �
¼ GGJLB, where GGJLB is the generalized Godambe-Joshi

lower bound.

Starting with Equation (9)

EjVpðu
*Þ¼EpVjðu

*ÞþEpðEjðu
* 2uÞÞ2 2VjðuÞ

¼EpVj u
*

GCAL

� �
þEpVj 0̂

� �
þ2EpCovj u

*

GCAL; 0̂
� �

þEpðEjðu
* 2uÞÞ2 2VjðuÞ

¼EpVj ûGHT

� �
2VjðuÞþEpVj 0̂

� �
þ2EpCovj u

*

GCAL; 0̂
� �

þEp Ej 0̂
� �� �2

¼GGJLBþEpVj 0̂
� �
þ2EpCovj u

*

GCAL; 0̂
� �

þEp Ej 0̂
� �� �2

:

In this example, the population U ¼ {1, 2, 3}. Under the sampling plan, the samples

s1 ¼ {1, 2} and s2 ¼ {2, 3} can each be selected with probability 0.5. The vector u [ R3

is composed of independent and identically distributed variables taking the values 1 or 21

each with probability 0.5. Under the model j, the vector of interest is y ¼ S1=2u,

with S1=2 ¼

2 0:5 0

0:5 1 0

0 0 1

0

B
B
@

1

C
C
A. Thus, with this model, EjðyÞ ¼ 0, VjðyÞ ¼

S ¼

4:25 1:5 0

1:5 1:25 0

0 0 1

0

B
B
@

1

C
C
A, QS ¼

6:7 1:5 0

1:5 1:25 0

0 0 2

0

B
B
@

1

C
C
A.

A nonlinear unbiased, under the sampling plan, estimator of 0 is 0̂ ¼ 2½y2� if s1 is

selected and 0̂ ¼ ½y2� if s2 is selected, where [y2] represents the integer part of y2.

Under those conditions, GGJLB ¼ c 0ðQS 2 SÞc ¼ 3:45, EpVj 0̂
� �
¼ 0:5, Ej 0̂

� �
¼ 0,

Covjðy; ½y2�Þ ¼

1:25

0:75

0

0

B
B
@

1

C
C
A,

EpCovj u
*

GCAL; 0̂
� �

¼ 0:5 £ c 0QSððDs2
SDs2

Þ† 2 ðDs1
SDs1

Þ†ÞCovjðy; ½y2�Þ ¼ 20:35 and
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EjVpðu
*Þ ¼ GGJLBþ EpVj 0̂

� �
þ 2EpCovj u

*

GCAL; 0̂
� �

þ Ep Ej 0̂
� �� �2

¼ 3:45þ 0:5 2 0:7þ 0

¼ 3:25

, GGJLB:

Thus, asymptotically, EjVp ûGCAL þ 0̂
� �

, EjVp ûGCAL

� �
¼ GGJLB. With N ¼ 3, the

asymptotic properties are not very meaningful. However the example could be expanded

to include a large number of strata of size 3, each with the model and sampling plan

described above.

Appendix C: Proof that (13) Satisfies (12)

To simplify, PNðA 0TAÞ will be denoted by P. First, using the first part of (13), set

G ¼ ðIN 2 ðPUPÞ†UÞðA 0TAÞ†A 0T.

Because for an arbitrary real square matrix M, NðMM 0Þ ¼NðMÞ ¼NðM 0Þ, it

follows that

UGA ¼ UðIN 2 ðPUPÞ†UÞ ðA 0TAÞ†A 0TA

¼ UðIN 2 ðPUPÞ†UÞðIN 2 PÞ

¼ U 2 UðPUPÞ†U 2 UPþ UPðPUPÞ†ðPUPÞ

¼ U 2 UðPUPÞ†U 2 UPþ UPðIN 2 PNðPUPÞÞ

¼ U 2 UðPUPÞ†U 2 UPPNðPUPÞ

¼ U 2 UðPUPÞ†U;

ðC:1Þ

which is symmetrical. Also symmetrical, is

TAG ¼ TAðIN 2 ðPUPÞ†UÞðA 0TAÞ†A 0T

¼ ðTA 2 TAPðPUPÞ†UÞðA 0TAÞ†A 0T

¼ TAðA 0TAÞ†A 0T;

ðC:2Þ

because TAP ¼ 0. From (C.2),

TAGA ¼ TAðA 0TAÞ†A 0TA

¼ TAðIN 2 PÞ

¼ TA:

ðC:3Þ
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Finally, from (C.1),

UGAG ¼ ðU 2 UðPUPÞ†UÞG

¼ UG 2 UðPUPÞ†UðIN 2 ðPUPÞ†UÞðA 0TAÞ†A 0T

¼ UG 2 ½UðPUPÞ†U 2 UðPUPÞ†PUPðPUPÞ†U�ðA 0TAÞ†A 0T

¼ UG:

ðC:4Þ

If G ¼ U21A 0T1=2ðT1=2AU21A 0T1=2Þ†T1=2 with U positive definite, then

UGA ¼ A 0T1=2ðT1=2AU21A 0T1=2Þ†T1=2A ðC:5Þ

is a symmetrical matrix. Also,

TAG ¼ T1=2ðT1=2AU21A 0T1=2ÞðT1=2AU21A 0T1=2Þ†T1=2

¼ T1=2PRðT1=2AU21A 0T1=2ÞT
1=2

ðC:6Þ

is symmetrical, since an orthogonal projection matrix is symmetrical. From the properties

of the Moore-Penrose inverse,

UGAG ¼ A 0T1=2ðT1=2AU21A 0T1=2Þ†T1=2AU21A 0T1=2ðT1=2AU21A 0T1=2Þ†T1=2

¼ A 0T1=2ðT1=2AU21A 0T1=2Þ†T1=2

¼ UG:

ðC:7Þ

Finally, because for an arbitrary real matrix M, RðMM 0Þ ¼ RðMÞ and because U is

positive definite, it follows that

TAGA ¼ T1=2ðT1=2AU21A 0T1=2ÞðT1=2AU21A 0T1=2Þ†T1=2A

¼ T1=2PRðT1=2AU21A 0T1=2ÞT
1=2A

¼ T1=2PRðT1=2AÞT
1=2A

¼ TA:

ðC:8Þ

Appendix D: Example of Computing PðSf 5 nf Þ with a Block of Size 5

PðSf ¼ 5Þ ¼ p ½5�

PðSf ¼ 4Þ ¼
block

X
p ½4� 2 5p ½5�

PðSf ¼ 3Þ ¼
block

X
p ½3� 2 4

block

X
p ½4� þ 10p ½5�
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PðSf ¼ 2Þ ¼
block

X
p ½2� 2 3

block

X
p ½3� þ 6

block

X
p ½4� 2 10p ½5�

PðSf ¼ 1Þ ¼
block

X
p ½1� 2 2

block

X
p ½2� þ 3

block

X
p ½3� 2 4

block

X
p ½4� þ 5p ½5�

PðSf ¼ 0Þ ¼ 1 2
X5

nf¼1

PðSf ¼ nf Þ
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