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Responsive and Adaptive Design
for Survey Optimization

Asaph Young Chun1, Steven G. Heeringa2, and Barry Schouten3

We discuss an evidence-based approach to guiding real-time design decisions during the
course of survey data collection. We call it responsive and adaptive design (RAD), a scientific
framework driven by cost-quality tradeoff analysis and optimization that enables the most
efficient production of high-quality data. The notion of RAD is not new; nor is it a silver bullet
to resolve all the difficulties of complex survey design and challenges. RAD embraces
precedents and variants of responsive design and adaptive design that survey designers and
researchers have practiced over decades. In this paper, we present the four pillars of RAD:
survey process data and auxiliary information, design features and interventions, explicit
quality and cost metrics, and a quality-cost optimization tailored to survey strata. We discuss
how these building blocks of RAD are addressed by articles published in the 2017 JOS special
issue and this special section. It is a tale of the three perspectives filling in each other. We
carry over each of these three perspectives to articulate the remaining challenges and
opportunities for the advancement of RAD. We recommend several RAD ideas for future
research, including survey-assisted population modeling, rigorous optimization strategies, and
total survey cost modeling.

Key words: Responsive design; adaptive design; survey errors; survey costs; optimization;
paradata; auxiliary data; total survey error.

1. Introduction

For over a century, survey researchers have faced continual change in the essential

conditions under which surveys are designed and data collection is conducted. Time and

again, survey practitioners have “responded” or “adapted” to arising challenges and

opportunities they faced using innovations in the statistical design and analysis of their

studies or in the methods used to collect study data. Many of the changes in the essential

conditions of surveys have been clearly recognized as transformational in the field: the

idea that samples could represent a population; a theory of inference based on probability

samples; the formalization of household sampling and survey methods; the advent of

RDD telephone surveys; computerization of survey design, data collection and analysis;
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and internet and web-based data collection. In addition to benefitting from these

transformational opportunities, survey researchers have been increasingly challenged by

several inter-related and chronic trends – the increasing number and complexity of

surveys, rising costs of traditional survey designs and methods, and steady decline in

respondent participation rates.

In light of these changes and opportunities to seize, the remainder of Section 1 describes

the genesis and evolution of responsive and adaptive design (RAD), including the four

pillars of RAD that are essential to survey design. Section 1 closes by presenting the

overarching research questions addressed by articles published in the 2017 JOS special

issue and this special section. Section 2 presents three perspectives, discussing how core

elements of RAD are addressed by these articles. Section 3 outlines what open research

questions and challenges remain, following each of three perspectives as presented in

Section 2. Sections 4 and 5 include a discussion of future directions for RAD and

conclusions. This discussion article is a companion to the article by Chun et al. (2017)

providing an overview of the 2017 JOS special issue devoted to RAD.

1.1. The Notion and Evolution of Responsive and Adaptive Design

The idea of responsive and adaptive design (RAD) arose in response to the survey

challenges that were enumerated at the outset of our discussion. By way of definition,

RAD is a data-driven scientific approach to controlling survey design features in real-time

data collection by monitoring explicit costs and errors of survey estimates that are

informed by auxiliary information, paradata, and multiple sources of data; RAD works

toward a goal of survey optimization based on cost-error tradeoff analysis and evidence-

driven design decisions, including the most efficient allocation of resources to survey

strata. The concept of using RAD for conducting surveys is not new. Some clear

antecedents include survey practices like replication (i.e., phases) in sample release, the

embedding of experiments in survey data collections, and double sampling (two-phase

sampling). These practices are inclusive of subsampling for nonresponse (Hansen and

Hurwitz 1946), sequential analysis or adaptive trials (Wald 1947), and total survey error

and total quality management (Morganstein and Marker 1997).

Groves (2011) described the three decades spanning 1960–1990 as the “Era of

Expansion” in the application of survey methods. He cites Eleanor Singer, who labeled

this same period the Golden Era of survey research. Many of us who lived and worked

through the day-to-day challenges of that time might view it more as “gilded and shiny”

than truly golden; it was an era of stability – scientifically designed surveys, using highly

standardized and uniform methods, resulted in high-quality surveys with relatively high

response rates and acceptable cost structures. Late in this period of relative stability, the

challenge of rising costs for large scale in-person data collections was buffered by the

advent of new telephone survey methodology – a buffer that remained effective through

at least the late 1990s.

By the new millennium, the continual change in key survey conditions presented survey

researchers with new challenges. Scientific and government surveys became more

complex and often posed great uncertainty in design parameters and operational features.

Survey populations’ resistance to survey participation continued to increase. Survey cost
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structures were becoming even more dependent on decisions being made in the field or

data collection centers, often with no evidentiary basis to measure or respond to cost

fluctuations. Cost metrics, which are inherently multi-dimensional, remained as elusive as

data quality. As these challenges grew, new opportunities also arose. Due to advances in

computing and technology, there was improved access to sample frames, administrative

data sources, global positioning (GPS), and geographic information systems (GIS).

Groves and Heeringa (2006) coined the term “Responsive Design,” following the oft-

quoted advice of their mentor, Leslie Kish, who said, “If you want recognition for an idea,

put a proper name on it” (e.g. “Design Effect”). Leslie’s advice in this regard was sage.

The term “responsive design” stuck as did the companion term, “adaptive survey design.”

As a catalyst for the initial growth of RAD, foremost among the new opportunities

emerging in the first years of the new millennium were sophisticated new “real time”

systems for sample management, data acquisition, and paradata capture in interviewing

systems.

New developments in survey designs and methods can often take a decade or more

to develop and mature with respect to research, publication, and applications in the field.

This was certainly true for RAD. Initial RAD applications often emphasized simple

nonresponse subsampling features to address the cost and effort of “end game” data

collection at the conclusion of the survey period (Tourangeau et al. 2016). With time, the

breadth and sophistication of RAD research and applications have expanded, resulting in

the diverse body of knowledge and experience that is in evidence in publications such as

the 2017 JOS special issue, this 2018 JOS special section, and a book recently published

by Schouten et al. (2017).

RAD, in youth slang, means wonderful, fantastic, or extraordinary. We observe the rise

of variants of RAD ideas, turning these ideas into survey practice in various contexts. RAD

seems to be coming of age since the explicit implementation of responsive design or

adaptive design during the mid-2000s (e.g., Groves and Heeringa 2006; Wagner 2008).

1.2. Four Pillars of Responsive and Adaptive Design

Though precedents and variants of RAD have been embedded in survey practice over

decades (Groves and Heeringa 2006; Wagner 2008; Calinescu and Schouten 2016), we

argue that RAD has four pillars for constructing survey design: 1) use of auxiliary

information to stratify the heterogeneous population under study, 2) design features and

interventions to adapt treatment, 3) explicit quality and cost metrics and functions to

evaluate the efficacy of adaptation to strata, and 4) a quality-cost optimization strategy to

find optimal allocations of treatments to strata. RAD is essentially a form of adjustment by

design in the data collection as opposed to adjustment by estimation, that is adjustment

introduced in the design and data collection stage in contrast to adjustment in the

estimation stage. As a consequence, similar to estimation, auxiliary data should relate to

nonresponse and other sources of survey errors under investigation, as well as to the key

survey variables. Design features should be effective in reducing survey errors for the

relevant strata. Quality and cost functions quantifying effort and errors should be properly

defined and measurable, but, above all, should be accepted by the stakeholders involved.
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The quality-cost optimization strategy should be transparent, reproducible, and easy to

implement.

The first two pillars – auxiliary data and design features – emphasize data collection

and a behavioural social sciences component, whereas the other two pillars – cost/quality

metrics and optimization – are tied to estimation and statistics component. Between 2000

and 2015, there was renewed interest in paradata, or auxiliary data coming from the data

collection process (e.g., Kreuter 2013). For example, call record data, audit trails, and

interviewer observations were increasingly used in dashboards to monitor data collection.

This might have resulted from increasing digitization of communication. The real-time

paradata were instrumental to developing evidence-driven models to understand the

process of response and nonresponse and to creating statistical interventions to control for

potential nonresponse bias.

Survey design features obviously go as far back as surveys themselves; however, there

has been renewed interest in mixed-mode surveys with the emergence of online devices

(e.g., Dillman et al. 2014; Klausch 2014). The survey mode appears to be the strongest

quality-cost differential of all design features. Between 2005 and present, various articles

have been published about indicators for nonresponse (e.g., Chapter 9 in Schouten et al.

2017). It has been declining response rates, we observe, that drove the development of

alternative indicators; not necessarily to replace response rates but to supplement them and

to provide a more comprehensive picture of data quality. Notable in data quality metrics

is the development of response propensity measures (e.g., Chun 2009; Chun and Kwanisai

2010; Toureangeau et al. 2016). It is unfortunate that efforts to develop and implement

cost metrics remain quite limited – probably due to practical constraints of quantifying or

modelling cost parameters.

Optimization strategies remain an underexplored area. This may be, in part, because

they are the final step of RAD. In other words, they require that choices in the other

elements have been made and implemented. For instance, a consensus is necessary on

quality and cost indicators. We observe, however, that it is also because optimization

requires accurate estimates of survey design parameters, such as response propensities and

survey costs. Survey cost metrics are multi-dimensional like data quality; optimization

strategies, therefore, remain incomplete as long as cost estimates as input variables are

neither reliable nor valid indicators of survey costs.

1.3. Overarching Research Questions

We present that the overarching research questions addressed by the 2017 JOS special

issue and the 2018 JOS special section are as follows: 1) what approaches can be used to

guide the development of cost and quality metrics in RAD and their use over the survey

life cycle? 2) which methods of RAD are able to identify phase boundaries or stopping

rules that optimize responsive designs? and 3) what would be best practices for applying

RAD to produce high quality data in a cost-effective manner?

In response to these core questions of RAD, the JOS special issue and special section

sought to address the following topics of adaptive design: theoretical contributions and

applications, innovations, and comparisons of different methods of adaptive design that

leverage the strengths of administrative records, big data, census data, and paradata as
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well as survey response data. For instance, what cost-quality tradeoff paradigm can be

operationalized to guide the development of cost and quality metrics and their use around

the survey life cycle? Under what conditions can administrative records or big data be

adaptively used to supplement survey data collection? How are paradata in multi-mode

data collection conceptualized, pretested and collected to inform survey design decisions?

The articles included in the JOS special issue and special section address

interdisciplinary dimensions of adaptive design, which encompass the following survey

drivers: cost, response burden, data quality such as representativeness and response

propensity, multiple sources of data, multiple modes of data collection, paradata, and new

technologies. For instance, what indicators of data quality can be combined to monitor the

course of the data collection process? Under what scenarios can the rules of switching

from one mode to another be cost-effective? What stopping rules of data collection can be

used across major phases of the survey life cycle?

We reiterate that the JOS articles involve experimental designs or simulations of

adaptive design in household surveys, business surveys, and censuses. For instance, how

could adaptive design be effectively designed and executed, especially in surveys

involving multiple data sources and mixed modes of data collection? How could adaptive

design guide web surveys while controlling for multiple sources of survey errors, such as

nonresponse, measurement errors, and sampling errors?

2. Critical Pillars of RAD Addressed in the JOS Special Issue and Special Section

In this section we present three perspectives, discussing how the four pillars of RAD that

are essential to survey design are addressed by articles published in the 2017 JOS special

issue and in this 2018 JOS special section. Perspective A presents discussion points by

leveraging the four pillars of RAD above. Perspective B articulates five key elements of

RAD, or variants of the four pillars of RAD, to make a coherent discussion. Perspective C

focuses on elaborating on cost measures and cost modeling, the missing half of cost-

quality tradeoff analysis and optimization strategy, as tied to the third and fourth pillars

of RAD.

2.1. Perspective A

Looking at the special issue and special section, overall, the articles lean towards the more

statistical pillars: indicators and optimization. This is understandable as it is less reliant on

costly experiments or pilots and more on feasible simulations. These articles are well

written, useful, and creative in articulating contributions that introduce new perspectives

and approaches to the existing literature. As mentioned, considering the optimization

strategy, more specifically the translation of quality-cost to intervention and adaptation,

there has been a gap in the literature. The advances in this direction are very welcome in

the special issue and section. It is, to be sure, a pleasant surprise to see scholars from a

variety of survey settings work on these methods.

Nonetheless, the greater statistical focus is also somewhat of a missed chance. This is

for three reasons. First, being more statistical, the articles often employ simulations to

demonstrate utility rather than real applications, which will bring problems of their own.

In many cases the simulations do have a link to real surveys, but not always. Such case
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studies may not convince survey designers and data collection departments, as they ignore

practical and logistical constraints. Furthermore, the outcomes of case studies appeal less

to experience about achievable quality and costs. Second, in the end, we need effective

auxiliary variables – design feature combinations to find differentiation and leverage to

adapt. RAD works only if we manage to find strategies that work better than what we have

done before or proof that for some strata we need to spend more. And third, the more

statistically oriented articles tend to be further removed from data collection personnel

and, as such, are more difficult to implement. They need translation to daily practice. This

holds true for the article by Burger et al. (2017) about the robustness of RAD to inaccurate

design parameters. A few articles are exceptions, especially the article authored by the US

Census Bureau researchers about the Annual Survey of Manufactures (Thompson and

Kaputa 2017) and the article by NASS about the Crops APS survey (McCarthy et al.

2017); these articles are much closer to implementation. They do use realistic auxiliary

variable – design feature combinations and seem to be driven by a practical need to

improve uniform survey designs.

Thus, the special issue and special section represent strong articles that advance the

statistical foundation, but are somewhat removed from survey practice. In Chapter 12 of

Schouten et al. (2017), nine areas are enumerated and discussed that require progress and

further research. The first area is that of empirical evidence that RAD works, or in other

words, success stories. These are still relatively thin; see also the discussion of Tourangeau

et al (2016). In the special issue, two of the original authors, Brick and Tourangeau (2017),

explore and discuss how success stories may be achieved. It would be of great benefit if the

authors of the other articles return with follow-up articles describing the spin-off and

results of their future work. It is strongly recommended that they do.

2.2. Perspective B

At the risk of misclassification or over-simplification, the articles published in the 2017

JOS special issue and included in this 2018 supplement address five key elements of RAD,

or variants of the four pillars as articulated above.

A first and foundational element of any RAD approach is the recognition by the research

team that the survey population is heterogeneous with respect to the orientation to the

survey topic, incentive for survey participation and preference concerning the timing and

mode of data collection. Equally important to acknowledging this heterogeneity is the

ability to predict where it occurs in the population so that RAD features can be tailored

accordingly either prior to or during the survey data collection. In the 2017 special issue,

the articles by Kaminska and Lynn (2017); Durrant et al. (2017): Thompson and Kaputa

(2017) and McCarthy et al. (2017) address topics related to this element.

The feasibility and effectiveness with which features can be operationalized and

actively managed during data collection represent a second key feature of any RAD

survey. An “elegant” design may have tremendous appeal but is of little use if it does not

work when put into operation. In the 2017 special issue, the articles by Vandenplas et al.

(2017); Early et al. (2017); Plewis and Shlomo (2017), and Burger et al. (2017) address

challenges in operationalizing and managing desired features of RAD designs. In this 2018

special section, the article by Walejko and Wagner and the article by Murphy and his
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coauthors both address operationalization and survey management and monitoring issues

encountered in tests of RADs for tailored designs: the former for the 2020 U.S. Census

tests and the latter for the U.S. Energy Information Agency’s Residential Energy

Consumption Survey.

Even in today’s world where RAD concepts are widely accepted and practiced, we as

survey practitioners find it hard not to focus all possible efforts on maximizing the

response to the survey. It is in our genes. Consequently, we struggle with the RAD concept

that a rigorously applied survey protocol will ultimately reach a phase capacity at which

additional effort and expenditures will not add any significant information content to the

data that have been collected. Even more foreign to our traditional view is the idea that the

design itself has reached the point at which further effort should be stopped. But if we can

get over that hurdle, how do we as practitioners decide when a phase has reached capacity

or the RAD study data collection should stop? Lewis (2017) and Paiva and Reiter (2017)

both in the 2017 special issue describe quantitative tools that can guide phase transition

or stoppage in RAD data collections.

As noted above, a principal aim of RAD is to achieve an optimal balance of cost and

errors in survey populations where individuals’ orientation to the survey request, incentive

to participate, or data collection preferences vary. To fully achieve this aim, there must be

reliable metrics for assessing both costs and errors. Nonresponse and associated selectivity

in the composition of the observed population sample are a potentially important source of

bias in the survey data. But nonresponse bias can be difficult to quantify, especially for

surveys where the sample frame provides little information on the characteristics of

respondents and nonrespondents. In the 2017 special issue, Brick and Tourangeau (2017)

present models for survey nonresponse and investigate just how effective responsive

designs might be at attenuating the bias associated with those nonresponse mechanisms.

Särndal and Lundquist (2017) investigate whether actively controlling the “balance” of the

observed sample during the RAD data collection should be preferred to standard methods

in which post-survey calibration weighting adjustments are used. Closely related to the

topic of weighting calibration using sample frame and administrative data is the option to

use large scale administrative data sources as a substitute for direct survey or census

enumeration. In this special section, Keller et al. describe a U.S. census investigation into

the metrics for evaluating when external administrative data may be a suitable substitute

for assigning vacancy status to addresses in the forthcoming 2020 Census enumeration.

2.3. Perspective C

Going forward, the litmus test of RAD success depends heavily on the extent to which the

third and fourth pillars of RAD are properly assembled and tested against the pressure of total

survey errors and total survey costs – both anticipated and unanticipated. The critical gap

remaining in these two pillars of RAD is more due to under-development of the framework of

cost metrics and lack of its implementation in real-world survey applications. Cost-quality

optimization, by definition, would suffer inasmuch as cost metrics are not properly

implemented. The underlying questions to ask include but are not limited to the following

fundamentals: What are measurable survey costs? What would be desirable properties of
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cost modeling? What methods are available and feasible to measure survey costs, inform

cost-quality tradeoff analysis, and develop cost-quality optimization strategies?

Costs and errors are reflections of each other; increasing one tends to reduce the other

(Groves 1989). Thus cost-quality optimization strategies would be neither feasible nor

complete unless there is rigorous development and examination of the cost functions of

various survey designs that offer error properties (Groves 1989; Chun 2012; Mulry and

Spencer 2012). It bears reminding that a viable cost model is a function of fixed costs and

variable costs as follows (Groves 1989):

Total Cost ¼ Fixed Costs þ Variable Stratum Costs

C ¼ C0 þ
XH

1

Chnh

Where C ¼ total cost;

C0 ¼ fixed cost, incurred regardless of selected sample size;

Ch ¼ variable stratum cost of the nh sample cases in the hth stratum, namely cost of

selecting, measuring, and processing each of the nh sample cases in the hth stratum.

Fixed costs are costs that remain fairly constant in a survey, such as costs for survey

system design, IT, and survey management. Variable costs are costs that vary as a function

of the sample cases in various strata. Variable costs may include costs of frame

construction, interviewing, nonresponse followup, data entry, and editing, which incur

over the survey life cycle.

In practice, the pragmatic cost models need to be inclusive of nonlinear, discontinuous

and stochastic properties of survey costs (Felligi and Sunter 1974; Groves 1989). They

deserve discussion. Groves observes that existing cost models tend to be linear functions

of survey parameters like the number of interviews, although nonlinear cost models often

apply to practical survey administration. Most cost models are continuous in those

parameters; however, he points out that discontinuities in costs often arise when

administrative changes accompany certain design changes. While cost models tend to be

deterministic, costs can vary extensively because of chance occurrences in probability

sample selection, or choice of interviewers. Groves argues that because closed-form

solutions to complex design problems do not exist, simulation approaches are useful to

measure the sensitivity of results to changes in various design, cost, and error parameters.

He offers several simulation examples of cost and error models that demonstrate that

gathering better cost data must be given priority in order to develop reasonable cost

models accounting for cost-error tradeoff.

The cost models proposed by Groves remain useful and viable today. Cases in point are

the articles by Paiva and Reiter (2017) and Kaminska and Lynn (2017) in the 2017 JOS

special issue and by Murphy and his colleagues in this special section. Using data from the

2007 U.S. Census of Manufactures, Paiva and Reiter show how to compute and compares

measures of cost for various sample sizes by applying the traditional cost model.

Kaminska and Lynn provide and test explicit cost metrics to determine pros and cons of

alternative methods for allocating sample elements to data collection protocols,

particularly in a longitudinal survey setting. Extending the cost model by Groves,

Journal of Official Statistics588



Kaminska and Lynn demonstrate how variants of adaptive and non-adaptive designs can

be appraised in terms of relative costs as well as multiple measures of data quality for each

proposed scenario of RAD. In a discussion of adaptive, responsive, and tailored (ART)

design principles, Murphy and his colleagues make a smart move of presenting relative

cost per case by interview protocol. They also provide data visualization of percentage of

cases requiring editing, one that is tailored to the needs of cost metrics in an energy

consumption survey sponsored by the U.S. Energy Information Administration. None of

these articles, however, has taken a major step yet towards nonlinear, discontinuous, and

stochastic properties of cost modeling.

3. What Open Research Questions and Challenges Exist for Implementing RAD?

Following each of the three perspectives as presented above, we turn to discussing what

major questions and challenges remain to be addressed for advancing RAD.

3.1. Perspective A

In line with Perspective A as articulated above, the other eight areas of challenges

addressed by Schouten et al. (2017) are as follows: 2) best practices for implementation,

3) clear and flexible quality-cost objectives, 4) versatile data collection systems, 5) skillsets

for data collection staff, 6) relevant designed paradata, 7) application to longitudinal

settings, 8) a total survey error approach, and 9) optimization strategies.

Areas 2 to 6 all relate to prerequisites for actual implementation, some of which are

methodological and some of which are logistical and IT-related. They do not translate

directly to academic research questions but do pose very interesting challenges for which

there is an outlet in more practical journals and in conference proceedings. The real

challenge here is to bridge the gap between theory and practice. RAD, perhaps more than

ever before, has strong implications for how surveys are actually done. In its most strict

form, RAD prescribes what sample units get what treatments to optimize what specified

objectives under what decision rules. This has traditionally been the mandate of data

collection departments and staff, and not of methodology. In order to get closer to

implementation, however, data collection staff need to become co-researchers and

co-authors. The case studies need to be driven by real-life issues with decreasing response

and increasing costs. Areas 7 and 8 present new settings and applications that are mostly

unexplored. Here, research questions could easily be formed and the attendant challenges

are very exciting but also complicated.

How to implement RAD in longitudinal settings is a very interesting avenue to explore.

The Kaminska and Lynn (2017) special issue article is one of the first to dive into this area.

In panels, there are rich data about respondents, obviously, but also new challenges such as

attrition, panel refreshment and conditioning. How informative is the previous-wave

survey data about participation and measurement data quality? Is their explanatory power

strong enough to overcome time lags and attrition? Are panel respondents consistent in

terms of participation, costs and measurement, that is do they show the same behaviour in

subsequent waves? How can RAD be combined with panel refreshment and could RAD be

part of panel refreshment strategies? The measurement and answering behaviour is very
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interesting in terms of RAD optimization. Since longitudinal studies are often about

change, how can RAD be embedded over multiple waves?

The other broad research area is total survey error. RAD has mostly had a nonresponse

perspective, probably because it has been driven by declining response rates and

increasing costs. However, the most powerful design feature, the survey mode, has

impacts on all survey errors. Nowadays, many survey designs are sequential mixed-mode

and go from cheaper to more expensive modes – the rationale being that part of the sample

is empathic to surveys and will respond under all strategies. RAD optimization, then,

concerns decisions about the allocation of more expensive modes. The obvious questions

are whether measurement is equivalent and whether a possible gain in participation is

offset by a loss in comparability; and in RAD terms, whether these questions are answered

differently for different sample subgroups. This is a discussion that goes beyond that of the

mandate of data collection departments, as questionnaire content and survey estimates are

typically produced by substantive departments. Similar total survey error impact may

come from other design features such as interviewer allocation, split-questionnaire

designs, central question follow-up procedures, and mobile devices. This will become

even more prominent when survey data are combined with big data or mobile device

sensor data into hybrid forms of data collection. RAD must, therefore, have a total survey

error view. In such a setting, the number of quality indicators and constraints may increase

or may require experimental components such as repeated measurements or

randomization in question ordering.

Area 9, optimization strategies, is a key element of RAD. When posing RAD as a

mathematical optimization problem, one finds that the number of possible designs quickly

grows to a level beyond the reach of naı̈ve/brute force optimization. The large number of

options is not necessarily a problem as long as the optimization problem is (nearly) linear,

but the most interesting problems are not linear and, even worse, not convex. These are,

generally, complex problems to solve, such that clever and intuitive strategies are needed.

Another approach may be to accept that suboptimal designs are good enough as long as

they are better than uniform designs. Optimization strategies go hand in hand with

strategies to learn and update. Mobile device data collection, for example, may be

promising but it is a relatively unknown area. How can we optimize design when

promising yet new design features emerge? Most survey designers and survey users are

averse to constant change in design and with good reason. So how do we include

optimization in terms of time series continuity?

3.2. Perspective B

RAD is a design tool that researchers can apply to potentially reduce both costs and errors

of a one-off survey or a longer term program of surveys. RAD is not a panacea, capable of

solving all problems of nonresponse, budget, or other survey errors. Considerable research

and empirical work have demonstrated that not all RAD applications will succeed in

optimizing the costs and errors of survey data collections.

There are several researchable questions that the study team should answer before a

RAD is considered. First, given what is known from prior or similar surveys, is the survey

population truly heterogeneous with respect to the orientation to the survey topic, their
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incentive for survey participation, and timing or mode of data collection? Is it possible to

design and implement adaptive or responsive features in the survey design that are

matched to these different motivations, incentives, and preferences? Second, if such

heterogeneity is present in the survey population and alternative design features can be

identified that are responsive to these differences, can a RAD that incorporates these

features be successfully operationalized during the field period? For example, attempts at a

multi-phase responsive design for a telephone survey that spans a three-week data

collection period will be limited by the time available to implement and evaluate the initial

phase before transitioning to a second phase with alternative design features. The time

constraint imposed by this same survey might be addressed using an adaptive design with

pre-allocated features (e.g., contact materials, mode, and incentives). However, to be

effective, such an adaptive design will require information from past experiences or

experimental testing to guide the presurvey assignment of alternative design features to

individual sample members. Finally, before deciding on a RAD for a future survey, the

research team should carefully consider the added implementation and management costs

for a RAD design that may entail multiple phases, multiple modes and other variations in

design features. Will the fixed costs of the RAD implementation be offset by a reduction in

the variable costs of collecting the survey responses? The criterion by which a RAD (or

any statistical design) should be judged is that it should minimize mean squared error for

key statistical aims subject to the budget and time period allocated for the project. It is

relatively easy, given a fixed budget, to construct a RAD-like design that will result in

increased nominal sample sizes and possibly even higher weighted overall response rates.

However, that same design may be subject to large losses in effective sample size or

differential selection biases for total sample and subpopulation estimates.

3.3. Perspective C

When it comes to the development and implementation of cost metrics that realize cost-

quality tradeoff analysis and optimization, RAD seems to have a long way to go. Cost

estimates, to us as survey practitioners, are day-to-day concerns to take into account in

building a reasonable cost-quality tradeoff analysis and in developing optimization

strategies that are rigorous enough to design optimal allocations of treatments to the

population strata under study. Yet good and best practices of survey cost modelling are

quite limited. Articles in the JOS special issue and special section move in the right

direction of nailing down cost metrics and integrating cost metrics together with data

quality metrics. Cost functions, however, remain to be rudimentary, not reaching the

pragmatic cost models that need to be inclusive of nonlinear, discontinuous, and stochastic

properties of survey cost estimates.

“Survey researchers have given much less attention to survey cost models than to survey

error models,” wrote Groves (1989, 79) three decades ago. Unfortunately, we are facing

the same issue today even as survey costs are increasingly becoming the major driver of

survey design. The U.S. National Children’s Study stopped in large part due to problems

with its design and management, as well as a huge survey cost that had already cost USD

1.2 billion by the time of its termination (Altman et al. 2014). With a life-cycle cost of

about USD 13 billion, the 2010 U.S. Census was the most expensive U.S. census in
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history; it was 56 percent more costly than the 2000 Census in constant 2010 dollars

(Government Accountability Office 2015). Costs are the main driver of design changes for

the 2020 U.S. Census, spurring innovations, such as the use of administrative records and

third-party data, to materialize notable cost savings and sustain data quality (U.S. Census

Bureau 2017). Unless the missing half of the cost-quality optimization is rigorously

examined and fixed, RAD looks to be facing an uphill battle. What questions and

challenges remain to be addressed by the community of RADers?

First, we should probably draw lessons from the Total Survey Error framework, based

on which the error function has been well specified and developed over the last few

decades. Can we conceive of the total survey cost model? Can we pair total survey cost

model to Total Survey Error model? We are pointing to the model that may account for

the traditional notion of fixed and variable costs and that is adaptive enough to be tailored

to the pragmatic needs of cost modeling – nonlinear, discontinuous, and stochastic in

terms of survey cost properties. We should work closely with accountants and field

managers who may have the first-hand experience in cost estimating, computing, and cost

modeling – top down or bottom up followed by converging cost estimates. Second, we as

survey practitioners and survey designers need to maintain and archive cost data together

with data quality information and make proprietary cost information available, whenever

possible, in the collective interests of cost-quality optimization research. Probably the first

step is to steadily maintain and share survey cost data based on a reasonable framework of

total survey cost in the vein of total survey error. We, as a collective community of survey

cost-quality modelers, should make concerted efforts to implement what is measurable

and what is collectable when it comes to fixed and variable costs. These efforts should be

followed by collective standardizing, if possible, as the American Association for Public

Opinion Research has established standards of various response rates. Finally, cost-quality

tradeoff analysts and optimization strategists should answer the question of examining the

cost implications of designs that offer different survey error properties as echoed by

Groves (1989). Several examples of cost analysis were provided by Groves when it comes

to sampling error, nonresponse error and a few of the measurement errors associated with

mode of data collection. Studies on total survey cost, cost per interview, and relative cost

are on the rise as reported by Wagner et al. (2016). However, research on cost modeling

remains thin relative to a coherent framework of cost-error properties.

4. Future Directions for Research and Application in RAD

The articles published in the 2017 JOS special issue and those included in this section are

early indicators of the directions that future research and applications of RAD for surveys

will be taking. The original concept of responsive design presented by Groves and

Heeringa (2006) was in many ways overly structured and formulaic for the wide range of

RAD applications that we now see described in the pages of JOS and elsewhere. The

diversity of design and methodological developments that now fall under the RAD banner

is so much larger than the original ideas. Some of these developments have been such

major departures that they earned new labels: adaptive survey design (ASD) and, most

recently, adaptive, responsive, and tailored (ART) design (e.g., see Murphy, Biemer, and

Berry in this issue). Furthermore, a richer application of RAD has been found, for instance,
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in a framework of dynamic question ordering (DQO) where question order is adaptively

altered to improve response rate and imputation quality (Early et al. 2017).

Without question, the future of survey research will continue to bring new challenges

and opportunities. The past decade’s development of RAD approaches to population

surveys has prepared us to adapt to expected changes in survey and other population data

environments. Although the future demand for surveys and primary data collections will

remain high, there will certainly be a growing emphasis on data collections to augment

existing systems of administrative systems and other structured and unstructured sources

of “big data”. “Survey-assisted” population modeling, one that integrates large big data

systems and streams with carefully designed survey observations, has long been used in

the fields of agriculture, forestry and environmental sciences, and small area estimation.

It is rapidly being extended to medicine and epidemiology as well as to economics,

demography, and other social sciences. In this integrated role, survey data collection will

assist in several ways:

“Model training” – providing timely estimates of models parameters relating the

outcomes of interest to the covariate information available in the big data systems;

“Model refinement” – by supplying more complete information on multivariate

associations, mediating and moderating effects and chronological or spatial variation in

big data models;

“Compensation” – for population noncoverage, nonobservation or missing data in the

large data systems;

“Insight” – into the error structure of large scale data systems that can only be obtained

through direct survey measurement.

RAD will increasingly be called upon to support systems of model-based estimation,

inference and prediction. Research to develop optimal, cost-efficient designs for such

applications will need to be developed in the context of the statistical information that is

present in existing sources of data and the specific statistical aims of the survey-assisted

modeling system. Survey statisticians and methodologists leading this research will need

to transfer their general knowledge of RAD principles and total survey error to these

problems of survey-assisted modeling. Accountants and field managers proficient in cost

estimation and cost modeling should be paired with survey designers and survey

methodologists to develop, test and scale up pragmatic cost modeling aligned with a

reasonable framework of total survey costs.

5. Conclusions

RAD is not an entirely new concept; tailoring and targeting have been part of survey

design for quite some time. But it has never drawn such attention nor possessed such a

formal structure. Given the strong cost-quality differential of self-administered versus

interviewer-assisted surveys, the rise of all kinds of new devices and forms of

communication, the option to form hybrid data collections using sample surveys and big

data and the general individualization of societies, we believe it is inevitable that RAD
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will be a natural component of many data collections. Perhaps this will be in relatively

simple and rudimentary forms, but it is not logical to be inflexible and apply a uniform

strategy. Furthermore, innovation in communication technology seems to be accelerating,

with the likely consequence that it will be a moving target and it will always be different

subpopulations that have adopted older and newer forms of communication. RAD

principles may also expand to the big data arena by differentiating what sources are used

for whom. We hope that the gap between data collection and methodology will become

smaller so that data collection experts will not be misunderstood and they will polish the

very promising ideas and anticipated yield of RAD to feasible designs.

The development of cost functions that may explicitly account for complex survey

design features remains to be pursued by leveraging simulations and experimental studies

that control for different cost properties. Cost-quality optimization strategies of RAD may

be realistically developed only if cost functions are rigorously designed, tested, and

implemented, while multiple metrics of data quality are being further matured.
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A Distance Metric for Modeling the Quality of
Administrative Records for Use in the 2020 U.S. Census

Andrew Keller1, Vincent T. Mule1, Darcy Steeg Morris1, and Scott Konicki1

The U.S. Census Bureau is conducting research on using administrative records to reduce
the cost while maintaining the quality of the 2020 Census Nonresponse Followup (NRFU).
Previous census tests have implemented approaches that use predictive models and
optimization procedures to identify vacant and occupied housing units using administrative
records. This article details a modification to previous approaches, introducing a simple
distance metric to define a quality ranking of housing units to enumerate using administrative
records. The distance approach is illustrated, assessed, and compared to a previous approach
via a retrospective study of the 2010 U.S. Census.

Key words: 2020 Census; administrative records; nonresponse followup.

1. Introduction

Sample surveys and censuses are historically the primary source for producing official

statistics. In order to deal with increasing operational costs and decreasing response rates,

national statistical organizations are researching how and when to use administrative

records in the census and survey life cycle (Bakker et al. 2015; Fienberg 2015; Wallgren

and Wallgren 2007; Brackstone 1987; Federal Committee of Statistical Methodology

1980). Administrative records are data “generated for a different purpose” that “arise

organically through administrative processes” (Japec et al. 2015), whether collected

through administering a program of a federal government agency or a service of a

commercial business. The U.S. Office of Management and Budget has defined

administrative records as data held by agencies and offices of the government that has

been collected for other than statistical purposes to carry out basic administration of a

program (U.S. Office of Management and Budget 2014). This article also considers

nonpublic, commercial data similar to administrative records, which is consistent with

the wider definition proposed by the United Nations Economic Commission for Europe

(UNECE 2011). With respect to surveys, Groves and Harris-Kojetin (2017) outline

potential beneficial ways to use administrative records in various stages of the survey life

cycle. These include being used as a survey frame, as a replacement for survey data

collection, for editing and imputation of missing responses, or for survey evaluation. With
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respect to censuses, Steffey and Bradburn (1994) note possible uses of administrative

records including for coverage improvement, census evaluation, operational efficiency

improvement, or to replace traditional census-taking wholly or partially with an

administrative records (i.e., register-based) census. Many countries have indeed adopted

full register-based (Thygesen 2015; van Zeijl 2014) or partial register-based censuses

(Maris et al. 2012). Using administrative records in such a way offers a cost-saving

opportunity in a changing census environment of escalating costs; however, it is equally

important to consider the quality implications to guide when the use of administrative

records is appropriate.

The goal of the 2020 U.S. Census is to count each person once in their correct location at

a lower cost per household (adjusted for inflation) than the 2010 Census while maintaining

data quality. To meet this goal, the Census Bureau is researching fundamental changes to

the design, implementation, and management of the 2020 Census. One major innovation

research area noted in the 2020 Operational Plan (U.S. Census Bureau 2017a) is the

development of methodologies to incorporate administrative records (AR) into the census

design. The U.S. Census Bureau proposes using administrative records in various parts

of the operation including to update the address frame, for effective advertising, and

to validate respondent addresses for Internet responses to prevent fraud. The 2020

Operational Plan (U.S. Census Bureau 2017a) also specifically recognizes using

administrative records to reduce contacts in the Nonresponse Followup (NRFU) operation.

In the 2010 Census, the NRFU operation sent enumerators to about 50 million addresses

in all areas of the country to verify the status for every non-self-responding address. Each

NRFU address was allowed up to six enumerator contacts. After over 90 million personal

visit attempts across the country with field costs of about USD 1.6 billion (Walker et al.

2012), each address was determined to be occupied, vacant, or nonexistent. The occupied

units were assigned a person count and person roster including basic demographic

characteristics such as name, age, date of birth, race, Hispanic origin, and relationship to

householder.

Modernizing the U.S. decennial census using administrative records to supplement or

replace traditional census-taking has been a topic of interest since the 1980s (Alvey and

Scheuren 1982; Scheuren 1999). However, unlike other countries that implement full or

partial register-based censuses, the U.S. has not had a single administrative records system

with a high coverage of the entire population (Mulry 2014). For example, the Census

Bureau is provided conditional access to data from organizations such as the Internal

Revenue Service (IRS), Social Security Administration (SSA), Center for Medicare and

Medicaid Services (CMS), and commercial data vendors. Even though each of these data

sources covers just a segment of the entire U.S. population, they provide information

relevant to census enumeration such as a person’s tax-filing address from IRS and birth

date from SSA. Previous research has developed methods to combine and use several

administrative sources to identify occupied and vacant units prior to or after minimal

NRFU fieldwork, thus reducing the number of enumerator visits (Mule and Keller 2014).

The administrative sources are used as an input to decision rules about mode switching in

NRFU. In this article, we describe an approach to classify units as vacant or occupied at

the beginning of NRFU to enable census field operations to reduce costs, thereby allowing

resources to focus on units where administrative data are unreliable or unavailable. Our
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approach is developed as a way to classify administrative record data as high quality or not

in order to selectively substitute for field responses early in NRFU activities. However, the

approach can also be used adaptively throughout the data collection phase or in other

census operations, such as for imputation in the data-processing phase (see Subsection

5.2). Or, more generally, the approach can be applied to sample surveys with little

alteration when appropriate data are available (see Subsection 5.3).

Through a series of census field tests, various approaches for determining vacant and

occupied housing units via administrative records have been tested and refined with

increasing levels of complexity and integration with other census operations. In the 2013

and 2014 Census Tests, rules-based approaches were implemented (Walejko et al. 2014;

Keller et al. 2016), followed by a predictive modeling approach used in the 2015 Census

Test based on linear optimization of logistic regression model predictions (Morris et al.

2016). Most recently, the 2016 Census Test used an adaptation of the modeling approach

that is based on a Euclidean distance function (Chapin and Keller 2017). In this article, we

present the distance function approach to determine high-quality administrative records in a

way that simplifies implementation, while maintaining similar quality to the procedure used

in the 2015 Census Test. We retain the same underlying predictive modeling structure, as it

naturally incorporates information from multiple administrative records sources and other

auxiliary data, but offers a new way to synthesize the model information. We illustrate the

utility of this advancement of the predictive modeling methodology in a retrospective study

of the 2010 Census. The distance function approach is a direct alternative to the

optimization approach in Morris et al. (2016). Comparing the two methods, we find that our

method has a high overlap with the linear optimization approach in identifying cases of

sufficient quality that can be enumerated using administrative records. At the same time, the

distance function yields similar quality metrics (measured through a retrospective study

of the 2010 Census) while being easier to implement. Furthermore, the classification

mechanism of the distance function approach selects housing units based on their own merit

rather than relative to a predetermined set of housing units.

2. Administrative Records Data for the Study of the Decennial Census

The Census Bureau receives separate administrative record data files from various

government agencies and private companies for statistical use. To enable the linking of

these diverse data sets, an anonymized identifier is assigned to each person record in each

administrative record file. The Census Bureau’s Person Identification Validation System

(PVS) determines the protected identification key (PIK) via a probabilistic matching

algorithm between the administrative record source data and a series of reference files. See

Wagner and Layne (2014) for details on the PVS algorithm. For simplicity we assume that

the PIK assignment is correct and match the files accordingly, however, we acknowledge

the importance of linkage error associated with the PVS methodology. See, for example,

Layne et al. (2014) for discussion of error associated with PIK assignment given the use

of the various reference files.

In our study of the 2010 Census, we use these linkable and anonymized administrative

record files to compile a household roster composed of administrative record persons for

all housing units in the 2010 NRFU universe in the United States. The 2010 vintage
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administrative record sources used to create 2010-level administrative record household

rosters are:

. IRS Individual Tax Returns (Form 1040)

. IRS Informational Returns (Form 1099)

. Indian Health Service (IHS) Patient Database

. CMS Medicare Enrollment Database

The resulting administrative record household roster – the collection of PIKs found in any

of the selected administrative record files at a given address – is unique by person and

address. That is, no persons are duplicated within a housing unit. We use person-level

administrative record data, as well as an aggregated housing unit-level administrative

record data set that includes characteristics such as administrative record household count

and general characteristics of the people in the household. The Social Security Numerical

Identification (Numident) File is used to obtain age and sex information for each person in

the administrative record household roster.

Rastogi and O’Hara (2012) compared several administrative record and third-party

sources to the 2010 Census. For federal files, IRS 1040 individual tax returns had the

highest match rate to the 2010 Census. This is due to the magnitude of persons and the fact

that tax filings start in February with a deadline of April 15, close to the April 1 Census

Day. The analysis showed that CMS’ Medicare Enrollment Database had a high match

rate for the elderly population. The IHS Patient Database is chosen to address potential

undercoverage of the American Indian population. The Social Security Numident file has

been shown to have very high coverage and reliable data for age and sex.

It should be noted that not all housing units have information in the selected administrative

record files. Conversely, there are people in the administrative records files that are not

enumerated in the census. Hence, undercoverage and overcoverage exists when comparing

between a census roster and an administrative record roster for the same unit. Because we are

not assuming that the administrative records files have sufficient coverage of the entire

population, our approach is to eliminate NRFU visits to addresses for which we are confident

in the administrative record data. That is, we are trying to limit the use of administrative

records to cases where coverage differences between administrative records and fieldwork are

minimized, provided that fieldwork would generate the correct Census Day roster.

In addition to the administrative sources, information from commercial files, is used

to inform the models. Variables derived from these data are used as independent

variables in the models. We also incorporate data from the United States Postal Service

(USPS) Delivery Sequence File (DSF), the American Community Survey (ACS),

the Master Address File (MAF), census operational information, and USPS Undeliverable

as Addressed (UAA) reason codes obtained from census mailings delivered around

Census Day.

3. Models and Methodology

The administrative records data described in Section 2 contains a wealth of timely

information about the characteristics of addresses. We employ a modeling approach to

extract predictive information from the administrative records to identify housing units with
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sufficiently reliable vacancy and roster information. The predictive models described in

Subsections 3.1 and 3.2 to follow are the same as those used in Morris et al. (2016). A cursory

description of the models is provided here; see Morris et al. (2016) for further details. These

models estimate various measures of administrative record quality that are subsequently

used to rank housing units based on their likelihood of vacancy or their likelihood of correct

enumeration for occupied housing units. In Subsection 3.3, we present the distance function

approach as a way to use the predicted probabilities from the models to define a quality

ranking and identify high-quality housing units that can be removed from the NRFU

workload and enumerated using existing administrative records. We refer to units identified

as having sufficiently good information from administrative records to accurately predict a

vacant housing unit as AR Vacant; we define AR Occupied units analogously.

3.1. Model for Determining Vacant Housing Units

To identify vacant units via administrative record information, we rely on a statistical

model to estimate predicted probabilities of Census Day housing unit status. We fit a

multinomial logit model on the housing unit-level administrative record data to predict the

three possible values of housing unit status: occupied yunocc
h ¼ 1

� �
, vacant yunocc

h ¼ 2
� �

, or

nonexistent yunocc
h ¼ 3

� �
, where the unocc superscript denotes the model used for

administrative records removal of unoccupied or vacant housing units, and the h subscript

indexes the housing unit. From this model, we estimate the probability of each unit status

type in the 2010 Census data (i.e., the training data):

p̂unocc
h;occ ¼ P yunocc

h ¼ 1
� �

; p̂unocc
h;vac ¼ P yunocc

h ¼ 2
� �

; p̂unocc
h;del ¼ P yunocc

h ¼ 3
� �

:

The predicted probabilities, p̂unocc
h;occ and p̂unocc

h;vac , are passed to the distance function to

determine which cases are identified as AR Vacant.

The use of a statistical model naturally allows the incorporation of information from

multiple sources. For example, vacancy information from a USPS mailing around Census

Day is strongly associated with Census Day vacancy (Keller et al. 2016), however it is

not a perfect proxy and is not the only strong predictor. This model combines information

from USPS mailing data and persons associated with a housing unit present in, for

example, tax returns or the Medicare enrollment database. Specifically, housing unit status

– as determined by the training data (2010 Census data in our application) – is modeled as

a function of independent variables from administrative records, field collection paradata,

and survey information. Such covariate information includes the UAA data from the USPS

for each of the census mailings, persons from the administrative record sources listed in

Section 2, characteristics associated with the block group as determined by the ACS, and

other address-level information. The appendix contains a complete list of independent

variables for the vacant model.

3.2. Models for Enumerating Occupied Housing Units

To identify and enumerate occupied units via administrative record information, we rely

on two statistical models to measure the quality of the administrative records information

for enumerating households accurately.
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3.2.1. Person-Place Model

The person-place model estimates the probability of enumerating a person on the

administrative records at the same address as the 2010 Census data (i.e., the training data).

We fit a logistic regression model on the person-level administrative record data to predict

the outcome:

yocc1
ih ¼

1 if person i is found in AR and 2010 Census at the same address h

0 otherwise

(

where the occ1 superscript denotes the person-place model for determining occupied

units, the h subscript indexes the housing unit, and the i subscript indexes the

administrative record person. Morris (2014) and Morris (2017) study a version of the

person-place model comparing alternative estimation approaches (logistic regression,

classification trees, and random forests). The choice of estimation procedure has little

impact on the findings, thus logistic regression is used here for consistency with the other

models used in this research. This model assigns to all person-place pairs in administrative

record files a predicted probability, p̂occ1
ih ¼ P yocc1

ih ¼ 1
� �

, that the 2010 Census and the

administrative record roster data place the person at the same address. The person-place

model includes all administrative record person records associated with the address from

the sources in Section 2. The 2010 Census person records are assigned PIKs with the

methodology discussed in Section 2. Note that a person in administrative record and not

the Census is coded as yocc1
ih ¼ 0. This category could include possible census omissions.

Conversely, a person not in administrative records and in the census is excluded from the

modeling universe.

Person-place match is modeled as a function of independent variables from person-level

administrative record information (e.g., indicators of the presence of the administrative

records person in each source at the address, indicators of presence of the administrative

records person at a different address within the same administrative records source),

address-level administrative record information (e.g., number of administrative records

people associated with an address), field operations information (e.g., USPS mailing

information, number of NRFU neighbors), and information from other survey sources

(e.g., characteristics of the local geography – such as poverty rate, renter rate, Hispanic

rate, vacancy rate – from the ACS). The person- and address-level administrative record

information is of particular importance. For example, Morris (2014) finds that the presence

of an IRS 1040 record at given address, and conversely, the presence of an IRS 1040 at a

different address, are strong predictors in the person-place model. The former is associated

with an increased probability of the administrative records placing the person at the census

address, whereas the latter is associated with a decreased probability. The appendix

contains a complete list of independent variables for person-place model.

The person-place model is fit at the person-level, but decisions are made at the housing

unit-level. Therefore, the person-level predicted probabilities, p̂occ1
ih , are summarized for

each address such that the housing unit-level predicted probability for address h was

defined as:

p̂occ1
h ¼ min p̂occ1

1h ; : : : ; p̂occ1
nhh

� �
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where nh is the number of people at address h. This minimum criterion assigned to the

housing unit the predicted probability for the person in the housing unit for which we had

the lowest confidence – a relatively conservative approach. The administrative record

household count is defined as the sum of all individuals associated with the administrative

record address, and each address has the associated predicted probability of having an

administrative record/census address match. These predicted probabilities, p̂occ1
h , are

passed to the distance function to determine which cases are identified as AR Occupied.

3.2.2. Household Composition Model

The household composition model is used to estimate the probability that the sample

address has the same household composition (number of adults and children) determined

by NRFU fieldwork as its pre-identified administrative record household composition. We

fit a multinomial logistic model on the housing unit-level administrative record data to

predict the outcome from the 2010 Census (i.e., the training data):

yocc2
h ¼

0 if unit h is vacant in 2010 Census

1 if unit h has 1 adult and 0 children in 2010 Census

2 if unit h has 1 adult and $ 1 children in 2010 Census

3 if unit h has 2 adults and 0 children in 2010 Census

4 if unit h has 2 adults and $ 1 children in 2010 Census

5 if unit h has 3 adults and 0 children in 2010 Census

6 if unit h has 3 adults and $ 1 children in 2010 Census

7 if unit h has $ 4 adults in 2010 Census

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

where the occ2 superscript denotes the household composition model for determining

occupied units, and the h subscript indexes the housing unit. For every address, this model

assigns a predicted probability of each household composition type, p̂occ2
h;k ¼ P yocc2

h ¼ k
� �

for k ¼ 0,1,2,3,4,5,6,7. Note that the construction of the dependent variable assumes that

age is nonmissing for all housing units. This assumption is satisfied in our application

because we use an edited file that includes imputed age for any nonresponse.

The household composition dependent variable yocc2
h is modeled as a function of

independent variables from housing unit-level administrative record information (e.g.,

count of all administrative records person records associated with the address from each of

the administrative records sources), person-level administrative record information (e.g.,

indicators of whether any administrative records person was found at a different address

within the same administrative records source), and housing unit-level information from

other survey sources (e.g., flags indicating that young children, elderly, Black or White

persons from administrative records were associated with the household). The appendix

contains a complete list of independent variables for household composition model.

We are solely interested in the predicted probability associated with the household

composition observed in the administrative records. That is, for each housing unit we

extract the household composition predicted probability associated with the administrative

record household composition, defining p̂occ2
h ¼ p̂occ2

h;k * where k* is the administrative
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record household composition. For example, p̂occ2
h ¼ p̂occ2

h;3 for a housing unit with an

administrative record household composition type of two adults and zero children. These

predicted probabilities, p̂occ2
h , are passed to the distance function to determine which cases

are identified as AR Occupied.

3.3. Identifying Administrative Record Vacant and Occupied Housing Units Using a

Distance Function

We study a direct alternative for the approach described in Morris et al. (2016) that was

implemented in the 2015 Census Test. Morris et al. (2016) use linear programming

techniques to combine information from the previously described models to determine AR

Vacant and AR Occupied housing units. The optimization approach requires setting

multiple threshold parameters that are not straightforward to select and interpret.

Furthermore, the constraints in the optimization routine involve averages of probabilities

over select workloads, where a workload is a set of housing units that requires

enumeration.

Specifically, for identifying AR Vacant units, Morris et al. (2016) set constraints that

(1) the average vacant predicted probability must exceed a prespecified threshold and

(2) the sum of the occupied predicted probability did not exceed a certain percentage of the

estimate of occupied housing units from the American Community Survey. With respect

to identifying AR Occupied units, the authors set constraints that (1) the average person-

place predicted probability must exceed a prespecified threshold and (2) the average

household composition predicted probability must also exceed a different prespecified

threshold. This is potentially problematic for two reasons: (1) it allows housing units other

than the housing unit of interest to contribute to the identification of that unit as AR Vacant

or AR Occupied, and (2) the workload over which to take the average must be predefined

and has an effect on each housing unit’s identification.

Consider a simple example of determining AR Vacant units in two NRFU workloads,

each of four addresses with the following vacant probabilities:

Workload 1: p̂unocc
1;vac ¼ 0:81; p̂unocc

2;vac ¼ 0:81; p̂unocc
3;vac ¼ 0:75; p̂unocc

4;vac ¼ 0:50

Workload 2: p̂unocc
1;vac ¼ 0:90; p̂unocc

2;vac ¼ 0:90; p̂unocc
3;vac ¼ 0:72; p̂unocc

4;vac ¼ 0:50

Focusing solely on the average predicted probability constraint for illustrative purposes,

the optimization approach of Morris et al. (2016) identifies AR Vacant addresses as those

contained in the subset of housing unit-level predicted probabilities that maintains an

average that exceeds a specified cutoff. Using the cutoff of 0.8 used in Morris et al. (2016),

in this example averaging would identify housing units h ¼ 1 and h ¼ 2 as AR Vacant in

Workload 1, and housing units h ¼ 1, h ¼ 2, and h ¼ 3 as AR Vacant in Workload 2. Due

to the nature of averaging, the third household (h ¼ 3) is identified as AR Vacant in

Workload 2 despite that it has a lower predicted probability of vacancy in Workload 2 as

compared to Workload 1. This simplistic example illustrates how the averaging of

predicted probabilities allows other cases to contribute to identification of AR Vacant

units. In the same vein, the AR Vacant determination depends crucially on the set of

predicted probabilities included in the average. Average predicted probabilities are
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computed over a predefined area; therefore a decision has to be made about over what

areas the averaging is done. One possibility would be to run the linear optimization over

the entire nation. This could cause a disproportionate amount of cases to be removed in

one area, resulting in unbalanced workloads. Another alternative could be to run the linear

optimization for each state or county. Doing this would require running the optimization

50 or 3,000 times, which could increase the computational time and complexity. In an

environment where field operations are waiting on results from the administrative records

models, the days it would take to run the optimization routine would make timing more

challenging.

We study a simpler approach using a distance function that avoids the concerns of the

optimization approach – in particular, the distance method evaluates each housing unit on

its own merit – and relies on a more transparent and interpretable threshold parameter.

Furthermore, the distance method is easier to implement in that real-time workload

adjustments can be determined by simply changing the threshold parameter rather than

rerunning the optimization procedure. This alternative is partially motivated by the use of

a decision criterion for identifying cases to enumerate using administrative records based

on distances measured via Receiver Operator Characteristic (ROC) graphs (Morris 2014,

2017). We define distance functions that take multiple measures of the quality of the

administrative records, with respect to determining vacancy and for enumeration of

occupied housing units, as inputs to output a single measure. This scalar distance measure

combines multiple predicted probabilities – which are themselves based on the

combination of multiple sources of information via the statistical models – to allow (1) a

ranking of the housing units by quality and (2) a definition of a subset of the highest quality

housing units by choosing a threshold.

With regard to vacancy determination, we define the housing unit-level vacant distance

based on the vacant probability, p̂unocc
h;vac , and occupied probability, p̂unocc

h;occ , estimated via the

housing unit status model discussed in Subsection 3.1. These predicted probabilities can be

thought of as a two-dimensional plane with each probability on one dimension with values

between 0 and 1. Based on the two probabilities, each address would have a point in this

two-dimensional space. The most likely vacant cases would be those that have shortest

distance to the point where the occupied probability equals 0 and the vacant probability

equals 1 (i.e., the (0,1) point). As a result, we define the Euclidean vacant distance, dvac
h , for

each unit h, as

dvac
h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 2 p̂unocc
h;vac

� �2

þ p̂unocc
h;occ

� �2
r

:

With regard to identifying occupied housing units for administrative record enumeration,

we define the housing unit-level occupied distance based on predicted probabilities from

the two occupied models: the minimum person-place probability for the address, p̂occ1
h , and

the household composition probability associated with the observed administrative record

household composition, p̂occ2
h . Both of these probabilities are measures of quality (count

match and household composition match, respectively) such that the housing units with

higher quality administrative records are associated with higher estimated probabilities.

Even though the predictions from these two models are correlated, Morris et al. (2016)

show higher agreement in population count and household composition when both models
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are used together as compared to using one or the other. Accordingly, we use results from

both the person-place and household composition model as inputs for the distance function.

Similar to the construction of the vacant distance, the most likely occupied and correct

enumeration cases would be those that have shortest distance to the point where the

predicted probability from both models equals 1 (i.e., the (1,1) point). Based on this idea,

we use the Euclidean distance to define the occupied distance, docc
h ; for each unit h as

docc
h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 p̂occ1

h

� �2
þ 1 2 p̂occ2

h

� �2
q

:

The distances dvac
h and docc

h are used to determine AR Vacant and AR Occupied housing

units, respectively. That is, we define a given distance cutoff targeting a certain rate of

removal of cases from the face-to-face follow-up. We then treat those administrative

records as a reasonably correct representation of the true status for those addresses.

4. Application: 2010 Decennial Census Data

We apply the distance function methodology for determining AR Vacant and AR

Occupied housing units in a retrospective study of the NRFU operation of the 2010

Census. In this analysis, the vacant model and two occupied models are fit to a sample of

the NRFU housing units in the 2010 Census. The fitted coefficients are then applied to all

NRFU housing units to obtain the predicted probabilities ( p̂unocc
h;vac and p̂unocc

h;occ for the vacant

model, p̂occ1
h and p̂occ2

h for the occupied models) and the associated distances (dvac
h and docc

h )

for each housing unit h.

4.1. Identifying Administrative Record Vacant Housing Units

Figure 1 plots the estimated vacant probability, p̂unocc
h;vac , and occupied probability, p̂unocc

h;occ , for

the 50 million NRFU housing units in the 2010 Census. The vacant distance measure, dvac
h ,

is used to create percentile bands generated by assuming varying cutoffs. The upper
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Fig. 1. AR vacant predicted probabilities by vacant distance percentile (source: 2010 Census simulation).
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leftmost area, denoted by the black shading, represents the top one percent of NRFU cases

with the smallest vacant distance. If we were to restrict our AR Vacant identification total

to 500,000 cases, removing these cases from the NRFU workload would reduce the

number of visits during NRFU at the smallest predicted expense of quality. The band just

below the upper leftmost area, denoted by the darkest gray, are those housing units

between the top one percent and two percent of NRFU housing units with the smallest

vacant distance. Dividing the data by percentile bands yields the partial concentric circles

in Figure 1 depicting various scenarios of target NRFU workload reduction.

To assess accuracy for varying vacant distance cutoffs, we treat the 2010 NRFU housing

unit status as the gold standard and compare field vacancy determination to administrative

record vacancy determination. Figure 2 shows the true positive rate – the percent of AR

Vacant cases that were resolved as vacant during the 2010 NRFU – for each mutually

exclusive percentile band up to the 15th percentile, with the lowest vacant distance starting

at the first percentile. We see in Figure 2 that, for the top one percent of cases (500,000

NRFU cases) with the shortest vacant distance between the (0,1) point and p̂unocc
h;occ ; p̂

unocc
h;vac

� �
,

the true positive rate is 90.8 percent – indicating that among the 500,000 NRFU cases

identified as AR Vacant using the distance function approach, 90.8 percent were resolved

as vacant through NRFU fieldwork. For the second best one percent of cases (i.e., cases of

rank 500,001 to 1,000,000), the true positive rate is 84.9 percent. There is a gradual

decrease in the true positive rate as the percentiles increase, depicting the decrease in the

quality of administrative records information for cases with a vacant distance that is

further from the optimal (0,1) point.

Based on the analysis and the tradeoff between cost reduction and quality, a decision

can be made about how many bands to designate as being AR Vacant. The tradeoff exists

because by identifying more AR Vacant cases, thereby reducing costs incurred by NRFU

followup, we see a larger percentage of cases return as occupied.

Morris et al. (2016) use linear optimization processing of the same predicted

probabilities – p̂unocc
h;occ and p̂unocc

h;vac – to determine about ten percent of the NRFU universe

(5,132,613 addresses) as AR Vacant. We are interested in comparing the performance of

the linear optimization approach with the simpler distance function approach presented in
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Fig. 2. AR vacant true positive rate by vacant distance percentile (source: 2010 Census simulation).

Keller et al.: Administrative Record Modeling in the 2020 Census 609



this article. To do this, we sort the housing units from smallest to largest vacant distance

and identify the 5,132,613 addresses with the smallest vacant distance to be AR Vacant.

Among these AR Vacant cases, the smallest vacant distance value is dvac
h ¼ 0:0078 and

the largest vacant distance value is dvac
h ¼ 0:3559. We find that 91 percent of the addresses

determined to be AR Vacant using the distance function are also identified as AR Vacant

by the linear optimization approach. The two methods largely identify the same AR

Vacant cases. However the distance function is easier to operationalize.

We further evaluate the distance function and linear optimization AR Vacant cases

compared to their 2010 NRFU results. Table 1 shows the results from contrasting the

optimization approach versus the distance approach for the same workload. We find

similar observed 2010 distributions between the two identification approaches. The

distance approach does slightly better in terms of agreement with the NRFU result – the

percentage of AR Vacant cases with a vacant NRFU status is higher for the distance

approach versus the optimization approach (79.0% vs. 78.1%). Regardless of the

approach, not all cases identified as AR Vacant were vacant in the 2010 NRFU. Some of

the misclassification between administrative records and census may be due to errors in the

2010 Census. Keller and Konicki (2016) show that approximately ten percent of persons

enumerated in these AR Vacant and field occupied units are erroneous enumerations and

20 percent are imputed.

To further assess quality implications, we can look to other 2010 coverage results.

Cresce (2012) showed that the 2010 Census continued the trend from the 1990 Census and

2000 Census of underestimating the vacancy rate as compared to other estimates like the

American Housing Survey and the Current Population Survey. The Census Coverage

Measurement program found that vacant housing units were undercounted by 4.8 percent

in 2010 (Mule and Konicki 2012). These evaluation results suggest that by conducting

interviews between March and August to assess the population on April 1, the decennial

census may have enumerated people in units that were vacant on Census Day.

4.2. Identifying Administrative Record Occupied Housing Units

Our assessment of the identification of AR Occupied units is analogous to that of

identifying AR Vacant units in the previous section; however, the distance function for

identifying AR Occupied units depends on predicted probabilities from two separate

models rather than one model. Figure 3 plots the predicted probability from the person-

place model, p̂occ1
h , and for the household composition model, p̂occ2

h , for the eligible NRFU

housing units. Only those NRFU addresses with an associated administrative record

person are eligible to be AR Occupied. The occupied distance measure, docc
h , is used

to create percentile bands generated by assuming varying cutoffs. The upper rightmost

Table 1. AR vacant versus NRFU status assigned – optimization approach versus distance approach (source:

2010 Census simulation).

AR vacant
approach

Workload
removal

Occupied
(%)

Vacant
(%)

Nonexistent
(%)

Unresolved
(%)

Optimization 5,132,613 9.1 78.1 11.9 0.9
Distance 5,132,613 8.8 79.0 11.3 0.9
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area, denoted by the black shading, represents the top one percent of NRFU cases with

the smallest occupied distance. Dividing the data by percentile bands yields the concentric

circles in Figure 3 depicting various scenarios of target NRFU workload reduction.

To assess accuracy for varying occupied distance cutoffs, we again treat the 2010 NRFU

housing unit status as the gold standard and compare field occupancy determination to

administrative record occupancy determination. Figure 4 shows the true positive rate – the

percent of AR Occupied cases that were resolved as occupied during the 2010 NRFU – for

each mutually exclusive percentile band up to the 15th percentile, with the lowest

occupied distance starting at the first percentile. We see in Figure 4 that, for the top one

percent (500,000 NRFU cases) with the shortest occupied distance between the (1,1) point

and p̂occ1
h ; p̂occ2

h

� �
, the true positive rate is 94.6 percent – indicating that among the 500,000

NRFU cases identified as AR Occupied using the distance function approach, 94.6 percent

were resolved as occupied through NRFU fieldwork. There is a gradual decrease in
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Fig. 3. AR occupied predicted probabilities by occupied distance percentile (source: 2010 Census simulation).
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the true positive rate as percentile increases, similar to administrative records vacant

identification.

In addition to determining occupancy and the household count, the decennial census

collects information on the characteristics of the people in occupied housing units. It is

important to recognize the ramifications on characteristics for cases that are enumerated

via administrative records rather than fieldwork. In the previous example of implementing

administrative record enumeration for the top one percent based on the occupied models,

500,000 housing units are assigned persons from administrative records. However,

because no interviews are completed, characteristics for people in these housing units must

be obtained from the administrative records or imputed.

Some characteristics are readily available from the administrative records sources:

age is a necessary requirement to be AR Occupied as the household composition model

depends on age by definition. Obtained from the Numident file, sex is also usually a

nonmissing characteristic. Other characteristics are less straightforward, namely race and

Hispanic origin. We use administrative record data from various sources to identify race

and Hispanic origin for persons enumerated in AR Occupied units. See Ennis et al. (2015)

for a full explanation of how race and Hispanic origin are assigned to persons in the

administrative record data. Figure 5 shows the housing unit-level missing data rate for race

and Hispanic origin for housing units identified as AR Occupied by each percentile of the

occupied distance (starting at the first percentile). For example, of the 500,000 NRFU units

identified as AR Occupied in the second percentile, about 0.50 percent of housing units are

missing Hispanic for all persons. This would necessitate assigning Hispanic origin for all

persons in these housing units via an imputation procedure.

Similar to the vacant cases, we are interested in comparing the performance of the linear

optimization approach with the simpler distance function approach presented in this

article. We sort the housing units from smallest to largest occupied distance and identify

the 7,292,195 addresses with the smallest occupied distance to be AR Occupied. In this

case, about 15 percent of the NRFU universe is identified as AR Occupied corresponding

to a occupied distance threshold of docc
h ¼ 0:7140, where the smallest observed occupied

distance value is docc
h ¼ 0:1907. We find that 93 percent of the addresses determined to be
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AR Occupied using the distance approach are also identified as AR Occupied by the linear

optimization approach. Hence, the two methods largely identify the same cases to be

removed from the operation and enumerated as occupied via administrative records.

Table 2 shows similar observed distributions of 2010 housing status when contrasting

the optimization approach and the distance approach for the same workload amount. The

optimization approach does slightly better in terms of agreement with the NRFU result –

the percentage of AR Occupied cases with an occupied NRFU status is higher for the

optimization approach versus the distance approach (90.2% vs. 89.7%). Note that not all

cases identified as AR Occupied were occupied in the 2010 NRFU. Some of the

misclassification between administrative records and census may be due to omissions in

the census.

5. Conclusion and Discussion

To prepare for the 2020 Census, the Census Bureau is researching cost-saving changes to

NRFU. The use of administrative records to reduce field contacts in NRFU is one cost-

saving measure specifically noted in the 2020 Operational Plan (U.S. Census Bureau

2017a). We propose a modeling approach for assessing the quality of administrative

records for enumerating housing units in conjunction with a distance function to identify

AR Vacant and AR Occupied units. The results from the retrospective study of the 2010

Census provide evidence of the internal validation of the model and methodology as the

distance function approach accurately recognizes vacancy and occupancy in the vast

majority of AR Vacant and AR Occupied cases, respectively. Similarly, the 2016 Census

Test provided external validation of the distance approach (Chapin and Keller 2017). We

contrast the distance function approach with the optimization approach discussed in

Morris et al. (2016) and implemented in the 2015 Census Test. Even though we find that

the two methods perform similarly on the 2010 Census data, we favor the distance function

approach for its simplicity and operational ease to document in a production environment.

This new approach provides a more objective way to define thresholds that dictate the cost

and quality tradeoff. The choice of the distance measure cutoff implies a cost reduction in

that the addresses identified would receive fewer visits during NRFU, but quality metrics

such as true positive rates must be factored in as well.

5.1. Contact Strategy

The proposed distance approach for identifying AR Vacant and AR Occupied cases can be

used operationally in the context of a broader contact strategy. Here we provide an

overview of a NRFU field visit strategy related to units identified as AR Vacant or AR

Table 2. AR occupied versus NRFU status assigned – optimization approach versus distance approach (source:

2010 Census simulation).

AR occupied
approach

Workload
removal

Occupied
(%)

Vacant
(%)

Nonexistent
(%)

Unresolved
(%)

Optimization 7,292,195 90.2 7.9 1.6 0.3
Distance 7,292,195 89.7 8.4 1.7 0.3
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Occupied. This contact strategy – which was implemented in the 2016 Census Test

(Chapin and Keller 2017) – illustrates how and when administrative records may

substitute for face-to-face interviews, thus reducing costs of field operations. Research and

testing programs continue to adapt and refine this contact strategy leading up to the 2020

Census, but generally suggest using administrative records in a reasonably similar manner

(U.S. Census Bureau 2017b).

Prior to the start of the 2016 Census Test NRFU operation, each address was eligible to

receive up to four mailings before and after Census Day. If the address did not respond to

these mailings, the Census Bureau decided how many times to visit the address during the

NRFU operation in accord with the quality of administrative record data. Figure 6 shows

the flowchart of the visit strategy for NRFU housing units in the 2016 Census Test. The

distance function methodology was used to identify the AR Vacant and AR Occupied

housing units shaded in the flowchart in Figure 6 (Chapin and Keller 2017).

Housing units identified as AR Vacant did not receive any visits during NRFU. In

general, the AR Vacant units were those units with Undeliverable as Addressed reason

codes returned from the initial census mailings and an absence of administrative record

presence (i.e., no sign of life in the administrative records). As part of the NRFU contact

strategy, a postcard was mailed to the AR Vacant units to allow an additional opportunity

for self-response.

The cases not identified as AR Vacant received one field visit. This visit allowed cases

to be resolved in several ways: completion of an interview with the household member,

field determination of vacancy, or field determination that the address was not a housing

unit. If the enumerator did not make contact with anybody at the housing unit, the

enumerator left a notice of visit regardless of whether the unit was AR Occupied or not.

This notice of visit included self-response information to encourage the household to

respond by going online, dialing the questionnaire assistance number, or returning the

paper questionnaire sent earlier. Units determined to be AR Occupied received only this

one visit in the 2016 Census Test. After one visit, if the housing unit remained unresolved

then AR Occupied housing units received an additional postcard mailing with self-response

information. All other unresolved housing units (those not identified as AR Occupied) were

contacted via the usual protocol (i.e., additional contacts). As shown, there were several

ways before and during NRFU that the Census Bureau attempted to obtain and use self-

responses before enumerating cases via administrative record information.

NRFU Housing
Units

Send mailing to
address

Resolved

Unresolved

Self-response

Additional field
contacts 

Send mailing to
address 

Resolved 

Unresolved 

Self-response 
Use

administrative
records to
determine
occupied

(AR Occupied) 

Attempt 1
interview for

remaining
addresses

Use
administrative

records to
determine

vacant
(AR Vacant)

Administrative
records for

occupied unit

Administrative
record vacant

Fig. 6. Nonresponse followup visit strategy (2016 Census test).
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5.2. Adaptive Uses of the Distance Function Method

The contact strategy described in Subsection 5.1 shifts AR Vacant and AR Occupied units

from an approach solely reliant on enumerator visits. In practice, the AR Occupied units

are only allowed a maximum of one enumerator visit before having to respond via another

mode. This tailored contact strategy results from identifying cases for removal based on

administrative record information available at the start of NRFU. The distance function

approach assumes a fixed set of data on which the underlying models are fit. However, the

approach can be implemented adaptively as new administrative record information is

obtained during the NRFU operation. In the context of the 2015 Census Test, Keller (2016)

describes multi-phased integration of administrative record modeling as an adaptive

component throughout NRFU. For this test, after initial AR Occupied and AR Vacant

cases were identified, the Census Bureau received additional IRS 1040 and IRS 1099

information. After processing these data, the administrative record models were refit.

Additional units were identified as AR Occupied and subsequently enumerated via the new

administrative record data. Although this was not preplanned, this adaptation enabled the

resolution of cases using administrative record data that had not been available at the start

of NRFU. Doing so in real-time allowed the Census Bureau to shift resources to units that

had proven to be more difficult to enumerate.

The distance function methodology can also be used after data collection is complete, as

an alternative to unit imputation of status and population size for unresolved housing units.

In the context of the 2015 Census Test, Keller (2016) documents a modification of the

optimization approach: refitting and determining AR Vacant and AR Occupied cases by

lowering the average constraint values in the optimization approach – thus identifying

more AR Vacant and AR Occupied cases. The new cases that remained unresolved

addresses after the full visit strategy are assigned occupancy status and enumerated using

administrative records rather that via an imputation. In the same fashion, rather than

relying on the optimization approach, the new distance function approach can be extended

to allow additional unresolved addresses to be assigned an AR Vacant or AR Occupied

status by lowering the threshold.

To elaborate on this scenario, Figure 7 shows a hypothetical example for the AR

Occupied determination. A distance threshold can be specified to identify the dark gray

area in the upper right corner of the figure. Addresses with predicted probabilities in this

area will receive no more than one visit. A second distance threshold can be specified to

identify the medium gray area. These cases would receive the full visit strategy during

NRFU; however, if they are unresolved after fieldwork is completed, then administrative

records information would be used to determine occupancy status and a roster, if occupied,

instead of using count imputation for these cases. The administrative records for the

remaining housing units in the light gray area would not be utilized, as they are not of

sufficient quality. This figure and hypothetical scenario exemplify the clarity and ease of

communicating the distance function approach for reducing visits or avoiding imputation.

5.3. Implementing on Surveys

We have focused exclusively on using administrative records to replace household

responses specifically for the decennial census. Using administrative records to curtail
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contacts or reduce respondent burden can be generally useful in surveys. However,

admittedly, the use of administrative records in the decennial census is a less arduous

problem due to the limited number of interview questions. The decennial census is only

charged with forming a Census Day household roster of persons, to include minimal

demographic data such as age, sex, Hispanic origin, race, and relationship for persons in

occupied units. However, surveys such as the ACS have more data items with more

complex topics. Nevertheless, provided that the administrative data relevant to the subject

of measurement is available to the survey administrator, the methodology presented in this

article can potentially be adapted for survey use.

For example, the Census Bureau has been researching the use of administrative records

to reduce the difficulty and length of the American Community Survey to address concerns

about respondent burden (Stempowski 2015). Ruggles (2015) identified potential

administrative record sources for replacing or supplementing field response data. The

American Community Survey Office (ACSO) at the Census Bureau has an active research

program to further study topics and variables suggested in Ruggles (2015), for example,

income (O’Hara et al. 2016), year built (Moore 2015), and housing value (Kingkade

2013). The preliminary work from ACSO has addressed the potential for an all-or-nothing

use of administrative records to eliminate ACS questions. However the distance method

could serve as an intermediate solution for reducing respondent burden by tailoring the

survey questions based on the administrative record data availability and quality for each

respondent. Specifically, historic survey data and the relevant administrative record data

could be used to model the quality of administrative record data for a given question. The

quality measures resulting from applying the model fit to a current round of data collection

could then be used as in the distance method to repurpose the administrative record

information via item substitution only for those units with quality exceeding some

threshold. Such an adaptive strategy would reduce respondent burden, particularly those

with consistently high-quality administrative record data. To our knowledge, such an

implementation has not been studied or operationalized in any surveys. However,
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Fig. 7. Hypothetical example of using different occupied distance thresholds (source: 2010 Census simulation).
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relatedly, Chesnut (2013) has studied modeling approaches for adaptive mode switching –

model-based tailoring of contact strategies – to reduce respondent burden in the ACS.

5.4. Future Work

The definition of the distance measure for determining vacant and occupied units assumes

equal weighting on the two corresponding predicted probabilities. We conjecture that this

may be an issue for our AR Occupied identification because it uses two predictions with

different census quality ramifications. The person-place model concerns counting people

in the right place, whereas the household composition model concerns the agreement

between administrative record household composition and census household composition.

Differential weighting may be desired if it makes practical and empirical sense to

emphasize one model over the other. Alternatively, transformations of the predicted

probabilities may have an impact on the conclusions. The distance function uses the raw

predicted values; however, the two dimensions each have a different dependent variable

such that the distribution of predicted probabilities for each are not likely the same. Further

work will examine if transformations including standardizations of the two probabilities

can be useful in the determination.

An underlying assumption of the models in this research is that the relationships

between the administrative records and the 2010 Census will remain consistent for the

2020 Census. The approach assumes the estimated relationships from the training data

(e.g., 2010 Census data) can be reasonably applied for predicting the test data (e.g., 2020

Census data). Additionally, the approach assumes the 2010 Census data as “truth,” even

though there exists inherent error in Census results. Although the 2010 Census data is a

reasonable basis for model development, the Census Bureau is actively researching the

feasibility of using alternate training data to fit the administrative record models. For

example, the use of more current ACS data as training data in conjunction with 2015

Census Test data could be treated as the gold standard (Chow et al. 2017).
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Appendix

Table A1. List of independent variables for vacant and occupied models.

Occupied models

Variable

Vacant

model

(Section 3.1)

Person-place

(Section 3.2.1)

HH

composition

(Section 3.2.2)

American community survey block group level variables

% of persons in block group (BG)

between 25 and 44 years old

X X X

persons in BG greater than

64 years old

X X X

persons in BG identifying

as Black

X X X

persons in BG identifying

as Hispanic

X X X

occupied housing units in

BG with at least 2 related

HH members

X X X

persons over 4 in BG

speaking language other

than English at home

X X X

housing units in BG

considered as

mobile homes

X X X

housing units in BG where

householder/spouse are

members of HH

X X X

occupied housing units in

BG that are not

owner occupied

X X X

housing units in BG vacant

at time of interview

X X

housing units in BG occupied

at time of interview

X

persons in BG living

below poverty level

X X X

Housing unit characteristics

# of neighbors in Non

Response Followup (NRFU)

X

USPS Undeliverable As

Addressed (UAA) reason

(two mailings)

X X X

USPS UAA reason agreement

– Kappa Coefficient

X

housing unit type (e.g.,

multi-family)

X X X

within structure description X
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Table A1. Continued.

Occupied models

Variable

Vacant

model

(Section 3.1)

Person-place

(Section 3.2.1)

HH

composition

(Section 3.2.2)

has Delivery Sequence File

“X” status and both

neighbors are in NRFU

X

on fall Delivery Sequence File

of 2009

X X X

apartment with Unable to

Forward UAA reason

code on 1st mailing

X

Housing unit characteristics from administrative records

. ¼ 1 person

in HU is...

White X

Black X X

Hispanic X

missing ethnicity X

age ,2 X X

age ,10 X X

age 10–17 X X

age 18–24 X

age 25–44 X

age 65þ X X

Housing unit level administrative record source information

. ¼ 1 person

in HU is placed

at this HU

according

to...

Internal Revenue Service

(IRS) 1040 Tax Year (TY)

2009

X X

IRS 1099 TY 2009 X X

Indian Health Service Patient

Database (IHS)

X

Medicare X

Commercial data X X

IRS 1040 TY 2008 X

Administrative Records (AR)

HH count

X

AR HH composition X X X

HH with IRS 1040 TY 2008

persons, no AR persons

in current year

X

IRS 1040 TY 2009 persons

also in IRS 1040 TY 2008

at same unit

X
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Transitioning a Survey to Self-Administration using
Adaptive, Responsive, and Tailored (ART) Design

Principles and Data Visualization

Joe Murphy1, Paul Biemer2, and Chip Berry3

This article discusses the critical and complex design decisions associated with transitioning
an interviewer-administered survey to a self-administered, postal, web/paper survey. Our
approach embeds adaptive, responsive, and tailored (ART) design principles and data
visualization during a multi-phased data collection operation to project the outcomes of each
phase in preparation for subsequent phases. This requires rapid decision making based upon
experimental results using a data visualization system to monitor critical-to-quality (CTQ)
metrics and facilitate projections of outcomes from the current phase of data collection to
inform the design of the subsequent phase. We describe the objectives of the overall design,
the features designed to address these objectives, components of the visual adaptive total
design (ATD) system for monitoring quality components and relative costs in real time, and
examples of the visualization elements and functionalities that were used in one case study.
We also discuss subsequent initiatives to develop an interactive version of the monitoring tool
and applications for other studies, including those employing adaptive, responsive, and
tailored (ART) designs. Our case study is a series of pilot studies conducted for the Residential
Energy Consumption Survey (RECS), sponsored by the U.S. Energy Information
Administration (EIA).

Key words: Responsive design, adaptive design, monitoring, data collection, visualization.

1. Introduction

Interviewer-administered survey modes, such as face-to-face and telephone, have

traditionally been viewed as the standard for collecting high quality data on nonsensitive

topics. The presence of an interviewer can help foster cooperation with the respondent and

the interaction between interviewer and respondent can help assure that key questions

are interpreted and answered correctly. While they may set the standard for quality,

interviewer-administered modes are typically more costly than modes that do not involve

interviewers, such as web and paper surveys. Costs for recruiting and training interviewers,

their salaries, and their transportation costs (for face-to-face surveys) are major investments

for a survey project. From a total survey error perspective, allocating such a large

share of the survey budget to face-to-face interviewing may be suboptimal for some
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surveys (Groves 1989; Biemer 2010). For example, using a less expensive data collection

mode could allow a larger sample size, more extensive nonresponse follow-up, more

questionnaire pretesting, and the elimination of interviewer error. In addition, using a mail

delivery mode obviates the need for cluster sampling that is often required in face-to-face

surveys to reduce interviewer travel costs.

In recent years, it has only become more difficult to efficiently collect data, regardless of

mode. Response rates have continued to decline and, to achieve acceptable response rates,

costs have increased. Some well-established surveys in the U.S. that have employed

interviewers in the past such as the Longitudinal Survey of Adolescent Health (Biemer

et al. 2017a), the Behavior Risk Factor Surveillance Survey (Link and Mokdad 2005), the

National Health Care Interview Survey (Howden et al. 2015) and the Residential Energy

Consumption Survey (RECS) (Eddy and Marton 2012) have investigated or are now

considering changes to incorporate self-administered designs for cost reduction. However,

the change to self-administration is not simple or straightforward when comparable, high

quality data are desired using these less expensive modes.

For surveys that are conducted periodically, such as repeated cross-sectional or

longitudinal studies, the decision to change modes is only the first in a series of design

decisions that must be made before implementing a specific self-administered data

collection protocol. To inform this rather complex and challenging transition, a series of

pilot studies can be designed to experimentally test a range of alternative designs and

identify the best data collection approaches for self-administration, including web and

paper modes. Such a design may require that a series of experiments be conducted within

a highly compressed schedule with little time between studies for data analysis. Yet, it

is essential that the results and lessons learned from each experiment be thoroughly

understood and transferred across experiments. As such, design decisions need to be made

for the next set of experiments before data collection and analysis for the previous set of

experiments are fully completed. Key to decision making is a system for monitoring and

visualizing the results of data collection while the survey is in progress. Groves and

Heeringa (2006) discuss this problem in the context of a three-phase responsive design

for the National Survey of Family Growth where the first phase constituted an experiment

that was followed immediately by the main data collection phase. That phase was then

followed immediately by a nonresponse follow-up phase. Decisions based upon

incomplete data were made during each phase that affected the design of the subsequent

phase. To facilitate this process, the study team reviewed daily updates on the results for

each treatment or design feature being monitored. This approach involved defining

multiple quality components and their metrics as well as a system to compile a vast

amount of information for quick, clear, presentation and a minimum of burden on the

survey managers.

In this article, we discuss the key design decisions required for the transition of an

interviewer-administered survey to self-administration via paper and web using a series of

data collection phases. Our approach embeds adaptive, responsive, and tailored (ART)

design principles and data visualization during a multi-phased data collection operation

to project the outcomes of each phase in preparation for subsequent phases. Key to this

process is identifying critical-to-quality (CTQ) metrics to monitor and a data visualization

system to meet the requirements of the research strategy. We describe the objectives of the
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design and system, the features required to address these objectives, and the

implementation of a visualization approach for monitoring costs and quality components

in real time. We also describe and provide examples of the visualization elements we

created and applied as well as their functionalities. Looking forward, we discuss current

initiatives to develop an interactive version of the monitoring tool with applications in

subsequent studies especially those employing ART designs.

Our case study is a series of pilot studies conducted for the U.S. Energy Information

Administration (EIA) for the RECS. The goal of these studies was to assess the operational

feasibility, data quality and costs of converting the RECS to a web and paper mixed mode

design. The RECS has traditionally been conducted by face-to-face interviewing;

however, self-administration via web and paper questionnaires represents an opportunity

to lower costs, gather more timely and frequent data, and expand sample sizes to meet

ever-expanding user precision requirements.

2. Embedding ART Principles in the Study Design

When considering a change from interviewer- to self-administration, several questions

emerge. Key among these are the following:

. Will questions in the interviewer-administered setting translate to provide

comparable data in the self-administered setting?

. Will sample members respond to the survey at an acceptably high rate? Will those

who respond represent the population of interest?

. Can the survey collect high quality data (e.g., low measurement error) while

leveraging the efficiencies of self-administered modes?

. What data collection protocol will yield the best overall quality given the survey

goals?

. What data collection protocol will be most cost efficient?

The first question can be evaluated using a variety of pretesting methods, including

cognitive interviews and online pretesting (Murphy et al. 2016; Edgar et al. 2016). To

answer the remaining questions, we can design experiments in which one or more features

of the data collection protocol is altered. For example, we may conduct an experiment

using different incentive levels to determine which is most appropriate given the goals of

the survey. Or we may randomly assign some sample members to a version of the survey

with a shorter completion time and others to a longer one to determine the tradeoffs

between information gained overall and from individual cases. Often, there are more

issues than can be feasibly investigated in a single round of experiments. Sometimes the

design options to be tested are interdependent. For example, whether incentives should

be guided by response propensity models depends upon how those propensity models

perform. In this case, it may be advantageous to conduct experiments iteratively, where the

“best” protocol identified in one phase of the survey is carried into the subsequent phase,

while the protocols that did not yield good results are excluded.

Our ability to draw conclusions from such experiments and answer questions to inform

the “best” design for a survey depends on 1) the data available, 2) the specific components

of quality to be monitored and 3) the interventions at our disposal to affect design features
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to improve quality. These three requirements can vary greatly depending on the survey

mode or modes employed in the survey. For example, for a face-to-face household survey,

we can measure the effectiveness of different contact strategies and interviewers, the

timing and level of effort devoted to contacting respondents, the physical characteristics of

the household, interviewer performance metrics and other paradata. These and other data

can be monitored in real-time, analyzed to determine if an intervention is warranted and, if

so, to deploy whatever intervention is indicated as quickly as possible.

Several design strategies offer the potential to help determine the best fit in terms of

approaches for a survey or individual sampled units. The tailored design method (Luiten

and Schouten 2013) advocates varying the survey protocol across population subgroups

rather than using a “one size fits all” approach. This approach attempts to customize the

survey design to individual preferences in order to minimize the total error for the entire

sample. Another form of tailoring uses a combination of survey design features

demonstrated to be effective in the literature to construct a single, optimal survey design

that, when applied to the entire sample, will provide excellent results across a wide range

of survey topics and populations (Dillman et al. 2014). Responsive design was introduced

by Groves and Heeringa (2006) as an approach to adjust the data collection protocol for a

single survey based on the outcomes of an initial set of cases. By continuously assessing

the results of the data collection process and remaining resources, strategies can be

modified for the remaining cases to be pursued (Laflamme and Wagner 2016). Adaptive

survey design similarly proposes different approaches within the same survey, but focuses

on the heterogeneity of sample cases and identifying the optimal survey protocol for each

individual. For example, adaptive survey design recognizes that some sample members

may be swayed to participate in a survey by incentives where others will not. Design-

specific response propensities can be calculated based on paradata for each individual

sample member (Schouten et al. 2017; Chun et al. 2017).

The successful ART design should adhere to these simple but key principles:

1. identify a few, critical factors that drive costs and quality (i.e., CTQs) and focus

attention on these throughout the process,

2. create and monitor metrics that are strongly associated with CTQ outcomes and

intervene when these metrics deviate beyond their acceptable limits and,

3. verify that the interventions were successful and that the aberrant CTQ metrics return

to their acceptable limits.

A fourth overarching principle is to simplify the quality management strategy to the extent

possible using informative graphical displays, parsimony in the selection of CTQs and

their corresponding metrics, and a focused strategy for continual improvement of the

CTQs.

These general principles are common to all three approaches – that is, A, R, and T –

where the specific approach can be viewed as a variant in the way these principles are

applied. For example, responsive designs may incorporate experimental phase and may

use the concept of phase capacity to signal the end of a phase. These features address the

principles of monitoring metrics and intervening when they meet certain prespecified

criteria. Likewise, the tailored designs may attempt to adapt the data collection protocol

to specific subgroups of the population. This feature can be viewed as application of
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Principle 1, where metrics are defined at the subgroup level and interventions can vary by

subgroup. Finally, adaptive design can contain elements of both responsive and tailored

designs, but may focus more broadly on total survey error and costs, clearly in the spirit of

Principles 1, 2, and 3.

ART considerations for in-person surveys are, overall, rather complex and may represent

a wide array of potential CTQs for reducing error risks and costs. By comparison, the

considerations for self-administered, postal surveys are relatively straightforward. For

example, the typical web/paper survey involves a series of participation requests and

reminders sent by mail or, if available, email according to a prespecified contact schedule

with little room for deviation. The absence of interviewers and control over the timing of

contact results in fewer variables to consider. However, problems can occur that may

require rapid intervention when the observed results deviate substantially from

expectations. In that situation, the interventions may be limited to actions such as: using

additional contacts, increasing the sample size, altering the wording of the invitations, or

something similar, none of which represent a substantial departure from the planned

protocol. Mail invitations are typically sent in large batches and while the U.S. Postal

Service (USPS) returns letters that were undeliverable, the outcome of the contact attempt is

unknown unless the respondent actively participated or contacts the survey organization to

refuse participation. As such, identifying, monitoring, and using data for ART designs in a

web and/or mail survey environment presents a unique challenge.

Our recommended approach for surveys transitioning to self-administration is to

incorporate elements of ART designs where appropriate. For instance, a design may be

responsive by including multiple phases of data collection, each drawing from the

successful strategies of the previous phase. The design can be adaptive in the sense that it

uses paradata metrics to monitor quality during each phase of data collection to consider

the appropriate treatment for each individual case. And it can be tailored in sense that it

attempts to vary the survey protocol according to the (often predicted) preference of the

sample member; as an example, using a paper-questionnaire-only protocol for sample

members who do not have internet access.

When designing a protocol for a sequence of experiments to be conducted in rapid

succession, it is vitally important to identify the goals and metrics for success from the

outset. While all surveys strive for high quality in the data collected and estimates

produced, the exact definition of “quality” may differ from project to project. For this

reason, it is crucial for the survey stakeholders (sponsors, data collectors, data users, etc.)

to discuss the definitions of quality and success from the very beginning of the survey

planning stages. Once quality is defined, it is a matter of operationalizing this definition by

selecting metrics that can be tracked during data collection that can serve as CTQs. These

indicators can reflect quality dimensions such as successful study recruitment (response

rates), the extent to which respondents represent a benchmark measurement of the

population of interest (e.g., demographic characteristics that match Census estimates),

success in obtaining responses at the item level from respondents, the ability to push

respondents to respond via web rather than paper, and so on. Assuming a rapid

development schedule, once the CTQs are identified, a system needs to be put in place to

track these metrics during data collection so design decisions for the subsequent phase can

be made before the current phase is complete.
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The task of identifying metrics or indicators for a CTQ is seldom straightforward. As an

example, the response rate is commonly employed for the CTQ to minimize nonresponse

bias; yet, other metrics maybe better indicators of nonresponse bias. Often the best

solution is to employ several metrics that may reflect different dimensions of the CTQ but

that can add complexity to the monitoring task. Thus, it is important to strike a balance

between parsimony and completeness. In the RECS pilot studies, we monitored response

rates as well as a measure of representativity known as Cramér’s V. In addition, it may be

futile to define a CTQ for which there is no opportunity or plan to intervene on behalf

of the CTQ. As an example, in the RECS pilot studies, obtaining accurate reports of

household appliances was certainly an objective of questionnaire design; we refined these

questions during pretesting and checked the data for anomalies at several points during

data collection, but no steps were taken to monitor this indicator on a daily basis.

In the following section, we present a case study to illustrate a rapid sequence of

experiments for the RECS that incorporate various ART design principles. We describe

our process for identifying CTQs and monitoring them during data collection using a

visualization system designed for such scenarios.

3. The Need for Rapid Decision-Making and Role of Visualization for the

RECS Pilots

The RECS originated in 1978 and has been conducted periodically by the EIA since then.

The RECS program is responsible for collecting and disseminating timely, detailed

information about how energy is being used within the residential sector of the economy.

This includes data on the fuels used in homes, equipment and appliance stocks, household

behaviors, and disaggregated consumption and expenditures. In this article, we discuss the

RECS that was conducted in 2015. Prior to this, RECS was conducted by face-to-face

interviewing in 2009. As the opportunities and challenges associated with survey research

have changed over the years, the planning for each RECS has required reflection on how

best to meet the goals of the survey and needs of the data users while maintaining

comparability with past rounds, and adhering to schedule and budget constraints.

As previously noted, the RECS has been conducted by field interviewers using

computer-assisted personal interviewing (CAPI). The costs of this data collection mode

are relatively high, averaging nearly USD 400 per completed interview for the 2009 study,

which limits other important quality initiatives, such as more frequent data collection,

larger sample sizes, and precise estimates for more geographic areas. EIA commissioned

an expert panel study of the National Research Council of the National Academy of

Sciences (NAS) to examine its energy demand surveys, identify gaps in substantive

coverage, and make recommendations for EIA’s priorities for data collection (Eddy and

Marton 2012). One suggestion from the panel was to explore alternative data collection

approaches for the RECS, specifically incorporating a self-administered web mode. EIA

followed the NAS recommendation with the goal of assessing whether self-administered

modes could result in the collection of high-quality data in an environment where field

data collection was continuing to face increasing challenges.

RECS had always achieved response rates at or above 80 percent. It was apparent that

such high response rates would not be feasible in today’s environment, especially using a
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mail-delivered questionnaire protocol. Thus, EIA faced many questions about the trade-

off between cost and quality with this radical shift to a web/paper design. The schedule

for conducting the next RECS meant that EIA would need to test several different

promising protocols in a very short period of time before selecting the one that would

serve as the most appropriate production system for the future. In light of these

challenges, EIA determined that, using the ideas of responsive design, a multi-phased

pilot study design would best meet their needs considering costs, timing and goals. With

a phased approach, a well-selected set of design features could be tested at each phase

that took advantage of the lessons learned and the results gleaned from the prior phase’s

experiments. Then the final phase of testing could incorporate the best features of the

prior phases.

The following sections describe each RECS pilot phase’s timing, design, and results.

We also describe how early results from each phase were used to inform subsequent

phases, as well as how the official 2015 RECS CAPI study was ultimately impacted by

the pilot tests.

3.1. Phase 1: The Cities Pilot

The first RECS phase, referred to as the Cities Pilot Test, collected responses from an

address-based sample of households in five U.S. cities. Planning and design for the Cities

Pilot Test began in December 2014 and data collection began in March 2015, continuing

into July 2015. Planning for this survey involved extensive cognitive interviewing and

pretesting to determine how best to shorten the 40-minute traditional face-to-face

questionnaire to a 20–30 minute self-administered instrument (Murphy et al. 2016).

Further, extensive analysis was conducted on the energy characteristics of U.S. cities

in order to identify five cities that together could sufficiently represent the diverse and

challenging issues to be confronted in the redesign of the national RECS.

In addition to assessing the viability of a self-administered RECS, the Cities Pilot

included two experiments to evaluate options for key design components. These

components were (1) questionnaire length and (2) initial mode assignment. We found

evidence that the 30-minute self-administered RECS achieved a similar response rate to

the 20-minute version and deemed it feasible and efficient for both web and paper modes.

The Cities Pilot Test achieved a higher-than-expected response rate overall (38%) within

budget and demonstrated that data collection can be accomplished within a 14-week field

period. We also found that tailoring the initial mode assignment (either by web only or by

paper) based upon a model predicting the propensity to respond by each mode was not

effective primarily because our working hypothesis did not hold. We hypothesized that

households that do not have broadband Internet access would prefer the paper mode. Thus,

we developed a model for the probability a household has Internet access as described

in Zimmer et al. (2016). But while the propensity model was reasonably accurate for

predicting Internet access, Internet access was apparently not a good indicator of mode

preference and thus response rates for the model-guided protocol were not significantly

higher than the control group which used a static web-first mode assignment (Zimmer et al.

2016). Given these results, mode tailoring based on internet access propensity was not

used in the subsequent phases.
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As shown in Figure 1, the Cities Pilot Test data collection phase overlapped

significantly with planning for the next phase, referred to as the National Pilot Test. Daily

tracking of key Cities Pilot quality metrics was instrumental in determining design and

experiment options for the subsequent phase. Monthly, or even weekly, status reports

would have been insufficient if the project were to stay on schedule.

3.2. Phase 2: The National Pilot Test

The RECS National Pilot Test was planned to run more or less concurrently with the

official 2015 RECS CAPI study and, thus, planning and decision making for the National

Pilot needed to take place while the Cities Pilot data were still being collected. Planning

and design for the National Pilot Test began in April 2015; data collection ran from

September 2015 to January 2016. The RECS National Pilot Test collected responses

from a national address-based sample of households and expanded on lessons learned from

the RECS Cities Pilot, carrying over the 30-minute questionnaire length and materials

developed for that previous pilot.

Like the Cities Pilot Test, the National Pilot Test phase included experiments to

continue to explore the most successful protocol for web and paper administration of the

RECS according to the criteria outlined in Section 4 of this article. Because the Cities Pilot

Test showed evidence of the superiority of the web mode for data collection in terms of

cost and data quality, we aimed for a design that would effectively “push” respondents to

the web (Dillman 2016). Since respondents in the Cities Pilot generally preferred to

respond via paper rather than web, a key question for the National Pilot Test was whether

participants could be incentivized to respond by web rather than paper.

The pilot evaluated eight treatment combinations of equal sample size formed by

crossing two factors: respondent incentives (Factor A) with two levels and mode protocols

(Factor B) with four levels forming a two-by-four factorial design. The two factors and

their levels are defined as follows:

. A1. A USD 5 prepaid incentive included in the first questionnaire mailing; USD 10

was promised for response under the response protocol specified by Factor B.

. A2. A USD 5 prepaid incentive was included in the first questionnaire mailing; USD

20 was promised for response under the response protocol specified by Factor B.

. B1. Web Only Protocol–only the web response option was offered for all survey

response invitations.

RECS Phase
Cities pilot
National pilot
2015 RECS Field
2015 RECS Web/mail

Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun 
'14

Planning 
Data collection

2015 2016

Fig. 1. RECS pilots timeline.
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. B2. Web/Paper Protocol – the web response option was offered in the first invitation

and first nonresponse invitation; both web and paper were offered in all subsequent

invitations.

. B3. Choice Protocol – response by either paper or web questionnaire was requested

by each survey response invitation.

. B4. Choiceþ Protocol – response by either paper or web questionnaire was

requested by each survey response invitation. However, a USD 10 promised bonus

incentive was provided in addition to the incentives specified by Factor A if the

respondent chose to respond by the web option rather than by paper.

The National Pilot Test found that the most successful protocol included a USD 5

unconditional cash pre-incentive plus a USD 10 cash promised incentive for participation.

Those electing to respond via web rather than paper were offered an additional USD 10

for completing. This protocol, termed “Choice Plus” (Choiceþ ) is discussed in detail

in Biemer et al. (2017b).

Following the main data collection period of the National Pilot, all non-respondents

except refusals received an extended nonresponse followup (xNRFU). A single UPS

high-priority mailing was sent to these addresses containing the offer letter, an

abbreviated, one-page questionnaire and a postage-paid return envelope. A random half

of the xNRFU sample was offered an additional (that is, in addition to the incentives they

would have received under Factors A and B) USD 10 if they completed the abbreviated

questionnaire and returned it in the stamped envelope.

We calculated response rates using American Association for Public Opinion Research

formula RR3 (AAPOR 2015). The final overall response rate for the main phase of the

National Pilot was 40.4 percent. The overall rate rose to 54.9 percent after the completion

of the nonresponse follow-up phase.

3.3. Phase 3: 2015 RECS CAPI Remediation

While the National Pilot was being conducted, the 2015 RECS CAPI was also in the field

with interviewers making face-to-face visits to selected households. The National Pilot

Test ran concurrently with the 2015 RECS CAPI so we could compare the results of data

collection and estimates obtained by survey mode. In January 2016, it became apparent

that the 2015 RECS would not achieve its goals in terms of cost and response using

interviewer administration. In contrast, the National Pilot had concluded and demonstrated

that self-administered modes could be used to achieve good data quality, acceptable

response rates, and costs several times lower per case than CAPI. Given the success of the

National Pilot Test to that point, and in particular the Choiceþ protocol, EIA made the

decision to transition most unresolved or unreleased sample cases in the 2015 RECS CAPI

to self-administration by web and paper using the Choiceþ protocol beginning in

February 2015. The 2015 RECS CAPI remediation phase continued through June 2016.

4. Identifying and Visualizing CTQ Metrics

Historically, RECS had a fairly stable design with a predictable range of outcomes. The

response rate for the CAPI studies, for example, was consistently 80 percent or higher.
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To monitor field progress during data collection, RECS project staff relied on summary

field and cost tables which were compiled at regular intervals. These static tables, which

included weekly and cumulative labor and travel costs for the entire sample and by

geography, were sufficient. The use of more detailed metrics was limited to field

supervisors as a means to appropriately assign interviewer work. Given its quadrennial

cycle, there was also ample time to analyze field results following data collection and plan

for any protocol changes for the next round.

The objectives of the RECS Pilot Test required rapid decision making in order to plan

the subsequent round, and it was necessary to track data collection metrics from the outset

and at more frequent intervals. As the process evolved, it was essential to assess the current

state of progress for CTQs in a way that did not require a significant time investment from

staff. Making design decisions on the schedule presented in Figure 1 required real-time

(daily) monitoring of the performance across multiple quality indicators.

To develop a quality monitoring system, the first step was to agree upon the definition of

quality for the pilot tests. A number of design features were predetermined such as the data

collection modes (web/paper), overall sample sizes, the use of an address-based sampling

frame, number of mailings and incentivized response. Given these fixed assumptions, the

definition of quality and what constituted a successful outcome from the survey sponsor’s

perspective drove the remaining design decisions. Thus, quality was essentially defined as

a balance across the following four CTQs:

. participation rates (higher is better, all else being equal),

. web response rate (higher response by web compared to response by paper is better),

. respondent sample representativeness relative to external benchmarks (higher

concordance with benchmark is better), and

. relative costs per completed case (lower is better).

Another important quality goal for any survey transitioning from face to face to web/mail

mixed mode data collection should be the evaluation and control of mode effects which are

essentially the methodological differences in the estimates due to the change in mode. The

RECS is certainly not immune to mode effects; in fact, significant mode effects were

expected for some characteristics, most notably the ascertainment of housing unit square

footage. In the face to face mode, interviewers can explain the “official” concept of

housing unit square footage and even assist the respondent in estimating it. In self-

administered modes, respondents are only aided by the instructions embedded in the

instrument which can be quite technical. Unless they happen to know the square footage of

their home, respondents often err in its estimation. Unfortunately, measurement errors are

quite difficult to monitor and control in real-time during web/mail data collection. For the

RECS, only post-survey evaluations of measurement error were conducted. In particular, a

post-survey analysis of RECS square footage data can be found in Amaya et al. (2017).

While we did not set a quantitative value for each of these CTQs to identify what

worked “best,” we monitored the results as the pilot tests were conducted and frequently

discussed the trends in the process of selecting methods appropriate for the subsequent

pilot. Biemer et al. (2017b) provides a discussion of the specific rationale for the chosen

survey experiments for the RECS National Pilot design to identify the “best” design given

the definition of quality above.

Journal of Official Statistics634



The CTQs we identified for real-time monitoring can be classified into the following

categories:

1. Participation. We sought high rates of participation across key domains defined by

housing unit/household characteristics. We also sought high rates of participation

in the early stages of data collection to minimize the cost of multiple follow-up

mailings. We also tracked submission rate metrics for each of the experimental

conditions. Here, submission rate refers to the count of cases submitted via web or

paper form divided by the total number of sampled cases. The rate served as a simple

proxy for response rate, which was not calculated until the end of data collection due

to the timing of defining criteria for the estimation of eligibility among cases of

unknown eligibility (e.g., cases with no evidence of receipt of contact with a

respondent, USPS and UPS undeliverables). Cumulative daily submission rates were

monitored overall and by: experimental treatment, mode protocol, promised

incentive amount, geographic region, and urbanicity.

2. Rate of response via web (rather than paper). We sought to minimize cost by

encouraging response via web survey rather than paper, since paper included extra

costs for printing, return postage, receipt, data entry, and data review. We also sought

to minimize measurement error from item nonresponse, out-of-range responses, and

errors in following skip patterns by encouraging web vs. paper response. We

monitored the rate of web submission overall and by the same factors noted for

participation.

3. Respondent representativeness compared with the sample and an external

benchmark. We sought a balanced unweighted distribution of respondents relative

to benchmark data sources. To assess representativeness, we compared RECS Pilot

responding housing unit/household distributions to the corresponding distributions

for the 2014 U.S. American Community Survey (ACS) 1-year estimates (U.S.

Census Bureau 2015). The variables compared included: type of housing unit, main

heating fuel used, household income, and age of respondent/householder.

Additionally, we compared respondents to sampling frame distributions using a

variable available for both: housing unit building type (single family vs. multi-unit).

We also considered comparing RECS Pilot respondents with 2015 RECS CAPI

respondents or 2009 weighted estimates on energy-specific metrics, such as water

heating fuel and number of refrigerators, as a means to track the bridge between old

and new survey methods. These metrics were not part of the CTQ tracking system,

but rather were evaluated at the conclusion of the data collection.

4. Relative cost per case. We calculated the costs associated with printing materials,

mailings, receipt of completed questionnaires, and incentive payments for each

protocol. Depending on whether and when each sample member responded, the cost

per case varied. By tracking costs at the case level, we could determine the overall

costs at the protocol summary level over the course of data collection. We measured

costs relative to the simplest and expected least costly protocol, Web Only. We also

considered the costs associated with data editing needs for each protocol. Data

editing involved necessary recodes to reported values, such as the assignment of

values to open-ended responses or edits to ensure consistency of responses. The need
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for data editing did not necessarily suggest lower quality data, but did require staff

resources, and so we discuss it as a cost metric.

With our CTQs for the pilot tests identified, the next challenge was selecting the best

system for monitoring progress data collection. In selecting an approach for CTQ

visualization, we identified several system requirements specific to our purposes:

. The system should be simple enough to be quickly accessed and understood by a wide

range of project staff.

. Charts should limit the number of data series plotted (no more than five lines on a

single chart at once; as needed, “small multiples” of charts by specific dimensions

should be employed (Cleveland 1993; Tufte 2001).

. The chart axes, legends, and labels should be large enough to read easily and include

descriptive labels to minimize the effort for a user to gain information.

. Charts should use a consistent format and consistently use patterns, colors and

symbols so users do not have to re-orient when examining multiple charts.

. The charts should be fully interpretable when printed in black and white.

. All charts should be accompanied by full data tables so users can reference exact

values when needed.

. The charts should not require purchase or licensing of special software not already

available to users.

. The system had to be cost efficient and not require extensive use of IT resources.

We determined that the goals stated above could best be met using software already at our

disposal – SAS and Microsoft Excel. The creation process began with a nightly export of

data from the survey control system into a single SAS database containing sample, frame,

case history, web response data, paper response data, and auxiliary data. SAS version 9.4

was used to compute CTQs in counts per day, cumulative counts per day, and cumulative

rates per day for each metric. The same automated SAS program then prepared data

tables in the format necessary for export to an Excel 2013 workbook with preformatted

chart shells.

The process was automated to run on a daily basis for sharing with the project team on a

shared secure web portal. By containing all the output in a single Excel workbook, we had

available a self-contained, convenient, and widely familiar format for sharing pilot

progress data across the project team and with EIA managers, as needed. And although the

charts were not necessarily “interactive,” it should be noted that Excel does include the

default option to hover the cursor over a data point to view its exact x and y values.

For chart designs we looked to the literature and our own experience and intuition about

the simplest and most effective displays. For example, Tufte (2001) advocates for

maximizing the “data-ink ratio” or “proportion of a graphic’s ink devoted to the non-

redundant display of data-information” in data visualization. As a result, we sought to

eliminate any elements that were not helpful for quick interpretation of the data such as

excessive gridlines, non-meaningful uses of color, redundant labels, and so on. We

consciously adhered to other evidence and advice from documented best practices of data

visualization regarding the choice of chart types. For instance, for our cumulative charts,

we used line charts connecting individual numeric data points, which have been advocated
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as a “simple, straightforward way to visualize a sequence of values. Their primary use is to

display trends over a period of time” (Hardin et al. 2012).

Figure 2 presents a “snapshot” of the RECS National Pilot monitoring display referred

to as an Adaptive Total Design (ATD) monitoring chart (see, for example, Biemer 2010),

formatted using a dashboard-type design. The legend at the top of the figure describes the

markers used on the x-axis in this and subsequent figures to identify key dates in the data

collection protocol. Having this information consistently displayed daily with various

metrics in close proximity allowed our team to quickly ascertain and keep apprised of the

various CTQs and their performance throughout data collection. The charts included a

mixture of line (for time-dependent, cumulative rates), bar charts, and maps. Though it is

not a standard option for Excel, maps are not difficult to add to a workbook using Visual

Basic for Applications (VBA) (Camoes 2008).

To illustrate an individual chart from the dashboard, in Figure 3 we present cumulative

submission rates by protocol during the National Pilot Test data collection period. At a

glance, it is obvious that submission rates rose most rapidly at the beginning of data

RECS 2015 National pilot adaptive total design (ATD) report
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collection in response to several mailings to sampled households. A second spike occurred

just after the nonresponse followup mailing (diamond at day 78) among all experimental

protocol groups, but the increase was most dramatic for the Web Only group that had not

previously been offered a paper option for response. Figure 3 exemplifies the format of our

charts. Reviewing this chart regularly during data collection was critical for identifying the

best protocol for use in the second phase of the 2015 RECS.

As evident in Figure 3, all protocols performed similarly in terms of submission rate

prior to the nonresponse follow-up period, with the possible exception of Web Only. While

this version of the daily monitoring chart does not, reflect the statistical uncertainty

(e.g., standard errors) around estimates, we recognize the importance of including this

information when comparing protocols. We designed the experiment such that both groups

had a robust and equal sample size (2,412 in each protocol). This means that a practical

difference of a few percentage points would be statistically significantly different as well.

We calculated and check for statistically significant differences at certain “check points”

during data collection. In Figure 4, we present a version of the chart monitoring Choiceþ
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and Web/Paper submission rate with the inclusion of the 90 percent confidence intervals for

each (to test for whether the Choiceþ submission rate was significantly higher than Web/

Paper). To render these lines, we computed for each protocol and day in the data collection

period using the formula for confidence intervals for a one sample dichotomous outcome.

p̂ ^ z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p̂ð1 2 p̂Þ

n

r

ð1Þ

The upper and lower confidence interval values for each protocol were added to the chart.

This made it possible to see where those intervals overlapped for the two protocols. Figure 4

shows the difference between the protocols’ submission rates becoming significant around day

20 in the data collection period. They remained significantly different through the end of the

main data collection phase, though the rates were only different by a few percentage points.

Submission rates represent one dimension of quality, but given that a key concept of

ART design is monitoring multiple indicators of quality and cost, we cannot rely on

overall submission rates alone. For instance, it was noted that a significant cost and quality

driver was the proportion of interviews that would be completed via web surveys as

opposed to paper. As shown in our next chart example (Figure 5), both Web/Paper and

Choiceþ had a majority of interviews completed via web during Phase 1 of the National

Pilot. The Choice group resulted in only about a third of cases being completed by web.

The Web Only group, by definition, had 100 percent of cases completed by web during

Phase 1. Taken together with submission rate, these two metrics begin to paint a more

complete picture of the quality and cost tradeoffs of the different treatments. It was only

because we were tracking these trends closely that we could make the rapid decision to

implement a self-administered protocol (Choiceþ ) for the 2015 RECS.

Another CTQ metric that was closely monitored reflected the ability of each protocol to

elicit responses from key respondent domains. One such characteristic of interest was the

age of the householder – a characteristic we expected to have some correlation with mode

preference as web access and use tends to be higher among younger individuals. As a

benchmark, we used estimates from the 2014 ACS for householder age in our sampled

areas. In Figure 6 we present our chart for monitoring the distribution of respondent
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(assumed to be the householder) age during data collection. The bar chart at the top shows

that no protocol resulted in a distribution matching the ACS exactly, but the differences

were not extreme.

To monitor householder age and representativity trends over the course of data

collection, we opted to compute a single index to communicate the ability of the protocol

to realize a sample matching the ACS. We used the Cramér’s V measure, which can be

used to determine the degree of association between nominal variables (Cramér 1946).

The value ranges from 0 (no relationship) to 1 (perfect relationship) with values under 0.2

indicating a very weak relationship. In this case, the relationship is between the age

distribution and the surveys (National Pilot Test and ACS) so a weak relationship suggests

little difference between the surveys (i.e., lower is better).

Several other measures of representativeness were considered including the

dissimilarity index (see, for example, https://en.wikipedia.org/wiki/Index_of_dissimilar-

ity) and various sample balance indicators such as the R-indicator (Schouten et al. 2009).

The former provides essentially the same information as Cramér’s V and its advantages

over V is only a matter of personal preference and a similar discussion of the post-hoc use

of the dissimiliary index can be found in Biemer et al. (2017b). However, the latter

measures are inappropriate for comparing a sample variable distribution to an external

benchmark distribution which was the objective of our representativeness criterion.

It should be noted that high values of V do not necessarily mean the protocol will result

in biased estimates. The respondent sample was ultimately adjusted for nonresponse and

Respondent/householder age by protocol, National pilot vs. ACS
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coverage error, correcting some of the non-representativity. In addition, perfectly

representative samples do not always generate V ¼ 0. The 2014 ACS was conducted

nearly two years before the National Pilot and any changes in the target population during

that time could cause an increase in V. Also, both the National Pilot and ACS are subject to

sampling error and this has not been taken into account in this analysis. Finally, minor

differences in the wording of questions, eligibility criteria for housing units, and target

populations for the two surveys could impact V. Regardless, we found Cramér’s V useful

for highlighting practical differences in representativity among the protocols.

The bottom half of Figure 6 shows the cumulative Cramér’s V values for age

distribution by protocol. Once the survey was several days into data collection, there was

little difference between the National Pilot Test and ACS age distributions and the

difference became smaller over time as more interviews were completed. The largest

difference between the National Pilot Test and ACS by protocol was seen in the Choice

group. A review of the top half of Figure 6 suggests that National Pilot Test Choice

respondents skewed towards the older age groups, suggesting that the Choice protocol,

relative to the other protocols, was on the whole a more attractive option for older

respondents. A review of mode choice suggests that older respondents were much more

likely than younger respondents to select the paper mode and the Choice protocol did little

to dissuade respondents from choosing paper over web. As shown earlier in Figure 5,

however, Choiceþ offered an additional incentive for web response and was much more

effective at attaining a high proportion of completed via web compared to paper during the

main data collection phase.

Regarding costs, we compared the average cost per case across the data collection period

by protocol. We began with the understanding that any self-administered protocol would

be several times less expensive than CAPI, but were interested to compare costs between

self-administered protocols to inform future designs. While cost was not the primary

concern in comparing self-administered protocols, it was an important dimension. In

Figure 7, we present the cost per case of each protocol, relative to Web Only (with a value

of 1 at the end of the data collection period). For each protocol, there was a large increase in

costs with each subsequent mailout (sent only to nonrespondents). Between mailouts, costs
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were incurred with the receipt and entry of paper questionnaires and payment of incentives.

In the end, we found Web/Paper to be about 20 percent more expensive than Web Only and

Choice and Choiceþ to be about 40 percent more expensive.

Much of the content of the RECS questionnaire is technical, therefore considerable staff

time can be devoted to reviewing inconsistent or improbable responses, such as lack of

heating equipment in cold climates or extremely large housing unit measurements.

Editing, therefore, is considered as much of a cost metric as it is a quality one. Figure 8

presents the rate of completed interviews requiring data edits by protocol. All responses,

regardless of mode, were subjected to the same edit specifications. However, the rate for

Web Only was lowest since the web allows for greater restriction of response options and

programmatic skips through the questionnaire. The rate of data edits required for the other

protocols, which included paper responses, were higher. Web/Paper initially had the

lowest edit rate, but as the later period allowed for paper questionnaires to be submitted,

this rate increased.
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In Figure 9, we add one-sided 90 percent confidence intervals to compare the editing

rate for cases in the Choiceþ and Web/Paper protocols, testing to determine whether the

Web/Paper editing effort was statistically significantly less expensive than Choiceþ over

the course of data collection. The figure suggests that very early in the data collection

period, the difference in rates was not statistically significant, but that after the second

week, enough cases had been completed to determine a difference. However, later in the

data collection period, after the Web/Paper protocol introduced the paper option, the rate

of cases requiring editing rose for that protocol so that the rate was no longer statistically

significantly lower than that for Choiceþ .

Taken together these metrics illustrated in Figures 3 through 9 begin to paint a more

complete picture of the quality and cost tradeoffs of the different treatments. Reviewing

these charts regularly during data collection was an important step in identifying the best

protocol for use in the 2015 RECS CAPI remediation. It was only because we were

tracking these trends closely that we could make the rapid decision to implement a self-

administered protocol (Choiceþ ) for the 2015 RECS CAPI. Choiceþ demonstrated the

ability to achieve the highest level of response, a majority of cases responding by web

vs. paper, good comparability with external benchmarks, and costs that were reasonable

for the needs of RECS.

As a final example, we include in Figure 10 a monitoring chart helpful for decision

making during the RECS 2015 CAPI Remediation Phase. By monitoring data collection

progress regularly, we could follow the submission rate trend in all phases of the Pilots to

determine that the self-administered protocol was achieving a similar or higher rate in a

shorter amount of time. This chart helped identify and communicate the impetus for

switching to web/paper for the remediation.

Once the charts were produced, it was important to get them in the users’ hands to

facilitate discussion and planning. Our nightly process published the charts in a single file on

the secure project web site where all users could access and download the file. We referred to

the charts in day-to-day planning and included a copy with the materials for each of our

weekly planning meetings. We found this approach minimized the burden on individual

users while maximizing the reference to and use of the charts for decision making.
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5. Discussion

The ART approaches described in this paper proved to be quite powerful for the RECS and

were essential for guiding the experimentation and field work during the piloting of

self-administered modes, then the transformation from face-to-face to web/paper

administration. There are several key lessons learned, however, and it may take multiple

survey cycles to develop the right mix of CTQ metrics for RECS. With the RECS Pilot,

we focused primarily on data quality because the approximate cost savings of moving

from CAPI to web/paper were easy to predict. In future rounds, cost will be a much more

critical metric to track, as EIA continues to explore the optimal mix of web/paper or

web/paper/CAPI modes. In particular, project staff might trade lower costs for greater data

quality in the design of experiments to determine the proper mix and sequencing of modes,

whether to use non-English survey instruments, when to implement stopping rules, and the

scope of nonresponse follow-up. In addition, suggestions for CTQs should be solicited

from staff involved in downstream processes such as data editing, weighting, imputation,

and energy modeling Finally, as suggested in the previous section, the scope of the CTQ

metrics should include more energy-specific comparisons using the prior RECS estimates

as benchmarks. These comparisons would balance the metrics tracking demographic

representativity with the energy characteristics representativity of RECS respondents.

As previously noted, the successful implementation of ART designs requires

monitoring critical metrics in real-time and extrapolating current trends to accurately

predict future outcomes. These predictions become the basis for designing effective and

timely interventions that minimize survey costs, mitigate the highest error risks and

avoid major schedule delays. Visual displays of trends in the performance data

supplemented by statistical tests of significance allows survey managers to detect the

indications of anomalies that require action early on and in real-time when such actions

are the most effective.

Our basic approach is generalizable to virtually any survey facing similar

transformative decisions based upon a sequence of experiments that must be conducted

in rapid succession with little or no time for analytic pauses between data collection

phases. Notwithstanding the success of our current approach, there are several important

ways visual ATD can be improved by the addition of features, options and tools that would

enhance its utility while improving its functionality.

1. Interactivity. We are currently embedding interactive functionality in the ATD

system (Murphy et al. 2017; Duprey et al. 2017). In particular, interactive

visualizations are very useful to detect data anomalies and/or interactions among

error sources and to search for their probable causes. Users are presented with an

array of display options and mechanisms for categorizing, subsetting, and

aggregating data, as well as overlaying projections, survey outcomes from prior

rounds, or model-derived predictions. Given that data inputs may be derived from

disparate systems and may exist at multiple units of analysis (e.g., sample-member

level, interviewer-level, day level), a data taxonomy embedded in the display and

selection menus that restrict combinatorial structures to only logical instantiations is

also being implemented. Thus, CTQ indicators can be prominently displayed while

extraneous information is minimized, using best practices of visual design (see, for
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example, Cleveland 1993). Figure 11 provides a snapshot of the interactive system

under development.

2. More Predictive Metrics. Ideally, a metric for a CTQ is one that can accurately

indicate when the CTQ falls below a quality level where some remedial intervention

is required to achieve a desired or specified output quality level. Although good

metrics exist for some CTQs such as response rates, standard errors and sample

balance, this is not true for other sources such as mode effects and other measurement

errors data validity/reliability and questionnaire design flaws. For field studies, we

are adding visualization metrics based upon computer assisted recorded interviewing

(CARI) to detect interviewer errors due to poor interviewing performance,

fabrication, violations of protocols and the like. Similarly, CARI metrics can be

devised to detect respondent comprehension issues or questionnaire flaws that cause

confusion during the interview. Going beyond CARI, it may be possible to embed

a limited number of replicate measurements in the instrument to detect response

reliability and validity issues. Consistency checks can also be used to detect some

types of measurement errors. For example, a model derived estimate of square

footage based upon number of rooms, floors, inclusion of attics, basements, etc.

could be used to identify gross errors in the estimation of housing unit square

footage. These metrics would supplement and enhance the CARI metrics and other

traditional metrics based upon response patterns (such as straight-lining) and

response latency.

3. Interpreting Variation. An important issue in the interpretation of visual

information is separating variation that is inherent in the data collection process

(referred to as “common cause”) from variation that is due to anomalous stimuli

(referred to as “special cause”). It is important to distinguish between common and
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special cause variation because their mitigation strategies are distinctly different.

Special cause variation can be addressed by targeted interventions while common

cause variation is mitigated by redesigning the process. Methods for interpreting

variation are well-known in the quality control literature (see, for example, Breyfogle

2003). Morganstein and Marker (1997) and Biemer (2010) describe how these

methods can be applied to survey processes. Adding these features to the ATD

system is a priority because of the risks to survey costs and data quality of

misinterpreting and inappropriately mitigating temporal and spatial variation.

4. Automatic Detection of Anomalies. The age of “big data” has brought about an

explosion in the volume, velocity and variety of data available for anomaly detection.

We have already seen an explosion of paradata and their associated metrics for

detecting a wide variety of cost, quality and data timeliness anomalies. These will

increase exponentially as the search for anomalies extends to interviewers and

respondents at varying levels of geography, for a variety of questionnaire items,

cross-classified by interviewer, respondent and geographic characteristics. The

search for anomalies in the data is made even more complex by the need to identify

special versus common cause variation. Fortunately, artificial intelligence provides a

solution for competently managing these data at lightning speeds to detect data

problem early in real time. We believe the automatic detection of data anomalies is a

high priority because managing these data complexities, detecting actionable

patterns in the data and prioritizing apparent anomalies according to their error costs

and error risks all in real-time and with high accuracy will not be possible without it.

5. Usability Research. We have observed that the visual ATD system worked well for

the goals of the RECS project. However, we have yet to carefully evaluate the

process by which users interpret the charts and whether those interpretations are

accurate. It is important to avoid the situation where users rely on fast, instinctive and

emotional thinking to draw conclusions from the graphics (Kahneman’s (2011)

“System 1”) and support the slower, more deliberative, and more logical thought

process of users (“System 2”). By evaluating users’ interactions with the

visualizations and assessing their usability relative to alternative visualizations

(Hornbaek and Frokjaer 2003), we can improve the design, resulting in even more

effective interpretation and decision making.
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A Study of Interviewer Compliance in 2013
and 2014 Census Test Adaptive Designs

Gina Walejko1 and James Wagner2

Researchers are interested in the effectiveness of adaptive and responsive survey designs that
monitor and respond to data using tailored or targeted interventions. These designs often
require adherence to protocols, which can be difficult when surveys allow in-person
interviewers flexibility in managing cases. This article describes examples of interviewer
noncompliance and compliance in adaptive design experiments that occurred in two United
States decennial census tests. The two studies tested adaptive procedures including having
interviewers work prioritized cases and substitute face-to-face attempts with telephone calls.
When to perform such procedures was communicated to interviewers via case management
systems that necessitated twice-daily transmissions of data. We discuss reasons when
noncompliance may occur and ways to improve compliance.

Key words: Computer-assisted personal interviewing; decennial census.

1. Introduction

Researchers are interested in measuring the effectiveness of adaptive and responsive

survey designs that monitor frame data, paradata, and survey response data and react to

this information using tailored or targeted interventions (Groves and Heeringa 2006;

Kirgis and Lepkowski 2013). While several studies have successfully evaluated adaptive

design experiments that call cases at specific times or stop effort on unproductive cases in

computer-assisted telephone interviewing (CATI) systems (e.g., Coffey 2013; Luiten and

Schouten 2013; Wagner 2013a), those that measure the effectiveness of adaptive designs

in computer-assisted personal interviewing (CAPI) environments are scarce.

This article suggests that few in-person adaptive design studies have been executed

and reported because interviewer noncompliance can limit the effectiveness of these

interventions, making them difficult or impossible to evaluate. In contrast, when

interviewers follow intervention protocols, researchers can evaluate their effectiveness.

In-person adaptive design experiments often rely on computerized case management

systems that allow interviewers much flexibility in managing their workload, including the

number of calls made to each case and the timing of those calls (Morton-Williams 1993).

Overhauling these case management systems completely to test an adaptive design
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experiment may be unfeasible. Thus – in CAPI adaptive design experiments –

randomization often relies on in-person interviewers working cases precisely as

communicated by their case management systems, which interviewers may choose not to

follow. This decision may or may not be for legitimate reasons, such as a change in their

schedule making it inefficient to drive to an address across town or having personal

knowledge about a housing unit that increases its likelihood to be interviewed. Whether

for valid reasons or not, noncompliance limits the ability of survey organizations to

implement centralized decision rules typical of adaptive designs.

This article describes examples of interviewer noncompliance and compliance in

adaptive design experiments that occurred in two decennial census tests – tests that

required in-person interviewers to follow field procedures specified in their case

management systems to implement adaptive designs. Conducted by the United States

Census Bureau, the two tests occurred at different sites and used different interviewers,

supervisors, trainings, monitoring infrastructure, and case management systems. We

briefly present the test results from the first experiment and then describe how interviewers

did not implement the treatment. We next discuss results from the second experiment and

then show that interviewers largely were compliant and applied the treatment. Where

possible in both experiments, we attempt to explain why interviewers did or did not

comply. Our analysis illustrates the challenges associated with controlling field procedures

when implementing adaptive designs in CAPI environments and may be of value to survey

staff interested in experimenting with or implementing field procedures that rely on

interviewers following instructions.

2. Background

Responsive or adaptive designs attempt to alter survey protocols either by targeting

particular cases or subgroups to receive differential treatment or by changing protocols

over time. Often the goal of these interventions is to optimize the allocation of resources

such that total survey error is minimized for a fixed cost.

Several web and telephone surveys have used computerized case management systems

to implement responsive or adaptive interventions that achieve improvement in cost or

data quality by prioritizing cases, calling cases at specific times, or assigning groups of

cases to specific interviewers. Statistics Canada prioritized cases in several CATI surveys

– including the Households and the Environment Survey and the Survey of Labour and

Income Dynamics – and found this adaptive approach led to lower total system time (i.e.,

cost savings) and similar response rates in both surveys when compared to control

methods (Laflamme and St-Jean 2011). The Survey of Consumer Attitudes (SCA)

experimentally altered CATI calling algorithms to call during time windows when cases

had the highest estimated probability of contact and found calls made during such time

windows had a higher contact rate in the experimental group (Wagner 2013a). Statistics

Netherlands assessed a pilot test designed to increase representativeness and reduce cost in

the Survey of Consumer Sentiment. During the first survey wave, they grouped cases into

high, low, or medium cooperation based on predicted scores. Depending on group, cases

were sent one of three invitations to participate: web, mail, or choice (i.e., web or mail). In

CATI follow-up to nonrespondents, the same survey assigned different call schedules to
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groups with high, medium, or low contact propensities, and the highest-performing CATI

interviewers were assigned to the lowest cooperation group and vice versa. They found

tailored strategies increased representativeness at comparable – although slightly higher –

cost (2.6 percent) and obtained similar response rates (Luiten and Schouten 2013).

CAPI surveys attempting adaptive survey interventions have found mixed results due,

in part, to a lack of compliance with requests from central office staff. For example, the

National Survey of Family Growth (NSFG) experimented with interviewers working

prioritized cases. In only two of 16 separate experimental interventions were response

rates significantly higher in the experimental group, which may have been due to lack of

compliance. Interviewers made more calls on prioritized cases in all 16 experiments but in

only seven were call attempts significantly higher (Wagner et al. 2012).

Other adaptive survey designs that relied on in-person interviewers to implement

experimental manipulations could not be evaluated since control and treatment

interviewers behaved the same. Similar to the SCA, each day the NSFG estimated time

windows during which cases had the highest probability of contact. CAPI case

management systems stored and showed the recommended call time to in-person

interviewers in the treatment condition. Interviewers in the control who were not shown

such call times happened to coincide attempts with recommended windows 23.0 percent

of calls while treatment interviewers who were shown recommended call times made

attempts during suggested windows only 23.6 percent of the time. In debriefings,

interviewers said they did not follow recommendations because geographically clustered

cases did not always have the same suggested time windows. The authors note that –

rather than attempt to balance the efficiencies of clustered cases and predicted time

windows – interviewers stuck with typical behavior, calling cases at time windows of their

convenience (Wagner 2013a).

No evidence suggests that interviewer compliance is worse in adaptive survey designs

than other types of field surveys. In fact, other survey experiments have experienced issues

analyzing results because interviewers did not follow procedures. NSFG interviewers were

asked to leave a “Sorry I Missed You” card at households where such a notice was

estimated to increase the probability of contact. Interviewers ignored these instructions

(Wagner 2013b) leaving researchers unable to evaluate the effects of the card. Biemer et al.

(2013) report interviewers admitted they did not record every call attempt as required to

avoid having cases hit a specified cap on the number of allowable call attempts or because

interviewers were unclear about what constituted a call attempt (e.g., a “drive-by” sighting

that no one is home).

To advance our understanding of interviewer compliance and its effects on evaluating

adaptive interventions, this article examines the results of interviewer behavior associated

with the 2013 and 2014 Census Tests. These decennial census field studies tested adaptive

procedures including having interviewers (1) work prioritized cases and (2) supplement

face-to-face attempts with telephone calls to specified sample units. The first intervention

also depended upon interviewer compliance with a requested twice-daily transmission of

data made from laptop computers to databases maintained in the central office.

The focus of the article is on interviewer compliance, an important issue for adaptive

designs in CAPI settings. The experimental results themselves are less interesting since

they are difficult to interpret in the presence of noncompliance, and the methods may not
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be useful for surveys other than the decennial census. First, we describe a case

prioritization intervention. Other surveys have successfully implemented this type of

intervention (Wagner et al. 2012; Peytchev et al. 2010). In this article, interviewers did not

implement the intervention as designed. Further, it did not increase contact and completion

rates. We then compare this experiment to an intervention that – largely – interviewers

correctly implemented. This intervention led to a reduction in personal visit attempts per

case. Our discussion concludes with reasons for noncompliance and how requests to CAPI

interviewers in experiments might be improved.

3. Data and Methods

3.1. 2013 Census Test

The 2013 Census Test piloted subsequent decennial census test procedures between

October and December 2013. Census Bureau staff selected 2,077 sample addresses from

six block group pairs in Philadelphia. One block group in each matched pair was assigned

randomly to “No Priority Condition” interviewers and the other to “Adaptive Condition”

interviewers. No Priority interviewers served as the control group for the test.

3.1.1. Interviewers

Eighteen interviewers who had recently finished working on another survey were selected

to work on this pilot because supervisors recommended them, and they had better histories

of recording contact attempt information in a previous survey. Eight interviewers were

assigned randomly to work Adaptive Condition cases and ten to work No Priority

Condition cases. Two supervisors from the field office managed each condition separately.

More detail on the 2013 Census Test can be found in Walejko et al. (2014).

3.1.2. Intervention Goal

One goal of the 2013 Census Test was to measure the effect of case prioritization on

efficiency. Up to seven cases with the highest predicted propensity to respond on the next

contact attempt were prioritized on each Adaptive interviewer’s case list. (Adaptive

interviewers may have received more or fewer than seven “high priority” cases due to

reassignments between interviewers, interviewers not transmitting, or other anomalies.)

Cases were rescored, and priority cases were updated daily. Geography was not used in

creating this prioritization. Prioritized cases could fall anywhere within the six block

groups assigned to the Adaptive condition. For this intervention to be implemented,

interviewers needed to attempt all seven high priority cases every day they worked.

Success metrics for this intervention included higher contact and completion rates on

prioritized cases.

3.1.3. Training, Supervising, and Monitoring

Supervisors instructed Adaptive and No Priority interviewers separately over the course

of a two-day training. Supervisors instructed all interviewers that the test was about

following instructions provided to them through their case management systems.

Trainings, training manuals, and job aids highlighted the importance of Adaptive
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interviewers attempting all priority cases every day they worked. Adaptive interviewers

were only to attempt a “regular” case (i.e., not high priority) if it was nearby or had an

appointment. No Priority interviewers were instructed to work cases using Census Bureau

survey guidelines that allow flexibility in which cases they visited and when they made

contact attempts. After monitoring in-person interviewers’ performances and observing

poor compliance, supervisors performed a half-day refresher training on the 17th day of

data collection for Adaptive interviewers to increase understanding of 2013 Census Test

procedures including working prioritized cases.

An interviewer performance report monitored all interviewers daily on specific field

procedures. The report tracked data transmission compliance as well as daily counts of

attempted high priority cases for each of the Adaptive interviewers. Headquarters and field

staff conducted a daily meeting during which they discussed this report and other

interviewer performance topics. Supervisors were instructed to address noncompliance

observed in the report by talking to interviewers.

3.1.4. Case Management System

The 2013 Census Test used many existing Census Bureau information technology

resources including a computerized case management system located on interviewer

laptops. (See Figure 1 for a screenshot of the 2013 Census Test Adaptive Condition case

management system.) Each high priority case, designated with a unique control number,

was preceded by an exclamation point, and high priority cases were sorted to the top of the

case list. Cases did not have a priority indicator on No Priority interviewers’ case lists.

3.1.5. Data Transmissions

Interviewers in the 2013 Census Test needed to transmit data from their case management

systems to the operation control system twice daily, once before they started work and

once after they completed work for the day. Before-work transmissions pulled any updated

interviewer instructions from the central control system to interviewers’ case lists. Daily

instructions updated which cases were prioritized. After-work transmissions pushed

contact history information and outcome codes from interviewer laptops to the control

system so that instructions for the next day could be calculated by business rules.

Transmissions needed to occur after and before set times – not too late at night or early in

the morning. Due to the six-time zone span of the U.S. (three in the continental U.S.), a

decennial census would need transmissions to occur so work transmitted late at night in the
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Fig. 1. Screenshot of 2013 Census test adaptive condition case management system.
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west could be read in by business rules that assigned instructions and would be available

early in the morning for interviewers who transmitted in the east.

In the 2013 Census Test, all transmissions required interviewers to log into their laptop

case management system, connect to the internet, and click a “transmission” button (i.e.,

transmissions were manual). Interviewers were instructed to transmit once before

working, no earlier than 8:00 a.m., and once in the evening after they were done working,

no later than 10:00 p.m.

3.2. 2014 Census Test

In 2014, the Census Bureau carried out a larger field test of adaptive procedures. The CAPI

portion of this test included 46,247 sample addresses located in Washington, DC and

Montgomery Country, Maryland and ran during August and September 2014. More detail

on the 2014 Census Test can be found in Poehler and colleagues (2016). These sample

addresses were assigned in geographic clusters to one of three interviewing conditions: a

“Control Condition,” an “Experimental Contact Strategy Condition,” and an “Adaptive

Condition.” (We do not analyze the Adaptive Condition in this article because it employed

CATI interviewers to call sample addresses rather than CAPI interviewers.) Control

Condition interviewers had much flexibility as to how they contacted cases, similar to

2010 Census enumerators. They were instructed to perform a personal visit first and then

up to two more personal visits and three telephone attempts at their discretion.

Experimental Contact Strategy interviewers were instructed to make no more than three

total contact attempts (although the case management system allowed more than three)

with the first being a personal visit, the next being a telephone contact, and the final a

personal visit. Although not an example of “dynamic” adaptive design, the Experimental

Contact Strategy can, in our opinion, be considered a “static” adaptive design (see

Schouten et al. 2013) because the protocol instructing interviewers to make the second

attempt by telephone was applied to only addresses that had been successfully matched to

telephone numbers, 81.2 percent of cases.

3.2.1. Interviewers

The Census Bureau recruited interviewers from the area specifically to work on the 2014

Census Test. Interviewers were new hires who were not required to have past interviewing

experience, although many had worked on previous decennial censuses. Crew leaders, also

new hires, supervised these interviewers, and were, in turn, supervised by higher-level

managers. The Control and Experimental Contact Strategy had 304 and 389 employees

who recorded making at least one call attempt or transmitting, respectively. (Employees

were not spread evenly across conditions because conditions did not have the same

number of sample cases. Two additional interviewers transmitted but did not make any

contact attempts.)

3.2.2. Intervention Goal

One goal of the 2014 Census Test was to measure the cost effect of substituting costlier

in-person visits in place of telephone call attempts made by CAPI interviewers on
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second contact attempts for addresses with matched telephone numbers. The goal of

this approach was to decrease nonresponse follow up costs by reducing the total number

of attempts and, specifically, the number of personal visit contact attempts. For this

intervention to be implemented correctly, Experimental Contact Strategy interviewers

needed to attempt a phone call to all open cases with matched telephone numbers on

the second contact attempt. (Using the Census Bureau’s Master Address File ID, 81.2

percent of cases were matched to phone numbers available from several commercial

data files.) In contrast with the 2013 intervention, this intervention did not require

transmission since it could be implemented algorithmically via the case management

system (i.e., using a programmed rule such as “if the case has a telephone number and

one attempt, the next attempt should be made via the telephone”). Success metrics for

this intervention included lower costs, measured by fewer contact attempts per case,

fewer personal visits per case, and fewer average attempts – notably personal visit

attempts – per completion.

3.2.3. Training, Supervising, and Monitoring

Over the course of three days, crew leaders instructed interviewers how to plan their day,

follow field procedures, record contact history information, transmit their data, and

perform interviews. Trainings, training manuals, and job aids instructed Experimental

Contact Strategy interviewers to call all cases with matched telephone numbers after first

attempting a personal visit. One half-day of training was devoted to interviewers

performing production interviews and supervisors reviewing this work. Supervisors were

instructed to use reports that monitored their interviewers’ activities including

interviewers’ transmissions. (Reports did not monitor whether second contact attempts

were done by phone or in-person.)

3.2.4. Case Management System

For the 2014 Census Test, the Census Bureau developed a new computerized case

management system available to interviewers as an iPhone application. This system

functioned similarly to that used in 2013, providing interviewers with a list of their cases

and instructions on how to work each case as well as allowing interviewers to collect

interview data and record contact attempt information. The Experimental Contact Strategy

interviewer’s case management system indicated when to do a telephone attempt and

provided these interviewers with the matched telephone numbers. (See Figure 2 for a

screenshot of this case management system. The box with a “T” inside it indicates that the

interviewer should make a telephone attempt on the indicated case.)

3.2.5. Data Transmissions

In contrast with the technical systems used for the 2013 Census Test, the 2014 Census Test

case management system was designed to manage data transmissions automatically, and

transmissions were not necessary for interviewers to be displayed the correct mode. The

system attempted automatic transmissions when two hours had passed since the last

successful transmission, when an interviewer logged into the app or completed a contact

attempt, and when an interviewer completed a case or logged out of the app. The case
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management system itself kept track of whether a case had a matched phone number as

well as the number, mode, and outcome of each contact, allowing mode to be displayed

correctly without a transmission.

Some protocols not analyzed in this article necessitated twice-daily transmissions,

and automated transmissions would not work if interviewers became disconnected from

the Census Bureau’s network, for example, by driving or walking through an area

without cell coverage. For this reason, 2014 Census Test interviewers were instructed

to transmit manually twice each day that they worked, once before working no earlier

than 7:00 a.m. and again after working but no later than midnight. (After 2013 Census

Test results and debriefings uncovered interviewers had difficulty transmitting between

8:00 a.m. and 10:00 p.m., the time period within which interviewers were instructed

to transmit on days they worked was expanded to between 7:00 a.m. and midnight for

the 2014 Census Test.) Interviewers were able to view when their last successful

transmission occurred using the application.
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Fig. 2. Screenshot of 2014 Census test experimental contact strategy condition case management system.

Journal of Official Statistics656



4. 2013 Census Test Results

Table 1 summarizes the design of both 2013 and 2014 Census Tests. Results of the

2013 Census Test did not support the hypothesis that the Adaptive Condition would

have higher contact and completion rates than the No Priority Condition in the 2013

Census Test. Instead, contact rates on personal visits were significantly higher in the No

Priority Condition than the Adaptive Condition. Furthermore, completion rates on

personal visits were the same (Table 2). To help understand these results, we examine

interviewer compliance with implementing two necessary actions, transmitting data

twice daily and attempting prioritized cases daily. These results showed interviewers did

not comply in either transmitting data or working prioritized cases. The fact that the

Adaptive Condition interviewers did worse in terms of contact and completion rates

seems to indicate that this intervention would not achieve the stated aims. However,

given the selective nature with which it is applied, higher or lower rates may have been

achieved if the intervention had been applied to the full sample. In any event, poor

compliance with the requested actions discussed in the next two sections limits the

ability of the central office to implement case prioritization schemes aimed at

controlling which cases respond.

4.1. 2013 Test: Interviewers Transmit Data Twice Daily

In the 2013 Census Test, interviewers transmitted as instructed (i.e., once before

working and once after working between 8:00 a.m. and 10 p.m.) over 71 percent

Table 1. 2013 and 2014 Census test designs.

2013 2014

No priority Adaptive Control
Experimental
contact strategy

Interviewers 10 8 304 389

Location Philadelphia, PA Washington, DC and
Montgomery county, MD

Case management
system

Modified existing survey
system using laptops

New system using cell phone
application

Training Separate for each
condition; 2-day training
on procedures; half-day
refresher training;
training manual, job aid

Separate for each condition;
3-day training on procedures
with 1/2 of day for supervisor
review of work; training
manual, job aid

Monitoring and
supervision

Performance monitoring
report; daily meetings;
feedback to interviewers
via supervisors

Performance monitoring
reports; feedback to
interviewers via supervisors
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(standard error, 7.6 percent) of days worked (i.e., all days each interviewer worked

summed over all interviewers). Figure 3 shows the number of interviewers grouped by

five categories of percent compliant daily transmissions. Compliant transmission days

ranged between 14 and 100 percent by interviewer, with nine of 18 having over 80

percent compliant transmission days. Five interviewers had 40 percent or fewer

compliant transmission days.

Transmission compliance varied across time ranging between 0 and 100 percent over

the 2013 Census Test field period. Figure 4 shows the percent of interviewers who worked

and transmitted correctly each day, where compliance is measured as transmitting as

instructed – once before working no earlier than 8:00 a.m. and once in the evening after

they were done working, no later than 10:00 p.m. Small numbers of working interviewers

explain peaks in low compliance and high compliance. On December 2, a day with

no compliant transmissions, one interviewer worked, and on November 28, only five

interviewers worked. On November 24 and December 3, days with 100 percent

compliance, fewer than three interviewers worked. On other days with poor compliance,

interviewers often transmitted earlier or later than instructed. For example, on November

7, fifteen of sixteen working interviewers transmitted before 8:00 a.m., but only three

Table 2. 2013 Census test contact and completion rates on personal visits between adaptive and no priority

condition interviewers.

Condition Number
Contact
percent

Standard
error of
percent p-value

Completion
percent

Standard
error of
percent p-value

Adaptive 1,283 24.50 3.20 18.97 2.77
0.03 0.86

No Priority 1,354 31.73 2.35 19.69 3.13

Note: Standard errors and significance take into account clustering by interviewer.

Note: Includes both compliant and non-compliant transmissions.

Note: Excludes personal visit attempts where an appointment was set.
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Fig. 3. 2013 Census test compliant daily transmissions.
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transmitted after 8:00 a.m. as instructed. On the five days with the smallest percent

compliant transmissions, 73 percent of interviewers transmitted between 6:00 a.m. and

midnight, either earlier or later than instructed (i.e., between 8:00 a.m. and 10:00 p.m.).

These results and debriefing led the 2014 Census Test to expand the time period within

which interviewers were instructed to transmit on days worked.

4.2. 2013 Test: Interviewers Attempt Prioritized Cases Daily

In order to provide a basis for assessing compliance, 2013 Census Test interviewers

needed to receive high priority cases each day they worked. Because 2013 Census Test

interviewers did not transmit correctly on 29 percent of days they worked, we broaden the

definition of successful transmissions to include those that occurred between 6:00 a.m. and

midnight, which includes more days for analysis. To avoid confusion, we will call these

“reliable transmissions.”

In 2013, the eight adaptive interviewers worked all high priority cases on 45 percent of

days with reliable transmissions. These interviewer days are compliant. On seven percent

of days with reliable transmissions, interviewers did not attempt all high priority cases but

also did not attempt other, “regular” cases, which may indicate they ran out of time before

attempting all high priority cases. These interviewer days are potentially compliant.

Interviewers did not attempt all high priority cases and worked regular cases on nearly

48 percent of days they transmitted reliably. These days are not compliant.
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Across all eight interviewers, the days they worked all high priority cases ranged

between 25 and 67 percent (Figure 5). Two interviewers worked all their high priority

cases over 65 percent of the days on which they worked and made reliable transmissions,

while two attempted regular cases even though they did not attempt all their high priority

cases over 60 percent of the days they worked. This lack of compliance is an interesting

result in its own right, as it hampers the ability of data collection operations to implement

centrally directed interventions. In this case, it appears that the intervention would not

have met its goals, but the lack of compliance is an important finding for other field

surveys attempting to prioritize cases.

5. 2014 Census Test Results

In contrast to the 2013 Census Test, results from the 2014 Census Test support the

hypothesis that Experimental Contact Strategy interviewers performed actions leading to

a reduction in cost; they made fewer average contacts and personal visits per case than

Control interviewers. They also had a lower average attempts per complete than Control

interviewers and a notably lower average number of in-person attempts per complete

than Control interviewers (Table 3). However, the mean number of attempts for the
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Experimental Contact Strategy (3.25) is still greater than 3, indicating some noncompliance.

This reduction in effort also appears to have reduced the completion rate relative to the

Control Condition (0.57 for the Experimental Contact Strategy Condition and 0.62 for the

Control Condition). The Experimental Contact Strategy Condition had about 76 percent of

the effort measured as attempts relative to the Control Condition and produced 92 percent of

the completion rate relative to the Control Condition. However, the poor compliance

observed in the 2013 Census Test led researchers to investigate in more detail the extent to

which interviewer compliance may have affected the 2014 data.

5.1. 2014 Test: Interviewers Perform Telephone Calls when Instructed

As shown in Table 4, Experimental Contact Strategy interviewers for the 2014 Census

Test followed mode instructions on over 88 percent of contact attempts to cases with

matched numbers. (See Table 5 for a summary of compliant procedures.) They

performed personal visits as instructed over 99 percent of the time on the first contact

attempt. Compliance in attempting contact by telephone on the second attempt was

82 percent, which differs starkly from the control interviewers who performed

personal visits 72 percent of the time on the second attempt. In this experiment, case

management systems directed interviewers to perform a contact attempt in a particular

mode, and it appears this directive changed interviewer behavior when comparing the

second contact attempt of the Experimental Contact Strategy and Control interviewers.

(The interpretation of results does not change when analysis includes cases without

matched numbers.)

5.2. 2014 Test: Interviewers Transmit Data Twice Daily

Unlike the 2013 Census Test, 2014 Experimental Contact Strategy interviewers did not

need to transmit twice daily to receive updated mode instructions. However, other

protocols not analyzed in this article did rely on data transmissions, so researchers

analyzed whether automated transmissions helped interviewers to transmit their data twice

daily, once before and once after work.

In the 2014 Census Test, transmissions – either automated or manual – occurred once

before working no earlier than 7:00 a.m. and once after working before midnight on 43

Table 3. 2014 Census test mean attempts and average attempts per complete between control and experimental

contact strategy conditions.

Condition
Number
of cases

Mean
attempts

Mean
in-person
attempts

Percent
complete

Average
attempts

per
complete

Average
in-person
attempts

per complete

Control 7,394 4.29 3.14 0.62 6.95 5.07
Exp.

Contact
Strategy

8,873 3.25 2.41 0.57 5.75 4.26

Note: Includes only cases with matched telephone numbers.
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percent (standard error, 0.9 percent) of days worked (i.e., all days each interviewer worked

summed over all interviewers). Compliant transmission days ranged between 0 and 100

percent by interviewer, with 58 of 695 interviewers (8.3 percent) having over 80 percent

compliant transmission days and 108 interviewers (15.5 percent) having less than 21

percent compliant transmission days (Figure 6).

6. Discussion

6.1. Limitations

Results should be considered in conjunction with several study limitations. First, the 2013

and 2014 Census Tests recruited interviewers from just two geographic sites. As a result,

the tests are not generalizable to the broader United States. Second, the 2013 test contained

a sample size of only 18 interviewers. A larger interviewer workforce could have led to

different results.

6.2. Summary

Interviewers were somewhat compliant in transmitting data and receiving updates twice

daily during the 2013 Census Test. Overall, interviewers transmitted correctly on 71

percent (standard error, 7.6 percent) of days worked. For this test, transmissions were

manual. We found lower compliance during the 2014 Census Test where case

management systems transmitted automatically, but – as a backup – trainings and training

materials instructed interviewers to transmit manually twice daily. Interviewers did not

perform this backup transmission, and compliant manual or automated transmissions

occurred only 43 percent (standard error, 0.9 percent) of the days interviewers worked.
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Fig. 6. 2014 Census test compliant daily transmissions.
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Lack of compliance and improper functioning of automated transmissions meant

instructions (i.e., prioritized cases) were not updated every day interviewers worked

during the 2013 Census Test.

In the 2013 Census Test, prioritized cases did not have higher contact and completion

rates than nonprioritized cases running counter to our hypothesized result. However, the

request to attempt contact on prioritized cases met with low compliance. During the 2013

Census Test, Adaptive interviewers worked all high priority cases on fewer than half (45

percent) of the days they worked, and this percentage is limited to days with reliable

transmissions only. While acknowledging 100 percent compliance is unrealistic,

noncompliance observed in the 2013 Census Test affected our ability to analyze an

adaptive intervention by limiting the number of days we could evaluate interviewers

working all prioritized cases on their case lists to only a nonrandom 32 percent of days.

Regardless of the potential benefit, this noncompliance limits the ability of the central

office to intervene by prioritizing cases.

The 2014 Census Test results showed Experimental Contact Strategy interviewers

performed actions that led to cost reductions including having lower average attempts per

complete than Control interviewers. In contrast with the 2013 Test, we observed quite high

compliance with the request that in-person interviewers attempt telephone calls rather than

personal visits at certain points in 2014 data collection.

6.3. Reasons for Noncompliance

There are several reasons interviewers may have been noncompliant in transmitting and

working prioritized cases. First, as with any kind of job, interviewers may have life

circumstances such as a sudden change in their planned schedule due to a sick family

member or a safety concern with approaching a sampled housing unit that prevents them

from carrying out their assigned tasks. For example, one Adaptive interviewer’s high

priority case was a house where illegal drug trade occurred, so they did not visit it. Under

such circumstances during the 2013 Census Test, it was unrealistic for the interviewer to

carry out contact attempts following algorithmic rules.

Second, instructions relayed via the case management system allowed interviewers

the flexibility to be noncompliant. Years ago, case management for CAPI interviewers

constituted a pen-and-paper system that communicated which addresses to work – usually

located nearest to where an interviewer lived – with space to fill out contact information.

A historical artifact of paper, most digital CAPI case management systems today supply

interviewers with a list of cases to work and leave much to their discretion, including when

to work, which cases to attempt, and how frequently to make attempts. The 2013 Census

Test interviewers could and did choose to work regular, nonprioritized cases. For example,

in debriefings some interviewers did not like having to return to the same block the next

day. Although CAPI sample management systems designed to constrain interviewers

to follow instructions would be preferred for testing experimental manipulations,

reprogramming such systems for a test is cost prohibitive for most organizations that

perform CAPI surveys. This finding led to the development of new systems that

constrained interviewers to attempt contact on sets of cases selected daily by the central

office, as these were the only cases displayed to interviewers.
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Third, technical issues could explain at least some of the discussed noncompliance

in transmitting data to and from laptop or smartphone case management systems. For

example, during the 2013 Census Test, a few interviewers whose data showed continuous

transmission issues claimed they were transmitting twice daily as instructed or that they

could not transmit as instructed. In debriefings, several interviewers said they needed to

transmit more than once before the server would connect to their laptop. Because the 2014

Census Test used smartphones rather than laptops, it is possible that interviewers

attempted but were unable to transmit because they lost reception causing them to no

longer be connected to the network. During 2014 debriefings, a majority of interviewers

and supervisors brought up issues with cellphone reception.

It is also possible that interviewer noncompliance happened when following new

procedures competed with other interviewer activities. For example, interviewers in the

2013 Census Test mentioned it was difficult to transmit before 10 p.m. on days when

interviewing lasted late into the evening. Supervisors in the 2013 test also reported it was

difficult to balance managing interviewer noncompliance with other supervising

responsibilities and that a rolled-up report of potential problems to discuss with

interviewers could help to alleviate this time pressure. The 2013 and 2014 test interviewers

remarked that, when they saw a respondent near their address, they attempted an in-person

interview with that respondent, even if their address was not a high priority case or was

supposed to be attempted via telephone.

Fifth, the nature of the intervention itself may have led to interviewers to be more

accepting of 2014 Census Test procedures than 2013 procedures. In debriefings, all 2014

Census Test Experimental Contact Strategy interviewers reported understanding the test

procedures for conducting telephone calls – attempt a contact in the mode that the case

management system instructed. However, at least one Adaptive interviewer in the 2013

Census Test admitted it was unclear why case management systems deemed cases as high

priority, indicating confusion regarding the nature of the intervention itself.

Finally, it may be that Adaptive interviewers’ experience with previous surveys,

where they had wider discretion, may have made it more difficult to train them to work

under a new centrally directed approach. A common theme in debriefings with

experienced interviewers were differences between previous data collection procedures

including the 2010 Census. For example, a few Adaptive interviewers did not like

planning their route in the morning after an early data transmission provided them new

instructions, as they were accustomed to doing it the night before. The interviewers used

in the 2013 Census Test were experienced. While we do not have data on 2014 Census

Test interviewers’ past interviewing experience, being less seasoned and – thus – less

inclined to recall past protocols, may have played a role in interviewers following the

suggested mode.

Current practice allows interviewers wide latitude for deciding how to conduct their

work, but the experimental adaptive design interventions described in this article restrict

this range. A tension exists between the centralized, data-driven control of interviewers

and decentralized decision making by interviewers who rely upon their expertise and local

knowledge. While experienced, expert interviewers with local knowledge may perform at

a higher level than if centrally directed, interviewers vary in their ability to plan efficient

trips and recruit respondents in practice (Wagner and Olson 2011; O’Muircheartaigh and
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Campanelli 1997; Purdon et al. 1999; Pickery and Loosveldt 2002; Durrant and Steele

2009). Further, local interviewers are unable to make decisions that balance response

across more cases than their own sample. While centralized, data-driven interventions like

those described in this article may go against current interviewer practices, they improve

the ability of data collection organizations to control important aspects of the response

process, including balanced respondent pools and overall data collection costs. Finding a

balance between centralized and decentralized procedures remains a complex function

involving the available interviewing staff, the capabilities of the data collection

organization, the particulars of the survey design, and the overall goals of the survey.

Finding the correct equilibrium may also require considering training, explaining the

intervention purpose to interviewers, and other actions considered in the next section.

6.4. Ways to Improve Compliance

Although not possible in the experiments described here, researchers could construct some

protocols to constrain CAPI interviewers into compliance. Kreuter and colleagues (2014)

found setting prespecified appointments based on the prior wave interview date in the

Medical Expenditure Panel Survey Household Component significantly decreased

the number of attempts (e.g., phone, in-person, letter) to get an interview. To increase the

likelihood that interviewers kept appointments, they mailed sample addresses a postcard

with the appointment date and time so “interviewers could not simply ignore the treatment

without the risk of upsetting respondents who expected the appointment to be kept”

(page 212).

Survey organizations may also develop computerized case management systems to

constrain interviewers to follow protocols. For the 2015 and 2016 Census Tests, partially

in response to the findings from 2013 and 2014, the Census Bureau redesigned decennial

test case management systems to give interviewers cases to be worked on a daily basis.

This new system also asked interviewers what their schedule would be and took into

account how many and at what times interviewers would be working. Such a design

allowed interviewers no flexibility in whom they visited and attempted to constrain when

they worked (Blumerman et al. 2015).

It may be that better case management system designs could further improve

compliance. The field of decision support systems examines how to construct systems that

enable informed decision making, including following requested actions. Much of this

work aims at enabling medical professionals to implement treatments following evidence-

based best practices. Kawamoto and colleagues (2005) summarize the lessons learned

from this literature regarding approaches that ensure compliance.

Improved interviewer training may also increase compliance. Fowler and Mangione

(1988) demonstrated that extended interviewer training could improve compliance with

standardized interviewing practices. In the realm of nonresponse, Groves and McGonagle

(2001) showed that training interviewers with methods for tailoring survey introductions

could improve response rates. Indeed, in 2013 Census Test debriefings supervisors

recommended self-assessments that would test interviewers’ understanding of procedures

while allowing supervisors to gauge interviewer knowledge. Interviewers also called for

more training with additional role-playing situations.

Walejko and Wagner: Interviewer Compliance in Adaptive Designs 667



Other approaches – such as incentives – may improve compliance. Tourangeau and

colleagues (2012) found offering incentives to interviewers for every identified eligible

person led to higher eligibility rates. However, Rosen et al. (2011) offered incentives to

interviewers who completed cases with a low estimated propensity of response. They

found incentives did not change interviewer behavior, and low propensity cases in an

experimental group did not receive more effort than low propensity cases in a control

group. Peytchev and colleagues (2010) offered interviewers incentives for converting

cases with low response propensities but found completion rates between low propensity

control and treatment cases to be the same, possibly due to high response rates for low

propensity cases (i.e., 90.3 percent). Evidence that incentives prompt interviewers to

follow field procedures is mixed, and we need more research to determine if and when

such approaches can increase interviewer compliance, thereby improving our ability to

test adaptive designs in CAPI environments.

Lastly, aligning performance standards with adaptive protocols could increase the

likelihood that interviewers follow procedures. In widely cited research on what

motivates individuals at their jobs, Hackman and Oldham (1976) argue workers need

“knowledge of results” in the form of feedback that clearly aligns with the

effectiveness of their job performance. Interviewers, too, may benefit from not only

feedback on how well they are doing at following protocols, such as working

prioritized cases, but also explanation as to how following such instructions ties to their

overall job performance.

7. Conclusion

In sum, we view a lack of in-person interviewer compliance as an obstacle to the

implementation of adaptive designs, which hinders our ability to evaluate their successes

in CAPI settings. When interviewers do not comply with data transmissions or working all

prioritized cases each day, analysis is limited to nonrandom subsets of days or cases. Thus,

we cannot say whether an observed difference between treatment and control is due to the

adaptive design or the interviewer choosing when to comply – or not comply – with

protocols.

Fortunately, lack of CAPI interviewer compliance is a problem with solutions and – as

illustrated here – not a barrier to all in-person adaptive designs. Future adaptive design

research needs to strengthen both the actions requested from interviewers and the ways in

which these requests are delivered. Furthermore, the field would benefit from a study

designed specifically to understand reasons for in-person interviewer compliance and

noncompliance with a variety of protocols.

Adaptive designs that rely on in-person interviewers to implement protocols must

consider the balance between flexibility and prescription. Survey methodologists and

systems programmers should deliberately acknowledge when interviewer’s local,

accumulated knowledge outweighs the prescriptiveness that can be built into case

management systems. These decisions likely depend on the survey. For data collections

like the decennial census that, in 2010, hired over 500,000 employees across the United

States, many of whom had limited interviewing experience, the balance might best tip

towards prescription.
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Estimation of True Quantiles from Quantitative
Data Obfuscated with Additive Noise

Debolina Ghatak1 and Bimal Roy1

Privacy protection and data security have recently received a substantial amount of attention
due to the increasing need to protect various sensitive information like credit card data and
medical data. There are various ways to protect data. Here, we address ways that may as well
retain its statistical uses to some extent. One such way is to mask a data with additive or
multiplicative noise and revert to certain desired parameters of the original distribution from
the knowledge of the noise distribution and masked data. In this article, we discuss the
estimation of any desired quantile of a quantitative data set masked with additive noise. We
also propose a method to choose appropriate parameters for the noise distribution and discuss
advantages of this method over some existing methods.

Key words: Data obfuscation; quantile estimation; additive noise.

1. Introduction

In official statistics, the main goal of most studies is to analyze a data set to extract

different statistics like mean, median, variance and so on, which may help in various

statistical analyses. However, in case the data is sensitive (e.g., income data, medical data,

marksheet data, etc.), it may be completely impossible to publish it in its raw form. In such

cases, statistical agencies often release a masked version of the original data, sacrificing

some information. Data obfuscation refers to the type of data masking where some useful

information about the complete data set remains even after hiding the individual piece

of sensitive information. Therefore, the main objectives of data obfuscation are (i) to

minimize the risk of disclosure resulting from providing access to the data, and (ii) to

maximize the analytic usefulness of the data.

There are various ways of obfuscating data, such as “Top-coding”, “Grouping”,

“Adding Noise”, “Rank Swapping”, and so on. A detailed discussion on various ways of

obfuscating sensitive data may be found in the papers by Fuller (1993) and Kim and Karr

(2013). Here, we deal with the obfuscation of data using multiplicative or additive noise.

A typical problem involves a true quantitative data set X1, X2 , : : : , Xn; Y1,Y2, : : : ,Yn is

a random sample from some known continuous distribution F(·), drawn independent of

{Xi, 1 # i # n}. Then the noised data looks as follows:

Zi ¼ Xi þ Yi; i ¼ 1; 2; : : : ; n ðAdditive Noise ModelÞ; or ð1Þ

Zi ¼ XiYi; i ¼ 1; 2; : : : ; n ðMultiplicative Noise ModelÞ ð2Þ
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In case {Xi, 1 # i # n} is known or assumed to follow a certain distribution, it is enough

to estimate the parameters of the distribution as discussed in the papers by Fuller (1993),

Mukherjee and Duncan (1997), and Kim and Karr (2013). If there is no distributional

assumption on {Xi, 1 # i # n}, except that it is continuous, estimating statistics like

mean, variance or raw moments from a multiplicative noise model were studied by Zayatz

et al. (2011). However, the estimation of nonpolynomial statistics like quantiles may be a

problem of concern. Some Bayesian methods to do the same were discussed in the article

by Sinha et al. (2011). In the article by Poole (1974), he discussed the estimation procedure

of the Distribution Curve of the true population from the data collected through

randomized response, randomized with multiplicative noise of a particular form.

However, in all the above cases, authors have mainly concentrated on estimating the

quantiles from data, obfuscated with multiplicative noise. In our problem, we work on

estimating the quantiles in case the noise is additive instead of multiplicative. The goal of

our study is to suggest a procedure with “reasonable” masking of the data set that

may return a “good” guess of the quantiles, (one would prefer if estimation procedures of

other statistics like mean, variance and so on, are also not harmed by the suggested

method). We find an estimate of the distribution function for Normal, Laplace and

Uniform errors that may be equated to 0 , a , 1 to find the required quantiles. A similar

problem was discussed by Fan (1991) on a more general basis, popularly known as the

deconvolution problem. However, we present an alternative way to look at the problem.

We also propose (see subsec. 2.5) a technique for choosing the parameter for the noise

distribution (statement may be found in Proposition 2.4). This is a modest attempt at

solving the problem stated in the first paragraph of the introduction.

In Section 2, we describe our procedure with required proofs in the Appendix section,

and in Section 3, we give some simulation results in support of our procedure. In Section 4,

we give a real life example for further illustration. Finally, in Section 5, we conclude with

some discussions on the whole procedure.

2. Additive Noise Model: Obfuscation and Estimation

We have a data set {Xi, 1 # i # n} that is sensitive and hence cannot be released. We add

an error {Yi, 1 # i # n} to each value in the data set that comes from some known

distribution with a cumulative distribution function F(·). Zi ¼ Xi þ Yi is the released data

known as obfuscated or masked data. F(·) is the obfuscating distribution.

Let G(·), H(·) be the cumulative distribution functions of X and Z, respectively. We assume

that (i) X and Y are independent, and (ii) X and Y (and hence Z) are continuous random

variables.

Our aim is to find the quantiles of X from the knowledge of Z and F(·). Since we are

interested in all the quantiles, we may try estimating the whole distribution curve G(·) of X,

which can be used to find the required quantiles.

2.1. Basic Problem

Since the problem is to estimate the distribution function of X, one may first think of

writing the cumulative distribution function of X, G(·) in terms of H(·) and F(·). But that
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will not be convenient, since Z and Y are not independent. Instead, we try writing H(·) in

terms of the others. For any real number z,

HðzÞ ¼ PðZ # zÞ

¼ PðX þ Y # zÞ

¼

ð1

21

PðX þ Y # zjY ¼ yÞf ð yÞdy

where f (·) denotes the probability density function of Y. Since X and Y are independent, we

may write

HðzÞ ¼

ð1

21

PðX # z 2 yÞf ð yÞdy

¼

ð1

21

Gðz 2 yÞf ð yÞdy

Thus our main equation is,

HðzÞ ¼

ðþ1

21

Gðz 2 yÞ f ð yÞdy: ð3Þ

This is an integral equation with an infinite range, where G(·) is the unknown function to

be solved, for f is known and H(·) is to be estimated from the data. Note that our equation

says that H is a convolution of f and G. It can alternatively be written as

HðzÞ ¼

ðþ1

21

f ðz 2 yÞGð yÞdy ð4Þ

Various methods are known to solve integral equations of different kinds. In the

following subsections, we will deal with some special cases that arise in practical life.

Forms of estimated G(x) are given for Uniform, Normal and Laplace Error (all assumed to

have zero mean). Gaussian Kernel and Silverman’s Rule of Thumb bandwidth were used

to estimate the densities. Then these forms of Ĝ xð Þ are equated to 0 , a ,1, to find the

ath quantile of X. Moreover, we discuss (see subsec. 2.5) the choice of appropriate

parameters of the Error Distributions, which minimize the risk of disclosure and error in

estimation. As far as we know, this is a novel approach to the stated purpose.

2.2. Uniform Error

The following result holds if Y is Uniform(0,a); that is, if the density function of Y is of the

following form,

f ð yÞ ¼
1=a; 0 , y , a

0; otherwise:

(
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Lemma 2.1. If h(·) is the density function of the obfuscated variable Z, then ;x [ R

GðxÞ ¼ ahðxÞ þ ahðx 2 aÞ þ ahðx 2 2aÞ þ · · ·

In our problem, h(·) is unknown; instead, we can use the kernel density estimate of h(·) to

get an estimate ĜðxÞ of G(x) for all x [ R. Then, equating ĜðxÞ ¼ a for 0 ,a ,1 we get

the ath quantile of X.

Note: If Y has 0 mean, i.e., Y ,Uniform 2 a
2
; a

2

� �
, the form of G(x) becomes

GðxÞ ¼ ah x 2
a

2

� �
þ ah x 2

3a

2

� �
þ ah x 2

5a

2

� �
þ · · ·

in a similar way.

2.3. Normal Error

Here f(x) ¼ fs (x) ¼ f (x, 0,s 2) for x [ R, where f(x,m,s 2) is the normal density at

point x with mean m and variance s 2.

Note that if the mean is m – 0 then

Z ¼ X þ Y ) Z 2 m ¼ X þ ðY 2 mÞ; Y 2 m has mean 0; Z 2 m is known:

So without loss of generality, the mean can be assumed to be zero. The following

Lemma 2.2 gives an estimated form of the distribution function of X.

Before stating the next Lemma, we introduce the following assumption

(A1) The probability densities of X and Y are bounded.

We also let F(x,m,s 2) denote the cumulative distribution function of the normal

distribution with mean m and variance s 2, evaluated at the point x.

Lemma 2.2. Assume that assumption (A1) holds. Then if Y , Nð0;s2Þ, an estimate of

GðxÞ is,

ĜðxÞ ¼
1

n

Xn

j¼1

F x 2 Zj; 0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 2 s2
p� �

; ;x [ R; b . s

where b ¼ 1:06n21=5A,

A ¼ Min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dVarVarðZÞ;

IQRðZÞ

1:34

r !

dVarVarðZÞ ¼
1

n 2 1

Xn

i¼1

ðZi 2 �ZÞ2; �Z ¼
1

n

Xn

i¼1

Zi

and,

IQRðZÞ ¼ Interquantile range of Z ¼ Third quartile of Z 2 First quartile of Z:

Note: The restriction on s makes the result very weak since in most cases b .s is not

likely to happen. However if one uses a different Kernel to estimate the density, the
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restriction may not hold in such cases. In the next subsection, we would like to suggest an

alternative way to deal with this problem such that there is no bound on the choice of s.

2.4. Laplace Error

The main reason behind the choice of such Error distribution is because the Laplace

distribution has an “ordinary smooth density” (as defined by Fan (1991)), unlike the

Normal or Cauchy distributions that possess the supersmooth density, which results in an

easy solution to the problem of estimating G(x) with Gaussian Kernel without any

restriction on the choice of parameter.

Lemma 2.3. An estimate of G(x), under assumption (A1) if Y , Laplace ð0;s2Þ, i.e.,

f ðxÞ¼
1

2s
e

2
x

s

			
			

;x[R;

is given by,

ĜðxÞ¼
1

n

Xn

j¼1

1þ
s2

b2

� �
Fðx;Zj;bÞ2

s2

b2

ððx2ZjÞ=b

21

u2FðuÞdu

8><
>:

9>=
>; ð5Þ

¼
1

n

Xn

j¼1

1þ
s2

b2

� �
Fðx;Zj;bÞ2

s2

b2
0:5 1þsignðx2ZjÞG 3

2
;1

� � ðx2ZjÞ
2

2b2

� �0
@

1
A

8<
:

9=
; ð6Þ

where Gða;bÞðxÞ is the cumulative distribution function of Gamma distribution with

parameters (a,b) at x.

Note: The density function of a Gamma distribution with parameters (a,b) is given below:

gða;bÞð yÞ ¼

1

GðaÞla
ya21e2ly; y . 0

0; otherwise:

8><
>:

where G(·) denotes the Gamma function.

2.5. Choice of Parameters of Error Distribution

It is to be noted that if the variance of the Error distribution is very small compared to the range

of X, then the error behaves like a known constant which can be easily subtracted from Zj to get

a value very close to corresponding Xi. Hence a very small variance means no obfuscation at

all. On the other hand, a very large variance may increase the error in estimation to a large

extent. Hence, we need a perfect choice of the parameters of the Error Distribution to efficiently

deal with the whole problem. Towards that, we make the following observation.

After obfuscating a particular value Xi we cannot get it back from Zi ¼ Xi þ Yi, but

since we know the distribution of Yi, we will get a confidence interval for each Xi.

Assuming the mean of Yi is zero, that is, Zi and Xi has same mean, suppose for each Xi we

want a minimum spread of 1 with confidence 100(1 2 d)%.
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Proposition 2.4. For fixed d . 0 and 1 . 0 suppose we want a 100(12d)% Confidence

Interval to be (Zi21, Zi þ 1) (1 moderately large), then the parameter s of the Error

distribution can be taken as the solution of the equation

Fsð1Þ ¼ 1 2
d

2

under the condition that Fs (·) is the cumulative distribution function of a random variable

symmetric about 0.

Proof. Since (Zi – 1, Zi þ 1) is 100(1 2 d) % Confidence Interval for Xi,

P½Xi e ðZi 2 1;Zi þ 1Þ� ¼ 1 2 d

) PðjZi 2 Xij , 1Þ ¼ 1 2 d

) PðjYij , 1Þ ¼ 1 2 d

Since F(·) is symmetric around 0, we can write

2Fsð1Þ2 1 ¼ 1 2 d

) 2Fsð1Þ ¼ 2 2 d

) Fsð1Þ ¼ 1 2
d

2
:

Hence given 1 and d, we can find a value of s from the equation

Fsð1Þ ¼ 1 2
d

2
:

Special Cases

Laplace(0, s2) The c.d.f. is given by,

FsðxÞ ¼ 0:5þ 0:5signðxÞ 1 2 e
2
jxj

s

0
@

1
A

Hence from Proposition 2.4 the solution of s is

s ¼ 2
1

log d
:

Uniform(2 s
2
; s

2
) The c.d.f. is given by FsðxÞ ¼

xþs
2

s
. Hence from Proposition 2.4 the

solution of s is

s ¼
21

1 2 d

Note. For Normal Error the process only works if the solution is less than the bandwith of

Z. With 95% confidence, a choice of s is approximately 1/1.65.
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3. Some Simulation Results

In order to apply the above problem, we simulate a non-normal sample of size n ¼ 2,000,

with IQR/1.34 < 1,000, and then add an error Yi to each sample unit Xi, such that (Zi –1,

Zi þ 1) is a 95% C.I. for Xi. The parameter for the error distribution is chosen by the

formula in Proposition 2.4. For small 1, we apply Uniform, Normal and Laplace Errors

to the sample, while for larger 1, Normal is not applicable. We therefore check results

for Uniform and Laplace only. First, we check if the obfuscation is good enough. It is

obvious that obfuscation improves as 1 increases. In addition, for increasing 1, we also

check how the estimation procedure works.

A sample of ten data points is taken from the data set and the corresponding obfuscated

values are given for different errors. In the following Table 1, 1 is assumed to be 200

(which is very small, since it is much smaller compared to the measure of dispersion of X ).

Figure 1 shows the graph of the true distribution curve {G(x), x [ R} along with the

ones estimated from obfuscated data. Table 2 will show estimates of the true quantile

values which is computed from the knowledge of G(x) (Here, G(x) is Laplace(m ¼ 10;

s ¼ 1,000) using the function qlaplace under package {rmutil} of R 3.3.2. The quantile

values are calculated from data X1, X2; : : : , Xn using function quantile. Also,

estimated values of the quantiles are shown which we get by equating ĜðxÞ with (a: 0

, a , 1) by an iterative search method using the function uniroot; found in the package

{stats} of R 3.3.2.

Note that the true and obfuscated values in Table 1 are quite close, which makes it easier

for an intruder to guess the original value based on the obfuscated one. However, the

estimation works quite well.

Now, we try increasing the value of 1. However, as the value increases, the Normal

distribution is no longer an option; larger 1 will make s larger than the bandwidth of the

corresponding Z.

The following Table 3 shows the true and obfuscated values of the same data points from

Table 1 for increasing 1. Figure 2 will show how the estimated curve of G(x) deteriorates

with increasing 1. Table 4 gives the estimated and true quantiles for increasing 1.

Note that as 1 increases the obfuscation improves but the estimation deteriorates. This is

quite intuitive, since small 1 implies no masking at all. As 1 increases, both Uniform and

Laplace gives result unlike Normal, but from the graph (Fig. 2), we can clearly see that for

Table 1. Showing true and obfuscated values for ten data points selected from the 2,000 data points, 1 5 200.

No. Data point Uniform Laplace Normal

1 606.768 671.915 651.491 678.75
2 3139.892 3078.08 3166.548 3230.559
3 987.809 891.076 990.928 1023.493
4 2912.623 3120.068 2864.294 2714.819
5 - 1425.763 - 1369.556 - 1470.395 - 1518.552
6 - 185.086 - 305.841 - 68.098 - 205.403
7 - 940.958 - 1097.012 - 897.075 - 804.884
8 - 955.503 - 964.716 - 979.366 - 1005.702
9 - 224.565 - 46.007 - 228.214 - 304.326
10 - 511.614 - 470.031 - 469.044 - 597.995
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larger quantiles the Uniform distribution gives very bad estimates, since the estimate of

G(x) at times even becomes decreasing, which is not at all desirable. However, Laplace

seems to give comparatively better results compared to the Uniform. A theoretical

explanation of the drawback of using Uniform Error is discussed in Section 5. Hence, we

here prefer the use of Laplace Error over Uniform and Normal for reasonably large 1.

Hence, to investigate deeper into the statistical properties of such estimates, we note that the

estimate is consistent, as is the estimate by Fan (1991). To evaluate other properties, such as the

bias and mean square error in estimation, we find the Monte Carlo estimates of the bias and

root-mean-squared-error (RMSE) over a simulation of S error samples (We take S ¼ 500, 800

and 1,000). The Tables 5-8 present estimates of bias and RMSE for growing 1.

Compared to the dispersion of the data set (IQR ¼ 1:34 <1,000), the RMSE does not

seem to be very large for 1 ¼ 200, 500 or 1,000. 1 ¼ 2,000 gives very large bias and

RMSE but that large 1 is rarely needed.

It can be easily observed that the bias and RMSE were consistent in the sense that 500,

800, and 1,000 simulations resulted in approximately similar values for all the cells in the

above tables 5-8.

Observing the tables 5-8, we note that the main error in estimation comes from the bias

of the estimate. Hence, an estimation of bias for the above problem can be a very

interesting problem and a useful result for future research work.

But from this scenario, it is not clear whether the estimator is consistent, that is, with

increasing n whether the bias decreases, although from Fan (1991) we can easily see that

theoretically the estimate of G(x) is consistent for all x [ R. So, to investigate, we simulate

some other samples X1, X2, : : : , Xn using the same distribution as before, but larger n (we

take n ¼ 5,000, 10,000), and obfuscate using Laplace error similarly to find the Monte

Carlo estimates of bias and RMSE, using S ¼ 1,000.

One may easily observe from the tables (Table 7 and Table 8) that there is a decrease in

the value of absolute bias and RMSE with larger n. Hence, with increasing n, ideally, the

error tends to vanish.

4. A Real Life Example

For further illustration, we consider a real life application of the problem. We collect a data

set of grades achieved by 445 students in the second year of the Masters of Statistics

Table 2. Estimated quantiles from obfuscated data, 1 ¼ 200.

a TRUE Original Uniform Laplace Normal

“0.1” - 1599.438 - 1476.929 - 1525.415 - 1534.134 - 1512.133
“0.2” - 906.291 - 847.771 - 895.061 - 900.945 - 893.431
“0.3” - 500.826 - 491.793 - 521.976 - 522.429 - 525.321
“0.4” - 213.144 - 224.8 - 240.816 - 243.329 - 245.115
“0.5” 10 - 9.7 3.925 2.659 6.166
“0.6” 233.144 242.808 257.094 260.244 267.592
“0.7” 520.826 533.289 552.537 559.502 564.615
“0.8” 926.291 922.478 954.164 966.336 963.852
“0.9” 1619.438 1655.947 1687.02 1697.753 1698.098
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program at the Indian Statistical Institute Kolkata over ten years, from 2006–2015. As

grades are sensitive data, they cannot be released in raw form. We therefore apply the

above problem to this data and try to find the results. Standard variation of the data was

checked to be approximately 100, so we assumed an 1 ¼ 200. The bandwidth values from

Uniform and Laplace data was found to be 48.68 and 41.15. The following Table 9

represents true and obfuscated values of ten data points to show how the values are masked

with Uniform and Laplace Errors. From the obfuscated values, the true distribution and

quantiles are then estimated as shown in Figure 3 and Table 10 respectively.

In this problem, s was chosen according to Proposition 2.4 with 1 ¼ 200. Without

access of the obfuscated data, all one knew about the marks of an individual was that it

ranged between 0 to 1,000. Consider the first individual in Table 9. Its masked value after

masking with Laplace(0,s 2) is 733.93. Now, we can say Xi [ (533.93; 933.93) with 95%

confidence. Hence, a disclosure takes place here. Note that, as per our knowledge, Zi is the

best estimator of Xi, based on the available information. However, if the intruder has an

algorithm that can be used to find a better estimator of Xi using the knowledge of the

obfuscating distribution and obfuscated data, this disclosure risk may not be valid (it can

easily be shown that if true variance of Y is greater than n
n21

times the true variance of X,

then Ẑ is a better estimator of Xi than Zi; that is, the mean squared error of Ẑ about Xi is less

than that of Zi about Xi but such a case is rare as s usually does not need to be so large).
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In this case, Yi is the error in estimation, and there is no risk of disclosure. However, there

is a probability that the error is very small. Hence, the risk of disclosure with error less than

d, is given by,

P½jZi 2 Xij , d� ¼ P½jYij , d�

For S ¼ 1,000 simulations, an estimate of this risk is

XS

s¼1
I½Zsi[ðXi2d;Xiþd Þ�

S

where Zsi is the masked value of Xi for sth simulation and I[A ] ¼ 1, if event A occurs and

zero otherwise. The following Table 11 shows estimates of disclosure risk for growing

error values at ten selected points (the points in Table 9), and also a column giving the true

risk value. We see the estimated risks are quite close to the theoretically determined risk at

all the selected points.

5. Conclusion

Given the simulation results and also the real life example one can easily see that an

increase in the value of 1, that is, an increase in obfuscation, results in weakly reliable

Table 9. True and obfuscated values for ten data points selected from the 445 data points, 1 ¼ 200.

No. TRUE Uniform Laplace

“1” 814 960.562 733.931
“2” 750 695.214 829.526
“3” 764 656.395 591.158
“4” 574 704.041 599.055
“5” 614 670.67 586.944
“6” 669 595.926 670.136
“7” 616 553.873 533.097
“8” 674 748.607 677.74
“9” 714 595.295 658.648
“10” 740 883.885 764.591

1.0

0.8

0.6

0.4G
(x

)

0.2

0.0
0 200 400 600 800

TRUE
UNIFROM
LAPLACE

1000
x

Value of epsilon is 200

Fig. 3. Showing estimated distribution curve from TRUE and obfuscated data sets.
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estimates for both Laplace and Uniform Errors. However, we would prefer the use of

Laplace over Uniform Error, since the Uniform has a serious drawback, as explained in the

next paragraph.

In the case of Uniform Error, the estimate of G(x) is given by the expression

ĜðxÞ ¼
a

n

Xn

j¼1

X1
m¼0

f x; Zj þ mþ
1

2

� �
a; b

� �

which is nondecreasing if,

ĝðxÞ ¼
a

n

Xn

j¼1

X1
m¼0

f 0 x; Zj þ mþ
1

2

� �
a; b

� �
$ 0;

that is if,

2
c

n

Xn

j¼1

X1
m¼0

x 2 Zj 2 mþ
1

2

� �
a

� �
e

2

x2Zj2 mþ
1

2

� �
a

� �2

2b 2 $ 0

where c is a positive constant.

However, this term may become negative for certain cases. ĜðxÞ can therefore decrease

at times, which is not at all desirable, since it is an estimate of a cumulative distribution

function. In our simulations, we found that this problem arose several times, while in case

of Laplace Error, this problem never arose. However, theoretically Equation (5), resulting

from Laplace noise distribution, could not be proven to have a nondecreasing distribution

function, either.

We have currently checked results for Uniform and Laplace distributions. However,

the choice of an optimal density function for obfuscation and estimation has not yet

been properly defined. It would be a challenging problem to define the optimal criterion

and find a density that is capable of satisfying the criterion. The same challenge applies to

finding an optimal 1 (as defined in subsec. 2.5) for a given data set (X1, X2 , : : : , Xn).

As discussed in Section 3, the error in estimation is mainly a result of the bias of the

estimate. Hence, an estimation of bias and its correction should lead to a better resolution

of the problem.

Table 10. Showing estimation of quantiles from original and obfuscated data.

No. Original Uniform Laplace

“0.1” 580.8 578.394 555.663
“0.2” 612.8 622.305 596.067
“0.3” 645.2 650.741 633.059
“0.4” 675.6 673.521 664.011
“0.5” 700 695.237 693.693
“0.6” 727 720.346 734.52
“0.7” 750 762.636 770.46
“0.8” 786 831.202 809.933
“0.9” 826.6 888.999 879.513
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Moreover, as mentioned in Section 4, if the boundary values of the original data are

known, the obfuscation in the boundary region degrades. There is no known solution to

this problem.

Having obtained a quantile estimate, computation of a confidence interval for the

unknown population quantile could be an interesting problem for future work.

However, the problem discussed can easily be applied to many real life problems. The

technique used to solve the above problem can be applied to solve the equations for other

error distributions too. Unlike the historical technique to solve such problems, as given in

Fan (1991), this technique can be applied to cases where the characteristic function of the

Error distribution may take nonpositive value in some regions over the real line.

Appendix

Proof of Lemma 2.1

Proof. Putting the form of f ( y) in Equation (3), we have

HðzÞ ¼
1

a

ða

0

Gðz 2 yÞdy

Now differentiating with respect to z we have

hðzÞ ¼
1

a
{GðzÞ2 Gðz 2 aÞ};

which gives

GðzÞ ¼ ahðzÞ þ Gðz 2 aÞ:

Now, from this relation we have

Gðz 2 aÞ ¼ ahðz 2 aÞ þ Gðz 2 2aÞ:

Inserting this in the expression for G(z) we find

GðzÞ ¼ ahðzÞ þ ahðz 2 aÞ þ Gðz 2 2aÞ

Repeating this by putting the values of G(z 2 ma) for m ¼ 1, 2, : : : in a similar way, we

arrive at the given result.

Proof of Lemma 2.2

Proof. The lemma is proved using the following result from Polyanin and Manzhirov

(Polyanin and Manzhirov 2008).

Result: Consider the equation
Ð1

21
Kðx 2 tÞyðtÞdt ¼ f ðxÞ;21 , x , 1 where y(·) is the

unknown function to be determined. Suppose,

(i) f ðxÞ; yðxÞ [ L2ð21;1Þ

(ii) KðxÞ [ L1ð21;1Þ
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where the function space Lk(S) for some set S and integer k, is the set of all real-valued

functions f : S ! R;
Ð1

21
j f ðxÞj

k
dx , 1

n o
.

Then, yðxÞ ¼ 1
2p

Ð1

21

~fðuÞ
~KðuÞ

e iuxdu, where ~f is the Fourier Transform of f, ~K is the Fourier

Transform of K.

Now to apply the given result in our problem note that our equation is

HðzÞ ¼

ð1

21

Gð yÞfsðz 2 yÞdy ¼

ð1

21

Gðz 2 yÞfsð yÞdy

But H(·) and G(·) are not L2ð21;1Þ. So taking the derivative w.r.t. z, we get

hðzÞ ¼
d

dz

ð1

21

Gðz 2 yÞfsð yÞdy:

Now, since g(·) is bounded, for some real 0 , M ,1, we have,

d

dz
ðGðz 2 yÞfsð yÞÞ ¼ gðz 2 yÞfsð yÞ < Mfsð yÞ

Now
Ð1

21
Mfsð yÞdy ¼ M , 1: Hence we can interchange the integration and

differentiation sign which gives us,

hðzÞ ¼

ð1

21

gðz 2 yÞfsð yÞdy

Here, we have used the Leibniz rule for infinite range.

Now, since g(·) and h(·) are bounded by assumption (A1), they are L2 2 bounded by

Lemma 2.3 of the book “Deconvolution Problems in Non-Parametric Statistics” by

Meister (2009). Also, fs [ L1ð21;1Þ.

Hence, applying the last result, in our problem,

gðxÞ ¼
1

2p

ð1

21

~hðkÞ

fs
~ ðkÞ

e ikxdk

But h is not known. So, we replace it by ĥ, the Kernel Density Estimate of h using standard

Gaussian Kernel and bandwidth selected by Silverman’s “Rule of Thumb”. The general

form of such kind of estimators with an arbitrary kernel function K(·) was discussed by Fan

(1991) where the kernel estimators of mixture densities were studied along with their

asymptotic properties. It is given by

ĥðxÞ ¼
1

nb

Xn

j¼1

K
x 2 Zj

b

� �
ð7Þ
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where KðxÞ ¼ 1ffiffiffiffi
2p
p e2x 2=2; b ¼ 1:06 n21

5A as defined in the statement of the Lemma.

Plugging in, we get,

ĥ
~
ðkÞ ¼

ð1

21

1

nb

Xn

j¼1

K
x 2 Zj

b

� �( )
e2ikxdx

¼
1

n

Xn

j¼1

e
2ikZj2

k 2b 2

2

Since

1

b

ð1

21

e2ikxK
x 2 Zj

b

� �
dx ¼

1ffiffiffiffiffiffi
2p
p

b

ð1

21

e2ikxe
2
ðx 2 ZjÞ

2

2b2 dx;

which is the characteristic function of a normal random variable with mean Zj and standard

deviation b at the point (2k) and we know that to be equal to e2ikZj2
k 2b 2

2 .

Also, note that

fs
~ ðkÞ ¼

ð1

21

1ffiffiffiffiffiffi
2p
p

s
e2x 2=2s 2

e2ikxdx

¼ e

2k 2s 2

2

Therefore,
~hðkÞ
~fsðkÞ
¼

1
n

Pn

j¼1
e

2ikx2k 2b 2

2

e
2k 2s 2

2

¼ 1
n

Pn
j¼1 e2ikx2

k 2 ðb 22s 2 Þ
2 [ L2ð21;1Þ if b 2 2 s 2 . 0,

that is, b . s

If b . s; then,

ĝðxÞ ¼
1

2p

ð1

21

1

n

Xn

j¼1

e
2ikZj2

k 2ðb 22s 2Þ

2 e ixkdk

¼
1ffiffiffiffiffiffi

2p
p

n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 2 s2
p

Xn

j¼1

e
2
ðx2ZjÞ

2

2ðb22s 2Þ:

where we have changed the order of summation and integration. This is nothing but the

mean of n normal p.d.f.s with mean Zj and variance b2 2 s2. Hence, we get the form given

in Lemma 2.2.

Proof of Lemma 2.3

Proof: Proceeding in the same way as in Lemma 2.2, we have

ĥ
~
ðkÞ ¼

1

n

Xn

j¼1

e
2ikZj2

k 2b 2

2
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and the Fourier transform at point k of the Laplacian error density with scale parameter s,

denoted as ~lsðkÞ, is given by,

~lsðkÞ ¼

ð1

21

1

2s
e2jxj=se2ikxdx ¼ ð1þ s2k 2Þ21

Hence, the ratio becomes

ĥ
~
ðkÞ

~lsðkÞ
¼

1

n

Xn

j¼1

ð1þ s2k 2Þe
2ikZj2

k 2b 2

2

This function is now in L2ð21;1Þ ;b;s. After taking the inverse Fourier transform,

we have

ĝðxÞ ¼
1

n

Xn

j¼1

Ij;

where

Ij ¼
1

2p

ð1

21

ð1þ k2s2Þe
ikðx2ZjÞ2

k 2b 2

2 dk

¼ I1j þ I2j;

I1j ¼
1

2p

ð1

21

e
ikðx2ZjÞ2

k 2b 2

2 dk; and;

I2j ¼
1

2p

ð1

21

k 2s2e
ikðx2ZjÞ2

k 2b 2

2 dk:

Note that the integrand in I1j is nothing but a constant multiple of the characteristic

function of Nð0; 1=bÞ at ðx 2 ZjÞ and hence, it can easily be shown that

I1j ¼ fðx; Zj; bÞ

It should now be noted that

I2j ¼
s2

2p

ð1

21

k 2 e

2k 2b 2

2 {cosðkðx 2 ZjÞÞ þ isinðkðx 2 ZjÞÞ}dk

Since the sine function is odd and the cosine function is even, we can write

I2j ¼
s2

p

ð1

0

cosðkðx 2 ZjÞÞk
2e

2k 2b 2

2 dk
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Defining cj ¼
ffiffi
2
p

b
ðx 2 ZjÞ and making a change of variables, we get the expression

I2j ¼
s2

p

ffiffiffi
2
p

b3

ð1

0

cos cj
ffiffiffi
y
p� � ffiffiffi

y
p

e2ydy

Next, expanding cos cj
ffiffiffi
y
p� �

by a Taylor series and changing the order of summation

and integration, we have

I2j ¼
s2

p

ffiffiffi
2
p

b3

X1
m¼0

ð21Þm
c2m

j

ð2mÞ!
G mþ

3

2

� �

where GðxÞ denotes the Gamma function evaluated at the point x. Using the properties of

the Gamma function that Gðxþ 1Þ ¼ xGðxÞ and G 1
2

� �
¼

ffiffiffiffi
p
p

we can further calculate

I2j ¼
s2

p

ffiffiffi
2
p

b3

X1
m¼0

ð21Þm
c2m

j

ð2mÞ!
mþ

1

2

� �
m 2

1

2

� �
: : :

1

2
G

1

2

� �

¼
s2

p

ffiffiffi
2
p

b3

X1
m¼0

ð21Þm
c2m

j

ð2mÞ!
mþ

1

2

� �
m 2

1

2

� �
: : :

1

2
G

1

2

� �

¼
s2ffiffiffiffi
p
p

ffiffiffi
2
p

b3

X1
m¼0

ð21Þm
c2m

j

22mm!

2mþ 1

2

¼
s2ffiffiffiffiffiffi
2p
p

b3
2
X1
m¼1

ð21Þm
c2m

j

22mðm 2 1Þ!
þ
X1
m¼0

ð21Þm
c2m

j

22mðmÞ!

( )

¼
s2ffiffiffiffiffiffi
2p
p

b3
2ð21Þ

cj

2

� �2

e
2

� cj

2

�2

þ e
2

� cj

2

�2( )

¼
s2ffiffiffiffiffiffi
2p
p

b3
e2ðcj=2Þ2 ½1 2 2ðcj=2Þ2�

¼
s2

b2
1 2

x 2 Zj

b

� �2
" #

fðx; Zj; bÞ

where we inserted the expression cj ¼
ffiffi
2
p

b
ðx 2 ZjÞ in the last step. Thus, we can conclude

that

ĝðxÞ ¼ 1þ
s2

b2

� �
1

n

Xn

i¼1

fðx; Zj; bÞ

( )
2

s2

b2

1

n

Xn

i¼1

x 2 Zj

b

� �2

fðx; Zj; bÞ
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Hence, integrating ĝðuÞ over ð21; xÞ we get Equation (5). Moreover, making a simple

change of variable u 2

2
¼ y in the term

ð
x2Zj

b

21

u2fðuÞdu

one can easily check whether it is equal to

0:5þ 0:5*signðx 2 ZjÞGð3=2;1Þ
x 2 Zj

b

� �2

as stated in Equation (6).
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Accounting for Spatial Variation of Land Prices
in Hedonic Imputation House Price Indices:

a Semi-Parametric Approach

Yunlong Gong1,2 and Jan de Haan2,3

Location is capitalized into the price of the land the structure of a property is built on, and land
prices can be expected to vary significantly across space. We account for spatial variation of
land prices in hedonic house price models using geospatial data and a semi-parametric method
known as mixed geographically weighted regression. To measure the impact on aggregate
price change, quality-adjusted (hedonic imputation) house price indices are constructed for a
small city in the Netherlands and compared to price indices based on more restrictive models,
using postcode dummy variables, or no location information at all. We find that, while taking
spatial variation of land prices into account improves the model performance, the Fisher house
price indices based on the different hedonic models are almost identical. The land and
structures price indices, on the other hand, are sensitive to the treatment of location.

Key words: Geospatial information; hedonic modeling; land and structure prices; mixed
geographically weighted regression; residential property

JEL Classification: C14; C33; C43; E31; R31.

1. Introduction

The construction of house price indices is difficult because houses are traded infrequently

and because properties are unique in terms of their location and structural characteristics.

Hedonic regression and repeat sales methods both deal with these problems. The repeat

sales method controls for location and unchanged structural characteristics as the prices of

the ‘same’ properties are tracked over time (in a regression framework). However, this

method suffers from several problems. For example, since only houses that are sold at least

twice in the data set are used, it ignores single sales and is prone to sample selection bias.

Also, the repeat sales method cannot provide information on the shadow prices of the

property characteristics and thus does not allow the estimation of, for example, price
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indices of the land the structure sits on. Given these problems with repeat sales methods,

we focus on hedonic regression methods.

The hedonic regression method has its limitations as well. A general problem in the

context of housing is omitted variables bias; it is not possible to include all the structural

characteristics into the model, even if data on these characteristics were available (which is

usually not the case). In addition, the true relationship between housing characteristics and

house prices is unknown. The treatment of location is an important issue. One may for

instance include locational variables in the model, such as distance to the city center and

amenities. However, this is a rather data intensive method, and listing all the nodes of

interest within the area is virtually impossible. Instead, researchers often include dummy

variables at some aggregate level, such as postcode areas, to approximate the location

effects. This is obviously a crude approach and could potentially lead to “location biases”.

In this article, we focus on the use of geospatial data, that is information on the exact

location of properties in terms of geographic coordinates, to measure the effect of location.

Not properly accounting for location is likely to result in spatial correlation of house

prices, which will impact on the precision of parameter estimates in hedonic models.

Spatial correlation can be modeled in various ways, for instance via spatial lags or spatial

errors, where a spatial weight matrix is designed to relate the feature of a point in space to

the features of neighboring points. Such spatial econometric methods have been applied in

time dummy hedonic models to estimate house price indices (Hill et al. 2009; Dorsey et al.

2010). Spatial error modelling has also been combined with state-space house price

models which allow the parameters to follow a stochastic process along the time

dimension; the price index can then be constructed through imputations (Rambaldi and

Rao 2011, 2013). Others have directly extended the spatial filter by including time so that

both spatial and temporal correlations are accounted for; these spatiotemporal

autoregressive (STAR) models can generate a price index surface (Pace et al. 1998; Tu

et al. 2004; Sun et al. 2005).

A disadvantage of the above methods is that the value of location and land is not

explicitly modeled. For some purposes, like taxation and national accounting, being able

to decompose the property value into land and structures values would be quite useful

(Diewert et al. 2015; Rambaldi et al. 2015). In the present article, we attain this

decomposition using a simplified version of the so-called builder’s model (Diewert et al.

2011, 2015). We further assume that the value of location is capitalized into the price of

land but not into the price of structures so that land prices are expected to vary across space

whereas the price of structures is ‘fixed’. The spatial variation of land prices is estimated

by Geographically Weighted Regression (GWR), a nonparametric method proposed by

Brunsdon et al. (1996) and Fotheringham et al. (1998b). Combining the land and structures

components, we form a semi-parametric house price model and estimate it by Mixed

Geographically Weighted Regression (MGWR). The (annual) house price index and its

land and structures components are subsequently constructed in an imputation framework.

Our article tries to fill a gap in the Handbook on Residential Property Price Indices

(Eurostat et al. 2013) in which the use of geospatial data to estimate hedonic house price

models is not well covered. Geospatial data has been used before to estimate house price

indices using a semi-parametric method. Clapp (2004), for example, estimated the value of

location and overall property price change by Local Polynomial Regression (LPR). Our
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work differs from Clapp’s approach in a number of ways. The most important difference is

that we incorporate the value of location into land prices and hence are able to construct a

land price index, whereas Clapp treats it as an additive term to house value and thus cannot

distinguish between land and structures values.

The article proceeds as follows. Section 2 outlines some basic ideas about the hedonic

house price model that decomposes the property value into land and structures values and

about the inclusion of additional structural characteristics into the model. Section 3

explains how we treat location; the GWR and MGWR approaches will be discussed in

detail. Section 4 describes how we calculate the hedonic imputation indices. Section 5

presents empirical evidence for the Dutch city of “A” and discusses the results. Section 6

concludes and identifies some potential improvements.

2. A Simplification of the ‘Builder’s Model’

2.1. Some Basic Ideas

Our starting point is the ‘builder’s model’ proposed by Diewert et al. (2011, 2015). It is

assumed that the value of a property i in period t, pt
i, can be split into the value of the land

a tzt
iL

� �
, the value of the structure b tzt

iS

� �
and a random error term ut

i with zero mean:

pt
i ¼ a tzt

iL þ b tzt
iS þ ut

i: ð1Þ

The land and structure values are assumed to be proportional to the plot size zt
iL and the

size of living space zt
iS, respectively. The shadow prices of land and structures in (1), at

and bt, are the same for all properties, irrespective of their location. In Section 3 we relax

this assumption and allow for spatial variation in the price of land.

When applying Model (1) to the data of a sample St of properties sold in period t, a few

problems arise. First, the model has no intercept term, which hampers the interpretation of

R2 and the use of standard tests in Ordinary Least Squares (OLS) regression. Second, a

high degree of collinearity between land size and structure size can be expected, so that at

and bt will be estimated with low precision. To resolve these drawbacks, Equation (1) is

divided by structure size zt
iS, giving

pt *

i ¼ a trt
i þ b t þ 1t

i; ð2Þ

where pt *

i ¼ pt
i=zt

iS is the normalized property price, that is, the value of the property per

square meter of living space, r t
i ¼ zt

iL=zt
iS is the ratio of plot size to structure size, and

1t
i ¼ ut

i=zt
iS. The model now has an intercept term and a single explanatory variable. In

what follows, we focus on this normalized model.

2.2. Adding Structures Characteristics

Models (1) and (2) only incorporate structure size and plot size, which may lead to omitted

variable bias. Here we discuss the inclusion of additional characteristics for the structures

by linearizing the method proposed by Diewert et al. (2015).
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We first consider the age effect and assume a straight-line depreciation model. The

adjusted value of the structure is b t 1 2 d tat
i

� �
zt

iS, where d t is the depreciation rate and at
i is

age of the structure. It is assumed that structure age is available in the data set as an ordinal

(categorical) rather than continuous variable. Using multiplicative dummy variables Dt
ia

that take on the value 1 if in period t property i belongs to age category a ða ¼ 1; : : : ;AÞ

and 0 otherwise, and after reparameterizing to eliminate the term b tzt
iS, the adjusted value

of structure can be expressed as
PA

a¼1g
t
aDt

iazt
iS, where g t

a represents the unit price of a

structure belonging to age category a. While using discrete age may be somewhat

problematic, it introduces some flexibility in that age dummies will not only reflect

depreciation of structure but also capture vintage effect.

When incorporating another attribute, such as the number of rooms, the new value of the

structures becomes b t 1 2 d tat
i

� �
1þ m tzt

iM

� �
zt

iS, where mt is the parameter for the number

of rooms zt
iM . Using dummies Dt

iM for the number of rooms ðm ¼ 1; : : : ;MÞ, and

reparameterizing again, the new adjusted value of structure becomesPA
a¼1 g

t
aDt

iazt
iS þ

PM
m¼1 l

t
mDt

imzt
iS þ

PA
a¼1

PM
m¼1 h

t
amDt

iaDt
imzt

iS. To save degrees of free-

dom, we ignore the second-order interaction terms Dt
iaDt

im and obtain the normalized

model

pt *

i ¼ u t þ a trt
i þ
XA21

a¼1

g t
aDt

ia þ
XM21

m¼1

lt
mDt

im þ 1t
i: ð3Þ

In this model, an intercept term u t is included by excluding dummy variables for age class

A and category M. For a property belonging to age class a ða ¼ 1; : : : ;A 2 1Þ and

category m ðm ¼ 1; : : : ;M 2 1Þ for number of rooms, the unit price of structures equals

u t þ g t
a þ l t

m. Additional categorical variables for the structures can be incorporated in a

similar way.

3. Land and Spatial Heterogeneity

3.1. Location and the Price of Land

It is widely accepted that the value of location is capitalized into the price of land. In most

empirical studies it is assumed that the price of land varies across postcode areas but is

the same within each postcode area. An example is Diewert and Shimizu (2013) who

estimated the ‘builder’s model’ for Tokyo. Applying the same strategy to postcode dummy

variables Dik as was used in Subsection 2.2 for adding structure characteristics, an

improved version of Model (3) for the normalized property price is

pt *

i ¼ u t þ
XK

k¼1

at
kDikrt

i þ
XA21

a¼1

g t
aDt

ia þ
XM21

m¼1

lt
mDt

im þ 1t
i: ð4Þ

Each postcode area now has its own land price at
k. This might be still too crude, however,

depending of course on the level of detail of the postcode system. A more general version

of Model (4) is found by assuming that the price of land can differ at the individual

property level, that is, at the micro location. We denote the property-specific land price
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by a t
i , yielding

pt *

i ¼ u t þ at
ir

t
i þ
XA21

a¼1

g t
aDt

ia þ
XM21

m¼1

lt
mDt

im þ 1t
i: ð5Þ

This model obviously cannot be estimated by standard regression techniques. In

Subsection 3.2 below, we discuss a semi-parametric approach that enables us to estimate

Model (5).

3.2. Mixed Geographically Weighted Regression

The parameters for the structures characteristics (u t, g t
a, and lt

m) in Model (5) are constant

across space, whereas the land price at
i

� �
differs between properties. In other words, we

account for spatial heterogeneity, or spatial nonstationarity as it is often referred to

Brunsdon et al. (1996), of the price of land. One method that deals with spatial

heterogeneity of parameters is the ‘expansion method’ (Casetti 1972; Jones and Casetti

1992). In our case, the price of land would be viewed as an unknown function of the

property’s location in terms of latitude xi and longitude yi or a similar geographic

coordinate system. This function can then be approximated using a Taylor-series

expansion of some order; typically, second-order approximations are applied. Although

the expansion method makes use of geospatial data, it is basically parametric because it

calibrates a prespecified parametric model for the trend of land prices across space

(Fotheringham et al. 1998a).

In this article, we adopt a truly nonparametric approach, namely Geographically

Weighted Regression (GWR), to dealing with spatial heterogeneity of parameters

(Brunsdon et al. 1996; Fotheringham et al. 1998b). Let us for a moment ignore the

structures characteristics to explain how the property-based land prices can be obtained.

Defining ai ¼ aðxi; yiÞ and using matrix notation, Model (5) without structures

characteristics can be written as

p* ¼ r +aþ h; ð6Þ

where p* ¼ ð p*
1; p

*
2; · · ·; p*

nÞ
T , r ¼ ðr1; r2; · · ·; rnÞ

T , a ¼ ðaðx1; y1Þ;aðx2; y2Þ; : : : ;

aðxn; ynÞÞ
T , h ¼ ðh1;h2; · · ·;hnÞ

T , and + is an operator that multiplies each element of a

by the corresponding element of r. We have dropped the superscript t for convenience; it

should be clear that we estimate models for each time period separately. In Model (6), the

land price at point i is a realization of the continuous function a(x,y) at that point.

Model (6) can be estimated using a moving kernel window approach, which is

essentially a form of Weighted Least Squares (WLS) regression. To obtain an estimate for

the price of land aðxi; yiÞ for property i, a WLS regression is run on a subset of properties

close to i on the premise that a property j which is closer to property i has a bigger

influence in the estimation of aðxi; yiÞ. That is

aðxi; yiÞ ¼ ðr
T wðxi; yiÞrÞ

21rT wðxi; yiÞp
*; ð7Þ

where wðxi; yiÞ ¼ diag½w1ðxi; yiÞ;w2ðxi; yiÞ; : : : ;wnðxi; yiÞ� is an n by n spatial weighting

matrix. In this way, we are able to estimate land prices not only for observed properties,
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but also for any imaginary location within the study area, enabling us to plot a continuous

surface of land prices. The predicted values of the house prices are

p̂* ¼ r +a ¼ sp*; ð8Þ

where the so-called hat matrix s is given by

s ¼

r1 rT w x1; y1

� �
r

� �21
rT w x1; y1

� �

r2 rT w x2; y2

� �
r

� �21
rT w x2; y2

� �

..

.

rn rT w xn; yn

� �
r

� �21
rT w xn; yn

� �

2

66666664

3

77777775

:

The weights wij (i – j ) should follow a monotonic decreasing function of distance

between ðxi; yiÞ and ðxj; yjÞ. There is a range of possible functional forms from which we

have chosen the frequently-used bi-square function

wij ¼
1 2 d2

ij=h2
� �2

if dij , h

0 otherwise

8
<

:
; ð9Þ

where h denotes the bandwidth. The choice of bandwidth involves a trade-off between bias

and variance. A larger bandwidth generates an estimate with larger bias but smaller

variance whereas a smaller bandwidth produces an estimate with smaller bias but larger

variance. The usual solution is to select the optimal bandwidth by minimizing the cross-

validation (CV) statistic

CVðhÞ ¼
Xn

i¼1

p*
i 2 p̂*

–iðhÞ
� �2

; ð10Þ

where p̂–iðhÞ is the predicted price of property i where the observation for i has been

omitted from the calibration process.

The above nonparametric GWR approach to dealing with spatial heterogeneity of

land prices has to be extended by including structures characteristics with spatially fixed

parameters, as shown in Model (5). This leads to a specific instance of the semi-

parametric Mixed GWR (MGWR) approach discussed by Brunsdon et al. (1999), where

some parameters are spatially fixed and the remaining parameters are allowed to vary

across space. The estimation of the MGWR model is more complicated than that of the

GWR model. To outline the estimation procedure, we write Model (5) in matrix

notation as

p* ¼ r +aþ DSbþ 1; ð11Þ
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where p*, r and a have the same meaning as in Equation (6), DS is the matrix of structures

characteristics included in Model (5), given by

DS ¼

1 Da
11 · · · Da

1;A21 Dm
11 · · · Dm

1;M21

1 Da
21 · · · Da

2;A21 Dm
21 · · · Dm

2;M21

..

. ..
. . .

. ..
. ..

. . .
. ..

.

1 Da
n1 · · · Da

n;A21 Dm
n1 · · · Dm

n;M21

2

66666664

3

77777775

;

and b ¼ ðu; g1; · · ·; gA21; l1; · · ·; lM21Þ
T is the vector of coefficients relating to DS to be

estimated.

We use the estimation method proposed by Fotheringham et al. (2002), which is less

computationally intensive than the method described in Brunsdon et al. (1999). If the

parameters b were known, the GWR approach (7) could be used to estimate a by

regressing r on p* 2 DSb. Similarly, OLS estimates of b could be obtained by regressing

DS on p* 2 r +a if the property-based parameters a were known. In practice, a four-step

estimation procedure is followed; for details, see Fotheringham et al. (2002), Mei et al.

(2006) and Geniaux and Napoléone (2008). This four-step procedure involves:

(1) regressing each column of DS against r using the GWR approach described by (7) and

then computing the residuals Q ¼ ðI 2 sÞDS,

(2) regressing the dependent variable p* against r using the GWR approach (7) and then

computing the residuals R ¼ ðI 2 sÞp*,

(3) regressing the residuals R against the residuals Q using OLS in order to obtain the

estimates b̂ ¼ ðQT QÞ21QT R,

(4) subtracting DSb̂ from p* and regressing this part against r using GWR approach in

(7) to obtain estimates âðxi; yiÞ ¼ ½r
T wðxi; yiÞr�

21rT wðxi; yiÞðp* 2 DSb̂Þ.

The predicted values for the property prices in Equation (11) can be expressed as

p̂* ¼ sðp* 2 DSb̂Þ þ DSb̂ ¼ Lp*; ð12Þ

with L ¼ sþ ðI 2 sÞDS DT
S ðI 2 sÞT ðI 2 sÞDS

� �21
DT

S ðI 2 sÞT ðI 2 sÞ, which is the hat

matrix for Equation (11).

As discussed above, the parameter estimates and the predicted property prices depend

on the choice of weights, hence on the choice of bandwidth h. The optimal value for h is

determined by minimizing the CV statistic given by (10). In the case of MGWR, the CV

statistic is equivalent to (Mei et al. 2006)

CVðhÞ ¼
1

n

Xn

i¼1

p*
i 2 p̂*

i ðhÞ

1 2 liiðhÞ

� 	2

; ð13Þ

where p̂*
i ðhÞ is the predicted price for property i and lii(h) is the ith diagonal element of

matrix L in Equation (12).
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4. Hedonic Imputation Price Indices

This section addresses the issue of estimating quality-adjusted property price indices.

Suppose sample data is available for periods t ¼ 0; : : : ; T , where 0 is the base period (the

starting period of the time series we want to construct), and suppose Model (5) has been

estimated separately for each period. The predicted property prices are given by

p̂t
i ¼ ât

iz
t
iL þ û t þ

PA21
a¼1 ĝ

t
aDt

ia þ
PM21

m¼1 l̂
t

mDt
im

h i
zt

iS. For short, we write the predicted unit

price of structures, û t þ
PA21

a¼1 ĝ
t
aDt

ia þ
PM21

m¼1 l̂
t

mDt
im, as b̂

t

i and the predicted overall

property price as p̂t
i ¼ ât

i z
t
iL þ b̂

t

i zt
iS ðt ¼ 0; : : : ; T Þ.

We denote the sample of properties sold in the base period by S0. The

hedonic imputation Laspeyres property price index going from period 0 to period t is

defined by

P0t
Laspeyres ¼

X
i[S 0

p̂tð0Þ
iX

i[S 0
p̂0

i

; ð14Þ

Equation (14) may need some explanation. All quantities are equal to 1, reflecting the fact

that each property is considered unique. The index is not affected by compositional change

because it is based on a single sample. Most, if not all, of the properties sold in period 0 are

not resold in period t, and the ‘missing prices’ have to be imputed by p̂tð0Þ
i . We also

replaced the observed base period prices p0
i by the predicted values p̂0

i , a method known as

double imputation. Hill and Melser (2008) discussed different types of hedonic imputation

methods in the context of housing. For a general discussion of the difference between

hedonic imputation indices and time dummy indices, see Diewert et al. (2009) and de

Haan (2010).

The p̂tð0Þ
i are estimated period t constant-quality property prices, that is, estimates of the

prices that would prevail in period t for properties sold in period 0 if the properties’ price-

determining characteristics were equal to those of the base period, which serves to adjust

for quality changes of the individual properties. These constant-quality prices are

estimated by p̂tð0Þ
i ¼ ât

iz
0
iL þ b̂

tð0Þ

i z0
iS, where b̂

tð0Þ

i ¼ û t þ
PA21

a¼1 ĝ
t

a D0
ia þ

PM21
m¼1 l̂

t

mD0
im

denotes the estimated constant-quality price of structures.

Substitution of p̂0
i ¼ â0

i z0
iL þ b̂

0

i z0
iS and p̂tð0Þ

i ¼ ât
iz

0
iL þ b̂

tð0Þ

i z0
iS into (14) yields

P0t
Laspeyres ¼

X
i[S 0

ât
iz

0
iL þ b̂

tð0Þ

i z0
iS

h i

X
i[S 0

â0
i z0

iL þ b̂
0

i z0
iS

h i ¼ ŝ0
L

X
i[S 0

ât
iz

0
iLX

i[S 0
â0

i z0
iL

þ ŝ0
S

X
i[S 0

b̂
tð0Þ

i z0
iS

X
i[S 0

b̂
0

i z0
iS

; ð15Þ

where
P

i[S 0 â
t
iz

0
iL=
P

i[S 0 â
0
i z0

iL is a price index of land and
P

i[S 0 b̂
tð0Þ

i z0
iS=
P

i[S 0 b̂
0

i z0
iS is

a price index of structures. Equation (15) decomposes the overall house price index into

structures and land components; the weights ŝ0
L ¼

P
i[S 0 â

0
i z0

iL=
P

i[S 0 â0
i z0

iL þ b̂
0

i z0
iS

h i
and

ŝ0
S ¼

P
i[S 0 b̂

0

i z0
iS=
P

i[S 0 â0
i z0

iL þ b̂
0

i z0
iS

h i
are estimated shares of land and structures in the

total value of property sales in period 0. The double imputation method ensures that the

weights sum to unity.

Journal of Official Statistics702



An alternative to the Laspeyres index is the hedonic double imputation Paasche price

index, defined on the sample St of properties sold in period t ðt ¼ 1; : : : ; T Þ:

P0t
Paasche ¼

X
i[S t

p̂t
iX

i[S t
p̂0ðtÞ

i

: ð16Þ

The imputed constant-quality prices p̂0ðtÞ
i are estimates of the prices that would prevail in

period 0 if the property characteristics were those of period t, which are estimated as

p̂0ðtÞ
i ¼ â0

i zt
iL þ b̂

0ðtÞ

i zt
iS, where b̂

0ðtÞ

i ¼ û0 þ
PA21

a¼1 ĝ
0
a Dt

ia þ
PM21

m¼1 l̂
0

mDt
im denotes the period

0 constant-quality price of structures. By substituting the constant-quality prices and the

predicted prices p̂t
i ¼ ât

iz
t
iL þ b̂

t

iz
t
iS into (16), the hedonic imputation Paasche index can be

written as

P0t
Paasche ¼

X
i[S t

ât
iz

t
iL þ b̂

t

iz
t
iS

h i

X
i[S t

â0
i zt

iL þ b̂
0ðtÞ

i zt
iS

h i ¼ ŝtð0Þ
L

X
i[S t

ât
iz

t
iLX

i[S t
â0

i zt
iL

þ ŝtð0Þ
S

X
i[S t

b̂
t

iz
t
iS

X
i[S t

b̂
0ðtÞ

i zt
iS

; ð17Þ

where
P

i[S t â
t
iz

t
iL=
P

i[S t â
0
i zt

iL and
P

i[S t b̂
t

iz
t
iS=
P

i[S t b̂
0ðtÞ

i zt
iS are Paasche price indices

of land and structures, which are weighted by ŝtð0Þ
L ¼

P
i[S t â

0
i zt

iL=
P

i[S t â0
i zt

iL þ b̂
0ðtÞ

i zt
iS

h i

and ŝtð0Þ
S ¼

P
i[S t b̂

0

i zt
iS=
P

i[S t â0
i zt

iL þ b̂
0ðtÞ

i zt
iS

h i
. The weights are now of a hybrid nature

and reflect the shares of land and structures in the estimated total value of property sales in

period t, evaluated at base period prices.

A drawback of the above indices is that they are based on the sample of either the base

period or the comparison period t, but not on both samples. When constructing an index

going from 0 to t, the sales in both periods should ideally be taken into account in a

symmetric fashion. The double imputation Fisher price index

P0t
Fisher ¼ P0t

Laspeyres £ P0t
Paasche

h i1
2

ð18Þ

does so by taking the geometric mean of the Laspeyres and Paasche price indices. The

Fisher index formula is not consistent in aggregation, which means that decomposing

the Fisher property index into structures and land components like Equation (15) and

(17) is not possible. In other words, the Fisher property index can only be derived

directly from house price relatives, but not from aggregating the Fisher structures

index and land index, whereas the Laspeyres and Paasche indices can be obtained in

both ways.

Double imputation Laspeyres, Paasche, and Fisher property price indices and the land

price indices based on the more restrictive hedonic Models (4) or (3) are found by

replacing â0
i and ât

i in (15) and (17) by the corresponding postcode-specific estimates â0
k

and ât
k or the city-wide estimates â0 and â t. In the latter case, the estimated land price

index of course equals â t=â0, irrespective of the index number formula used.
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5. Empirical Evidence

5.1. The Data Set

The data set we utilize was provided by the Dutch Association of Real Estate Agents. It

contains residential property sales for a small city (population is around 60,000) in the

northeastern part of the Netherlands, the city of “A”, and covers the first quarter of 1998

to the fourth quarter of 2007. Statistics Netherlands has geocoded the data. We excluded

sales of condominiums and apartments as the treatment of land deserves special

attention in this case. The resulting total number of sales in the data set during the ten-

year period is 6,058, representing approximately 75 per cent of all residential property

transactions in “A”.

Our data set contains information on time of sale, transaction price, a range of

structures characteristics, and land characteristics. We included only three structures

characteristics in our models, that is, usable floor space, type of house and building

period. Note that, because a sample period of ten years is relatively short and building

period is available in decades only, we decided to use building period in the models

rather than approximate age of the structures (from building period in decades and time

of sale). For land, we used plot size and postcode or latitude/longitude. We deleted 43

observations with missing values or prices below EUR 10,000, properties with more

than ten rooms and those with ratios of plot size to structure size (usable floor space)

larger than ten as well as transactions in rural areas. Finally, we removed 32 outliers or

influential observations detected by Cook’s distance and were left with 5,983

observations during the sample period.

Table A1 in the Appendix reports summary statistics by year for the numerical

variables. The average transaction price and the price per square meter of floor space

increased significantly from 1998 to 2007. Average land size and usable floor space were

quite stable over time. The urban area of the city of “A” seems to have expanded along the

east-west axis; the standard deviation of the x coordinate in later years is generally much

larger than that in earlier years.

5.2. Estimation Results for Hedonic Models

Given the small size of the city of “A” and the resulting low number of observations, we

decided to use annual rather than biannual or quarterly data. We estimated three

normalized hedonic models: Model (3), which does not include location and has a fixed

land price across the city (denoted by FLP), Model (4) with nine postcode dummy

variables, hence with postcode-varying land prices (PCLP), and Model (5) with location-

varying land prices (LLP).

The FLP and PCLP models were estimated by OLS, while the MGWR approach

described in Subsection 3.2 was used to estimate the LLP model. When applying the

MGWR approach, a key point is the selection of the bandwidth in Equation (9) to decide

which neighboring transactions will be used in the estimation of the land price for a

specific property. Given that the transactions in our data set are not evenly distributed

across space, using transactions within a certain distance may not be good practice:

properties located in the densely-populated area will have many neighbors while other
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properties will have only few. We therefore constructed the weighting scheme using the

adaptive bi-square function where the bandwidth relates to a fixed number N of nearest

neighbors that are used in the estimation process. When computing the weights given by

Equation (9), h equals the distance to the Nth nearest neighbor and changes with the

target properties. In practice, the choice of N nearest neighbors is equivalent to the choice

of window size, that is the fraction of the sample used. To find the optimal value, we

varied the window size from ten per cent to 95 per cent using a five per cent interval and

selected the size that yielded the lowest CV score as given by Equation (13). Each annual

sample then has a unique optimal window size. The CV scores indicated that a ten per

cent window size was preferred for most of the years, except for 1999, 2000, and 2002,

with an optimal size of 15 per cent, and for 2003, with an optimal size of 30 per cent.

However, for the construction of price indices we prefer the same window size for all

years, in particular because the number of sales is almost evenly spread across the whole

period. So we chose a window size of ten per cent for each year, leading to 60 nearest

neighbors that were used in the estimation of the LLP models.

As an illustration, Table 1 contains the 2007 parameter estimates for the structures

characteristics. Almost all of the estimates differ significantly from zero at the one per cent

level. To some extent they vary across the different models. For example, the FLP

intercept term is relatively high compared to the PCLP and LLP intercepts. Since dummy

variables for houses built after 2000 and for detached houses were not included, the

intercept measures the price in euros of structures per square meter of living space for

detached houses built after 2000. In accordance with a priori expectations, detached

dwellings are more expensive than other types of houses. For all models, there is a clear

tendency for the structures to become less expensive as they are older.

Table 2 contains summary statistics for the estimated price per square meter of land

from the three models. The three average land price series exhibit a similar pattern over

time, which differs substantially from the changes in the average transaction price of the

properties (see Table A1 in the Appendix). After a sharp increase in 1999, the estimated

average land price fluctuated during a couple of years, experienced a dramatic drop in

2003, and then increased again.

As mentioned earlier, a virtue of MGWR approach is that it allows us to plot a

continuous map with estimated prices of land per square meter. To produce the map, we

first divided the city of “A” into 50 (meters) £ 50 (meters) grids and retrieved the

coordinates of each cell, and then estimated the unit land price of each grid based on

their coordinates. For the year 2007, such a map is depicted in Figure 1, where the land

prices were rescaled to the range [0, 1]. The postcode areas are indicated as well. While

the spatial pattern in Figure 1 is largely consistent with the pattern found using the

PCLP model (shown in Figure A1 in the appendix), the land prices estimates from the

LLP model do vary within some of the postcode areas. This suggests that the use of

postcode dummies, as in the PCLP model, is a rather crude strategy to incorporate

spatial variation of land prices.

To formally compare the performance of the three hedonic models, two statistics were

calculated, the Corrected Akaike Information Criterion (AICc) and the Root Mean Square

Error (RMSE). The AICc takes into account the trade-off between goodness of fit and

degrees of freedom. The AICc expressions for the FLP and PCLP models can be found in

Gong and de Haan: Spatial Variations in House Price Indices 705



T
a
b
le

1
.

P
a
ra

m
et

er
es

ti
m

a
te

s
fo

r
st

ru
ct

u
re

s
ch

a
ra

ct
er

is
ti

cs
,

2
0
0
7
. F

L
P

P
C

L
P

L
L

P

In
te

rc
ep

t
1

4
8

0
.7

0
*

*
*

(4
6

.9
3

)
1

4
0

5
.4

1
*

*
*

(5
3

.7
1

)
1

3
9

5
.7

6
*

*
*

(5
7

.5
1

)
B

u
il

d
in

g
p

er
io

d
:

1
9

6
0

–
1

9
7

0
2

3
7

0
.4

8
*

*
*

(2
5

.9
4

)
2

3
8

9
.5

0
*

*
*

(3
6

.6
7

)
2

3
9

8
.4

0
*

*
*

(4
1

.7
5

)
B

u
il

d
in

g
p

er
io

d
:

1
9

7
1

–
1

9
8

0
2

3
1

1
.1

7
*

*
*

(2
3

.3
6

)
2

2
6

1
.5

0
*

*
*

(3
3

.9
6

)
2

3
2

3
.5

0
*

*
*

(4
1

.6
9

)
B

u
il

d
in

g
p

er
io

d
:

1
9

8
1

–
1

9
9

0
2

2
3

2
.9

3
*

*
*

(2
3

.3
7

)
2

1
7

3
.0

8
*

*
*

(3
2

.5
9

)
2

2
2

6
.1

4
*

*
*

(4
2

.8
7

)
B

u
il

d
in

g
p

er
io

d
:

1
9

9
1

–
2

0
0

0
2

5
8

.6
4

*
*

*
(2

1
.6

4
)

2
4

9
.3

4
*

(2
6

.5
5

)
2

1
1

5
.1

3
*

*
*

(3
7

.2
6

)
T

er
ra

ce
2

2
8

5
.6

5
*

*
*

(3
5

.1
7

)
2

2
6

4
.3

4
*

*
*

(3
5

.2
4

)
2

1
8

7
.2

8
*

*
*

(3
7

.3
2

)
C

o
rn

er
2

2
8

1
.3

6
*

*
*

(3
1

.7
7

)
2

2
7

4
.5

4
*

*
*

(3
1

.1
8

)
2

1
9

2
.8

5
*

*
*

(3
4

.0
7

)
S

em
id

et
ac

h
ed

2
1

2
2

.8
9

*
*

(4
7

.9
6

)
2

1
4

9
.5

0
*

*
*

(4
7

.5
7

)
2

9
6

.9
3

*
*

(4
8

.7
3

)
D

u
p

le
x

2
1

5
1

.0
8

*
*

*
(3

0
.6

0
)

2
1

4
7

.2
4

*
*

*
(3

0
.1

7
)

2
1

0
4

.5
6

*
*

*
(3

1
.0

3
)

N
o
te

s:
M

o
d

el
F

L
P

an
d

P
C

L
P

ar
e

es
ti

m
at

ed
b

y
O

L
S

,
w

h
il

e
m

o
d

el
L

L
P

is
es

ti
m

at
ed

u
si

n
g

th
e

M
G

W
R

ap
p

ro
ac

h
.

S
ta

n
d

ar
d

er
ro

rs
ar

e
re

p
o

rt
ed

in
p

ar
en

th
es

es
;

*
*

*
,

*
*

an
d

*
d

en
o

te

si
g
n
ifi

ca
n
ce

at
th

e
1
%

,
5
%

an
d

1
0
%

le
v
el

,
re

sp
ec

ti
v
el

y
.

Journal of Official Statistics706



Hurvich and Tsai (1989); for the LLP model, it is defined by

AICc ¼ 2n ln ðŝÞ þ n ln ð2pÞ þ n
nþ trðLÞ

n 2 2 2 trðLÞ


 �
;

where ŝ is the estimated standard deviation of the error term and trðLÞ the trace of the hat

matrix described in Subsection 3.2. The RMSE measures the variability of the absolute

prediction errors of the models and is given by

RMSE ¼
1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

i

X
ð pi 2 p̂iÞ

2

s
:

Table 3 shows the AICc and RMSE and their differences for the three models. A rule of

thumb states that if the difference in the AICc for two models is larger than three, a

significant difference exists in their performance (Fotheringham et al. 2002). It can be seen

that the PCLP model performs much better than the FLP model in all years, as we would

expect, and in turn that the LLP model outperforms the PCLP model (except for 2003,

when the difference is insignificant). The same ranking is found if the RMSE is used to

assess the various models. These results confirm the earlier finding that land prices vary

across space, both between and within postcode areas.

Although LLP is obviously better suited to model the variation of land prices and to

predict property prices, the PCLP model does a good job too. In several years, for example

in 1998, 1999 and 2003, the inclusion of postcode dummy variables accounts for the major

part of the variance in overall property prices, almost as much as the LLP model does. This

does not come as a surprise though, given that the MGWR approach used for estimating

the land price of a particular property in the LLP model utilizes the information of

neighboring properties, most of which are likely to be located in the same postcode area.

Table 2. Summary statistics for estimated land prices.

PCLP LLP

FLP Mean S.D. Max Median Mean S.D.

1998 116.80 131.50 31.14 231.03 122.66 125.49 28.66
1999 154.64 178.50 34.85 223.66 174.07 167.77 30.39
2000 239.77 239.41 36.24 319.32 251.34 241.83 44.27
2001 214.54 235.58 47.59 295.01 229.52 226.70 48.77
2002 234.77 245.11 38.41 323.63 255.05 242.23 40.89
2003 166.07 185.11 44.23 248.23 179.93 172.26 44.55
2004 186.40 197.19 29.75 254.20 197.70 195.41 33.78
2005 226.13 224.11 36.55 299.74 214.19 205.89 35.17
2006 202.84 195.77 30.85 274.24 207.43 201.27 32.05
2007 214.87 236.73 27.96 286.91 235.07 229.25 30.99

Notes: For FLP, the land price estimates are reported. For PCLP, the columns show the weighted mean and

standard deviation of the estimated land prices for 9 postcode areas where the weights are equal to the share of

transactions within each postcode area. For LLP, the columns provide summary statistics for the land price

estimates of all transacted properties.
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5.3. Hedonic Imputation Price Indices

Changes in average property prices, and changes in their land and structure components,

are affected by compositional change in the traded properties. Our hedonic house price

indices and the land and structures components control for this. We estimated chained

rather than direct price indices because the value shares of the land and structures will then

be updated at an annual frequency. A drawback of chaining is that the resulting indices

cannot be exactly decomposed because they are not consistent in aggregation.

In Figures 2–4, the estimated double imputation hedonic Laspeyres, Paasche, and

Fisher price indices for the overall property are plotted, based on the three models (FLP,

PCLP, and LLP). A comparison of Figures 2 and 3 shows that, for each model, the chained

Laspeyres index sits above the Paasche index, as expected. The Laspeyres and Paasche

indices based on PCLP and LLP are very similar; for the Laspeyres index, the difference

can even hardly be noticed. This result is in accordance with our previous finding that the

PCLP model captures the spatial variation of land prices reasonably well.

Not using location information at all does make a difference, at least for the Laspeyres

and Paasche house price indices. The FLP-based Laspeyres and Paasche indices seem to

be biased downwards and upwards, respectively. However, the biases almost cancel out in

the Fisher indices, as can be seen in Figure 4: the FLP-based Fisher index is very similar to

the PCLP-based and LLP-based Fisher indices. In other words, the hedonic imputation

Fisher house price index is insensitive to the treatment of location in the hedonic model,

which is a surprising result.

Legend
Rescaled land price

0.0000–0.3330
0.3331–0.4743
0.4744–0.6227

0.7716–1.0000
0.6228–0.7715

N

0 0.5 1 2
Km

Fig. 1. Price of land per square meter, 2007.
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Figure 5 plots the Fisher price indices for land. The PCLP- and LLP-based indices,

which explicitly account for location, are similar, though the LLP-based index is less

volatile, at least during 2003–2007. The FLP-based index seems to be significantly

upward biased. For example, between 1999 and 2000 as well as between 2003 and 2005,

the FLP-based index rises much faster than the other two indices. A possible explanation

is the following. Suppose specific locational attributes improved over time or that

consumers’ preferences changed towards locations with specific characteristics. This will

have caused land prices in some areas to appreciate significantly relative to other areas. If,

as in the FLP model, such heterogeneity is not accounted for, bias in the average estimated

land price is likely to occur. The treatment of location in the FLP model may not only have

produced biased levels of land prices, it might easily have led to a biased trend as well.

100
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1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

Paasche index 

FLP PCLP LLP

Fig. 3. Hedonic imputation Paasche house price index.
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Fig. 2. Hedonic imputation Laspeyres house price index.
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Figure 6 shows the Fisher price indices for structures based on the three models. Again,

the PCLP-based and LLP-based indices are similar. The FLP-based index sits below these

two indices, which is not surprising given the above results for land. Since the hedonic

model in this paper leaves out many structural characteristics, which may be correlated

with location, the decomposition of house price index is not strictly orthogonal. In this

sense, upward bias in estimated land prices using the FLP model is therefore likely to

result in downward bias in structures prices.

Figure 7 shows the LLP-based value share estimates for both structures and land. Prior

to 2003, these shares are quite volatile, but from 2003 on they remain fairly constant. The

average estimated shares for structures and land across the entire sample period are 0.67

and 0.33. The FLP- and PCLP-based shares exhibit similar patterns and levels; the value
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Fig. 4. Hedonic imputation Fisher house price index.
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Fig. 5. Hedonic imputation Fisher price indices for land.
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shares for structures are 0.68 and 0.66, respectively, hence for land 0.32 and 0.34. Given

that the estimated value share of structures is twice as large as that of land, overall house

price indices are affected most by changes in structures prices. Yet, combining Figures 4,

5, 6, and 7 suggests that the increase in house prices between 1998 and 2001 was driven

mainly by the increase of land prices: both the (average) price of land and its value share

show a sharp increase.

5.4. Discussion

Figures 5, 6, and 7 raise a number of issues. The first issue is the volatility of the land and

structures price indices. Volatile series can be expected with sparse data (without

95
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Fisher indices for structure & construction cost index  
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Fig. 6. Hedonic imputation Fisher price indices for structures and official construction cost index.
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Fig. 7. Estimated value shares of land and structures, LLP model.
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smoothing). Another potential cause is multicollinearity. Diewert et al. (2015) found that

multicollinearity between land and structure size led to price changes for land and

structures which consistently had opposite signs. To deal with this type of

multicollinearity, they incorporated exogenous information in the hedonic models; see

also (e.g., Diewert et al. 2009; Diewert and Shimizu 2013; Francke and van de Minne

2017). More specifically, their (final) models did not endogenously determine a price

index of structures but used the published construction cost index as the measure of

structures price change. We did not follow their approach for two reasons: an

endogenously estimated trend in the price of structures does not necessarily have to be

equal to that of construction costs, and multicollinearity does not seem to be the most

important issue.

In Figure 8, the LLP-based Fisher price indices for land and structures from Figures 5

and 6 are copied. In some years, for example in 2003 when the land price index suddenly

falls and starts to sit below the structures price index, the price changes for land and

structures have opposite signs, but in other years the price changes are in the same

direction. The variance inflation factor (VIF) for the ratio of plot size to structure size did

not point to significant multicollinearity either. Further, there is a considerable amount of

variation in these ratios in our data set; see Table A1. We therefore suspect that

multicollinearity is not the main issue.

The second issue is whether the trends of the (Fisher) price indices for land and

structures are plausible. For land, this can hardly be checked since information on the price

change of land covering our sample period is not available for the Netherlands. Rambaldi

et al. (2015), using an unobserved component approach, estimated an endogenous monthly

land price index for the city of “A” from August 2003 to June 2008, denoted by RMF

index. We converted their series into an annual series by averaging the monthly indices,

rebased the resulting index to 2004, and then spliced it on to the LLP land price index for

2004 (see Figure 5). Our LLP hedonic land price index in 2005, 2006, and 2007 is very

similar to the RMF index, which is reassuring, except that the latter index is smoother.
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Fig. 8. Chained Fisher price indices for land and structures, LLP model.
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For structures we use the nationwide construction cost index (CCI) for new dwellings

published by Statistics Netherlands as a benchmark. This price index, rebased to

1998¼100, is shown in Figure 6 as well. Our hedonic structures price indices appear to

rise much faster than the construction cost index. As mentioned above, a construction cost

index does not necessarily have to coincide with an implicit price index for structures

derived from a hedonic model. In a competitive market, where developers also have

sufficient time to meet demand, construction cost is believed to be equal to the market

value of the structure (Davis and Heathcote 2007; Davis and Palumbo 2008). However, in

reality the market is characterized by restrictions on new construction and high costs of

replacing old structures by new ones. In this case, a markup on construction costs can be

expected. During a housing boom, like our study period, the mark up may well be growing

over time. Kuminoff and Pope (2013), who estimated land values for US metropolitan

areas using a hedonic approach, indeed found that in some (though not all) areas the

increase in the market value of the structures exceeded the increase in replacement costs

in the booming period.

Omitted variables bias, resulting in quality-change bias, may have played a role as well.

We included only a few structures characteristics in the hedonic models. Unless they

would be highly collinear with included variables, adding characteristics will lead to better

quality adjustment for structures and lower the hedonic price indices for structures if the

average quality of structures improved over time.

Importantly, the major part of the differences between our hedonic indices and the

construction cost index stems from a big increase in our indices in 2003; as of 2003, the

deviation is relatively small. We reproduced the RMF price index for structures estimated

by Rambaldi et al. (2015) in Figure 6 and, as was the case for land, their index is very

similar to our LLP structures price index in 2005, 2006, and 2007.

The sudden increase in estimated structures prices and drop in estimated land prices in

2003 are worth examining in more detail. At first glance, sample selection bias might

matter, for example if the spatial distribution of transacted properties in 2003 was very

different from that in other years, or if unique properties, like properties with a very large

of plot size to structure size ratios, were transacted in 2003. However, after a careful check

of the data, we exclude this possibility. It could be that the 2003 results are “real” in the

sense that a shock affected households’ decision-making in the Dutch housing market or

perhaps in the local market of “A”. This is quite plausible given that the house price

appreciation rate suddenly dropped from above ten per cent to around four per cent at the

time around 2002 or 2003. But it is not clear to us what that shock might have been.

The third issue concerns the low share of land in the value of properties sold, which was

estimated at roughly one third across the sample period. Rambaldi et al. (2015) estimated

the land value share for the city of “A” during the period 2003–2008 between 0.30 and

0.40. van de Minne and Francke (2012) estimated the share of land for properties

(excluding apartments/condominiums) sold during 2003–2010 in the Dutch city of ‘s

Hertogenbosch at 0.39 on average. In a follow-up study (Francke and van de Minne 2017),

where they made a distinction between the part of the land plot that the structure sits on

and the part used as gardens, the estimate was almost 0.50. It is not unreasonable to find

that the value share of land for the city of “A” is lower than that for ‘s Hertogenbosch. The

city of “A” lies in a less prosperous part of the Netherlands with fewer amenities, and we
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expect this to have a downward effect on the price of land but not on the price of structures,

hence on the value share of land.

De Groot et al. (2015), who also used hedonic modeling to decompose property values

into land and structures components, estimated the price of land for most Dutch cities,

though unfortunately not for “A”. They found substantial cross-city differences. For

example, the price per square meter of land in 2005 was estimated at EUR 717 for the

capital city of Amsterdam, EUR 308 for ‘s-Hertogenbosch, and EUR 184 for

Leeuwarden. Like “A”, Leeuwarden is a city in the northeastern part of the Netherlands

but bigger. In light of their findings, our MGWR estimates of the average price of land

for the city of “A”, EUR 206 in 2005 (Table 2), and the value share of land are not

surprisingly low after all.

6. Summary and Conclusions

Hedonic house price models used for constructing house price indices usually do not

explicitly model the value of land. In the present article, we assumed that the value of

location is capitalized into land and attempted to account for spatial variation of land

prices in the construction of hedonic imputation house price indices. We linearized the

‘builder’s model’ proposed by Diewert et al. (2015), allowed the price of land to vary

across individual properties, and estimated the model for the normalized property price

(the property price per square meter of living space) by MGWR, a semi-parametric

method, on annual data for the Dutch city of “A”. We then constructed chained imputation

Laspeyres, Paasche and Fisher indices, and compared these indices with price indices

based on more restrictive models, that is a model where land prices vary across postcode

areas and a model with no variation in land prices, both estimated by OLS.

The Fisher house price indices were quite insensitive to the choice of model, but the

Laspeyres and Paasche indices for the ‘fixed’ land price model differed from those for the

models where location was explicitly included. The use of postcode area dummy variables

produced price indices very similar to indices obtained by MGWR. Hill and Scholz

(2017), who treated location as a ‘separate characteristic’ in their hedonic models in that

they estimated property-specific shift terms for the overall property price, also concluded

that the use of geocoded information did not significantly improve hedonic imputation

house price indices compared to indices based on models with postcode dummy variables.

This result is reassuring for statistical agencies that do not have the expertise or resources

to apply more sophisticated methods. It should be noted that the similarity between PCLP-

based and LLP-based house price indices could also be due to the small size and

homogeneity of the city “A” where relatively little variation of land prices can be

expected.

Apart from being able to capture spatial variation of land prices at the property level, the

MGWR-based LLP model has two additional advantages. A potential problem with the

PCLP model is that if a large number of postcode areas are distinguished, observations in

some areas may not be available, leading to difficulties in the construction of hedonic

imputation price indices. The LLP model deals with this problem by using data of the

nearest neighbors which are not necessarily confined to a particular postcode area. Most

importantly, The LLP model can generate a continuous map of land prices for a city,
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which will be more informative than a discrete map that only shows differences between

postcode areas.

For some purposes, separate price indices for land and structures are needed. As was

demonstrated already by Diewert et al. (2015), the decomposition into land and structures

using hedonic modeling is not straightforward and raises several statistical and functional

form issues. First, our LLP-based price indices of land and structures for the city of “A”

are a bit volatile, compared to indices produced by smoothing methods such as the

unobserved component approach (Rambaldi et al. 2015). The volatility may be due to

sparse data and also to multicollinearity (though we believe the latter is less important).

Second, the structures price index increases faster than the official construction cost index,

perhaps due a failure to fully control for changes in structures characteristics. Third, the

estimated large drop in land prices and increase in structures prices in 2003 seems a bit

unusual. While these results could be caused by methodological issues, they could also

reflect the impact of a housing market shock which affected households’ preferences.

Finally, at first glance, the estimated value share of land seems to be rather low. The

above-mentioned issues may have played a role here, but the low land share could also be

a real phenomenon: households may not value a square meter of land in the city of “A” as

much as they do in more prosperous cities with more and better amenities. In future work it

would be useful to re-examine our models and compare the results for the city of “A” with

those for bigger cities in the western part of the Netherlands, like Amsterdam, Rotterdam

or The Hague. Having more observations might also enable us to estimate biannual or even

quarterly price indices.

We did not address functional form problems. The original ‘builder’s model’ is

nonlinear, in particular due to the treatment of net depreciation. We linearized the model,

which basically means we ignored interaction terms, and replaced age by building period

in the empirical estimation. Another potential type of misspecification arises from the

linear relation between land price and plot size in our models. As Diewert et al. (2015),

Francke and van de Minne (2017) and others have argued, the marginal price of land tends

to decrease with plot size. Diewert et al. (2015) accounted for this form of nonlinearity by

using linear splines. In future work we may modify our normalized models by using linear

splines as well and estimate different parameters for the plot size to structure size ratio for

different categories of lot size or by explicitly specifying some nonlinear function of this

ratio. Furthermore, it would be useful to explicitly allow for net depreciation, as in the

original models.
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Accounting for Complex Sampling in Survey Estimation:
A Review of Current Software Tools

Brady T. West1, Joseph W. Sakshaug2, and Guy Alain S. Aurelien3

In this article, we review current state-of-the art software enabling statisticians to apply
design-based, model-based, and so-called “hybrid” approaches to the analysis of complex
sample survey data. We present brief overviews of the similarities and differences between
these alternative approaches, and then focus on software tools that are presently available for
implementing each approach. We conclude with a summary of directions for future software
development in this area.

Key words: Complex sample survey data; statistical software; design-based analysis; model-
based analysis; multilevel modeling.

1. Introduction

Secondary analysis of survey data arising from complex sample designs is a ubiquitous

research methodology in many applied fields. The “complex” terminology refers to

features of sample designs that deviate from a design featuring simple random sampling

with replacement, which in a finite population sampling framework is in accord with the

theoretical notion of independent and identically distributed data. These complex design

features, which generally include unequal probabilities of selection into the sample,

cluster sampling, and stratification of the target population prior to sampling (Heeringa

et al. 2017), need to be accounted for by secondary data analysts and applied statisticians

who have many tools at their disposal for analyzing these types of data sets. A failure to

account for these design features in analysis can lead to substantially biased inferences

(e.g., Skinner et al. 1989; West et al. 2016; Heeringa et al. 2017). Over a period of more

than 80 years, many different methods have been proposed by statisticians and survey

methodologists for correctly accounting for these sample design features when performing

survey data analysis.

The variety of approaches discussed and proposed in the survey statistics literature can

generally be grouped into two main categories: design-based analysis, where the
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randomized selection mechanism underlying the probability sampling governs all

subsequent inference, and model-based analysis, where all inference depends on

probability models posited by the analyst (Hansen et al. 1983). More recently (e.g., Little

2015), statisticians have advocated “hybrid” approaches that combine optimal properties

of model-based and design-based approaches. A statistician responsible for analyzing

survey data therefore needs to select one or more of these approaches to employ,

depending on the objectives of a researcher’s study and the parameters of scientific

interest. And, once an approach has been selected, the statistician needs to identify

software that implements the selected approach. In the present article, we aim to provide

statisticians and survey researchers with an up-to-date review of state-of-the-art statistical

software capable of implementing each of these different approaches, depending on the

specific analysis of interest.

When thinking about these alternative approaches and the software tools implementing

them, one needs to consider the objectives of a given analysis of survey data. Is one merely

interested in generating descriptive inferences (means, proportions, totals, etc.), or is one

also interested in more “analytic” objectives (regression coefficients, odds ratios, etc.)?

The identification of appropriate software requires a cross-classification of “objective”

(descriptive vs. analytic) and “approach” (design-based vs. model-based); see Table 1. We

note that so-called “hybrid” approaches to analytic studies combine features of both

design-based and model-based approaches. In the discussion moving forward, we assume

that a formal probability sampling plan has been used to select a given sample from a finite

population, and that the analyst is weighing different analysis approaches with this sample

in hand. We do not consider software for analyzing data from non-probability samples,

which are currently receiving a great deal of research attention (e.g., Baker et al. 2013;

Elliott and Valliant 2017), in this article.

This article reviews state-of-the-art software tools in each of the five domains indicated

in Table 1. Modern survey statisticians need to speak multiple computing languages in

general, understanding the pros and cons of each, and effectively communicate software

alternatives for clients who desire to analyze survey data. Not all software packages share

the same capabilities for analyzing complex sample survey data, and we aim to review the

state of the art in this regard. The article is structured as follows. In each of Sections 2

through 6, we first present a brief overview of one of the five approaches in Table 1, and

then review current software tools that are available for implementing that particular

approach. We then conclude in Section 7 with a summary of important directions for

future software development in this area.

Table 1. Five possible combinations of research objectives and analysis approaches, to guide a review of

current software for the analysis of complex sample survey data.

Design-based
 approaches 

Model-based
 approaches 

Descriptive objectives 1 2

Analytic objectives 3 4
“Hybrid” approaches (5)
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2. Descriptive Objectives: Design-Based Approaches

2.1. Weighted Estimation

When analysts employ design-based approaches to the descriptive analysis of survey data,

their analytic objectives generally involve design-unbiased estimation (i.e., estimation that

is unbiased with respect to the probability sample design used) of simple descriptive

parameters characterizing a finite target population, such as means, proportions, totals,

percentiles, and row or column percentages in contingency tables. These approaches

generally feature weighted estimation of the parameters of interest, in addition to design-

unbiased, nonparametric estimation of sampling variance for the weighted estimates and

design-adjusted tests of associations between variables (e.g., Rao and Scott 1984). These

approaches are quite popular among nonstatisticians because they are widely implemented

in different statistical software packages, and they yield robust population inferences that

do not require parametric assumptions regarding the variables of interest.

In general, the respondent weights computed by organizations collecting and producing

survey data account for three key aspects of the sample design and the data collection:

1) unequal probabilities of selection into the sample for different population elements,

2) adjustment for nonresponse during data collection, and 3) calibration of the (possibly

adjusted) respondent weights to known population totals (Kish 1965; Kalton and

Flores-Cervantes 2003; Lohr 2009; Valliant et al. 2013; Lavallee and Beaumont 2016;

Heeringa et al. 2017; Haziza and Beaumont 2017). The first element of a respondent

weight is generally referred to as a design weight. The design weight for a given sampled

unit is defined as the inverse of the probability of inclusion for that unit in a given sample,

and these design weights can be computed for all sampled units in a probability sample

(where every population element has a known nonzero probability of inclusion), including

respondents and nonrespondents. Inference in design-based approaches is driven by these

probabilities of selection, and these components of the weight ensure that estimates

computed using the weights appropriately reflect the probability of selection for a given

case from a specified target population. Under an extremely unusual scenario where 100

percent of the sampled population units respond to a survey request, one could compute

population estimates of target parameters that are unbiased with respect to the sample

design using this single design weight.

Unfortunately, not all sampled population units will respond to a survey request. If

nonresponding units differ systematically from responding units in terms of key features of

interest, nonresponse bias in estimates computed using design-based approaches may

result. For this reason, the design weights are often adjusted to account for differential

nonresponse among different population subgroups, treating the probability of responding

as an additional stochastic stage of sample selection (Cassel et al. 1983; Särndal and

Swensson 1987; Ekholm and Laaksonen 1991), and multiplying the design weights for

responding units by the inverse of their response probability. Because these probabilities

of response are not known in practice, they need to be estimated. Given auxiliary data for

respondents and nonrespondents that are generally predictive of both the probability of

responding and key survey variables (Lessler and Kalsbeek 1992; Bethlehem 2002; Kalton

and Flores-Cervantes 2003; Little and Vartivarian 2005; Beaumont 2005; Groves 2006;
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Kreuter et al. 2010), the literature provides extensive guidance on optimal methods for

estimating these response probabilities and using them to adjust the design weights for

nonresponse (Little 1986; Ekholm and Laaksonen 1991; Eltinge and Yansaneh 1997; Grau

et al. 2006; Wun et al. 2007; Haziza and Beaumont 2007; West 2009; Kott 2012; Valliant

et al. 2013; Brick 2013; Flores-Cervantes and Brick 2016).

The next (and generally final) step in computing adjusted design weights is to calibrate

the (nonresponse adjusted) weights for responding units to sum to known population

control totals, ensuring sound population representation in terms of the marginal

distributions of (generally sociodemographic) population characteristics. There is a vast

literature on this topic (Deville and Särndal 1992; Lundström and Särndal 1999; Rao 2005;

Kott 2006; Kim and Park 2010; Kott 2011), and one can use a variety of approaches to

perform calibration adjustments in practice, including poststratification (Holt and Smith

1979), raking (Oh and Scheuren 1983; Deville et al. 1993), and generalized regression

estimation (Valliant et al. 2000), which can utilize population information for both

continuous and categorical variables. Kott and Liao (2012) outline a calibration procedure

implemented in the WTADJUST procedure of the SUDAAN software that builds on the

developments in prior calibration literature to provide “double protection” against

misspecification of either a substantive model or a response model (based on the auxiliary

variables used in the calibration adjustment) when using calibration for nonresponse

adjustment.

The WesVar software produced by Westat (https://www.westat.com/our-work/

information-systems/wesvarw-support), the calibrate() function in the R survey

package (Lumley 2010), the ipfraking user-written package in Stata (Kolenikov

2014), the sreweight user-written command in Stata (Pacifico 2014), and the

CALMAR 2 software developed by Le Guennec and Sautory (2002) are also capable of

computing calibration adjustments to design weights based on the methods described

above, given population information on the chosen auxiliary variables (see http://

vesselinov.com/CalmarEngDoc.pdf for more details on the various calibration options in

the CALMAR 2 software). The final calibrated weights may then be trimmed to minimize

the impact of weight variance on the precision of weighted survey estimates (Potter 1990;

Elliott and Little 2000; Kalton and Flores-Cervantes 2003; Beaumont 2008; see also

Asparouhov and Muthén 2007 for optimal weight trimming approaches using the Mplus

software). The weights that result from this process then need to be input by analysts into

software procedures enabling design-unbiased point estimation of population parameters

(see Subsection 2.4).

We note that the final overall respondent weights that result from this three-step

process are essentially adjusted versions of the design weights, but software procedures

enabling design-based analysis treat these final respondent weights as if they were design

weights that are “known” with certainty. Because estimates of response propensity are

often used to adjust the design weights for unit nonresponse, this uncertainty in the final

respondent weights should be accounted for in variance estimation. This is best handled

using replication techniques, as outlined in Subsection 2.2 below, where the adjustment

process (based on estimates) can be repeated for each replicate sample, and the variance

in the adjustments across replicates is incorporated into the final variance estimates

(Valliant 2004).
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2.2. Variance Estimation

Taylor Series Linearization (TSL) is a design-based variance estimation technique that is

widely implemented in different statistical software procedures and often serves as a default

variance estimation procedure in these procedures when applying design-based approaches

to complex samples. The basic idea behind TSL is to use a Taylor series expansion to

approximate a non-linear estimator (e.g., a ratio mean, a ratio estimator of total, a regression

parameter, a correlation coefficient) using a linear function of estimated sample totals. Once

the nonlinear estimator is “linearized,” then unbiased, design-based variance estimation

formulae reflecting the complex sampling features (stratification, cluster sampling,

weighting) can be applied to estimate the variance of the linear function of sample totals. The

variance of the linearized estimator is estimated within each stratum (if applicable), and the

stratum variances are combined to produce the total variance of the estimator. Wolter (2007,

Chapter 6) reviews the TSL literature and provides technical details.

There are two important issues that analysts need to handle carefully when employing

TSL for design-based variance estimation: subpopulation analysis, and “singleton”

sampling clusters. First, considering subpopulation analysis, complex sample designs

often employ the sampling of clusters of population elements within sampling strata for

reasons of cost efficiency. The clusters sampled at the first stage of random selection

(possibly within strata) are often referred to as primary sampling units, or PSUs, and these

could be geographic areas in area probability samples, naturally occurring groups of

population elements (e.g., colleges), or individual sampled elements if no cluster sampling

is employed (software enabling design-based analysis will estimate variances under this

assumption if no cluster ID variables are indicated). When analyzing subpopulations (e.g.,

elderly males) and using TSL for variance estimation, analysts need to explicitly form

binary variables indicating which sampled cases fall into the subpopulation of interest, and

use these indicators for variance estimation (which is often facilitated by “subpopulation”

options in the different software procedures, e.g., the subpop() option in Stata). This

approach enables PSUs with no sample from the subpopulation to still be accounted for in

the variance estimation (in that they contribute totals of zero for the variables of interest),

rather than being removed entirely. The physical removal of entire PSUs due to the

deletion of cases that do not belong to a subpopulation can lead to scenarios where

sampling strata only have a single PSU present, preventing variance estimation within that

stratum when using TSL (more on this below). See West et al. (2008) and Heeringa et al.

(2017) for more on this TSL-specific issue, which becomes irrelevant when using

replication methods for variance estimation (as clusters with no subpopulation sample

simply do not contribute to replicate estimates).

Second, considering the “singleton” sampling cluster issue, some PSUs may also be

selected with certainty, meaning (in a design-based setting) that they would be included in

every possible hypothetical sample that might be selected; that is, they have a probability

of inclusion of one. When employing TSL for variance estimation, there need to be at least

two PSUs present within a sampling stratum to estimate the contribution of that stratum to

the overall sampling variance, and certainty PSUs often define their own stratum (e.g., the

city of New York in the United States). Data producers can facilitate variance estimation

using TSL by dividing the sampled elements in a certainty PSU into multiple random
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groups (Wolter 2007), and providing codes for these “pseudo clusters” in a public-use data

set. If a data user for some reason encounters a stratum with only a single PSU code present in

such a data set, most design-based software will provide some form of ad-hoc solution for

estimating the contribution of that stratum to the overall sampling variance. For example,

Stata provides users with several choices via the singleunit() option in the svyset

command, which is used to identify PSUs for variance estimation; SUDAAN provides the

MISSUNIT option (see http://sudaansupport.rti.org/sudaan/page.cfm/Theory); and the

survey package in R provides the user with a variety of global options (see http://faculty.

washington.edu/tlumley/old-survey/exmample-lonely.html for examples).

Replication methods represent a second nonparametric design-based approach to

estimating the variance of a weighted estimate. In general, these methods involve dividing

the full sample into various subsamples, calculating an estimate of the parameter of

interest within each subsample, and calculating the variation among the subsample

estimates to estimate the variance of the full sample estimate. These methods can be

implemented in various forms, including the random groups method (RGM), Jackknife

repeated replication (JRR), balanced repeated replication (BRR), bootstrapping, and

various modifications of these methods (Wolter 2007; Shao and Tu 1995). A key

advantage of these replication methods is that they do not require the linearization of a

nonlinear estimator (Krewski and Rao 1981), and can generally be applied to many

different forms of estimators. These methods also enable survey organizations to

disseminate public-use survey data sets including (adjusted) weights for each of the

replicate samples in lieu of stratum and PSU codes, minimizing the risk of identifying

survey respondents within small PSUs. This requires the data user to employ variance

estimation software that supports the specific type of replication weighting scheme used

by the survey organization, and nearly all major statistical software packages with

procedures enabling variance estimation for complex samples currently enable the use of

these “replicate weights” (e.g., SAS, Stata, R). At present, the bootstrapping approach can

be applied to complex samples in Stata (Kolenikov 2010), R (Lumley 2010), Mplus

(Asparouhov and Muthén 2010), WesVar, SAS, and SUDAAN (Gagne et al. 2014).

So how does a survey statistician choose which variance estimation procedure to use

when employing a particular software procedure for design-based descriptive analysis?

Numerous studies have compared the performance of these alternative variance estimation

methods under different complex sample designs. These include Kish and Frankel (1968,

1970, 1974), Frankel (1971), Bean (1975), Campbell and Meyer (1978), Lemeshow and

Levy (1978), Shah et al. (1977), Rao and Wu (1985, 1987, 1988), Kovar et al. (1988),

Judkins (1990), Shao and Sitter (1996), Korn and Graubard (1999), Canty and Davison

(1999), Rao and Shao (1999), Shao (2003), and Heeringa et al. (2017). These studies have

consistently demonstrated that for many common types of survey estimates (e.g., means,

proportions, regression coefficients), all methods perform well and differences between the

methods are negligible. Exceptions include small samples, where linearization can be

unstable and perform worse than replication methods, and quantiles, where alternative

forms of linearization are needed given that quantiles cannot generally be approximated

using smooth functions of population totals or means (Woodruff 1952; Francisco and Fuller

1991; Sitter and Wu 2001). Many of the studies above demonstrate that BRR and the

bootstrap perform well for medians and functions of quantiles. In addition, linearization
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methods covering all possible nonlinear estimators (e.g., correlation coefficients) and

complex sample designs may not be readily programmed in all software packages.

2.3. Calculation of Degrees of Freedom for Confidence Intervals

Analysts often desire to form confidence intervals for population parameters when

applying design-based methods to complex samples. These intervals, which under an

assumption of large-sample normality of the sampling distribution for the weighted

estimator rely on a critical t-value, also require specification of the appropriate degrees of

freedom for the critical t-value. At present, most statistical software computes these

degrees of freedom based on the aforementioned assumption of large-sample normality,

setting the degrees of freedom equal to the number of clusters used for variance estimation

minus the number of strata (Heeringa et al. 2017). While this approach makes intuitive

sense, given that design-based variance estimates are driven by between-cluster variance

within strata and the standard deviation of the sampling distribution is estimated rather

than known, it is heavily dependent on the aforementioned assumption and can be severely

limited in certain cases (Valliant and Rust 2010). Valliant and Rust (2010) propose an

alternative estimator of the degrees of freedom for the critical t-value and show that it

leads to improved coverage in some cases, but more work in this area, including sensitivity

analyses, is certainly needed. Furthermore, the alternative estimator proposed by Valliant

and Rust has yet to make its way into any statistical software.

Dean and Pagano (2015) provide a recent review of several different methods for

computing confidence intervals for estimated proportions in the descriptive context, with

and without adjustment for the degrees of freedom according to a complex sample design.

Via simulation, these authors found support for use of the logit, Wilson, Jeffreys, and

Agresti-Coull intervals (Agresti and Coull 1998) in complex samples, especially when

proportions are very small or very large. Some of these methods (e.g., the logit approach)

are readily implemented in existing software (e.g., the svy: tab command in Stata).

While the other methods may not be as widely implemented, these authors provide clear

guidance on their computation in practice.

2.4. Software

We now consider state-of-the-art statistical software that is currently available for

implementing the design-based descriptive estimation and inference approaches outlined

above when analyzing complex sample survey data. Table 2 provides a list of presently

available software procedures and profiles their capabilities, in particular considering

1) percentile estimation, 2) variance estimation options, and 3) subpopulation analysis. All

procedures in Table 2 enable appropriate weighted estimation of various descriptive

parameters. A key take-away message from Table 2 is that weighted estimation of

percentiles, combined with design-based variance estimation for the weighted estimates

based on the aforementioned approaches, is not yet widely implemented across the

different software packages. Aside from this, most software packages offer similar

capabilities for design-based descriptive analyses of complex sample survey data.

Examples of the use of syntax for many of these procedures can be found at http://www.

isr.umich.edu/src/smp/asda.
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3. Descriptive Objectives: Model-Based Approaches

3.1. Overview

While descriptive inferences based on complex sample survey data sets generally tend to

arise from design-based approaches (Little 2004), model-based approaches to descriptive

inference have their relative merits as well. Design-based approaches can be heavily

affected by non-sampling errors, such as unit nonresponse, given that they are governed

by knowledge of sampling probabilities for all cases included in a sample. Unlike

design-based approaches, which are based on the notion of random sampling from a

finite population, strictly model-based approaches assume that some superpopulation

model exists, from which the finite populations in the design-based setting are actually

sampled. Interest lies in unbiased estimation of the parameters of that superpopulation

model. Model-based approaches to making descriptive inference generally involve the

specification of a probability model for a variable (or variables) of interest (where the

variable for which descriptive inference is desired is a dependent variable), estimation of

the descriptive parameters of interest (e.g., means) defined by the model, and estimation

of the variance of that estimate with respect to the specified model (Binder and Roberts

2003).

One can also employ model-based prediction approaches when making descriptive

inferences about finite populations. In this case, various auxiliary predictors available for

the larger population (usually in aggregate form) may be included in the specification of

the probability model for the variable of interest. In the case of complex sampling, these

auxiliary predictors can and should generally include some function of the probability of

selection, in addition to stratum identifiers (if these design features are relevant and

informative about the variable of interest; Hansen et al. 1983; Little 2004). In these cases,

predictions are computed on the variable of interest for nonsampled cases or

nonrespondents, using the auxiliary information and parameter estimates in the specified

model, and estimates are computed by combining the observed sample data on the

dependent variable and the model-based predictions for nonsampled or nonresponding

cases (Valliant et al. 2000). Variances of the resulting estimates are then computed with

respect to the properties of the model used. Predictions for the nonsampled cases and

measures of uncertainty for the descriptive parameter of interest may also be computed

based on Bayesian methods (Little 2003), where informative design features should again

be included in the specification of the model (likelihood) for the available data.

Särndal et al. (1992) describe an alternative approach that combines elements of design-

based inference and model-based inference known as model-assisted inference, where

design-based estimates of descriptive parameters (e.g., totals) are adjusted given known

auxiliary variables for the entire population and their relationships with the variable of

interest, and variances of the adjusted estimates are computed with respect to the

randomization distribution (as in design-based inference). The generalized regression

(GREG) estimator is a popular example of the model-assisted approach to making

descriptive inferences from complex sample survey data. Valliant et al. (2000) provide a

comprehensive theoretical overview of related model-based prediction approaches to the

descriptive analysis of survey data.
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Best practices in this area generally focus on how probabilities of selection/weights

should be accounted for in the models, how to make the most efficient use of auxiliary

information available for a finite population, and how to handle nonresponse. For example,

Elliott and Little (2000) discuss efficient model-based Bayesian approaches to

accommodating sampling weights in descriptive inference when large or highly-variable

survey weights may cause design-based approaches to become very inefficient. Little

(2004) presented a model-based approach to descriptive inference combining precision

weighting and probability weighting in a Bayesian framework. This was further expanded

on in Little (2012), who advocated “Calibrated Bayes” (CB) as a framework for survey

inference. The basic idea behind CB is to use a Bayesian model-based approach to produce

inferences that have good design-based properties. The CB approach is intended to

combine the strengths of both design-based and model-based perspectives by explicitly

accounting for survey design information in the model and using only weak prior

distributions that allow the observed data to dominate the inference. Inferences are

calibrated in the sense that they produce posterior credibility intervals that correspond to

their nominal design-based coverage in repeated sampling (Little 2006, 2011, 2012, 2015).

The incorporation of all key survey design features in the model is paramount to this

approach to minimize the effect of model misspecification.

Peress (2010) discussed the use of selection models in a model-based approach to

account for nonignorable nonresponse as a part of the modeling process in estimating a

proportion. Using a related approach, Barnighausen et al. (2011) applied a Heckman-type

bivariate probit selection model in estimating HIV prevalence estimates that adjusted for

nonignorable nonresponse based on a set of selection variables correlated with survey

participation. More recently, West and McCabe (2017) demonstrated how this approach

can be implemented using the Stata software to make descriptive inferences in a

longitudinal context, where nonignorable attrition may be occurring in the future waves of

a panel survey.

3.2. Software

Regarding available software for implementing these model-based approaches to

descriptive inference in surveys, there are not nearly as many “canned” software

procedures implementing these approaches as there are for design-based approaches,

meaning that statisticians would generally need to write code implementing these

approaches for nonstatistical clients. For example, Zheng and Little (2003), Little and

Zheng (2007), and Zangeneh and Little (2015) demonstrate the improvements in estimates

of population totals when using a penalized spline regression model over a design-based

Horvitz-Thompson approach when the sizes of nonsampled units are either known or

unknown, and error variances in the model of interest may be heteroscedastic. Zangeneh

and Little (2015) have developed R code implementing their proposed approach (available

from the authors upon request).

Chapter 8 of Lunn et al. (2012) discusses how the BUGS software (http://www.mrc-bsu.

cam.ac.uk/bugs/welcome.shtml) can be used to generate predictions for nonsampled cases

using a Bayesian approach, where again any complex sampling features would need to be

accounted for in the model specification (Little 2004). More recently, the Stan software
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(http://mc-stan.org/) has become a popular alternative for similar types of Bayesian

approaches, and this software can be readily used in R and Stata (among other platforms).

Interested readers can see http://rpubs.com/corey_sparks/157901 for an example of a

model-based descriptive analysis of survey data using a Bayesian approach in R (calling

the Stan software). Valliant et al. (2000) provided a comprehensive library of S-plus code

for implementing various model-based and model-assisted approaches, and these

functions can generally be adapted in the R software with ease (examples are available

upon request from the first author; see also Valliant et al. (2013) for additional examples).

In general, we recommend that statisticians compare standard errors for descriptive

estimates computed using design-based and model-based approaches, and determine

whether efficiency gains are possible when employing the model-based approaches

discussed in this section.

In more recent work, Si et al. (2015) presented model-based Bayesian methodology for

making robust finite population inferences about means or proportions of interest when

only final survey weights (and no stratum or cluster codes) are available for survey

respondents. This model-based approach simultaneously predicts the distribution of the

final survey weights among nonsampled cases in the population of interest and the values

of the survey variable of interest for these cases (as a function of the weights), enabling

simulations of the full population means or proportions based on posterior distributions

for these descriptive parameters (given the sampled cases and their data). These authors

demonstrated the advantages of this approach for the efficiency of descriptive finite

population estimates (for both full populations and subpopulations), and implemented this

approach in the Stan software (see http://www.isr.umich.edu/src/smp/asda for example

Stan code).

4. Analytic Objectives: Design-Based Approaches

4.1. Overview

Design-based approaches that utilize (adjusted) design weights to fit regression models to

complex sample survey data are in common use (e.g., DuMouchel and Duncan 1983;

Pfefferman 1993; Pfeffermann and Sverchkov 2009; Pfefferman 2011; Lumley and Scott

2017). In the simple case of estimating the parameters of a specified linear regression

model, the standard ordinary least squares (OLS) approach can be modified by

incorporating the final respondent weight into the objective function that minimizes the

finite population residual sum of squares. This weighted least squares (WLS) approach

provides a closed-form, model-unbiased estimator for the regression parameters that also

serves as a pseudo-maximum likelihood estimator for the regression parameters in the

finite population (Binder 1981, 1983; Pfeffermann 2011, Section 3.4). Lohr (2014)

describes how to estimate design effects in this context reflecting complex sampling

features.

For generalized linear models featuring nonlinear relationships between the predictors

and the expectation of the dependent variable of interest (e.g., logistic regression models),

closed-form solutions do not exist for estimation of model parameters. Furthermore,

“standard” maximum likelihood estimation is not possible with complex sample designs
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because the assumption of independent observations is violated by the stratification and

cluster sampling inherent to complex samples (Archer et al. 2007). Binder (1981, 1983)

proposed a pseudo-maximum likelihood estimation (PMLE) framework for fitting

generalized linear models to complex sample survey data. The basic idea of the PMLE

method is to estimate model parameters by replacing finite population likelihood

estimating equations with design-unbiased, weighted estimating equations for the

responding units. Positive evaluations of the PMLE method and its properties can be found

in several studies (Binder 1983; Chambless and Boyle 1985; Roberts et al. 1987; Morel

1989; Skinner et al. 1989; Nordberg 1989; Pfeffermann 1993; Godambe and Thompson

2009). PMLE is now the standard method implemented in many software procedures for

fitting generalized linear models to complex sample survey data.

Binder (1981, 1983) also proposed a general method for linearized variance estimation

for pseudo-maximum likelihood estimates of regression coefficients that is implemented

as the default method in many statistical software packages, and replication methods

generally work equally well in many regression settings, as noted earlier. Hypothesis tests

for regression parameters based on complex sample survey data are carried out by using

the design-based estimates of the variances and covariances and applying commonly used

test statistics, such as Student’s t and the Wald chi-square or Wald F-test. Rao and Scott

(1981, 1984, 1987) proposed a modified Wald chi-square statistic for survey data that

accounts for complex sample design features. This procedure is implemented in many

statistical software packages that support the analysis of complex sample survey data (e.g.,

the svy: tab command and the test post-estimation command in Stata).

4.2. Should Survey Weights Even Be Used to Fit Models?

The use of (adjusted) design weights to fit regression models has some limitations which

have provoked controversy among statisticians (see Pfeffermann 1993; Gelman 2007;

Pfefferman 2011; or Bollen et al. 2016 for reviews of the general issues). Design-based

estimation strategies utilizing probability-weighted estimators generally yield larger

variances than model-based estimation strategies (Korn and Graubard 1999). This loss in

efficiency is more notable for small sample sizes and cases where there is large variation

in the survey weights. For this reason, one best practice in this area is to examine the

sensitivity of the regression results by comparing weighted and unweighted analyses,

which is quite easy to do using current software. If these analyses yield notable

differences, then this may indicate model misspecification and the weighted estimates

should be reported to ensure that they are unbiased with respect to the sample design used.

A review of formal tests for differences between weighted and unweighted regression

analyses can be found in Bollen et al. (2016). It is also worth noting that the use of

probability weighting in the analysis of complex sample survey data is not customary in

some disciplines (e.g., economics) which favor the flexibility of explicitly featuring the

relevant design variables as part of the model-building process.

4.3. Software for Model Fitting

Table 3 presents a summary of available software procedures for fitting regression models

to complex sample survey data using design-based approaches. We emphasize software
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procedures in general-purpose statistical software packages, but other stand-alone

software tools primarily focused on modeling, such as Mplus (see http://www.statmodel.

com/resrchpap.shtml for examples) and Latent GOLD (see the Advanced/Syntax add-on

at https://www.statisticalinnovations.com/latent-gold-5-1/), can also easily fit common

regression models using design-based approaches.

Readily apparent from Table 3 are the following take-away points: 1) different packages

currently vary in terms of the different types of regression models that can be fitted

using design-based methods; 2) design-based post-estimation goodness-of-fit tests are

currently only implemented for logistic regression modeling in Stata; 3) design-based

quantile regression is only implemented in the R survey package and Stata add-on

commands at present; and 4) model diagnostics using design-based approaches are currently

only available for linear regression models in a working package in R (see http://www.isr.

umich.edu/src/smp/asda/svydiags-manual.pdf for details). Examples of the use of syntax

for many of these procedures can be found at http://www.isr.umich.edu/src/smp/asda.

4.4. Software for Model Evaluation and Selection

Numerous design-adjusted model evaluation tools have been developed to evaluate the fits

of regression models based on complex sample survey data. However, the implementation

of some of these tools in popular statistical software packages is not yet widespread. A

modified version of the R 2 statistic is often available for linear regression models, which

estimates the “weighted” proportion of explained variance in the dependent variable after

controlling for the independent variables. Residual diagnostics for complex samples more

generally is an active area of research. Li and Valliant (2015) document the latest advances

in this area and review their implementation in R; a working package for R entitled

svydiags is available from these authors upon request, and examples of the use of this

package are provided in Heeringa et al. (2017). Liao and Valliant (2012a, 2012b)

developed collinearity diagnostics for identifying excessively high correlations between

independent variables that explicitly account for complex sampling features; however,

these diagnostics have not yet made their way into popular statistical software packages.

Li and Valliant (2009, 2011a, 2011b) and Ryan et al. (2015) have proposed methods for

identifying influential data points in linear and logistic regression analyses based on

complex sample survey data, and these also need software development.

Model selection methods for complex samples have also seen recent development. For

instance, Lumley and Scott (2015) developed survey analogues of the popular AIC and

BIC information criteria for regression models fitted using pseudo-maximum likelihood

estimation methods. These methods have been implemented in the R survey package.

Archer et al. (2007) demonstrate that standard goodness-of-fit tests are not suitable for

complex sample survey data and propose alternative tests that account for complex design

features, including an F-test which is a survey analogue to the Hosmer-Lemeshow chi-

square test for logistic regression. Heeringa et al. (2017) provide Wald tests for comparing

nested regression models, following from Hosmer et al. (2013), who note that the standard

likelihood ratio chi-square test is inappropriate for complex sample survey data due to the

violation of key assumptions about the likelihood function that underlie the test. This issue

is addressed further by Lumley and Scott (2013, 2014), who developed partial likelihood
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ratio tests for Cox regression models in the survival analysis context and adapted the

Rao and Scott (1984) chi-square test to the case of design-based likelihood ratio tests in

arbitrary regression models fitted to survey data. These approaches are also currently

implemented in the survey package in R.

4.5. Software for Structural Equation Modeling and Classification Trees

There has also been some work on accounting for complex sample design features in

structural equation and latent variable models (e.g., Muthén and Satorra 1995; Kaplan and

Ferguson 1999; Stapleton 2002, 2006). These design-based approaches to fitting structural

equation models are currently implemented in the Mplus software, the lavaan.survey

package of R (Oberski 2014), the LISREL software, the svy: sem and svy: gsem

commands of Stata, the Latent GOLD software, and PROC LCA (a user-written add-on for

SAS). Some analysts of survey data may also be interested in building classification or

regression trees for generating finite population predictions, and the recently-developed

rpms package in R (Toth 2017) enables analysts to apply regression trees to complex

sample survey data. A more general summary of additional specialized procedures

for fitting models to survey data in R using design-based approaches can be found at

https://cran.r-project.org/web/views/OfficialStatistics.html.

5. Analytic Objectives: Model-Based Approaches

5.1. Overview

Model-based approaches for analyzing survey data given analytic objectives vary. These

approaches are typically implemented under a population- or sample-based modeling

perspective. Under the population modeling perspective, all population units (including

nonsampled units) are included in the analysis model, whereas under the sample-based

perspective, only the sampled (or responding) units are analyzed. Under the population

modeling perspective, one possible approach is to include all design variables and relevant

interaction terms as covariates in the analysis model and effectively integrate these

variables out (Pfeffermann 2011), leaving only the covariates of substantive interest.

Implementing such an approach can be difficult for secondary analysts, because design

variables for the entire population are typically not made available to secondary data users.

Model-based approaches for imputing both the design and substantive variables for the

non-observed portion of the population have been proposed (Feder 2011; Si et al. 2015),

though issues arise when the sample selection is dependent on the substantive variables of

interest – a situation realized in a non-ignorable sampling setting (Pfeffermann and Sikov

2011). A further complication, noted by Pfefferman (2011), is that modeling the

relationship between the design and substantive variables can be quite cumbersome, and

integrating the design variables out of the model may result in an analysis model that does

not reproduce the target model of substantive interest. Pfeffermann (2011) addresses this

issue by demonstrating that the analysis model can be estimated without integrating the

design variables out of the model. When not all design variables are available to the

analyst for the entire population, then the sample weight is sometimes used as a proxy for
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the design variables (DuMouchel and Duncan 1983; Rubin 1985; Chambers et al. 1998;

Wu and Fuller 2006). However, this still requires that the sample inclusion probabilities be

made available to the secondary data analyst for the entire population, which may not be

possible due to confidentiality or other data restrictions.

In contrast, approaches based on the sample modeling perspective need only make use

of the design variables known for the sampled (or responding) units. Model-based methods

employing maximum likelihood techniques estimate the unknown population parameters

using the likelihood of the joint distribution of the design variables and sample covariates

(Gelman et al. 2003; Little 2004). Alternative full-likelihood methods, which utilize the

Missing Information Principle (Orchard and Woodbury 1972), have been explored in

different contexts (Breckling et al. 1994; Chambers et al. 1998; Chambers and Skinner

2003, Chapter 2). Empirical likelihood methods have also been considered for complex

samples (Hartley and Rao 1968; Owen 2001). These methods, while generally more

computationally intensive than design-based approaches, can produce much more efficient

estimates of regression parameters with improved coverage properties (see Pfeffermann

et al. 2006 for an illustration).

5.2. Software

Given the considerations outlined in Subsection 5.1, model-based approaches to analytic

objectives can make use of existing software procedures for fitting regression models. There

is no need to use specialized software for design-based survey analysis to fit these models.

The important aspect of implementing these procedures is making sure that the design

features have been carefully accounted for in the design matrices of the specified models.

6. Analytic Objectives: “Hybrid” Approaches

6.1. Overview

So-called “hybrid” approaches to regression modeling of complex sample survey data

employ multilevel models, and are distinguished by the explicit desire of the researcher to

make finite population inferences about the components of variance in dependent variables

of interest attributable to the different stages of a multi-stage sample design. The theory and

methods for incorporating survey weights into pseudo-maximum likelihood estimation of

the fixed effect and covariance parameters defining a multilevel model were initially

described by Pfeffermann et al. (1998). These methods were later expanded on and evaluated

via simulation by Kovacevic and Rai (2003), Grilli and Pratesi (2004), Asparouhov (2006),

Rabe-Hesketh and Skrondal (2006), Carle (2009), and Pfeffermann (2011). Skinner and

Holmes (2003) and Heeringa et al. (2017) have elaborated on the appropriate use of survey

weights when fitting multilevel models to longitudinal survey data.

These methods for computing weighted estimates of the parameters in multilevel

regression models all require the following: 1) conditional weights at lower levels of the

data hierarchy (e.g., students within schools), which indicate inverses of the probability of

selection conditional on a given higher-level unit (e.g., school) being sampled, and 2) unit-

level weights at the highest level of the data hierarchy (e.g., counties), representing
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inverses of the probabilities of selection for the highest-level sampling unit. Pfeffermann

et al. (1998) and Rabe- Hesketh and Skrondal (2006) clearly describe how the likelihood

functions used to estimate these models are partitioned in a way that requires this

combination of conditional and unconditional weights for unbiased estimation of the

model parameters. More recently, Stapleton and Kang (2016) have described how to

estimate design effects in this context, representing the effects of complex sampling

features on the variance of estimated parameters in multilevel models.

This requirement that the conditional lower-level weights and unconditional higher-

level weights be available for estimation has limited these approaches from gaining

traction outside of the survey statistics literature (see West et al. 2015 for a recent case

study), given the need for public-use data files to include these “specialized” weights for

users, which could introduce disclosure risk concerns. The final respondent weights

provided in a public-use survey data set typically represent inverses of the products of the

probabilities of selection at all stages of a complex sample design; computation of the

conditional weights at lower levels requires dividing the final weights by the higher-level

sampling weights to determine the inverse of the conditional sampling probability required

for estimation. The computation of these weights therefore represents an additional burden

that survey organizations would need to take on for users interested in these “hybrid”

approaches. Chantala et al. (2011) provide important practical guidance and software tools

to assist with this process.

The conditional weights that are specific to each lower-level unit also need to be scaled

or normalized across all higher-level units, to reduce the varying magnitudes of these

weights across the higher-level units. This weight scaling is important because it

minimizes the bias in parameter estimates based on the models (Pfeffermann et al. 1998).

Pfeffermann et al. (1998), Rabe-Hesketh and Skrondal (2006), and Carle (2009) describe

alternative methods for performing weight scaling (e.g., normalizing the lower-level

weights by dividing all of the weights in a higher-level unit by their average, so that they

sum to the sample size within that unit). The literature to date has not demonstrated that

one weight scaling method is superior over another; there has, however, been consistent

agreement that weight scaling needs to be done to minimize bias, especially in the case

of generalized linear regression models (e.g., multilevel logistic regression models;

Rabe-Hesketh and Skrondal 2006). Weight scaling represents an additional data

processing step that may not be “automatic” in the software that is presently available for

these “hybrid” approaches (e.g., the mixed command in Stata); see Rabe-Hesketh and

Skrondal (2006) for worked examples.

6.2. Software

At present, these approaches for weighted estimation of multilevel models are not widely

implemented across statistical software packages. This kind of implementation will be

especially important for these “hybrid” model-based approaches to gain traction among

nonstatisticians. Software packages and specific procedures capable of implementing these

“hybrid” approaches for both linear and generalized linear regression models include Stata

(Version 15.1þ ), SAS (PROC GLIMMIX, SAS/STAT Version 13.1þ ; Zhu 2014), HLM

(Version 7.01þ ), MLwiN (Version 2.35þ ; see http://www.bristol.ac.uk/cmm/software/
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mlwin), Mplus (Version 7.4þ ; see http://www.statmodel.com), and thegllamm command

for Stata (www.gllamm.org). The online documentation for each of these packages provides

worked examples of implementing these “hybrid” approaches (e.g., type “help

mixed#sampling” in the Stata Viewer). Importantly, all of these tools are capable of

implementing either model-based approaches or “hybrid” approaches, depending on how

the survey weights are used.

7. Directions for Future Software Development

First, considering design-based approaches, additional software options enabling variance

estimation for quantile estimates are still needed, where BRR and bootstrap methods have

been shown to produce the best confidence interval coverage (Kovar et al. 1988).

Techniques for accounting for complex sample design features when evaluating the

goodness-of-fit of various regression models in the design-based framework (e.g., Archer

et al. 2007) also need theoretical and computational development. Furthermore, methods

for assessing regression diagnostics need further theoretical development (especially for

generalized linear models), and state-of-the-art diagnostic methods for linear regression

models need to be more widely incorporated in survey analysis software. Finally, more

research needs to consider whether there are better approaches to estimating the design-

based degrees of freedom associated with a given variance estimate when forming

confidence intervals, and implementation of alternative approaches (e.g., Valliant and

Rust 2010) in existing software is still needed.

Second, considering model-based and “hybrid” approaches, the literature currently

lacks a coherent theoretical framework enabling hypothesis testing for the variance

components in a multilevel model estimated using pseudo-maximum likelihood

estimation (see Zhang and Lin 2008 for a review of these methods). The recent work

by Lumley and Scott (2015) needs to be adapted to these types of tests based on multilevel

models estimated using sampling weights. Also important in this area will be the

development of diagnostics for fitted multilevel models (Claeskens 2013) that recognize

complex sampling features. Finally, there is still work to be done in assessing optimal

approaches for fitting multilevel models to longitudinal survey data (Thompson 2015); for

example, should time-varying weights be computed to adjust for differential attrition

at different waves? Or should only cases with complete data be analyzed when fitting

the multilevel models (Heeringa et al. 2017, Chapter 11)? Empirical and theoretical

developments in this area will be important moving forward.

Finally, this review has not touched on statistical analysis approaches involving item-

missing survey data, and how complex sampling features should be accounted for in this

context. Briefly, initial work in this area suggested that models for imputing item-missing

values should include the complex sample design features as covariates, similar to some of

the model-based approaches discussed above (Reiter et al. 2006). More recently, methods

have been developed for simulating synthetic populations, given the complex sampling

features available for a sample, and then imputing missing values using straightforward

methods in these simulated populations prior to making population inferences (Zhou et al.

2016b; Zhou et al. 2016c; see also Zhou et al. 2016a, for example R code). Alongside these

developments using model-based imputation methods, Kim and Fuller (2004) and Kim
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and Shao (2014) have developed fractional hot-deck imputation techniques for complex

sample survey data sets that may offer efficiency advantages over other competing

imputation approaches. These approaches have been implemented in the SURVEYIM-

PUTE procedure of the SAS software (Version 9.4). Future research should consider

the competing benefits and costs of the simulation-based imputation approaches and the

fractional imputation approaches in terms of computational costs and the efficiency of the

finite population estimates produced.

8. References

Agresti, A. and B. A. Coull. 1998. “Approximate Is Better than ‘Exact’ for Interval

Estimation of Binomial Proportions.” American Statistician 52: 119–126. Doi: https://

doi.org/10.1080/00031305.1998.10480550.

Archer, K.J., S. Lemeshow, and D.W. Hosmer. 2007. “Goodness-of-fit Tests for Logistic

Regression Models When Data are Collected using a Complex Sampling Design.”

Computational Statistics and Data Analysis 51: 4450–4464. Doi: https://doi.org/

10.1016/j.csda.2006.07.006.

Asparouhov, T. 2006. “General Multi-level Modeling with Sampling Weights.”

Communications in Statistics––Theory and Methods 35: 439–460. Doi: https://doi.org/

10.1080/03610920500476598.

Asparouhov, T. and B. Muthén. 2007. “Testing for Informative Weights and Weights

Trimming in Multivariate Modelling with Survey Data.” In Proceedings of the Survey

Research Methods Section of the American Statistical Association, 2007, Salt Lake

City, Utah, 3394 – 3399. Available at: https://www.statmodel.com/download/

JSM2007000745.pdf (accessed April 14, 2017).

Asparouhov, T. and B. Muthén. 2010. “Resampling Methods in Mplus for Complex

Survey Data.” Mplus Technical Report, May 4, 2010. Available at: https://www.stat-

model.com/download/Resampling_Methods5.pdf (Accessed October 10, 2016).

Baker, R., J.M. Brick, N.A. Bates, M. Battaglia, M.P. Couper, J.A. Dever, and

R. Tourangeau. 2013. “Summary Report of the AAPOR Task Force on Non-probability

Sampling.” Journal of Survey Statistics and Methodology 1: 90–143. Doi:

https://doi.org/10.1093/jssam/smt008.

Barnighausen, T., J. Bor, S. Wandira-Kazibwe, and D. Canning. 2011. “Correcting HIV

Prevalence Estimates for Survey Nonparticipation using Heckman-type Selection

Models.” Epidemiology 22: 27–35. Doi: 10.1097/EDE.0b013e3181ffa201.

Bean, J.A. 1975. “Distribution and Properties of Variance Estimators for Complex

Multistage Probability Samples: An Empirical Distribution.” In Vital and Health

Statistics: Series 2, Data Evaluation and Methods Research 65: i–iv.

Beaumont, J.F. 2005. “On the Use of Data Collection Process Information for the

Treatment of Unit Nonresponse Through Weight Adjustment.” Survey Methodology 31:

227–231.

Beaumont, J.F. 2008. “A New Approach to Weighting and Inference in Sample Surveys.”

Biometrika 95: 539–553. Doi: https://doi.org/10.1093/biomet/asn028.

Journal of Official Statistics742

https://doi.org/10.1080/00031305.1998.10480550
https://doi.org/10.1080/00031305.1998.10480550
https://doi.org/10.1016/j.csda.2006.07.006
https://doi.org/10.1016/j.csda.2006.07.006
https://doi.org/10.1080/03610920500476598
https://doi.org/10.1080/03610920500476598
https://www.statmodel.com/download/JSM2007000745.pdf
https://www.statmodel.com/download/JSM2007000745.pdf
https://www.statmodel.com/download/Resampling_Methods5.pdf
https://www.statmodel.com/download/Resampling_Methods5.pdf
https://doi.org/10.1093/jssam/smt008
https://doi.org/10.1093/biomet/asn028


Bethlehem, J.G. 2002. “Weighting Nonresponse Adjustments Based on Auxiliary

Information.” In Survey Nonresponse, edited by R.M. Groves, D.A. Dillman,

J.L. Eltinge, and R.J.A. Little, 275–288. New York: Wiley.

Binder, D.A. 1981. “On the Variances of Asymptotically Normal Estimators for Complex

Surveys.” Survey Methodology 7: 157–170.

Binder, D.A. 1983. “On the Variances of Asymptotically Normal Estimators from Complex

Surveys.” International Statistical Review 51: 279–292. Doi: 10.2307/1402588.

Binder, D.A. and G.R. Roberts. 2003. “Design-based and Model-based Methods for

Estimating Model Parameters.” In Analysis of Survey Data, edited by R.L. Chambers

and C.J. Skinner, 29–48. Chichester, West Sussex: Wiley.

Bollen, K.A., P.P. Biemer, A.F. Karr, S. Tueller, and M.E. Berzofsky. 2016. “Are Survey

Weights Needed? A Review of Diagnostic Tests in Regression Analysis.” Annual

Review of Statistics and Its Application 3: 375–392. Doi: https://doi.org/10.1146/

annurev-statistics-011516-012958.

Breckling, J.U., R.L. Chambers, A.H. Dorfman, S.M. Tam, and A.H. Welsh. 1994.

“Maximum Likelihood Inference from Sample Survey Data.” International Statistical

Review 62: 349–363. Doi: 10.2307/1403766.

Brick, J.M. 2013. “Unit Nonresponse and Weighting Adjustments: A Critical Review.”

Journal of Official Statistics 29: 329–353. Doi: https://doi.org/10.2478/jos-2013-0026.

Campbell, C. and M. Meyer. 1978. “Some Properties of T Confidence Intervals for Survey

Data.” In Proceedings of the American Statistical Association, Survey Research

Methods Section, 437–442. Available at: https://ww2.amstat.org/sections/srms/

Proceedings/papers/1978_089.pdf (accessed April 14, 2017).

Canty, A.J. and A.C. Davison. 1999. “Resampling-based Variance Estimation for Labour

Force Surveys.” The Statistician 48: 379–391. Doi: 10.1111/1467-9884.00196.

Carle, A.C. 2009. “Fitting Multilevel Models in Complex Survey Data with Design

Weights: Recommendations.” BMC Medical Research Methodology 9(49). Doi:

https://doi.org/10.1186/1471-2288-9-49.

Cassel, C., C.-E. Särndal, and J. Wretman. 1983. “Some Uses of Statistical Models in

Connection with the Nonresponse Problem.” In Incomplete Data in Sample Surveys,

edited by W.G. Madow and I. Olkin, 143–160. New York: Academic Press.

Chambers, R.L., A.H. Dorfman, and S. Wang. 1998. “Limited Information Likelihood

Analysis of Survey Data.” Journal of the Royal Statistical Society (Series B) 60:

397–411. Doi: 10.1111/1467-9868.00132.

Chambers, R.L. and C.J. Skinner (Editors). 2003. Analysis of Survey Data. New York:

John Wiley and Sons.

Chambless, L.E. and K.E. Boyle. 1985. “Maximum Likelihood Methods for Complex

Sample Data: Logistic Regression and Discrete Proportional Hazards Models.”

Communications in Statistics-Theory and Methods 14: 1377 – 1392. Doi:

https://doi.org/10.1080/03610928508828982.

Chantala, K., D. Blanchette, and C.M. Suchindran. 2011. “Software to Compute Sampling

Weights for Multilevel Analysis.” Technical Report, Carolina Population Center, UNC

at Chapter Hill. Available at http://www.cpc.unc.edu/research/tools/data_analysis/

ml_sampling_weights (accessed January 30, 2018).

West et al.: Software for Analysis of Complex Survey Data 743

https://doi.org/10.1146/annurev-statistics-011516-012958
https://doi.org/10.1146/annurev-statistics-011516-012958
https://doi.org/10.2478/jos-2013-0026
https://ww2.amstat.org/sections/srms/Proceedings/papers/1978_089.pdf
https://ww2.amstat.org/sections/srms/Proceedings/papers/1978_089.pdf
https://doi.org/10.1186/1471-2288-9-49
https://doi.org/10.1080/03610928508828982
http://www.cpc.unc.edu/research/tools/data_analysis/ml_sampling_weights
http://www.cpc.unc.edu/research/tools/data_analysis/ml_sampling_weights


Claeskens, G. 2013. “Lack of Fit, Graphics, and Multilevel Model Diagnostics.” In The

SAGE Handbook of Multilevel Modeling, edited by M.A. Scott, J.S. Simonoff, and

B.D. Marx, 425–444. Los Angeles: SAGE Publications.

Dean, N. and M. Pagano. 2015. “Evaluating Confidence Interval Methods for Binomial

Proportions in Clustered Surveys.” Journal of Survey Statistics and Methodology 3:

484–503. Doi: https://doi.org/10.1093/jssam/smv024.

Deville, J.C. and C.-E. Särndal. 1992. “Calibration Estimators in Survey Sampling.”

Journal of the American Statistical Association 87: 376 – 382. Doi:

https://doi.org/10.1080/01621459.1992.10475217.

Deville, J.C., C.-E. Särndal, and O. Sautory. 1993. “Generalized Raking Procedures in

Survey Sampling.” Journal of the American Statistical Association 88: 1013–1020.

Doi: https://doi.org/10.1080/01621459.1993.10476369.

DuMouchel, W.H. and G.J. Duncan. 1983. “Using Sample Survey Weights in Multiple

Regression Analyses of Stratified Samples.” Journal of the American Statistical

Association 78: 535–543. Doi: https://doi.org/10.1080/01621459.1983.10478006.

Ekholm, A. and S. Laaksonen. 1991. “Weighting Via Response Modeling in the Finnish

Household Budget Survey.” Journal of Official Statistics 7: 325–337.

Elliott, M.R. and R.J. Little. 2000. “Model-based Alternatives to Trimming Survey

Weights.” Journal of Official Statistics 16: 191–210.

Elliott, M.R. and R. Valliant. 2017. “Inference for Nonprobability Samples.” Statistical

Science 32: 249–264. Doi: 10.1214/16-STS598.

Eltinge, J.L. and I.S. Yansaneh. 1997. “Diagnostics for Formation of Nonresponse

Adjustment Cells, With an Application to Income Nonresponse in the U.S. Consumer

Expenditure Survey.” Survey Methodology 23: 33–40.

Feder, M. 2011. “Fitting Regression Models to Complex Survey Data – Gelman’s

Estimator Revisited.” In Proceedings of the 58th World Statistics Congress of the

International Statistical Institute, Dublin, Ireland, August 2011. Available at: http://

2011.isiproceedings.org/papers/950551.pdf (accessed January 30, 2018).

Flores-Cervantes, I. and J.M. Brick. 2016. “Nonresponse Adjustments with Misspecified

Models in Stratified Designs.” Survey Methodology 42: 161–177.

Francisco, C.A. and W.A. Fuller. 1991. “Quantile Estimation with a Complex Survey

Design.” The Annals of Statistics 19: 454–469. Doi: http://www.jstor.org/stable/2241867.

Frankel, M.R. 1971. Inference from Survey Samples: an Empirical Investigation. Institute

for Social Research, University of Michigan, Ann Arbor, MI, USA.

Gagne, C., G. Roberts, and L.-A. Keown. 2014. “Weighted Estimation and Bootstrap

Variance Estimation for Analyzing Survey Data: How to Implement in Selected

Software.” Statistics Canada: The Research Data Centres Information and Technical

Bulletin, August 7, 2014. Available at: http://www.statcan.gc.ca/pub/12-002-x/

2014001/article/11901-eng.htm (accessed January 30, 2018).

Gelman, A. 2007. “Struggles with Survey Weighting and Regression Modeling.”

Statistical Science 22: 153–164. Doi: 10.1214/088342306000000691.

Gelman, A., J.B. Carlin, H.S. Stern, and D.B. Rubin. 2003. Bayesian Data Analysis

(2nd Edition). Boca Raton, FL: Chapman & Hall/CRC.

Journal of Official Statistics744

https://doi.org/10.1093/jssam/smv024
https://doi.org/10.1080/01621459.1992.10475217
https://doi.org/10.1080/01621459.1993.10476369
https://doi.org/10.1080/01621459.1983.10478006
http://2011.isiproceedings.org/papers/950551.pdf
http://2011.isiproceedings.org/papers/950551.pdf
http://www.jstor.org/stable/2241867
http://www.statcan.gc.ca/pub/12-002-x/2014001/article/11901-eng.htm
http://www.statcan.gc.ca/pub/12-002-x/2014001/article/11901-eng.htm


Godambe, V.P. and M.E. Thompson. 2009. “Estimating Functions and Survey Sampling.”

Handbook of Statistics Vol 29B (Sample Surveys: Inference and Analysis): 83–101.

Doi: https://doi.org/10.1016/S0169-7161(09)00226-0.

Grau, E., F. Potter, S. Williams, and N. Diaz-Tena. 2006. “Nonresponse Adjustment Using

Logistic Regression: To Weight or Not to Weight?” In Proceedings of the Survey

Research Methods Section of the American Statistical Association, Alexandria, VA,

2006, 3073–3080. Available at: http://citeseerx.ist.psu.edu/viewdoc/download?

doi¼10.1.1.586.3263&rep¼ rep1&type¼pdf (accessed January 30, 2018).

Grilli, L. and M. Pratesi. 2004. “Weighted Estimation in Multilevel Ordinal and Binary

Models in the Presence of Informative Sampling Designs.” Survey Methodology 30:

93–104.

Groves, R.M. 2006. “Nonresponse Rates and Nonresponse Bias in Household Surveys.”

Public Opinion Quarterly 70: 646–675. Doi: https://doi.org/10.1093/poq/nfl033.

Hansen, M.H., W.G. Madow, and B.J. Tepping. 1983. “An Evaluation of Model-

Dependent and Probability-Sampling Inferences in Sample Surveys.” Journal of the

American Statistical Association 78: 776 –793. Doi: https://doi.org/10.1080/

01621459.1983.10477018.

Hartley, H.O. and J.N.K. Rao. 1968. “A New Estimation Theory for Sample Surveys.”

Biometrika 55: 547–557. Doi: https://doi.org/10.1093/biomet/55.3.547.

Haziza, D. and J.F. Beaumont. 2007. “On the Construction of Imputation Classes in

Surveys.” International Statistical Review 75: 25–43. Doi: 10.1111/j.1751-

5823.2006.00002.x.

Haziza, D. and J.F. Beaumont. 2017. “Construction of Weights in Surveys: A Review.”

Statistical Science 32: 206–226. Doi: 10.1214/16-STS608.

Heeringa, S.G., B.T. West, and P.A. Berglund. 2017. Applied Survey Data Analysis,

Second Edition. Boca Raton, FL: Chapman & Hall/CRC Press.

Holt, D. and T.M.F. Smith. 1979. “Post Stratification.” Journal of the Royal Statistical

Society, Series A (General) 142: 33–46. Doi: http://www.jstor.org/stable/2344652.

Hosmer, D.W., S. Lemeshow, and X. Sturdivant. 2013. Applied Logistic Regression,

Third Edition. New York, NY: Wiley.

Judkins, D.R. 1990. “Fay’s Method for Variance Estimation.” Journal of Official Statistics

6: 223–239.

Kalton, G. and I. Flores-Cervantes. 2003. “Weighting Methods.” Journal of Official

Statistics 19: 81–97.

Kaplan, D. and A.J. Ferguson. 1999. “On the Utilization of Sample Weights in Latent

Variable Models.” Structural Equation Modeling: A Multidisciplinary Journal 6:

305–321. Doi: https://doi.org/10.1080/10705519909540138.

Kim, J.K. and W.A. Fuller. 2004. “Fractional Hot Deck Imputation.” Biometrika 91:

559–578. Doi: https://doi.org/10.1093/biomet/91.3.559.

Kim, J.K. and J. Shao. 2014. Statistical Methods for Handling Incomplete Data. Boca

Raton, FL: CRC Press.

Kim, J.K. and M. Park. 2010. “Calibration Estimation in Survey Sampling.” International

Statistical Review 78: 21–39. Doi: 10.1111/j.1751-5823.2010.00099.x.

Kish, L. 1965. Survey Sampling. New York, NY: Wiley.

West et al.: Software for Analysis of Complex Survey Data 745

https://doi.org/10.1016/S0169-7161(09)00226-0
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.586.3263&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.586.3263&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.586.3263&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.586.3263&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.586.3263&rep=rep1&type=pdf
https://doi.org/10.1093/poq/nfl033
https://doi.org/10.1080/01621459.1983.10477018
https://doi.org/10.1080/01621459.1983.10477018
https://doi.org/10.1093/biomet/55.3.547
http://www.jstor.org/stable/2344652
https://doi.org/10.1080/10705519909540138
https://doi.org/10.1093/biomet/91.3.559


Kish, L. and M.R. Frankel. 1968. “Balanced Repeated Replication for Analytical

Statistics.” In Proceedings of the Social Statistics Section of the American Statistical

Association, 1968, 2 – 10. Available at: http://ww2.amstat.org/sections/srms/

Proceedings/y1968/Balanced%20Repeated%20Replications%20For%20Analytical%

20Statistics.pdf (accessed January 30, 2018).

Kish, L. and M.R. Frankel. 1970. “Balanced Repeated Replications for Standard Errors.”

Journal of the American Statistical Association 65: 1071–1094. Doi: https://doi.org/

10.1080/01621459.1970.10481145.

Kish, L. and M.R. Frankel. 1974. “Inference from Complex Samples.” Journal of the

Royal Statistical Society. Series B (Methodological) 36: 1–37. Doi: http://www.jstor.

org/stable/2984767.

Kolenikov, S. 2014. “Calibrating Survey Data using Iterative Proportional Fitting

(Raking).” The Stata Journal 14: 22–59.

Kolenikov, S. 2010. “Resampling Variance Estimation for Complex Survey Data.” Stata

Journal 10: 165–199.

Kott, P.S. 2006. “Using Calibration Weighting to Adjust for Nonresponse and Coverage

Errors.” Survey Methodology 32: 133.

Kott, P.S. 2011. “A Nearly Pseudo-Optimal Method for Keeping Calibration Weights

From Falling Below Unity In The Absence Of Nonresponse Or Frame Errors.” Pakistan

Journal of Statistics 27: 391–396.

Kott, P.S. 2012. “Why One Should Incorporate the Design Weights When Adjusting for

Unit Nonresponse Using Response Homogeneity Groups.” Survey Methodology 38:

95–99.

Kott, P.S. and D. Liao. 2012. “Providing Double Protection for Unit Nonresponse with a

Nonlinear Calibration-Weighting Routine.” Survey Research Methods 6: 105–111.

Doi: http://dx.doi.org/10.18148/srm/2012.v6i2.5076.

Korn, E.L. and B.I. Graubard. 1999. Analysis of Health Surveys. New York, NY: Wiley.
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Statistique, INSEE, Paris. Available in French at: http://jms.insee.fr/files/documents/

2002/327_1-JMS2002_SESSION1_LE-GUENNEC-SAUTORY_CALMAR-2_ACTES.

PDF (accessed January 30, 2018).

Lemeshow, S. and P. Levy. 1978. “Estimating the Variance of Ratio Estimates in Complex

Sample Surveys with Two Primary Units per Stratum––A Comparison of Balanced

Replication and Jackknife Techniques.” Journal of Statistical Computation and

Simulation 8: 191–205. Doi: https://doi.org/10.1080/00949657908810266.

Lessler, J.T. and W.D. Kalsbeek. 1992. Nonsampling Error in Surveys. Wiley.

Li, J. and R. Valliant. 2009. “Survey Weighted Hat Matrix and Leverages.” Survey

Methodology 35: 15–24.

Li, J. and R. Valliant. 2011a. “Linear Regression Influence Diagnostics for Unclustered

Survey Data.” Journal of Official Statistics 27: 99–119.

Li, J. and R. Valliant. 2011b. “Detecting Groups of Influential Observations in Linear

Regression using Survey Data: Adapting the Forward Search Method.” Pakistan

Journal of Statistics 27: 507–528.

Li, J. and R. Valliant. 2015. “Linear Regression Diagnostics in Cluster Samples.” Journal

of Official Statistics 31: 61–75. https://doi.org/10.1515/jos-2015-0003.

Liao, D. and R. Valliant. 2012a. “Variance Inflation Factors in the Analysis of Complex

Survey Data.” Survey Methodology 38: 53–62.

Liao, D. and R. Valliant. 2012b. “Condition Indexes and Variance Decompositions for

Diagnosing Collinearity in Linear Model Analysis of Survey Data.” Survey

Methodology 38: 189–202.

Little, R.J.A. 1986. “Survey Nonresponse Adjustments for Estimates of Means.”

International Statistical Review 54: 139–157. Doi: http://www.jstor.org/stable/

1403140.

Little, R.J.A. 2003. “The Bayesian Approach to Sample Survey Inference.” In Analysis of

Survey Data, edited by R.L. Chambers and C.J. Skinner, 49–57. Chichester, West

Sussex: Wiley.

Little, R.J.A. 2004. “To Model or Not to Model? Competing Modes of Inference for Finite

Population Sampling.” Journal of the American Statistical Association 99: 546–556.

Doi: https://doi.org/10.1198/016214504000000467.

Little, R.J.A. 2006. “Calibrated Bayes: A Bayes/Frequentist Roadmap.” The American

Statistician 60: 213–223. Doi: https://doi.org/10.1198/000313006X117837.

Little, R.J.A. 2011. “Calibrated Bayes, for Statistics in General, and Missing Data in

Particular.” Statistical Science 26: 162–186. Doi: 10.1214/10-STS318.

Little, R.J.A. 2012. “Calibrated Bayes: An Alternative Inferential Paradigm for Official

Statistics (with discussion and rejoinder).” Journal of Official Statistics 28: 309–372.

Little, R.J.A. 2015. “Calibrated Bayes, An Inferential Paradigm for Official Statistics

in the Era of Big Data.” Statistical Journal of the IAOS 31: 555–563. Doi:

https://doi.org/10.3233/SJI-150944.

Little, R.J.A. and S. Vartivarian. 2005. “Does Weighting for Nonresponse Increase the

Variance of Survey Means?” Survey Methodology 31: 161–168.

West et al.: Software for Analysis of Complex Survey Data 747

http://jms.insee.fr/files/documents/2002/327_1-JMS2002_SESSION1_LE-GUENNEC-SAUTORY_CALMAR-2_ACTES.PDF
http://jms.insee.fr/files/documents/2002/327_1-JMS2002_SESSION1_LE-GUENNEC-SAUTORY_CALMAR-2_ACTES.PDF
http://jms.insee.fr/files/documents/2002/327_1-JMS2002_SESSION1_LE-GUENNEC-SAUTORY_CALMAR-2_ACTES.PDF
https://doi.org/10.1080/00949657908810266
https://doi.org/10.1515/jos-2015-0003
http://www.jstor.org/stable/1403140
http://www.jstor.org/stable/1403140
https://doi.org/10.1198/016214504000000467
https://doi.org/10.1198/000313006X117837
https://doi.org/10.3233/SJI-150944


Little, R.J.A. and H. Zheng. 2007. “The Bayesian Approach to the Analysis of Finite

Population Surveys.” Bayesian Statistics 8: 1–20.

Lohr, S. 2009. Sampling: Design and Analysis, Second Edition. Boston, MA: Cengage

Learning.

Lohr, S. 2014. “Design Effects for a Regression Slope in a Cluster Sample.” Journal of

Survey Statistics and Methodology 2: 97–125. Doi: https://doi.org/10.1093/jssam/

smu003.

Lumley, T. 2010. Complex Surveys: A Guide to Analysis Using R. New York, NY: Wiley.

Lumley, T. and A. Scott. 2013. “Partial Likelihood Ratio Tests for the Cox Model under

Complex Sampling.” Statistics in Medicine 32: 110–123. Doi: https://doi.org/10.1002/

sim.5492.

Lumley, T. and A. Scott. 2014. “Tests for Regression Models Fitted to Survey Data.”

Australian & New Zealand Journal of Statistics 56: 1–14. Doi: https://doi.org/

10.1111/anzs.12065.

Lumley, T. and A. Scott. 2015. “AIC and BIC for Modeling with Complex Survey Data.”

Journal of Survey Statistics and Methodology 3: 1–18. Doi: https://doi.org/10.1093/

jssam/smu021.

Lumley, T. and A. Scott. 2017. “Fitting Regression Models to Survey Data.” Statistical

Science 32: 265–278. Doi: https://10.1214/16-STS605.

Lundström, S. and C.E. Särndal. 1999. “Calibration as a Standard Method for Treatment

of Nonresponse.” Journal of Official Statistics 15: 305–327.

Lunn, D., C. Jackson, N. Best, A. Thomas, and D. Spiegelhalter. 2012. The BUGS book:

A Practical Introduction to Bayesian Analysis. CRC press.

Morel, G. 1989. “Logistic Regression under Complex Survey Designs.” Survey

Methodology 15: 203–223.

Muthén, B.O. and A. Satorra. 1995. “Complex Sample Data in Structural Equation

Modeling.” Sociological Methodology 25: 267 – 316. Doi: https://doi.org/

10.2307/271070.

Nordberg, L. 1989. “Generalized Linear Modeling of Sample Survey Data.” Journal of

Official Statistics 5: 223–239.

Oberski, D.L. 2014. “lavaan.survey: An R package for Complex Survey Analysis

of Structural Equation Models.” Journal of Statistical Software 57: 1–27.

Doi: https://doi.org/10.18637/jss.v057.i01.

Oh, H.L. and F.J. Scheuren. 1983. “Weighting Adjustment for Unit Nonresponse.” In

Incomplete Data in Sample Surveys, edited by W.G. Madow, I. Olkin, and D.B. Rubin,

143–184. New York: Academic Press.

Orchard, T. and M.A. Woodbury. 1972. “A Missing Information Principle: Theory and

Applications.” Proceedings of the Sixth Berkeley Symposium on Mathematical

Statistics and Probability, Volume 1: Theory of Statistics, 697–715. University of

California Press: Berkeley, CA. Available at: https://projecteuclid.org/download/pdf_1/

euclid.bsmsp/1200514117 (accessed January 30, 2018).

Owen, A.B. 2001. Empirical Likelihood. New York: Chapman & Hall.

Pacifico, D. 2014. “sreweight: A Stata Command to Reweight Survey Data to External

Totals.” The Stata Journal 14: 4–21.

Journal of Official Statistics748

https://doi.org/10.1093/jssam/smu003
https://doi.org/10.1093/jssam/smu003
https://doi.org/10.1002/sim.5492
https://doi.org/10.1002/sim.5492
https://doi.org/10.1111/anzs.12065
https://doi.org/10.1111/anzs.12065
https://doi.org/10.1093/jssam/smu021
https://doi.org/10.1093/jssam/smu021
https://10.1214/16-STS605
https://doi.org/10.2307/271070
https://doi.org/10.2307/271070
https://doi.org/10.18637/jss.v057.i01
https://projecteuclid.org/download/pdf_1/euclid.bsmsp/1200514117
https://projecteuclid.org/download/pdf_1/euclid.bsmsp/1200514117


Peress, M. 2010. “Correcting for Survey Nonresponse using Variable Response

Propensity.” Journal of the American Statistical Association 105: 1418–1430.

Doi: https://doi.org/10.1198/jasa.2010.ap09485.

Pfeffermann, D. 1993. “The Role of Sampling Weights When Modeling Survey Data.”

International Statistical Review 61: 317–337. Doi: https://doi.org/10.2307/1403631.

Pfeffermann, D. 2011. “Modelling of Complex Survey Data: Why Model? Why Is It a

Problem? How Can We Approach It?” Survey Methodology 37: 115–136.

Pfeffermann, D., F.A.D.S. Moura, and P.L.D.N. Silva. 2006. “Multi-level Modelling

Under Informative Sampling.” Biometrika 93: 943–959. Doi: https://doi.org/10.1093/

biomet/93.4.943.

Pfeffermann, D. and A. Sikov. 2011. “Imputation and Estimation under Nonignorable

Nonresponse in Household Surveys with Missing Covariate Information.” Journal of

Official Statistics 27: 181–209.

Pfeffermann, D., C.J. Skinner, D.J. Holmes, H. Goldstein, and J. Rasbash. 1998.

“Weighting for Unequal Selection Probabilities in Multilevel Models.” Journal of

the Royal Statistical Society: Series B (Statistical Methodology) 60: 23–40.

Doi: https://doi.org/10.1111/1467-9868.00106.

Pfeffermann, D. and M. Sverchkov. 2009. “Inference Under Informative Sampling.” In

Handbook of Statistics – Sample Surveys: Inference and Analysis (Volume 29, Part B),

edited by V.N. Gudivada, V.V. Raghavan, V. Govindaraju, and C.R. Rao, 455–487.

Potter, F.J. 1990. “A Study of Procedures to Identify and Trim Extreme Sampling

Weights.” In Proceedings of the American Statistical Association, Section on Survey

Research Methods, 225–230. Available at: http://ww2.amstat.org/sections/SRMS/

Proceedings/papers/1990_034.pdf (accessed January 30, 2018).

Rabe-Hesketh, S. and A. Skrondal. 2006. “Multilevel Modelling of Complex Survey

Data.” Journal of the Royal Statistical Society: Series A (Statistics in Society) 169:

805–827. Doi: https://doi.org/10.1111/j.1467-985X.2006.00426.x.

Rao, J.N.K. 2005. “Interplay Between Sample Survey Theory and Practice: An

Appraisal.” Survey Methodology 31: 117–138.

Rao, J.N.K. and J. Shao. 1999. “Modified Balanced Repeated Replication for Complex

Survey Data.” Biometrika 86: 403–415. Doi: https://doi.org/10.1093/biomet/86.2.403.

Rao, J.N.K. and A.J. Scott. 1981. “The Analysis of Categorical Data from Complex

Sample Surveys: Chi-squared Tests for Goodness of Fit and Independence in Two-way

Tables.” Journal of the American Statistical Association 76: 221–230. Doi:

https://doi.org/10.2307/2287815.

Rao, J.N.K. and A.J. Scott. 1984. “On Chi-squared Tests for Multiway Contingency

Tables with Cell Proportions Estimated from Survey Data.” The Annals of Statistics 12:

46–60. Doi: http://dx.doi.org/10.1214/aos/1176346391.

Rao, J.N.K. and A.J. Scott. 1987. “On Simple Adjustments to Chi-square Tests with

Sample Survey Data.” The Annals of Statistics 15: 385–397. Doi: https://doi.org/

10.1214/aos/1176350273.

Rao, J.N.K. and C.F.J. Wu. 1985. “Inference from Stratified Samples: Second-order

Analysis of Three Methods for Nonlinear Statistics.” Journal of the American Statistical

Association 80: 620–630. Doi: https://doi.org/10.2307/2288478.

West et al.: Software for Analysis of Complex Survey Data 749

https://doi.org/10.1198/jasa.2010.ap09485
https://doi.org/10.2307/1403631
https://doi.org/10.1093/biomet/93.4.943
https://doi.org/10.1093/biomet/93.4.943
https://doi.org/10.1111/1467-9868.00106
http://ww2.amstat.org/sections/SRMS/Proceedings/papers/1990_034.pdf
http://ww2.amstat.org/sections/SRMS/Proceedings/papers/1990_034.pdf
https://doi.org/10.1111/j.1467-985X.2006.00426.x
https://doi.org/10.1093/biomet/86.2.403
https://doi.org/10.2307/2287815
http://dx.doi.org/10.1214/aos/1176346391
https://doi.org/10.1214/aos/1176350273
https://doi.org/10.1214/aos/1176350273
https://doi.org/10.2307/2288478


Rao, J.N.K. and C.F.J. Wu. 1987. “Methods for Standard Errors and Confidence Intervals

from Sample Survey Data: Some Recent Work.” Bulletin of the International Statistical

Institute 3: 5–21.

Rao, J.N.K. and C.F.J. Wu. 1988. “Resampling Inference with Complex Survey Data.”

Journal of the American Statistical Association 83: 231–241. Doi: https://doi.org/

10.2307/2288945.

Reiter, J.P., T.E. Raghunathan, and S.K. Kinney. 2006. “The Importance of Modeling the

Sampling Design in Multiple Imputation for Missing Data.” Survey Methodology 32:

143–149.

Roberts, G., J.N.K. Rao, and S. Kumar. 1987. “Logistic Regression Analysis of Sample

Survey Data.” Biometrika 74: 1–12. Doi: https://doi.org/10.2307/2336016.

Rubin, D.B. 1985. “The Use of Propensity Scores in Applied Bayesian Inference.” In

Bayesian Statistics 2, edited by J.M. Bernardo, M.H. Degroot, D.V. Lindley, and

A.F.M. Smith, 463–472. Elsevier Science Publishers B.V.

Ryan, B.L., J. Koval, B. Corbett, A. Thind, M.K. Campbell, and M. Stewart. 2015.

“Assessing the Impact of Potentially Influential Observations in Weighted Logistic

Regression.” The Research and Data Centres Information and Technical Bulletin

(Statistics Canada) 7. Available at: http://www.statcan.gc.ca/pub/12-002-x/2015001/

article/14147-eng.htm (accessed January 30, 2018).

Särndal, C.E., B. Swensson, and J. Wretman. 1992. Model Assisted Survey Sampling.

New York: Springer-Verlag Inc.

Särndal, C.E. and B. Swensson. 1987. “A General View of Estimation for Two Phases of

Selection with Applications to Two-Phase Sampling and Nonresponse.” International

Statistical Review 55: 279–294. Doi: https://doi.org/10.2307/1403406.

Shah, B.V., M.M. Holt, and R.E. Folsom. 1977. “Inference about Regression Models from

Sample Survey Data.” Bulletin of the International Statistical Institute 47: 43–57.

Shao, J. 2003. “Impact of the Bootstrap on Sample Surveys.” Statistical Science 18:

191–198.

Shao, J. and R.R. Sitter. 1996. “Bootstrap for Imputed Survey Data.” Journal of the

American Statistical Association 91: 1278–1288. Doi: https://doi.org/10.2307/

2291746.

Shao, J. and D. Tu. 1995. The Jackknife and Bootstrap. New York: Springer.

Si, Y., N.S. Pillai, and A. Gelman. 2015. “Bayesian Nonparametric Weighted Sampling

Inference.” Bayesian Analysis 10: 605–625. Doi: http://dx.doi.org/10.1214/14-BA924.

Sitter, R.R. and C. Wu. 2001. “A Note on Woodruff Confidence Intervals for Quantiles.”

Statistics & Probability Letters 52: 353–358. Doi: https://doi.org/10.1016/S0167-

7152(00)00207-8.

Skinner, C.J. and D.J. Holmes. 2003. “Random Effects Models for Longitudinal Survey

Data.” Chapter 14 in Analysis of Survey Data, edited by R.L. Chambers and C.J. Skinner.

John Wiley and Sons.

Skinner, C.J., D. Holt, and T.F. Smith. 1989. Analysis of Complex Surveys. John Wiley &

Sons.

Stapleton, L.M. 2002. “The Incorporation of Sample Weights into Multilevel Structural

Equation Models.” Structural Equation Modeling 9: 475–502. Doi: https://doi.org/

10.1207/S15328007SEM0904_2.

Journal of Official Statistics750

https://doi.org/10.2307/2288945
https://doi.org/10.2307/2288945
https://doi.org/10.2307/2336016
http://www.statcan.gc.ca/pub/12-002-x/2015001/article/14147-eng.htm
http://www.statcan.gc.ca/pub/12-002-x/2015001/article/14147-eng.htm
https://doi.org/10.2307/1403406
https://doi.org/10.2307/2291746
https://doi.org/10.2307/2291746
http://dx.doi.org/10.1214/14-BA924
https://doi.org/10.1016/S0167-7152(00)00207-8
https://doi.org/10.1016/S0167-7152(00)00207-8
https://doi.org/10.1207/S15328007SEM0904_2
https://doi.org/10.1207/S15328007SEM0904_2


Stapleton, L.M. 2006. “An Assessment of Practical Solutions for Structural Equation

Modeling with Complex Sample Data.” Structural Equation Modeling 13: 28–58.

Doi: https://doi.org/10.1207/s15328007sem1301_2.

Stapleton, L.M. and Y. Kang. 2016. “Design Effects of Multilevel Estimates From

National Probability Samples.” Sociological Methods & Research, available at

http://journals.sagepub.com/doi/abs/10.1177/0049124116630563 (accessed January 30,

2018). Doi: https://doi.org/10.1177/0049124116630563.

Thompson, M.E. 2015. “Using Longitudinal Complex Survey Data.” Annual Review of

Statistics and Its Application 2: 305–320. Doi: https://doi.org/10.1146/annurev-

statistics-010814-020403.

Toth, D. 2017. “rpms: An R Package for Modeling Survey Data with Regression Trees.”

Available at https://cran.r-project.org/web/packages/rpms/vignettes/rpms_2017_

02_10.pdf (accessed January 1, 2018).

Valliant, R. 2004. “The Effect of Multiple Weighting Steps on Variance Estimation.”

Journal of Official Statistics 20(1): 1–18.

Valliant, R., J.A. Dever, and F. Kreuter. 2013. Practical Tools for Designing and

Weighting Survey Samples. New York: Springer.

Valliant, R., A.H. Dorfman, and R.M. Royall. 2000. Finite Population Sampling and

Inference: a Prediction Approach. New York: Wiley.

Valliant, R. and K.F. Rust. 2010. “Degrees of Freedom Approximations and Rules-of-

Thumb.” Journal of Official Statistics 26: 585–602.

West, B.T. 2009. “A Simulation Study of Alternative Weighting Class Adjustments for

Nonresponse when Estimating a Population Mean from Complex Sample Survey Data.”

In Proceedings of the section on Survey Research Methods: Joint Statistical Meetings,

4920–4933. Available at: http://ww2.amstat.org/sections/srms/Proceedings/y2009/

Files/305394.pdf (accessed January 30, 2018).

West, B.T., L. Beer, W. Gremel, J. Weiser, C. Johnson, S. Garg, and J. Skarbinski. 2015.

“Weighted Multilevel Models: A Case Study.” American Journal of Public Health 105:

2214–2215. Doi: https://dx.doi.org/10.2105%2FAJPH.2015.302842.

West, B.T., P.A. Berglund, and S.G. Heeringa. 2008. “A Closer Examination of

Subpopulation Analysis of Complex-Sample Survey Data.” The Stata Journal 8:

520–531.

West, B.T. and S.E. McCabe. 2017. “Alternative Approaches to Assessing Nonresponse

Bias in Longitudinal Survey Estimates: An Application to Substance Use Outcomes

among Young Adults in the U.S.” American Journal of Epidemiology 185: 591–600.

Doi: https://doi.org/10.1093/aje/kww115.

West, B.T., J.W. Sakshaug, and G.A.S. Aurelien. 2016. “How Big of a Problem is Analytic

Error in Secondary Analyses of Survey Data?” PLoS ONE 11. Doi: https://doi.org/

10.1371/journal.pone.0158120.

Wolter, K.M. 2007. Introduction to Variance Estimation, Second Edition. New York:

Springer-Verlag.

Woodruff, R.S. 1952. “Confidence Intervals for Medians and other Position Measures.”

Journal of the American Statistical Association 47: 635–646. Doi: https://doi.org/

10.2307/2280781.

West et al.: Software for Analysis of Complex Survey Data 751

https://doi.org/10.1207/s15328007sem1301_2
http://journals.sagepub.com/doi/abs/10.1177/0049124116630563
https://doi.org/10.1177/0049124116630563
https://doi.org/10.1146/annurev-statistics-010814-020403
https://doi.org/10.1146/annurev-statistics-010814-020403
https://cran.r-project.org/web/packages/rpms/vignettes/rpms_2017_02_10.pdf
https://cran.r-project.org/web/packages/rpms/vignettes/rpms_2017_02_10.pdf
http://ww2.amstat.org/sections/srms/Proceedings/y2009/Files/305394.pdf
http://ww2.amstat.org/sections/srms/Proceedings/y2009/Files/305394.pdf
https://dx.doi.org/10.2105%2FAJPH.2015.302842
https://doi.org/10.1093/aje/kww115
https://doi.org/10.1371/journal.pone.0158120
https://doi.org/10.1371/journal.pone.0158120
https://doi.org/10.2307/2280781
https://doi.org/10.2307/2280781


Wu, Y.Y. and W.A. Fuller. 2006. “Estimation of Regression Coefficients with Unequal

Probability Samples.” In Proceedings of the Survey Research Methods Section:

American Statistical Association, 3892–3899. Available at: https://ww2.amstat.org/

sections/srms/Proceedings/y2006/Files/JSM2006-000807.pdf (accessed January 30,

2018).

Wun, L.M., T.M. Ezzati-Rice, N. Diaz-Tena, and J. Greenblatt. 2007. “On Modeling

Response Propensity for Dwelling Unit (DU) Level Non-response Adjustment in the

Medical Expenditure Panel Survey (MEPS).” Statistics in Medicine 26: 1875–1884.

Doi: https://doi.org/10.1002/sim.2809.

Zangeneh, S.Z. and R.J. Little. 2015. “Bayesian Inference for the Finite Population Total

from a Heteroscedastic Probability Proportional to Size Sample.” Journal of Survey

Statistics and Methodology 3: 162–192. Doi: https://doi.org/10.1093/jssam/smv002.

Zhang, D. and X. Lin. 2008. “Variance Component Testing in Generalized Linear Mixed

Models for Longitudinal/Clustered Data and Other Related Topics.” In Random Effect

and Latent Variable Model Selection, edited by D.B. Dunson. Springer Lecture Notes in

Statistics, 192.

Zheng, H. and R.J. Little. 2003. “Penalized Spline Model-Based Estimation of the Finite

Populations Total from Probability-Proportional-to-Size Samples.” Journal of Official

Statistics 19: 99–117.

Zhou, H., M.R. Elliott, and T.E. Raghunathan. 2016a. “Synthetic Multiple-Imputation

Procedure for Multistage Complex Samples.” Journal of Official Statistics 32:

231–256. Doi: https://doi.org/10.1515/JOS-2016-0011.

Zhou, H., M.R. Elliott, and T.E. Raghunathan. 2016b. “Multiple Imputation in Two-Stage

Cluster Samples Using the Weighted Finite Population Bayesian Boostrap.” Journal of

Survey Statistics and Methodology 4: 139–170. Doi: https://doi.org/10.1093/jssam/

smv031.

Zhou, H., M.R. Elliott, and T.E. Raghunathan. 2016c. “A Two-Step Semiparametric

Method to Accommodate Sampling Weights in Multiple Imputation.” Biometrics 72:

242–252. Doi: https://10.1111/biom.12413.

Zhu, M. 2014. “Analyzing Multilevel Models with the GLIMMIX Procedure.” Paper

SAS026-2014. Cary, NC: SAS Institute, Inc.

Received July 2017

Revised December 2017

Accepted February 2018

Journal of Official Statistics752

https://ww2.amstat.org/sections/srms/Proceedings/y2006/Files/JSM2006-000807.pdf
https://ww2.amstat.org/sections/srms/Proceedings/y2006/Files/JSM2006-000807.pdf
https://doi.org/10.1002/sim.2809
https://doi.org/10.1093/jssam/smv002
https://doi.org/10.1515/JOS-2016-0011
https://doi.org/10.1093/jssam/smv031
https://doi.org/10.1093/jssam/smv031
https://10.1111/biom.12413


Generalized Method of Moments Estimators
for Multiple Treatment Effects Using Observational

Data from Complex Surveys

Bin Liu1, Cindy Long Yu2, Michael Joseph Price2, and Yan Jiang3

In this article, we consider a generalized method moments (GMM) estimator to estimate
treatment effects defined through estimation equations using an observational data set from a
complex survey. We demonstrate that the proposed estimator, which incorporates both
sampling probabilities and semiparametrically estimated self-selection probabilities, gives
consistent estimates of treatment effects. The asymptotic normality of the proposed estimator
is established in the finite population framework, and its variance estimation is discussed. In
simulations, we evaluate our proposed estimator and its variance estimator based on the
asymptotic distribution. We also apply the method to estimate the effects of different choices
of health insurance types on healthcare spending using data from the Chinese General Social
Survey. The results from our simulations and the empirical study show that ignoring the
sampling design weights might lead to misleading conclusions.

Key words: Observational data; propensity score; semiparametric; treatment effects;
two-phase sampling design.

1. Introduction

Observational data from a complex survey has increasingly become useful for causal

inference because they can provide timely results with low cost. Survey data contains

information on the treatment selections, which enables us to estimate the effects of

treatments that cannot feasibly be evaluated with a randomized trial. In a survey, a

treatment can be broadly defined as one of the survey questions, for example whether or

not an individual has quit smoking, how often an individual does a physical exam, or what

types of health insurance an individual has chosen. We can use the existing survey data to

estimate effects of those treatments on health care spending, even if we cannot randomize

the health behavior or the health insurance enrollment of an individual. Also because a

well-designed survey sample is often a good representative of the target population, the

treatment effect results can be generalized to the target population level if the survey

weights are appropriately incorporated. Propensity score methods are well-established

statistical methods to remove treatment selection bias in observational studies if the

q Statistics Sweden

1 Ant Financial, Hangzhou, China. Email: lb88701@alibaba-inc.com
2 Iowa State University – Department of Statistics, Ames, Iowa 50011, United States. Emails: cindyyu@
iastate.edu and michael.price@pioneer.com
3 Renmin University of China - School of Statistics and The Center for Applied Statistics, Beijing, China. Email:
jiangyan@ruc.edu.cn

Journal of Official Statistics, Vol. 34, No. 3, 2018, pp. 753–784, http://dx.doi.org/10.2478/JOS-2018-0035

http://dx.doi.org/10.2478/JOS-2018-0035


selection probability model is correctly specified (Rosenbaum and Rubin 1983). Many

observational data sets have multiple treatment options. In order to handle the complexity

in multiple treatment groups, theoretical results support using the inverse of the estimated

treatment selection probabilities as weights to adjust for selection bias and attain

asymptotic efficiency (Hahn 1998; Hirano et al. 2003; Cattaneo 2010). This kind of

estimator is called inverse probability weighted (IPW) estimator, and the estimated

selection probabilities are called propensity scores. We also consider IPW estimators in

this article to address the potential confounding in observational studies. However, it is

very common that people ignore survey weights in observational data when using the IPW

estimators yet claim that the estimated treatment effects are generalizable to the target

population, causing misleading guidance in causal inference. Failure to properly account

for the complex survey design may lead to biased treatment effect estimates and incorrect

variance estimation.

Several authors have emphasized the importance of incorporating survey weights in

their IPW estimators, for example DuGoff et al. (2014), Zanutto (2006), Ashmead (2014),

and Ridgeway et al. (2015). The general idea is to multiply the inverse of the estimated

propensity scores by the sampling design weights. However most of the papers, except for

Ashmead (2014), do not provide theoretical justification for such survey adjusted

estimators, and variance estimation is seldom discussed. Yu et al. (2013) proposes a

semiparametric two-phase regression estimator to estimate marginal mean treatment

effects in observational data sets from complex survey designs. This article considers

a more general set up in which parameters of interest are defined through estimation

equations, and uses the generalized method of moments (GMM) for parameter estimation.

Similarly to Yu et al. (2013), this article draws a connection between the two-phase

sampling in survey statistics and the estimation of treatment effects from an observational

database. The observational data set, denoted as A1 (with size n), is considered as a first-

phase sample from a finite population, according to a known sampling probability p1i for

subject i. The second-phase sampling is a partitioning of the first-phase sample

(observational data set) into mutually exclusive and self-selected treatment groups,

A21; : : : ;A2G, where G is the number of treatments. This partitioning in the second-phase

can be viewed as a multinomial sampling in survey statistics, and its self-selection

probabilities p2ig for subject i into group g (g ¼ 1; : : : ;G) can be estimated using the

semiparametric approach in Cattaneo (2010).

Our article differs from DuGoff et al. (2014), Zanutto (2006), Ashmead (2014) and

Ridgeway et al. (2015) in the following ways. (i) Their papers consider two treatments,

while our article deals with multi-level treatment selection. (ii) In their work, the

propensity scores are estimated using a parametric linear logistic regression, while our

propensity scores, that is p2ig in our situation, are estimated through a semiparametric

approach. Thus, our approach should be more robust to the misspecification of the

selection probability model. (iii) In their work, the parameters of interest are treatment

means. We are interested in estimating treatment specific parameters defined through

estimation equations. In addition to providing generality, defining parameters through

estimation equations can facilitate variance estimation. For example, if a parameter is a

function of means, such as correlation or domain mean (see more details in Subsection 2.1),

the variance estimation of GMM estimators for such parameter scan be easily calculated
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through the sandwich formula associated with the asymptotic variance for a GMM

estimator. Ashmead (2014) also utilizes estimation equations in their weighting estimator.

This article also differs from Yu et al. (2013) in the following aspects. We extend Yu

et al. (2013), which only focuses on estimating marginal treatment means, to estimate

parameters defined through estimation Equations (see û
ð1Þ

g in Subsection 2.3). This article

also proposes the second estimator to gain efficiency by incorporating the first phase and

second phase means of covariates into the estimation equations (see û
ð2Þ

g in Subsection

2.3). This is similar to the effect of calibrating the second phase means of covariates to

their first phase means seen in the optimal two-phase regression estimator discussed in

Fuller (2009). Additionally, Yu et al. (2013) assumes sample missing at random (SMAR),

which is commonly used in literature, while this article considers population missing at

random (PMAR), the framework proposed in Berg et al. (2016) (see more details in

Subsection 2.1). It makes sense to use PMAR assumption in the context of casual inference

study using observation dataset. We discuss situations when PMAR holds but SMAR fails,

and argue that when it happens survey weights should be included in the estimation of

p2ig, that is the propensity scores.

We provide theoretical justification for our estimator in a combined framework of a

finite population and a superpopulation, and also propose variance estimators. We

demonstrate the validity of our estimator through simulation studies, and show that the

estimator that ignores the design weights might be subject to biases. We also explore the

feasibility of our method using data from the Chinese General Social Survey to estimate

the effects of different choices of health insurance types on health care spending. The

article is organized as below. Section 2 introduces the framework and the proposed

estimators. Section 3 presents an asymptotic normality and variance estimation.

Simulation studies and an empirical study are reported in Sections 4 and 5 respectively.

Section 6 concludes. Appendix collects the conditions and a sketch of the proof for the

main theorem in the article.

2. Proposed Estimators

In this section, we introduce our estimators. Subsection 2.1 discusses the basic set-up,

Subsection 2.2 introduces the semiparametric approach for estimating the self-selection

probabilities, and Subsection 2.3 proposes the estimators.

2.1. Basic Setup

Let U be a finite population with size N containing ðYi; ZiÞ, where i ¼ 1; : : : ;N indexes

a subject, Zi is a covariate variable, and Yi ¼ ½Yi1; : : : ; YiG�
T is a vector of potential

outcomes for G different treatments depending on covariate Zi. Let d1i be the sampling

indicator from the survey design, defined by d1i ¼ 1 if unit i is selected into A1 and zero

otherwise. Let p1i and p1ij be the first and second order inclusion probabilities of the

sampling design, defined as,

½p1i;p1ij� ¼ ½Probðd1i ¼ 1Þ;Probðd1i ¼ 1; d1j ¼ 1Þ�:

We assume the sampling weights are appropriately adjusted for any nonresponse. If the

weights are adjusted due to nonresponse, the method can be used but with awareness of
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that the variation from estimating p̂1i is not accounted for. Let d2ig (g ¼ 1; : : : ;G) be the

self-selection indicator of subject i selecting treatment g, defined by d2ig ¼ 1 if unit i

selects treatment g and zero otherwise. The self-selection process leads to the partitioning

in the second phase. Assume conditioning on a covariate Xi, the self-selection indicators

d 2i ¼ d2i1; : : : ; d2iG

� �
follow a multinomial distribution with probabilities,

p2ig ¼ Probðd2ig ¼ 1jXiÞ; for g ¼ 1; : : : ;G; ð1Þ

that is for any subject i,

d 2i ¼ d2i1; : : : ; d2iG

� �
, multinomial 1;p2i1; : : : ;p2iG

� �
;

where
PG

g¼1 p2ig ¼ 1 for any i, and d2i is independent of d2j for any subjects i – j. Here

covariates Zi and Xi can be totally different, or can have overlap. We use separate notations

in order to emphasize that the outcome response variables Yi and the self-selection

indicatorsd2i can depend on different sets of covariates. We discuss how to identify Zi and Xi

practically in Section 4. Both Zi and Xi have compact supports and are observed in A1. They

are written to be univariate forms in order to reduce notation burden. It is straightforward to

extend to multivariate covariates, which are considered in the simulation studies and the

empirical study of this article. We suppose that Yi; d1i;
�

d2i;Xi; ZiÞ; i ¼ 1; : : : ;N are

identically independently distributed (i.i.d.) generated from a superpopulation j.

In the context of simple random sampling, a common missing at random (MAR)

assumption is Yi ’d2ijðXi; ZiÞ. With this MAR assumption, the selection bias can be

removed by applying the propensity score method (Rosenbaum and Rubin 1983; Hirano

et al. 2003). However, in the context of a complex survey, unequal probabilities of

sampling can complicate the relationship between Yi, ðXi; ZiÞ, d2i and the sample inclusion

indicator d1i. Even if

Yi ’d2ijðXi; ZiÞ; ð2Þ

holds for a specific superpopulation model,

Yi ’d2ij{ðXi; ZiÞ; d1i ¼ 1}; ð3Þ

may not hold. Following Berg et al. (2016), we call Assumption (2) population missing at

random (PMAR), and Assumption (3) sample missing at random (SMAR) to emphasize it

depends on the realized sample (that is conditional on d1i ¼ 1). The SMAR has been used

previously (Pfefferman 2011 and Little 1982). However, it is natural to consider PMAR

in our context because the mechanisms underlying the selection propensity are

conceptualized as inherent characteristics of the subjects in the population. For example,

whether or not a person decides to stop smoking heavily depends on this person’s

perseverance and personality type; what types of insurance a person has chosen depends

on the nature of this person’s work. In these examples, the self-selection probabilities

depend on subjects’ inherent characteristics that have nothing to do with whether or not the

subjects were selected into the survey that was typically designed for other general

purposes. Berg et al. (2016) also provides examples of situations in which PMAR may be

considered reasonable. They argue that if both PMAR and SMAR hold, weights are not

needed in their imputation model; however if PMAR holds but SMAR fails, it is necessary

to include weights to produce consistent estimators. A situation in which PMAR holds
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while SMAR does not can arise if a design variable omitted from the first phase sample is

related to both the sampling inclusion probabilities and the response variable. An example

of such a design variable is location in a situation where design strata are functions of

location, the location is correlated with the response variable, but the specific location is

masked from the analyst because of concerns associated with confidentiality. Using

Lemma 1 of Berg et al. (2016), we identify the following two conditions of the sampling

and the self-selection mechanisms for which PMAR implies SMAR: (1)

d1i’YijðXi; ZiÞ; d2i; or (2) d2i’ Yi; d1i

� �
j Xi; Zi

� �
. The first condition states that the

sampling mechanism is noninformative given covariates ðXi; ZiÞ within all the second

phase self-selected groups A2g. The second condition states that the self-selection

mechanism is independent of either Yi or sample inclusion given Xi; Zi

� �
. Like Berg et al.

(2016), we suggest to include survey weights into the estimation of the self-selection

probabilities p2ig when SMAR fails (see Subsection 2.2). In our simulation studies, we

consider both noninformative sampling (Condition (1) above holds), and informative

sampling (Condition (1) above fails).

The true parameter of interest, u 0
g ðg ¼ 1; : : : ;GÞ, is a du-dimensional vector

satisfying,

E mg Yig; Zi; ug

� �� �
¼ 0; ð4Þ

in the superpopulation, where mgðYig; Zi; ugÞ, hereafter denoted as migðugÞ to save space,

is an r-dimensional function with r $ du. Sometimes in addition to treatment marginal

means, people might be interested in estimating treatment correlations or treatment

domain means. For example in our empirical study, it is interesting to understand whether

the correlations between annual medical expenditure and age (or household income) differ

significantly across different health insurance type groups; or whether the means of annual

medical expenditure for very sick people (domain means) are significantly different across

health insurance type groups. The parameter defined through Equation (4) includes

treatment correlations and treatment domain means as special cases. More specifically, if

the parameter of interest is u 0
g ¼ Pg;mg;s

2
g ;Rg

h iT

, where Pg ¼ ProbðYig # CÞ for some

C, mg ¼ EðYigÞ, s
2
g ¼ VarðYigÞ and Rg ¼ CorrðYig; ZiÞ, then the estimation equation can

be defined as,

migðugÞ ¼ 1Yig#C 2 Pg; Yig 2 mg; ðYig 2 mgÞ
2 2 s2

g ; ðYig 2 mgÞðZi 2 mzÞ
h

2Rg

ffiffiffiffiffiffi
s2

g

q ffiffiffiffiffiffi
s2

z

q
; Zi 2 mz; ðZi 2 mzÞ

2 2 s2
z

iT

:

ð5Þ

If the parameter of interest is a treatment specific domain mean, u 0
g ¼ EðYigjZi # CÞ, then

the estimation equation can be written as,

migðugÞ ¼ ½Yig1Zi#C 2 ugPz; 1Zi#C 2 Pz�
T : ð6Þ

Here in both examples, mz, s
2
z or Pz are all nuisance parameters.

2.2. Semiparametric Estimation of p2ig

Because of the difficulty in specifying a parametric form for p2ig and the constraint,PG
g¼1 p2ig ¼ 1, we adopt the semiparametric method in Cattaneo (2010) to estimate p2ig.
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Let {rkðXiÞ}
1
k¼1 be a sequence of known approximating functions, and assume that the

generalized logit of p2ig can be approximated by RKðXiÞ
Tgg;K for K ¼ 1; 2; : : : ; where

RKðXiÞ ¼ ½r1ðXiÞ; r2ðXiÞ; : : : ; rKðXiÞ�
T and gg;K is a vector of the real-valued coefficients

of RK(Xi) for the g-th treatment selection. Let an estimator of the K £ G matrix gK ¼

g1;K ; g2;K ; : : : ; gG;K

� �
be,

ĝK ¼ ½ĝ1;K ; ĝ2;K ; : : : ; ĝG;K� ¼
gK jg1;K¼0 K

argmax
i[A1

X
biw1i

XG

g¼1

d2iglog
eRK ðXiÞ

Tgg;K

XG

g¼1
eRK ðXiÞ

Tgg;K

2

4

3

5; ð7Þ

where w1i ¼ p21
1i , and 0K represents a K £ 1 zero vector used to constrain the sumPG

g¼1 p̂2ig ¼ 1. The estimated self-selection probabilities are

p̂2ig ¼
eRK ðXiÞ

T ĝg;K

1þ
XG

g¼2
eRK ðXiÞ

T ĝg;K

for g ¼ 2; 3; : : : ;G

¼ 1þ
XG

g¼2

eRK ðXiÞ
T ĝg;K

 !21

for g ¼ 1:

ð8Þ

This solution is that of multinomial logistic regression where the probability for each g is

approximated using a linear combination of the series of the approximating functions

RK(Xi). Condition B in the Appendix specifies assumptions about RKðXiÞ, p2ig and K to

ensure p̂2ig converges to p2ig fast enough. Examples of RKðXiÞ include a cubic polynomial

basis, RKðXiÞ ¼ 1;Xi;X
2
i ;X

3
i

� �T
, or a quadratic spline basis with q knots RKðXiÞ ¼

1;Xi;X
2
i ; ðXi 2 k1Þ

2
þ; : : : ; ðXi 2 kqÞ

2
þ

� �T
where ðtÞþ ¼ t if t . 0 and 0 otherwise, and

k1; : : : ; kq are knots in the compact support of Xi.

The bi in Equation (7) is a user-specified constant that represents the properties of the

sampling and the self-selecting mechanism. As discussed in Subsection 2.1, PMAR

assumption does not necessarily imply SMAR assumption. If one believes SMAR

assumption holds, then one can set bi ¼ w21
1i , which leads to unweighted estimation of

p̂2ig. If SMAR is not satisfied, the unweighted estimator may lead to bias, and setting

bi ¼ 1 is one way to attain an approximately unbiased estimator, see Berg et al. (2016) for

further discussion of the choice of bi. If it is difficult to verify SMAR assumption, we

suggest to use the conservative choice of bi ¼ 1, which leads to consistent estimators

under PMAR without requiring SMAR.

2.3. Proposed Estimators

Since the true parameter of interest u0
g is defined through an estimation equation in (4),

the GMM method with propensity scores is used for estimation. It is common that

people simply ignore the sampling design weights in the first-phaseand calculate a naive

estimator as,

û
nw

g ¼
ug

arg min �mnw
g ðugÞ

h iT

�mnw
g ðugÞ

h i
; ð9Þ
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where

�mnw
g ug

� �
¼

1

ni[A2g

Xmig ug

� �

p̂2ig

: ð10Þ

Here the superscript ‘nw’ means no weight. The estimator û
nw

g ignores the sampling

weights by applying equal weights to the estimation equations in (10). Although it uses the

propensity score p̂2ig to adjust for selection biases in the second-phase, it does not account

for the survey design in the first-phase, which might lead to biases and incorrect variance

estimation when estimating the treatment effect parameters on the population level. This is

demonstrated in the simulation studies of Section 4. Both Ridgeway et al. (2015) and Yu

et al. (2013) analytically quantify biases caused by ignoring the survey weights in complex

survey.

In order to obtain a consistent estimator for u0
g , the first-phase survey weights need to

be included into the estimation equation. We propose the following GMM estimator,

û
ð1Þ

g ¼
ug

arg min ½ �m2pgðugÞ�
T ½ �m2pgðugÞ�; ð11Þ

where

�m2pgðugÞ ¼
1

Ni[A2g

X
w1i

migðugÞ

p̂2ig

: ð12Þ

In order to improve efficiency, one can incorporate the information from covariate Zi that

is potentially correlated with the outcome responses into the estimation equations. We

propose the second GMM estimator as,

û
ð2Þ

g ; m̂z

� �
¼

ðug;mzÞ
arg min ½Hngðug;mzÞ�

T Ŝ
21

Hg ðug;mzÞ½Hngðug;mzÞ�; ð13Þ

where

Hngðug;mzÞ ¼ ½ �m2pgðugÞ; �z2pgðmzÞ; �z1pðmzÞ�
T ; ð14Þ

�z2pgðmzÞ ¼
1

Ni[A2g

X
w1i

Zi 2 mz

p̂2ig

and �z1pðmzÞ
T ¼

1

N i[A1

X
w1iðZi 2 mzÞ: ð15Þ

m̂z is an estimator for the nuisance parameter m0
z ¼ EðZiÞ and ŜHgðug;mzÞ is the variance

estimator of Hngðug;mzÞ, which depends on the joint inclusion probabilities and is defined

in (36) of Subsection 3.2. The estimator û
ð2Þ

g in (13) is connected to a two phase sampling

extension of the design unbiased difference estimator proposed by Särndal et al. (1992)

and Breidt et al. (2005) when �migðugÞ ¼ Yig 2 mg.

Remark 1: It can be shown that when migðugÞ ¼ Yig 2 mg and Xi ¼ Zi, the estimator û
ð1Þ

g

in (11) is asymptotically equivalent to the regression estimator proposed in Yu et al.

(2013).
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Remark 2: The estimator û
ð2Þ

g in (13) is more efficient than the estimator û
ð1Þ

g in (11). The

supplemental file provides a sketch of proof to show that û
ð2Þ

g is the most efficient estimator

among the class of estimators û
a

g that use any fixed positive definite matrix A in the

quadratic form minimization, that is û
a

g is defined as

û
a

g ; m̂
a
z

� �
¼

ðug;mzÞ
arg min ½Hngðug;mzÞ�

T A21½Hngðug;mzÞ�: ð16Þ

If the matrix is an identity matrix, then û
a

g obtained in (16) is equivalent to û
ð1Þ

g . Therefore

û
ð1Þ

g is expected to be less efficient than û
ð2Þ

g , which has been confirmed by the simulation

studies in Section 4.

Remark 3: It can be shown that when migðugÞ ¼ Yig 2 mg, the estimator û
ð2Þ

g

corresponds to the optimal two phase regression estimator discussed in Fuller (2009)

(Theory 2.2.4). The optimality in Fuller (2009) is in terms of achieving the minimum

variance for the limiting distribution of design consistent estimators of the form, �Y2p;reg ¼

�Y2p þ �Z1p 2 �Z2p

� �
b̂; where ½ �Y2p; �Z2p� ¼

P
i[A2

p21
1i p

21
2i

� �21P
i[A2

p21
1i p

21
2i

� �
Yi; Zi

� �
,

�Z1p ¼
P

i[Aa
p21

1i

� �21P
i[Aa

p21
1i Zi, and p1i (or A1) and p2i (or A2) are the first phase and

the second phase sampling probabilities (or samples). The efficiency gain of �Y2p;reg over
�Y2p is similar to the effect of calibrating the second phase covariate mean �Z2pg to its first

phase mean �Z1p.

Remark 4: It can be shown that when migðugÞ ¼ Yig 2 mg and Zi ; 1, the estimator û
ð2Þ

g

coincides analytically with the weighting estimator discussed in Ashmead (2014) except

that the propensity scores in Ashmead (2014) are estimated using a parametric logistic

regression.

Remark 5: When the population mean of Zi is available, the estimator û
ð2Þ

g can be easily

extended to incorporate this additional information. For example, this case can occur when

there are some demographic variables available on the population level. The extended

estimator can be obtained by adding one more moment �zNðmzÞ ¼ N 21
P

i[UðZi 2 mzÞ into

the Hngðug;mzÞ in Equation (14). Efficiency gain should be expected since this estimator

uses more information on the population level. By viewing the problem as a two-phase

sampling problem, the method can be readily extended to multiple sampling phases. This

extension is useful because the database A1 can come from alarger sample within the

database. This case covers the common situations where detailed treatment and outcome

data is available for only a subsample of the data such as a subsample with medical chart

adjudication of claims records or a subsample constructed by merging multiple sources of

claims records and electronic medical records.

3. Asymptotic Normality and Variance Estimation

Since û
ð1Þ

g can be written as a special case of û
ð2Þ

g , in Subsection 3.1 we derive the

asymptotic normal distribution for û
ð2Þ

g only, and in Subsection 3.2 provide a linearized

variance estimator for û
ð2Þ

g . Subsection 3.3 gives a replication variance estimator for û
ð1Þ

g .
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3.1. Asymptotic Normality of û
ð2Þ

g

The asymptotic normality of û
ð2Þ

g is established in Theorem 1 by combining two

randomizations from the finite population level and the superpopulation level. For the

finite population level, we consider a sequence of samples and finite populations indexed

by N, where the sample size n ! 1 as N ! 1 (Isaki and Fuller 1982). To define the

regularity conditions, we introduce the notation FN to represent an element of the

sequence of finite population with size N. To distinguish between the two randomizations,

we use the notation “jFN” to indicate that the reference distribution is with respect to

repeated sampling conditional on the finite population size N. For example, Eð�jFNÞ and

Vð�jFNÞ denote the conditional mean and variance with respect to the randomization

generated from repeated sampling from FN . And we use Ejð�Þ, Varjð�Þ and Covjð�;�Þ

to denote mean, variance and covariance with respect to the randomization from the

superpopulation j. The proof of Theorem 1 uses a result given in Theorem 1.3.6 of Fuller

(2009) that shows how to combine two asymptotic normalities from the finite population

and the superpoulation levels. Because of the importance of this theorem to our results, we

state this theorem as Fact 1:

Fact 1 (Theorem 1.3.6 of Fuller 2009): Suppose u0 is a true parameter on a

superpopulation level, uN is its analogous part on a finite population level, and û is

an estimator of u0 calculated from a sample. If ðû 2 uNÞjFN
L
! Nð0;V11Þ almost surely

(a.s.) and ðuN 2 u0Þ
L
! Nð0;V22Þ; then, ðû 2 u0Þ

L
! N ð0;V11 þ V22Þ. Here ðû 2 uNÞj

FN
L
! Nð0;V11Þ a:s: means that û 2 uN converges in a distribution to a random variable

with the distribution of Nð0;V11Þ almost surely with respect to the process of repeated

sampling from the sequence of finite populations as N ! 1. V11 is the asymptotic variance

of û on the finite population level, while V22 is the asymptotic variance of uN on the

superpopulaton level.

The key step in our proof of Theorem 1 is to obtain an asymptotic equivalence of

�m2pgðugÞ,

�m2pgðugÞ ¼
1

N

X

i[A2g

migðugÞ

p1ip̂2ig

¼
1

N

X

i[U

d1id2igmigðugÞ

p1ip2ig

2
1

N

X

i[U

d1iðd2ig 2 p2igÞ

p1ip2ig

EjðmigðugÞjXiÞ þ opðn
21=2Þ:

ð17Þ
Define

Higðug;mzÞ ¼ ½migðugÞ; Zi 2 mz�
T ; ð18Þ

and similary we can show an asymptotic equivalent form of �H2pgðug;mzÞ as,

1

N

X

i[A2g

Higðug;mzÞ

p1ip̂2ig

¼
1

N

X

i[U

d1id2igHigðug;mzÞ

p1ip2ig

2
1

N

X

i[U

d1iðd2ig 2 p2igÞ

p1ip2ig

£ EjðHigðug;mzÞjXiÞ þ opðn
21=2Þ

¼
1

N

X

i[A1

higðug;mzÞ

p1i

þ opðn
21=2Þ;

ð19Þ
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where

higðug;mzÞ ¼ Higðug;mzÞ
d2ig

p2ig

þ 1 2
d2ig

p2ig

	 

mHgðXi; ug;mzÞ; and

mHgðXi; ugÞ ¼ EjðHigðug;mzÞjXiÞ:

ð20Þ

Thus we can write Hngðug;mzÞ in (14) as,

Hngðug;mzÞ ¼
1

N

X

i[A2g

Higðug;mzÞ

p1ip̂2ig

;
1

N

X

i[A1

Zi 2 mz

p1i

2

4

3

5

T

¼
1

N

X

i[A1

higðug;mzÞ

p1i

;
1

N

X

i[A1

Zi 2 mz

p1i

" #T

þ opðn
21=2Þ:

ð21Þ

Then the large sample theory for û
ð2Þ

g is derived based on the asymptotic form of

Hngðug;mzÞ in Equation (21). We now state Theorem 1:

Theorem 1: Under the regularity conditions in the Appendix, for any g ¼ 1; : : :G;

ffiffiffi
n
p û

ð2Þ

g

m̂z

2

4

3

52

u0
g

m0
z

2

4

3

5

0

@

1

A L
!N 0;Vg u0

g ;m
0
z

� �� �
;

where

Vgðug;mzÞ ¼ GT
g ðugÞS

21
Hg ðug;mzÞG

T
g ðugÞ

h i21

; ð22Þ

GgðugÞ ¼ Ej

›Higðug;mzÞ

›ug

� �
Ej

›Higðug;mzÞ

›mz

� �
; 0 2 1

� �
; ð23Þ

and SHgðug;mzÞ ¼ S11ðug;mzÞ S12ðug;mzÞ; S
T
12ðug;mzÞ S22ðmzÞ

h i
: ð24Þ

Here the notation ½a11; a12; a21; a22� represents a 2 £ 2 block matrix with blocks aij. The

term S11ðug;mzÞ in Equation (24) is related to the asymptotic variance of the first element

in Equation (21) and is defined as,

S11ðug;mzÞ ¼
N!1
lim Vhg;Nðug;mzÞ þ

n

N
Varjðhigðug;mzÞÞ; ð25Þ

where Vhg;Nðug;mzÞ ¼ nN 22

i[U

X

j[U

Xp1ij 2 p1ip1j

p1ip1j

higðug;mzÞh
T
jgðug;mzÞ: ð26Þ

The term S22ðmzÞ in Equation (24) is related to the asymptotic variance of the second

element in Equation (21) and is defined as,

S22ðmzÞ ¼
N!1
lim Vz;NðmzÞ þ

n

N
VarjðZiÞ; ð27Þ
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where Vz;NðmzÞ ¼ nN 22

i[U

X

j[U

Xp1ij 2 p1ip1j

p1ip1j

ðZi 2 mzÞðZj 2 mzÞ: ð28Þ

The term S12ðug;mzÞ in Equation (24) is related to the asymptotic covariance between the

two elements in Equation (21) and is defined as,

S12ðug;mzÞ ¼
N!1
lim Chz;Nðug;mzÞ þ

n

N
Covjðhigðug;mzÞ; ZiÞ; ð29Þ

where Chz;Nðug;mzÞ ¼ nN 22

i[U

X

j[U

Xp1ij 2 p1ip1j

p1ip1j

higðug;mzÞðZj 2 mzÞ: ð30Þ

Equation (25) is connected to Fact 1 stated above, where its first term is

nV N 21
P

i[A1
p21

1i higðugÞjFN

� �
on the finite population corresponding to V11 in Fact

1, and its second term is nVj N 21
P

i[U higðugÞ
� �

on the superpopulation level

corresponding to V22 in Fact 1. The limit sign in the first term of Equation (25) indicates

this is the limit with respect to the process of repeated sampling from a sequence of finite

population as N ! 1. Similar connections can be seen in Equations (27) and (29). The

proof of Theorem 1 uses results from Pakes and Pollard (1989) (Theorems 3.2 and 3.3)

which provides a general central limit theorem for estimators defined by minimization of

the length of a vector valued random criterion function. The justification of Theorem 1

takes into account the finite population asymptotic framework and the semiparametric

estimation of p̂2ig. The asymptotic equivalence of �m2pgðugÞ in (17) is analytically similar

to the mathematical forms of the doubly robust (DR) estimators when migðugÞ ¼ Yig 2 mg,

see Kim and Haziza (2014), Haziza and Rao (2006), Tan (2006), and Robins et al. (2007).

One difference is that the consistency of the DR estimators requires one of the response

model and the outcome model to be correctly specified, while our estimators estimate both

the self-selection probabilities p2ig and the outcome model semiparametrically. The

regularity conditions on the sample design and tuning parameters for the semiparametric

estimation are provided in the Appendix, and an outline of the proof for Theorem 1 can be

found in Appendix A.

3.2. Variance Estimation Based on the Asymptotic Normality

We use the asymptotic variance Vgðu
0
g ;m

0
z Þ in (22) to estimate the variance of û

ð2Þ

g . To

estimate SHgðug;mzÞ, an estimator of higðug;mzÞ is obtained by,

ĥigðug;mzÞ ¼ Higðug;mzÞ
d2ig

p̂2ig

þ 1 2
d2ig

p̂2ig

	 

m̂Hg Xi; ug;mz

� �
; ð31Þ

wheremHgðXi; ugÞ is also estimated semiparametrically using the same bases RKðXiÞ, that is

m̂HgðXi;ug;mzÞ ¼ b̂
T

g ðug;mzÞRKðXiÞ; and ð32Þ

b̂gðug;mzÞ ¼
i[A2g

X
p21

1i p̂
21
2igRKðXiÞRKðXiÞ

T

0

@

1

A

21

i[A2g

X
p21

1i p̂
21
2igRKðXiÞH

T
igðug;mzÞ: ð33Þ
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An estimator of Vg u 0
g ;m

0
z

� �
is calculated as follows,

V̂g û
ð2Þ

g ; m̂z

� �
¼ Ĝ

T

g û
ð2Þ

g

� �
Ŝ

21

Hg û
ð2Þ

g ; m̂z

� �
Ĝ

T

g û
ð2Þ

g

� �h i21

; ð34Þ

where

ĜgðugÞ ¼
1

N i[A2g

X
w1ip̂

21
2ig

›Hig ug;mz

� �

›ug i[A2g

X
w1ip̂

21
2ig

›Hig ug;mz

� �

›mz

; 0 2 1

2

4

3

5; ð35Þ

and ŜHgðug;mzÞ ¼ Ŝ11ðug;mzÞ Ŝ12ðug;mzÞ; Ŝ
T

12ðug;mzÞ Ŝ22ðmzÞ
h i

: ð36Þ

The term Ŝ11ðug;mzÞ is estimated using

Ŝ11ðug;mzÞ ¼ V̂hg;Nðug;mzÞ þ
n

N
dVarVarj ðhigðug;mzÞÞ; ð37Þ

where V̂hg;Nðug;mzÞ ¼ nN 22

i[A1

X

j[A1

Xp1ij 2 p1ip1j

p1ijp1ip1j

ĥigðug;mzÞ ĥ
T
jgðug;mzÞ; ð38Þ

and

dVarVarj ðhigðug;mzÞÞ ¼
1

N i[A1

X
p21

1i ĥigðug;mzÞĥ
T
igðug;mzÞ

2
1

N 2
i[A1

X
p21

1i ĥigðug;mzÞ

2

4

3

5
i[A1

X
p21

1i ĥigðug;mzÞ

2

4

3

5

T

: ð39Þ

The term Ŝ22ðmzÞ is estimated using

Ŝ22ðmzÞ ¼ V̂z;NðmzÞ þ
n

N
dVarVarj ðZiÞ; ð40Þ

where V̂z;NðmzÞ ¼ nN 22

i[A1

X

j[A1

Xp1ij 2 p1ip1j

p1ijp1ip1j

ðZi 2 mzÞðZj 2 mzÞ; and ð41Þ

dVarVarj ðZiÞ¼
1

Ni[A1

X
p21

1i ðZi2mzÞ
22

1

N 2
i[A1

X
p21

1i ðZi2mzÞ

2

4

3

5
i[A1

X
p21

1i ðZi2mzÞ

2

4

3

5

T

; ð42Þ

The term Ŝ12ðug;mzÞ is estimated using

Ŝ12ðug;mzÞ¼Ĉhz;Nðug;mzÞþ
n

N
dCovCovj ðhigðug;mzÞ;ZiÞ; ð43Þ

where Ĉhz;Nðug;mzÞ¼nN 22

i[A1

X

j[A1

Xp1ij2p1ip1j

p1ijp1ip1j

ĥigðug;mzÞðZj2mzÞ; ð44Þ
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and

dCovCovj ðhigðug;mzÞ; ZiÞ ¼
1

N i[A1

X
p21

1i ĥigðug;mzÞðZi 2 mzÞ

2
1

N 2
i[A1

X
p21

1i ĥigðug;mzÞ

2

4

3

5
i[A1

X
p21

1i ðZi 2 mzÞ

2

4

3

5:

ð45Þ

To construct a joint estimator for u ¼ ½u1; : : : ; uG�
T , one can simply stack Hngðug;mzÞ in

the quadratic form of Equation (13). Define Hiðu;mzÞ as the stacked vector of Higðug; uzÞ
0s

in Equation (18) and hiðu;mzÞ as the stacked vector of higðug;mzÞ
0s in Equation (20). The

asymptotic theory and the variance estimator for ûð2Þ can be derived by simply replacing

Higðug;mzÞ by Hiðu;mzÞ and higðug;mzÞ by hiðu;mzÞ. Then we can obtain an inference for

the treatment effects or any linear combination of treatment parameters, lTu.

3.3. Replication Variance Estimation

In surveys conducted on land, for example surveys about natural resources (soil, forest,

water, etc.), non-responses hardly occur. However, in surveys with high non-response

rates, such as almost all surveys conducted on people, the joint inclusion probabilities are

typically not available because sampling weights have to be appropriately adjusted for

nonresponse. After such adjustments, the joint inclusion probabilities change and are

hard to be derived. In practice, a set of replicate weights are often provided instead,

because (1) design weights are often adjusted due to nonresponse issues and a set of

replicate weights are provided to account for the weight adjustment; (2) sometimes a few

design variables are masked from users to keep confidentiality. An example of such

design variable is location which is used for defining design strata in a study, but the

specific location is omitted from the analyst because of concerns associated with

confidentiality. In this subsection, we show how to use the replicate weights to construct

a Jackknife variance estimator for û
ð1Þ

g . Note that û
ð2Þ

g depends on the joint inclusion

probabilities p1ij which are typically not available when replicate weights are provided.

We propose to use the Jackknife (JK) variance estimator for a two-phase sampling

design discussed in Fuller (2009) and Kim et al. (2006). Assume that there is a replicate

variance estimator that gives a consistent estimator for the variance of the total estimator

based on the first-phase sample. We write the replication variance estimator as,

V̂JK1ðû1Þ ¼
PB

b¼1cb û
½b�

1 2 û1

� �
ðû
½b�

1 2 û1Þ
T ; where B is the number of replicates, û1 ¼P

i[A1
w1iXi is the total estimator of variable X using the first-phase sample, û

½b�

1 ¼
P

i[A1
w½b�1i Xi is the estimated total for the bthreplicate, w b½ �

1i is the bthreplicate weights in

the first-phase, and cb is a factor associated with replicate b such that V̂JK1ðû1Þ is a

consistent estimator for the variance of û1. Suppose the second-phase total estimator is,

û2 ¼
P

i[A2
w1ip

21
2ij1i

Xi; where p2ij1i is the conditional probability of selecting i for the

phase 2 sample given that i is in the phase 1 sample, and A2 is the phase 2 sample. Define

the bthreplicate of û2 as, û
½b�

2 ¼
P

i[A2
w½b�1i p

21
2ij1i

Xi: A Jackknife variance estimator for û2
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can be calculated as, V̂JK2ðû2Þ ¼
PB

b¼1cb û
½b�

2 2 û2

� �
û
½b�

2 2 û2

� �T

: Kim et al. (2006)

showed that V̂JK2ðû2Þ is a consistent estimator for the variance of û2.

Following the idea of Fuller (2009 Subsection 4.4), let b be the index for the deleted

Jackknife groups and the corresponding replicate version of �m2pgðugÞ be,

�m½b�2pgðugÞ ¼
1

Ni[A2g

X
w½b�1i p̂ ½b�2ig

� �21

migðugÞ; ð46Þ

where p̂ ½b�2ig is obtained by replacing w1i by w½b�1i in Equation (7). Then the replicate

estimator for û
ð1Þ

g is,

û
ð1Þ½b�

g ¼
ug

arg min �m½b�2pgðugÞ
h iT

�m½b�2pgðugÞ
h i

; ð47Þ

and the replication variance estimator for û
ð1Þ

g is calcualted as,

V̂JK û
ð1Þ

g

� �
¼
XB

b¼1

cb û
ð1Þ½b�

g 2 û
ð1Þ

g

� �
û
ð1Þ½b�

g 2 û
ð1Þ

g

� �T

: ð48Þ

Examples of w½b�1i and cb for a variety of designs are given in Särndal et al. (1992). For

example, if the first-phase sample is drawn from a multi-stage cluster design, the Jackknife

technique is usually applied at the primary sampling unit (PSU) levels. Assuming there are

B PSUs and Sb is the bth PSU deleted in the bth replicate sample, the bth replicate weight for

the first-phase is defined as,

w½b�1i ¼

0 if i [ Sb

B

B 2 1
w1i if i � Sb

8
><

>:
; ð49Þ

and cb ¼ B21ðB 2 1Þ. As mentioned in Särndal et al. (1992), for stratified sampling

designs, w½b�1i and cb need to be defined with care. We discuss this situation in Section 5 of

the empirical study. If the first phase replicate weights are provided in practice, one can

directly use them as w½b�1i . One thing to note is that Kim et al. (2006) assume p2ig are known

in their two phase replication variance estimator. The consistency theorem in Kim et al.

(2006) needs to be modified to account for the variation from estimating p̂2ig in our JK

variance estimator, which can be our future study.

4. Simulation Study

In this section, we evaluate the performance of our estimators and variance estimators

under four different simulation set-ups. We consider three treatment levels, and a

population size of N ¼ 10;000 and an expected sample size of n ¼ 1,000. We generate

i.i.d. realizations, ðYi; d1i; d2i;Xi; ZiÞ; i ¼ 1; : : : ;N, according to the following super-

population set-ups.

(1) Covariates: simulate covariates Zi ¼ ½Z1i; Z2i� where Z1i , Nð2; 1Þ and

Z2i , Nð10; 1Þ, and Xi ¼ ½X1i;X2i� where X1i ¼ Z1i and X2i , Nð0:5; 0:32Þ.
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(2) Potential response outcomes: the superpopulation model for potential outcomes is

Yig ¼ mgðZiÞ þ sgðZiÞ1ig; where

mgðZiÞ ¼ bg0 þ bg1ðZ1i 2 0:5Þ þ bg2ðZ1i 2 0:5Þ2 þ bg3Z2i;

e ig , Nð0; 1Þ, sgðZiÞ ¼ jmgðZiÞj, and ½bg0;bg1;bg2;bg3� equals to [5, 4, 2, 1] for

g ¼ 1, [0, 1, 0, 0] for g ¼ 2, and ½25;24;22;20:5� for g ¼ 3.

(3) First phase sampling: we consider two sampling designs, non-informative

stratification sampling and informative Poisson sampling.
* Stratification (STS): population units are sorted by values of Z1i, and then the

population is divided into two subpopulations U1 and U2 with equal sizes.

Simple random sampling is used to draw 80 percent of the sample from U1

and 20 percent from U2. For units in stratum s ðs ¼ 1 or 2Þ, p1i ¼ N21
s ns and

p1ij ¼ {NsðNs 2 1Þ}21nsðns 2 1Þ, where ns and Ns are the sample size and the

population size in stratum s. The joint inclusion probability for two units in

different strata is the product of their first order inclusion probabilities.
* Informative Poisson (Informative): the first-phase sample design is Poisson

sampling with selection probability,

p1i ¼
exp 21:5 2 2:5X2i þ 0:07kYik
� �

1þ exp 21:5 2 2:5X2i þ 0:07kYik
� � ;

where kYik ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y2

i1 þ Y2
i2 þ Y2

i3

q
. Modeling p1i as a function of Yi is a common

way (i.e., Pfeffermann and Sverchkov 1999) to represent joint dependence of Yi

and p1i on a design variable that is not contained in ðXi; ZiÞ. In this specification,

we assume kYik is known at the design stage of the survey, but is unavailable at the

analysis stage.

(4) Second phase self-selection probability models: we consider two models for p2ig.
* Logit Linear (LogitLinear):

p2ig ¼
exp ðfg0 þ fg1X1i þ fg2X2iÞ

XG

g¼1
exp ðfg0 þ fg1X1i þ fg2X2iÞ

;

where ½fg0;fg1;fg2� equals to ½20:5; 0; 0� for g ¼ 1, ½0:3;20:3;20:3� for g ¼ 2,

and ½0;20:5; 0:5� for g ¼ 3.
* Jump (JUMP):

½p2i1;p2i2;p2i3� ¼ ½0:90; 0:05; 0:05� if X1i þ X2i $ 3

¼ ½1=3; 1=3; 1=3� if 2 # X1i þ X2i , 3

¼ ½0:05; 0:05; 0:90� if X1i þ X2i , 2:

The JUMP model violates the differentiability assumption of p2ig in Condition

B(2) in the Appendix. It is deliberately included in the simulation to see if our

semiparametric approach can estimate a nonsmooth multiple treatment selection

probabilities well.
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For each i [ U, d2i is simulated from multinomialð1;p2i1;p2i2;p2i3Þ. For i – j,

p1ij ¼ p1ip1j. For STS design which is noninformative, SMAR holds and we set bi ¼ w21
1i

in Equation (7) to estimate p̂2ig. For Informative design, SMAR fails and we use bi ¼ 1 in

Equation (7) to estimate p̂2ig.

We first simulate a finite population with size N from the superpopulation and then use

indicators generated in (3) and (4) to obtain the first and second phase samples. We repeat

the process to produce 1,000 MC samples. We are interested in estimating five parameters

for each group, ug ¼ Pg;mg;s
2

g ;Rg;Dg

h i
, where Pg ¼ ProbðYig # 0Þ, mg ¼ EðYigÞ, s

2
g ¼

VarðYigÞ and Rg ¼ CorrðYig; Z2iÞ, and Dg ¼ E½EðYigjZ1i # 0:65Þ�. The corresponding

estimation equations migðugÞ can be found in Equations (5) and (6). For each MC sample,

we calculate the following four estimators:

. û
ð1Þ

g : the estimator defined in (11). When migðugÞ ¼ Yig 2 mg, û
ð1Þ

g corresponds to the

estimator in Yu et al. (2013) asymptotically.

. û
ð2Þ

g : the estimator defined in (13).

. û
nw

g : the estimator defined in (9), and is included to see what happens when the survey

weights are ignored in analyses.

. û
p

g : the estimator calculated the same way as û
ð1Þ

g , except that p̂2ig are estimated using

a parametric multinomial regression. This estimator is introduced in order to have

plausible comparisons in context of three treatments between our

estimators and others that use parametric logistic regression to estimate propensity

scores, see DuGoff et al. (2014), Zanutto (2006), Ashmead (2014), and Ridgeway

et al. (2015).

We use a cubic spline base of X1i for RKðX1iÞ, as suggested by Breidt et al. (2005) which

mentions that setting the degree of the spline equal to three is a popular choice in practice.

Condition 4(B) in the Appendix gives a practical guidance for the choice of K, the number

of knots in the spline. Condition 4(B) requires K ¼ OðnnÞ, where n has an upper bound

n # ð4hþ 2Þ21 with h ¼ 1/2 for spline bases. In our simulation studies, the sample size

n ¼ 1,000, suggesting nu ¼ 5:6. The choices of K ¼ 5; 4; 3; 2 are tried and the

corresponding p̂2ig curves are plotted. It is found that there is not noticeable change in the

p̂2ig curves until K decreases to 2. So K ¼ 3 is used and the locations of the three knots

correspond to the 25th, 50th, and 75th quantiles of observed X1i’s. A cubic spline base for

RK(X2i) is constructed the same way. And the semiparametric bases are RKðXiÞ ¼

RT
K X1ið Þ;RT

K X2ið Þ
� �T

.

If the dimension of ðXi;ZiÞ is big, in practice we suggest to run a multinomial regression

using d2i on ðXi;ZiÞ to select covariates that are most significant, and then use them for

estimation of p̂2ig. When using û
ð2Þ

g , one can run a multiple linear regression of Yig on

ðXi;ZiÞ in A2g to identify covariates that are most useful for explaining the outcome Yig,

and then add their first and second phase means in the estimation equations. It is not

impossible to obtain a very small p̂2ig computationally, which leads to extreme weights. A

solution is to truncate such p̂2ig’s to a small constant L (which is set to be 0.0001 in our

study), then adjust the truncated p̂2ig by calibrating the second phase mean of Ui to its first

phase mean, that is ~p2ig ¼ Fgp̂
t
2ig where Fg ¼

P
i[A1

w1iUi

� �21P
i[A2g

w1i p̂ t
2ig

� �21

Ui,

and p̂ t
2ig is the truncated propensity score which equals to L if p̂2ig , L, otherwise remains
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unchanged. Here the variable Ui can be an important covariate chosen by users, or a

weighted mean of ðXi;ZiÞwhere weights indicate importance of the covariates. We use the

average of the covariate Xi as Ui in both of the simulation studies and the empirical study.

Figures 1–4 show side-by-side boxplots of MC estimates of the four estimators for all

treatment effects. Each figure represents one of four simulation setups: (STS-

LogitLinear), (STS-JUMP), (Informative-LogitLinear), and (Informative-JUMP). In each

subplot, the first two boxplots are for û
ð1Þ

g and û
ð2Þ

g , and the third and fourth boxplots are

for û
p

g and û
nw

g respectively. When comparing our estimators û
ð1Þ

g and û
ð2Þ

g with û
nw

g , û
nw

g

is highly biased in most of parameters and scenarios, due to ignoring the survey weights.

The variances of û
nw

g in general are smaller than those of û
ð1Þ

g and û
ð2Þ

g , which is expected

especially when the survey weights are very different from each other. The coefficient of

variation (CV) of the weights for the STS design is 0.75, and the CV of weights for the

Informative design is 4.77. When comparing our estimators û
ð1Þ

g and û
ð2Þ

g with û
p

g , biases

of û
p

g are comparable to those of û
ð1Þ

g and û
ð2Þ

g for the LogitLinear model because in this

scenario û
p

g correctly assumes a parametric model for p2ig. However, in the situation of

JUMP models, û
p

g has larger biases than û
ð1Þ
g and û

ð2Þ
g because p2ig is misspecified

parametrically. When comparing û
ð1Þ

g with û
ð2Þ

g , both of their biases are comparable in all

scenarios. However, the plots show that û
ð2Þ

g consistently has smaller variances than û
ð1Þ

g .

The variance reduction of û
ð2Þ

g over û
ð1Þ

g indicates that efficiency gain occurs after adding

the first and second phase means of covariates to the estimation equations, which

confirms Remark 2. Additionally, it is promising to see that both û
ð1Þ

g and û
ð2Þ

g have

relatively small biases even if the JUMP model fails to satisfy the differentiability

assumption in the theory, indicating our semiparametric approach of estimating p̂2ig

works well for the nonsmooth function considered. We also tabulate the MC results into

four tables for readers who prefer to see numbers rather than Figures (see Supplemental

file, Tables 1–4).

Tables 1–2 contain the coverage probabilities of the 95 percent confidence intervals for

û
ð2Þ

g based on its asymptotic normality and its linearized variance estimator in Subsection

3.2, and the coverage probabilities of the 95 percent confidence intervals for û
ð1Þ

g and û
nw

g

based on the JK approach discussed in Subsection 3.3. The replication variance estimator

for û
nw

g is calculated by replacing w1i by N/n in Equation (49). This gives inappropriate

variance estimation for û
nw

g under an unequal probability sampling, but mimics what

people do when they ignore survey weights. To create the JK replicates, we delete one unit

at a time and set B ¼ 1,000. The coverage probabilities for û
ð2Þ

g using the linearized

variance estimator seem to work well, except for the marginal mean mg under (STS-

LogitLinear) and the marginal proportion Pg under (STS-JUMP). The rest of coverage

probabilities are reasonably close to the nominal size 95 percent. The JK variance

estimator of û
ð1Þ

g gives very good coverage probabilities. However the coverage

probabilities for û
nw

g using the JK variance estimation are far away from the nominal size,

especially under the Informative-JUMP model where the coverage probabilities are

severely underestimated. Those under-coverages are due to the biases in û
nw

g , or

inappropriate variance estimation, or both.

Our simulation studies demonstrate the validity of our estimators and variance

estimators.
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Fig. 1. STS-LogitLinear: Boxplots of MC estimates of the four estimators for all treatments. Each row

represents a parameter, and each column represents a treatment. In each subplot, the four boxplots

are for û
ð1Þ

g , û
ð2Þ

g , û
p

g and û
nw

g respectively in order. The horizontal line is located at the value of the true

treatment effect.
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ð2Þ

g , û
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p

g and û
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û
ð1
Þ

g

�
�

a
n

d
V̂

JK
û
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û
ð1
Þ

g
a

n
d
û
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5. Empirical Study

In this section, we investigate the feasibility of our method in estimating the mean annual

medical expenditures under different choices of health insurance types in China. We use

the data from the Chinese General Social Survey (CGSS) conducted by the National

Survey Research Center at the Renming University of China in 2010. The population

consisted of all Chinese adults (18þ ) in mainland China. A sample of 12,000 adults was

drawn for the base questionnaire and a subsample of 4,000 adults was drawn for the health

care questionnaire. Data were collected by in-person interviews. The sample for the CGSS

survey was selected using a multi-stage cluster sampling design. In the first stage, the

primary sampling units (PSUs) were districts which were divided into two strata. Stratum

1 contained 67 districts in five major cities (Shanghai, Beijing, Guangzhou, Shenzhen and

Tianjin), and Stratum 2 contained 2,795 districts in the rest of the area of China. In both

strata, a probability proportional to size (PPS) design with the resident population size as

the size variable was used to select the PSUs (40 PSUs were selected in Stratum 1, and 100

PSUs were selected in Stratum 2). In the second stage, the secondary sampling units

(SSUs) were communities. A PPS design with resident population size as the size variable

was used to select 2 SSUs within each selected PSU in Stratum 1 and 4 SSUs within each

selected PSU in Stratum 2. In the third stage, the ultimate sampling units (USUs) were

households. In each selected SSU, 25 households were drawn by a systematic sampling

method. Then a respondent was selected randomly within each household. Totally 12,000

households responded to the base questionnaire. Then every third household respondent in

each SSU was selected to answer the health care questionnaire. The subsample of 4,000

was used in our investigation.

Table 3. Empirical study with weights in estimation of p̂2ig: The treatment effect estimates using estimators

û
nw

g and û ð1Þg defined in Subsection 2.3. The parameter of interests are u 0
g ¼ EðYigÞ and u 0

g ¼ EðYigjIdi ¼ 1Þ

where Idi is the indicator for the domain of interest that contains respondents who have sick or very sick physical

condition. The standard errors are in parentheses and calculated using the Jackknife variance estimator, and the

95 percent confidence intervals are in brackets.

(a) Treatment mean effect estimates for u0
g ¼ EðYigÞ

Estimators Public – Private Public – No insurance Private – No insurance

û
ð1Þ

g 1349.57 (215.90) 309.408 (28.23) 21040.165 (698.47)
[926.40 1772.74] [254.07 364.74] [22409.17 328.84]

û
nw

g 1210.57 (353.50) 221.45 (29.17) 21232.03 (56.56)
[517.71 1903.44] [278.61779 35.71] [21342.88 21121.18]

(b) Treatment domain mean effect estimates for u0
g ¼ EðYigjIdi ¼ 1Þ

Estimators Public – Private Public – No insurance Private – No insurance

û
ð1Þ

g 3214.18 (32.22) 811.56 (38.69) 22402.62 (46.48)
[3151.03 3277.34] [735.73 887.39] [22493.73 22311.52]

û
nw

g 3320.93 (9.97) 4.49 (2.69) 23316.43 (240.85)
[3301.39 3340.47] [20.77 9.76] [23788.50 22844.37]
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The response variable in our study is the annual medical expenditure. The treatment

variable is the health insurance type (public health insurance, private health insurance, and

no health insurance). Public health insurance is sponsored by Chinese government and is

the main health insurance type in China. Six relevant covariates are chosen from the health

care questionnaire in our study: age, household register (urban, rural, other), annual

household income, physical condition (healthy, just so-so/or a little sick, sick, very sick),

chronic disease (yes, no), and treatment to illness (self-treatment, go to hospital, no

treatment). Due to some nonresponse units, the final data had a sample size of 3,866. The

data weights were adjusted to deal with the nonresponse issue.

We are interested in estimating the following parameters, u0
g ¼ EðYigÞ and u0

g ¼

EðYigjIdi ¼ 1Þwhere Idi is the indicator for the domain of interest that contains respondents

who have sick or very sick physical condition. When estimating p̂2ig, we use bi ¼ 1 in

Equation (7) to obtain conservative estimates since it is difficult to verify SMAR

assumption. For comparison, we also report the results using bi ¼ w21
1i in Equation (7).

Estimators û
ð1Þ

g and û
nw

g are calculated and the Jackknife variance estimator discussed

in Subsection 3.3 is used to calculate their standard errors. û
ð2Þ

g is not included into the

empirical study becausep1ij are not available. Since the design is a stratified multi-stage

cluster design, we use the districts (PSUs) in different strata as the deleted Jackknife

groups Sb. The Jackknife variance estimator is,

V̂JK û
ð1Þ

g

� �
¼
X2

h¼1

Bh 2 1

Bh

XBh

b¼1

û
ð1Þ½b�

g 2 û
ð1Þ

g

� �
û
ð1Þ½b�

g 2 û
ð1Þ

g

� �T

; ð50Þ

Table 4. Empirical study without weights in estimation of p̂2ig: The treatment effect estimates using estimators

û
nw

g and û
ð1Þ

g defined in Subsection 2.3. The parameter of interests are u0
g ¼ EðYigÞ and u0

g ¼ EðYigjIdi ¼ 1Þ

where Idi is the indicator for the domain of interest that contains respondents who have sick or very sick physical

condition. The standard errors are in parentheses and calculated using the Jackknife variance estimator, and the

95 percent confidence intervals are in brackets.

(a) Treatment mean effect estimates for u0
g ¼ EðYigÞ

Estimators Public – Private Public – No insurance Private – No insurance

û
ð1Þ

g 1301.04 (150.81) 298.02 (42.79) 21003.02 (169.31)
[1005.45 1596.63] [214.15 381.89] [21334.87 2671.17]

û
nw

g 1205.295 (259.68) 213.23 (55.84) 21218.52 (260.12)
[696.32 1714.27] [2122.68 96.22] [21728.36 2708.68]

(b) Treatment domain mean effect estimates for u0
g ¼ EðYigjIdi ¼ 1Þ

Estimators Public – Private Public – No insurance Private – No insurance

û
ð1Þ

g 2519.35 (239.67) 829.45 (87.41) 21689.90 (257.46)
[2049.60 2989.10] [658.13 1000.77] [22194.52 21185.28]

û
nw

g 3207.10 (17.14) 4.092 (4.30) 22343.00 (180.83)
[3173.51 3240.69] [24.34 12.52] [22697.43 21988.57]
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where û
ð1Þ½b�

g is the minimizer of Equation (47) and the replicate weight in the first-phase is

defined as,

w½b�1i ¼

0 if i [ Sb

p21
1i if i � Sb and hði Þ – hðbÞ

Bh

Bh 2 1
p21

1i if i � Sb and hði Þ ¼ hðbÞ:

8
>>>><

>>>>:

ð51Þ

Here h(i ) is the stratum where unit i belongs to, h(b) is the stratum where the bth deleted

group Sb belongs to, and ½B1;B2� ¼ ½40; 100�. The replicate estimator û
nw½b�
g for the

estimator û
nw

g without survey weights and the variance estimator V̂JK û
nw

g

� �
can be

obtained in the same way by simply replacing p1i by nN 21 in (51). A spline base of degree

2 with 8 equally spaced knots in the data range is constructed for the two continuous

variables (age and annual household income). Dummy variables are created for the

remaining categorical variables and added to the model.

Table 3 and 4 contain the estimated treatment mean effects and estimated treatment

domain mean effects for physical condition, along with standard errors (in parentheses)

and 95 perecnt confidence intervals (in brackets), for bi ¼ 1 and bi ¼ w21
1i cases

respectively. The treatment effect estimates in Table 3(a) indicate that, when the data

weights are neglected, the estimated mean medical expenditure of the public health

insurance group is not significantly different from that of the no health insurance group.

However, when the data weights are incorporated, the public health group is found to

spend significantly more on the medical expenses than the no health insurance group. This

makes sense because people who have no health insurance might be reluctant to spend

money to see doctors. This trend is also seen in the domain treatment effects estimates in

Table 3(b). In addition, when the data weights are neglected for the treatment mean effect

estimates, the estimated mean medical expenditure of the private health insurance group is

significantly different from that of the no insurance group, while incorporating the data

weights finds these estimated means not significantly different. Table 4 gives the same

story as Table 3 when comparing the public health insurance group versus the private

health insurance group, and comparing the public health insurance group versus the no

health insurance group. However, when comparing the private health group with the no

insurance group, Table 4 reports significant difference in the treatment mean effect for

both estimators û
ð1Þ

g and û
nw

g . Note that the standard errors of the unweighted estimator are

not consistently smaller than those of the weighted estimator because the variation of

weights in the real data is small (the CV ¼ 0.45).

This study demonstrates that our method is feasible in real data application and suggests

that ignoring the weights of an observational data might lead to a misleading conclusion.

6. Conclusions

In this article, we consider a GMM estimators û
ð1Þ

g and û
ð2Þ

g to estimate treatment effects

defined through an estimation equation in an observational data set that is a sample drawn

by a complex survey design. The estimators û
ð1Þ

g and û
ð2Þ

g include both the first-phase

sampling probabilities and the estimated second-phase selection probabilities to remove
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the biases due to ignoring unequal sampling design in the first-phase and the selection

biases in the second-phase. The self-selection probabilities are estimated using a

semiparametric approach in Cattaneo (2010) to deal with the situation with multiple

treatments. Our simulation studies demonstrate that neglecting the first-phase design

and handling only treatment selection could lead to erroneous treatment effect estimation.

The proposed estimator is designed to handle multiple treatments and do not require

strong model assumption of the selection probability as in a fully parametric solution. The

estimators û
ð1Þ

g and û
ð2Þ

g can be readily extended to multiple sampling phases as well when

the data set is a subsample of a larger survey sample.

Appendix

The notation of j�j represents the norm of a matrix, defined as jAj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
traceðA 0AÞ
p

and

the notation of k�k denotes the sup-norm in all arguments for functions.

We first give regular conditions on the sample designs in both phases. The following

notations, Ii, pi and pij, denote the sampling indicator, the first and second inclusion

probabilities either for the first-phase design or for the second-phase design. For example,

Ii ¼ d1i or Ii ¼ d2ig for any g, and pi ¼ p1i or pi ¼ p2ig for any g, depending on whether

the design if the first-phase design or the second-phase design.

Condition A:

(1) Any variable vi such that E½jvij
2þd
� , 1, where d . 0, satisfiesffiffiffi

n
p

�vHT 2 �vNð ÞjFN
L
! Nð0;V1Þ a:s:, where ð�vHT ; �vNÞ ¼ N 21

PN
i¼1 ðp

21viIi; viÞ,

V1 ¼ limN ! 1VN , and VN ¼ nVð�vHT jFNÞ is the conditional variance of the

Horvitz-Thompson estimator (Horvitz and Thompson 1952), �vHT , given FN .

(2) nN 21 ! f 1 [ ½0; 1�.

(3) There exist constant C1, C2 and C3 such that 0 , C1 # nN 21p21
i , 1, and

nðpij 2 pipjÞp
21
i p21

j


 # C3 , 1 a:s:

Condition A(1) and A(2) are regular conditions assumed for a survey design in a finite

population framework. Condition A(3) is used in Fuller (2009). The part of condition A(3)

related to the joint selection probabilities is used in the proofs to bound sums of covariance

induced by the sample design. Condition A(3) holds for simple random sampling, where

ðpij 2 pipjÞp
21
i p21

j ¼ n21ðn 2 1ÞðN 2 1Þ21N 2 1, and for Poisson sampling, where

ðpij 2 pipjÞp
21
i p21

j ¼ 0, and can hold for cluster sampling and stratified sampling. Fuller

(2009) explains that a designer has the control to ensure condition A(3). Note that for the

second-phase design in our situation, ðp2ij;g 2 p2igp2jgÞp
21
2igp

21
2jg ¼ 0 for any g because our

second-phase design is a multinomial extension of Poisson sampling.

Next we give regular conditions on the tuning parameters of the semiparametric basis.

For simplicity, we consider the special case of power series and spline series.

Condition B:

(1) The smallest eigenvalue of E½RKðXiÞRKðXiÞ
0Þ is bounded away from zero uniformly

in K.
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(2) There exists a sequence of constant zðKÞ such that kRKðXiÞk # zðKÞ for K ! 1 and

zðKÞK 1=2n21=2 ! 0.

(3) For all g, p2igðXiÞ and mmgðXi; ugÞ ¼ E½migðugÞjXi� are s-time differentiable with

sd21
x $ 5h=2þ 1=2, where dx is the dimension of Xi, and h ¼ 1 or h ¼ 1=2

depending on whether power series or spline series are used as basis function.

(4) K ¼ OðnnÞ with 4sd21
x 2 6h $ n21 $ 4hþ 2, where h ¼ 1 or h ¼ 1/2 depending

on whether power series or spline series are used as basis function.

Condition B(1) and B(2) are standard assumptions and are automatically satisfied in the

case of power series or spline series. Condition B(3) and B(4) describe the minimum

smoothness required as a function of the dimension of X and the choice of basis, and the

relationship between the sample size and the number of bases. Under B(3) and B(4), by

Lorentz (1986), there exists a K-vector g*
g;K for any g such that

log
p2igðXÞ

1 2
XG

g¼2
p2igðXÞ

0

@

1

A2 RT
KðXÞg

*
g;K

������

������
¼ O K 2s

n

� �
; ð52Þ

where RT
KðXÞg

*
g;K is the best L1 approximation for the logarithm of the odds ratio of

treatment g to the base treatment. The property (52) is used to derive the convergence rate

of p̂2ig to p2ig as follows,

kp̂2ig 2 p2igk ¼ OpðjðKÞK
1=2n21=2 þ jðKÞK 1=2K 2s=dx Þ ¼ opð1Þ: ð53Þ

For details, see Theorem B-1 of Cattaneo (2010).

Next we give regular conditions on the estimation equation function migðYig; Zi; ugÞ.

Condition C:

(1) migðYig; Zi; ugÞ is differentiable with respect to ug.

(2) Both migðYig; Zi;ugÞ and its first derivative with respect to ug have bounded 2þ d

moments. More specifically, E½jhðYi; Zi; uÞj
2þd
� , M; where h Yi; Zi; u

� �
denote an

element of migðYig; Zi; ugÞ or an element of its first derivative with respect to ug.

(3) Gg u0
g

� �
is full rank.

(4) Assume that �hHT ðuÞ2 �hNðuÞ converges to 0 uniformly in u, where �hHT ðuÞ ¼

N 21
PN

i¼1 Iip
21
i hiðYi; Zi; uÞ, �hNðuÞ ¼ N 21

PN
i¼1 hiðYi; Zi; uÞ, and hiðYi; Zi; uÞ has

the same interpretation as in condition C(2) above. This condition means that for

all e . 0, there exists a d . 0 such that Proðj�hHT ðuÞ2 �hNðuÞj . eÞ , d; for all N

greater than some value M, and for all u.

A: Proof of Theorem 1

The proof of Theorem 1 proceeds in two steps. The first step is to show that the asymptotic

equivalence of �m2pg ug

� �
,

�m2pgðugÞ ¼
1

N i[U

X d1id2igmigðugÞ

p1ip2ig

2
1

N

d1iðd2ig 2 p2igÞ

p1ip2ig

mmgðXi; ugÞ þ opðn
21=2Þ;

ðA:1Þ
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where mmgðXi; ugÞ ¼ EjððmigðugÞjXiÞ. In order to show (A.1), we first decompose

�m2pgðugÞ into

1

Ni[A2g

XmigðugÞ

p1ip̂2ig

¼
1

N i[A1

X d2igmigðugÞ

p1ip̂2ig

2
d2igmigðugÞ

p1ip2ig

þ
d2igmigðugÞ

p1ip
2
2ig

ðp̂2ig 2 p2igÞ

( )

þ
1

N i[A1

X
2

d2igmigðugÞ

p1ip
2
2ig

ðp̂2ig 2 p2igÞ þ
mmgðXi; ugÞ

p1ip2ig

ðp̂2ig 2 p2igÞ

( )

þ
1

N i[A1

X
2

mmgðXi; ugÞ

p1ip2ig

ðp̂2ig 2 p2igÞ þ
mmgðXi; ugÞ

p1ip2ig

ðd2ig 2 p2igÞ

� �

þ
1

N i[A1

X d2igmigðugÞ

p1ip2ig

2
mmgðXi; ugÞ

p1ip2ig

ðd2ig 2 p2igÞ

� �
:

ðA:2Þ

By the result in (53), the first three terms in (A.2) can be shown to have order opðn
21=2Þ

asymptotically, which leads to Equation (A.1). Similar arguments can be used to show
�H2pgðugÞ ¼

1
N

P
i[A1

p21
1i higðugÞ þ opðn

21=2Þ: The justification of those orders follows

Cattaneo (2010), and we refer readers to Cattaneo (2010) for details.

The second step is to show the following two conditions of Pakes and Pollard (1989)

hold: (1) supug[Qj �m2pgðugÞ2 EðmigðugÞÞj ¼ opð1Þ, and (2) for every sequence of real

numbers dn ! 0, sup ug2u 0
gj j#dn

�m2pgðugÞ2 EðmigðugÞÞ2 �m2pg u 0
g

� �
 ¼ opðn

21=2Þ: By

Equation (A.1), we can show that

Eð �m2pg2EðmgðugÞÞ
2¼E

1

N i[U

XmigðugÞd1id2ig

p1ip2ig

2
1

N i[U

XmigðugÞðd2ig2p2igÞ

p2ig

2E migðugÞ
� �

0

@

1

A

2

þo n21=2
� �

#2T1Nþ2T2Nþo n21=2
� �

;

ðA:3Þ

where T1N¼E 1
N

P
i[U

m igðugÞd1id 2ig

p1ip2ig
2EðmigðugÞÞ

� �2

and T2N¼E 1
N

P
i[U

m igðugÞðd 2ig2p2igÞ

p2ig

� �2

. It

is easy to show T1N¼OðN 21Þ and T2N¼OðN 21Þ. Then we have

Eð �m2pgðugÞ2EðmgðugÞÞÞ
2¼O 1

N

� �
) �m2pgðugÞ2EðmgðugÞÞ¼opð1Þ. Condition (1) of

Pakes and Pollard (1989) holds. Similarly, we can show that supðug;mzÞj
�H2pgðug;mzÞ2

EðHigðug;mzÞÞj¼opð1Þ:

By Equation (A.1), we can also show that �m2pgðugÞ2 EðmgðugÞÞ2 �m2pg u0
g

� �
¼

T3N 2 T4N þ op n21=2
� �

;where T3N ¼
1
N

P
i[U

m igðugÞ2m ig u 0
g

� �� �
d1id 2ig

p1ip2ig
2 E

	
mig ug

� �
2 mig

u0
g

� �

and T4N ¼

1
N

P
i[U

E m ig ugð Þ2m ig u 0
g

� �� �
jX

� �
d 2ig2p2igð Þ

p2ig
: When ug 2 u 0

g


 # dn,

we have
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E T2
3N

� �
¼

1

N
Var mig ug

� �
2 mig u0

g

� �� �

þE
1

N 2
i[U

X

j[U

X
D1ij

mig ug

� �
2 mig u0

g

� �

p1i

mjg ug

� �
2 mjg u0

g

� �

p1j

2

4

3

5

þE
2

N 2
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Then we have T3N ¼ opðn
21=2Þ and T4N ¼ opðn

21=2Þ when ju 2 u 0j # dn, thus Condition

(2) of Pakes and Pollard (1989) is verified. Similarly, we can show that for every sequence

of real numbers dn ! 0,
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For a vector c¼½c1;c2�
T , we know jcj#

ffiffiffi
2
p
ðjc1jþjc2jÞ. Therefore, Condition (1) and (2) of

Pakes and Pollard (1989) in terms of Hngðug;mzÞ can be verified. The details of the proof

can be obtained upon request.
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Book Review

William Cecere1

Jeremy Dawson. Analysing Quantitative Survey Data, 2017; Sage Publications Ltd. ISBN 978-1-

4739-0751-5, 88 pp, USD 40.

This book targets non-experts conducting a survey and subsequent analysis for the first

time. It is part of a larger series of books called Mastering Business Research Methods.

This series is for Master’s level students doing research for a dissertation in the business

and management disciplines. The focus of this edition is primarily on reliability and

validity of survey items under the framework of classical test theory. The examples in the

book are given using primarily SPSS software. I found this edition easy to understand and

apply for someone new to surveys.

The first chapter “An Introduction to Classical Test Theory and Quantitative Survey

Data” gives a motivation for using surveys due to their flexibility with types of data

collected. Six different types of questionnaire data are identified, grouped into categorical

and numeric major types, in addition to a discussion of Likert-scale data. Classical test

theory is introduced along with the assumptions surrounding it. This provides a more

formal outline to the later discussion of reliability and validity testing. The author

classifies three types of analysis using survey data: data tidying (including reliability and

validity checks), descriptive analysis, and inference.

The second chapter approaches the framing of the concepts of reliability and validity

with reference to classical test theory. The author lays out the philosophical underpinnings

of positivism and interpretivism. Positivism is a philosophy holding that every rationally

justifiable assertion can be scientifically verified or is capable of logical or mathematical

proof. Interpretivism is a counter to positivism, claiming that the social realm requires a

different epistemology for study. The author describes how interpretivism is appropriate

for survey topics since the meaning of the questions depends on the respondents’

understanding of it. This is a nice contrast between the social science and natural science

philosophical platforms. The remainder of this chapter covers many examples of the types

and aspects of validity and reliability analysis, hitting on many common sources of survey

error. The chapter concludes with a discussion of the advantages of using multi-item

scales.

Chapter 3 discusses steps that an analyst will need to go through to get multi-item scale

variables ready for analysis. A nice flow-chart of the steps for analysis is shown to

illustrate. The author provides detailed examples and tips for how to enter, code, and do

basic summary statistics for survey data in SPSS. These will be especially helpful to a new
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practitioner of survey analysis. Factor analysis is introduced as a tool for establishing the

validity of multi-item scales. Exploratory and confirmatory factor analysis are explained

and a decision process is given to help determine how to properly use each. How to create

‘scale-scores’ using SPSS is then displayed and the chapter closes with a table of standard

statistical tests for examining relationships within survey data.

The real depth necessary for a practitioner to apply validity and reliability analysis are

provided in Chapter 4. The instructions and recommendations Dawson provides are geared

towards management students using Likert scale data. Issues such as extracting factors,

determining the number of factors, which variables should be excluded, and factor

interpretation are covered using SPSS output for exploratory factor analysis. It is

mentioned that confirmatory factor analysis is a special case of structural equation

modeling and is not covered in SPSS. Several options are listed and the examples are

shown using the software Amos. Useful diagrams and screenshots are provided to help the

user construct and interpret the models. Finally, basic techniques for reliability analysis

using SPSS are displayed.

Chapter 5 walks through three case study examples to illustrate the use of the techniques

laid out in the previous chapter. The first case study looks at perception of job role and its

impact on employee performance as an example of exploratory factor analysis. The second

example describes a study that uses confirmatory factor analysis to validate the existence

of five levels of affective well-being. The author cites a paper showing two studies where

reliability analysis is used to examine factors regarding attitudes towards affirmative

action. This chapter provides a good structure for how these methods can be incorporated

into a study to help answer a wider set of questions.

Chapter 6 examines the role and assumptions of each method outlined when analyzing

quantitative survey data. The author attempts to assess other options compared to classical

test theory. Opinions on reliability and a comparison of principal component analysis

versus factor analysis are also provided. A helpful table is given weighing the positives

and negatives of different software options for performing confirmatory factor analysis.

Since this book does not cover the theory or background to the methods used, this is a

helpful perspective to give first-time users so that they might know of some limitations and

alternatives.

This book covers what the author calls data tidying and focuses primarily on methods of

assessing reliability and validity under the classical test theory framework. The title

suggests a broader scope than the book covers. Perhaps a title hinting at data tidying would

have been more appropriate. The nature of the text is quite hands-on with many tips and

examples for beginners but a more advanced survey practitioner will require additional

resources. Although simple in scope, Dawson provides a valuable resource to his target

audience of Master students using survey data for the first time.
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Book Review

Stephanie Coffey1

Barry Schouten, James Wagner, and Andy Peytchev. Adaptive Survey Design. 2017 Boca Raton:

CRC Press, ISBN 978-1-4987-6787-3, 252 pp, USD 89.95.

Adaptive survey design (ASD) is earning increased attention as a framework for

maintaining or improving survey quality. Noncontact, nonresponse, and the cost of

carrying out data collection are all increasing at varying rates. At the same time, the

increased computerization of survey operations, along with the increased processing

power of computers, means it is possible to generate, aggregate, and process more paradata

and survey data, helping survey methodologists, managers, and statisticians understand

characteristics of data collection at a more detailed level. Adaptive Survey Design, the

timely new book by Barry Schouten, James Wagner, and Andy Peytchev, places itself

squarely in this environment, providing both motivation for and detailed guidance on

implementing ASDs to improve survey outcomes.

This is the first published book addressing the developing field of ASD, and as a result, the

authors cover a significant amount of material across five major sections. Section I,

Introduction to Adaptive Survey Design, lays the foundation for the rest of the book through

the introduction of several concepts that return throughout the text. Standard survey

methodology topics including survey costs, survey errors, and the variability of survey

implementations are tied together to motivate the need for the flexibility to adapt data

collection protocols in order to improve survey outcomes. The authors also thoughtfully

discuss the nomenclature of ASDs, responsive designs, and their interaction. Their

definitions and context provide clear boundaries for what the authors will discuss

throughout the book. This is useful for survey practitioners, whether new or familiar with the

material, as what qualifies as an ASD is not always consistent in the working literature.

This section ends with the introduction of several case studies that return throughout the

book to illustrate concepts.

Section II, Preparing an Adaptive Survey Design, discusses three components required

before implementing an ASD: strata, design features, and models for nonresponse. First,

this section covers the process of stratification – stressing that strata should be based on

covariates related to survey variables and likelihood of response to different data

collection protocols. Data collection features, such as incentives, mode of contact, or case

prioritization, are tailored to specific strata and are discussed second. The hope is that the

application of particular data collection features to specific strata will result in superior

survey outcomes to those obtained through a traditional, non-adaptive designs. Last, this
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section addresses statistical models that may be used during an ASD. Two main categories

of models are discussed – those that can be used to support changes in data collection

procedures, and those that are used to monitor the potential for nonresponse bias. The

authors acknowledge that the quality of the strata and models for nonresponse are directly

tied to the predictive power of the available auxiliary data, which can vary considerably.

Short discussions of potential sources of additional data (such as commercial data or

paradata) and methods for stratification (such as response propensity variation, influence

on estimates, or machine learning algorithms) point the reader in helpful directions, while

making it clear that preparing for an ASD will have some unique elements from survey

to survey.

Section III, Implementing an Adaptive Survey Design, discusses other aspects of

implementing ASDs, and opens with a discussion of costs and logistics. The authors note

that, in order to assess cost-quality tradeoffs, survey practitioners need cost models, but

they are often very difficult to estimate. The authors help the reader conceptualize a cost

model designed for an ASD, and then illustrate the estimation of those model parameters

through regression. They also mention the use of expert opinion in constructing cost

parameters. This section also discusses the optimization of adaptive survey design, and

distinguishes between trial-and-error and numerical optimization, either through

mathematical optimization or simulation. Each of these methods have strengths and

weaknesses, and the authors suggest using them to validate one another, to the extent

possible. Lastly, this section addresses the robustness of ASDs. Both Section II and

Section III discuss the estimation of various design parameters, including response to

various data collection features, and the related costs of those features. Here, the authors

address how inaccuracy in those design parameters can impact the success of ASDs.

Section IV, Advanced Features of Adaptive Survey Design, includes the most statistical

content of the book, and addresses two main topics. The first chapter reviews the more

common indicators of nonresponse bias used in the literature, and classifies them into two

types – those that rely only on covariates and a survey response indicator, and those that

additionally rely on response data. Again, this requires consideration of the quality of the

available covariates or auxiliary data. The second chapter addresses the “during or after”

argument – that is, is it worth it to undertake the statistical and operational complexities to

design and execute an ASD, or can the same reductions in nonresponse bias be attained

through nonresponse adjustments using available covariates? The authors discuss some

theoretical evidence of the potential for ASDs to reduce nonresponse bias, even after

nonresponse adjustment, and the conditions required for bias reduction. Illustrative

examples are provided using the introduced case studies and are particularly helpful here.

In Section V, The Future of Adaptive Survey Design, the authors propose a research

agenda to further ASD, and itemize nine areas in three categories requiring further

experience or research. The first category focuses on proving the utility of ASDs through

accumulating evidence of success of ASDs across a range of designs. The second category

includes topics related to the implementation of ASDs, including the need to explore

statistical methods to inform adaptation (such as Bayesian models for incorporating

information) and the need for flexible survey software that can accommodate more

complex adaptation. The last category focuses on methodological advances for furthering

ASD, including designing paradata to meet the needs of ASD, the optimization of decision
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making through numerical methods, and ASD’s ability to address sources of error beyond

nonresponse and cost. This section also offers a more expanded discussion of ASD for

reducing measurement error, in particular. The authors make it clear through this agenda

that there are open questions for exploration throughout the survey lifecycle.

The book is a success due to its accessibility and applicability. Adaptive Survey Design

is written to appeal to a broad range of survey practitioners: methodologists, managers,

and statisticians. The only real prerequisite is an understanding of the survey lifecycle

process – how surveys are designed, conducted, processed, and analyzed. This is by

design – the authors are clear that implementing an ASD should involve individuals

throughout the survey process, as their knowledge and involvement is key to

implementing adaptation successfully. At the same time, the authors provide mathematical

detail for those interested, and clearly identify gaps in the existing research and

unanswered questions for survey practitioners to consider.

Beyond clear organization and communication, what sets this book apart is the inclusion

of case studies from the authors’ own experiences with adaptive design. The examples

include a random-digit-dial telephone survey, a multimode survey that can be linked to

administrative data, and an in-person interview made up of a screener and a personal

interview. By including such varied examples, the content and examples in the book are

applicable to a wide range of data collection designs. Many aspects of surveys will evolve

in the future, from cost and nonresponse patterns to available auxiliary data and design

features. However, the underlying concepts of adapting data collection that are detailed in

this book will continue to be valuable.
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Book Review

Hanyu Sun1

Jelke Bethlehem. Understanding Public Opinion Polls. 2018 Boca Raton, FL: Taylor & Francis

Group. ISBN-13: 978-1-4987-6974-7, 286 pp, USD 47.96.

With the increasing use of public opinion polling to collect information on almost every

aspect of modern life, it becomes more and more difficult for people to separate the good

polls from the bad ones and to determine whether the outcomes of a poll are valid or not.

An easy-to-follow guidance is much needed. This book “Understanding Public Opinion

Polls” by Dr. Jelke Bethlehem is written for professionals who have no prior training in

relevant fields but need to judge the outcome of polls such as journalists, politicians, and

decision makers among other non-experts in polling. The book, in the author’s own words,

is a “not-so-technical introduction” to public opinion polling. It can be viewed as

providing a checklist to evaluate the quality of different polls or a how-to cookbook for

conducting polls with appropriate methodologies that result in valid outcomes. The book

covers all elements of conducting a poll, including the definition of a target population, the

questionnaire design, the mode choice, sample design, weighting, data analysis, and the

publication of the results. It is not uncommon for an “all-inclusive” book on survey

statistics and methodology to be “too heavy” for entry-level readers. This book achieves a

balance by including examples in each chapter to make it easier for readers to digest the

relevant information on statistics and methodology.

Chapter 1 of the book provides an overview of the book’s content. Chapter 2 gives a

brief history of polls starting from their origin in ancient Greece to the development of

modern sampling theory, the emergence of public opinion polls, and finally the rise of

online polls. The remainder of the chapters can be grouped into three parts. Part One

includes Chapter 3 to Chapter 7 and each covers a key component of a poll. Part Two

focuses on two specific types of polls that are of the most interest to readers: online polls

in Chapter 8 and election polls in Chapter 9. Part Three of the book is about data analysis

and publication. The book concludes with Chapter 12 that summarizes all chapters and

provides a checklist of poll quality for readers.

Part One includes five chapters with each covering a vital component of a poll. Chapter 3

provides an overview of the questionnaire design covering topics such as the types of

survey questions, the question order effects, and questionnaire pretesting methods. The

author recommends ignoring the poll outcomes if the instrument is poorly designed.

Chapter 4 describes four major modes of data collection (i.e., face-to-face, telephone,

mail, and online polls). The author provides pros and cons for each mode in terms of data

quality and costs. After reading this chapter, it should become clear to readers that some
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tradeoff has to be made when selecting the mode of data collection. Chapter 5 covers

sampling as another key component of a poll. Throughout the book, the author emphasizes

the importance of selecting a random sample using probability based methods so that

unbiased estimates of population characteristics can be computed and the precision of the

estimates can be determined. The author elaborates more on this topic in Chapter 5.

Instead of reviewing the theory of sampling – which can be “too heavy” for readers

without relevant background––the author provides step-by-step instructions on how to

draw a random sample using devices such as the random number generator or a

spreadsheet. In this chapter, the author also reviews quota sampling and issues associated

with self-selection to prepare readers for the upcoming review of online polls. Chapter 6

is on estimation. Again, the author uses easy-to-follow examples to explain concepts

associated with estimates, estimators and the margin of error. With an example, the author

demonstrates how to estimate a population mean and percentage as well as how to

determine the sample size. The first four chapters of Part One cover what constitutes a

good poll. In Chapter 7, the author changes gear to talk about why nonresponse occurs, its

consequences, and how to use adjustment weighting to remove or reduce the bias.

In Part Two, the author applies the guidance that was provided in Part One to examine

two types of polls that are of the most interest– online polls and election polls. In

Chapter 8, the author discusses issues of online polls under the total survey error

framework. Online polls have become more and more popular because they seem to be

easy, cheap, and fast at collecting large amounts of data. However, they also suffer from

serious methodological issues, such as undercoverage, self-selection bias, nonresponse,

and measurement errors. Readers should have a more comprehensive view of online polls

after reading this chapter. Next, the author changes subjects and describes election polls

in Chapter 9. This includes both pre-election polls and exit polls. Pre-election polls are

conducted before an election takes place whereas exit polls are conducted on the day of the

election. The author describes the pros and cons for both types of polls. As in previous

chapters, the author provides examples in Chapter 8 and Chapter 9 to help readers

understand what is covered.

Part Three of the book is devoted to analysis and publication. Chapter 10 is about data

analysis. It mainly focuses on exploratory analysis such as how to examine the distribution

of a single variable, how to examine the relationship between two variables, and how to

present data in graphs such as bar charts, boxplots, and scatterplots. The author uses a

small data set and the open source software R to illustrate the type of analysis covered in

the chapter. This is a cheap and simple approach for readers who do not have access to

expensive statistical software. Chapter 11 describes how to produce a research report––the

key components of a research report and how to present the poll outcomes using graphs in

a meaningful way. The book concludes with Chapter 12, summarizing all topics covered in

previous chapters and providing a checklist for readers to determine the quality of a poll.

If readers are running short of time, they can go to Chapter 12, particularly the checklist

(i.e., Table 12.1), to guide their evaluation of a poll’s quality.

In summary, this is a comprehensive how-to guide for readers who need to judge the

outcomes of polls and who want to conduct polls but don’t have the necessary training in

relevant fields. The book covers all the key components of a poll and provides ample

examples to explain abstract concepts and procedures. The examples are not only relevant
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to what is being described but also will allow readers to connect them with the polls they

see on a regular basis. The idea that readers will be able to evaluate the quality of a poll by

marking yes or no for each item on the checklist from Chapter 12 is quite useful. If there

are many “No” answers, it is clear that the outcomes of the poll cannot be taken seriously.

But what if the answers to five or six of the nine checklist items are “Yes”, what shall the

reader do? And does it matter which five or six items are marked as “Yes”? That is, are all

the items equally important when judging the poll quality? Questions like these may

motivate readers to dive deeper and learn more about statistics and survey research.

Nevertheless, this book is a well-written introduction for anyone who is interested in

public opinion polling.
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Erratum
Optimal Stratification and Allocation for the June

Agricultural Survey

Jonathan Lisic, Hejian Sang, Zhengyuan Zhu, and Stephanie Zimmer

Erratum concerning the article “Optimal Stratification and Allocation for the June

Agricultural Survey” by Jonathan Lisic, Hejian Sang, Zhengyuan Zhu, and Stephanie

Zimmer published in Journal of Official Statistics, Volume 34, Number 1, 2018, pages

121–148 (https://doi.org/10.1515/jos-2018-0007).

This article has an error and related omission in the literature review, as well as some

errors in the specification of the simulation. Neither of these errors affect any results in the

paper or conclusions drawn.

The error and related omission in the literature review occur on page 122, paragraph 2.

The reference, Lavallée and Hidiroglou (1988) is incorrect and should be replaced with a

reference to Hidiroglou (1986). Both papers are similar in that they provide methods to

optimally stratify and allocate univariate populations into take-all, take-none, and take-

some stratum under a coefficient of variation (CV) constraint. However, Lavallée and

Hidiroglou (1988) improves on Hidiroglou (1986) by allowing for an arbitrary number of

take-some strata. This important contribution should have been included on page 122

paragraph 2, revised below.

One major advantage that a priori and conditional allocation designs have over optimal

stratified designs is that they are easy to obtain. Optimal stratified designs require an

exploration of a combinatorial space to find an optimal design. This is a non-trivial

problem for even small population and sample sizes. A solution to the problem of

finding a univariate optimal stratified design using Neyman allocation for a fixed sample

size was proposed by Dalenius and Hodges (1959). This method is commonly known as

the cum
ffiffiffi

f
p

method (Särndal et al. 1991, Section 3.7 and Horgan 2006). Similar methods

such as Hidiroglou (1986) and the multivariate extensions in Benedetti et al. (2010) and

Benedetti and Piersimoni (2012) provide optimal designs under CV constraints, but are

restricted to no more than three strata. These strata include a census (take-all), a sampled

(take-some), and an unsampled (take-none) stratum for cut-off sampling. Lavallée and

Hidiroglou (1988) introduced a univariate method that allows for an arbitrary number or

take-some strata for the univariate case. These approaches are designed for highly

skewed populations, exploiting the similarity of the underlying population to a

geometric progression (Gunning et al. 2004). Benedetti and Piersimoni (2012)

introduced a method for stratification which uses multiple administrative variables. This

method, which is motivated by the Lavallée and Hidiroglou method, partitions the

population into two strata, one which is sampled and one, which is a take-all stratum.

q Statistics Sweden
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The partitioning is determined such that the sample size is minimized for a target

coefficient of variation of a response variable. In addition to allocations with goals of

increasing precision, allocations also consider data collection costs and other practical

constraints such as the method proposed by Valliant et al. (2014) to allocate sample in

household surveys using Address-Based Sampling Frames and available commercial

data.

The errors in the specification of the simulation occur in two areas. First, the sample size

of the univariate homoscedastic case should of been n ¼ 70 instead of n ¼ 23. Second, on

page 134 after Equation (11) zi was missing the g exponent in relation to vi; vi is correctly

defined as vi ¼ �z
g
i in the homoscedastic case and vi ¼ z

g
1;i in the heteroscedastic case.
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